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Ultrasensitive force detectors are required for progress towards single atom 

imaging using magnetic resonance force microscopy (MRFM). MRFM is a 

scanned probe imaging technique, with potential for atomic-scale, non-

destructive and sub-surface imaging. To achieve the goal of single atom 

imaging, technical development towards realization of high magnetic field 

gradients as well as force detectors with very high sensitivity are necessary. 

Given values of field gradients that can be achieved at present (typically of the 

order of 105 T/m), force sensitivity of an atto-newton (10-18 N/√Hz) at low 

temperatures (0.3 – 4 K) is required for single spin sensitivity. This has been 

achieved using optical interferometry; however, optical interferometers corrupt 

measurements by heating the cantilevers and inducing decoherence of spins in 

the sample. Thus, there is a need to develop a light-free technique to measure 

cantilever motion with high sensitivity. In this dissertation, a design for 

ultrasensitive force detection using capacitive sensing is developed. 

Thermomechanical noise and position detection sensitivity constraints are 



addressed. The fabrication of an ultra-thin, nanomechanical force sensing 

cantilever with an integrated sense electrode for capacitive detection (double 

cantilever architecture) is accomplished. Gallium Arsenide field effect 

transistors with potential for integration onto the double cantilever chips are 

fabricated and characterized at low temperatures. Measurement techniques for 

capacitive detection are explored and lay the groundwork for future research 

towards the development of integrated nanomechanical force detectors 

towards single spin sensitivity for magnetic resonance force microscopy. 
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Chapter 1  

NANOMECHANICS FOR MAGNETIC RESONANCE FORCE MICROSCOPY 

 

1.1  Introduction 

The field of nanomechanics, a recently coined term, has been rapidly 

expanding with the surge in research in the field of nanotechnology. While 

nanotechnology is a broad term that is highly interdisciplinary, nanomechanics 

concentrates on aspects of this science primarily in the fields of Physics and 

Mechanical Engineering. It is a subset of nanotechnology, but a core 

knowledge area that helps in understanding the behavior of systems close to 

and smaller than the nanometer regime. 

Nanomechanics as a field, has seen a significant developments in recent 

years because of vast advances in nanofabrication technology. The knowledge 

gained in fabrication and characterization of microelectromechanical devices 

(MEMS) has helped nanomechanics researchers make devices to observe 

phenomena previously not possible. Using novel materials to make 

microelectromechanical systems is a challenge, since the majority of 

microelectromechanical systems have been polysilicon based, as such 

spawning an entire infrastructure aimed at fabricating such structures 

[MUMPS, MOSIS]. Silicon nitride devices have been popular in 

nanomechanical devices because of the relative simplicity of fabrication as 
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well as the availability of good quality nitride films in the market. More 

recently, single crystal structures of silicon and gallium arsenide have also 

been used, though the higher cost of fabrication of such devices has greatly 

limited their use. 

This chapter is aimed at giving a brief introduction to this novel field and 

the relevance of this dissertation in the development of this field. This 

dissertation focuses on the experimental techniques that extend the 

technological know-how in this field; hence much of the introduction will be 

in experimental nanomechanics. An introduction to magnetic resonance force 

microscopy is included and will serve as the backdrop for the rest of the 

dissertation. 

 

1.2  Experimental Nanomechanics 

Cleland [1] regards nanomechanics to be the mechanical behavior of 

nanometer-scale objects. Experimental nanostructures are often built to 

investigate various mechanical properties and applications of nanomechanical 

devices. Almost all experimental structures in nanomechanics are currently 

made using semiconductor processing techniques. Of course many 

experimental structures have potential applications either as the original 

structure or with modifications.  



 - 3 -  

Nanomechanics has origins in many of the traditional fields (such as 

Physics, Mechanical Engineering, Electrical Engineering, Materials Science, 

Civil Engineering and the life sciences). This is because at the nanoscale, 

seamless integration of mechanical (structural) and electrical components is 

required, which in many cases obey the bizarre laws of quantum mechanics 

and demonstrate behavior highly dependent on the local properties of 

materials. Thus, the boundaries between the various fields have to be scaled in 

order to design systems with useful applications. More recently 

nanomechanics has come to be regarded as a subset of Mechanical 

Engineering and Physics – the use of engineering design tools such as the 

continuum theory combined with quantum mechanics to produce new tools 

such as the enriched continuum theory [2] have required engineers to learn the 

fundamentals of Physics normally not taught to mechanical engineers. Thus, 

both design tools as well as fabrication technologies have to be developed. 

This dissertation is intended to be in the area of experimental 

nanomechanics. As such, it will talk about experimental structures that can 

interact with elements that are governed by quantum mechanics. 

Recent nanomechanical devices have demonstrated the theory of the limit 

of heat transfer [2], achieved very high displacement sensitivity [4], 

approached very close to the Heisenberg limit [5], [6] and have achieved sub-

attonewton force sensitivity [7] among other things. Clearly all the 
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applications listed above have bearing on future technological development. 

For instance, the Schwab-Roukes experiment in [2] determines the limit of 

thermal conductance which could be an important factor in electronic devices 

of the future as decreasing feature sizes could be limited. As evidenced later, 

the device described in [7] represents many aspects of the goal of this 

dissertation. 

 

1.3  Metrology Requirements in Nanotechnology 

One of the important requirements in the emerging field of 

nanotechnology is to be able to characterize materials at the nanoscale. While 

many new techniques are being employed (for instance, in [8]), it is widely 

accepted that most of these methods have severe limitations, both physical as 

well as in terms of generating pertinent information. The accurate 

characteristics of material properties is very important in nanomechanics, since 

micro-anomalies, normally ignored in engineering design with good reason, 

play an important role at these scales. Since in nanostructures, the 

interdependence of mechanical and electrical properties of the material are 

often exploited, the designer must take into account these properties, for which 

these properties must be well established. 

Some of the important tools in current use are the nano-indentors, the 

atomic force microscope (AFM), the scanning probe microscope (SPM), the 
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electron microscope (both transmission mode (TEM) and scanning mode 

(SEM)) and some laboratory equipment such as profilometers etc. that yield 

limited scale-specific information. The AFM has been a very useful tool in the 

emerging field of nanotechnology, since it can produce ultra-high resolution 

images of surfaces. Another of the important tools of the twentieth century has 

been Nuclear Magnetic Resonance Imaging (NMR). NMR and its modified 

form Magnetic Resonance Imaging (MRI) have yielded interesting and useful 

information helping us better understand human anatomy, drug performance 

and chemical potentials in solutions among many other things.  

There is no doubt that the concept of NMR is a powerful and indispensable 

tool for scientists, engineers and healthcare professionals. NMR provides a 

non-destructive (or non-invasive) technique to produce images of structures 

well below the surface. As for the AFM, it has been adapted by micro- and 

nanotechnologists to perform various applications beyond what it was 

originally designed for. (See [9]  for an example) 

A combination of MRI and AFM, i.e. a tool that has the three dimensional 

imaging capabilities of MRI, while at the same time having the lateral 

resolution of AFM would be the ideal tool for studying nanoscale materials 

and devices, as well to exploit properties of nanofabricated devices. Such a 

tool would enable metrology of nanostructures in-situ or otherwise and would 

provide a wealth of information about the characteristics of materials at the 
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nanoscale. In addition it would enable molecular imaging, which will 

revolutionize research in the biological and medical sciences. The 

fundamentals of development of such a tool are presented in this chapter and 

serves as the motivation for this dissertation. 

 

1.4  Nuclear Magnetic Resonance (NMR) 

The fundamentals of nuclear magnetic resonance are as follows. If a 

sample is placed in a magnetic field and is subjected to radiofrequency (RF) 

radiation (energy) at the appropriate frequency, nuclei in the sample can 

absorb the energy. The frequency of the radiation necessary for absorption of 

energy depends on three things. First, it is characteristic of the type of nucleus 

(e.g., 1H or 13C). Second, the frequency depends on chemical environment of 

the nucleus. The NMR frequency also depends on spatial location in the 

magnetic field if that field is not uniform. This last variable provides the basis 

for magnetic resonance imaging (MRI). 

NMR is a well characterized technique and there is a large quantity of 

literature in the field. A short tutorial that the following description follows is 

found in [10]. A brief description of the nuclear magnetic resonance follows 

herewith. A spinning nucleus acts as a tiny bar magnet oriented along the spin 

rotation axis. If we put this small magnet in the field of a much larger magnet, 

its orientation will no longer be random. There will be one most probable 
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orientation. However, if the small magnet is oriented precisely 180° in the 

opposite direction, that position could also be maintained, i.e. the most 

favorable orientation would be the low-energy state and the less favorable 

orientation the high-energy state. This two-state description is appropriate for 

most nuclei of biologic interest including 1H, 13C, 15N, 19F, and 31P; i.e., all 

those which have nuclear spin quantum number l/2. It is a quantum 

mechanical requirement that any individual nuclear spins of a nucleus with 

spin quantum number l/2 be in one of the two states (and nothing in between) 

whenever the nuclei are in a magnetic field. It is important to note that the 

most common isotopes of carbon, nitrogen and oxygen (12C, 14N and 16O) do 

not have a nuclear spin. 
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Figure 1.1  The charged nucleus (e.g., 1H) rotating with angular frequency ω0=2πν0 creates a 
magnetic field B and is equivalent to a small bar magnet whose axis is coincident with the spin 
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The small nuclear magnet may spontaneously "flip'' from one orientation 

(energy state) to the other as the nucleus sits in the large magnetic field. This 

relatively infrequent event is illustrated at the left of Figure 1.2. However, if 

energy equal to the difference in energies (∆E) of the two nuclear spin 

orientations is applied to the nucleus (or more realistically, group of nuclei), 

much more flipping between energy levels is induced The irradiation energy 

is in the radio frequency (RF) range and is typically applied as a short pulse. 

The absorption of energy by the nuclear spins causes transitions from higher 

to lower energy as well as from lower to higher energy. This two-way 

flipping is a hallmark of the resonance process. The energy absorbed by the 

nuclear spins induces a voltage that can be detected by a suitably tuned coil 

of wire, amplified, and the signal displayed as a free induction decay (FID). 

Relaxation processes (vide infra) eventually return the spin system to thermal 

equilibrium, which occurs in the absence of any further perturbing RF pulses. 

 

 

Figure 1.2 The phenomenon of flipping of energy states (spontaneous, upon application of RF 
energy, free induction decay (FID) after signal is withdrawn and return to thermal equilibrium, 

in that order, left to right) 

Spontaneous flipping 
at thermal equilibrium 

Induced flipping due to 
rf energy 

Signal detection during 
free induction decay 

Return to thermal 
equilibrium 

Low 
energy 
state 

High 
energy 
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The energy required to induce flipping and obtain a NMR signal is just the 

energy difference between the two nuclear orientations and depends on the 

strength of the magnetic field Bo in which the nucleus is placed. It is given by: 

π2/hB   ∆E 0γ=                                                                                        (1.1) 

where h is Planck's constant (6.63 x 10-27 erg s). The Bohr condition (∆E = hυ) 

enables the frequency υo of the nuclear transition to be written as: 

π2/B   00 γν =                                                                                           (1.2) 

Equation 1.2 is often referred to as the Larmor equation, and ωo = 2πυo is 

the angular Larmor resonance frequency. The gyromagnetic ratio γ is a 

constant for any particular type of nucleus and is directly proportional to the 

strength of the tiny nuclear magnet. At magnetic field strengths used in NMR 

experiments the frequencies necessary to fulfill the resonance condition 

(Equation (1.2)) are in the RF range; e.g. in a magnetic field of 14.1 T, the 

transition frequency υo for 1H is 600 MHz. 

 

1.5  Magnetic Resonance Imaging (MRI) 

As mentioned in section 1.4, the NMR frequency also depends on spatial 

location in the magnetic field if that field is not everywhere uniform. This 

variable provides the basis for magnetic resonance imaging (MRI). 
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Figure 1.3 Schematic Operation of a one-dimensional MRI system. The magnetic field 
gradient generates a precession frequency gradient. A receiver picks out one frequency ω0 in a 

band of width ∆ω, allowing detection of the atoms in a slice at z0 of width ∆z, [1] 
 

In MRI, the use of controlled field gradients allow select ‘slices’ of nuclei 

at specific depths in the sample to be in resonance. The gradient of the field 

influences the thickness of the resonant slice – greater the gradient thinner the 

slice, thus superior resolution. The state of the art MRI can resolve to about 

1µm. MRI forms the basis for the magnetic resonance force microscope.  

A brief description of the MRI as described in [1] is provided. A magnetic 

field with a gradient B = (B0+bz)ž is applied to the object to be imaged. Here b 

is the field gradient, in units of T/m. At each point z, a particular type of atom 

(typically hydrogen) will have a local precession frequency wp(z) = γN(B0+bz). 

A receiver for the NMR signal tuned to a particular frequency w0 will only 

pick up frequencies near w0 and therefore will detect atoms with z coordinate 

near z0=w0/(γ-B0)/b. If the bandwidth of receiver input frequency acceptance is 

 

 

z 

Sensitive slice ∆z 

z0 

∆ω 

z 

ω0 
ω=γH/h 
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∆ω, it will detect atoms centered at this height, in a slice of thickness 

∆z=∆ω/γNb. The uniform field B0 can then be changed slightly allowing 

detection in a slice at a somewhat different location, and thus by measuring the 

signal as a function of B0, the composition of an extended solid along the z-

axis can be mapped out. 

The proposed magnetic resonance force microscope (MRFM), originally 

envisioned by Sidles [11] is described in the following section. 

 

1.6  Magnetic Resonance Force Microscopy  

The use of nanomechanical devices to develop a microscopic imaging 

technique known as “magnetic resonance force microscopy” or simply MRFM 

has been among the thrust areas in nanomechanics in the last decade. MRFM 

is a visionary project the ultimate goal of which is to enable imaging of 

various atoms on a surface (and below it), complete with identification of the 

element. This would give a resolution of a single atom. 

MRFM was proposed by Sidles [11] in 1991. The fundamentals of this 

proposal are as follows. A molecule whose structure is to be determined is 

placed below a sharp magnetic tip. The magnetic tip is attached to a sensitive 

micromechanical cantilever that will bend in response to small forces, 

including the magnetic forces due to the magnetic nuclei in the sample. (Many 

common elements, such as hydrogen, fluorine, carbon-13, phosphorus, etc., 
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have magnetic nuclei.) Nuclear magnetic resonance is used to manipulate 

individual nuclei that are just the right distance from the tip (i.e., within the 

“resonant slice”). By applying a suitably modulated radiofrequency (RF) 

magnetic field using a small coil, the magnetic moment of the nucleus within 

the resonant slice can be flipped up, down, up, down, etc., thus generating an 

alternating force on the tip that causes the cantilever to vibrate slightly. This 

vibration is detected using a sensitive position detection scheme. By scanning 

the sample with respect to the tip in a three-dimensional raster pattern, an 

image of the atomic structure of the molecule can, in principle, be obtained. 

Figure 1.4 shows a schematic of an MRFM apparatus. 

 

 

MRFM with single-nucleus sensitivity is still beyond present-day 

experimental capability because the magnetic force generated by an 

individual nucleus is so small (~10-20 N). Present research activity is focused 

Resonant Slice

B=ω/γ

Magnetic field due to tip

Sample

RF Field

(ω)

Magnetic Tip
cantilever

Resonant Slice

B=ω/γ

Magnetic field due to tip

Sample

RF Field

(ω)

Resonant Slice

B=ω/γ

Magnetic field due to tip

Sample

RF Field

(ω)

Magnetic Tip
cantilever

 
Figure 1.4 A schematic of the MRFM imaging apparatus  
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on the detection of individual unpaired electron spins with angstrom-scale 

spatial resolution. Despite the thousand-fold larger magnetic moment of the 

electron (10-17 N), the goal of single electron spin detection and imaging is a 

challenging one. This is because the forces that need to be detected are still 

extremely small - in the attonewton range - and because the behavior of 

individual spins in the presence of a nearby ferromagnetic tip is not well 

understood. Recent experiments by Rugar et al. have demonstrated the 

detection of a single electron spin [16]. 

 

1.7  Motivation 

The motivation for this dissertation is laid out in the Sidles proposal to 

build a Magnetic Resonance Force Microscope. A working MRFM will 

transform imaging technology and result in a rapid progress in the field of 

nanomechanics, which is an essential theoretical field for the development of 

nanotechnology. Beyond the anticipated imaging capabilities of the MRFM, it 

can be used to carry out a number of interesting experiments that can result in 

exotic machines. One such application is to use such a MRFM as a possible 

read-out scheme for solid state quantum computing scheme proposed by Kane 

[12]. 

In magnetic resonance force microscopy (MRFM) mechanical detection of 

magnetic resonance signals is carried out by sensitively measuring the force 
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F= m.∇B between a permanent magnet that provides a field gradient ∇Β, and 

the spin magnetization m. Periodically modulating this force by modulating m 

alters the oscillation amplitude of a high Q, low spring-constant micro-

mechanical resonator (cantilever or bridge) such as is used presently in AFM.  

A schematic of a MRFM is shown in Figure 1.5. The focus of this dissertation 

is the design and fabrication of a force detector, with sufficient sensitivity to 

detect single electron spins. 

 

1.8  Dissertation Tasks 

The major goal of this dissertation is to design and develop cantilevers 

with sufficient sensitivity to detect single spins. This would entail cantilevers 

that have a force sensitivity of at least ~ HzN1810− . Another desired 

requirement is the development of a lightless position detection scheme to 
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Figure 1.5 Necessary ingredients for a proposed magnetic resonance force microscope  
(P.C. Hammel, D.V. Pelekhov, and M.L. Roukes). The design and fabrication of the 

sensitive force detector is the focus of this dissertation 
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detect frequency shifts of the cantilevers. This is desirable since even a small 

amount of sub-bandgap light is known to increase relaxation rates in 

semiconducting samples by several orders of magnitude [13]. While these 

goals are general, I have defined the following tasks to be completed in this 

dissertation:- 

1. To design and fabricate Single Crystal Silicon (SCS) cantilevers 

with frequencies in the 5 – 60 kHz regime  

2. To develop a process for high yield scribing of cantilevers in order 

to suspend cantilevers on-an-edge 

3. To conceive and design a light-free, ultra sensitive force sensing 

scheme in order to detect forces of the order of at least 10-18 N/√Hz 

for a single electron spin at a temperature of 0.3 K.  

4. To develop processes for fabrication of ultra-thin cantilevers and 

other required electronic components with sufficient sensitivity 

5. To fabricate and characterize field effect transistors for use as low 

temperature amplifiers 

6. To make measurements of the designed components to verify 

suitability for low temperature experimentation 
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Chapter 2   

THE SINGLE CRYSTAL SILICON CANTILEVER 

 

2.1  Introduction to Cantilever Design 

The design of cantilevers for ultrasensitive applications by itself is not 

novel, as seen in Section 2.2. However the design and fabrication of such 

structures with high yields is very involved and is not trivial. While the design 

of integrated force sensors is a good approach, one of the most prohibitive 

issues for single electron or atom magnetic resonance force microscopy is the 

design of a position detection mechanism that is sensitive to a single electron 

spin (for electron spin resonance) and a single nuclear spin (for species 

identification). It has been demonstrated in [16] that this can be achieved using 

optical interferometry, though its suitability for nuclear spin detection is 

unknown. While this approach is the most straightforward, it has some 

inherent disadvantages. These disadvantages include heating of the cantilevers, 

alignment issues and increased relaxation rates of spins in the sample [13]. 

Another serious issue is the thermomechanical noise of the resonator. The 

thermomechanical noise in MEMS is a well known phenomenon that restricts 

the measurement sensitivity of many devices [14]. Analogous to Johnson’s 

noise in resistors, this noise has a direct dependence on the temperature. As 



 - 17 -  

such measurements in magnetic resonance force microscopy are usually 

carried out at ultra-low temperatures and in ultra-high vacuum. The low 

temperatures also play another important role - they keep the spins in the 

sample coherent. While decreasing temperature certainly decreases 

thermomechanical noise, it still is the most severe road-block in the 

measurement of a single spin. This chapter examines design issues of 

cantilevers and reports the design and fabrication of a simple cantilever made 

of single crystal silicon. Some measurements of the frequency response of 

these cantilevers are presented. It is expected that the lessons learnt from the 

fabrication of these cantilevers and their testing will greatly help in further 

modifications to the design of the cantilever as well as in understanding the 

basic physics of magnetic resonance force microscopy and techniques to 

measure spins. 

 

2.2 Previous Work 

Previous work on the fabrication of silicon cantilevers for the purpose of 

MRFM is described in Stowe et. al.[15]. These cantilevers were fabricated 

using a similar process as described below. Further modifications of this work 

led to mass loaded cantilevers that were used to detect a single electron spin 

[16]. The cantilevers used in this experiment were fabricated using several 

process steps, including a crystal growth step for achieving mass loading. 
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2.3  Design Issues for MRFM Cantilevers 

2.3.1 Material Selection 

While there is no specific evidence yet that excludes the use of any 

particular material for the fabrication of cantilevers, there are three basic 

design considerations that must be taken into account: existing technology for 

fabrication, ease of fabrication given the material properties and the associated 

stiffness of the cantilever. While silicon-based fabrication obviously lends 

itself readily (based on decades-long development) for such processing, silicon 

based fabrication itself present many choices for the actual material for the 

cantilever – single crystal silicon, poly-silicon, silicon dioxide and silicon 

nitride to mention the most common. The fabrication process will have to 

accommodate easily the requirement of cantilevers without the presence of a 

substrate underneath the cantilever (unlike conventional MEMS processing). 

This requirement rules out the use of poly-silicon based processing (such as 

MUMPS and MOSIS) without introducing additional processing steps, which 

may not be compatible with these processes. Thus the two choices left are 

single crystal silicon and silicon nitride. Silicon nitride films have large 

residual stresses, thus the fabrication of these cantilevers will result in curled-

up cantilevers. While this was not anticipated with low stress silicon nitride 

films, we found upon fabrication that even low-stress silicon nitride is not a 
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suitable material for the above reason. Gallium Arsenide - based cantilevers 

may be another suitable option as evidenced later in this manuscript. In this 

chapter only the silicon-based cantilevers are discussed. 

2.3.2 Geometry of Cantilever 

The geometry of the cantilever has great relevance in magnetic resonance 

force microscopy. Mozyrsky et. al. [17] have recently demonstrated 

theoretically that higher order modes of vibration of the cantilevers (due to 

intrinsic thermal noise) can cause spin relaxation rates in the sample to 

increase. Thus these higher modes will have to be damped. This can be 

accomplished by designing the cantilever in such a manner that the cantilever 

has greater mass toward the edge. The use of cantilevers with uneven cross 

sections to suppress spin relaxation is simulated in [18].  

However, the above developments are fairly recent. When the silicon 

cantilevers were designed, this result was not known. Hence a triangular shape 

for the cantilevers was chosen based on one major consideration. For MRFM, 

the cantilevers will have to be brought very close to the sample, without 

touching the sample. A rectangular cantilever would have to be very thin (in 

terms of width) in order to reduce complications arising in the positioning of 

the cantilever to minimize tilt. The triangular shape is convenient in this 

regard. Another factor of consideration was the thermomechanical noise 

dependence of an equilateral triangular cantilever on its thickness. In such 
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cantilevers, the thermomechanical noise of the cantilever depends only on its 

thickness (for a given material). Thus the thickness of the cantilever can be 

varied arbitrarily (in practice is restricted to fabrication limitations) to suit 

thermomechanical noise requirements, while the other dimensions can be 

varied to suit frequency requirements. This appears to very convenient for 

calibrating MRFMs at various frequencies, while maintaining sensitivity. 

Triangular cantilevers may have mode shapes at higher frequencies of 

thermal vibrations that contribute toward lowering relaxation times in spins. 

However, for purposes of establishing the basic functioning of MRFM 

technology, this shape was initially pursued in this dissertation. Also, the 

subsequent gluing of a magnetic particle to the tip of the cantilever can 

significantly damp higher order modes, thus meeting the ‘mass at tip’ 

requirement proposed in [17]. 

2.3.3 Position Detection 

The mechanism used to detect the frequency shift of the cantilever can also 

play an important role in the design of the cantilever. In this dissertation three 

basic schemes are considered: optical detection using laser interferometry, 

capacitive detection using microwave resonator and integrated capacitive 

detection. The last scheme will be addressed in the following chapters, while 

this chapter will focus on the first two schemes. 
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Optical detection is an obvious method to employ for very sensitive 

detection since the position detection resolution of these methods approach  

10-14 m. Thus, this method is readily suitable for employment in MRFM. 

Further, this method is fairly well established and many atomic force 

microscopes use optical detection for sensing cantilever displacement. The 

problems associated with using this method for MRFM are the effect of the 

laser power in decreasing relaxation times in the sample and the difficulty in 

aligning the lasers. The latter problem can be solved with some ingenuous 

design of laser positioning methods and ‘reflecting paddles’ on the cantilever 

[15]. However, in semiconducting samples, the increased rates of relaxation 

are a serious problem associated with lasers. Thus a non-optical detection 

method is preferred, since the MRFM is expected to have widespread use in 

the semiconductor industry. 

Scanning capacitive microscopy is another scanned probe technique that is 

seeing some renewed interest. This technique employs a capacitive sensing 

wire to sense displacement. This method can be used as a non-optical 

detection method. However, this method is not very useful for sensitive 

measurements, though it can prove invaluable in characterizing cantilever 

characteristics. 
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2.4 Design of Single Crystal Silicon Cantilever 

The design of the single crystal silicon cantilever was done considering the 

above design issues. Resonant frequencies of the cantilever as well as the 

thermomechanical noise are calculated for a few thicknesses of equilateral, 

triangular cantilevers. 

2.4.1 Assumed geometry 

The assumed geometry of the cantilever is triangular. The geometry was 

assumed initially based on frequently used shapes for low-temperature, atomic 

force microscope cantilevers and requirements of frequencies in the megahertz 

regime. Thicknesses of cantilevers influence frequency more than shape (given 

the quadratic dependence of stiffness on thickness), thus a certain geometry 

80um 

92um 

Figure 2.1 Geometry of single crystal silicon cantilever 
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was chosen and calculations for a few thicknesses are made. The shape chosen 

is a equilateral triangle of side 92 microns. 

2.4.2 Resonant Frequency Calculations 

The resonant frequency of an equilateral triangular cantilever is given by 

[19] 

ρ

E

l

t
fc 23

789.1

Π
=  (2.1) 

Where fc is the resonant frequency, t is the thickness of the cantilever beam 

a l is the height of the trianglular beam, E the young’s modulus and ρ the 

density. For silicon, E = 210 GPa and ρ = 2550 kg/m3,  thus giving resonant 

frequency for a thickness of 100nm to be 60 kHz. 

2.4.3 Thermal Noise Calculations 

The spectral density of force due to the thermomechanical noise of the 

equilateral, triangular cantilevers given by the equipartition theorem can be 

calculated using the below formula: 

   
Qfπ

Tk.k
∆FS

c
2

b
F ==  (2.2) 

Where k is the spring constant of the cantilever, kb is the Boltzman’s 

constant, Q the quality factor and fc the resonant frequency. All measurements 

are made in ultra-high vacuum and at very low temperatures. Stowe et. al. [15] 

have achieved Q of greater than 100,000. Thus the Q is expected to be fairly 

high. Assuming a Q of 15,000, the table below shows thermomechanical noise 
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(at 300mK) of single crystal silicon, equilateral, triangular cantilevers of 

geometry described above at different thicknesses. 

Thermomechanical noise of Silicon Cantilevers 
for different thicknesses 

Thickness (nm) 
Thermomechanical 

Noise (N/√Hz) 

200 3.60 x 10-18 

100 1.80 x 10-18 

50 9.01 x 10-18 
 

Given that the required sensitivity at 300mK is of the order of an 

attonewton, cantilevers of thickness 100 nm will meet the needs of thermal 

noise sensitivity. 

 

2.5 Fabrication of SCS Cantilevers 

Fabrication of devices using existing MEMS technology is quite 

straightforward; however, the number and nature of devices that can be made 

out of single crystalline materials are quite limited. Most of current day 

commercial MEMS technology uses surface micromachining. While there are 

many commercial devices fabricated using bulk micromachining, most of 

these devices use a combination of both surface and bulk micromachining 

techniques. 

In order to make cantilevers of single crystal silicon, silicon on insulator 

(SOI) wafers commonly used in the integrated circuit industry can be 
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employed. The specific type of wafer used is called a SIMOX wafer, which 

consists of an ion implanted buried oxide layer. These wafers have few flaws 

and if necessary very high quality material can be obtained. While such wafers 

have been used extensively in the integrated circuit industry, especially in 

almost all modern MOSFETs, the use of such wafers has been largely limited 

in MEMS because of their high cost. 

The cross section of a SIMOX wafer consists of a handle or substrate of 

single crystal silicon and a device layer also of single crystal silicon separated 

by an oxide layer (BOX or buried oxide). Thicknesses of the device layer and 

buried oxide layer can be chosen from many available thickness combinations.  

 

For our particular device, it is desirable to have a 100 nm thick device 

layer and a sufficiently thick BOX layer (to serve as an etch stop). Initially we 

obtained SIMOX wafers of the cross section shown in Figure 2.2. 

Si ~ 1000Å 

Si ~ 675µm 
  

SiO2 ~2000Å 

Figure 2.2 Cross section of a SIMOX wafer for fabrication of single crystal silicon 
cantilevers 
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The proposed fabrication process is to etch the substrate from the bottom 

side of the wafer all the way to the oxide layer, and then to pattern the 

cantilever on the device layer to have cantilevers of required geometry. Note 

that the thickness of the device layer corresponds to the required cantilever 

thickness. 

To etch down to the oxide layer, use of potassium hydroxide solution 

(40% KOH) at 80◦ C with constant agitation is employed. Calibration of etch 

rates at this temperature was done and set at 80 – 85 µm/minute. KOH etches 

silicon only along the (111) planes, thus the angle of etch would be 

approximately 54.74◦. However, during the etch it is necessary to protect the 

thin device layer. Also a good mask is necessary for the etch. Standard 

photoresists do not offer protection against KOH at elevated temperatures. 

Hence it is decided to deposit a film of silicon nitride (Si3N4) on both the 

device and the substrate sides of the wafer. 1000 Å (or 100 nm) was chosen to 

be sufficient to act as a mask. It is necessary that the nitride layer be as free 

from defects as possible, since small pores can result in the completely etch of 

the thin device layer. The nitride thus serves as the mask for the KOH etch. 

Upon termination of the etch, the nitride and the oxide layer will have to be 

removed. Hydrofluoric acid (HF 49%) is highly selective to oxide and nitride 

and does not attack silicon. However, the etch rates of HF is 3 times quicker 

for silicon dioxide than for silicon nitride. Thus 2/3 rds of the nitride will be 
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etched away using a dry etch and then the wafer will be dipped in HF to 

remove the oxide and the nitride layers. Then, the silicon layer will be 

patterned using photolithography and cantilevers will be etched by another dry 

etch. The photoresists will be removed using organic solvents and critical 

point dried. The process is outlined in the following steps.  

Step 1:  Deposit a 100 nm thick layer of low stress silicon nitride (Si3N4) on 

either side of the wafer as shown in Figure 2.3. 

 

Figure 2.3 Step 1: Deposit 100 nm (1000 Å) thick Silicon Nitride on both sides of the wafer 
 

Step 2: Membranes were patterned on the back side of the wafer using 

photolithography. SF6 was used to etch away the nitride selectively to expose 

silicon only in the region to be etched. Then using KOH (45% at 80 C) the 

silicon was etched down to the oxide layer. The oxide layer is not an absolute 

Si ~ 675 µm 

  

Si ~ 1000Å 
Si3N4 ~ 1000Å 

SiO2 ~2000Å 

Si3N4 ~ 1000Å 
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etch stop. However, KOH etches the oxide layer much slower than it etches 

silicon. Further it etches oxide isotropically without regard to crystalline 

planes. Hence an undercut can be observed if the oxide layer is etched further. 

This undercut helps in establishing if the etch has reached the oxide layer. The 

membranes thus formed have three layers, the device layer silicon sandwiched 

between silicon nitride and silicon dioxide, all 100 nm thick. The membranes 

are fairly delicate and extreme care was undertaken to ensure their integrity. 

 

Figure 2.4 Step showing etched membrane 
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Step 3: The silicon nitride and the silicon dioxide have to be removed from the 

membrane. While concentrated hydrofluoric acid etches both SiO2 and Si3N4 

selectively with respect to silicon, it etches Si3N4 at a much slower rate than 

SiO2 (recorded difference was 10 times longer for Si3N4). Hence it was 

necessary to remove most of the nitride prior to the HF dip. This was done 

using a dry etch, which removed about 950 Å of silicon nitride. Then the 

membranes were dipped in HF for 2 minutes. A color change was seen from 

reddish to blue (due to the removal of the oxide, which is responsible for the 

reddish tinge). The result of this step is shown schematically in Figure 2.5 Step 

3: Passivation removal. Also shown in Figure 2.6 is an optical picture of a 

membrane after the HF dip.  The undercut can be seen as a border. 

Figure 2.5 Step 3: Passivation removal 
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Step 4: Once the passivation was removed from the membranes the silicon of 

the device layer was patterned using photolithography. Since the membrane is 

translucent, alignment could be done using the contact aligner. Contact 

lithography was performed using low pressure vacuum contact to ensure that 

the delicate membrane is not damaged. The patterning is done using a positive 

photoresist. The particular resist used was OIR 908 HC 35. the thickness of the 

resist is estimated to be 4µm. The exposure dosage was 160 mJ. An optical 

Figure 2.6 Optical picture of a membrane showing undercut 
of oxide by HF. The undercut is seen as a border 



 - 31 -  

picture of a patterned membrane is shown in Figure 2.7. the cantilevers are 

then released using a dry etch. 

Step 5: Critical point drying is necessary for the cantilevers to survive surface 

tension forces of organic solvents used to remove the resists. The cantilevers  

 

are transferred under methanol into a critical point dryer and drying is carried 

out. Critical point drying has been a low-yield process, primarily because of 

the damages caused by the handling of the chips with the free cantilevers. 

Current yields are estimated to be close to 80% after Step 4. The total yield for 

the process up to this stage is close to 60%. 

Step 6: This is a step ubiquitous to the requirements of scanned probes, that 

requires cantilevers to be suspended of an edge, not in the center of a chip. 

This requirement is graphically represented in Figure 2.8. As such, this step 

Figure 2.7 Picture of patterned membrane. The cantilver is 
patterned as a triangle using a positive resist 
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requires cleaving of the processed chip along a specific plane close to the 

edge.  

 

Figure 2.8 The requirement of 'cantilever on 
an edge' represented schematically 

While standard wafer dicing operations lack the accuracy in order to 

cleave the chip within 100 µm, scribing is a process that one can envision to 

have better accuracy. Scribing requires that the scribe marks are made very 

straight along the planes (desired cleaving planes). This step requires careful 

  

Figure 2.9 A failed attempt at scribing the chips in order 
to suspend the cantilever out on an edge 
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positioning of scriber and careful cleaving. Scribing requires fixing of the chip 

using a vacuum chuck. The vacuum chuck can destroy the fragile cantilever in 

these chips, hence the wafer was bonded onto an adhesive tape and this 

assembly was placed on the vacuum chuck. Scribe marks were made using a 

standard diamond scriber. Then, using a sharp diamond tip, the chip was 

cleaved along the scribe marks. However, this process being a mechanical 

process with high handling stresses, severely lowers yield. The final yield for 

the chips in the first attempt were 0%. A failed scribe attempt is shown in 

Figure 2.9. As seen from the SEM picture of the chip, even though the 

cantilever remained intact after the scribe attempt, the cleaving did not put the 

cantilever ‘out-on-an-edge’. Hence this chip was not usable for MRFM 

experiments. Thus, even though cantilevers could be fabricated in the center of 

the chip reliably, the scribing required to suspend them on an edge greatly 

reduced yield.  

 

2.6 The Scribing Dilemma 

As mentioned in the previous section the scribing to suspend the 

cantilevers on an edge reduced yields to close to zero. Hence this problem was 

serious enough to consider a process change to ease scribing.  
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2.6.1 Polishing of wafer 

SIMOX wafers have typical substrate thicknesses (for 6” wafers) of 610-

710 µm. this thickness makes it extremely hard to cleave the wafer. Hence, it 

seemed like a possibility that the reduction in thickness would significantly 

ease the scribing process. The thickness of the wafer can be reduces by 

mechanical polishing known as lapping. For the substrate used, it was decided 

to use sandpaper lapping with constant water flow at 40 rpm. The sandpaper 

used was a Struer 1500 grit wet/dry. The lapping process would reduce 

thickness to about 150 µm. 

 

Figure 2.10 Schematic showing the steps of the lapping process 

PMMA 

 

Polish it to about 150µm (Average rate of 
polishing= 90µm/hour 

 

150µm 
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The lapping process being a mechanical process can result in the crystal 

planes being damaged. This may affect the KOH etch if done prior to the etch. 

hence it was decided to etch the membranes and then do the lapping process 

prior to the cantilever patterning and release. The process is shown 

schematically in Figure 2.10. However, after a few trials this process was 

abandoned since the few membranes that survived the process did not 

considerably ease the scribing process, since it was still difficult to align the 

cleaving of the chip exactly at the base of the cantilever. It is also suspected 

that the crystal damage due to lapping can contribute to uneven scribing. 

2.6.2 Long Membranes  

A desirable feature for initial testing of cantilevers is to have multiple 

cantilevers on one chip. This will be useful, since the set-up on the MRFM 

experiment is fairly time consuming and a broken cantilever otherwise would 

mean redoing the entire set-up. Taking into account these factors, it was 

decided to approach this problem differently. Instead of making small 

membranes with one cantilever on each membrane it was decided to make six 

cantilevers on a long membrane, three on each long side on the membrane. 

The anticipated advantages of this method are as follows: 

1) More number of cantilevers per membrane 
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2) Scribing will result in straighter edges, because of the longer 

membranes. Further there is also the possibility to scribe them 

longitudinally 

There are two points at which scribing can be attempted, one before the 

resist stripping and critical point drying (Step 5), or after the critical point 

drying. There are advantages to doing both as described below. 

In the first case, the chips can be scribed prior to the critical point dry. This 

step has an advantage in that the dust accumulated during scribing will be 

taken off during resist stripping, thus giving a cleaner surface. However the 

disadvantage is that the cantilever, now suspended on an edge can come into 

direct contact with the sides of the drying chamber or with other chips and 

break. 

In the second case, the scribing could be attempted after the critical point 

dry. This has the advantage that there are less chances of damage to the 

cantilever during the critical point dry; however, there is a high possibility of 

scribing dust attaching itself to the cantilever. We attempted scribing 

cantilevers post-dry, since this process seemed practical considering the 

cylindrical shape of the critical point dryer boat. Shows an SEM micrograph of 

a set of 6 cantilevers fabricated on a long membrane, three on each side of the 

membrane, staggered to accommodate all six. This process of using long 

membranes and scribing them resulted in yields close to 40%. This is a 



 - 37 -  

definite improvement over the previous process. However, a more elegant 

solution to the scribing dilemma would be preferable. 

 

Figure 2.11 SEM image of a set of six cantilevers fabricated on a long (1.2mm) membrane 
 

2.6.3 Scribe Etch 

A scribe etch to ease scribing is a serious consideration, but this process 

comes attached with two specific limitations: the first is the process of using 

KOH to etch down to membranes is anisotropic with sidewalls sloped at an 

angle of 54◦. While etching through thick substrates (typical substrate 

thicknesses for 6” wafers is 610-710 µm), large consumption of wafer real 

estate is a significant factor. Hence because of this angle of etch, the sidewalls 

may not be close enough to the membrane to get a good enough scribe. The 

second issue is the alignment of the scribe mark to coincide exactly with the 

edge of the membrane from which the cantilever will be suspended. While this 
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is not impossible, it is very difficult, since KOH etching depends on the 

crystalline planes and small imperfections in the crystal can easily result in an 

error of alignment in the final scribe mark by a few tens of microns. A 

combination of these two factors does not make the use of KOH to have chips 

with scribe marks a very viable one. 

However, for scanning capacitive microscopy, as well as for optical 

detection, it is desirable to have sloped sidewalls, since the capacitive sensing 

wire as well as the optical fiber is brought down close to the cantilever. This is 

especially a problem for the capacitive sensing scheme, since straight 

sidewalls result in increased stray capacitance. A way to reduce stray 

capacitance is to lower the sbstrate thickness. This can be done either by 

polishing or by obtaining thinner wafers. Using thinner wafers and a 

combination and front and back reactive ion etching processes, one can hope 

to fabricate devices by incorporating scribe etches. 

Hence, to incorporate scribe marks, the use of deep reactive ion etching 

(DRIE) to etch through the substrate was decided upon. The fabrication of 

such cantilevers was achieved through The MEMS and Nanotechnology 

Exchange and is described in 2.8. 
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2.7 Characterization of Cantilevers 

The cantilevers fabricated using long membranes were characterized at 

room temperature using a capacitive probe at The Ohio State University1. The 

work described in this section was not carried out solely by the author; rather it 

serves to identify the set-up in which the cantilevers were characterized. The 

set-up used was a vacuum bell jar and a microstrip resonator scheme as shown 

in Figure 2.12.  

 

Figure 2.12 Set-up for scanning capacitive microscopy. The set-up shown also shows 
sample positioning and the magnetic fields as in an actual MRFM experiment. For 

characterization purposes, only sensing probe and cantilever without the sample and 
magnetic fields was employed. The cantilever was resonated using a piezoelectric 

resonator and the resulting resonance was sensed 
 

                                                 
1 This work was carried out by Denis Pelekhov, Palash Banerjee, Camelia Selcu, Kin Chung Fong and P. 
Chris Hammel, Department of Physics, The Ohio State University 
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For testing, a cantilever was mounted on a piezo that was excited with a 

harmonic voltage of known amplitude Vosc and frequency. The resultant 

cantilever motion modulates the mixer output; this signal is detected with a 

lock-in amplifier [21] using the excitation signal as a reference. The 

frequency response of the cantilever oscillation is traced by sweeping the 

excitation signal through the mechanical resonance of the cantilever. 

Calibration of the cantilever response is based on the known displacement 

amplitude of the cantilever Ares at its resonant frequency, where 

Ares = d33Vosc Q 

where d33 = 4.8Å/V is the coefficient of the EBL#6 piezoelectric material 

[22] used to excite the motion and Q is the measured cantilever quality 

factor. 

Using this approach, detection of the displacement of various types of 

MRFM cantilevers has been demonstrated at room temperature. Fig. 3 shows 

the frequency response of a triangular cantilever. This cantilever was driven 

with piezo excitation amplitude of 4.8 x 10-3 Å. We find a readout sensitivity 

of approximately 5.0 x 10-12m/√Hz; in this case the overall detector noise 

level is dominated by displacement readout noise which corresponds to a 

force sensitivity of 80 aN/√Hz [23].  
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Figure 2.13 Capacitively detected response of a triangular cantilever. The signal was 
acquired at T = 300 K in vacuum 

 

2.8 Fabrication of Cantilevers Using DRIE 

As described previously, use of deep reactive ion etches (DRIE) with 

vertical or near-vertical side-walls would greatly ease the scribing process and 

increase yields significantly. To this end, a process using DRIE to fabricate 

single crystal silicon cantilevers was developed. This process is similar to the 

process described in 2.6, except that a DRIE step is incorporated instead of the 

KOH etch. Further, the DRIE step was performed as the last step of the 

process. Thus cantilevers were defined on the front-side of a SIMOX wafer 

with oxide on both sides. The wafer was then patterned using front-to-back 

alignment and photo-lithography on the back-side. A DRIE was performed to 

stop on the buried oxide layer (BOX) of the SIMOX wafer. The cantilevers 
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were now released in hydrofluoric acid (HF) followed by critical point drying. 

This HF-dip step also removed the oxide on top the cantilevers. 

This process was performed by MEMS-Exchange using the process steps 

that were specified by me. The process resulted in high yields, with almost 

95% of the cantilevers being useable. In order to have a variety of cantilever 

designs for MRFM experiments, these cantilevers were rectangular with two 

different widths and 4 different lengths. 

 

Figure 2.14 Figure showing cantilevers fabricated using DRIE. Four different lengths of 
cantilevers were fabricated. 
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2.9 A New Dicing-Saw Method for Cantilever Scribing 

In order to make cantilevers quickly and reliably on an edge, another 

method using a combination of a dicing saw cut, front-side lithography and 

scribing is developed. This method is described as follows: 

2.9.1 Step 1 

In this step a scribe is made in the wafer using some technique such as 

sawing using a dicing saw. This cut is made in such a way that it is easy to 

scribe the wafer in future along this cut. This scribe is preferably made along 

defined crystal planes in the wafer so that it would preferentially cleave. It 

would be prudent to protect the front side of the wafer using photoresist that 

can later be removed.  The wafer is cleaned thoroughly in solvents after the 

scribe is made. 

2.9.2 Step 2 

The scribed wafer is then patterned using a lithographic process (optical, e-

beam etc.). The pattern is defined using back-to-front alignment such that the 

cantilever features are defined with the base of the cantilever close to the 

scribe mark. The cantilever features are then protected and etch to the 

sacrificial layer is made. This etch could either stop at the sacrificial layer or 

go beyond it. 
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2.9.3 Step 3 

In this step the cantilever is released using some sacrificial etch. This step 

would suspend the cantilever over the substrate. Supercritical drying may be 

necessary for very thin cantilevers to prevent surface tension forces from 

damaging the cantilevers. 

2.9.4 Step 4 

This is the last step that suspends the cantilever on an edge. In this step the 

wafer is broken along the previously made scribe mark, which would result in 

accomplishing the scribe. This step could be done in liquid, (before the 

supercritical dry in step 3, for instance) to protect delicate cantilevers from 

flying particles (which is typical while breaking wafers).  

The process flow is shown in Figure 2.15. A patent has been filed for this 

process [24]. 
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2.10 Limitations of Current Measurements Schemes 

The fabrication of single crystal silicon cantilevers is extremely important 

for studying the physics of magnetic resonance and for the development of 

MRFM. Current state-of-the-art position detection techniques for ultra-

sensitive applications utilize optical detection schemes. The limitation of this 

approach is that light induces excitations in semiconducting samples, lowering 

relaxation times by orders of magnitude. Further, as cantilevers become 

smaller, optical detection becomes greatly complicated at low temperatures 

owing to difficulty in alignment of the laser beam on the cantilever. For high-

precision detection lasers must be operated at high power. However, this 

Cut using thin dicing saw 
(~20-30 um)

Scribe

Pattern and Etch cantilever using 
front-to-back alignment

Etch oxide/ supercritical dry  

Figure 2.15 Edge Suspenision of a cantilever using a dicing saw process 
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would increase the cantilever temperature. This is a significant problem for 

very thin cantilevers, since thermal conduction reduces with decreasing cross-

sectional area. Thus there is a non-optimum trade-off between sensitivity and 

laser power, as the feature sizes of the cantilevers decrease.  

The alignment problem persists even for non-optical detection using the 

technique as described in 2.7. This capacitively scheme is a novel approach 

toward a lightless detection procedure. However, it is expected that these 

probes may not ultimately have sufficient position detection sensitivity to 

detect nuclear spins. Further, alignment of the microwave resonator (wire in 

this experiment) is still required, which is very difficult, and poses similar 

problems as the optical scheme, as feature sizes decrease. Thus, an integrated 

approach to position detection as compared to using external position 

detection probes must be developed. The development of such a technique 

as well as its fabrication and measurement are the focus of the rest of this 

dissertation. 
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Chapter 3  

DESIGN FOR ULTRASENSITIVE CAPACITIVE DETECTION 

 

3.1 Introduction 

As mentioned at the conclusion of the previous chapter, a position 

detection scheme that incorporates an all electronic detector would be ideal. In 

addition to the obvious advantages of having a ‘plug-and-play’ capability, 

such a scheme would possibly be superior to existing position detection 

schemes for the simple reason that alignment of the laser on the beam is not 

necessary. Further, high power lasers can significantly heat up the cantilever, 

thus increasing thermal noise. Thus a sensitive all-electronic read-out of 

cantilevers for MRFM is necessary. The development of such a scheme is the 

focus of this chapter. 

 

3.2 Literature Review 

 A literature review of existing schemes for electronic position detection 

schemes for ultrasensitive applications reveals the use of piezoelectric 

properties of materials. Among the most sensitive schemes that have been 

demonstrated is the piezoelectric scheme using GaAs/ AlGaAs cantilevers 

coupled to high electron mobility transistors [25]. They have achieved a 

displacement detection of 0.002Å/√Hz that corresponds to a force detection 
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noise of 1pN/√Hz at a temperature of 4.2K. These cantilevers use the 

piezoelectric effect intrinsic of these heterostructures and couple them to a 

GaAs field effect transitor (FET). The strain in the cantilevers modulates the 

gate voltage of the FET, which can then be read out. 

GaAs/ AlGaAs FETs are a good choice as on-chip amplifiers for two 

reasons: - 

1. They can be custom fabricated to meet a wide variety of needs, 

while still maintaining higher switching speeds (compared to 

MOSFETS in silicon-based materials). 

2. They do not freeze out at ultra-low temperatures, thus making them 

operable at low temperatures. 

Given these inherent characteristics of HEMTs/ GaAs FETs and existing 

technologies to grow wafers with custom epi-layers, the use of GaAs/ AlGaAs 

heterostructures to make nanoelectromechanical systems (NEMS) is highly 

favorable. 

Another very common method employed in force detection in 

microelectromechanical systems (MEMS) is capacitive sensing. Capacitive 

sensing is among the most common sensing mechanisms in MEMS. Quite 

frequently, these sensing schemes use comb-drive sensing mechanisms to 

mitigate to an extent the high damping forces of squeezed film that can lower 

the quality factor Q dramatically. (for example the actuator described in [26])  
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Some applications that do not require operations at moderate to high 

frequencies do use parallel plate capacitive sensing schemes, though these are 

rare. Among the factors that make capacitive sensing schemes impractical for 

sensitive sensing schemes is the signal division by parasitic capacitance of 

connections and cables. The parasitic capacitance in many cases is the 

determining factor that restricts the use of capacitive sensing schemes for 

ultra-sensitive applications. For capacitive sensing schemes to be adopted 

more widely in ultrasensitive applications, mitigation of effects due to parasitic 

capacitance is necessary. 

Current state of the art in position detection includes the cantilevers used in 

Rugar’s experiment [16]. These cantilevers have a fundamental resonance 

frequency of 5.5 kHz and thermomechanical noise of about 0.5 aN. Optical 

interferometry is used to detect position of these cantilevers. Another 

experiment that has gained widespread attention is the Lahaye experiment [5]. 

In these experiments a doubly clamped beam (with resonant frequency of 20 

MHz) is coupled to the gate of a single electron transistor (SET). SETs are 

nearly ideal amplifiers, limited only by the quantum limit. Using such a set-up, 

this experiment has a position detection sensitivity of 1 aN and is a factor of 

only 4.5 away from the quantum limit (imposed by the Heisenberg 

Uncertainty Principle). A further improvement to this experiment is described 

in [6], where Naik, Buu et. al. have shown 0.5 aN force sensitivity and are a 
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factor of only 2 away from the uncertainty limit. These are the most sensitive 

measurements of position detection thus far. 

 

3.3 Proposed Force Sensor 

As mentioned in the previous section, there is a need to develop a light-

free, ultra-sensitive sensing mechanism to sense cantilever motion. MEMS-

based force sensors have often used many integrated sensing schemes such a 

FET 

V 
Contact 

Pads 

Cantilever 

Reference 
Electrode 

Substrate 

Insulator 

Insulator 

V 

Wire Bonds 

Figure 3.1 Proposed Force Sensor. The bond pads contribute to parasitic capacitance, 
thus dividing away signal from the capacitive sensing scheme. Integration of FET 

onto the same chip as the cantilever will reduce parasitic capacitance 
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piezo-electric, piezoresistive and capacitive detection. While these schemes 

have merits and demerits, almost all of them are used for applications where 

the required sensitivity is several orders of magnitude less than that required 

for MRFM. The thermomechanical noise of a beam is one of the limiting 

factors in the design of ultra-sensitive force sensors. The other limiting factor 

is the position detection sensitivity. The highest sensitivity achieved by non-

optical sensing schemes is by Beck et. al [25], where they demonstrate a force 

sensitivity of ~ HzN1210− at 4K using the piezoelectric effect. In this 

section we present a capacitive sensing scheme coupled to an on-chip 

transistor that serves as an amplifier. 

This scheme utilizes a GaAs/AlGaAs heterostructure with integrated 

mechanical and electronic layers.  Heavily doped GaAs form two plates of a 

parallel plate capacitor coupled to an on-chip, very low gate capacitance, high 

electron mobility transistor or HEMT as shown in Figure 3.1 and Figure 3.2. 

The choice of using a GaAs/AlGaAs heterostructure is made based on 

established procedures for low gate-capacitance HEMTs and the ease of 

growth of custom epi-layers. 

For the upper cantilever of GaAs, a 195 kHz resonator for a 10 µm long 

and 30 nm thick cantilever with a spring constant of 1.73mN/m is expected.  

The gap between the two plates is 3 µm. The width of the cantilever is chosen 

to be 3 µm. The lower cantilever is thicker so that it will have a higher 
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resonance frequency, acting as a reference at the resonant frequency of the 

thinner cantilever. One plate of the capacitive scheme is grounded, while the 

other serves as the gate for a GaAs Field Effect Transistor (GaAs FET). 

Integration of the FET to function as an ‘on-chip’ amplifier would reduce 

parasitic capacitance that would otherwise divide away the signal from the 

capacitive scheme. 

 

Figure 3.2 Cross-sectional view of proposed capacitive detection scheme. The glued 
magnet will be shaped using focused ion milling techniques 

 
 

Mar et. al. [27] have achieved a bandwidth of 1 MHz with an input gate 

capacitance of 0.15pF – 0.3pF, for a GaAs FET structure at 1 nV.Hz-1/2.  

Power dissipated in FET was 7 mW. In this dissertation, it is anticipated that 

such FETs can be emulated for integration into the capacitive scheme 

described above. The capacitance between the upper and lower triangle should 

be ~32fF matching well to the input capacitance of the FET (15fF) described 

R 

V 

Magnet 

 

Side View of Double Cantilever 

Reference 

Cantilever 

Spins in the 
sample 

FET 

V 



 - 53 -  

in [27]. The maximum DC voltage we can apply between the two cantilevers 

for biasing should be about 10 V.  This is calculated by simple snap-in 

considerations (when cantilever moves by 1/3 of the gap).  

 

3.4 Force Sensitivity Estimations 

A set of calculations to arrive at the proposed force sensitivity of the 

capacitive scheme is presented in this section. The frequency of the cantilevers 

for the above geometry is 195 kHz. The pull-in voltage for the capacitive 

plates is calculated to be 10 V. This determines the limit of the bias voltage 

that can be applied between the capacitive plates. Given that many commercial 

amplifiers have a voltage spectral density resolution of Hz1nV/~Sv , and 

assuming a bias voltage lower than the pull-in voltage, the spectral density of 

displacement can be calculated as  

v
BiasCant

Total
d S . 

.VC

.dC
 S =  (3.1) 

Where CTotal, CCant, d and VBias are the total capacitance (including stray 

capacitance that does not contribute to position detection), the capacitance 

between the cantilevers, the distance between the parallel plates and the 

applied bias voltage. Assuming large parasitic capacitances (of bond pads that 

220 mm square and wire bond capacitances of 0.1pF) √Sd is calculated to be 
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~10-11 m/Hz1/2 for our design.  Using this value, one can calculate the expected 

force sensitivity in terms of spectral density as follows: - 

 S.
Q
k

S dF =  (3.2) 

 Since measurements are done in ultra-high vacuum at low temperature 

(300mK), we expect the quality factor (Q) to be fairly high. Assuming the Q to 

be 10,000  (Q of 200,000 have been achieved [7]), the expected position 

detection sensitivity is ~ 10-18 N/Hz1/2 – close to that necessary for single 

electron spin detection. Lowering the parasitic capacitance to 50 fF by 

integrating the FET onto the same chip, one can expect the sensitivity of 

position detection to be ~10-14 m/Hz1/2. This would correspond to a force 

sensitivity (of measurement scheme, excluding thermal noise) of 10-23 N/Hz1/2, 

sufficient to detect single nuclear spins. These estimates illustrate the potential 

of this relatively simple scheme for high-precision force measurement.  

Another important consideration is the thermomechanical noise of the 

resonator. The spectral density of force at resonance due to the 

thermomechanical noise of the equilateral, triangular cantilevers given by the 

equipartition theorem can be as: 

   
Qfπ

Tk.k
∆FS

c
2

b
F ==  (3.3) 

Where k is the spring constant, kb is the Boltzmann Constant, Q is the quality 

factor and fc is the resonant frequency of the cantilever. 
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For the scheme proposed the spectral density of force of the 

thermomechanical noise is expected to be ~10-19 N/√Hz at a temperature of 

300mK. Thus, at this temperature the thermomechanical noise is expected to 

limit sensitivity. 

Detailed estimates of force sensitivity are made in the following sections. 

These estimates reveal the challenges associated with the fabrication and 

experimentation associated with ultra-high sensitivity force detection using all 

electronic read-out. Further the discussion may shed light on alternate 

techniques that may be possible using capacitive coupling. 

 

3.5 Circuit Model for Capacitive Detection 

Noise estimates for detection of capacitively coupled nanomechanical 

resonators can be made once a model for detection is built. The circuit model 

for capacitive detection of cantilevers can be built on generic models that can 

express mechanical elements as equivalent electrical components in a circuit. 

This greatly eases estimation of the parameters of detection, including noise 

and parasitic capacitance effects. As noted on the previous section, excessive 

parasitic capacitance can severely limit sensitivity of the measurement scheme. 

Thus it is important to estimate its value in advance. 

A mechanical element with a sense electrode for capacitive detection can 

be represented in a circuit as a variable capacitor. Once biased with a large DC 
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source (large such that it is practically constant as compared to the time 

constant of the resonator), this changing capacitor functions as an AC source 

in the circuit with a frequency corresponding to that of mechanical motion. 

This is the basis for capacitive detection in MEMS devices. 

 

 

Figure 3.3 Representation of a mechanical element (moving) coupled to a sensing electrode 
for capacitive sensing. 

 

Reflectometry measurements are very common for capacitive sensing. 

However, reflectometry methods typically require very well matched 

impedances. The formalism to express mechanical motion for capacitive 

detection is well known [28] and is described in Appendix A. It is shown that a 
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moving mechanical element that is capacitively coupled is equivalent to a 

RLC circuit, with the equivalent R, L and C components given by:  
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 (3.4) 

Thus the mechanical motion can be completely modeled by an equivalent 

RLC circuit with circuit values shown in Equation 3.11.  At mechanical 

resonance (analogous to the RLC circuit resonance), the inductive and 

capacitive parts of the circuit are equal in magnitude and opposite in sign, thus 

canceling each other. The impedance thus drops dramatically at resonance and 

is equal to Rm. This result will be useful in future discussions pertaining to the 

impedance of the circuit and impedance matching techniques.  
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Figure 3.4 The equivalent circuit of a voltage biased nanomechanical resonator and gate device.  ICO is 
the current through gate capacitance, and IRLC is the current through the resonant circuit. 

 

3.6 Impedance Transformation using Tank Circuits 

The section above is important in order to estimate the AC electrical 

impedance of a cantilever that is being capacitively coupled to a sense 

electrode. Clearly, the impedance drops dramatically at mechanical resonance 

of the cantilever. This is due to the inductive and capacitive parts of the 

equivalent RLC configuration canceling each other. Thus, the impedance that 

is seen by an amplifier is equal to the resistance of such an equivalent circuit. 

This lends some insight into possible measurement techniques for 

capacitive detection. Since measurements are carried out in a cryostat, long 

cables are required to carry signals to and from the cantilevers. Clearly, high 

impedances cannot be measured outside the probe directly, because of the 

substantially large  cable capacitances, which would divide the signal. Thus 
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impedance matching techniques are necessary in order to transform these 

mechanical impedances. 

Impedance matching can be carried out in many  ways and these can be 

explored in many standard texts on the subject, for instance [28] and [30]. The 

two techniques that I shall discuss in this dissertation are transformation using 

a transistor inside the cryostat and a tank circuit. 

In order to understand the impedance matching techniques, estimation of 

the impedance of the cantilever at resonant frequency is necessary. For the 

geometry of the cantilever discussed in Section 3.3, and from equation 3.11 we 

can estimate impedance of the mechanical elements at resonance to be give by 

Q

ω
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R 0
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2
Bias

2

m =  (3.5) 

Assuming Q = 15000, the impedance at resonance will be 1.37 MΩ. 

To transform an impedance of 1.37 MΩ to close to 50 Ω, which is a typical 

value for standard coaxial cables and inputs of most amplifiers, a tank circuit 

can be used. However, the impedance (given by Equation 3.11) requires very 

accurate determination of the frequency, which typically is not known before 

measurement. Thus, alternate means to find the frequency of the cantilevers 

prior to measurement is necessary. Essentially, impedance transformation is a 

narrow-band detection technique. Given the high expected Q of the resonators, 

this is a severe disadvantage of this technique. However, this technique offers 

one other very attractive benefit. In order to explore this, let us consider a 
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typical tank circuit used for impedance transformation shown in Figure 3.5. 

The tank circuit essentially transforms an impedance Z to a value close to that 

of the input of the amplifier. The value of the tank circuit impedance can be 

estimated from which both LTank and CTank necessary for impedance 

transformation can be derived as follows, assuming amplifier input is 50 Ω. 

2
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=

 (3.6) 

 

Figure 3.5 Tank circuit for transformation of an impedance Z. Note the two components of 
the tank circuit, the capacitance and the inductance 

 

For the geometry under consideration, the impedance of the tank circuit is 

1.65 kΩ. Thus the value of the inductance LTank and the corresponding value of 

the capacitance CTank can be 0.05 H and 18 nF respectively. The desired Q for 

the tank circuit is given by  
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0Tank

m

.ωL

R
Q =  (3.17) 

For this particular set of conditions, it can be shown to be 23. 

One of the interesting and beneficial aspects of using a tank circuit for 

impedance transformation is that the parasitic capacitance of bond pads, wire 

bonds etc. can be used as part of the tank circuit. Thus the CTank in Figure 3.5 

can be the parasitic capacitance. Thus as long as the value of the parasitic 

capacitance is reasonable, it is possible to completely null the effect of the 

parasites by making it a part of the tank circuit. This can be very useful for 

sensitive measurements especially for MRFM.  

One of the concerns of using this technique is that amplifiers with suitable 

input impedances but with low noise temperatures are very difficult to obtain 

and use easily. This topic will be covered in Section 7.2. 

 

3.7 Impedance Transformation Using FETs 

The previous section dealt with the method of transforming the impedance 

to match that of the input of an amplifier some distance away, assuming that 

the amplifier input impedance was lower than that of the capacitive 

cantilevers. However, an alternative is to have an amplifier close to the 

cantilever system. Such an amplifier can have very high input impedance, 

ideally an open input, but the output impedance is close to that of the lines (the 

lines are 50 Ω, typically). This technique has the advantage that since parasitic 
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capacitance can be limited (owing to the proximity of the FET to the cantilever 

system), one can effectively measure the cantilevers with a larger bandwidth; 

thus the exact frequency of the cantilevers can be obtained by the same 

method. An ideal implementation would be to realize both the cantilever 

system and the FETs on the same chip. This would greatly reduce parasitic 

capacitance, in addition to being conducive for convenient measurements. 

The parasitic capacitance for this type of measurement in important. In the 

first generation of devices, it is anticipated the the two components, namely 

the cantilever system and the FETs will be realized on separate chips. Thus 

bond pads are required for the cantilever system. The bond pads increase area 

of the total capacitance with respect to that of the capacitance that is varying 

(in Equation 3.1). Clearly this would decrease the sensitivity of the 

measurement. Assuming square bond pads of  side  220 µm  for an initial 

design, the parasitic capacitance is 1.76 pF. The parasitic capacitance is also 

influenced by the wire bond itself (typically 0.1pF) as well as the input 

capacitance of the FET. Commercial FETs have input impedances of 1pF or 

higher. It is possible to make FETs with low capacitance as mentioned in 

Section 3.4. Considering an FET with an input capacitance of 32 fF, the value 

of the total of parasitic capacitance is ~2 pF. Thus from Equation 3.1, the 

sensitivity of the position detection scheme can be estimated to be 75.3 



 - 63 -  

aN/√Hz. Thus the parasitic capacitance in this case limits the sensitivity of the 

measurement scheme. 

If the components are integrated together, assuming that the lines from the 

cantilever system to the FET on the chip is 20 µm long and 3 µm wide, and 

since there will be no bond wires, the sensitivity increases to ~ 1 aN/√Hz. 

Thus clearly this measurement scheme has the potential for 

1. Integrated detection when FETs are integrated on to the same chip 

as the cantilever system 

2. Broadband detection of the cantilevers, thus not requiring that Q 

and frequency be known prior to detection 

However, this scheme poses several challenges, including the fabrication 

of FETs for use at low temperatures, and integration of the FETs into the same 

chip as the double cantilevers, especially since the fabrication of ultrathin 

cantilevers is in itself a challenge. 

In the following chapters, the process development for fabrication of ultra-

thin cantilevers in a double cantilever configuration is described. Design, 

fabrication and characterization of GaAs FETs for use as low temperature 

amplifiers is presented. A chapter on measurement techniques used for initial 

characterization of the cantilevers coupled to the FETs is presented prior to the 

conclusion. 

 



 - 64 -  

Chapter 4  

FABRICATION OF ULTRA-THIN ‘DOUBLE’ CANTILEVER 

 

4.1 Introduction 

In the previous chapter, a design for ultra sensitive measurement using an 

integrated sense electrode in a double cantilever configuration was presented. 

The dimensions of the cantilever used as the resonator is described in the 

previous chapter. It is noted that the thickness of the cantilever resonator is 

only 30nm. At the time this dissertation was commenced there were no reports 

of the realization of 30nm thin cantilevers. This chapter describes the process 

development for fabrication of ultra-thin cantilevers in a double cantilever 

configuration. 

 

4.2 Fabrication Sequence 

To fabricate the double cantilevers, an ideal sequence would be to obtain 

wafers with the two structural layers (the 30 nm resonator layer and the thicker 

sense or reference electrode layer). The two structural layers must also be 

conducting. Since the FETs for low temperature applications are typically in 

GaAs heterostructures, and ideally the structural layers would be integrated 

with the FETs on a single ship, it is much simpler to have the structural layers 

in GaAs/ AlGaAs heterostructures, as described in Chapter 3. Since wafers 
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with the desired thicknesses are not available readily, they have to be custom-

grown.   

Custom grown wafers are obtained with required layer compositions and 

thicknesses. These wafers were grown at the Laboratory for Physical Sciences 

by Molecular Beam Epitaxy (MBE) [32].  For the design described in the 

previous chapter, this would require 2 conducting layers of GaAs separated by 

a dielectric, sacrificial layer that is 3 µm thick. The dielectric that can be 

conveniently grown with GaAs is AlGaAs. The amount of aluminum in 

AlGaAs determines the selectivity of the sacrificial etch, typically hydrofluoric 

acid (HF). HF typically etches AlGaAs when the aluminum content is 55% or 

more. We chose Al0.7Ga0.3As as the dielectric material based on experimental 

observations of etching rates. The etching rate in 49% HF is estimated to be 10 

µm/minute.  

The proposed fabrication sequence to make double cantilevers is as shown 

in Figure 4.1. In the first step a mesa is defined using standard 

photolithography and etched dwn to the referece cantilever layer. This is done 

in two parts. In the first part, a plasma etch using Cl2/BCl3 at 5 mT pressure 

and RF power of 70 mW is carried out to etch ~2.5 µm. In order to remove 

any trace of AlGaAs, the wafer is now dipped in 49% HF for 10 seconds. The 

depth of etch is noted and the HF dip is performed until the etch depth does 

not change. This is done to ensure that all the AlGaAs is etched and the lower 
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GaAs layer is exposed. This step provides access for subsequent bond-pad 

definitions on both these layers, necessary to make electrical contact for 

measurements.  

The bond pads are then defined using standard photolithography. Since the 

bond pads are to be defined on highly doped layers (n-type silicon dopants > 

1018/cm2), ohmic contacts are not necessary. Thus standard Ti-Au contacts 

were evaporated for bond pads to make electrical contact to both the structural 

GaAs layers. The resistance of such contacts was evaluated to be 3.5 kΩ at 

room temperature and 15 kΩ at 4.2 K. This is an acceptable resistance, since 

as shown in the previous chapter, the mechanical resistance of the capacitive 

cantilever appears to be > 1 MΩ – thus an additional 15 kΩ is not significant.  

 

Figure 4.1 Fabrication sequence for double cantilever layer. The topmost layer (30 nm thick 
GaAs) is the resonator layer. The third layer (500 um GaAs) is the reference cantilever 
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In the second step, the cantilever is patterned using standard 

photolithography. In this step both the bond pads are also protected from the 

subsequent etch. The cantilever is defined at the end of a long arm. This is to 

accommodate eventual use of this scheme on magnetic resonance force 

microscopes, which requires cantilevers close to the sample. Thus a short 

cantilever on the edge of a wide wafer would make the scanning very tedious. 

In this process, the cantilever is defined and etching is done all the way into 

the lower AlGaAs layer. 

In the third step, the wafer is inverted after protecting the top of the wafer 

with a polymer (such as a photoresist). The backside of the wafer is aligned to 

the front side using infra-red alignment and the backside is to be patterned 

using photolithography. While deep etches through silicon substrates are very 

well controlled and processes for such etches are widely available, carrying 

out such a process for GaAs is not trivial. One of the major hurdles in 

overcoming this step is to have a mask that can withstand a long etch in an 

inductively coupled plasma (ICP) reactive ion etch (RIE) using Cl2 and BCl3. 

Our approach was to reduce wafer thickness to 150 µm prior to etch. 

Subsequently, etch was carried out by the MEMS and Nanotechnology 

Exchange in Reston, VA (www.MEMS-Exchange.com). The optical image of 

the wafer after etch is shown in Figure 4.2. In this optical photograph, the 



 - 68 -  

shade differences in the resist indicate the 95µm thickness of the resist. The 

resist used was Futurrex NR5-8000, which is a negative resist. 

 

Figure 4.2 Deep etch through GaAs carried out by the MEMS and Nanotechnology 

Exchange. 

 

For this dissertation, it is noted that the RIE step is not required for the 

purposes of evaluating the capacitive detection scheme. The process above 

was developed in order to validate the feasibility of this scheme for use in 

scanned probe techniques which require cantilevers on an edge. Thus for the 

rest of this dissertation, the third step is skipped. 
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In the fourth and final step, the cantilevers are released in 49% HF. This 

process is done delicately to protect the cantilevers; the under-etch of the 

AlGaAs is not a very controlled process, and etch rates can vary widely. Thus 

constant monitoring of the etch is required. Care is taken never to remove the 

chips from liquid during and after this process. 

 

Figure 4.3 Two SEM micrographs showing double cantilevers before and after the selective 
HF etch. The picture on the right after the HF etch shows how critical point drying is 

necessary in order to prevent surface tension forces from causing damage 
 

The chips are transferred in methanol to a critical point dryer in order to 

prevent surface tension forces from damaging the cantilever. Supercritical 

drying in CO2 is carried out. 

This process is very important since the cantilever after the release is very 

delicate and can be easily damaged. Surface tension forces can cause the 30 

nm thick cantilever to stick to the bottom cantilever. This is shown in Figure 
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4.3. Hence care is taken in performing this step diligently. Critical point drying 

is carried out in a Tousimis Samdri PVT-3B apparatus. 

 

Figure 4.4 SEM micrographs of a cantilever chip. The left one shows a chips complete with 
bond pads and the cantilevers at the end of an 'arm'. The right shows the double cantilever 

 

In Figure 4.4, a cantilever chip with the double cantilever is shown. The 

double cantilever is suspended at the end of a long arm (50 mm long and 20 

mm wide). The cantilevers are clearly seen to be suspended. Further the bond 

pads making electrical contact to the two cantilevers are also seen in the 

micrograph. 

However, it is noticed that the exact point of suspension of the cantilevers 

is difficult to control. This is because of the sacrifical etch under the 

cantilevers is isotropic, thus the cantilever is suspended not off a straight edge, 

but off a curved edge. Given this, it is very difficult to predetermine 
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analytically the frequency of the cantilevers. Finite element analysis was 

performed for typical geometries obtained by this etch and the frequency was 

shown to be 155-170 kHz. 

 

4.3 Conclusion 

A process to fabricate cantilevers in a double cantilever configuration was 

developed and ultra-thin cantilevers were fabricated. The 30nm thick resonator 

is one of the two ultra-thin microfabricated cantilevers to date, and was the 

first reported. Future work would focus on the read-out of these ultra-thin 

cantilevers using a capacitive detection scheme. 
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Chapter 5  

THE FIELD EFFECT TRANSISTOR 

 

5.1 Introduction 

The previous chapter described the process development that led to the 

fabrication of ultra-thin cantilevers with an integrated sense layer fabricated 

together as a double cantilever. This demonstrated the feasibility of fabricating 

ultra-thin cantilevers required for MRFM. Another step towards achieving 

very high sensitivity is to demonstrate the feasibility of fabricating field effect 

transistors (FETs) that can function as low-temperature amplifiers.  

As described in Section 3.7, impedance transformation can be achieved by 

the use of an FET close to the double cantilever scheme. This is a very 

desirable configuration since this scheme has the potential for broadband 

detection. Given that the frequency of the cantilevers is not very well known 

and can vary greatly depending on the etch parameters and the growth of the 

double capacitive layers, it is desirable to have a scheme where the frequency 

can be scanned easily. This is the reason that FETs are particularly attractive 

for achieving impedance transformation.  

This chapter describes the fabrication and characterization of GaAs/ 

AlGaAs FETs that can eventually be integrated into the same chip as the 
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cantilevers. This would achieve the purpose of laying the groundwork for 

future fully integrated, simple-to-read cantilevers for MRFM. 

 

5.2 Commercial FET characterization 

Since the first design was to find if the measurement scheme using an FET 

is feasible, the use of commercial FETs are very desirable, since this does not 

require extensive process development in order to fabricate custom-made 

FETs. The ATF-35143 high electron mobility transistor (HEMT) from Agilent 

Technologies [33] has been shown to have noise temperatures as low as 

100mK at low temperatures of below 400mK [34]. The disadvantage is that 

operating frequencies for such amplifiers are typically high, in the 1 MHz to 

several GHz regimes. The corner frequency of the 1/f noise for this transistor 

is 300 kHz, which is above that of the cantilevers in this dissertation. 

However, it is noted that the very low voltage noise is not required for the 

sensitivity estimates in this scheme. In fact, in the estimates in Chapter 3 for 

sensitivity, the assumed voltage noise resolution of 50nV/√Hz yields 

sensitivity of several orders of magnitude below that of the thermomechanical 

noise. Thus the noise of the transistor below 300 kHz is also of interest.  

In order to characterize the HEMT at low temperatures the HEMT was 

mounted on a board attached to a probe as described in Appendix B. The 

probe was then cooled to 4.2K by dipping in liquid Helium. The I-V 
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characteristics of the probe were extracted and is shown in Figure 5.1. The 

characteristics clearly show the instability of these HEMTs, as can be 

evidenced from the sudden jumps in the I-V characteristic. Further, these 

instabilities were not repeatable. Configuration of these HEMTs as low 

frequency amplifiers showed sudden jumps in gain that could potentially hurt 

measurements.  

 

Figure 5.1 Measurement showing instabilities in the I-V curves for a ATF-35143 HEMT at 
4.2 K 

Thus, the use of commercial FETs for initial characterization was not 

possible without extensive investment of time and effort in their optimization. 
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Further, since the eventual goal is integration of the components, it was 

decided to fabricate FETs for the purpose of future measurements. The rest of 

the chapter described the fabrication and measurements of the characteristics 

of the fabricated FETs. 

5.3 The Structure for Custom FET 

As mentioned in Section 3.2, GaAs/AlGaAs FETs are a good choice for 

this purpose, particularly because of their usability at low temperatures. This is 

critical for MRFM where experiments are typically conducted at and much 

below 4.2 K (liquid Helium). One of the goals of this thesis is to realize simple 

FETs without extensive epitaxial growth, since that would ease integration of 

components (the cantilevers and the FETs) in future. Another goal is also to 

fabricate FETs with input capacitance lower than 30 fF, since that would 

minimize signal division due to input capacitance of FET. 

In order to realize such FETs, the structure of the wafer chosen was similar 

to Beck et.al. This structure suspends a two-dimensional electron gas (2DEG) 

1500 Å below the surface. The benefit of using this structure was the 

simplicity of the growth. This structure has a total epitaxial growth of 0.95 µm, 

thus potentially easing integration onto the mechanical layers of the double 

cantilevers. At the same time the 2DEG is sufficiently beneath the surface to 

minimize input gate capacitance as compared to [27]. The structure is shown 

in Figure 5.2. 
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Figure 5.2 Cross sectional view of the field effect transistor (FET) to show the structure of 
growth 

 

 

Figure 5.3 Schematic showing the FET structure inclusing the drain, source and gate 

 

The FETs are fabricated on such a structure. For the FETs described in this 

thesis, the structures were grown by molecular beam epitaxy by a commercial 

epitaxial vendor [IQE, Inc., Bethlehem, PA]. The substrate was undoped 
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GaAs. The doping density (2DEG) as measured by the manufacturer was 3.55 

×1011/cm2. The mobility of the 2DEG as obtained from hall measurements by 

the manufacturer is 7.46 × 103cm2/V s. a schematic of the FETs on the wafer is 

shown in Figure 5.3. 

 

5.4 The FET Measurement Concept 

The three-fold goal of having a simple GaAs/AlGaAs heterostructure for 

the FET, low input capacitance to the FET as well as broadband response are  

difficult to meet. Consider the first two goals together: A simple FET structure 

would mean that the 2DEG is not far below the surface (since growth is 

minimized to maintain simplicity and to keep costs down). However, this 

would mean that capacitance would increase, since gate capacitance is a 

function of the proximity of the gate electrode to the 2DEG.  

Similarly the second and the third goals are also contradictory. To keep 

capacitance low, both the gate dimensions as well as channel dimensions must 

be minimized. However, minimizing the channel width would mean higher 

channel impedance. This would restrict the bandwidth unless mobility can be 

increased greatly. Thus it is clear that the three goals are in general very 

difficult to meet and a compromise must be engineered. 

Given the structure described in the previous section, an alternative is to 

use one FET with low input capacitance, but higher channel resistance, and 
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couple the output of this FET amplifier to another FET with higher gate 

capacitance. The second FET is relatively close to the first one, such that the 

channel resistance of the first does not restrict the bandwidth sufficiently 

before being coupled to the second.  

This concept can be viewed on the circuit model shown in Figure 5.4 and 

is meant to give an overall picture of the impedance transformation network.  

 

Figure 5.4 Circuit model showing impedance tranformation using 2 FETs, once with lower 
gate capacitance and other with higher gate capacitance but greater bandwidth 

 

Thus, this would require fabrication and testing of two types of amplifiers. 

In the following section, I describe the fabrication and IV characterization  of 

the FETs  with lower channel resistance and a capacitance of 1.75 pF. 
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5.5 Process Development for FET Fabrication 

The fabrication of FETs using the structure grown as described in section 

5.2 is carried out using a three mask process. There are several issues to be 

tackled in the successful fabrication of HEMTs. Among the most pertinent 

issues is the fabrication of ohmic contacts, which is the first mask layer. 

To make the contacts, the following layers were evaporated using a 

standard electron beam sputtering system: 10 nm Ni, 30 nm Ge, 30nm Au, 80 

nm Ni and 300 nm Au. These are standard ohmic contact layers for GaAs. 

Annealing of ohmic contacts is necessary in order for the dopant Ge to make a 

contact to the 2-DEG. The ohmic contacts are 150 µm square.  

An indication of sufficient annealing is visual and highly subjective. While 

exact mechanism of the annealing process is unknown [36], it is generally 

accepted that Ge acts as a dopant and at elevated temperatures diffuses into 

GaAs to make contacts. This diffusion process causes the surface of the 

contacts to have ‘wart-like’ texture. This was observed post-annealing in our 

samples and is shown in Figure 5.5 .  

The optimization of annealing times was performed using a probe station 

and multimeter. The resultant graph is shown in Figure 5.6.  The contact 

resistances were measured using 2- and 4-wire measurements and were 170 - 

200Ω at room temperature and 110-140 Ω at 4.2 K. 
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Figure 5.5 Optical Microscope images of a bond pad pre and post annealing. The picture on 
the right shows an annealed contact, and surface roughness is seen 

 

Figure 5.6 Optimization of annealing times. Resistance drops as contact is made to the 
2DEG 

 

It is seen in Figure 5.6 that the resistance drops as the annealing time at 

450o C is increased. Beyond a certain time, though the resistance does not 
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change appreciably, indicating that contact has already been made. The 

annealing time used for the FETs described in this dissertation is 120 s. 

Once the ohmic contacts to the 2DEG are made,  the next step is to define 

the channel. The channel is defined using standard photolithography and is 

etched using a inductively coupled plasma reactive ion etching tool (ICP-RIE). 

The gases used for the etch is a combination of BCl3/ Cl2. The depth of etch is 

such that the 2DEG has been constrained to the channel dimensions. Thus 

etching is carried out into the lower undoped 8000Å GaAs layer. This defines 

the FET channel. 

The final step is the evaporation of a Schottky gate. This is a standard Au 

gate evaporated using e-beam evaporators. The thickness of the gold layer is 

such that it is greater than the depth of the channel etch (< 2000Å) in order to 

provide continuity. In this dissertation, the gates are 3500 Å thick. A thin Ti 

layer is evaporated prior to Au to provide superior adhesion. 

The next section explores the results of the fabrication and characterization 

of the FETs with higher gate capacitance (2pF) and lower channel resistance, 

what I term to be the wide-channel FET. 

 

5.6 Wide Channel FET 

As mentioned earlier in this chapter, the FETs with larger input 

capacitance are fabricated in order to use them as low-temperature amplifiers. 
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Since the initial design comprises of cantilever system with large bond pads 

(and the associated large stray capacitance), these FETs will probably serve 

quite well for initial characterization of the system of cantilever coupled to 

FETs. The initial coupling can be done using wire bonds close to the cantilever 

chip. 

The FETs have ohmic contacts that are 150µm × 150µm and a channel 

with a width of 150µm and length (between bond pads) of 100µm. The gate is 

15µm wide. The ohmic contacts, channel and the gate are fabricated as 

described in Section 5.5.  One such FET is shown in Figure 5.7. 

 

Figure 5.7 An optical microscope image of a wide-channel GaAs FET 

 

The input capacitance to the FET can be easily obtained knowing the 

width of the gate and channel (which gives the area of the gate) and the depth 
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of the 2DEG (1500 Å for the structure used in this dissertation). For the wide 

channel FETs this is calculated to be 1.75pF.  

The I-V curves for the fabricated FETs were obtained by mounting the 

FETs on a board similar to the one described in Appendix B. The I-V curves 

are extracted by sweeping the voltage and measuring the current through the 

channel at various gate-source voltages. Characterization was carried out at 

both room temperature and at 4.2 K. The temperature could be verified by a 

thermometer attached to the circuit board. Since the channel can be depleted 

by applying negative voltages the current through the channel can be 

modulated by the gate potential. Figure 5.8 shows a series of current-voltage 

(I-V) curves at different gate-source voltages (VGS) at room temperature (295 

K). As expected the saturation current in the channel decreases for decreasing 

VGS. 

This confirms that the wide FETs are functional and the gate potential 

effectively modulates the channel current. This property of FETs is used for 

amplification widely [30]. Observation of the I-V curves of the FET yields 

information as to the operating point of the FET for effective amplification. 

For this FET the saturation region of IDS is an obvious operating point.  
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Figure 5.8 Measured I-V Characteristic for the Wide FETs at 295 K 

 

To characterize the amplification of the FET, transfer characteristics are 

obtained. The transfer characteristic at 293 K for VDS = 12 V is plotted in 

Figure 5.9. It is seen that the channel current can be ‘pinched-off’ at -5.8 V. 

The slope of the transfer characteristic is the transconductance gm. For this 

transfer characteristic gm = 0.0012 S. The transconductance is useful to find 

the amplifying characteristics of an FET as will be seen later. 
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Figure 5.9 Measured Transfer Characteristic of wide FET at 293 K 

 

The next goal in to characterize the FET at low temperatures. For the 

purposes of this dissertation this is 4.2 K, which is liquid Helium temperature. 

The probe (described in Appendix B) is dipped in a liquid helium dewar, and 

the temperature of the board is monitored. Typically a puff of helium is 

introduced into the probe which rapidly cools the electronics inside. The He is 

then pumped out using a turbo mechanical pump. The I-V curves for the FET 

are extracted. A set of curves for the FET is shown in Figure 5.10. Once again, 

the channel current is modulated by a gate potential, and can eventually be 

pinched off.  
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 Figure 5.10 Measured I-V Characteristic of Wide FET at 4.2 K 

 

The FET current at saturation is lower as expected, since fewer carriers are 

available for conduction at 4.2 K. The transfer characteristic at 4.2 K is shown 

in Figure 5.11. For this transfer characteristic gm = 0.001 S. 

Another aspect of FETs that could be a potential problem is gate leakage.  

Gate leakage appears as a resistance to ground at the gate, and this could act as 

a voltage divider (see Figure 5.4). Typically gate leakage can be minimized or 

even eliminated by choosing values of VGS and IDS such that the amplification 

is minimal. This is the most practical method, since gate leakages and optimal 
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operating point vary considerably for the FETs described in this thesis. This 

method is very simple to implement and hence the preferred method for 

biasing the FET at its optimal operational point.  

 

Figure 5.11 Measured Transfer Characteristic of wide FET at 4.2 K 

 

This section demonstrated the fabrication and characterization of FETs at 

low temperatures. It can be verified from the I-V curves at 4.2 K that the 

resistance of these FETs are ~1 – 2 kΩ for typical regions of operation as an 

amplifier (saturation or near saturation), depending on the gate potential. 

Given cable capacitances of 500 pF (conservative estimate), the bandwidth can 

be estimated to be around 1 MHz. Thus these wide FETs satisfy the 
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requirement of a low temperature amplifier with sufficient bandwidth in order 

to do measurements upto 1 MHz. 

The following section describes the fabrication and characterization of 

FETs with lower capacitance, but low bandwidth that can be used as the first-

stage amplifiers. 

 

5.7 FETs with 21fF Input Capacitance 

In this section the fabrication of FETs with low input capacitance is 

described. In order to keep input capacitance below 30 fF,  the area of the gate 

and the channel have to be adjusted given that the 2DEG for this particular 

structure is located 1500 Å beneath the surface. For a channel width of 20µm 

and a gate width of 15µm, the capacitance is 21fF. Also, this geometry makes 

it practical, since feature sizes are easy to realize using unsophisticated 

photolithography. Hence this geometry is chosen. The length of the channel 

was kept at 100µm as in the wide FETs to enable one to use the same first-step 

mask as before. The FETs are fabricated using the same technique described 

for the wide FETs. A fabricated FET is shown in Figure 5.12. Figure 5.12 

shows a magnified SEM micrograph of the gate region. This demonstrates that 

the gate is continuous over the channel, as is required for proper operation of 

the FET. 
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Figure 5.12 SEM Micrograph of a FET with lower capacitance 

 

Upon fabrication the FETs were characterized and the I-V curve at 4.2 K is 

shown in Figure 5.14. The I-V characteristics of the FET confirm that they 

work at 4.2 K with gate potential modulating the current in the channel. The 

current through the channel is effectively pinched off for VGS<-4.5V.  The 

transfer characteristic of this FET at 4.2 K is shown in Figure 5.15. From the 

transfer characteristics, it can be inferred that the transconductance gm of this 

FET is ~1mS. 
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Figure 5.13 Close-up of the gate region of the channel 

 

 

Figure 5.14 Measured I-V characteristic for the low capacitance FET at 4.2K 



 - 91 -  

 

Figure 5.15 Measured transfer characteristic for the low capacitance FET at 4.2 K 

 

In order to operate the FET as an amplifier, a resistor is coupled to the FET 

as shown in Figure 5.16. The voltage gain of an amplifier configured such is 

given as follows: 

Dm RgGain ×=                                                                                              (5.1) 

Since gm is given by the slope of the transfer curve, the gain of an FET can 

be determined by the value of the bias resistor RD. We chose a value of 200 

kΩ for this FET in order to get voltage gain of 10-50. 
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Figure 5.16 A simplified circuit demonstrating the use of FETs as amplifiers 

 

Another important parameter of the narrow FETs is the power dissipation. 

Since these FET are designed for use directly on the cantilever chips, large 

power dissipation can heat the cantilever chips. Typical cryostats can tolerate 

power dissipation in the region of a few milliwatts. The power dissipation of 

the transistor is simply the product of the current and the voltage through the 

channel, if gate leakage effects are ignored. Since the gain depends on the 

operational characteristics of the FET, it is instructional to find the how the 

power dissipation varies with the gain of the amplifier. 
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Such a plot for the FET amplifier at 4K is shown below. The power 

dissipation even at relatively high gain (>20) is less than 10 µW, which is very 

suitable for low-temperature applications. 

 

 

Figure 5.17 Measured relationship between gain and power dissipation 

 

Thus, the FETs with low capacitance (21fF) are characterized at low 

temperatures. The power dissipation through the FETs is acceptable for He-3 

cryostats that are used for MRFM experiments. 
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5.8 Conclusion 

In this chapter, the successful fabrication and measurement of the 

characteristics of two FETs was described One of the FETs, with the 21 fF 

input capacitance can eventually be integrated onto the same chip as the 

mechanical layers, thus enabling an integrated read-out of mechanical motion.  

The second FET can serve as an amplifier close by, for instance on the 

same circuit board, and can serve to further transform impedance and increase 

the bandwidth of measurement. Since the structure of both FETs is identical, it 

is entirely possible to fabricate both FETs, on the same chip as the mechanical 

components too. Thus the fabrication and successful characterization of these 

FETs makes possible a variety of different configurations for testing. For the 

purposes of initial measurements, the wide FET will be used. 
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Chapter 6  

MEASUREMENTS AND CHALLENGES 

 

6.1 Issues of Measurement of the Cantilever Motion 

In any type of ultrasensitive measurement technique the issue of parasitic 

capacitance, from bond pads, wire bonds, leads and the cables is always a 

concern. While impedance transformation is the most common and practical 

technique used in all ultrasensitive measurements, such techniques become 

more difficult as cantilever masses become smaller.  

Another issue is the relatively unknown frequency as well as the Q of the 

cantilevers. In order to find the resonance frequency a broadband technique is 

required, which was among the reasons for an FET-based detection. However, 

since the parasitic capacitance for the set-up described in this dissertation 

(where integration of FETs on the mechanical layers has not been carried out) 

is prohibitive, it would be very useful to know the resonance frequency prior 

to an electronic read-out.  

 

6.2 Experimental Set-Up to Read-Out Cantilevers 

As described in Section 3.7, the FET detection without integration of the 

FETs on the same chip as the cantilevers will not be sensitive enough for 

direct read-out of the thermomechanical noise. This is because of the large 
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parasitic capacitance due to the bond pads and the wire bonds. Further the FET 

with 2pF input capacitance was used, thus adding to the parasitic capacitance. 

In order to keep the noise of the electronics low, and to increase the Q of 

the resonator, all measurements were performed at vacuum at 4.2 K. This was 

done in the probe described in Appendix B. The expected position detection 

sensitivity of the system can be obtained from the spreadsheet described in 

Appendix C and is estimated to be 4.3 × 10-17N/√Hz. This is significantly 

lower than the thermomechanical noise figure of 2.5aN/√Hz, hence it would 

not be possible to directly measure the thermomechanical noise peak at the 

resonant frequency of the cantilever. Hence, the cantilever needs to be driven 

in order to obtain a signal above the noise floor of the detector. 

In order to drive the cantilevers, the cantilever chip is mounted on a 

piezoelectric stack [37]. This must be done ensuring that care is taken to 

minimize cross-talk of the drive with the cantilever signals. In order to 

electrically isolate the cantilever system from the piezoelectric stack, the top of 

the stack (on which the chip was mounted using silver paste) was grounded. 

The bottom of the stack was attached with conducting silver paste to a gold-

plated cover slip. The cover slip was then attached to the grounding plane of 

the circuit board. This arrangement is done so that the piezoelectric stack is not 

driven on the side the cantilever is mounted, thus minimizing cross-talk. This 

is shown schematically in Figure 6.1.  
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Figure 6.1 Figure showing the mounting of cantilever on piezoelectric stack to minimize 
cross-talk 

The circuit used to couple the cantilevers to the wide FET described in 

Section 5.6 is shown in Figure 6.2. The VBias is the voltage bias for the 

cantilevers, and must not exceed the pull-in voltage. The VDC is a DC potential 

applied to bias the FET operating point such that the FET has minimum 

leakage current. The VDS is as before the drain-source voltage, and is applied 

such that the FET is biased at the desired operating point. In addition, to 

monitor the gain constantly, a lock-in was used, with a small AC applied at the 

gate. The gain was monitored at lower frequencies (typically 10 kHz). 
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Figure 6.2 Circuit for measurement of cantilevers coupled to the wide FET 

The temperature was monitored using a carbon glass thermometer as 

described in Appendix B. The cantilever chips were attached to the 

piezoelectric disc which was connected to the top by a separate wire. This set-

up is shown in Figure 6.3. 
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Figure 6.3 Photograph showing the circuit board used for measurements 

Each individual circuit component was tested for their usability at 4.2 K 

prior to mounting on the circuit board. The cantilevers thus mounted on the 

probe were hermetically sealed using indium seals and cooled down to 4.2K in 

liquid helium. The value of the cross-talk when a AC voltage is applied to the 

piezoelectric stack can be monitored at the output of the FET without having a 

DC bias on the cantilever. The cross talk was approximately 10µV per volt 

supplied to the stack. For motion of a nanometer at low temperatures, the 

Thermometer Piezoelectric 
stack Cantilever chip 

FET 



 - 100 -  

amount of voltage to be applied would be between 20 and 50 V. Thus the 

amount of voltage due to cross talk can be as high as 50µV. This would 

severely restrict the experiment’s capability. Thus this approach was 

abandoned, since the cross-talk corrupted the measurements. It is noted that 

extreme care was taken to minimize the effects of cross-talk, and this value 

could not be reduced further easily.  

Another approach is to directly read-out the cantilever thermal noise using 

the FET without additional excitation of the cantilevers. This method though at 

a first glance appears to be less favorable than using excitation, it can be 

shown is better than using excitation with cross-talk. Since the expected 

thermomechanical noise is much lower (8aN/√Hz corresponding to about 

0.23Å/√Hz) than the expected sensitivity of position detection (3.7Å/√Hz), it 

is not possible to read-out the cantilevers without several averages. However, 

with 1000 averages of the signal, it is possible to increase the signal-to-noise 

ratio to approximately 10. Thus, this method was used to perform 

measurements of the cantilevers. Also since the expected Q of the cantilevers 

is fairly high, the averages were carried out over frequency ranges of 1kHz, 

and the frequency was swept from 60kHz to 250kHz. However, this method 

did not yield the resonant frequency and the Q of the cantilever. 

Thus it is seen that direct measurement of the cantilever motion at 

resonance is not trivial without having prior knowledge of the resonant 
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frequency.  In order to find the resonance frequency two alternate methods 

were attempted. The goal is to use these methods to find the resonant 

frequency and then read the cantilevers electronically. 

6.3 SEM-based detection 

As mentioned in the previous section, the frequency of the cantilevers is to 

be determined by alterntive techniques. One of the issues in trying to read-out 

objects that are very small like these cantilevers is alignment. The SEM has 

been used successfully to measure mechanical resonance as described in [39]. 

This technique is useful because imaging of the cantilever is done prior to 

alignment, thus enabling us to position the cantilever in the path of an electron 

beam. 

In this technique the mechanical resonator is placed in an SEM and imaged 

at high magnification (typically 50,000 or above).  Thus imaging of the beam 

is done in the SEM. Then, the resonator is placed such that there is a 

component of motion perpendicular to the electron beam. The resonator can be 

excited by mounting it on a piezoelectric stack. The electron beam is then 

focused on a specific point on the edge of the resonator and the SEM is 

switched to point mode. Thus now, as the resonator moves in and out of the 

line of the electron beam, the detector of the SEM has an output at the 

frequency of the resonantor. The output of the detector is analyzed using a 

spectrum analyzer or a network analyzer.  
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For the purposes of this dissertation, this technique was used to find the 

resonant frequency of the cantilever. We looked at the thermal noise peak at 

room temperature at high vacuum in a field emission scanning electron 

microscope, where the sample was tilted from the horizontal. This was done to 

ensure that there is a component of mechanical motion perpendicular to the 

electron beam. The beam was focused on an edge of the cantilever and the 

output of the secondary detector of the SEM was monitored with a spectrum 

analyzer via a voltage amplifier.  Two SEMs were used – a LEO 1550 VP and 

a JEOL JSM-6500F. For the LEO 1550 VP, two hermetic feed-throughs to the 

chamber were made to enable the excitation of a piezoelectric stack. 

The cantilever chip was mounted on the piezoelectric stack and placed in 

the SEM. The feed through were connected to the output of a network 

analyzer. However, drifting of the beam at high magnifications caused the 

beam edge to move away from the center of the beam during measurement. 

This could be because of the relaxation of the mechanical screws of the SEM 

used. In order for such a technique to be successful, the drift of the image must 

be addressed.  

It was initially thought that the drift was occurring because of the 

cantilever getting charged (since the beam is isolated from ground). In order to 

address this, the beam pads were wire bonded to a ground plane. The 

piezoelectric stack was excited using a network analyzer and the output of the 
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secondary detector of the SEM was monitored by the analyzer. However, this 

did not minimize the image drifting [37]. 

Thus at this time we are unable to make measurements using this 

technique, Problems with both image drift as well the transparency of the 

cantilever could be an issue. Since this technique is mostly empirical with 

almost no quantitative estimates on sensitivity, it is difficult to determine with 

precision the exact reason for not being able to find the frequency of the 

cantilevers. 

 

6.4 Optical Detection of Cantilevers 

Another approach is to use optical interferometry. This technique needs 

advanced interferometry techniques, since typical optical fibers are 9um is 

diameter and given the transparency of the cantilever the reflected signal 

would not be sufficient to find the resonance frequency. Also of issue is the 

alignment of the laser on the cantilever, which requires microscopes with 

CCD. Such a set-up has been designed and used for sensitive position 

detection in [40].  

This set-up at Boston University was employed to find the frequency and 

Q of the cantilevers. The set-up included a vacuum chamber in which the 

cantilevers were mounted on a piezoelectric stack. The chamber was then 

pumped down to 10mT. The cantilever was then imaged using a lens. The lens 

served a dual purpose – magnification of the cantilevers such that it can be 
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seen easily on the monitor screen, as well as focusing of the laser such that the 

laser spot is smaller than or comparable to the width of the cantilever. This is 

in contrast to the MRFM measurements that are done without lenses, where 

the spot size is comparable to the core diameter of the fiber (~9µm).  

Both Michelson interferometry as well as Fabry-Perot Interferometry 

techniques were used [41]. Neither technique yielded the frequency of the 

cantilever.  

 

6.5 Discussion 

It is clear that the resonant frequency of the cantilever is to be known in 

advance in order to make further measurements using the capacitive detection 

scheme. The finesse of measurements using either the SEM or optical 

measurements can be improved. Future work will concentrate on the use of 

one of these detection schemes at room temperature to ascertain the frequency 

and the Q of the cantilever beams. Once the Q and the frequency are known 

the exact mechanical impedance of the beam given by Equation (3.5) can be 

known. Further it would also make the FET-based detection easier, given that 

current sensitivity of the scheme is estimated to be ~10-17N/√Hz, lower than 

the thermomechanical noise. There is also the possibility that at lower 

temperatures, the Q of the resonator may be significantly higher (>105) which 

could substantially improve the sensitivity of the cantilevers. 
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Chapter 7  

CONCLUSION AND CONTRIBUTIONS 

 

7.1 Introduction 

The previous chapters in this dissertation illustrated a lightless technique to 

capactively read-out the position of a ultra-sensitive cantilever. In Chapter 2, a 

successful fabrication technique with high yield for making thin cantilevers for 

MRFM purposes was described. Chapter 3 explained the design of a proposed 

lightless detection technique using capacitive detection. In Chapters 4 and 5 

the successful fabrication of a cantilever double layer was described as well as 

the fabrication and characterization of FETs for operation at low temperatures 

was discussed. The resonator structure fabricated is just 30 nm thick and is 

first [31] of only two known ultra-thin cantilevers [44]. In Chapter 6, the non-

triviality of the problem of experimentally finding the resonance frequency 

was examined and some attempted techniques were discussed. In this chapter, 

I shall conclude this dissertation with a section on the use of direct impedance 

transformation method (without FETs) to read-out the cantilevers and the 

contributions of this dissertation. 
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7.2 Proposed Direct Impedance Transformation 

In this section I would like to present a potential impedance transformation 

scheme for ultra-sensitive measurement using the current double capacitive 

system without the need for integration. The reason for this is that if the 

frequency and Q of the cantilevers can be determined using the methods 

described in 6.1 above, then it is possible to use the method described in 3.6 in 

combination with other impedance transformation techniques to read out the 

position. This particular proposal has one distinct, but significant advantage. 

The parasitic capacitance of the previous scheme can be resonated away using 

a system of tank circuits. Thus the parasitic capacitance can be a part of the 

capacitor in a resonant tank circuit.  

However, this would require an amplifier with impedance that is lower, 

such that the mechanical impedance can be transformed to the input of the 

amplifier. This technique is common, since many amplifiers have an input 

impedance of 50Ω.  However, any amplifier that is used must have a current 

noise that is not too high such that the current noise drives the cantilever 

system. This is a requirement in many ultra-sensitive measurements, and a 

very elegant description of this is available in [42].  

The current noise of an amplifier can be conveniently expressed as a 

temperature equivalent of the cantilever system; typically manufacturers of 

very low noise amplifiers specify the noise temperature of the amplifier. Some 
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of the best amplifiers with ultra-low noise temperatures are available for high 

frequencies [32]. However, for the frequencies of interest in this dissertation 

(20-300 kHz), the lowest current noise commercially available amplifiers with 

50Ω input have a noise temperature of around 40 K [for instance the AM1431 

amplifier , manufactured by Miteq Incorporated,  Hauppauge, New York]. 

This means that the best sensitivity that can be achieved is that of the 

thermomechanical noise of the cantilever at 40K. 

It is interesting to use this figure to find the sensitivity of this detection 

method. Given the dimensions of the cantilever as described in Chapter 3, the 

mechanical impedance of the cantilever system at resonance is given by 

Equation 3.14 and is estimated to be 3.51 MΩ (assuming Q = 15,000). Given 

that the input to the amplifier is 50Ω, the high mechanical impedance is 

required to be transformed to 50Ω. This can be easily achieved by means of a 

tank circuit. This is represented in Figure 7.1, where the cantilever at 

resonance is shown as Rm, the mechanical resistance. The impedance 

transformation is to be achieved by a tank circuit with inductor LTANK and a 

capacitor to ground CTANK. 

From the figure, it is clear that the CTANK to ground can be the stray 

capacitance.  So long as the value of CTANK required is less than or equal to the 

stray capacitance of the double cantilever system, this particular impedance 

transformation scheme can be extremely powerful, since it can resonate the 



 - 108 -  

stray capacitance as part of a tank circuit. Thus the division of the signal by the 

stray capacitance is minimized.  

For the geometry described in this section, the impedance of the tank 

circuit required to transform 3.51 MΩ to 50Ω is given by  

50RZ mLC ×=  (7.1) 

ZLC is calculated to be 13.25kΩ. The corresponding values for LTANK and 

CTANK at the resonant frequency of the cantilever (195 kHz) can be calculated 

to be 11.3 mH and 64 pF respectively. Clearly the required CTANK is greater 

than the parasitic capacitance (about 2 pF). The required Q for the tank circuit 

is simply Rm/ω.LTANK, and is shown to be a reasonable 265. 

 

Figure 7.1 Transformation of Mechanical Impedance to the lower input impedance of 
amplifier by a tank circuit 

CTANK 

LTANK 
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Resonance 

Inside Probe 
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For a room temperature, commercially available amplifier with a noise 

temperature of 40K, the calculated position detection sensitivity for Q=15000 

is 2 ×10-21 N/√Hz.  Thus it is clear that the impedance transformation 

technique is quite powerful in eliminating signal division due to parasitic 

capacitance. The thermomechanical noise for this geometry at 40 K (the noise 

temperature of the amplifier) is 8aN/√Hz.  

The above formalism describes the extreme sensitivity that can be obtained 

by a simple capacitive detection scheme using an impedance transformation. 

The sensitivity of this scheme can be greatly improved with the availability of 

amplifiers with low input impedance and low noise temperatures. One such 

amplifier is a superconducting quantum interference device or the SQUID.  

SQUIDs are renowned for their very low current noise (<1pA/√Hz) and are 

used extensively in low noise applications such as radio astronomy.  

Impedance matching by itself is not a simple process, given that the tank 

circuit requires very high value inductors as above. However, this is a 

technical issue that can be resolved through the judicious use of a series of 

impedance transforming elements such as transformers and tank circuits 

designed such the stray capacitance is eliminated. Also the bond-pads can 

easily be reduced in area (since the current pads are 220µm on a side, and wire 

bonding can be done to pads as small as 50µm×50µm).  
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It is also noted that SQUIDs typically have very low input impedances. 

SQUID inputs are complex, but the inductive part of the input can be 

resonated away using a capacitor. For the SQUID described in [43], the 

resistive part of the input impedance for the frequencies of the cantilevers in 

this dissertation is calculated to be as low as ~10-6Ω. Direct impedance 

transformation would require very high inductance values with high Q, thus 

requiring bulky superconducting inductors. Hence a scheme gradually step 

down the impedance to the value of the SQUID input needs to be developed. 

 

7.3 Contributions 

The contributions of this dissertation are as follows: 

1. The fabrication of ultra-thin single crystal silicon cantilevers 

required for initial experiments in Magnetic Resonance Force 

Microscopy. This entailed the development of a method to easily 

and reliably suspend cantilevers on an edge. The Dicing Saw 

Method described in Section 2.9 is a new method developed in this 

dissertation that can considerably lower manufacturing costs [24]. 

2. The design of an integrated, light-free position detection scheme 

based on capacitive detection with potential for zeptonewton force 

sensitivity. This is the first scheme for integrated, light-free 

detection of cantilevers for MRFM. 
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3. Fabrication of double capacitive cantilevers in crystalline Gallium 

Arsenide. The resonating cantilever to be used for MRFM 

measurements was only 30nm thick, and was the first report of 

such a thin cantilever [31]. 

4. The design and fabrication of FETs in Gallium Arsenide 

heterostructures and their characterization at 4.2 K. 

5. Laid the groundwork for future research towards single spin 

sensitivity using capacitive detection schemes, and established a 

plan to accomplish this goal. 

 

7.4 Towards Single Spin Sensitivity – Future Work 

In this dissertation, I have described my efforts towards realization of a 

capacitive position detection scheme. In Section 7.2, I describe the use of an 

impedance matching technique that has potential for ultra-sensitive force 

detection using capacitive detection. As evidenced in Chapter 6, it is very 

useful and perhaps necessary to know the frequency of the cantilevers in 

advance of an all-electrical read-out.  

Thus, locating the frequency of the cantilevers using an alternate method 

prior to all-electronic detection is probably the most straightforward and 

practical approach towards single spin sensitivity. I propose the following plan 

towards attaining the goal of a light-free technique for single spin sensitivity: - 
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1. Find the most user-friendly technique to locate the frequency of the 

cantilevers at room temperature. This can most likely be done 

using SEM-based detection, or by optical detection. Both methods 

have required sensitivity as described elsewhere, but the SEM 

method is more widely available, and can be used as part of the 

imaging process. 

2. Once the frequency of the cantilever is located, and its Q at room 

temperature is known, this would give an idea to the most ideal 

technique for detection. Note that high Qs would lend very well to 

impedance matching techniques, since then, the inductance 

required for the tank circuit would be more practical.  

3. If the impedance matching technique is unsuitable, then integration 

of the FET with the mechanical elements can be carried out. Since 

both parts have been realized separately in this dissertation, this 

should be an attainable goal. 

4. Once this technique has been demonstrated, a suitable geometry 

with low thermomechanical noise can be designed using the 

spreadsheet in Appendix C. Smaller beams would probably be 

better suited to direct impedance matching techniques. The 

amplifier to be used must have very low current noise at the 

cantilever frequency - this can possibly be a SQUID. 
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Appendix A 

EXPRESSING MECHANICAL MOTION IN ELECTRICAL TERMS 

 

A mechanical element in motion and with a sense electrode for capacitive 

detection is represented in a circuit as a variable capacitor. Once biased with a 

large DC source (large such that it is practically constant as compared to the 

time constant of the resonator), this changing capacitor functions as an AC 

source in the circuit with a frequency corresponding to that of mechanical 

motion. This is the basis of capacitive detection in MEMS devices. 

 

Figure A.1 Representation of a mechanical element (moving) coupled to a sensing electrode 
for capacitive sensing. 
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Reflectometry measurements are very common for capacitive sensing. 

However, reflectometry methods typically require very well matched 

impedances. The following formalism follows Keith Schwab and colleagues’ 

technique to model nanomechanical in terms of impedances. When the 

resonator is displaced, the electrical capacitance between the resonator and the 

gate, CCant, is modified.  For small relative displacements, x(t), the capacitance 

is given by 
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where d is the resonator-gate separation, and x>>d.  A potential 

difference, VBias, between the resonator and the gate is established in addition 

to an oscillating potential Vs(t)=Vse
iωt.  These voltages will create forces which 

cause the resonator to move.  The motion will be given by Newton’s Laws:  

( )tFkxxxm =++ &&& γ ,      (A-2) 

where m is the mass, γ is the linear dissipation constant, k is the 

mechanical spring constant, and the dots refer to the first and second derivative 

with respect to time.  The force between the gate and the resonator is given by: 
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where we have assumed that the displacements are small ( ) dtx << .  The 

first term is constant, causing a static deflecting, and is not important for this 

discussion.  The third term oscillates at twice the applied frequency and also is 

not important here.  The second term will produce a driving force at the 

applied frequency and is inserted into Equation 3.2: 
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where 
m
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0
ω .   Assuming a harmonic solution for ( ) ( ) tiextx ωω= , we 

find: 
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 where 
γ

ω0m
Q = .  Using Q = CV, and Equation 3.2, the charge on the 

gate is given by: 
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where we have dropped the piece oscillating at 2ω, which is small.  

The time derivative to Equation 3.6 will give the current: 
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Comparing the equations in Equation 3.7, it is clear that motion produces 

electrical current, IRLC: 
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This will be a useful expression for understanding the position sensitivity. 

Defining the total impedance, ZT(ω), as 
( )
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= , one can see that 

the current is given by two parallel contributions, through the capacitance Cg, 

and through a parallel RLC circuit shown in Figure 3.4.  The impedance of the 

parallel combination of Cg and the RLC circuit is given by: 
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giving currents through the RLC circuit: 
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where 
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Thus the mechanical motion can be completely modeled by an equivalent 

RLC circuit with circuit values shown in Equation 3.11.  This formality will be 

useful in future discussions pertaining to the impedance of the circuit and 

impedance matching techniques. This formality is not novel, but has been 

employed in MEMS filters for several years [28]. However, the use of this 

electrical analogue for impedance matching in order to do ultrasensitive 

detection in nanomechanical resonators was recently demonstrated by Schwab 

et.al. (Unpublished paper). 
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Appendix B 

THE EXPERIMENTAL SET-UP 

 

The printed circuit board was a five layer board with soft gold plating to 

allow for gold-wire bonding. There is a central ground plane that is connected 

to a grounded area on wither side of the board. These grounded areas are used 

for mounting the chips and for attaching grounding copper wires to allow for 

proper thermalization. The board was attached to the end of a stainless steel 

probe made for the purpose of experimentation at low temperatures (up to 

4.2K). The attachment was a 10-wire PCB edge connector. The PCB was 

custom made to fit into the edge connector. This allowed for ease of mounting 

the chips on the board and then inserting the board into the edge connector. 

Pictures of the board are shown in Figure B.1. 

 

Figure B.1 Both sides of the circuit board are shown 

Top  

Bottom   

Grounding plane 
where samples are 
mounted. Vias to 
the central ground 
plane are seen as 
holes. 
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The edge connector was firmly attached to the bottom end of the probe. 

Ten stainless steel coaxial cables with Teflon coating (Lakeshore Coax Cable 

CC-SS-500) were attached to the edge connector. These coaxial lines were 

then soldered on to hermetic BNC connectors at the top of the probe. The 

shields of the coaxial cables were grounded at the top. The bottom of the probe 

and the circuit board is shown in Figure B.2. 

 

Figure B.2 The bottom of the probe showing the connections and the board attachment 

 

In addition to the coaxial cables, six twisted pairs were also connected to a 

SAMTEC connector at the bottom of the probe. The twisted pairs were 

connected to a Fisher (Fischer 105, 24 pin) connector at the top. Four of the 

leads are used for connecting a Lakeshore CGR-1-2000-CD carbon-glass 

thermometer that was capable of accurate temperature measurement up to 1K. 

Twisted pairs 
connected to a 
Samtec edge 
connector 

PCB edge 
connector 
connected via 10 
coaxial cables to 
the top 

Carbon Glass 
thermometer 
bolted on the 
circuit board 
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The thermometer was calibrated at the factory. The probe is shown in Figure 

B.3. 

 

 

Figure B.3 Clockwise from left: The probe; close up of the top of the probe showing the 
BNC connectors, pressure gauge and the evacuation valve; The bottom can and that can be 

screwed on hermetically with an indium seal. 
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Appendix C (Electronic file) 

SPREADSHEET TO ESTIMATE CAPACITIVE DETECTION PARAMETERS 

 

Figure C.1 Snap-shot showing the spreadsheet that is attached as an electronic file to this 
dissertation 
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