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When using commercial address lists to sample households, investigators
spend considerable time and money on screening households for eligibility
as well as locating certain subpopulations (to achieve target sample sizes).
Utilizing the demographic information on these lists to target eligible
persons and subgroups has the potential to lower costs and field workers
workload. Unfortunately, the information attached to the lists is error prone.
We propose to evaluate the use of demographic information available on
commercial lists in multistage household sampling. Specifically, this
research will study how to efficiently design a three-stage sample that
involves screening of housing units to determine eligibility. This research
will also examine more complex estimators than have been previously
studied.

The goals of this study are to (1) estimate the accuracy rates in which

commercial lists can correctly identify households with certain



characteristics (e.g., Hispanics, Non-Hispanic Blacks, etc.); (2) Derive a
theoretical variance formula, including variance components, for estimated
totals; (3) Estimate variance components and evaluate alternative variance
component estimators (design-based ANOVA, anticipated variance (model
+ design)); (4) Determine how to allocate two and three stage samples
supplemented with commercial lists accounting for inaccuracy of listings,
costs at each stage of sampling, target sample sizes and coefficient of
variations (CVs), stratification of SSUs, and stratification of HU’s by MSG
characteristics (e.g., Race/Ethnicity, ages of persons in HU, etc.).

This research seeks to better understand the quality of demographic
data attached to commercial lists and to use this information to increase
sampling efficiency in the HRS by recovering more information for lower
costs. This research potentially creates an improved sample design for HRS
and similar surveys that is less costly and equally or more statistically
efficient than the current design. In particular, the proposed design will help
sample designers reduce the amount of housing unit screening needed to
identify target subpopulations (e.g., Blacks, Hispanics, teenagers, and
females). Furthermore, the results of this research will extend to other

multistage household surveys that use commercial lists for sampling.
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1 Introduction

Chapter 1 reviews the general problem of allocating a household survey based on
information from lists of addresses that are sold commercially. Section 1.1 sketches the
topics covered in this dissertation and describes how it extends earlier research. Section 1.2
discusses the sources of commercial lists, how they are typically constructed in the U.S.,
and how they have been used in address-based sampling. Information on the lists can be
used to target a sample toward certain demographic groups; this involves screening
households as discussed in Section 1.3. The fourth section covers auxiliary, demographic

information on the lists that can be used for sampling.

1.1 Overview

When using commercial address lists to sample households, investigators spend
considerable time and money on screening housing units (HUs) for eligibility as well as
locating certain subpopulations (to achieve target sample sizes). Utilizing the demographic
information (e.g., age, race/ethnicity) on these lists to target eligible persons and subgroups
has the potential to lower costs and field workers’ workload. Unfortunately, the
information attached to the lists is error prone. However, Valliant, Hubbard, et al. (2014)
showed that nonlinear programming, using the commercial list information, could be used
to screen more efficiently for some demographic groups even when the list information is
not entirely accurate. The purpose of this study is to further evaluate the use of demographic
information available on commercial lists in multistage household sampling. Specifically,
this research will study how to efficiently design a three-stage sample that involves

screening of HUs to determine eligibility.



Similar to Valliant, Hubbard, et al. (2014), we use nonlinear programming to find
sample allocations subject to a variety of constraints. In determining how to allocate two-
and three-stage samples supplemented with commercial lists, we extend variance formulas
for two- and three-stage sampling to formulate an optimization problem (Valliant, Dever,
& Kreuter, 2013). The theoretical work will be to derive component formulas that account
for strata of secondary sampling units (SSUs) and substrata of HUs and are specific to
inverse weighted estimators of totals and means. This research will also examine more
complex sample designs than have been previously studied. Specifically, the goals of this
research are to:

(1) Estimate the accuracy rates in which commercial lists can correctly identify
households with certain characteristics (e.g., Hispanics, Non-Hispanic Blacks, Persons 50
and over, etc.).

(2) Study how to efficiently design two and three-stage samples that involve
screening of housing units using demographic information on commercial lists to
determine eligibility accounting for inaccuracy of listings, costs at each stage of sampling,
target sample sizes of demographic subgroups, stratification of SSUs by some area
characteristics (e.g., density of Blacks, Hispanics, Others), stratification of HU’s by
commercial list characteristics (e.g., Race/Ethnicity, ages of persons in HU, etc.), and
characteristics of different variables of interest.

(3) Derive a theoretical variance formula, including variance components, for
estimated totals and estimate variance components.

(4) Study the use of ANOVA and anticipated variances as alternative variance

component estimators.



This research seeks to better understand the quality of demographic data attached
to commercial lists and to use this information to increase sampling efficiency in the ABS
surveys by recovering more information for lower costs. This research potentially creates
an improved sample design for ABS surveys that is less costly and equally or more
statistically efficient than designs that do not use list information. In particular, the
proposed design could help sample designers reduce the amount of housing unit screening
needed to identify and target hard-to-reach subpopulations. Although sample allocation in
multistage designs has been studied previously, the combination of topics listed above is
unique. Combining a design with multiple goals, a solution via nonlinear programming,
inclusion of commercial lists to refine an area sample, together with modern variance
component methods will be a new and practically useful contribution to the sample design

literature.

1.2 Commercial Lists

1.2.1 Source of Commercial Lists

The United States Postal Service (USPS®) Address Management System (AMS; USPS
2013b) database serves as the official record of US mailing addresses. A mailing address
contains information on street/box number, city, state, ZIP code, carrier route number,
delivery sequence number (order in which letter carrier delivers mail) and vacant/seasonal
indicator flags (lannacchione V., 2011). The USPS® Computerized Delivery Sequence
(CDS; USPS 2013a) file is built from the information contained within the AMS database.
For a monthly subscription fee, the CDS program provides updated delivery sequence
information to qualified commercial vendors given they provide their own address lists.

Such  vendors include marketing database @ companies like  Experian



(http://www.experian.com), infoUSA (http://www.infousa.com), Marketing Systems
Group (MSG, http://mww.m-s-g.com), Valassis (http://www.valassis.com), and Acxiom
(http://www.acxiom.com).

As part of the licensing agreements, vendor-supplied address lists must include at
least 90 percent (but at most 110 percent) of the possible delivery addresses in the ZIP
Code(s) for which they wish to receive updates (USPS 2013b). Vendors can choose to
receive updates on a weekly or bimonthly basis and can also request updates from what the
USPS calls the CDS-No Stat file (USPS 2013a), which contains around 7 million
predominantly rural addresses (Shook-Sa, Currivan, McMichael, & lannacchione, 2013).
Vendors can alternatively maintain a Delivery Sequence File Second Generation (DSF2)
license that does not require the same rigorous standards. The DSF2 license allows vendors
to update their address lists monthly at a lower cost than the CDS. Consequently, less
detailed information is provided, limiting services to checking whether an address is
currently represented in the DSF2 as a known address record and recording vacancy
information. In this paper, residential address lists maintained by commercial vendors
(through updates received from the USPS® CDS or DSF2 license) will be referred to as
commercial lists®.

1.2.2 Coverage of Commercial Lists

Although the correspondence between mailing addresses and housing units is not exactly
one to one, lannacchione (2011) provides evidence that the residential mailing addresses
contained in the CDS and CDS No-Stat files provide nearly complete coverage of the U.S.

household population?. The coverage of commercial lists varies by vendor but is generally

L Also defined as consumer databases in AAPOR (2015).
2 Housing units may contain more than one household. However, calculations of this study will not account for that.



of good quality and good coverage (Dohrmann, Han and Mohadjer 2006, 2007; English,

O'Muirheartaigh, et al. 2009; English, Bilgen and Fiorio 2012).

1.2.3 Use of Commercial Lists in Sampling: Address-Based Sampling
(ABS) Frames

Accordingly, survey research organizations purchase these commercial lists to build
sampling frames for household surveys. Any set of sampling procedures that use
commercial lists as sampling frames for surveys is better known as Address Based
Sampling (ABS; Link, Battaglia, et al. 2008; Roth, Han and Montaquila 2013). A relatively
new method, ABS first emerged as a popular cost and time saving alternative to the manual
field listing of HUs (O'Muircheartaigh, Eckman and Weiss 2003; lannacchione, Staab and
Redden 2003; Dorhmann, Han and Mohadjer 2006) and later as a solution to decreased in
response rates of random digit dialing (RDD) due to the rising cell phone only population
(Link, Battaglia, et al. 2008; Link, Daily, et al. 2009; Brick, Williams and Montaquila
2011).

lannacchione, Staab and Redden (2003) report one of the earliest usages of
address-based sampling: a metropolitan household survey that estimated the impact of a
mass media campaign on the poorest African American adults (aged 18-45) in Houston,
TX. Aware that field enumeration was not an option due to the time and nature of the
campaign, yet needing to conduct the survey fairly quickly, researchers opted to use a
commercial list to develop the sampling frame. Additionally, when using commercial lists
in place of field listing for a heart disease prevention study conducted in Dallas County,
TX, lannacchione, Staab and Redden (2003) cut sampling frame creation costs by an

estimated 90 percent. The ability to uncover and target hard-to-reach subpopulations in



comparably shorter time frames using less resources than in traditional field listings serves
as a classic example highlighting important advantages of ABS.

Address based sampling allows smaller organizations the possibility to conduct
household surveys targeting populations that were previously reserved for National
organizations with large budgets and comprehensive coordination. Today, address-based
sampling is used in a multitude of surveys including National Survey of Family Growth
(NSFG; Lepkowski, Mosher, et al. 2010), General Social Survey (GSS; O'Muircheartaigh,
Eckman and Weiss 2003; O'Muircheartaigh, English, et al. 2009), National Children’s
Study (NCS; English, O'Muirheartaigh, et al. 2009), National Survey on Drug Use and
Health (NSDUH; lannacchione, McMichael, et al. 2012), Health and Retirement Study
(HRS; Valliant, et al. 2014), National Household Education Surveys (NHES; Brick,

Williams and Montaquila 2011), and Nielsen TV Ratings Diary (Link, Daily, et al. 2009).

1.3 Standard Screening Practices

The time and cost savings associated with using commercial lists in place of traditional
field listing for constructing sampling frames are clearly established and well documented
in the past literature, cited above. However, researchers still spend a considerable amount
of resources screening HUs for eligibility for relatively small gains in target sample sizes.
Moreover, screening becomes exceedingly lengthy and costly when studies target hard to
reach subpopulations such as younger age groups or Blacks (Brick, Williams and
Montaquila 2011; Bilgen, English and Fiorio 2012).

Traditional methods used to identify subpopulation members include large-scale
screening and the use of Census block group data to target sample areas (Waksberg,

Judkins, & Massey, 1997). In large-scale screening of HUs, relatively large screening



operations (a large pool of interviewers and a large amount of time) are needed to locate
enough eligible members to generate an adequate domain sample size, adding substantial
costs for conducting the survey (Lepkowski, Davis, et al. 2001; Kalton, Kali and Sigman
2014). Costs often arise from the need to use multiple modes or two-phase designs (e.g.,
mail and phone, mail and face-to-face, mail and mail) during the screening process
(Murphy, Harter and Xia 2010; Brick, Williams and Montaquila 2011).

For decades, the decennial census and, more recently, the American Community
Survey (ACS) have provided high quality information to attach to HU sampling frames.
This includes longitude, latitude, census tract, census block, and area level demographic
information. Vendors use approximate latitude and longitude coordinates from the Census
to geocode addresses in order to assign addresses to the correct Census block, block group
or tract (Dohrmann, et al. 2014; AAPOR Task Force on Address-based Sampling 2016).
This information can be used in multistage sampling to stratify secondary sampling units
(SSUs), which are typically groups of census blocks, by their concentrations of
demographic groups and then sample SSUs at different rates (Waksberg, Judkins, &
Massey, 1997). Within each SSU, HUs are sampled and then screened for eligibility.
Oversampling based on Census tract or block information can provide some help in finding
subpopulations such as race/ethnicity or socioeconomic status that are concentrated in
specific geographic areas. However, this method does not help much in finding groups of
persons that are widely dispersed like teenagers, the elderly, or households with children
(Brick, Williams and Montaquila 2011; English, Li, et al. 2014).

Since traditional screening methods are not always cost-efficient in identifying

eligible HUs, supplemental designs that use more targeted screening at the HU level may



prove useful in these cases. Improved designs are dependent on identifying HUs that are
likely to contain members of the subpopulation prior to the sampling process. In previous
decades, the lack of available information at the HU level made this pre-screening nearly
impossible. However, with the available HU level auxiliary data on commercial lists,
researchers can potentially utilize this information to more efficiently identify eligible HUs

(Chmura & Yancey, 2012).

1.4 Auxiliary Information on Commercial Lists

Commercial vendors often enhance the original CDS/DSF2 data by appending auxiliary
demographic and/or geographic HU information to mailing addresses. This includes the
publicly available census area level information as well as items for individual households
from other sources. According to the Task Force on Address-based Sampling (AAPOR
Task Force on Address-based Sampling, 2016), “[vendors] often amass and compile
personal and household information from thousands of sources”. These proprietary sources
include consumer activity data (e.g., warranty cards and magazine subscriptions) as well
as public records (e.g., phone listings, credit records, property records, and voter-
registration lists) (Smith and Kim 2009; English, Bilgen and Fiorio 2012; AAPOR Task
Force on Address-based Sampling 2016).

In turn, vendors use this information to construct the auxiliary variables that they
include on commercial lists. Usually, auxiliary variables from a certain commercial list
originate from a combination of different sources. Some variables may be directly extracted
from proprietary databases, while other variables are modeled or imputed based on
variable(s) in the proprietary databases (AAPOR Task Force on Address-based Sampling,

2016).



Table 1.1 Example Substrata and Definitions from Valliant, Hubbard, et al. (2014)

MSG Substratum Label Definition
One or more MBB
1 MBB H Hispanic persons in the HU
One or more MBB non-

2 MBB NH Hispanic persons in the HU
One or more EBB Hispanic
3 EBBH persons in the HU
One or more EBB non-
4 EBB NH Hispanic persons in the HU
5 No MBB/EBB No EBB or MBB persons

in the HU (No MBB/EBB)
Unknown whether the HU

6 Unknown contained an EBB or MBB
person based on MSG data.

Alternatively, some vendors, such as MSG, source auxiliary data from other commercial
vendors. The auxiliary information consists of variables at both the household and person
level. HU level data may include landline telephone numbers, geographic coordinates, and
income. Person level data may provide details specific to the head of the household, such
as name, Hispanic surname indicator, marital status, age, sex, race/ethnicity, and email
addresses (Link, Daily, et al. 2009; Valliant, Hubbard, et al. 2014). The vendors considered
in this thesis provide information on up to six persons in a HU.

In an effort to improve the efficiency at which some target domains are sampled,
HUs can be stratified during the third stage of sampling according to the attached
demographic information from MSG. As an example, Valliant, Hubbard, et al. (2014) used
MSG data on two persons in the household as well as the Hispanic ethnicity of at least one
person in the household to classify HUs into one of six MSG substrata used for sampling,
shown in

Table 1.1.



Their application was based on the Health and Retirement Study which recruits
HU s for different age cohorts based on the ages of persons in the household. The first four
substrata contained HUs that MSG expected to be eligible for the Early Baby Boomer
(EBB) or Middle Baby Boomer (MBB) cohorts. The fifth substratum contained HUs that
MSG did not expect to be eligible for the EBB or MBB cohorts. The sixth substratum
contained HUs for which MSG was missing the demographic information to predict
eligibility. Note that HUs in the sixth substratum must be given a positive inclusion
probability since auxiliary data are not missing at random and HUs in that substratum may
actually be eligible for a cohort. The example substrata could be used to oversample
Hispanics in the third stage of selection. Alternative groupings of MSG substrata (e.g.,
income groups, marital status, etc.) can be made depending on the available auxiliary data.
As part of this thesis research, I will consider other types of stratification that would be
appropriate for targeting different demographic groups.

This research focuses particularly on the use of demographic auxiliary variables to
determine eligibility in a subpopulation directly from commercial lists. This approach is
attractive for efficiently controlling sample allocations to subpopulations by means of
reducing and/or eliminating time-consuming, costly screening practices. As noted earlier,
area stratification is not always efficient in identifying eligible HUs. Standard approaches
to screening and locating subpopulation members are time consuming and expensive. In
these cases, supplemental designs that conduct further stratification at the HU level may
prove useful. Despite its potential use, little research has extensively explored utilizing
such data. This is partially due to the large number of HUs with unavailable or inaccurate

auxiliary data, making it difficult for researchers to correctly identify eligible HUs.
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1.4.1 Quality of Auxiliary Information

The utility of auxiliary information will depend on several factors that affect the quality of
the data including the proportion of HUs for which data are available (i.e., availability),
the ability of ancillary data to predict the true characteristics of HUs (i.e., accuracy), and
the vendor chosen to supply the data. The utility will also depend on various characteristics
of the survey itself, such as the variables of interest, the subgroups of interest, and the
variable level of aggregation (household or person-level).
1.4.2 Availability of Auxiliary Information
Availability problems occur when variable information is missing for all or for a portion
of HUs on a list. Vendors collect and compile vast amounts of information that they acquire
from a variety of sources; each source varies in completeness. For this reason, variables on
a single commercial list often differ considerably on their availability. Several studies
support this claim. For example, in two samples taken from commercial lists provided by
MSG, auxiliary data was missing 20 percent to 43 percent of the time (Roth, Han and
Montaquila 2012, 2013) and 5 percent to 27 percent of the time (DiSogra, Dennis, &
Fahimi, 2010) for differing variables. While comparing differences in variable availability
between vendor lists, Buskirk, Malarek and Bareham (2014) found that missing rates
within a single vendors’ commercial list ranged from as little as 26 percent to as much as
96 percent.

The availability of a variable generally depends on its source. It is likely that
vendors have more complete information on variables sourced from quality sources, such
as instances where the data are generally known for each HU (e.g., phone numbers from

public telephone directories) or instances where the data are derived from models that
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include Census/ACS data (e.g., HU income modeled from area level income data). Income
has relatively high availability across samples taken from commercial lists (DiSogra,
Dennis and Fahimi 2010; Roth, Han and Montaquila 2012, 2013; Buskirk, Malarek and
Bareham 2014) while educational attainment and ethnicity have been noted to have
relatively high rates of missingness (DiSogra, Dennis and Fahimi 2010; Roth, Han and
Montaquila 2012, 2013).

Variables also have varying degrees of availability within subgroups. Some
demographic subgroups of HUs have more missing data than others. Such differences in
availability within variables are not ignorable. The missingness of subgroups for specific
variables can give insight to the characteristics of HUs that are likely to be under-
represented with respect to the demographic auxiliary data on commercial lists. This
makes it more difficult for researchers to locate these subgroups using auxiliary data. Past
research has shown that with respect to the general population (not accounting for
inaccuracies in the auxiliary data):

1. HUs with available auxiliary data tend to be composed of older

people. Adults in age groups 55+ and 65+ are usually over-represented

while younger adults 34 and under are usually under-represented (Link and

Burks 2103; Buskirk, Malarek and Bareham 2014).

2. HUs with available auxiliary data are more economically

advantaged, with  homeowners  overrepresented and renters

underrepresented (English, Bilgen and Fiorio 2012; Buskirk, Malarek and

Bareham 2014). For income subgroups, lower income HUs are under-

represented while higher income HUs are over-represented. (English,

12



Bilgen and Fiorio 2012; English, Li, et al. 2014; Pasek, et al. 2014).

3. Auxiliary data are considerably less available in high poverty areas (Pasek,

et al. 2014) and high population density areas (English, Bilgen, & Fiorio,
2012).

These outcomes are expected given that the demographic variables derived from credit
agencies, consumer-spending databases, and warranty information most likely pertain to
older, wealthier persons (English, Li, Mayfield, & Frasier, 2014). However, the research
does not agree across the board for all variables in which subgroups are more likely to be
unavailable. In particular, race/ethnicity subgroups are not consistently available. Link and
Burks (2103) found that Hispanics were under-represented and Blacks over-represented
with respect to their distribution in the population. On the other hand, English, Li, et al.
(2014) found that Hispanics were over-represented compared to the population
distribution. In addition, for commercial lists that based race/ethnicity on surnames, Blacks
were under-represented compared to the population distribution since Blacks generally do
not have distinct surnames (English, Bilgen and Fiorio 2012; English, Li, et al. 2014).

Because the availability of variables depends on sources, which vary from vendor to
vendor, and because much of the auxiliary data are not missing at random, it is important
to account for the difference in availability between subgroups.

1.4.3 Accuracy of Auxiliary Information

Given that auxiliary data are available for a HU, the next concern is whether the
information is accurate. Inaccuracies in auxiliary data can occur from a variety of reasons.
Common sources of inaccuracies include differences in variable definitions between

commercial lists and the comparing data (e.g., Census data, respondent screener data), time
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lapses in when a vendor last updated its database relative to when a researcher collects data
in the field, and simple mismatch errors on part of the vendor (Roth, Han and Montaquila
2012; Buskirk, Malarek and Bareham 2014).

Variables on a single commercial list often differ considerably on their accuracy
rates. Person level variables are more prone to inaccuracies than housing unit level
variables. The reference person identified in the field may not be the same reference person
identified on commercial lists, especially for households with more than two people. Roth
et al. (2012, 2013) evaluated the data quality of demographic variables provided on ABS
frames by matching MSG data to the 2011 National Household Education Surveys (NHES)
Field Test mail screener. They found that HU characteristics from NHES matched those of
the demographic information found on the MSG commercial lists 26 to 75 percent of the
time. When including missingness, education attainment had the lowest accuracy rate and
home tenure had the highest. Even when the variable definition varied from MSG to NHES,
the MSG data correctly identified households with children 41 percent of the time.

Only a few other studies have explored accuracies of commercial lists further. The
results of these studies are limited to the sample from which they were taken (see Table
1.2). DiSogra, Dennis and Fahimi (2010) found that MSG variables correctly predicted
home ownership about 94 percent of the time and household income about 41 to 52 percent
of the time when compared to a self-reported web survey of housing units. In addition,
Chmura and Yancey (2012) found that sample indicators for the age of head of household
< 35 were accurate 79 percent of the time. For race/ethnicity variables, commercial lists
were able to correctly identify Blacks 66 to 85 percent of the time and Hispanics 75 to 88

percent of the time in two separate studies (DiSogra, Dennis and Fahimi 2010; Chumra and
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Yancey 2012). In all studies, accuracy rates were more variable for person level
information like gender and educational attainment than variables that are more likely to
be related to HU characteristics like home ownership and surname (DiSogra, Dennis and
Fahimi 2010; Roth, Han and Montaquila 2012, 2013; Buskirk, Malarek and Bareham
2014).

Table 1.2 Accuracy Rates of Variables by Reference Paper and Type of List

Accuracy
Variable Rate Reference Type of List
(Percent)
Home Tenure 60-70 Buskirk et al. (2014) Multiple general
vendor lists
75 Roth, Han, and Montaquila (2012) MSG
94 DiSogra, Dennis and Fahimi (2010) | MSG
HH Income 41-50 DiSogra, Dennis and Fahimi (2010) | MSG
48 Roth, Han, and Montaquila (2012) MSG
Race/Ethnicity- 66 DiSogra, Dennis and Fahimi (2010) | MSG
Black 85 Chmura and Yancey (2012) General vendor
list
Race/Ethnicity- 64 Roth, Han, and Montaquila (2012) MSG
Hispanic 75 DiSogra, Dennis and Fahimi (2010) | MSG
88 Chmura and Yancey (2012) General vendor
list
Children Present 35-39 English et al. (2014) Targeted Lists
40 Roth, Han, and Montaquila (2012) MSG
No. of Children 13-15 Buskirk et al. (2014) Multiple general
vendor lists
Hispanic Surname 92 Roth, Han, and Montaquila (2012) MSG
Surname Suffix 4-5 Buskirk et al. (2014) Multiple general
vendor lists
Marital Status 20-74 Buskirk et al. (2014) Multiple general
vendor lists
Educational 26 Roth, Han, and Montaquila (2012) MSG
Attainment
HOH Age < 35 79 Chmura and Yancey (2012) General vendor
list
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1.4.4 Vendors Role in Auxiliary Information

Vendors will likely differ in the way variables are updated, captured, defined and coded
(AAPOR 2015) resulting in discrepancies between vendor lists. These discrepancies
between vendors’ lists add to the varying quality of auxiliary data. For example, marital
status may have good accuracy and availability on the vendor list that has a reliable source,
but bad accuracy and availability on the vendor list with no reliable source and had to
impute marital status. In addition, as noted previously, vendors may be not be referring to
the same reference persons for variables that are captured at the person level. For that
reason, HU level characteristics are more consistent across vendors than person level
characterizes.

Buskirk, Malarek and Bareham (2014) compared availability across three vendors
and found that availability varied between 65-80% for vendor lists for certain key variables
(income, age 65+, number of adults, age groups, surname, own/rent and given name). The
worst variation was in marital status, which was available 20% of the time on one list and
74% of the time on another. Still some variables were fairly consistent across vendors
including number of children (13-15%) and surname suffix (4-5%). Although some
variables, such as the number of children in a household, did not suffer from variation
among vendors (15%), the variables did not match the prevalence in the population (20%).
This serves as a reminder that variables that agree across vendor lists may still be highly
inaccurate.

Lastly, English, Li, et al. (2014) found little variation (35-39%) in the accuracy

rates between vendors’ lists when attempting to predict which HUs have small children. A
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possible reason for this level of consistency is that the vendors may be acquiring
information on children from the same propriety source.

1.4.5 Use of Auxiliary Data in Sampling

Auxiliary information can be useful in the screening process even when the list information
is not entirely accurate (Valliant R. , Hubbard, Lee, & Chang, 2014). The three methods
discussed below employ auxiliary information at different stages of the survey design with
the common goal of drawing more efficient samples by reducing screening efforts for target
demographic subgroups.

The first method aims at increasing response rates for hard to reach subgroups by
using demographic data to tailor incentives for target subgroups. Link, Daily, et al. (2009)
first used this technique to reduce the amount of oversample needed to achieve target
sample sizes. As a result, the number of completed Nielson diaries for householder’s aged
18-34 years old was especially high compared to previous years. However, this technique
heavily relies on the cooperation rate of the subgroup. In contrast, the same technique
showed no significant improvement in penetrating Black and Hispanic households (Link,
Daily, et al. 2009; Chmura and Yancey 2012).

The two remaining methods focus on screening HUs at higher eligibility rates than
they occur in the general U.S. population, using targeted lists or HU level stratification.
Targeted lists are vendor originated lists of HUs likely to contain members of specific
demographic subgroups (Bilgen, English and Fiorio 2012; English, Bilgen and Fiorio
2012; English, Li, et al. 2014). These demographic subgroups are often the hardest to reach
populations in address-based sampling (e.g., Blacks, Hispanics, 18-34 year olds, and

children). The targeted lists are expected to contain the requested subpopulation in higher
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concentrations compared to the general population and therefore are ideal lists to use as an
enhancement to ABS frames.

Alternatively, researchers can stratify HUs by subgroups formed with auxiliary
demographic information (Roth, Han and Montaquila 2013; English, Li, et al. 2014;
Valliant, Hubbard, et al. 2014). For example, consider a multistage ABS design, where the
HUs are the third stage sampling units. The race/ethnicity variable from the auxiliary data
can be used to assign the HUs to one of five strata: Non-Hispanic Black, Hispanic, White,
Other, or Unknown. The target race/ethnicity group is then oversampled from the
respective stratum under the assumption that the stratum contains higher concentrations of
the targeted subgroup. Note that because auxiliary data are not missing at random nor is it
inaccurate at random, the mentioned methods must allow HUs in the unknown stratum as
well as HUs not on the targeted lists to have a positive probability of inclusion.

Valliant, Hubbard, et al. (2014) demonstrated that stratifying using error-prone
auxiliary data improved the efficiency of locating members of some subgroups but not all.
For some subgroups where the distribution in the HU level strata or on targeted lists is not
higher than in the general population, the above methods may not prove more useful than
randomly sampling from the general population. This is especially true for those subgroups
that are underrepresented in the auxiliary data or where the data are highly inaccurate.
Furthermore, there is some evidence that representation of subgroups is not only reliant on
the subgroup of interest but also on the sourced commercial list. Some commercial lists
may be better at targeting Blacks (Link & Burks, 2103), while other commercial lists better

at targeting Hispanics (English, Li, et al. 2014; Valliant, Hubbard, et al. 2014).
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2 Derivation and Results of a Theoretical Three-Stage Variance Formula
with Strata of SSUs and Substrata of HUs

Chapter 2 covers the theory for estimators of totals in three-stage samples, including point
estimators and their design-based variances. Sections 2.1 and 2.2 introduce the approach
and notation. Sections 2.3 and 2.4 consider an estimator of a population total and its
variance. The variance is broken into components associated with each stage of sampling.
Analysis of variance estimators of the components are derived along with anticipated

variances that use a random effects model.

2.1 Introduction

In determining how to allocate two- and three-stage samples, the contributions of each
stage of sampling to the variance of an estimator must be accounted for (Valliant, Dever,
& Kreuter, 2013). The following chapter details the derivation and results for variance
component formulas, for estimators of totals that account for strata of SSUs and substrata
of HUs. In Sections 2.2 and 2.3 , we set up the general three-stage sample design, which
will serve as the framework for the design specific to the Health and Retirement Study
(HRS) data that will be used for empirical illustration. The two-stage sample design is
covered inherently. Much of the derivation work for the variance formulas can be found in
Appendix A.1. In Section 2.4 , 1 present direct estimates of the variance components, as
well as plug-in estimators for the measures of homogeneity, with the use of ANOVA
estimators, and anticipated variances using a random effect model as an alternative

variance component estimator.
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2.2 Summary of Notation

In household surveys, it is common to select PSUs, SSUs within PSUs, and households
within SSUs. Consider a three-stage sample design in which the first-stage units are
selected with probability proportional to size with replacement, i.e., ppswr, second-stage
units are stratified within each PSU and selected with ppswr, and third-stage units are
stratified within each SSU and selected using srswor. Although sampling without
replacement is more common in practice, the variance component formulas for with-
replacement sampling are more useful when determining how to allocate a sample. In this
scenario, there are three variance components that need to be considered to allocate a
sample among the different stages of sampling. To specify this situation the following

notation is needed.

2.2.1 Sample Design

i : PSU index

a SSU stratum index

-] SSU index

b HU substratum index
k HU index
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2.2.2 Population Values

Set of all PSUs in the universe

Set of all SSUs in PSU i, SSU stratum a in the universe

Set of all HUs in PSU i, SSU stratum a, SSU j, HU substratum b

in the universe

Set of all HUs in PSU i, SSU stratum a, SSU |, across all HU substrata
in the universe

Number of PSUs in the population

Number of SSU strata in each PSU i

Number of SSUs in the population for PSU i, SSU stratum a
Number of HU substrata in each PSU 1,SSU |

Number of HUs in the population

Number of HUs in the population for PSU i

Number of HUs in the population for PSU i, SSU stratum a

Number of HUs in the population for PSU i, SSU stratum a, SSU j
Number of HUs in the population for PSU i, SSU stratum a, SSU j,
HU substratum b

Number of HUs in the population for SSU stratum a across all PSUs
Number of HUs in the population for SSU stratum a, HU substratum b
across all PSUs

Population total of an analysis variable for PSU i

Population total of an analysis variable for PSU i, SSU stratum a

Population total of an analysis variable for PSU i, SSU stratum a, SSU j
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2.2.3 Sample Values

S
S1,9R

Giajb
Pi
Pjlia
7kjiajb

Set of sample PSUs

Set of sample Self-Representing (SR) PSUs

Set of sample Non-Self-Representing (NSR) PSUs

Set of sample SSUs in PSU i, SSU stratum a

Set of all sample SSUs across all PSUs; s, = {S;,; i €5,a=1,..., A}

Set of sample HUs in PSU i, SSU stratum a, SSU j

Set of sample HUs in PSU i, SSU stratum a, SSU j, HU substratum b

Number of sample PSUs

Number of sample SSUs selected from PSU i, SSU stratum a

Number of sample HUs selected from PSU i, SSU stratum a, SSU j, HU substratum b
Single draw probability of PSU i

Single draw probability of SSU j within PSU i, SSU stratum a

Probability of selection of HU k within PSU i, SSU stratum a, SSU j, HU substratum b

2.3 Three Stage Sample Design

2.3.1 PWR Estimators

2.3.1.1 General Design

Using the notation above, consider the following three-stage design in which m PSUs are

selected with probability proportional to size with replacement (ppswr), the SSUs are

stratified within each PSU and n;, are selected with ppswr within PSU i, SSU stratum a,

and the HUs are stratified within each SSU and g, are selected with simple random

sampling without replacement (srswor) within PSU i, SSU j in SSU stratum a, and HU

substratum b. We assume that the sampling fraction in the third stage is negligible.

Shorthand for this three-stage design is ppswr/ppswr/srswor. Although most samples are

selected without replacement, modeling the sample selection as being done with-

replacement is a practical workaround. The with-replacement formulation avoids complex
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design-based variance formulas that involve joint selection probabilities and is not useful
for determining sample allocations. The ppswr variance formulas are simpler and contain
sample sizes in a direct way that facilitate theoretical variance calculations.

Let y, be the value of an analysis variable associated with HU k. Then the p-

expanded with replacement (pwr; Sarndal, Swensson and Wretman 1992) estimate of the

A B
population total, ty = > > > > >y, of ananalysis variable Y is:
iEU a=1 jEUia b=1 kEU iajb

_ivl
Eowr = Egs:l?l (1.1)
where
~ A ~
tUi - ztuia (1.2)
a=1

is the estimated total for PSU i,

ty.
o X2 13

Nia jesia Pjlia
is the estimated total for SSU stratum a, in PSU i from a ppswr sample of SSUs, and

B O .
U, Sy S 5 (1.4)

b:]. qlajb kesiajb

is the estimated total for SSU j, in PSU i, SSU stratum a across all HU strata from a simple

random sample of Gy, HUs in HU stratum b. In cases where population values are
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unknown, Qiajb will need to be estimated from a sample. Alternatively, we can write

Equation (1.1) in terms of w, = (mpinia pj|ia”k|iajb)_l’ the overall weight for HU k, such that

A B
towr =222 20 2 2. WYk (1.5)

iESl a=1 jESia b=1 kesiajb
Note that w, is not the inverse of the selection probability of HU k since the first two

stages of sampling are treated as with-replacement.

The pwr estimator, fpwr , IS a design-unbiased estimator of the population total of

y’s under the ppswr/ppswr/srswor design. The overall weight for HU k is the product of
individual weights at each stage: PSU, SSU segments stratified by SSU level strata,

households stratified by HU level strata.

2.3.1.2 Non Self-Representing (NSR) PSUs

In the actual HRS sampling design (and many other household survey designs), PSUs are
stratified into PSU strata before selection. Self-representing PSUs each constitute a stratum
and are selected with certainty (i.e., one draw probability = 1). Non-self-representing PSUs
are selected with ppswr in their respective strata. Because the HRS data contains both SR

and NSR PSUs, the pwr estimator must be estimated by two separate parts. Below we

formulate fpwr for both SR and NSR PSUs. To formulate the pwr estimator for SR PSUs,

we recognize that SR PSUs are essentially strata where a stratified 2 stage sample of SSUs
and HUs is selected. In practice, the NSR PSUs are stratified then picked with ppswor
inside each stratum. We use the same practical work-around as above and treat the NSR
PSUs as being selected with replacement, i.e., ppswr. We make an adjustment to the

stratified one-draw probability and treat the HRS NSR PSU sample as unstratified. Let
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mysg denote the number of NSR PSUs. Thus, the pwr estimate of the population total,

t,, of an analysis variable Y is:

prr :fpwr,SR +fpwr,NSR (1.6)
with
A B
N 1 1 Q ib
twrsr= 2, 2= >, — =2 W .7
iesy s a=1 Nia j€sia Pjlia b=1 Yiajb KeSiajp
and
o 1 14 1 1 8 Quip
towr,NSR = —_)y — 13 z Vi (1.8)

MNSR s, o Pi a1 Mia jes;, Pilia b=1 Yiab kesy,

where p; = py; % is the adjusted one-draw probability for PSU i assuming an unstratified
sample of NSR PSUs was selected. The logic behind this adjustment is explained below.

The HRS data file only contains the stratified one-draw probabilities for NSR
PSUs, i.e.,

Qni  no. of HUs in PSU stratum h, PSU i

Phi = Qy " no. of HUs in PSU stratum h

= probability PSU i is chosen from PSU stratum h

However, fpwr , requires one-draw PSU probabilities, the probability PSU is chosen from

the universe of all NSR PSUs, i.e., Qi /Q . The following adjustment was made to convert

the available HRS stratified probabilities, py; , to the one draw probabilities, p; =Qpi/Q,
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assuming that the HRS PSUs were allocated to the NSR strata in proportion to the

population number of HUs in each stratum.

_Qni On_Qni On . Qn
- = = Phi

(1.9)
Q Q& Q& Q Q

Pi

where Q;, and Q are estimated by

Gh=22 2 > > WonsR (1.10)

iESh a jeshia b keshiajb
. -1 . .
with Wy Nsr = (mNSR PiNia pj|ia7fk|iajb) is the overall sample weight of a HU assuming a

stratified selection of PSUs, and Q = Zhéh . Also, s;, denotes the set of sample PSUs in

PSU stratum h, s;j; denotes the set of sample SSUs in PSU stratum h, PSU i, SSU stratum

a, Spiajp denotes the set of sample HUs in PSU stratum h, PSU i, SSU stratum a, SSU j,
HU substratum b . Note that in the 2010-11 HRS design each sy, has only 1 sample PSU.

2.3.2 Components of Variance

As shown in Appendix A.1, the design relvariance of fpwr is obtained by extending

results in (Hansen, Hurwitz, & Madow, 1953) and is

2
SU 1(pwr)
m

2
- % +£ziZA:SU2(pwr)ia
Y 5| Mo Piar Ma

1o 1A 1 1 &8 S35 siaj
D I D M Je e

Mico Pi a1 Ma jeu,, Pilia b= Giajb

(1.11)

[EN

=>{Vpsy + Vssu + Vhu |

()

26



where Vpg , Vssy » and Vi are defined by the last equality,

2
SG1( pur) = Zp,{——tuj (1.12)

icU
is the population (unit) variance between PSU totals appropriate to the ppswr PSU
sample,

2
SU2 (pwr)i z pj||a[ Pilia _tUia] (1.13)
J

jeVia
is the unit variance among SSU totals in SSU stratum a, PSU i, appropriate to the ppswr
SSU sample design,

2 1
S 3iajp =

> (Ve Yo )2 (1.14)

Qiajp ~1 0y,
is the unit variance among HUs, in HU substratum b, SSU j, SSU stratum a, PSU i, with

inajb = zkeuiajb Yk /Qiajb . We use the terms substrata or substratum to refer to the HU

substrata and the terms strata or stratum when referring to the SSU strata for simplicity.
We also assume that every SSU stratum a occurs in every PSU i and that every HU
substratum b occurs in every SSU j. In practice, this will not always be true in which case
some terms in subsequent formulas will drop out.

In order to write Equation (1.11) in a more useful form for sample calculation,
assume that the same number of SSUs is selected from SSU stratum a across each PSU,

that is, nj; =N, , and that the same number of HUs is selected from substratum b within

stratum a, for every PSU/SSU ij combination that is, djajn = T.p - Define
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LYY Y v

ieU jEUia b=1 kEUiajb

and tUabzz > % (1.15)

iEU jEUia kEUiajb
As shown in Appendix A.2, the relvariance then can be rewritten as a sum of three

components,

V(fpwr):i ZA: W2a +ZZK2 W3ab (1.16)
tl% m a= mn, a a=lb=1 mnaqab

where K, Ztua/tu , Kap Ztuab/tu :

2
B2 _ SUl( pwr)

t5

U 2( : i , :
W2 = - Z%r) is the contribution to the unit relvariance due to the
tU icU !

second stage SSUs within SSU stratum a, and

52
Q2
W2, = Z > QajoSU siajo is the contribution to the relvariance due to
5 o icu Pijeo,  Pilia

the third stage HUs within SSU stratum a, HU substrata b.
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2.3.3 Measures of Homogeneity

Define,

202
1 =S 3 . . .

w2 ZTZM’ a weighted unit relvariance among HUs across all PSUs and
Giw Pi

1 B

A
SSUs ignoring the a and b strata; Sﬁ 3 =—— z Z

2
(yk - VUi ) , the element
Q133 0, b=1keUy,

A B
level variance among all elements in PSU i; ¥ = I Yk
a=1 jEUia b=1 keUiajb I

2 o2
2.g2 .
W2, = zi > L > QiajS03iaj , a weighted unit relvariance among HUs in SSU
1§, i Pijeo,, Pifia

stratum a, across all PSUs, ignoring SSU membership and the b strata;

ZB: Z (Yk —Vuiaj )2 z (yk _inaj )2

SS 3 o b:]'keuiajb . kEUiaj i _U _ yk
la] — = ; = R
Qiaj —1 Qigj —1 ¥ bk, Qa

As show in Appendix A.2, the relvariance in (1.16) can also be written in terms of

two measures of homogeneity:

V(fowr) v Ay A B W2
pwr 2 Va 2 Waap
:—k151+z Ka — k2a52a +zz KabT (117)
tﬁ a:]. mna a:lb:l mnaqab
where
- 101 A B 2 . : .
V="o3 3 20 > (yx—Yu )~ is the unit relvariance of y in the
o Q-1ig a=1 jeU;, b=1keU 4,

A B
population across all PSUs, SSUs, a strata, and b strata, ¥, = Z Z z Z z Y
ieU a=1 jeU;, b=1keUiajb
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2
(yk - yua) is the unit relvariance of y among

a_zZZZZ

YU, ieU jeUj, b=lkeU;y, Qa -1

elements (HUs) in SSU stratum a across all PSUs in the population and all b strata

with, i, =Y Y i 3 L

ieU jeUia b:]. keuiajb

Then the measures of homogeneity are defined as

B2 B2 +W?2
e AL S
BS+W \

2 2
5o = W2a K _ W3a +W3s
2a 2 2 ! 2a \7
Woa +Ws3y a

(1.18)
where B2, sza, W32ab, K4, and K, are defined above in Section 2.3.2 and w2 and W32a

are previously defined above in this section.
Also shown in Appendix A.2, when there are no b strata, the relvariance in Eq.

(1.16) deduces to

Vfwr \7 + O
o) 3o S 2 [1em@y]) a0

-V N q
where
A
n, = Z N, is the number of sample SSUs allocated and
a=1

A
q, z M0, Z n, is the mean number of sample elements (HUs) per SSU across all
a=1

SSU strata.
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In the special case of no a nor b strata, we have ny =n, =n,

and V, =V . The relvariance then reduces to

V(Eg) v o _
(tg ):m\éa{klalnq+k2[1+52(q_1)]} (1.20)

matching equation (9.21) in Valliant, et. al. (2013). The relvariances written as above in
Egs. (1.17), (1.19), and (1.20) are useful for the sample allocation problem since they
include design-effect-like terms. Note that, as in earlier sections, the entire notation above

is for a linear estimator of a total that is a weighted summation of y’s.

2.3.4 Non Self-Representing (NSR) and Self-Representing (SR) PSUs
Because the HRS data used in this analysis contains both SR and NSR PSUs, the

relvariance components must be estimated separately.

The relvariance of the pwr estimator, f,,, is:

V(Azpwr) _ FszR V(fp;vr,SR) + I:stR V(fp;vr,NSR) (1.21)
Ly IS tNsR

where

ty =tsg +tysr (the population total of y broken into totals for the SR and NSR parts of

tsR INSR :
the frame), Fgp :H, and Fysg :T:1_ Fgr. Part of the general allocation

problem would be determining the definition and number of self-representing PSUs. In this

thesis, we assume that the split between SR and NSR PSUs is predetermined. Thus, Fsg

and Fyggr are treated as constants.
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Non Self-Representing (NSR) PSUs
The relvariance formula for NSR PSUs will be the exact form of Eqg. (1.17) with

m = no. of sample NSR PSUs and p; = adjusted one draw probability defined earlier. The

sample sizes of SSUs and HUs are within NSR PSUs only; to avoid notational clutter, we
do not add NSR subscripts to the sample sizes and variance components. The calculations
and universe U are restricted to the universe of NSR PSUs. Thus, we have

V(four B2 A ,wh AE , wi
M:_ Z k2 Woa ZZKgb_S—ib (1.22)

tNSR m a= mna a=1b=1 MNaQap

where K, =ty_ /tnsr, Kap =ty /tnsr - and ty_ ty  are defined similarly to those in Eq.

(1.15) but use terms specific to the NSR PSUs. B?, sza, and W32ab are defined in Section

2.3.2. The relvariance in (1.22) can also be written in terms of two measures of

homogeneity:

V(t 2
M:_klglJrsz Va k2a52a+22|<2 W3_a_b (1.23)
tAsr m a-1 Ny asib=1  MNalap

In the case where there are no b strata, this relvariance can be written as

V(fpwr,NSR) v
mn, 3,

2
tNsR

v,
k151n+q+ + Z Kg =
a=1

=] | S|
+

_Q|||_Q||

o |F

kaa | 1+ 524 (Ta —1)]} (1.24)

<

a

where V , V., ki, 3}, Ko, , and &5, are defined similarly to those in Section 2.3.3 but

use terms specific to the NSR PSUs.

Self-Representing (SR) PSUs
In this section, we use some of the same formulas in Section 2.3.2 and Section

2.3.3, but we restrict the calculations to the set of SR PSUs. As for the variance formula
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for the NSR PSUs, SR subscripts are not added below to simplify the notation. Restrict U
(and all alike indices) to the set of all SR PSUs. Here we treat each SR PSUs as a stratum
and define:

N, = average number of sample SSUs selected from SSU stratum a, across all SR

PSUs

Oap = average number of sample HUs selected from SSU stratum a, HU

substratum b across all SR PSUs

Qiaj =total number of HUs in SR PSU i, SSU stratum a, SSU j, HU substratum b

in the population

Qiaj = total number of HUs in SR PSU i, SSU stratum &, SSU j across all HU

substratum b in the population

Q, =total number of SR PSUs in SSU stratum a in the population

Then the relvariance formula corresponding to Equation (1.16) for SR PSUs is

V(tpwr SR) 2W2 A B 2 W.2
KZ—22 K5 —2b (1.25)
tSR Z Na az‘llbz‘i 2 ﬁaqab

where Ky =ty_/tsr, Kap =ty,, /tsr . and ty_ty , are defined similarly to those in Eq.

(1.15) but use terms specific to the SR PSUs. Also,

2
Woa = Z SUZ (pwr)ia and

a 1€Ugg

W32ab—_ Z Z QlanSU3|ajb

y 5 iU jU,, Pl

where SS 2 and Sﬁ 3iajb are defined as in Section 2.3.2.

pwr )ia
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The relvariance in (1.25) can also be written in terms of two measures of homogeneity:

v(f
(Epur. SR) Z K2V —k2a52a + Z Z K2 YVS_ab (1.26)
tSR a=1b=1 N30ap

with

(Yk -W )2 , and

YUa ieUgr jeUi, b=1keU y,
2 QlajSU 3|aj
Wia==- 2. 2
tlJa IGUSR JGUIa p.llla

The measures of homogeneity for SR PSUs are defined as

2
W2a +WSa and Sy, = Woa

K, .
A WS, + W

When there are no b strata for HUs, the relvariance in Equation (1.25) can also be written

in terms of a single measure of homogeneity

V(fpwrSR) A 2 V. =
— =Y KE =2 Kog |1+ 55, (T, -1 1.27
P

Note that the summations above are restricted to the SR PSUs.
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2.4 Estimating Variance Components and Measures of Homogeneity

In this section, we present direct estimates of the variance components in Eq.(1.16), Eq.
(1.22), and Eq. (1.25), as well as plug-in estimators for the measures of homogeneity in
Eq. (1.17) which can be made from the sample. Two alternative estimation methods will

be studied: (1) design-based ANOVA and (2) anticipated variance (model + design).

2.4.1 Design-based ANOVA Variance Component Estimation

2.4.1.1 General Case

The following design-based variance component estimators are extensions of ones in
Hansen et al (1953) for the case of ppswr/ppswr/srswor. These are generally referred to as
ANOVA estimators because of their similarity to standard analysis of variance estimators.
In this general case, we cover a design in which PSUs are not divided into SRs and NSRs.
Subsequent to the general case, we discuss a design like the HRS which has SR and NSR

PSUs.

First define,

zkes- Yk

V. =——2__ the sample mean of HUs in HU substratum b | iaj

‘aj Giajb

fiajb = Qiajbysiajb , the estimated total for HU substratum b |iaj ; Qiajb = z Wiiiajb

keSiajb

estimated number of HUs in HU substratum b |iaj in the population;

Wk|iajb = L , the Welght for HU k | |ajb
Tkiajb

A

fiaj = 2 fiajp » the estimated total for SSU j|ia

35



o 1 fiaj

Gia (pwr) = , the estimated total for SSU stratum a|i

Mia jes. Pjlia
ti(pwr) = 24 tia (pwr) the estimated total for PSU i
A 1 o fia (pwr) .
ta (pwr) = — > ———, the estimated total for SSU stratum a, across all PSUs,

m; Pi

ies;

- 1 tAiajb . .
Giab (pwr) = —— , the estimated total for HU substratum b |ia across all SSUs

A

- 1 tiab( pwr) .
tab (pwr) = — D ———— the estimated total for SSU stratum a, HU substratum b, across

ies; Pi

all PSUs

Q=2 2

b kesyy, 2 Pilia 7kliajb

1

, the estimated number of HUs in SSU j|ia

! , the estimated number of HUs in SSU stratum ali

Qiaz Z

jesia MaPjlia b kes,, “kliajb

, the estimated number of HUs in SSU stratum a

Qa=Z : Z .

ics; MPi jes, MiaPjlia b kesgy, 7Kliaib

across all PSUs

0=y -3 %

ies; MPi "2 jes;, MiaPjlia b kesyg, kliajb

! , the estimated number of HUs across all PSUs

1

2
—— z (yk —Vsiajb) , the sample variance among HUs in HU substratum
Iajb kesiajb

Y
S3iajp =

bliaj
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A Qlajb

Vaiajp = 83,an the estimated variance of the estimated total fj;, for HU substratum

iajb
bliaj assuming that the sampling fraction Gjsjp, /Qjajp N iajb is small; Qiajb and
Uiajp are based on all sample HUs while S}?iajb is based on HUs with nonmissing

data.

A A Qla b
_ _ j
Vaiaj = D Vaiajp = ), ——
b b Hiajb

83,an the estimated variance of the estimated total for SSU

jlia in a stratified srswor with a negligible sampling fraction in each HU stratum

. 2

2 1 t- i ~ A -
$2ia = —— [ I? ~lig( pwr)] , the sample variance among estimated SSU totals

ia 71 jes, \ Pjlia

in SSU strata a| i

l \i3iaj
SZBIa Z

ia J€sia p]lla

22 22 22
S2( pwr)ia ~ S2aia ~ S2gia

. 2
. § .
S]% pwr)a = ml—l > [ d ':W) —tper , the sample variance among estimated PSU totals
ies; I

1 $2

S _ = z z 2Aia
pwr)B
A Mics, pl Nia

22 22 22
Sl( pwr) — Sl( pwr)a — Sl( pwr)B

where S]% pwr) estimates Sﬁl(pwr), §22( pwr )ia estimates SS 2(pwr)ia » and §32iajb estimates

2
SU 3iajb-
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Then the estimators of Vpg, , Vsgy » and Vi in Eq. (1.11) are

§2
1 pwr)
Vpsy = m
Vssu =
jes, (M ') a e
Vpy = 22V3Iajb
IeS_l( p|) a jesj (lapj|la) b

(1.28)

and the relvariance of the pwr estimator is estimated by

v(t 1
(A pwr) = (Vpsu +Vssu *+Vhu ) -

tpr pwr

Now assuming that for each PSU i, n;; =n,,and for every PSU/SSU ij combination

Giajb = Tap» the estimated ANOVA relvariance of £ pwr Can be written as

B 2
2 Waap (1.29)

=t (pwr)/tpwrv Kab :tab(pwr)/tpwr '

where K
22
g2 _ Dilpw)
f2
pwr

ta(pwr) ies; mp;
02 1 1 A2 @2
Wsab = Z 5 D, 5— QiajbS3iajb
ab(pwr) (ies, mp, jes;, MiaPjjia
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The above estimators B2, V\722a, and V\7élb estimate the corresponding components BZ,
W2, and W2, of Eq. (1.16). (Note that the estimator W2, applies whether or not

N, =N,. We also note that B2 and V\722a can be negative because of the subtraction term

that occurs in the sample variances. However, using anticipated variances may help correct
this problem.) Using plug-in estimators for the measures of homogeneity in Eq. (1.17), the

relvariance is estimated by

v(f ) Voo AV . AB 2
pwr 2 Va 2 Wagp
=—kop+ D KE —2-Kpadpa + 2, DK at (1.30)
~0 1¢1 a__— "2a%a ab =
Uowr m a1 My a=1b=1 MN5Qap

The plug-in estimators of the measures of homogeneity of Eq. (1.18) are

B? ~ BZ4W?
TR2 .02 Kk z
B +W vV
S V\722&1 0 V\722a +V\732a
528. == ~ ) kZa = =
V.2 2 2
2a 3a a
(1.31)
where
-1
2 1 < QPSE 2 L2
W 12 Z mp? S5 = Z.Zzzwkli Z_ZZZWkH(Yk—Yi) ,
pwr ies, i a jesi b Kkesiy, a jes, b Kesy,
Z Z Z Z Wi Yk
2 a jesiy b kesiy, 1 1
Yi = , Wi =

B z z z z Wi Nia Pjjia Zkliajb

a jesi b kesy,
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y 2 1 1 1 A0 A2
Wia == 25 2 2 Qiajs3iaj}'

ta(pwr) lies, MPi jes, Nia Pjjia

o 2 2 2. Widiajb Yk
R ~ . LY b k iaj

b kesigp b KkeSigjp >, 2
iajb
-1
ot A ) A |
V- ZIET T wet] SETT T [z i
ies; a jeSip b keSigp ies; a jesj, b kesg

PIDIDIDNDIN N

~ |€Sl a jESia b kesiajb

TSYSY Y w

iGSl a jGSia b kesiajb

, q is the total number of HUs in the sample, and

1

V- %y y v Wk_l_ YY Y {Wk(yk—?sa)z/?sza}with

Ja -1 i€S; jeSia KeSig; i€s; jesig KeSiy;

2D D Wik

a2 i€s; jesia KeSjy

S YD Y™

i€s; jesia kesiaj

,and g, is the total number of HUs in SSU stratum a in the

sample.
When there are no b strata and using plug-in estimators for the measures of

homogeneity in Eq. (1.19), the relvariance is estimated by

v(t V lan = A V. 0T - .

where
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A
M, = Y M, is the number of sample SSUs allocated and

a=1
A A
Q. = z ﬁa‘a/z N, is the mean number of sample elements (HUs) per SSU across all
a=1 a=1
SSU strata.

Estimation when there are no a or b strata is also a special case of Eq. (1.30) and is

not shown here.

2.4.1.2 Handling Non Self-Representing (NSR) PSUs in the HRS Design
The estimator of the relvariance in Equation (1.29) can be written as a function of the self-

representing and non self-representing PSUs:

V(fpwr) . |£2 V(fpwr,SR)
2 2
pwr

(1.33)

pwr

. 2 - 2
R t R t .
where F& =[ F%Wr’SR} and Fsg = [—p‘gr’NSRJ =1-F& .
The design-based variance components formulas for NSR PSUs will be the exact
form of Egs. (1.29)-(1.32). The only distinction is that the sample is now restricted to the
sample of NSR PSUs and their SSUs and HUs that are within NSR PSUs only, such that

m, i, Jap, and p; are now specific to the NSR PSUs.

Assuming that for each PSU i, n;; =Ny and for every PSU/SSU ij combination,

Giajb = Tap » the estimated ANOVA relvariance of Eowr,nsr 1N EQ. (1.16) can be written as:

V(itowrnsr) B2 AL W2 . AB g2
—(Azpwr' )=—+ZK§ 22 4 R4S 3 (1.34)
towr NSR m o My az1b—1 MNaJap
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~ ~

where K, t(pwr)/tpwr,NSRv Kab =1a (pwr)/tpwr,NSR’ and ta(pwr)’ tab(pwr)are

defined similarly to those in Section 2.4.1.1 but use terms specific to the NSR PSUs. B2,

W2, and W, are defined similarly to those in Eq. (1.29) but use terms specific to the

NSR PSUs. NSR subscripts could be used on B2 and other terms, but we omit those to
simply the notation.
Using plug-in estimators for the measures of homogeneity in Eq. (1.17), the

relvariance is estimated by

V(fpwr,NSR)

towr,NSR

3 |<z>

k;6 5 v Waah 1.35
1+Z 2a+ZZ (1.35)

aLbmt MMaTap

where V : \7a, ki, 81, koq, @nd &, are defined similarly to those in Section 2.4.1.1 but

use terms specific to the NSR PSUs.

2.4.1.3 Handling Self-Representing (SR) PSUs in the HRS Design

In this section, we again use some of the same formulas in Section 2.3.2 -2.3.3 but we
restrict the calculations to the set of SR PSUs. As in the previous section, we omit SR
subscripts to simply the notation.

Assuming that for each SR PSU i, n;; = Ngzand for every PSU/SSU ij combination,

Giajb = Jap » the estimated ANOVA relvariance of fpwr,SR in Eq. (1.16) can be written as:

v(f A 72 A B 02
pwr,SR V) o W
—(Az ) Y RIS K, b (1.36)
towr SR a=l a ap1 Nalab
where K, =, (pwr)/prF,SR , Kap =1, (pwr)/fpwr‘SR ,and €y (pwr)» Tap (pwr) are defined

similarly to those in Section 2.4.1.1 but use terms specific to the SR PSUs. Also,
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W2a z S2 (pwr)ia and W3ab - Z Z QlanS3|ajb
(pwr) i€s) sr tab(pwr) ies, gr Jesia Mia pJ||a

where §22( S5ajb are defined as in Section 2.4.1. Note that the SR PSUs are treated

pwr)ia
as strata in the formulas for V\722a and V\732ab so that a PSU weight is not included. Using

plug-in estimators for the measures of homogeneity in Eq. (1.17), the relvariance is

estimated by

f A\ W2
M -3 RV 5, 3 3 R, Weah (137)
tpwr SR a=1 Na a=1b=1 Nalab
And the plug-in estimators of the measures of homogeneity are
A W2 . WA W2
O2q = # . koa = M (1.38)
W2a W3a a
W2, = Y Y ——Q%S%aj - Shaj defined as in Section 2.4.1.
£2

a(pwr) |ies sr jesia Mia JIIa

-1 , Z Z Wkliajb Yk

R ~ 2 b kesj,
S??Iaj = Z Z Wiiiajb Z Z Wk|iajb(yk_y5iaj) ! ysiaj Zeszjb Wk||ajb and

b Kkes; b KeSiajp
b kes;

iajb
iajb

= Z PR VES DI {Wk(yk—)ilsa)z/f/sza} using terms

qa IE51 SR 1€Sia keslaj ieS1,SR j€sia I(Esiaj

specific to the SR PSUs.
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2.4.2 Anticipated Variances

In this section, we discuss the super population model used for the HRS data and the

computation of anticipated variances.

2.4.2.1 Superpopulation Model
Another way to circumvent the potential negative B2 and \/\73261b terms from the estimators

of design-based variances is to use the anticipated variance, i.e., the variance expected or
anticipated under a certain model. If the model holds for the population and a sample is
selected from it, existing non-survey software can be used to estimate model variance
components to help stabilize the estimates. Being able to make use of available variance
estimation software is desirable for the ease of estimation. The anticipated variance (lsaki

& Fuller, 1982) is defined as
A - 2 . 2
AV (tpwr): Em {E{(tpwr —1y ) }}_{EM {E(tpwr —ly )} }
where £, is an unbiased pwr estimator of the population total t .

Consider a model for y, with common mean, x, and random effects for PSUs,

i, SSUS, 7iqj, and HUs in SSU/HU substratum ab, &,y :
Yk = M+ + Vigj * Eiajbk (1.39)
with ¢; ~ (0, 03,), Yiaj ~ (0, aﬁ), Eiajbk ~ (0, agab) and the errors being

independent, such that

VarM(yk):a§+af+a§ab and Ey (yk)=x for keUiyp-
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The model in Eqg. (1.39) seeks to estimate the variance between HUs based on
SSU stratum/HU substratum ab. There are other mixed models to consider. Still keeping
PSUs, SSUs, and HUs as random effects, we could experiment with which fixed effects
(SSU strata, HU substrata) may fit the model better. It is possible to use only the SSU strata
or only the HU substrata to model the residuals. We will show in Section 3, the model with
both ab strata fits the HRS data better than the model with only a or b strata 60 percent of
the time. Hence, we use the model shown in Eq. (1.39) to get variance component
estimates.

For other datasets different mixed models may be more appropriate. For example,
demographic factors (HH composition—married, single, education level of persons in the
HH, and so on) may be predictive of y’s collected in a housechold survey. However, these
may not be available in advance to use for sample design. Consequently, aggregate-level
covariates for PSUs and SSUs are likely to be the most practical to use when designing a

survey.

2.4.2.2 Model Expectations of Design-Based Variance Components

The model expectation of the design-based variance can be computed under the above
model, but for the sample allocation we only need the approximate expectations of B2,

W2, , W2, . Assume that there are a large number of SSUs, N;,, in every PSU/SSU stratum
ia combination so that, Nj; = N;; —1. Then the model expectations of B2, W22a, W32ab,

W2, and W32a from Egs. (1.16) and (1.18) can be found as follows (see Appendices A.4.5

- A.4.9 for derivation):
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2
VQ(

Em (tﬁ Bz)iaoleZQZ —pvzw) +1 +U§Zi_
M icu Pi

A B

a=1b=1

Ey (tﬁawzza) -y 1 (,Uz +0} )Qiivéia(

icU Pi

+ZB: agzab [ >

b:]. jEUia

2 2R~2,,2
+Z Za‘gabQia'b}+ﬂ Q VQ(pwr)

pwr)

Qiajb

_Qi o
Pjlia ab”

1 1
Em (taabWSZab): > =2 —O'gabQi%\jb

icu Pi jeu,, Pjlia

2N2 A2
+0, NjaQia

2

VQia( pwr)

2
Nia

A
> NiaQf (V(%ia +1)

2

Vo.
_Qa g

Nia

A _ o) B _
Ev (15w?)= Y AN, {a;oi{ -2, +1)}+za§abqa.b}
i b=1

icu Piaz

MAAR yiy Qi

icu Pi jeu;, Pilia

5 5
2%, Qiajp

b=1
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(1.40)

(1.41)

(1.42)

(1.43)

(1.44)



2 .
5 =v3 (MN ) S N=> Zh is the mean number of SSUs in the population per

icU a

PSU, and (3 = Z % is the mean number of HUs per SSU in the population;
icU

LYY Y yadty, =Y Y I w:

icU jeU;, b=1keU g, ieU jeUj, kel

52
Q wr - - - - -
vé(p )= ipz L is the unit relvariance of PSU sizes Q; . When PSUs are selected using
wWr Q

2
ppPSWr, S(%(pwr) = p; [%—Qj , Q= Z% is the mean number of HUs per PSU,
1

ieU icU
and Q=>"Q;;
ieU
59
V3 ﬂ is the unit relvariance among SSU counts of HUs within SSU stratum

Qia( pwr) - Qla

2
a. When SSUs are selected using ppswr, SQ.a ) = Z pjlla(QlaJ QlaJ  with

jeUi Pifia
Qla = Z Qiaj ;
jeVia
S§ 1 2
éa = Qéa is the unit relvariance of SSU sizes Qjy;, SQIa —_— Z (Qiaj —Qia) ,
ia Nia -1 jeUis

with Qi = Z %
jeVia Nia
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2.4.2.3 Model Expectations of Measures of Homogeneity

The measures of homogeneity of the design-based variance can also be computed under
the model in Eqg. (1.39). Assuming M, Nz, N, Qu, and Q are large such that
M~M-1, Nj=Nj;-1, Ny=N;-1, Q;=Q,-1 and Q=Q-1, the model
expectations of V and V, from Eq. (1.17) can be found as follows (see Appendices A.4.10

and A.4.11 for derivation):

B (YY) =0 [bﬁ( Q+l)} {_ .%ENI&QH(V% +1)} (1.45)

%30, e

icU a=1b=1

sl guate, o) Apgrati)

B
2 Qab
+Zagab Q.
where
2 _ S h | f th ! 5), and
vQ—? is the unit relvariance of the Q;’s, SQ 1 Z(Qi—Q) ,an
icU

V(231a = Séla /@fa is the population relvariance of the Q;5 ’s within SSU stratum a,

58, ~(M 17 (Qa =G 00 G =71, Q= Qu/M it

mean number of HUs per PSU in SSU stratum a;
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v(%Za = S(%Za /sza is the population relvariance of the Q;y; ’s within SSU stratum a,
2 -1 = )2
SQs =(Na-1) ZieU ZjeUia(Qiaj _QZa) » and

Qa=Na D, zjeuia Qiaj = Qa/Nj is the mean number of HUs in SSU
stratum a across all PSUs;
Qap = ZieU ZjeU- Qiajo is the number of HUs per SSU stratum/HU substratum ab
1a

combination across all PSUs.

The model expectations in Eqgs. (1.40) - (1.46) can be used to evaluate the model

expectations of homogeneity terms, &y, 9,5, ki, and ko, , below. Assume that the number

of PSUs, M, is large so that the expectation of a ratio can be approximated as the ratio of

expectations.

Ey (t58°) Ey (tﬁBZ)+EM (tﬁwz)
B L T R )
Em (tﬁawzza) Em (tS W22a)+ Em (tLZJaW32a)
F(%22) Em (tLZJ W22a)+ Em (tLZJ W32a) B (t2a)= Em (tﬁava)

(1.47)

The above expectations depend on complex variances that involve Q, Q;, Qja, Qiaj: Qiajp

Qa, and Qg . To simplify results as well as make them more comparable to formulas found

in earlier sampling literature, we show how the formulas in Egs. (1.40) - (1.46) reduce

under the special conditions that assumptions (A1) — (A5) in Appendix A.4.2 hold. We

repeat those assumptions here for convenience.
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(A1) Every SSU stratum a occurs in every PSU i and that every HU substratum b

occurs in every SSU j.

(A2) Define p; :%, Pjjia = % and suppose that Qjajp = 6&3 , that is, the same
ia

number of elements occurs in HU substratum b (everywhere) for every PSU/SSU

stratum/SSU iaj combination. As noted in Lemma 2 of Appendix A.4.2, these

i . . . i 1
restrictions along with assumption (A1) imply that p; = % and pjjia = N
ia

where N; = Z:leia is the number of SSUs in the population for PSU i, and

N=M _1ZieU N; is the average number of SSUs per PSU in the population.
(A3) Qjjp = (3b . As noted in Lemma 2 of Appendix A.4.2, this implies Q.. = 6b and

Qup = 6b.3 It follows that the same number of elements per SSU, 6 = Zszléb ,

occurs everywhere, that is Qjaj = > Qiaj = Zéb =Q=Q, =Q =Q,, . As noted
b b
in Lemma 3 of Appendix A.4.3, Séza =0. We conclude that these restrictions
(pwr) - Qia

imply that sé(pwr) = séia S3 =0.

(Ad) B, =Ni;/N;=P,, i.e., the proportion of SSUs in SSU stratum a, is the same for

every PSU i.

(A5) Ni; = Nj; —1, i.e., the number of SSUs in the population in every PSU/SSU

stratum ia combination is large.

8 Qb indicates that the same number of HUs occurs in each PSU/SSU combination.
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Using assumptions (A1) — (A5), we also arrive at the following (see Appendix A.4.2,

Lemma 2 for derivation):

Q=MNQ Q=N Q=NQ  Qa=NwQ  Q=N.Q
Qab = NaQb Qab = Qb Qla = M Q2a =Q

Additionally, Sé, Sé_la , and Séa(pwr) also reduce to the less complex variance

estimations of the HU sizes below (See Appendix A.4.3, Lemma 3):

2
Q Z(Ni —N)2 =Q%s3 (1.48)

s =
QM -1,

where S,%, is the unit variance of the number of SSUs, N;, across PSUs.

2 Q? —\2 =202
S4, = v _1Z(Nia—N) =Q°sy, (1.49)
ieU

where S,%,a is the unit variance of the number of SSUs in SSU stratum a, N;,, across
PSUs;

2
Sé)a(pwr) =Q°Y P (i— Na] where po; :WI
icU

(1.50)
S2c2
=Q SNa(pwr)
where S,%a( our) iIs the variance if PSUs are selected with probability proportional to Nj,,

the number of SSUs in PSU i, SSU stratum a. Using the results from Eq. (1.48), we also

obtain the following simplification

V§=—5= =N v, (1.51)



When assumptions (Al) - (A5) hold. Using assumptions (Al) — (A5), and when M, MN

are large, we arrive at the following (see Appendices A.4.5-A.4.11)

Enm (652)=(MN:)2!0 +-ZL +ZPaZ gab Qb
e 805 (0 7 o2 32, 3
8.0 Fur (W )= (MG ) 2o,
cu (§07)=(w1Gf S5 o+ 32, % |
(18 02) = (NG’ P2 go’éb %
Em (y&V)=02+62+ZA:ZB:PO'2 5—_b
R o B 0
B (1) 202 + o2 s gfib%

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

The case of no b HU substrata. In the special case when there are no b substrata, such

that Jgab = aga

Appendices A.4.5-A.4.11 for derivation):

=2 A ol
Em (tﬁ BZ):(MNQ) !a§+GN_7 +az:1P ((%I\_l
2
Ey (tﬁ W2 ):(MN6)2 Pa2[0'5+a(%a}
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and 6b = 6 the model expectations in Egs. (1.52) — (1.58) reduce to (see

(1.59)

(1.60)



v (1, W ) =(MNQ) 202 (L61)

= (t@WZ) = (MN5)2 az: P, [gﬁ +a§a} (1.62)

Ey (tﬁa\/\/g2 )=(Mr\‘16)z PZo? (1.63)
A

By YoV )2 05 +02+ . Pac?, (1.64)
-

Em (—ﬁa\ia) = 02 + a}g + nga (1.65)

The case of no a SSU strata and no b HU substrata. In the special case where there are

no a strata, such that aga = 05 and P, =1, the model expectations in Egs. (1.59) -(1.65)

reduce to:
By (158) = (MNQ) [aé +%§+;—é] (1.66)
Ev (18,W5 ) =(MNQ) {aﬁ +%ﬂ (167)
Ev (10, W0 )= (MNQ)” o2 (L68)
e (7)) o ao
By (18,W4 ) =(MNQ) o2 (L.70)
En (Y3V )= 0% + 07 + 07 (1.71)
En (Y5,Va )2 0% + 07 + 0 (1.72)
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In that case, the approximate model expectations of Egs. (1.66) - (1.72) can be used to

evaluate the model expectations of oy, k;, d-,, and ko, when there are no a or b strata.

Assuming that N , N(s, and Q= are large, the approximate model expectation of ¢, reduce

to (see Appendix A.4.12 for derivation);

2 2 2. 2
) lop . Oq+0,+0;
Ev (d)=——%— Em (k)= —5—5—==1
Oq+0, +0; Oy +0, +0;
2 2 2
O
- /4 . 0O)+0g
EM (523)_ 2 2 EM (kZa)— 2 2 2
o, tog o, +t0;+0;,

(1.73)
Using the output from standard (non-survey) variance component estimation
software in SAS, we can evaluate Eq. (1.73). However, this will require that all PSUs and
all SSUs have the same sizes everywhere. If this is not the case, then for the full anticipated
model, we can use the standard variance component estimates from software as inputs to

evaluate Egs. (1.40)-(1.46), which can then be used to evaluate the model expectations of

51, k1,§2a, and k2a.

2.4.2.4 Non Self-Representing (NSR) and Self-Representing (SR) PSUs
in the HRS Design

Non Self-Representing (NSR) PSUs
The same model in Section 2.4.2.1 will be used for the NSR PSUs but now the mean,

4 , and random effects ¢;are specific to the NSR PSU. The calculations and universe U
are restricted to the universe of NSR PSUs. NSR subscripts are not added below to simplify

the notation. The model expectations of B?, W2, , W&,, W2, W2, V , and V, for NSR
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PSUs will be the exact form of Eqgs. (1.40) - (1.46) with m= no. of sample NSR PSUs,

p; = adjusted one draw probability defined earlier. The only distinction is that the sample

is now restricted to the sample of NSR PSUs and their SSUs and HUs that are within NSR

PSUs only, such that M , N, Qi; and Qj,.;, are now specific to the NSR PSUs.

Equations in Section 2.4.2.2 are helpful because they show the effects of the sizes of
PSUs/SSUs on the components of variances. However, we will use the following
equations which are easier to compute for numerical calculations. These equations are
earlier forms of the derivations of the model expectations before substituting for the
relvariances of the Q’s:

202 2« @ 1w 1] 2 23,
EM (tUB )éaaz_ +U]/Z_ Z Z Qiaj +ZzagabQia0b

icu Pi icu Pi |az1jeu;, a=1b=1

7Y Dy (&— jz

icU I

(1.74)

(see Eq. (A.68) for derivation)

2 Qi 2
oyl 20— 2 Qi (1.75)

B - i
+zo-§ab{ Z Qlajb _Qiaob

jeu,, Pjlia

L
%f_/

(see Eq. (A.92) for derivation)
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o2 Qb (1.76)

(tuabWSab) - Z Z

icu Pi jeu,, pJlla
(see Eq. (A.101) for derivation)
A _ [
Em (ﬁwz) = Z &Z Nia {O-;gQia 1- Qla ( Q )}"‘ZO} leaob}

icu Piax Qi

= Qa1
ZQ'ZN'a ﬁQia 1_Qla - 3 QuaJ]Jrstlea-b}

icu Piaz Ql |aQ|a j€Via

_ZQIZNla ;{Gia QN |ajz Qlaj]"‘ZngQla-b}

icu Piazg U

(See Eg. (A.116) for derivation) 2.77)

e (G2)- L ¥ J0y o7 g .78

icu Pi jeu,, Pjliab=

(see Eq. (A.133) for derivation)

o 1 o
R R ;[1-—2_%21 > o}
1€ ieU a=1 jeU;,

} (1.79)
+_ZZZ ealeaOb

IeU a=1b=1

(see Eq. (A.151) for derivation)

; 1 1
Enm (Y5 V ﬁa§{1——zQi2}+62 1-—Y
M( U, a) Q2 a Y Q§ ~

aieU

Q-2 i } + ZB: o2 %
1a) Eab Q
ia a

jeU;

(1.80)

(see Eq. (A.174) for derivation)
where t3, ty,, ty,, and yU yU are defined similarly to those in Sections 2.3.2 - 2.3.3

but use terms specific to the NSR PSUs.
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Self-Representing (SR) PSUs

In this section, we use some of the same formulas in Section 2.4.2.1 through
Section 2.4.2.3, but we restrict the calculations to the set of SR PSUs. SR subscripts are
not added below to simplify the notation. Restrict U (and all alike indices) to the set of all

SR PSUs. Here we treat each SR PSU as a stratum and let p; =1.
Consider a model for y, with common mean, u, fixed effects for SR PSUs, ¢;,

and random effects for SSUs, y;5; , and HUs in SSU/HU substratum ab, &i,jpy

Yk = M+ +Viaj T Eiajok (1.81)
: 2 2
with 7iaj ~ (0 ) 0'7) ) giajbk ~ (0 ) Ggab ) )
and the errors being independent, such that

VarM(yk):a§+a§ab and Ey (yk)=p+a; for keUjp.

The model differs from the NSR PSUs because the SR PSUs are treated as strata with fixed
effects. The variance of fixed effects for SR PSUs is zero, i.e., Vary (@) =02 =0. Let
ty tu, tu,: 7& : Vﬁa be defined similarly to those in Section 2.3.3 but use terms specific
to the SR PSUs. In order to get model expectations for SR PSUs, we substitute ¢ with

u+aj, 002( =0, and p; =1 into equations for NSR PSUs in Section 2.4.2.2 to obtain:

2 2
Vo v,
W2 )= 2372,2 2N2R/2 Qla(pwr) Q

Em (tuawza)= E (u+ai) QiaVQi +0yNiaQia _Salpwr) _Mia ,q

a( pwr 2
icU () Na  Nia
B Q .
2 iajb
+Zo-£ab 2 _QiaOb
b1 jeu, Pilia
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(tu W3ab) 2 2 ngabQizajb
iU jeU;, Pjlia
Qlaj
(tu Wsa) z z z saleajb

icU jeu,, Pjliab=

En (yﬁa\]a) = O-}% {1_ Qa aQZa (VZQ +1)}+ Zag " %‘f

(1.82)
For numerical calculations the following equations are easier to compute (see

Appendix A.4):

2
2 Qiaj
A PSS Ly
icU jeU,, Pjlia
Qi
1a
+G§ > — [ 2 QI%\J
jeU,, Pilia | jeu,,
Qiajb |
+Z gab[ Z - _Qla-b
b=1 jeu;, Pjlia
Em (tU W3ab)—z Z galean
iU jeU, pJ|'a
Qlaj

(tU W3a) Z Z Z saleajb

ieU jeUi, Pjlia =1

EM(VSa\ia) i {1__2 2 Qlaj} 202 Sap

a icU jeU;,

(1.83)

58



2.4.3 Estimators of Anticipated Variances

Estimators of variance are needed to evaluate Eqgs. (1.40) - (1.46). These are plug in
estimators. Although we do not provide theoretical details, in large PSU, SSU, and HU

samples the estimators will be consistent.

2.4.3.1 General Case
In addition to the estimators of the unit sizes defined in Section 2.4.1.1, we define

additional estimators assuming the 3" stage is srs so that the following hold:

O N qy ] = N
M=—2 NZEZ—Z—Z Z—Z N=3
ics, Pi ics, Pi ics, Pi"a Mia jes, le'a
- - ~1 1 SR Ry P
Ni:ZNia’ Nja =— ’ Naz_z_la
a Nia j€sia Pjlia Mics, Pi
Qiajb Qlajb
Qlaj Z Z Wliajb = Z Z Zh’éﬁ)\ ZQlajb Q|aJ
b Kesigjy b kesgyp Jiaib b M
Qap 2 Qe
Q|aob = z : Qlao == b
Nia jcs, Pilia Nia
Qiajb

Qab_z Z

ics, M Pi jes, MiaPjlia

Qa= >, Qo and when 3" stage SRS Qi = L > Qi

jes,, Nia P jlia Nia jes,, Pjia

I\ A

Z Qla éla Aa’ (SZa:%

ies mp; a

G= Z—pQ G = ZQ.a, Q=
ies; I

Z) O»

59



Then the estimators of the unit relvariances in Sections 2.4.2.2- 2.4.2.3 are (see Appendix

A.5 for derivations):

SQ(pur)
) pwr
VQ(pwr) = =, where

. 2
22 1 Q A 1 1 1¢2 _
——Q] -—> = ).—SG4 ; (1.84)
5l por)
~2 " Qjal pWr
VQia( pwr) = > where
Qa
5 2
2 1 ia A
Y == 3| _Qal (1.85)
Qia( pwr . i, la | o
(W) nlaljesia[pjla
22
V3 _ 56, where S8 =S25 +S3
Qa = %2 Qia = °AQia T VBQia
1a
N ~ \2
> Wj|ia(Qiaj_Qia) L1
A n: ics 22 22
S35 =—ia )% and S35, =——53
oma-l Y (wyg-l) F N el
i€sia
(1.86)

(0208
Ono

04 = 5 where 8§ =S3¢ +S30
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g2 _ M ey
Q71 > (w-1)
jesy
2 1 12 1 éé 1
580 =27 5 pur) - > 1,
M2 m <(pwr) ics, MPi T Mnjg Mmp;
Y
52 Qia
Vg, ==, Where SQ1 _SAQl +SBQ1
Q4
. 2 \2
ZWi(Qia_Qla) (1o e
. m ies, m ia A2
S, - - % _yg
Qa -1 M(w-1)  m- 1M£ Iez;‘l p; 2
ies;
11 2 1
§2 - _S"2 _ |apwr 1— i
BQ:La |V| m Q a( pwr) Iélmi Mnla ( Mmpij
Q 2
32 ia_ A .
SQa(pwr) z( P; QaJ ’
Iesl I
2 SA(% 22 22 22
VQZa - Lzza where SQZa :SAQ2a+SBQ2a
2a
32
A2 1 1 Q'a' A XD
AQZa:N _12 - _NaQZa

a ~Llics, MPi jcs,, MiaPjlia

32
1 1 1 SQia(pwr) .
2( pur) Nz m2 ies pl2 Nia 1
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Then the estimators of the model expectations in Egs. (1.40) - (1.46) are
02 +1)

~2
V
A 9 A0l Q
By (t5 Bz)za§M2Q2 o) g +62y L ZN,aQ,a(vQ
M ies; mpl a=1
(1.90)
A B )2
+Zz SabQ|a b Q VA pWI’
a=1b=1
QA 2
1 2 A2 1 iaj A
A+ -Q
| “)”ialjezsipma J
(1.91)

En (tﬁawzza) =2 —
ies, MPj
22 22
2 Qiaj Qiaj
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2.4.3.2 NSR PSUs
Non Self-Representing (NSR) PSUs
The anticipated variance formulas for NSR PSUs will be the exact form of Egs.

(1.90) - (1.96) with m= no. of sample NSR PSUs, p; = adjusted one draw probability
defined earlier. The sample is now restricted to the sample of NSR PSUs and their SSUs
and HUs that are within NSR PSUs only, such that m, n;, , and are now specific to the NSR

2

PSUs. The model is also specific to the NSRs when estimating ,u2 Nop ,af ,and agab
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2.4.3.3 SR PSUs
In this section, we again use some of the same formulas in Section 2.4.3.2 -2.3.3
but we restrict the calculations to the set of SR PSUs. As in the previous section, we omit

SR subscripts to simply the notation. For SR PSUs let p; =1, then
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3 Application to the Health and Retirement Survey of Designed Based
ANOVA Variance Component Estimation for Sample Allocations

Using the formulas from Chapter 2, we will obtain ANOVA variance estimates and use
them for sample size calculations for several variables from the Health and Retirement
Study (HRS). The HRS is sponsored by the National Institute of Aging and the Social
Security Administration University. For comparison we also calculate estimates using the

anticipated variance method covered in Chapter 2.

3.1 The Health and Retirement Study (HRS)

In this section, we will describe how the household level file that was used for this thesis
was constructed. The household level dataset comprises information on housing units
taken from several data files:
(1) HRS Screener Files 2010-2011
(2) HRS Interview File for households interviewed in March 2010 - November 2011
for the Middle Baby Boomer (MBB) cohort
(3) HRS Interview File for households interviewed in March 2010 - November 2011
for the Early Baby Boomer (EBB) cohort
(4) The corresponding data from Marketing Systems Group (MSG) for the HRS
Interview/Screener file in 2010-2011
The following sections detail the sample design of the HRS, and the variable matching on
MSG-HRS to create the final dataset.
3.1.1 Overview
The Health and Retirement Study (HRS, http://hrsonline.isr.umich.edu/) is a longitudinal

panel study that surveys a representative sample of approximately 20,000 adults, over the
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age of 50, living in households in the 48 contiguous states and the District of Columbia.
Every two years, from pre-retirement into retirement, the HRS collects information on the
changes in income, work, health insurance, disability, physical health, and health care
expenditures of aging Americans. The HRS is designed to help understand and address the
challenges and opportunities of aging.

3.1.2 Sample Design and Procedures

The full HRS sample is composed of several age cohorts, each of which covers six birth
years. Every six years, HRS adds a new age cohort to the study. The latest three age cohorts
added in 2004, 2010, and 2016 are respectively the Early Baby Boomers (EBBs) born
1948-1953, Middle Baby Boomers (MBBs) born 1954-59, and the Late Baby Boomers
(LBBs) born 1960-1965. For this research, the focus is narrowed to the EBB and MBB age
cohorts. Specifically, the data used for analysis are the HRS interview data for households
interviewed during the period of March 2010 through November 2011 for the EBB and
MBB age cohorts, the corresponding HRS screener data, and the corresponding MSG data.

The cohorts are derived from two multistage area probability samples, completed
in four stages. In the first stage, a probability proportional to size selection of 75 Primary
Sample Units (PSUs), based on U.S. Metropolitan Statistical Areas (MSAs) and non-MSA
counties, are chosen.

For the second stage, the Secondary Sampling Units (SSUs) are composed of
Census blocks or groups of blocks. Because HRS oversamples Hispanics and Blacks, SSUs
are divided into one of four strata according to the Hispanic and Black racial density of its
respective block group, as found in the 2000 decennial census. The SSU strata are defined

within geographic strata of PSUs shown in Table 3.1. These strata have been found to be
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generally useful in household surveys that target the Black and Hispanic minority groups
and have been used in a number of surveys conducted previously by the University of
Michigan. Only those SSUs in SSU strata 2, 3, and 4, that is, those with racial proportions
more than 10% Hispanic or more than 10% Black, are sampled in the data that are available

for this study.

Table 3.1 SSU Stratum Definitions for 2010-11 HRS Data

SSU Stratum No. Label Definition
01 <10% B, <10% H < 10% Black, < 10% Hispanic
02 >10% B, <10% H > 10% Black, < 10% Hispanic
03 <10% B, >10% H < 10% Black, > 10% Hispanic
04 >10% B, >10% H > 10% Black, > 10% Hispanic

In the third stage of sampling, a list of all HUs physically located within the bounds
of the selected SSUs is enumerated. The list of HUs is sent to the commercial list vendor
MSG for matching to the available auxiliary data. During the time of the study, MSG was
receiving updates from the USPS CDS as well as compiling information from four
commercial vendors: InfoUSA, Targus, Experian and Acxiom*. In addition, MSG
contained information for addresses on the “Do Not Mail” list but not for those addresses
on the No-Stat file. MSG attached a variety of demographic information (e.g., age, gender,
Hispanic surname, marital status, income, etc.) on up to two persons for each HU for which
there was data (see Appendix B.2 for a full list of MSG variables). HRS corrects any errors
found in the enumeration of HUs. The MSG age and race/ethnicity information on

addresses in sample segments is then used for sampling housing units. HRS collects the

4 As of 2014, MSG no longer uses Axciom.

68



actual demographic information for each responding HU since the MSG data are not
always correct. The accuracy rates for the MSG data are presented in Section 3.2 .

The final and fourth stage of sampling involves screening for qualified household
members living inside of HUs. During the screening process, HRS collects data on the ages
of every household member as well as the marital status and race/ethnicity of certain
household members. This information is used to determine qualified household financial

units. A household financial unit is a single age-eligible person or a married couple where

one or both parties are age-eligible (at the time of the first interview)s. In the EBB and

MBB cohorts, almost all HUs contain only one financial household. Because the number
of HUs with multiple financial households is extremely small, the fourth stage of sampling
will be ignored for this research when doing sample size calculations (Valliant R. ,
Hubbard, Lee, & Chang, 2014).

Table 3.2. MSG Substrata and Definitions for Application to 2010-2011 HRS

MSG Substratum Label Definition

1 45-62 H One or more 45-62 Hispanic persons in
the HU

2 45-62 NH B One or more 45-62 non-Hispanic, Black
persons in the HU

3 45-62 NH O One or more 45-62 non -Hispanic Other
persons in the HU

4 45-62 No Race/Eth One or more 45-62 persons with missing
race/ethnicity

5 Not 45-62 No persons 45-62 in the HU
Unknown whether the HU contained

6 Unknown persons 45-62 based on MSG data. Age is
missing or No Record.

® More information on the HRS can be found at Michigan’s Institute for Social Research website

http://hrsonline.isr.umich.edu/.
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3.1.3 Stratification of HUs Using Commercial Lists

In an effort to improve the efficiency at which some target domains are sampled, HUs can
be stratified during the third stage of sampling according to the attached demographic
information from MSG. In the empirical work here, we use MSG data on two persons in
the household as well as the race/ethnicity of the head of household (assuming the race of
person 1 and person 2 are the same) to classify HUs into one of six MSG substrata used
for sampling, as shown in Table 3.2. (In this paper, the terms HU substrata/MSG substrata
are used interchangeably.) The range of ages covered in the HRS data and treated as being
eligible here was 45-62. Note that this is different from the ages covered by any HRS
cohort; all cases that had an HRS age were included to increase the sample size used for
analysis. The first four substrata contained HUs that MSG anticipated as having someone
in the 45-62 age range. The fifth substratum contained HUs that had no one 45-62
according to MSG. The sixth substratum contained HUs for which MSG was either missing
the demographic information, i.e., age, to predict eligibility or missing the address
completely. Note that HUs in the fifth and sixth substratum must be given a positive
inclusion probability since some of those HUs may have one or more persons in the eligible
age range. The proposed substrata could be used to oversample Blacks or Hispanics in the
third stage of selection. Alternative groupings of MSG substrata (e.g., income groups,
marital status, etc.) can be made depending on the available auxiliary data. As part of this
thesis research, | will only consider stratification in Table 3.2 that would be appropriate for
targeting Black and Hispanic persons aged 45-62.

When determining MSG classification for age, we classified HUs into age groups

if either the head of household or person 2 was in the target age group. For MSG
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race/ethnicity classification, we used the head of household race/ethnicity to determine
race/ethnicity for the entire HU. Table 3.3, Table 3.4, and Table 3.5 show an unweighted
and weighted summary for all addresses based on the classification using MSG data on
age, race/ethnicity, and both age crossed with race/ethnicity, respectively. The weights
used were HRS base weights that weight the sample up to population counts in SSU strata

2-4, and did not include any nonresponse, or post-stratified adjustments.

Table 3.3. Summary of Classification Results using MSG data Age

MSG classification Unweighted Weighted
No. of HUs Percent No. of HUs Percent
45-62 6,606 23 8,909,868 22
Not 45-62 7,775 28 12,374,079 31
No available data 13,783 49 18,763,670 47
Total 28,164 100 40,047,617 100

Table 3.4. Summary of Classification Results using MSG data Race/Ethnicity

MSG classification Unweighted Weighted
No. of HUs Percent No. of HUs Percent
Hispanic 4,205 15 6,569,096 16.5
Non-Hispanic Black 3,173 11 4,578,628 115
Non-Hispanic Other 6,273 22 10,686,189 27
No available data 14,513 52 18,213,704 45
Total 28,164 100 40,047,617 100

Table 3.5. Summary of Classification Results using MSG data Age and Race/Ethnicity

MSG classification Unweighted Weighted

No. of HUs Percent No. of HUs Percent
45-62 Hispanic 1,187 4,21 1,531,239 3.82
45-62 NH Black 1,113 3.95 1,537,944 3.84
45-62 NH Other 2,468 8.76 3,825,802 9.55
45-62 No Race-Eth 1,838 6.53 2,014,882 5.03
Not 45-62 7,775 27.61 12,374,079 30.9
Unknown 13,783 48.94 18,763,670 46.85
Total 28,164 100 40,047,617 100
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3.2 Availability of MSG and HRS Data

For the period March 2010-November 2011, HRS data on respondents to the screener and
interview were compared to information obtained from MSG. From SSU strata 2-4, there
were a total of 28,164 sampled addresses (20,887 addresses in 2010 and 7,277 addresses
in 2011) selected for screening and sent to MSG for matching.® MSG reported whether or
not a HU was on the MSG files and if so the individual data for that HU. Table 3.6 shows
that at the time of the matching, MSG reported that 14,381 HUs (51 percent) had age
information available, while only 13,651 HUs (48 percent) had race/ethnicity information
available. Because we often need information on more than one variable to target a specific
group of interest, i.e., Hispanic, females ages 18-35, the availability of crossed variables is
also a valuable measure. The number of HUs having both age and race/ethnicity data

available on the MSG list decreased to only 10,273 HUs, or 36 percent.

Table 3.6. Summary of Information Available on MSG for Age and Race/Ethnicity
Variables

MSG Age Race/Ethnicity Age/Race/Ethnicity
provided

information Nl_CIJL'JCSJf Percent Nﬁogf Percent Nl_?ugf Percent
on address
Address not
sent to

MSG’ 212 0.75 220 0.78 220 0.78

No 13,571 48.19 14,293 50.75 17,671 62.74

Yes 14,381 51.06 13,651 48.47 10,273 36.48

Total 28,164 100.00 28,164 100.00 28,164 100.00

& 1t was discovered later that some of the 28,164 sampled addresses were actually not sent to MSG.
" The difference in the number of addresses not sent to MSG across variables is because addresses were
sent to MSG separately for age and race/ethnicity matching.

72



3.3 MSG Accuracy Rates in Classifying HUs by Race/Ethnicity and
Age

Given that auxiliary data are available for a HU, the next concern is whether or not the
information is accurate. In this section, we estimate the accuracy rates in which commercial
lists from MSG can correctly identify households with certain characteristics (e.g.,
Hispanics, Non-Hispanic Blacks, Persons 45-62, etc.).

To estimate accuracy rates, we used HRS screener data as the measure of true
classification. When information on age and race/ethnicity for sampled HUs was not
available in the HRS screener, we used the HRS interview responses (when available) to
classify HUs into age and race/ethnicity groups. Out of the 28,164 HUs on file, a total of
15,272 HUs had information on age in either the HRS screener or interview data and 4,449
HUs were vacant. This resulted in a total of 19,721 HUs on the HRS files to match to MSG
age information. Out of those HUs with HRS age information, all but 64 had race/ethnicity
information available on the HRS data. This resulted in a final total of 19,657 HUs

available in the HRS data for matching to MSG information to obtain accuracy rates.

Table 3.7. Summary of Classification Results using MSG data by Age group 45-62
and Race/Ethnicity

MSG classification Unweighted Weighted

No. of HUs Percent No. of HUs Percent
Correctly classified 6,061 31 9,817,268 34
Incorrectly classified 2,675 14 4,385,539 15
No available data 10,921 55 14,819,672 51
Total 19,657 100 29,022,480 100
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Table 3.7 shows an aggregated summary based on the classification using MSG data.
Out of 19,657 HUs with HRS data, 55 percent of addresses had no available data either
because MSG was missing age, race/ethnicity, or there was simply no record. The
unweighted analyses show that 45 percent had matched MSG data, while the weighted
analyses show 49 percent had matched MSG data. MSG was able to correctly identify HUs
with persons aged 45-62 in race categories with 31 percent accuracy unweighted compared
to 34 percent weighted. The breakdown of those 8,736 (6,061+2,675) HUs for which MSG
and HRS both had age/race/ethnicity is also informative. Given both MSG and HRS had
age and race/ethnicity data available, MSG was able to correctly identify HUs into MSG
substrata one to three, 69 percent (6,061/8,736) of the time.

Although MSG is not totally accurate, it does give a way to target the sample towards
HUs more likely to be eligible. When HUs are stratified into groups of people who may be
more likely to be eligible for a survey, those strata can be sampled at higher rates. To
illustrate how this may be achieved, the following notation is needed:

d = analytic domain in HRS: 1=45-62 Hispanic; 2=45-62 NH Black; 3=45-62 NH
Other; in addition, define two other domains: 4=Not 45-62; 5=Unoccupied HU.

b = MSG substratum used to sample HU in the third stage of sampling; b=1, 2, ..., 6;
Pab (d): proportion of HUs in SSU stratum a, MSG sampling substratum b that are

classified to be in HRS analysis domain d.

Table 3.8 shows unweighted estimates of pgy, (d) within each of the six MSG sampling

substrata based on HRS screener and interview responses. HUs in substrata 1-3, with
known race/ethnicity, have a higher proportion of eligible HUs (ranging from 0.743-0.785)

than those in substrata 4. The eligibility rate for HUs in substrata 4, with unknown
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race/ethnicity, fell to 0.581 due to a significant proportion (0.178) of HUs being
unoccupied. Among HUs in substrata 5 which were expected to be non-eligible, 74.4
percent were in fact not eligible. Of those HUs in substrata 6, which had unknown
eligibility, 77.7 percent were not eligible: 43.8 percent were not 45-62 and 33.9 percent
were unoccupied. To use this information on accuracy rates to more efficiently sample
HUs, we should sample HUs from substrata 1-4 at higher rates than substrata 5 and 6.
Furthermore, when considering race/ethnicity as a factor, HUs sampled from
substrata 1-3 that were expected to be Hispanic, Non-Hispanic Black, and Non-Hispanic,
respectively, were confirmed by HRS respondents to be that race/ethnicity 61.7, 54.2, and
64.9 percent of the time. Weighted estimates are given in Error! Reference source not
found. and show slightly higher eligibility rates. The overall eligibility rate was 35.09
percent, unweighted, and 42.83 percent, weighted (see Table 3.10 and Table 3.11). The
weights used were base weights that weight the sample up to population counts in SSU
strata 2-4, and did not include any nonresponse, or post-stratified adjustments. We will use
the unweighted accuracy rates in Table 3.8 to compute sample allocations later in this

thesis.
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Table 3.8. Estimated Proportion of HUs, p,y(d),in each MSG substratum Classified into HRS
Domains, Unweighted

HRS analysis domains based on responses to screener and interview (d)

MSG sampling
substratum (b) 1) 45-62 2)45-62  3)45-62  4) Not 5)Unoccupied  All
Hispanic NH Black NH Other  45-62 HU eligible*

1 45-62 H 0.617 0.025 0.102 0.184 0.073 0.743

2 45-62 NH Black 0.010 0.542 0.222 0.147 0.079 0.774

3 45-62 NH Other 0.029 0.107 0.649 0.137 0.078 0.785

4 45-62 No Race-Eth  0.036 0.200 0.345 0.241 0.178 0.581

5 Not 45-62 0.058 0.082 0.117 0.612 0.132 0.256

6 Unknown 0.073 0.069 0.081 0.438 0.339 0.223

*HRS domains 1-3

Table 3.9. Estimated Proportion of HUs, p4,(d), in each MSG substratum Classified into
HRS Domains, Weighted

HRS analysis domains based on responses to screener and interview (d)

MSG sampling
substratum (b) 1) 45-62  2)45-62  3) 45-62 4) Not  5)Unoccupied  All
Hispanic ~ NH Black NH Other  45-62 HU eligible*

1 45-62 H 0.674 0.017 0.133 0.131 0.046 0.823

2 45-62 NH Black  0.015 0.491 0.319 0.113 0.062 0.825

3 45-62 NH Other  0.018 0.061 0.746 0.137 0.037 0.825

4 45-62 No Race-  0.017 0.144 0.529 0.200 0.110 0.690

Eth
5 Not 45-62 0.069 0.059 0.169 0.607 0.096 0.297
6 Unknown 0.103 0.070 0.147 0.402 0.278 0.320

*HRS domains 1-3



Table 3.10 Weighted Accuracy Counts of MSG data when compared to 2010-2011 MSG Screener Data

Age/Race Groups HRS analysis domains based on responses to screener and interview, d
Identified by MSG 1)45-62  2)45-62NH  3) 45-62 4) Not 5)Unoccupied  Alleligible ~ No. Persons  Percent
sampling Hispanic Black NH Other 45-62 HU (HRS domains  in Age/Race
substratum (b) 1-3) Groups
1 45-62H 757,692 19,131 149,162 146,859 51,720 925,984 1,124,563 3.87
2 45-62 NH Black 19,236 615,750 400,510 141,240 78,306 1,035,496 1,255,042  4.32
3 45-62 NH Other 55,233 184,343 2,249,494 413,771 112,778 2,489,069 3,015,618 10.39
4 45-62 No Race-Eth 28,038 244,054 897,260 338,877 187,070 1,169,353 1,695,299 5.84
5 Not 45-62 609,075 517,974 1,486,203 5,348,204 846,129 2,613,252 8,807,585  30.35
6 Unknown 1,353,516 913,985 1,929,176 5,281,583 3,646,113 4,196,677 13,124,373  45.22
Total 2,822,790 2,495,236 7,111,805 11,670,533 4,922,116 12,429,831 29,022,480 100.00
Percent 9.73 8.60 24.50 40.21 16.96 42.83 100.00
Table 3.11 Unweighted Accuracy Counts of MSG data when compared to 2010-2011 MSG Screener Data
Age/Race Groups HRS analysis domains based on responses to screener and interview, d
Identified by MSG 1) 45-62  2) 45-62 3) 45-62 4) Not 5)Unoccupied  All eligible No. Percent
sampling substratum Hispanic NH Black  NH Other 45-62 HU (I—_|RS Persons in
(b) domains 1-3)  Age/Race
Groups
1 45-62H 526 21 87 157 62 634 853 4.34
2 45-62 NH Black 8 449 184 122 65 641 828 421
3 45-62 NH Other 49 182 1,105 234 132 1,336 1,702 8.66
4 45-62 No Race-Eth 48 267 461 322 238 776 1,336 6.80
5 Not 45-62 308 438 626 3,277 704 1,372 5,353 27.23
6 Unknown 699 665 775 4,198 3,248 2,139 9,585 48.76
Total 1,638 2,022 3,238 8,310 4,449 6,898 19,657 100.00
Percent 8.33 10.29 16.47 42.28 22.63 35.09 100.00
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3.4 Estimating Totals, Means, and Variance Components from the 2010-11
HRS Interview Data

When determining the sample allocation, we would like to set a level of precision for key variables
of interest. Recall our goal of utilizing accuracy rates to find an optimal sample allocation with the
objective of minimizing the variance of some target estimate(s) subject to a variety of contraints.
In this section, we consider the contributions of the different stages to the variance of an estimator
in order to allocate a sample among the three stages of sampling. Valliant, Hubbard, et al. (2014)
showed how to determine an allocation while achieving target sample sizes and minimizing costs.
Here, we advance that work one more step by minimizing the variance for key variables given
fixed costs using MSG substrata accuracy rates. In Section 3.4.1, we estimate the population totals
for select HRS interview variables (see Appendix B.1). Then, in Section 3.4.2 we describe the
imputation techniques used to satisfy the assumption that all iajb combinations in the 2010-2011
HRS data are nonempty in the population. Finally in Sections 3.4.3-3.4.4, we estimate the
components of variance associated with the different stages of the sample design for those HRS
interview variables using the two techniques found in the formulas of Sections 2.4.1-2.4.2,
respectively. Variances will be presented in terms of the relvariance to reduce the variance
components of differing dimensions and differing types of estimates (totals, means) to the same
scale. All variance estimation was performed in R version 3.5.0.

3.4.1 PWR Estimates

In the following estimations, we used HRS selection probabilities that were proportional to full
population housing unit counts (not just HUs that contain persons aged 45-62). The design-based
properties of the weights allow us to get approximately unbiased estimates of means, proportions,
and variance components for the domain of 45-62 year olds. Note that this analysis does not

directly apply to the way HRS designs its samples to obtain HRS cohorts, because our data includes



HRS files from different years that span a broader age range than any HRS cohort. This is rather
an illustration of how to design a three-stage sample that involves screening of HUs to determine
eligibility using some HRS data as the basis for analysis.

To satisfy Eq. (2.6) and Eq. (2.35), estimates of overall population totals, population totals
for analysis variables Y and their corresponding variance must be made separately for HUs
contained in self-representing (SR) PSUs versus HUs contained in non-self-representing (NSR)
PSUs. Because the data were collected over two years, some PSUs were sampled in both the 2010

sample and the 2011 sample and therefore had two distinct one-draw probabilities p; for 2010 and

2011. We treated the PSU i sampled in both 2010 and 2011 as two distinct PSUs: PSU i sampled
in year 2010, and PSU i sampled in year 2011. There were a total of m = 82 PSUs (54 NSR PSUs
+ 28 SR PSUs). The number of sample PSUs, sample SSUs, and screened HUs are displayed in
Table 3.12. Overall, there were 454 SSUs (277 in NSR PSUs + 177 in SR PSUs). Of the 19,657
sample HUs, 12,933 were in the NSR PSUs and 6,724 were in the SR PSUs.

Table 3.13 shows the breakdown on the average number of SSUs selected from SSU strata
a=2, 3, 4 across all PSUs, and the average number of HUs selected from MSG substrata b=1, ...,6
within each stratum a, across all PSU/SSU ij combinations, separately for NSR and SR PSU
samples. Table 3.14 displays the average number of HUs screened from MSG substratum b (b =
01, 02, 03, 04, 05, 06) within SSU stratum a (a = 02, 03, 04), across all PSU/SSU ij combinations,
for SR PSUs and NSR PSUs. The actual HRS design did not include b substrata, so when assigning
HUs to the proposed MSG sampling substrata b, there were not enough HUs to span every ab

combination. The SSU strata/MSG substrata 03038 had a very low HU count. In fact, there were

8 The “less than 10 percent Black, more than 10 percent Hispanic” SSU stratum, and the “one or
more 45-62 non-Hispanic other persons” HU substratum
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Table 3.12. Number of Sample PSUs, Sample
SSUs, and Screened HUs, Overall and Separately
for SR and NSR PSUs in HRS 2010-11

PSUs (m) SSUs (n) HUs Screened

NSR 54 277 12,933
SR 28 177 6,724
Total 82 454 19,657

Table 3.13. Average number of SSUs selected from
SSU stratum a across all SR and NSR PSUs in HRS
2010-11

SSU Stratum Ma,sR Ma,NSR
02 >10% B, <10% H 2.11 2.71
03 <10% B, >10% H 4.00 4.26
04 >10% B, >10% H 3.48 2.24

Table 3.14. Average number of screened HUs within HU substratum b (b
=01, 02,..., 06) within SSU stratum a (a = 02, 03, 04) across all PSU/SSU

Ij combinations and population estimates of HUs, Qab,SR and Qab,NSR in

HRS 2010-11
Average No.  Average No. . .
SSU/MSGab ofHUsinab of HUsinab Qab,SR Qab,NSR
for SR PSUs for NSR PSUs
0201 1.40 1.80 15,515 50,441
0202 4.16 4.84 157,023 783,493
0203 6.17 7.62 171,502 963,377
0204 7.81 6.36 218,646 1,246,277
0205 14.79 14.75 785,866 4,295,112
0206 19.67 25.39 831,323 5,448,707
0301 3.56 5.43 233,359 276,933
0302 2.69 5.08 139,825 330,172
0303 0.00 1.00 0 2,248
0304 4.32 7.33 386,887 697,302
0305 7.48 14.78 774,329 1,968,936
0306 13.33 22.58 1,246,113 2,635,977
0401 4.49 3.76 151,555 107,901
0402 4.45 4.82 142,684 195,082
0403 5.06 4.73 135,176 80,117
0404 3.75 4.40 223,989 260,442
0405 12.06 13.61 699,568 787,112
0406 23.13 23.31 1,292,753 1,286,740
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no HUs in the SR PSUs, and the average of 1.00 in the NSR PSUs represents only one HU in the
NSR PSUs, resulting in very low estimated population counts. In practice, we want to sample some
minimum number of HUs from each ab, but for purposes of our illustration we ignore this mishap
and use the values as is. However, as discussed below, we will impute values for some terms in
the variance components when sample sizes are inadequate to make direct estimates.

In 2010-2011, the HRS sample goals were to hit specified sample size targets for Black,
Hispanic, and Other race-ethnicity groups. Through screening, each sample HU was classified into
one of these groups. The HUs were then subsampled at rates designed to achieve the target sample
sizes. This led to many HUs not being interviewed, particularly ones classified as Other. A
consequence of this is that although all screened HUs can be categorized by which ab combination
they are in, interview data on income, wealth, etc. were not collected on all HUs. This missing data
issue must be dealt with for the analysis in this thesis.

Define the HRS sample data for a key variable of interest as the set of HUs that have HU
level HRS interview data available for that specific variable. The sample sizes for selected HRS
variables are listed in Table 3.15 separately for SR and NSR PSUs. Since some HUs had missing
HU level k interview data for specific variables, HRS sample sizes varied slightly between
variables.® Sample sizes ranged from 893 to 1,565 HUs. These sample sizes were not large enough
to have observations that span across all combinations of PSUs, SSU strata, SSUs, and MSG
substrata of the screened HUSs. In fact, when assigning HUs to the proposed MSG sampling
substrata b, many iajb combinations did not contain any sample HUs. For example, consider the

income variable where 12,933 screened HUs in the NSR PSUs, formed 1,060 possible iajb

® Among HUs that were interviewed, HU level k responses were missing less than 8 percent of
the time for all variables. Therefore, we did not impute at the HU level k.
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combinations but only 615 of the combinations (58.02 percent) contained sample HUs that were
interviewed. For the 6,724 screened HUs in the SR PSUs which formed 723 iajb combinations
406 (56.15 percent) contained interviewed sample HUs and 317 (43.85 percent) contained no
sample HUs that were interviewed. Such empty combinations occurred because the entire iajb

combination had no interviewed HUSs.
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Table 3.15. Sample counts, t owr.alt €stimates of the population total, and ?sl mean estimates for selected HRS Interview Variables,
by SR and NSR PSUs. See Appendix B.1 for explanation of the variables.

Selected HRS

Interview ~ « . 2 2 . A

Variables dsr aNSR Lpwr alt Lpwralt,sR - Upwr.alt,NSR Ys o Ys s Fsr FNSR
income 946 1527 1.37E+12  4.20E+11 9.55E+11 55,194 44,598 0.3053 0.6947
wealtha 946 1527 3.79E+12 1.19E+12 2.60E+12 156,587 121,247 0.3144 0.6856
wealthb 946 1527 4.04E+12 1.25E+12 2.78E+12 164,867 129,927 0.3107 0.6893
other_debts 893 1439 1.39e+07  3.58E+06 1.03E+07 0.47 0.48 0.2581 0.7419
charity_donate 898 1443 9.00E+06  2.46E+06 6.54E+06 0.32 0.31 0.2730 0.7270
employed 944 1520 1.49E+07  4.18E+06 1.07E+07 0.55 0.50 0.2804 0.7196
ownHome 922 1478 1.43E+07  3.55E+06 1.07E+07 0.47 0.50 0.2488 0.7512
ownStock 899 1442 4.95E+06  1.64E+06 3.31E+06 0.22 0.15 0.3316 0.6684
own_2nd_home 920 1478 2.96E+06  7.17E+05 2.24E+06 0.09 0.10 0.2424 0.7576
own_transport 903 1452 2.07E+07  4.90E+06 1.58E+07 0.64 0.74 0.2373 0.7627
selfRatedHealth 968 1565 1.16E+07  2.98E+06 8.58E+06 0.39 0.40 0.2580 0.7420

Qsrand gysg are counts of HUs that had interview data for specific variables



Table 3.16 Proportion of missing combinations needed to estimate totals and means
across all y variables by design level. Percentages are based on all 19,537 HUs
including those HUs not interviewed.

. SR PSUs NSR PSUs
Design
Lovel Total No. of  Range of Percent | Total No. of Range of
eve Combinations Missing Combinations Percent
in dataset in dataset Missing
iajb 723 (43.5-45.8) 1,060 (40.9 - 43.0)
iaj 177 (13.6 - 14.7) 277 (16.2 -17.0)
ia 56 (1.8 -3.6) 94 (9.6 - 10.6)

Overall, the frequency of missing PSU, SSU strata, SSU, and MSG substrata totals,

fiajb, and means, ?Siajb, ranged from 40.9 percent to 45.8 percent for key variables (see

Table 3.16). Totals and means at the PSU, SSU strata, SSU iaj level were missing 13.6
percent to 17.0 percent of the time, and at the PSU, SSU strata ia level 1.8 to 10.6 percent
of the time. However, no imputation was necessary at the iaj or ia level since lower level
imputation at the iajb level took care of those missing values.

Having an empty HU sample for an iajb combination is problematic because there is
no data to estimate means or totals at certain levels of stratification, and thus no data to
estimate variances. Having only one HU in an iajb combination is also problematic because
only one sample HU is insufficient for variance estimation. This also extends to any single
PSU i, PSU/SSU stratum ia, SSU j given PSU/SSU stratum ia, and SSU stratum/MSG
substratum ab combination for which there are less than two sampled HUs. In the analyses
for this thesis, we can assume that all iajb combinations occur in the population, even
though some may be empty in the HRS 2010-11 data file. Values are imputed where

necessary as described in Section 3.4.2. However, in order to avoid large amounts of
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imputation at the iajb level, we choose an alternative estimation for the pwr estimator in
Eq. (1.6) as specified below. All screened HUs could be used to estimate the population
counts of HUs in the SR and NSR PSUs. The smaller set of HUs that provided interview
data could be used to estimate means per HU. Thus, we estimated population totals by

multiplying estimated population counts by estimated population means:

tprr.alt = tprr.alt,SR +fpwr.alt,NSR (2.1)
where
tprr.alt,SR = QSR ?SI,SR (2.2)
and
Epwr.alt,NSR = Qnsr ?sl,NSR (2.3)
where

QSR =7,606,112 is the estimated total number of HUs in the population of SR PSUs in
SSU strata 2-4,

QNSR = 21,416,368 is the estimated total number of HUs in the population of NSR PSUs
in SSU strata 2-4 ,

Q =Qqg +OQnsr = 29,022,480 is estimated total number of HUs in the population , and

PIDIDIDNDIRIT PIDIDID WD IRIT

~  desigp @ jesy b kesyp - _ies nsp @ Jesip b kesig
ysl,SR o and ysl,NSR -

PIDIDIDNPIN PADIPIDNPIN

ies)gp @ jesiy b kesiajb ies) nsr @ €S b kesiajb

are estimated means from HUs that reported an item like income for SR and NSR PSUs

and w is the weight for an HU defined in Section 2.3.1.
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The fpwr_a“ estimate for each analysis variable is displayed in Table 3.15 along

with the number of sample HUs selected from the SR and NSR PSUs and the values of

?SLSR and ?Sl‘NSR . Here we also display Fsr and Fygg, which will be estimated as

~ A

A t A t
For = p:/vr.alt,SR and Frsg = pvllr.alt,NSR 2.4)

tpwr.alt tpwr.alt
in Section 4.3.1 in the variance of the optimization problem.
3.4.2 Imputation of Missing Data
Empty combinations can occur either because the population itself contained no cases in a
particular iajb or, by chance the sample contained no such cases even though there may
have been some in the population. We impute values for different components in the

variance formulas where necessary as described in the following sections.

3.4.2.1 PSU, SSU Strata, SSU, MSG Substrata Level (i2jb) Imputation
When computing fpwr for use in variance formulas, we used Eq. (2.6) along with the
imputation methods described below. This is unlike the alternative approach we took in
Section 3.4.1 to estimate totals and means found in Table 3.15. The different approaches

lead to very similar estimates of fpwr .

A

Vs - FOT ﬁsiajb that were missing we used the mean of the y, ’s for SSU strata/ MSG

substrata ab to impute values for all variables. The SSU stratum/MSG substratum 0303
had zero sample HUs in the SR PSUs and only one sample HU in the NSR PSUs. Since

there were no HUs in the SR PSUs in 0303, we used the imputed value of SSU
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stratum/MSG substratum 0403 for SSU stratum/MSG substratum 0303°. We used this

same substitution method for other statistics when necessary.

fiajb: For missing fiajb :Qiajbysiajb’ we conducted the imputation in two ways. For
continuous variables, we calculated fiajb for those cases where y, was non-missing (and
?Siajb was not imputed) then used the median value of fiajbin each SSU strata/MSG

substrata ab for the imputation. We did this because the totals appeared more reasonable

imputing at the fiajb level than if we had used the imputed values at the ?Siajb level.
However, for categorical 0-1 variables, we found that calculating fiajb using the imputed
values of ?Siajb was sufficient. For the one HU in the NSR PSUs in SSU stratum/MSG

substratum 0303, we imputed the median value of fiajb in SSU stratum 03.

X o 1
Sgiajb: The variance S, =

2
_ Z (yk —Vsiajb) was missing, on average, 68
anJb kesiajb

percent for NSR PSUs and 73 percent of the time for SR PSUs. The variance was missing

more often than for fiajb because there were PSU/SSU strata/SSU/MSG substrata where
there was only 1 HU in iajb. In such cases, the denominator of §§iajb was zero, and thus

the value was undefined. We imputed median and mean values of §§iajb in SSU

strata/MSG substrata ab for continuous and categorical variables, respectively.

10 We chose to use estimates from the SSU stratum/ MSG substratum 0403 as a replacement for those in 0303, because
both belong to high Hispanic SSU strata ( > 10% Hispanic) and both are contained in the same MSG substratum 03
“One or more 45-62 non -Hispanic Other persons in the HU.
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Vaiaio © Vaiajp = GiajbQiajoSsiajp Was missing 41.9 to 45.8 percent of the time. We
calculated \73iajb for those cases where iz, Was non-missing and then used the median

value of \73iajb in each SSU strata/MSG substrata ab for the imputation.

3.4.2.2 SSU Strata, MSG Substrata Level (ab) Imputation

Since there were little to no HUs in SSU stratum/MSG substratum 0303, we replaced the
value of W2, for SSU stratum/MSG substratum 0303 with the value of W2, for SSU

stratum/MSG substratum 0403, for both SR and NSR PSUs,

3.4.2.3 PSU, SSU Strata, SSU Level (i27) Imputation

Because we imputed at lower levels, all iaj combinations were non-missing when

calculated and thus there was no imputation at this level.

3.4.2.4 PSU, SSU Strata Level (72) Imputation
§22Aia: The sample variance among estimated SSU totals in SSU strata a|i §§Aia, was
missing 39.3% of the time when there was only one SSU in PSU i, SSU strata a, i.e.,

Niz =1, thus resulting in a zero in the denominator of the variance. When §22Aia was empty
or very small (less than .0009), it was imputed using the median value of §22Aia for SSU
stratum a across the PSUs with non-missing §22Aia.

§§( pwr)ia - §22( pwr)ia Was negative 23 percent of the time for SR PSUs and 34 percent of

the time for NSR PSUs, due to the subtraction, §22Aia —§§Bia. This is a known defect of

ANOVA variance component estimators but may be exacerbated in this case by the
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imputations. The negative values were replaced with the minimum value of the non-

negative values of §22( pwr)ia - IN every variable but income, the value §§( pwr)ia/mpi that

makes up \/\722a had substantial outliers. For outlier values above the 95 percent quantile,

we replaced §22( pwr)ia /mpi with the median value of §22(pwr)ia /mpi for the non-outliers.

§%ia : S%ia was missing 39.3 percent of the time when there was only one SSU in PSU i,
SSU strata a, i.e., nj; =1, thus resulting in a zero in the denominator of the variance. When

S%ia was empty it was imputed using the median value of S%ia for SSU stratum a across

the PSUs with non-missing §(%ia .

3.4.2.5 PSU Level (/) Imputation

The 2011 HRS sample was a subsample of the full HRS sample and was geared toward
obtaining more cases in racial minority groups. Some PSUs were omitted in the subsample
leading to some PSU-level missing data in 2011. Two of the NSR PSUs contained no

sample HUs. Consider empty-PSU i €s,, the set of PSUs (both empty and non-empty)

contained in Census Region r. The imputed value for the empty PSU-level estimate is the

median estimate among the non-empty PSUs from the same Census Region r. The

following estimates in the NSR PSUs were imputed using this method: fi(pwr) , Vi, and

SZ. Outliers were a concern for the PSU level value > §2,i, /ni, that makes up §12( .
a

We replaced values that fell above the 90 percent quantile with the corresponding Census

region median value of ZézzAia/nia of the non-outliers.
a
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3.4.3 Designed Based ANOVA Variance Components from the HRS
Data

Since we want to know how we should design a survey prior to selecting the sample, it is
customary to use design-based variances, which measure variability across all the samples
that could be selected using a particular design. Design-based variance techniques measure
the changes in the statistics of interest from different possible PSU, SSU, and element
samples selected from the frame. The formulas in Section 2.4.1 were used to estimate the

variance components directly from the 2010-11 HRS sample for different variables.
Table 3.17 shows the relvariance component estimates of B?, W2, B +W?,
5y, ky, and V' shown in Egs. (1.29)-(1.34), for NSR PSUs by selected HRS interview
variables. The between PSU variance component, B2, is small for all variables and
negative for some. The \variables wealthb, other debts, employed,
own_2nd_home and own_transport all have negative values of B2 and thus also for
5. As noted in Section 2.4.1, the estimates can be negative due to the subtraction term that
occurs in the sample variances. When B?is negative, it is likely this component is small.
We will see in the next section how the anticipated variance can give better estimates of

B2 . Values of W 2 are larger than B2 everywhere. In the case of variables wealtha (total

wealth excluding secondary residence) and wealthb (total wealth including secondary

residence), the value of W 2 js much bigger than B2 implying that majority of the variance
comes from within PSUs, i.e., the variance among HUs within PSUs is larger than the

variance among PSU means per HU (or equivalently, among PSU totals).
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Values of & range from -0.0448 to 0.0805, except for the variable

own transport. Small values of &, agree with literature that the effect of clustering
should be small in a population like this population for a pps design. Many of the values

of I21 are near 1 which means the values of B2 +W 2 are close to the unit relvariances of
the population, V . Income has a kAl value of 0.6740 indicating that B2 +W 2is smaller
than the unit relvariance of the population. Own_transport has a I€1 value of 0.57

indicating that B2+W? is half the unit relvariance of the population. However,

own transport also has a negative value of B2 that is contributing to this smaller value

of k.

Table 3.17. Relvariance Component Estimates for Selected HRS Interview Variables
from the 2010-2011 HRS, NSR PSUs

HRS Interview NSR PSUs orjly — -

Variables B2 w2 B2 +W?2 v ) kg

income 0.0815 0.9311 1.0126 1.5024 0.0805 0.6740
wealtha 0.0819 40.1710 40.2529 34.3650 0.0020 1.1713
wealthb -0.3722  35.7472 35.3749 30.6955 -0.0150 1.1524
other debts -0.0452 1.0561 1.0109 1.0833 -0.0448 0.9332
charity_donate | 0.0462 2.3140 2.3602 2.2765 0.0196 1.0368
employed -0.0310 0.8419 0.8109 0.9973 -0.0382 0.8131
ownHome 0.0123 1.1159 1.1282 0.9971 0.0109 1.1315
ownStock 0.0541 4.9139 4.9680 5.4763 0.0109 0.9072
own_2nd_home -0.0507 8.0886 8.0379 8.5608 -0.0063 0.9389
own_transport -0.1222 0.3303 0.2081 0.3599 -0.5874 0.5781
selfRatedHealth | 0.0130  1.2411 1.2541 1.4967 0.0104 0.8379
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Other measures of homogeneity and estimates of variance components for both SR
and NSR PSUs, such as W2,, W2, W, Spq, Koq and V,, found in Egs. (1.29)-(1.38),

are shown in Appendix B.3. Overall, relvariances are bigger in NSR PSUs than SR PSUs.
This could be because of the spareness of the data in SSU strata or from anomalies in HRS

data that should be investigated in practice first when redesigning the HRS data. Negative
values of V\A/22a are highlighted in Table 5.3.

For NSR PSUs, sample sizes are smallest in SSU Stratum 04. Small sample sizes
in SSU stratum 04 may result in very small sample sizes in PSU/SSU stratum ia which
may result in bigger variances in SSU Stratum 04 for some variables, especially for those
where it is not prevalent in that population. Note also that that SSU Stratum 04 is > 10%
Black, > 10% Hispanic population which we would expect to be similar to each other on

many of the HRS variables but may be hard to capture due to small sample sizes. In the

NRS PSUs, wealtha and wealthb have fairly large estimates of V\722a indicating large
variability among SSUs. However, the value of W32a for wealtha and wealthb is much

larger than V\722a implying that majority of the variance comes from within SSUs, i.e., the

variance among HUs within SSUs is larger than the variance among SSU means per HU

(or equivalently, among SSU totals). We expect our allocation to select more HUs inside
of SSUs than more SSUs. Estimates of &,, for wealtha and wealthb that are smaller

than for other variables agree with this.
The above holds for all variables except income and own transport.Income

has the opposite effect with more variability for SSU stratum 02 and 04 (which are both >

10% Black) coming from among SSUs. For income, the opposite was true. V\A/22a was bigger
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than V\A/32a implying that the variance among SSU means is larger than the variance among

HUS within SSUs. HUs are more similar within SSUs on income than between SSUs. We
may expect an allocation from the ANOVA relvariances for income to look different from

other HRS variables, putting more emphasize on selecting more SSUs in those strata and
less HUs per SSU. Estimates of 32a range from (0.28-0.76) for income and (0.27-0.57)

for own transport. Using a univariate optimization problem would help us distinguish

the best allocation to choose given a set of variables.

For SR PSUs, W, was bigger than W.2, in most cases. For own_2nd_home W2,

was negative everywhere for SR and NSR PSUs. The V\A/32a estimates  for
own_transport (0.050-0.058) and other debts (0.115-0.164) were similar across

SSU strata, while V\A/32a estimates of wealtha and wealthb were near 1. Overall, for

NSR PSUs &,, ranged from (-0.04 — 0.649). In Section 3.4.4.4, we compare differences

to results found in ANOVA versus anticipated variances.

3.4.4 Anticipated Variance Components from the HRS Data
Because B2 and sza can be negative, alternative variance estimation techniques need to

be examined and evaluated. One of those techniques is anticipated variances which uses
model-based estimation. For the anticipated model estimates, we did not treat PSUs
sampled from different years as distinct PSUs. Consequently, there are 16 SR PSUs defined
in the model which is the actual number of SR PSUs in the HRS. The formulas in Section
2.4.3 are used to estimate the variance components directly from the 2010-11 HRS sample

for different variables.
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3.4.4.1 Model Selection
To arrive at the model selection of Egs. (1.39) and (1.81), we considered three mixed
models that had the same exact form with the distinction being that of the variance of

residual term ;45 - The three models change this variance in the following manner:

Vary, (k)= o2 +o*§ +a§ab , error term based on SSU strata/ MSG substrata

Vary, (Yk) = o2 + ayz + agza , error term based on SSU strata only

Vary, (V)= o2 + af + agzb , error term based on MSG substrata only

where M;, M,, and M denote Model 1, 2, and 3, respectively. for the three different
models. All three models were fit using SAS proc mixed separately for SR and NSR
PSUs for each HRS variable of interest.

Table 3.18 shows the results for several fit statistics for the continuous variables
income, wealtha, and wealthb. The REML, residual (restricted) maximum likelihood,
estimation method was used in all cases. For NSR PSUs Model 3, income, wealtha,
and wealthb the estimation stopped because of too many likelihood evaluations. This
was corrected by scaling income, wealtha, and wealthb by a factor of 1/1000. To
keep results on the same scale, the SR PSUs model was also scaled. The variance
component estimates for Eqgs. (1.97) - (1.107) produced by proc mixed are also scaled
by a factor of 1/10002 . In Table 3.18, fit statistics with smaller numbers are better fits and

the best fit is highlighted. Model 1, where the error term is based on both SSU stratum/MSG

substratum ab the HU is in, i.e., &igjpx ~ (O, ogzab) , fit the data best 92 percent of the time

for income, wealtha, and wealthb.

94



Table 3.19 shows the results for the fit statistics for selected 2010-11 HRS
categorical variables. The REML, residual (restricted) maximum likelihood, estimation
method was used in all cases. In Model 1 with SR PSUs, the estimation for
own transport Stopped because of too many likelihood evaluations. This was due to all
HUs in SSU strata/MSG substrata 0204 and 0304 having almost all the same value for
own_ transport. T0 correct this, we removed all HUs in SSU strata/MSG substrata 0204
and 0304 out of the model. In Table 3.19 the model with the best fit is highlighted. For
both SR and NSR PSUs, Model 1, where the error term is based on both which SSU
stratum/MSG substratum ab, was the best fit 47 percent of the time for NSR PSUs. Since
Model 1 was the best fit for both SR and NSR PSUs, as well as both continuous and
categorical variables, we selected this as our model.

Table 3.18 Fit Statistics for Selected Continuous Variables for 2010-11 HRS Data, SR and
NSR PSUs

NSR PSUs SR PSUs
Selected Model 1 Model 2 Model 3 Model 1T Model 2 Model 3
Continuous HRS
Variables O_«Sab O_ga O"Sb O_«Sab O'gza agb
Percent best fit 100% 0% 0% 92% 0% 8%
income
-2 Res Log Likelihood | 16218.0 16405.8 16339.5 10317.9 10571.3 10365.7
Alc | 16258.0 16415.8 16355.5 10385.9 10611.3 10411.7
Alcc | 16258.6 164159 16355.6 10388.5 10612.3 10412.9
BIC | 16294.2 16424.8 16370 10493.9 10674.9 10484.8
wealtha
-2 Res Log Likelihood | 21814.1 24229.4  23006.1 13341.7 13688.1 13531.0
AlC | 21854.1 24239.4 23022.1 13377.7 13696.1 13545.0
AlCC | 21854.6 24239.5 23022.2 13378.4 13696.1 13545.1
BIC | 21890.2 24248.4 23036.6 13434.9 13708.8 13567.2
wealthb
-2 Res Log Likelihood | 21943.9 24358.6 23111.8 134875 13781.8 13680.7
AlC | 219839 24368.6 23127.8 135235 13789.8 13694.7
Alcc | 21984.5 24368.7 23127.9 13524.3 13789.8 13694.8
BIC | 22020.1 24377.7 23142.2 13580.7 13802.5 13717.0
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Table 3.19 Fit Statistics for Selected Categorical Variables for 2010-11 HRS Data, SR
and NSR PSUs

Selected NSR PSUs SR PSUs
Categorical HRS 2 2 2 2 2 2
Variables s O, %, e e, T,
Percent best fit 47% 31% 22% 47% 28% 25%
other debts
-2 Res Log Likelihood 2087.8 2088.0 2088.0 1320.4 1321.8 13211
AlC 2125.8 2096.0 2102.0 1356.4 1329.8 1335.1
AlCC 2126.4 2096.1 2102.1 1357.2 1329.9 1335.3
BIC 2160.2 2103.3 2114.6 14135 1342.5 1357.4
charity donate
-2 Res Log Likelihood 1777.3 1817.3 1785.3 1119.1 1149.4 1133.6
AlC 1817.3 1827.3 1801.3 1155.1 1157.4 1147.6
AlCC 1817.9 1827.4 1801.4 1155.9 11574 1147.8
BIC 1853.5 1836.4 1815.8 1212.3 1170.1 1169.9
employed
-2 Res Log Likelihood 2148.0 2150.0 2149.2 1362.1 1364.1 1363.0
AlC 2188.0 2160.0 2165.2 1398.1 1372.1 1377
AlICC 2188.6 2160.1 2165.3 1398.8 1372.2 1377.1
BIC 2224.1 2169.0 2179.6 1455.3 1384.8 1399.2
ownHome
-2 Res Log Likelihood 1914.8 1924.4 1922.6 1176.8 1185.3 1186.2
AlC 1954.8 1932.4 1936.6 1212.8 1193.3 1200.2
AlICC 1955.4 1932.4 1936.6 12135 1193.4 1200.4
BIC 1990.9 1939.6 1949.2 1269.9 1206.0 1222.5
ownStock
-2 Res Log Likelihood 952.1 1098.2 980.2 710.6 780.6 734.9
AlC 992.1 1108.2 996.2 746.6 788.6 748.9
AlCC 992.7 1108.3 996.3 T747.4 788.7 749.0
BIC 1028.3 1117.2 1010.6 803.8 801.3 771.1
own_ 2nd_home
-2 Res Log Likelihood 260.2 336.8 363.8 258.8* 335.3 308.1
AlC 300.2 346.8 379.8 294.8* 343.3 322.1
AlCC 300.8 346.8 379.8 295.5* 343.4 322.2
BIC 336.3 355.8 394.2 351.9* 356.0 344.3
own_ transport
-2 Res Log Likelihood 1527.8 1643.8 1553.7 1070.4 1136.1 1116.2
AlC 1567.8 1653.8 1569.7 1102.4 1144.1 1130.2
AlCC 1568.4 1653.8 1569.8 1103.1 1144.2 1130.3
BIC 1603.9 1662.8 1584.2 1153.2 1156.8 1152.4
selfRatedHealth
-2 Res Log Likelihood 2125.1 2148.9 2139.8 1339.0 1353.7 1344.6
AlC 2165.1 2158.9 2155.8 1375 1361.7 1358.6
AlCC 2165.6 2158.9 2155.9 1375.7 1361.8 1358.8
BIC 2201.2 2167.9 2170.3 1432.2 13744 1380.9

*Does not include HUs in SSU strata/ MSG substrata 0204 and 0304
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3.4.4.2 SAS Code for Fitting Random Effects Models

We use the proc mixed procedure in SAS to obtain estimates for the variances

aﬁ, af, and afab , and the fixed effect mean x for selected 2010-11 HRS variables for

both SR and NSR PSUs. These values will be used in Section 3.4.4.4 to obtain the

anticipated variance estimates by plugging them into the estimators of the model

expectations from Section 2.4.3, E,, (Bz) . Ey (sza), Em (W32ab), = (WZ),
= (Wgza), Eum (\72), and Ey (\7612), separately for SR and NSR PSUs. Since the SAS

code for these estimates is fairly specialized we include it here.

Non-Self Representing PSUs

Recall from Section 2.4.2.1 the model for y, with common mean, x , and random

effects for NSR PSUs, a;, SSUs, 7j,j, and HUs in SSU/HU substratum ab, &ajp :
Yk = H+ & +7iaj T Eiajbk

with o ~(0, 05)  Yiaj ~(0, af) . Eiajbk ~(O, agab) and the errors being

independent, such that

Vary (yk):a§+a§+a§ab and Ey (g )=x.

The corresponding SAS statement is shown in Figure 1.

Figure 1 SAS MIXED Statement for NSR PSUs for 2010-11 HRS Data for income

proc mixed data=hrs.NSR noclprint noitprint covtest;
class PSU ID ssu str SSU ID msg str ;
model income = /s;
random int / subject = PSU_ID ;
random int / subject = SSU ID(PSU ID*ssu_str)
repeated /group =ssu_str*msg_ str;
run;
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The proc mixed statement selects only the HRS data that belongs to the NSR PSUs
“hrs.NSR”. To save space in the SAS Output (shown in Appendix B.4) we included the
NOCLPRINT, NOITPRINT, and COVTEST options. NOCLPRINT and NOITPRINT
suppress the printing of information at the CLASS level and of the iteration history,
respectively. COVTEST displays the hypothesis testing of the variance and covariance
components. The CLASS statement names the classification variables to be used in the
model. For our model the classification variables are PSU ID, ssu str, SSU ID,
and msg str which correspond to PSUs, SSU strata (categorized by Black/Hispanic
racial proportions), SSUs, and MSG/HU substratum (Hispanic ethnicity and EBB/MBB
age categories), respectively.

The MODEL, RANDOM, and REPEATED statements together specify the model. The
MODEL statement specifies the fixed effects and the RANDOM statement specifies the
random effects. Since the intercept is our only fixed effect which is included by default,
there are no variables after the equal sign in the MODEL statement. Additionally, the s
option in the MODEL statement asks SAS to print the estimates for the fixed effects, i.e.,
4. The syntax in Figure 1 says that the dependent variable, i ncome, is modeled by a fixed
intercept, u«, (by default when fixed-effects are included), a random effect (int in the

random statement) for PSUs , ¢, (“subject=PSU_ID”), a random effect for SSUs

nested within PSUs and SSU strata, j,j, (“subject=SSU_ID (PSU_ID*ssu_str)”),
and a random error, &ajp , that varies among groups in the REPEATED statement. The

REPEATED group statement (“group=ssu_str*msg str”) allows for 18 differing

estimates of the variance of the residual term, i.e., o2 , in each SSU/MSG substrata ab.

€ab
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Figure 2 SAS MIXED Statement for SR PSUS for 2010-11 HRS Data for income

proc mixed data=hrs.SR cl noclprint noitprint covtest ;
class PSU_ID ssu str SSU ID msg str HU ID;
model income = PSU _ID /s;
random int / subject = SSU _ID(PSU ID*ssu_str) ;
repeated /group =msg_str*ssu_str;
run;

Self Representing PSUs

Recall from Section 2.4.2.1 a model for y, with common mean,  , fixed effects
for SR PSUs, «;, and random effects for SSUs, yi,; , and HUs in SSU/HU substratum
ab, Eiajbk

Yk = H+ O +Viaj T Eiajbk

With yjqj ~ (0, 0'7%), Eiajbk ~ (0, agzab), and the errors being independent, such that

Var,\,|(yk):a§+a€2ab and Epy (yx)=p+a; for keUjpyp,.

The corresponding SAS statement is shown above in Figure 2. The proc mixed
statement selects only the HRS data that belongs to the SR PSUs “hrs. SR”. For the SR
PSU model the classification variables are the same as in NSR PSUs. The distinction for
SR PSUs is the MODEL statement which specifies the fixed effects which are the intercept

which is include by default and PSU_ID. Now, the s option in the MODEL prints the

estimates for the fixed effects © and «; . The syntax expresses that the dependent variable,
income, is modeled by a fixed intercept, u, 16 fixed effects for the SR PSUs, ¢;,
(“model income2 = PSU ID”) , a random intercept clustered by SSUs , yjy,
(“subject = SSU_ID(PSU_ID*ssu_str)”),and arandom error, &,y , that varies

among 18 groups in the REPEATED statement (“group =ssu_str*msg str”).
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3.4.4.3 Anticipated Model Variance Parameter Estimates

The summary of the variance models are in Table 3.19 and Table 3.20 in this section and
in Table 5.17 (see Appendix B.4). In some cases, variance components were not
significantly different from zero or the sample data were too sparse to support estimation.
In such cases, we used ad hoc values described below. Without assigning nonzero values
to all components, the sample allocation algorithm in Section 4 would assign zero units for
some HRS variables for some stages of sampling.

In both SR and NSR PSUs, the PSU variance estimates were all non-significant
indicating that the random effect for PSUs does not play a large part in predicting the
outcome of the dependent variables for a HU. Because the SSU stratum/MSG substratum
0303 had zero sample HUs in the SR PSUs and only one sample HU in the NSR PSUs, the

estimates for SSU stratum/MSG substratum 0303 were replaced with the estimates in SSU

stratum/MSG substratum 0403 everywhere. The estimate of aé for other debts wasO0

for NSR PSUs. To correct for this, the minimum value of 602[ for NSR PSUs (which was the

.0001 for own 2nd_home) was used as a replacement estimate for other debts. For SR
PSUs, for own transport, HUs in SSU stratum/MSG substratum 0204 and 0304 were

removed when fitting the model with SR PSUs.
The estimates of Tables Table 3.19, Table 3.20, and Table 5.17 will be used in the

Section 3.4.4.4 to obtain the anticipated variance component estimates by plugging them

into the estimators of the model expectations from Section 2.4.3, Ey, (Bz) , Em (sza),

= (W32ab), Eu (Wz), Eu (Wgza), Eu (\72), and E,, (\7;) separately for SR and NSR

PSUs.
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Table 3.20 Variance Component Estimates, /, &é, 65, for NSR PSUs for selected 2010-11 HRS variables.

NSR PSUs only
Parameter income wealtha wealthb other debts ((:jharity employed ownHome  ownStock own 2nd own self Rated
onate home transport Health
Intercept 44.36 85.66 88.22 0.4818 0.2927 0.5493 0.5303 0.1409 0.0737 0.7787 0.3611
A2
PSU oy, 37.14 228.57 339.05 0.0001"t  0.0031t 0.0022t 0.0004t 0.0016% 0.0001t 0.0034+ 0.0043t
A2
ssu Oy 555.76 5659.90 4667.90 0.0082 0.0231 0.0245 0.0709 0.0187 0.0043 0.0414 0.0168
(income, wealtha, wealthb are in thousands of dollars)
*NSR PSU estimate from own 2" home used as a replacement for other debts
+Not significantly different from 0
Table 3.21 Variance Component Estimates, z, &; , for SR PSUs for selected 2010-11 HRS variables.
SR PSUs only
P
arameter income wealtha wealthb other debts  charity donate  employed ownHome  ownStock ovr:/n 2nd own - self Rated
ome transport Health
Intercept /2 66.17 187.34 205.02 0.5382 0.3716 0.5787 0.5419 0.3259 0.1140 0.7349 0.2775
SSU 6‘5 3.44E+02 1.10E+04 1.24E+04  0.0025 0.0136 0.0181 0.0822 0.0229 0.0029 0.0190 0.0202

(income, wealtha, wealthb are in thousands of dollars)
*Did not include HUs in SSU strata/ MSG substrata 0204 and 0304
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3.4.4.4 Anticipated Relvariance Component Estimates

Table 3.22 shows the relvariance component estimates of B2, W2, BZ +W?, oy, Ky, and
V shown in Egs. (1.97) - (1.103) for NSR PSUs by selected HRS interview variables. The
between PSU variance component, B2, is small for all variables. The negative ANOVA
values of B? for the variables wealthb, other debts,employed, own 2nd_home and

own_transport have been corrected to be positive and thus also ford;. We noted in

Section 2.4.1, that when the ANOVA estimate for B? is negative, it is likely this

component is small. The anticipated variance does indeed give better non-negative

estimates of B2 that are small. Values of W 2 remain larger than B2 everywhere.

Table 3.22. Anticipated Relvariance Component Estimates for Selected HRS Interview
Variables from the 2010-2011 HRS, NSR PSUs

HRS Interview NSR PSUs orA1Iy ~ z

Variables B2 W2 B2 +W?2 v 5 ky

income 0.0186 1.051 1.0701 1.4800 0.0174 0.7231
wealtha 0.0528 55.968 56.0212 27.0051 0.0009 2.0745
wealthb 0.0538 48.643 48.6965 24.6216 0.0011 1.9778
other_debts 0.0019 1.173 1.174 1.0800 0.0016 1.0875
charity donate | 0.0460 2.410 2.456 2.1590 0.0187 1.1378
employed 0.0115 0.986 0.997 1.0010 0.0115 0.9964
ownHome 0.0124 1.356 1.368 1.0280 0.0090 1.3310
ownStock 0.0861 4917 5.004 5.0820 0.0172 0.9846
own_2nd_home 0.0080 7.878 7.886 6.7840 0.0010 1.1624
own_transport 0.0092 0.450 0.459 0.4180 0.0202 1.0975
selfRatedHealth | (0.0303 1.557 1.587 1.5500 0.0191 1.0239

Values highlighted were negative in ANOVA but now corrected to non-zero values through anticipated
variances
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Values of & for anticipated estimates range from about 0.001 to 0.020. Small values

of 5, agree with the ANOVA estimates. Many of the values of k; are near 1 which means

the values of BZ +W? are close to the unit relvariances of the population, V . Table 3.23

compares the anticipated variance estimates to the earlier ANOVA estimates. We notice
that values of IZl for employed, own transport and selfRatedHealth which were
far from 1 in ANOVA are now nearing 1, indicating that anticipated variances did a good
job of correcting the negative values of ANOVA. Own_transport Which has a I21 value
of 0.57 for ANOVA now has a value of 1.0975. This change happened because the negative

value of B? that was contributing to a smaller value of 121 in ANOVA is now positive. The
ANOVA value of I€1 0.8131 for employed is now 0.9964 when using anticipated
variances. Income has a k; value of 0.723 indicating that B2 +W?2 is smaller than the

unit relvariance of the population. For wealtha and wealthb, K; increased nearly to 2.

Table 3.23. Comparison of ANOVA and Anticipated Relvariance Component

Estimates, |§2. V\72, 51 , and IZl for Selected HRS Interview Variables from the
2010-11 HRS, NSR PSUs

LIRS Inferview ANOVA ANTICIPATED
Variables B2 W2 5 121 B2 W2 5 121

income 0.082 0.93 0.081 0.674 | 0.019 1.052 0.017 0.723
wealtha 0.082 40.17 0.002 1.171 | 0.053 55.97 0.001 2.075
wealthb -0.372 35,75 -0.015 1.152 | 0.054 48.64 0.001 1.978
other debts -0.045 1.06 -0.045 0.933 | 0.002 1.17 0.002 1.088
charity donate 0.046 2.31 0.020 1.037 | 0.046 241 0.019 1.138
employed -0.031 084 -0.038 0.813 | 0.012 0.99 0.012 0.996
ownHome 0.012 1.12 0.011 1.132 | 0.012 1.36 0.010 1.331
ownStock 0.054 491 0.011 0.907 | 0.086 4,92 0.017 0.985
own_ 2nd_home -0.051 8.09 -0.006 0.939 | 0.008 7.88 0.001 1.162
own_transport -0.122 0.33 -0.587 0.578 | 0.009 0.45 0.020 1.098
selfRatedHealth 0.013 1.24 0.010 0.838 | 0.030 1.56 0.019 1.024
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Other measures of homogeneity and estimates of variance components for both SR
and NSR PSUs, such as W2, Wiy, W2, 5,, koa and V,, found in Egs. (1.29) -
(1.38), are shown in Appendix B.5.

The anticipated variance method corrected negative values of V\722a. We can now see

for own 274 home, sza ranges from 0.3474 to 0.4755 for SR PSUs, while in the NSR

PSUs show more variability in own 274 home with values of 1.4 in SSU stratum 03 and
3.17 in SSU stratum 04. Overall, the SR and NSR estimates obtained using anticipated
variances were smaller more similar to each other for the categorical variables than they

were using ANOVA. However, for wealtha, and wealthb, both methods had much
higher values for sza in NSR PSUs than in SR PSUs. In addition, there are some
discrepancies in the variance estimation for sza across the ANOVA and anticipated
methods. This should be studied further when designing a survey.

For NSR PSUs, V\A/3,2al for income and categorical variables were similar to ANOVA

in all SSU strata. For wealtha and wealthb, SSU stratum 03 still had smaller variance

in comparison to the other SSU strata; however, estimates for V\A/32a increased significantly

in size (e.g., for wealtha in NSR PSUs in SSU stratum 04 increased from 82.9 for

ANOVA to 1573.9 for anticipated). This is probably due to outliers in SSU stratum 04.

Results for V\73Zab were similar for ANOVA and anticipated variances in Table 5.9 and Table
5.23. In NSR PSUs, V\73%b estimates were very large in some cases. Some variables such as

wealtha, wealthb, ownStock, own 2°¢ home, With large values of V\A/32ab (e.q.,
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wealtha has a value of 11426.92 for Wgzab’NSR in Table 5.24). These large values may be

due to a variety of reasons such as (i) instability due to a very low sample size in an ab
substratum (for HRS this was sometimes less than 3), (ii) outliers, or a combination of both
of these factors. As noted earlier, these matters should be studied further in practice when

redesigning any multistage sample.
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4 The Optimization Problem

Chapter 4 describes how to optimally allocate a three-stage sample using mathematical
programming methods. Certainty and non-certainty PSUs are handled separately subject

to a cost constraint.

4.1 Introduction

When designing the sample described in Section 2.3 it is necessary to determine how many
PSUs to select and how many sample units to allocate to each SSU stratum and HU
substratum subject to a total fixed cost. We can determine this allocation based on a single
estimate (univariate), as we will demonstrate in Section 4.3, or for a set of estimates
(multivariate). Generally, a national survey, such as HRS, wishes to make estimates for
many analysis variables [ (e.g., income, employment status, etc.) and subgroups (or domain
d) (e.g., Blacks, age groups, etc.). This type of allocation problem is less straightforward
than if only a single estimate is desired, considering that compromises must be made to
find an allocation that will give acceptable levels of precision for all target estimates.

In Section 4.2, we develop a cost function associated with collecting data for the
three-stage sample design in the HRS data. In Section 4.3, an optimization problem is
formulated that finds an optimal sample allocation with the objective of minimizing the
approximate relvariance of a single target estimate for a total fixed cost subject to a variety
of constraints. A more complex approach is to minimize a weighted sum of the relvariances
of estimates of target variables, where the variables are weighted according to their degree
of importance to the goals of the survey. We formulate the multivariate optimization
problem in Section 4.3.2. The relvariance is used to reduce the variance components of

differing dimensions and differing types of estimates (totals, means) to the same scale.
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The Solver tool in Microsoft Excel uses nonlinear programming to find solutions
to problems with “up to 200 decision variables and constraints on up to 100 cells in the
spreadsheet” (Valliant, Dever, & Kreuter, 2013). All solutions to the optimal allocation

problems are found using Excel Solver.

4.2 Cost Functions

4.2.1 General Cost Function

Consider the costs associated with collecting data in the three-stage sample design of
Section 2.3. Assume there are costs per sample PSU, sample SSU in stratum a, and

sample HU in substratum ab, denoted as C;, C,,, and Cz,, respectively. Then a simple

cost function is

A A B
C=Cy+Cm+ ZCZamﬁa +ZZC3abmﬁacTab (3.1)
a=1 a=1b=1

where Cydenotes fixed costs that do not depend on the number of sample PSUs, SSUs, or
HUs, 71, is the mean number of sample SSUs allocated to SSU stratum a, and T, is the

mean number of HUs allocated to substratum ab.
We seek to find the optimal allocation that minimizes the relvariance in Eq. (1.16)

, subject to a total cost C —C and to a list of constraints described in Section 4.3 . This

allocation problem does not have a closed form solution but can be solved using nonlinear

programming methods.
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4.2.2 Self-Representing (SR) and Non-Self-Representing (NSR) PSUs

Because the HRS data used in this analysis contains both SR and NSR PSUs, the optimal

solution components must be calculated separately. The cost function that considers both

SR and NSR PSUs is
A
C—Co =Cy(Mgg +Mysr) + 2, Co (MsrMa, 5r + Mysra NS )
a=1
s ) ) (3.2)
+> " C3(MsrMa,srUa,sR + MNSRMa,NsRab,NSR )
a=1b=1

Non Self-Representing (NSR) PSUs

The optimal allocations for NSR PSUs will be found using nonlinear programming

with the decision variables being with mgy = Mgy nsr = the optimal number of NSR

PSUs to select, and the optimal sample sizes of SSUs to select per SSU stratum a,

Mopt,a = Nopt,a,NsR » and the optimal number of HUs to select per SSU stratum a, HU
substratum b, Gopt ap = Topt,ab,NsR » are within NSR PSUs only.

Self-Representing (SR) PSUs

When there are not a fixed number of certainty PSUs, the optimal allocation problem
is also complicated because there is no closed form solution. One could partially resolve
this complication by allocating a fixed number of SR PSUs. Even with this simplification,
the numbers of sample SSUs and HUs must still be determined. In our demonstration, we
utilize a nonlinear programming algorithm in Excel Solver to complete this complex

allocation problem.
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4.3 Optimization Problem

To write down the mathematical formalization of the optimization problem, first
define:

S = a set of L estimates for which target levels of precision are desired

0, = the population value (e.g., total or mean) of analysis variable [

0, = the estimate of 8, (which will be estimated using Eq. (1.6) for totals)

0,4 = the estimate of analysis variable ! in domain d

w; = the importance weight for analysis variable [

C Vz(él) = the relvariance of 8, (which is defined by Eq. (1.16) for totals)

CV(él) = [CV2(8,) = the coefficient of variation of 0,

CV(@M) = [CV?2(0,y) = the coefficient of variation of 0,4

The importance weights are based on the subjective judgment of the survey designer about
how important particular estimates are to a survey.
4.3.1 Univariate Optimization Problem
We formed the univariate optimization problem as follows:
Find {Mysr, Masr: MaNsk: TabsR: Jab,NsR: @=L, A b=1..,B} that

minimizes the approximate relvariance which is defined by Eq. (1.33) (i.e., the objective

function),
A 2 ~
0=CV*(A)
22 V(fDWF SR) ) V(fpwr,NSR) (3.3)
=Fspr—3 +FNSR—
tpwr SR tpwr NSR
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where in order to solve the optimization problem, relvariances, & (éﬁ ), were evaluated

~ A

. 2 . 2
t t
. . A wr.alt,SR 2 wr.alt,NSR
based on estimated variance components, FSZR = PR and F,\%SR - | AT
pwr.alt pwr.alt

subject to the constraints:

(1) Fixed SR PSU sample size: mgg =16, We choose to fix the total number of
sample SR PSUs, mimicking the idea that an allocation is being made to an
existing PSU sample. The number of SR PSUs in the HRS is actually 16.

(2) Minimum NSR PSU sample size: mygg =25 , a lower bound on the total
number of sample NSR PSUs

(3) Maximum  SSU  strata  sample  size: Mg sp, < Min{ Ny | i =
1,..,msg} and g ysgp, < Min{ Ny | i = 1, ..., mygg} foralla,ie,, 70, is
bounded above by the value for N;, of the SR/NSR PSU that has the minimum
number of SSUs in the population for SSU stratum a

(4) Minimum SSU strata sample size: N, gg, Nynsg 22 foralla, ie., a
minimum number of SSUs sampled per SR/NSR PSU from SSU stratum a (in
general Ny yip > 2)

(5) Maximum HU substrata sample size: g,z < min{Qiajb |i =
L.,me,j=1,..,n} and Gupysg <min{Qigjp i =1, ..., mysr,j =
1, ...,n} for all ab,i.e., qqp is bounded above by the value for Q;qj), of the

SR/NSR PSU/SSU jj that has the minimum number of HUs in the population

for SSU stratum/HU substratum ab
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(6) Minimum HU substrata sample size: §,p sr, Gapnsr = 2 for all ab, ie., a
minimum number of HUs sampled per SR/NSR PSU/SSU ij from SSU strata/
HU substrata ab (in general §ap min = 2)

(7) Minimum and Maximum sample size of HUs per PSU:

50< Zz ﬁa,SR aab,SR ) ZZ ﬁa,NSR aab,NSR <100 , i.e., a minimum and
a b a b

maximum number of HUs sampled per SR/NSR PSU i

(8) Maximum HU sample size: Osr < Qsg =7,606,112 and
ansr < Qnsr = 21,416,368, 1.e., the number of sample HUs for the SR and
NSR PSU sample cannot be more than the number of HUs in the population for
SR and NSR PSUs, respectively

(9) Fixed costs: Assume that the cost per sample SSU is the same in every
substratum a and that the cost per sample HU is the same for every substratum
ab. Define the costs at each stage of sampling as

- 850, Occupied HU
C- [cl ~$35,000, C,=$2,600,C; = {$ P! ]

$150, Unoccupied HU

(3.4
such that

A
C—Cp =Cy(Mgg +Mysr) + 2, Cp (Msp My s + MsrTa, NsR )
a=1
A B

+2.2.Cs (mSRﬁa,SRaab,SR + MsrMa, NSR Jab, NSR )
a=1b=1

< Ciot
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where Cy,; 1s the total budget for costs that vary with sample sizes. For this
optimization problem we set C;,; = $10 million.

(10)  Target sample sizes for analytical domains d=(1=45-62 Hispanic; 2=45-
62 NH Black; 3=45-62 NH Other) that account for inaccuracy of listings due
to commercial list data: The expected number of sample HUs found to be
eligible by being in HRS analytical domain d | d=1,..,3 (1=45-62 Hispanic;
2=45-62 NH Black; 3=45-62 NH Other; and two other domains: 4=Not 45-62;

5=Unoccupied HU) is

(@=) 3" qupald

where

Qap = MNzqap > the number of HUs allocated to SSU /HU substratum ab
Pap(d) = the proportion of HUs in SSU stratum/HU substratum ab that are
correctly identified by the commercial list data as being in domain d (i.e., the
accuracy rate of the commercial list data for domain d in SSU strata/HU

substratum ab). For this analysis, we used the unweighted accuracy rates,

Pap (d), from Table 3.8.

The constraint is to set q(d) = qy(d), the target number of sample HUs for
each domain d. This will allocate q,;, to SSU stratum/HU substratum ab while
accounting for inaccuracy of commercial list data.

Instead of expected target sample sizes for domain d, we used the expected

proportion of sample HUs allocated to domain d

112



Sq(i (3.5)
> q(d)
d=1

q(d)

3
2. a(d)
d=1

The constraint is to set >.30, such that the sample size of HUs for each

domain d is spread more or less evenly throughout the total sample.
(11) Maximum design effects for weights:
def fi = 1 + relvar(base sampling weights) < D, = 1.75, a bound on
weighting design effects.
Constraining the variability of the weights is a standard technique in sampling and helps
reduce the variance of full population estimates (Kish 1965).
Although not used here, additional constraints that might be used in some problems are the
following:
(12)  Maximum design effects for weights of domains:
def fra = 1 + relvary(base sampling weights) < Dy; = 1.75, a bound on
weighting design effects for each domain d.
(13)  Target coefficient of variations for estimates of domains:

CV(@ld) < CVO(éld) for all 8,4 € Sg, i.e., the coefficient of variation of an

estimate 0,4 is bounded above for all 8,; in some set of estimates that have

desired precision targets.
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4.3.2 Multivariate Optimization Problem
The optimal allocation will be different for different variables and a compromise
needs to be made. To accomplish this, we minimize the weighted average of the CV’s for

different variables. The multivariate optimization problem is as follows:
Find  {Mnsrs Masr: Mansr: JabsRr Jabnsri @=L A b=1.,B}  that

minimizes the weighted sum of the relvariances (i.e., the objective function),
L 2/
$=Ym-CV (4) (3.6)
1=1
The constraints will be the same as in the univariate case (1) — (11). An importance

weight, oy, will be assigned for each desired of analysis variable [ we want to include in

the optimization. Importance weights are often assigned depending on the objective of
the survey. In some surveys it may be possible to identify variables that are the main
outcomes of interest, giving them more weight in the optimization. For example, in HRS
data important variables such as income and wealth may be given more weight in the

objective function above.

4.4 Optimal Allocations for a Three Stage Sample Using Accuracy
Rates from an HRS Survey

In this section, we share the results of the optimal allocation we computed using Excel
Solver based on Egs. (4.2), (4.3), and (4.4). Section 4.3.2 illustrates how a multivariate
optimization problem can be solved using equal importance weights when applied to HRS
data. Appendix C displays table of the optimization results for each variable of interest by

the different methods of variance estimation.
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4.4.1 Univariate Allocation Using Design-Based ANOVA and Model
Based Anticipated Relvariances

The set up for the Excel Solver allocation using design-based ANOVA relvariances and
model based anticipated relvariances, as well as their solutions for each selected HRS
variable are displayed in Appendix C.1 and Appendix C.2, respectively. We give an
overview of the Excel Solver table below.

Recall in Section 3.3 we estimated the accuracy rates in which commercial lists
from MSG can correctly identify households for each analytic domain d of interested in

HRS: 1=45-62 Hispanic; 2=45-62 NH Black; 3=45-62 NH Other and two other domains:

4=Not 45-62; 5=Unoccupied HU. The unweighted accuracy rates, p,,(d) , from Table

3.8 are displayed at the top left of the Excel Solver table. (Note that the accuracy rates do
not depend on PSU classification (SR or NSR)). These are needed to find out how many
HUs would be eligible for the HRS in each SSU/MSG substratum ab. The overall
proportion of eligible HUs for each SSU/MSG substratum ab is displayed under the column
heading “All Eligibles”. This information allows us to determine how many HUs need to
be sampled and screened, overall and in each SSU/MSG substratum ab, to achieve our
actual allocation.

Highlighted in blue in the figures in Appendices C.1 and C.2 are the ANOVA
variance components estimates for both SR and NSR PSUs that were estimated in Section
3.4.3 for ANOVA and Section 3.4.4 for anticipated variances. The sample allocations for
both SR and NSR PSUs are heighted in grey and are summarized in Tables 4.4 — 4.8. The
bottom left corner of each Excel table in the Appendices holds the constraints of the
optimization problem as detailed in Section 4.3.1. A column displays either TRUE or

FALSE indicating whether or not a constraint has been satisfied. In the adjacent columns
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is a summary of the total number of HUs needed to be screened separately for SR and NSR
PSUs as well as the actual allocation achieved or the number of HUs we expect to be
eligible for the HRS given the screening of HUs.

A summary of the Excel Solver solutions is displayed in Table 4.1 for ANOVA.
For most variables the weighting design effect, def f;, , was 1.75, which is the maximum
bound on design effects for the optimization problem. Other debts, Own_2"d home
and selfrRatedHealth had design effects of 1.67, 1.54 and 1.56, respectively. The total
relvariances estimated using Eq. (4.7) range from (0.001-0.015). The relvariances for SR
and NSR PSUs estimated using Eq. (2.19) range from (0.008-0.035) and (0.001-0.024),
respectively. Wealthb had the maximum coefficient of variation 0.121 while

own_transport had the lowest at 0.037.

Table 4.1 Summary of Excel Solver Solutions Using Design-Based ANOVA Variances

Summary of Solution ANOVA

Selected HRS Total A A RelVar Relvar
Variables dffc Retvar  CV Fs FNSR  (tpwnse) (o)
income 1.75 0.006 0.075 0.093 0.483 0.016 0.009
wealtha 1.75 0.014 0.117 0.099 0.470 0.035 0.022
wealthb 1.75 0.015 0.121 0.097 0.475 0.034 0.024
other_debts 1.67 0.002 0.043 0.067 0.550 0.012 0.002
charity_ donate 1.74 0.004 0.066 0.075 0.529 0.018 0.006
employed 1.75 0.002 0.046 0.079 0.518 0.011 0.002
ownHome 1.75 0.003 0.054 0.062 0.564 0.015 0.003
ownStock 1.75 0.009 0.094 0.110 0.447 0.031 0.012
own_2nd_home 1.54 0.008 0.091 0.059 0.574 0.018 0.013
own_transport 1.75 0.001 0.037 0.056 0.582 0.013 0.001
selfRatedHealth | 156 0.002 0.042 0.067 0.551 0.008 0.002
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Table 4.2 Summary of Excel Solver Solutions Using Anticipated Variance

Summary of Solution Anticipated
Selected HRS Total A - RelVar RelVar
Variables def fi RelVar Cv Fsr Frsr (towr,sr)  (towrNsR)
income 1.67 0.001 0.036 0.305 0.695 0.005 0.002
wealtha 1.75 0.026 0.162 0.314 0.686 0.049 0.045
wealthb 1.75 0.022 0.149 0.311 0.689 0.046 0.038
other_debts 1.69 0.002 0.044 0.258 0.742 0.013 0.002
charity donate 1.69 0.004 0.062 0.273 0.727 0.021 0.004
employed 1.74 0.002 0.041 0.280 0.720 0.010 0.002
ownHome 1.75 0.002 0.047 0.249 0.751 0.018 0.002
ownStock 1.75 0.007 0.083 0.332 0.668 0.029 0.008
own_2nd_home 1.62 0.014 0.118 0.242 0.758 0.092 0.015
own_transport 1.75 0.001 0.029 0.237 0.763 0.007 0.001
selfRatedHealth | 170 0.003 0.053 0.258 0.742 0.018 0.003

Table 4.3 PSU Allocation for Selected Variables using ANOVA and Anticipated
Variances for Self-Representing and Non-Representing PSUs

Selected HRS ANOVA ANTICIPATED
Variables MgR MnsR MgR MysR
income 16.0 88.1 16.0 80.9
wealtha 16.0 85.4 16.0 84.3
wealthb 16.0 85.9 16.0 83.8
other_ debts 16.0 81.1 16.0 80.7
charity donate 16.0 85.4 16.0 80.9
employed 16.0 83.5 16.0 80.9
ownHome 16.0 85.4 16.0 81.1
ownStock 16.0 80.2 16.0 81.0
own_2nd_home 16.0 80.2 16.0 80.6
own_transport 16.0 85.6 16.0 80.9
selfRatedHealth | 16.0 80.1 16.0 80.8

The results in Tables 4.2 using anticipated variances are similar to results from ANOVA.
Here the design effects range from 1.62 - 1.75. Own_2nd_home has the smallest design
effect of 1.62. The total relvariances estimated using Eg. (4.7) range from (0.001-0.026).

The relvariances for SR and NSR PSUs estimated using Eq. (2.19) range from (0.007-
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0.092) and (0.001-0.045), respectively. The variable with the largest coefficient of
variation was wealtha at 0.162. Own transport had the lowest coefficient of

variation at 0.029.

The number of sample SR PSUs was held constant at mgg =16. Across all variables

the optimal number of NSR PSUs to select in the allocations were around 80 to 84 NSR
PSUs when using ANOVA, and 80 to 88 NSR PSUs when using anticipated variances. For
ANOVA, the allocation for income stood out by allocating 88 NSR PSUs more than any
other variable. The optimal number of SSUs allocated to each SSU stratum is displayed in
Table 4.4. When using both ANOVA and anticipated variances, the number of SSUs

allocated to the NSR PSUs was M, ysg =2 (the minimum SSU strata size in the
constraints) in SSU stratum 03 and 04 and for all variables. This agrees with the estimates
V\732a being bigger than sza in NSR PSUs, which allocates more HUs in SSUs than more

SSUs. Slightly more SSUs were allocated to SSU stratum 02 for almost all variables when
using the ANOVA, and similarly for Anticipated variance allocations slightly more SSUs

were allocated to SSU stratum 02 but only for income, wealtha, and wealthb.

The optimization problem using anticipated variances allocates slightly more SSUs

to SSU stratum 03 across all variables except for wealtha and wealthb, which remain

constant at 2.0 SSUs per SSU stratum. The overall range for n, g is 2.0 — 4.2 SSUs.
ANOVA had only a slightly bigger range with i, sg spanning from 2.0 to 4.5 SSUs.

Design-based ANOVA allocates around twice the number of SSUs (4.0 and 3.6) to SSU

stratum 03 for wealtha and wealthb than other variables. We also note a larger amount
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of SSUs being allocated in SSU stratum 02 for ownHome. For the variables
own 2nd home and sel fRatedHealth, the allocation under ANOVA for SR PSUs was
the minimum number of SSUs, 2.0, in all SSU strata.

Allocations results for HUs, displayed in Table 4.5, Table 4.6, and Table 4.7, were
similar across variables. For SR PSUs, across continuous variables, a large amount of the
HUs were allocated to SSU/MSG substratum 0302 (< 10% Black, > 10% Hispanic / 45-62
NH Black) when using both the ANOVA and anticipated variances. In particular,
SSU/MSG substrata 0202, 0301, 0401, and 0406 had the highest numbers of HUs allocated
and expected to be eligible. The allocation of HUs to MSG substrata 03 and 04 (45-62 NH
Other and 45-62 No Race/Eth) was minimal. In these substrata, the allocation was always

Jab.sr = 2.0 HUs per SSU/MSG substratum, the minimum number of HUs as constrained

by the optimization. The allocation seemed to favor allocating HUs to MSG substrata 05
and 06.

Using both ANOVA and anticipated variances to obtain an allocation for HUs in
NSR PSUs, more HUs were allocated to SSU strata 02 than other SSU strata a across all
variables. In particular, SSU/MSG substrata 0201 and 0202 had the highest numbers of
HUs allocated and expected to be eligible. Overall, the optimization problem using

ANOVA and anticipated variances allocated mysr , M2 sr, MansR» Tab.sr @Nd Tap NSR »

slightly differently across variables. For example, in SSU/MSG substrata 0301 for the SR

HU allocation in Table 4.5, upsg =4.5 for income, yp g =10.6 for wealtha, and
Oab,sr =16.2 for wealthb. In this demonstration, every variable behaves differently in

the allocation and a compromise needs to be made. This is when a multivariate allocation
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is appropriate that minimizes the weighted average of relvariances depending on what
variables we are more interested in.

The allocations for analysis variables that had negative values for ANOVA
relvariance estimates were somewhat different when the anticipated relvariance estimates
were used. For example, for own 2°¢ home was negative for all three SSU strata in SR
PSUs, and the minimum of 2 SSUs were allocated. But, when these relvariance estimates
are corrected to be positive with the anticipated relvariances, the allocations of SSUs are
2.5,3.1,and 2.0 in Table 4.4. For sel fRatedHealth, ANOVA relvariances for SR PSUs
led to the minimum of 2 SSUs in the allocation while anticipated relvariances allocated
3.3, 3.5, and 2.9. Because the anticipated relvariances correct the problem of negative

component estimates, the allocations using them seem more reliable.
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Table 4.4 SSU Allocation for Selected HRS Variables using ANOVA and Anticipated Variances for Self-Representing and Non-
Representing PSUs

ANOVA
SSU . own own self
stratum income wealtha wealthb Ztgir c;arltty employed Hown Siwnk 2nd trans Rated
a eots onate ome oc home port Health
ﬁa,SR
02 2.6 4.0 3.6 2.0 2.1 2.0 2.1 2.5 2.0 2.0 2.0
03 2.0 2.0 2.0 2.8 2.0 3.3 4.5 3.5 2.0 3.6 2.0
04 2.3 2.0 2.0 3.2 3.8 3.7 2.0 2.8 2.0 2.9 2.0
Ma,NSR
02 2.9 2.6 2.7 2.1 2.5 2.3 2.5 2.2 2.0 2.5 2.0
03 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
04 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
SSU ANTICIPATED
stratum . other charity own own own own self
income wealtha wealthb employed 2nd trans Rated
a debts donate pLoy Home Stock home port Health
ﬁa,SR
02 2.1 2.0 2.0 3.1 3.0 3.3 3.3 2.8 2.5 3.3 3.3
03 3.8 2.0 2.0 3.4 3.6 3.9 4.1 4.2 3.1 3.9 3.5
04 2.6 2.0 2.0 2.7 2.9 3.1 3.2 3.2 2.2 3.0 2.9
Ma,NSR
02 2.0 2.5 2.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
03 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
04 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

121



Table 4.5 HU Allocation for Continuous Variables using ANOVA and Anticipated
Variances for Self-Representing and Non-Representing PSUs

ANOVA
SSU/MSG income wealtha wealthb
Substratum | = = = = = =
ab Uab,sR  Yab,NSR | Uab,SR  Uab,NSR | Uab,SR  Uab,NSR
0201 2.0 13.0 2.0 14.8 2.0 14.2
0202 2.0 11.6 2.0 10.3 2.0 8.6
0203 2.0 2.0 2.0 2.0 2.0 2.0
0204 2.0 2.0 2.0 2.0 2.0 2.0
0205 4.7 51 4.3 49 4.5 49
0206 6.5 1.7 8.5 7.2 9.4 7.0
0301 10.8 2.0 3.5 3.0 54 2.6
0302 13.2 2.0 19.0 45 18.9 6.2
0303 2.0 2.0 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0 2.0 2.0
0305 7.1 3.6 4.7 3.8 4.6 3.7
0306 9.3 6.4 11.1 6.7 11.3 6.3
0401 3.7 2.0 2.0 2.0 2.0 2.0
0402 5.0 2.0 2.3 2.0 2.4 2.0
0403 2.0 2.0 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0 2.0 2.0
0405 3.3 2.0 3.8 2.0 3.8 2.0
0406 11.0 2.9 7.9 6.3 8.2 5.7
ANTICIPATED
SSU/MSG income wealtha wealthb
Substratum | _— — — — — —
ab ab, SR Uab,NSR | Uab,sSR  Uab,NSR | Uab,sSR  Uab,NSR

0201 2.0 11.8 6.5 11.9 2.0 11.9
0202 6.2 1.7 2.0 12.8 2.0 125
0203 2.0 2.0 2.0 2.0 2.0 2.0
0204 2.9 2.0 2.0 2.0 2.0 2.0
0205 5.8 8.8 9.1 5.3 8.0 55
0206 8.9 9.8 11.0 9.3 10.4 9.9
0301 4.5 7.0 10.6 3.3 16.2 3.2
0302 3.7 9.7 9.7 3.2 8.7 3.9
0303 2.0 2.0 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0 2.0 2.0
0305 6.0 5.3 6.3 4.2 6.1 4.4
0306 6.0 7.2 12.3 55 11.3 5.6
0401 2.9 4.0 8.3 2.0 8.8 2.0
0402 2.4 3.5 2.0 2.0 2.0 2.0
0403 2.0 2.0 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0 2.0 2.0
0405 5.7 2.0 4.1 2.0 4.3 2.0
0406 10.6 3.4 9.7 135 10.3 14.1
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Table 4.6 HU Allocation for Categorical Variables using ANOVA Variances for Self-
Representing and Non-Representing PSUs

_ab,SR

SSSUL;gt\faStaG other charity emploved own own 222 own Rsaetlefd
b debts donate pLoy Home Stock home transport Health
0201 2.0 3.5 2.9 4.0 2.0 4.5 3.1 2.3
0202 4.2 4.8 3.8 35 4.3 6.3 3.3 5.7
0203 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0204 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0205 5.4 6.6 4.6 5.9 3.9 7.3 6.5 6.6
0206 9.4 8.9 7.8 6.9 7.0 124 7.9 9.6
0301 74 6.9 6.2 4.7 3.8 8.6 5.7 9.5
0302 4.7 4.9 3.0 4.0 4.2 3.6 4.1 4.3
0303 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0305 5.3 9.6 3.3 35 6.4 5.6 3.3 9.8
0306 13.0 13.0 9.9 4.3 10.8 20.6 6.6 21.8
0401 3.2 4.3 3.7 4.8 2.7 6.3 4.9 6.8
0402 24 2.5 2.3 3.5 2.7 4.3 34 3.8
0403 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0405 3.8 2.7 3.0 3.9 3.6 3.6 2.6 6.5
0406 10.4 7.2 7.9 13.2 13.8 21.3 8.4 19.7
Uab,NSR
SSU/MSG . own self
Su b;:]rata 3; E: ]; Cciloanralttey employed Hoown?e S ?0\72 k h2 onmde tra i:g ort Hiaatleti
0201 13.7 14.6 15.0 14.5 16.2 121 13.2 10.9
0202 12.6 14.1 15.1 14.2 13.9 8.0 13.6 10.5
0203 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0204 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0205 6.6 5.2 5.7 5.6 6.0 10.5 55 8.4
0206 124 8.3 10.1 8.8 8.9 14.8 9.1 14.8
0301 4.2 2.0 2.8 24 3.2 6.4 34 6.2
0302 5.3 2.1 2.7 2.0 2.9 7.3 2.5 5.6
0303 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0305 5.0 4.6 4.2 4.3 4.8 5.6 3.7 4.8
0306 9.6 7.3 7.8 7.2 8.5 10.3 7.0 11.0
0401 3.2 2.0 2.0 2.0 2.1 2.0 2.0 3.5
0402 2.6 2.0 2.0 2.0 2.9 5.0 2.0 4.2
0403 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0405 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.2
0406 4.3 3.2 3.6 3.1 2.4 2.2 3.3 4.6
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Table 4.7 HU Allocation for Categorical Variables using Anticipated Variances for Self-
Representing and Non-Representing PSUs

_ab,SR

SSSulé/SIt\f;S other charity emploved  own Home own (2):13 own Rsaetlefd
ab debts donate pLoy Stock home transport Health
0201 2.0 2.0 2.0 2.0 2.0 3.4 2.0 2.0
0202 2.0 3.3 2.7 2.7 2.8 4.8 2.8 3.1
0203 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0204 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0205 3.5 4.2 2.9 2.9 3.3 5.4 3.0 3.1
0206 4.9 5.5 4.5 4.4 6.0 5.0 4.5 5.0
0301 6.3 4.3 4.9 4.1 4.2 5.0 4.5 4.3
0302 2.7 3.7 2.3 3.0 3.2 4.6 24 3.3
0303 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0305 5.0 5.0 3.7 3.4 4.3 4.7 3.1 4.3
0306 9.8 6.4 8.2 5.6 8.0 11.2 8.2 9.3
0401 4.8 3.1 3.2 3.8 2.6 5.1 3.8 3.5
0402 24 2.9 2.7 2.6 25 4.3 2.8 3.0
0403 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0405 3.9 3.8 3.2 2.5 3.0 3.8 2.9 3.5
0406 11.7 10.6 9.7 8.0 8.0 10.2 9.3 10.7
ab,NSR
SSU/MSG ) own self
susrga | T ST emwioes omnome 2T Ind % s
0201 9.3 14.5 14.2 11.3 12.6 12.9 12.9 145
0202 10.7 10.8 10.6 11.0 9.6 8.8 11.7 10.9
0203 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0204 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0205 6.8 7.3 6.5 6.8 7.2 8.2 6.2 6.9
0206 12.2 11.2 11.3 10.9 9.8 13.8 12.2 12.1
0301 7.6 4.7 4.5 6.7 6.1 5.3 55 4.4
0302 6.7 5.0 6.0 5.8 6.8 6.1 5.1 4.9
0303 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0305 4.4 4.9 4.1 45 5.0 5.6 3.6 4.0
0306 8.8 7.5 8.1 8.0 7.1 10.3 8.6 8.5
0401 4.4 34 3.6 4.4 4.2 3.3 3.7 3.4
0402 4.5 5.4 5.3 4.9 5.3 5.3 4.8 55
0403 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0405 2.0 2.0 2.0 2.0 2.0 2.0 2.2 2.0
0406 3.8 3.4 3.6 3.2 2.7 3.4 3.9 3.8
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4.4.2 Multivariate Allocation Equal Weights

When not every variable behaves in the same way a compromise must be made.
Multivariate allocation allows for equal or more importance to be given to certain variables
when allocation. In this section, we provide a general look into an allocation that takes into
consideration all the selected HRS variables with equal importance. This type of weighting
may not be true for the HRS but we demonstrate the technique here.

For the purposes of this demonstration, we use Excel Solver to find an allocation

which uses equal importance weights @ =1/11, for each of the selected HRS analysis

variables [. The multivariate optimization objective function is that of Eq. (3.6) has the
same constraints as the univariate allocation from Section 4.3.1. The set up for the
multivariate Excel Solver allocations are displayed in Appendices C.3 and C.4. The results
for ANOVA and anticipated variances are show in Table 4.8. The number of SR PSUs was

fixed at mgg =16. The ANOVA method allocated 88.1 PSUs to the NSR PSUs while the

anticipated variance method allocated 83.1 PSUs to the NSR PSUs.

Table 4.8 Summary of Solution for Multivariate Allocation Equal Weights, ANOVA and
Anticipated Variances

Selected HRS ANOVA ANTICIPATED
Variables Total RelVar  RelVar Total RelVar  RelVar
Relvar cv (twrsr)  (towrnsr) | RelVar CVv (towrsr)  (towrNsR)
income 0.006 0.075 0.016 0.009 0.001 0.038 0.007 0.002
wealtha 0.015 0.123 0.047 0.022 0.027 0.164 0.043 0.048
wealthb 0.016 0.126 0.042 0.025 | 0.023 0.151 0.041 0.040

other debts 0.002 0.046 0.015 0.002 | 0.002 0.046 0.017 0.002
charity donate | 0.005 0.068 0.024 0.005 | 0.004 0.065 0.028 0.004

employed 0.002 0.048 0.015 0.002 | 0.002 0.044 0.013 0.002
own Home 0.003 0.058 0.024 0.003 | 0.003 0.051 0.024 0.002
own Stock 0.010 0.099 0.044 0.011 | 0.008 0.089 0.039 0.008

own 2nd home 0.012 0.109 0.040 0.016 | 0.015 0.124 0.101 0.017
own transport | 0.001 0.039 0017 0.001 | 0.001 0.031 0.010 0.001
selfratediealth | 0.002 0.046 0.011 0.003 | 0.003 0.056 0.024  0.003
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Table 4.9 Excel Solver Multivariate Optimization Results for PSUs, ANOVA and

Anticipated Variance

ANOVA Anticipated
MgR MysR MgsR MysRr
16.0 88.1 16.0 83.1

Table 4.10 Excel Solver Multivariate Optimization Results for SSUs, ANOVA and

Anticipated Variance

SSU Ma,sR
stratuma | ANOVA Anticipated
02 2.6 2.2
03 2.0 2.8
04 2.3 2.1
SSU Ma,NSR
stratuma | ANOVA Anticipated
02 2.9 2.3
03 2.0 2.0
04 2.0 2.0

Table 4.11 Excel Solver Multivariate Optimization Results for HUs, ANOVA and

Anticipated Variance

SSU/MSG ANOVA Anticipated
substratum = = = =
ab Oab,sR  Yab,NSR | YGab,SR  Yab,NSR
0201 2.0 13.1 2.0 13.2
0202 2.7 11.6 2.7 13.3
0203 2.0 2.0 2.0 2.0
0204 2.0 2.0 2.0 2.0
0205 4.8 51 5.7 5.7
0206 6.6 7.7 7.9 9.9
0301 9.1 2.0 9.4 3.1
0302 12.4 2.0 6.3 3.7
0303 2.0 2.0 2.0 2.0
0304 2.0 2.0 2.0 2.0
0305 7.1 3.6 49 4.4
0306 9.4 6.4 9.0 6.6
0401 4.6 2.0 8.2 2.0
0402 5.3 2.0 2.3 2.0
0403 2.0 2.0 2.0 2.0
0404 2.0 2.0 2.0 2.0
0405 3.3 2.0 4.2 2.0
0406 115 2.8 115 12.2
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Table 4.10 displays the SSU allocation for the multivariate optimization. For SR PSUs,
ANOVA and anticipated variance methods allocated between 2.0 - 2.6 SSUs and 2.1 - 2.8
SSUs, respectively, in each SSU strata. ANOVA allocated slightly more SSUs to SSU

stratum 02 1, sg = 2.6, while the anticipated variance method allocated more SSUs to SSU
stratum 03, N, g =2.8. For NSR PSUs, both variance methods allocation was 2.0 SSUs

to SSU stratum 03 and 04 (as in the univariate allocation) and slightly more SSUs to SSU
stratum 02 (2.9 for ANOVA, 2.3 for Anticipated variance). Table 4.11 displays the HU
allocation for the multivariate optimization. Results are fairly similar across both methods

demonstrating this method is useful to the HRS data.

5 Discussion
Commercial address lists have been used to sample households, but investigators spend
considerable time and money on screening households for eligibility as well as locating
certain subpopulations (to achieve target sample sizes). Commercial lists have errors in the
auxiliary data they include. We explored the accuracies of commercial lists further by
estimating the accuracy rates in which commercial lists from MSG can correctly identify
households with certain characteristics (e.g., Hispanics, Non-Hispanic Blacks, Persons 45-
62, etc.). Even with inaccuracies, we demonstrated that utilizing the demographic
information on commercial lists can be used to better identify eligible households with
certain characteristics and subgroups than equal probability sampling as applied to the
2010-11 HRS data. We found that some characteristics like age and race-ethnicity are more
accurately specified on commercial lists than others.

In Chapter 2 and in the Appendix to Chapter 2, a theoretical variance formula,

including variance components for estimated totals and estimators of variance components
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was derived for a 3-stage sample design with stratification of both second-stage and third-
stage units. Design-based ANOVA estimators of relvariance components were derived as
a method of variance estimation. Model-assisted (anticipated variance) estimators of
relvariance components were derived using a random effects model that reflects the
complexity of the sample design and the underlying population. In Chapter 3, both variance
estimation methods were studied and evaluated for use as alternative variance component
estimators. The empirical work used the 2010-11 HRS data to apply and illustrate the
variance component theory.

In Chapter 4, we demonstrated how math programming can be used with inaccurate
information on commercial lists to find a sample allocation in a complex survey design.
We determined how to allocate a three-stage sample supplemented with auxiliary
information from commercial lists while accounting for errors in that information.
Nonlinear programming (NLP) can be used to efficiently allocate a sample that has a
variety of estimation goals and constraints. NLP can find a solution that accounts for (i)
sizes of contributions of different stages of sampling to relvariances of estimates, (ii) CV
goals of a survey, (iii) cost constraints, (iv) other constraints like required minimum sample
sizes in demographic subgroups, maximum design effect due to weighting, minimum and
maximum sample sizes for each stage of sampling, and (iv) error rates in commercial lists.

Future work could be done to apply the work in this thesis to other populations that use
three stage survey samples that stratify SSUs and final stage sampling units. To apply the
methods here, one needs preliminary sample data to estimate variance components, list
error rates, and other parameters that affect sample allocations. A critical step is to evaluate

the quality of the input data used for estimation. In particular, attention must be paid to
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how to impute for missing values and how to deal with sparse samples in order to get

acceptable variance component estimates at all stages.

129



A Appendix Supplement to Chapter 2

Appendix A gives the details of derivations for the design-based relvariance of an estimated
total, the optimal allocation to stages for a single variable, ANOVA estimators of variance
components, and the anticipated variances of relvariance components. All notation was

defined earlier in Section 2.3.2.

A.1 Derivation of the Design Relvariance of {,,

Theorem 1 Let y, be the k™ value of the unit drawn on the k™ draw and p, be the

corresponding one draw selection probability, k=1,2,...,n. Then an unbiased pwr

estimator, tpwr , for the population total is of the form — Z zk Its expected value is
keS k

izl 2
kes Pk | keU
and its variance in single-stage sampling is
Yk ’
ol En (o)

The proof can be found in Sarndal (1992, Result 2.9.1).

Theorem 2 Assume that a three-stage sample is selected using ppswr/ppswr/srswr, that
SSUs in each PSU are stratified into a=1, ..., A strata, and that HUs in each PSU/SSU are
substratified into b=1, ..., B substrata. Sampling of SSUs is done independently from one

stratum to another. Sampling of HUs is done independently from one substratum to

another. The design relative variance (relvariance) of fpwr is
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2
SUl( pwr)

m
£ 2
V( pwr)_i +lzii S0 2(pwr)ia
2 T2
g G| Mico Piass M

1 1A 1 1 &8 S5 siaj
D ) J e ot

Mi0 Pi aMa jeu,, Pilia b=t Giajb

Proof. In the remainder of this appendix, the subscripts “1”, “2”, and “3”, denote stages of

sampling. For example, E; denotes expectation over PSU sampling; E,3 denotes
expectation over SSU and HU sampling. Other notation is defined in Section 2.2 . Using

the law of total variance, V (Y)=V[E(Y|X)]+E[V(Y|X)], and the law of total
expectation, E(Y)=E[ E(Y[X)], we have
V (fpur ) =Va| Ea (Epur | 51:%2) |+ Ex | Vo (Epur | 51,52
s [Es (el 5052) 5]
+E4{Vo Es (fpur| 51,52 [}

+ El{EZ [Vs (Epwr | 52:52) | 51]}
(A1)

1. Consider Vl{EZ[Eg (fpwr| 31,32) | 51]} We start by taking the expected value with

respect to the third stage and obtain
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A B
Es(fpwr| 51’52)=Es DI IDIDD Yk Siajb | 51,52

ies; a=1 jesiy b=LkeU oy, MPiNia P jliakliajb

=ZZA: > ZB: > Y E3(5|<|iajb |31"52)

ies, a-1 jesi, b-1keUyy, MPiMia P jlia”kjiajb

=ZZ Z Z Z mpiniapf::amm

iESl a=1 jesia b=1 keuiajb

1 & bZB:Z .
ylyy =1keUigp

ies; mp; a=1jes;, Nia Pjjia

Sy iy Ly

ies MP; 521 Nia j€Sia pj|ia (A.2)

1 by, . . . . .
Next, note that — Z —2 s the pwr estimator of ty, and is therefore unbiased in pwr
Mia jcs. Pjji
JESia Jlia

sampling. Then, taking the expected value with respect to the second stage

EZ[E3<fpwr| 51,5 ) |51}=E{ZLZA:# ) B |31]

ics MPi a1 Mia jes,, Pilia

ZiéEz(i Z tUiai |51J

ics, "Pi az1 | Mia jes,, Pilia

- ZLZA:tUm

ies; MPi 35

=12E

m ies; Pi
(A.3)
Finally taking the variance with respect to the first stage yields the PSU variance

component
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Vl{EZ[E3(fpwr| 31’32) | 51}} =V1[%Ztu—_i | 31}

ics, Pi

2
ty.
—L A.4
[pi UJ (A4)

1
_Ez Pi

icU

2
SUl( pwr)

m .

2. Consider E; {VZ[Eg (fpwr| sl,sz) | sl]} . Using the result from above that,

E3 (fpwr | St 32) Z z z Iaj

ics, "Pi ac1Nia jes, Pjlia

and taking the variance with respect to second stage which is ppswr, we obtain

VZ[E3<fpwr|SleZ) |31} Vz[z Z 2 B |31J

ics, "Pi a-1 jes,, Pilia

tUiaj
= — |3
igsll(mpi 2 {nla JZ‘ Pjlia | }

B SL g tuJ

iesl(mpi) a-1Ma jeUia Pjlia

(A.5)

This follows from the fact that

2
— 2P ~ly,
Nia JGZ:U,a Jlla[ pJ||a 'aj
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is the variance of the estimated pwr total from a with-replacement sample of SSUs,

ty.
L Z —=2__ Finally, taking the expected value with respect to the first stage, and using

Nia jesi, Pjlia

the fact that

Z Z 2. Pjja [W‘tu.j

IeS_l Pi| Pi g2 MNia jeVia

is a pwr estimator of a population total, yields the SSU variance component,

E1{V2[Es(fpwr | 51:32) | 31}} =E| >

lesl( pi)” a=1Mia jeU, Pilia

2
Uy
2 z pj||a( ] _tUiaj |51

Lyly n.a[t“w“ tu]

1 Pi oz Mia jeU, Pijji
gy —— |51

m | m& b;

2

1w1d1 u,,
=l 2n 2 Piie| ol

Mico Pi a1 Mia jeuy, Pji

2

21 iZA‘, SU 2( pwr)ia

Mo Piar  MNa

(A6)

3. Consider E; { E, |:V3 (fpwr | s1.52) | sl}} . We start by taking the variance with respect to

the third stage, which is a simple random sample selected with replacement:
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Vg(fpwr|31,52)=V3 ZZA: > i > Y E

ies, a-1 jesi, b=1kesyy, MPiMia P jlia”Kliajb

4 1 8 Yk
=22 > ———— V3| > Qiajp D, | 51,57

ies; a=1 jesi, (mpi Nia pjlia) b=1 KeSigp 1ajb
2
B A 1 B 2 S 3iajb
"Ll 2 — 7 2% —
ies; a=1 jesj, (mpinia pj|la) b=1 iajb
(A7)
8 SG siajp
This follows from the fact that Q-Z- I js the variance of the estimated total of a
iajb Giaib
b=1 iaj

B
stratified srswor sample of HUs, Z Qiajb Z L, when the sampling fraction is small.
b=l Kesyyp Jiaib

Next, using the fact that

1 5 ZbQi%ljb SSSiajb/Qiajb

. 2
Ma jes, Pjlia

1

B
is the pwr estimator of > —~ ZQizaijS 3iajb/qiajb , we have
jeU,, Pilia b=

X A 1 B S2 i
E2|:V3(tpwr|31,32) |Sl:|:E2 Zz z — ZQéJb U 3iajb |51

ies; a=1 jesj, (mpiniap”ia) b=1 Qiajb

1 &, SGaiap

1 & 1 Pji 2 Qi i I-? (A.8)
jlia p= iaj .
=22 B =2 L El
.Esl(mpi) a=1"'la ia jes;, pj|la

1 1 & , Shaig
_ Z > Z ZU: ZQI%Jb U3Ian.
a S ia

ics, (MP; )~ a=1 jeU,, Mia Pjlia b=1 Giajb
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Lastly, taking the expected value due to the first stage with respect to with-replacement

sampling yields the HU variance component

A A B S3 3iajb
El{EZ [Vs(tpwr| 51,5 ) |51}} =5 ——> Qijp——
ics, (M p-) a-1 jeU,, i pJ||a b=1 Yiajb
lﬁ: Z ZQ bSU3Iajb
1 Pi o= jeU,, Nig pj|lab ) . Giajb
=—F _Z
m |es1 Pi
1 1 4 B SU3Iajb
==Y = 0% i ——
mzu Pi 5 z % |apJ||abzl @ iajb
(A.9)
Substituting Eq. (A.4), (A.6), and (A.9) into Eq. (A.1), we obtain
s6
R pwr
VW%
= Z Z SU 2(pwr)ia
IeU Pi a=1 Nia
U3|ajb
_Z Z Z lean
M0 Pi a21Nia jau, Pjlia b=t Qiajb
and dividing both sides by t3 ,
. 2
Vlpe) 3 [, 1 51 & S
Y 5 Mico Piazr  Mia
1 1 4 SU3|ajb
+t— ) — o
m iEZU: Pi Zllnla JEZU: pJ||a bz‘i . qlajb
(A.10)
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A.2 Alternative Expressions for the Relvariance

In the following section, we assume that the same number of SSUs is selected from SSU

stratum a across each PSU, that is, n;; =, , and that the same number of HUs is selected
from substratum b within stratum a, for every PSU/SSU ij combination, that is, Gjaj, = Jap-

We also assume that every SSU stratum a occurs in every PSU i and that every HU

substratum b occurs in every SSU j.

Proposition 1 The relvariance can be rewritten as a sum of three components,

V(fPWF) B2 & 2W2a 2 W3ab
— aZ: +ZZK

2
1y N2 oipa M, Tap

where Ky =ty_/ty . Kap =ty /ty ;and B2, W2, , and W<, are defined below.

Proof. From Eq. (A.10), the relvariance of fpw IS

52
Ul(pwr lz Z SU 2(pwr)ia
V(tpwr)_i Mico Piaa  Ma
2 2
g g 1 1 & U3|ajb
" z Z Z ZQlajb
mleU Pi ac1Mia jeu,, Pilia b=1 Yiajb
Substituting njz =N, and G,y = T, then rearranging terms, we obtain
2
SUl(pwr)
m
V(f 1 A S2
(;’W"):7 +_z z U 2( pwr)ia
[y G| Mg Piza M
1 USab
_Z Z Z ZQIan =
Mico Pi az1Ma jau, Pilia ba1 Gab
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Multiplying through by tﬁa/tﬁa in the second term and tﬁab /tﬁab in the third term, we

obtain
. 2
V(tpwr) =£SUl(pwr)
G m
A 2 g2 :
15010, 1 5 Soapmnia
V) .
MasiMa 1§ G, s Pi
2 2 o2
+£ZA:ZB“iitUabizi Qiajb SU 3iajb
p— = 2 2 . . .
Mazib=1Ma Yab & 1, ic0 Pijeu,  Pilia
(A.11)
Define
2
B2 _ SUl( pwr)
2 H
[y
1 < S2(pur)
W, = —— M,and
tUa ieU Pi
) 1 1 Qi%jbsﬁsiajb
Waap == 2 = 2 — —
g, i Pijao,  Pilia
Substituting K,, Ky, B2, W2, and W&, back into Eq. (A.11), we have
a ab 2a 3ab
V(f A t2 A B t2
o) 250 1908, 1y 19300 L 1y
ty m Moty Na M- Zip=1 1§ Na Yab
2 A 2 AB
W.
—B—+ZK2WEa zng _Seib O
M a1 M S MMalab
(A.12)
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Proposition 2 The relvariance in Eq.(1.16) can also be written in terms of measures of

homogeneity

V(fpwr) _ Y
m

2 W32 b
al

= 52a + z z K mﬁ —

a=1 a=1b=1 aYab

Y
where V, V,, K2, K2, 8], ki, 8,4, and k,, are defined in Section 2.3.3. Furthermore,

when there are no B strata the relvariance in Eq.(1.16) reduces to

v(

four)  V AN _
Z mg k151n+Q++Z_:1K V . a4, k2a[1+52a(% 1)}

A
where fi, = > A1, is the number of sample SSUs allocated and
a=1

A
.0, /Z N, is the mean number of sample elements (HUs) per SSU across
1

a=

all SSU strata.

Proof. From Eq.(1.16), the relvariance of fpwr IS

2
W3ab

V(fpwr) ZK2W22a+ZA:ZB:K

t§ a=1  Ma 25p MNa0ap

Multiplying and dividing through by 1,

f 202 W2y A 7 2
tg m BZ+w?V g T Ml Wi+ W32a V S T

(A.13)
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Recall B2, W22a, and W32ab are defined in Section 2.3.2. Note that B and B are not used

for the same notation, as B represents the number of SSU strata and B2 represents part of

the PSU variance component. Define

B2 BZ +W?
O =—5——7, kj =———
B +W v
2 2 2
Son = W2a k _W2a +W3a
2a =~ 9 J 2a — Vi
W2a+W3a a
\7_11AB = Vis the unit relvariance of v in th
"o Z > (yx —Yu )" is the unit relvariance of y in the
Yu icU a=1 jeU;, b=1keUy,

population across all PSUs, SSUs, a strata, and b strata

2
(Yk -Yu ) is the unit relvariance of y among

yUa ieU jeUj, b=1keUjg,

elements (HUs) in SSU stratum a across all PSUs in the population and all b strata.

Substituting the above terms into Eq. (A.13) and rearranging we obtain,

V(tour) 8% BZ+W2V S WA WGV, 80 Wy

t m B%+w2V S MW WA Va T6a  Malan
E e v wh w38 v
= ~ 2_"a ~ 4y —&
mpBZiw? V A MM WS W Va asib-1  MaYab
=~k + > K3 §2a+ZZK —Sab_
a=1 a=1b=1 MN4Qap

(A.14)
Now assume there are no b strata. Substituting the above terms back into Eq. (A.14) and

rearranging terms, we obtain
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A 2\7

ke + D K3 ﬁ koal2a +

a=1 a

K2al2a +

A 2

2 W3a
2 Ky -
a—1 MNyQy

2 2 2
W3a WZa +W:%a 1

T W, +W5 Va

i

0o W, + W,

;k51+ZA:K2\7—a KpgOog +—

1 a mA. 2a¥2a T =
a=1 a

\7 A 2 \73 =

Ek151 + z Ka mﬁ—:[qak2a52a +(1_52a)k2a:|
a=1 ata

V A Y/ _

Eklé‘l"'ng = kZa[1+52a( a_l)]
a1 ala

v ki1 +§K2£
mﬁ+:+ 101004 - a7
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A.3 Derivation of the ANOVA estimates of the components of the
relvariance

Theorem 3. An unbiased estimate of the HU component of relvariance, Vi , is

1 1 -
Vi =2 72 2 7 2 Vaiap
les; (mp| ) a Jesiy (nia pJ||a) b
5 Qhjp s2 : : : .
where > Vgiain = Y —— Siaj IS the estimated variance of the estimated total i for
b b Jiajb
SSU jlia and $2,p = —— 7. ) isth le vari HUs i
jlia and Sgap g > (yk -~ ysiajb) is the sample variance among HUs in
IaJ kesiajb

HU substratum b |iaj .

Proof.
1 1 Qi%jb Y
E[Viu |=E1{Ep| B3| X ——> ¥ . SBaiv | 152 | |2
ies(mpi) a jes, (niapj|ia) b Jiajb
1 1 Qdib _ [«
|€Sl(mp|) a jESia(niapj“a) b qlajb
1 1 1 1 Qo .2
1 igs:l(mpi)zza: Z_nia jesia pjliaLniapjia b iajb O3 | |
11|t 1 Qi ..z
=E<{=) —|— g2,
Hm gs,:l Pi [mpi ;jezuia[nia Pjjia Zb: Giajb U Siajb
1 1 Qi%jb )
=), — g2,
% Mp; za: jg:ia Nia P jjia Zb: Giajb V3
1y 1t 1 &, Shsip
== ) — ) — Qa4
m ieZU: Pi az:lnia jezuia Pjlia bzz‘i alb Uiajb

=Vhuo

142



Theorem 4. An unbiased estimate of the SSU component of relvariance, Vggy , is

1 1
T SZ( pwr)ia

where
22 22 22
S2( pwria ~ S2aia ~ S2sia
with
1 f; ? Vaini I P
22 iaj o 22 3ia ia
Soaia = Z : _tia( pwr) | SoBia =— z 32~ T .
Ma —1 jcs,, \ Pilia ia jes,  Pilia
. Qi%jb 29 2 1 2
Vaigj = D~ S3iajp » Siajh =~ > (YK —yS,a,b) :
b Jiajb Giajb — KeSigjo

Proof. First, we show that §22( pwria = S$2.ia —S2.i, is an unbiased estimator of

2

. . 2 .

SU2 (pwr)ia = > Pjja (tuIaJ /p”,a ia) - A biased estimator of S{j 5 pyryiq i
jeUia

obtained by writing what would be the estimator of SLZJ 2( pwr)ia in a single-stage sample:

A 2
. 1 ligj+  ,
$3ia = —f (A.16)
Aia Ny —1 Jgs: ( Dijia ia( pwr)

where

fiaj ZQiajb Z Yk 1 the stratified srs estimated total for SSU j, within PSU i,
b Yiajb kes,y,

SSU stratum a and

-1 Z s the ppswr estimated total for PSU i, SSU stratum a.

£ -
ia( pwr
(pwr) Nia js. Pjlia
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~

tiaj

By expanding and simplifying Eq. (A.16), and using the fact that n;,t. ia( pwr) = Z :

jes,a Pllia
we obtain an alternative expression for §22Aia
1 f i
) iaj+ ¢
21nia Z t pwr J
MNia —1 <5\ Pjlia (pur)
A2 A
1 ] tigj
= > -2 t +£2
— 2 - pwr) ™ Ya( pwr
Nia 1 j€sia pj||a pjlla ( ) ( )
1 fa . figj )
= . —1 Z 2 _Ztia( pwr) Z a( pwr) Z 1
1a J€sia pj|ia Jesia p”Ia J€sia
02
1 laj .
= N —1 z > 2tia( pwr)nlatla( pwr) + I’]Iatla( pwr)
1a jesia pj|ia
02
1 tiaj 02
o —1 z 2 ia‘ia( pwr)
la J€Sia Vjja
(A.17)

Using the form of §§Aia in Eq. (A.35), we take the expected value of §§Aia

) . 1 fiaj 2
E2E3[82Aia \32}—52 Es — st: )2 ~Mialia pur)
SSia " jlia
i3]
:Ez E3 " _1 Z J ‘52 —EzlE
la ™" jes;y p1||a
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r]Ia t
1 |a( pwr)

J
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Continuing from (A.18),

2 1 1
E2E3[822Aia‘32}:E2 > = 3(&%\82) Ez{ Z'a E3(f|§1 () \szﬂ

_nia s, Pija
- L Wan(fiy Ea i | 5) |
i Z 5 ar3(laj‘32)+|: 3(|aj‘32)
i 1a JESia pj||a - |
211
-E; nia 1 VarB( ia( pwr) ‘SZJ {E3(tia(pwr)‘32)_
(A.19)
Now,
. Qi%ljb 2
Varg (tigi | S2 )= ), —— S 3iai .
3( 13 | 2) % qiajb U 3iajb (AZO) and E3 (tiaj | Sz)ztuiaj (A21)
=V3iaj

This follows from the form of the variance of an estimated total for a stratified srswor

design with a small sampling fraction in each stratum

A Var (i | 52
VarS(tia(pwr)|S2) Var{ 2 Jal_ | 2]——2 (Iaj )

Nia j€sia Pjlia Nia jes,, pJ||a (A.22)

2 z V3|aj

nla jesia pJ||a
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Substituting Egs. (A.38)- (A.41) into Eq. (A.37) and pulling out nj, /(nj; —1) in the

second term, we obtain

1

E2E3|:§22Aia | 52} = E{

Y {Vaigj +15,, }}

Mia —1 5., Piiia

2
V. ty..
-E, Nia ]é Z 3|al {1 Z UIaJJ

Nia —1 Nia jes;, pj||a Mia j€Sia Pjlia

Vi tG 1 pjj |
_ Ez 1 Z 32Iaj + E2 1 Z iaj jlia
Na —1 /5 Plia Na—liss.  Pila

2
n; 1 V3iaj n; 1 W,
-E 'al—Z 2 -B _Ialfz .?J
Nia = nla jesi, Pjlia Nia =%\ Mia jcs, Pjlia

n; 1 V3iaj n; 1 tUIaJ / pJ||a
= 'alEzl— D L] D M

Nig — Nia jesi, Pjiia Nia Nia jesia Pjlia
v ty )
n. 1 1 3iaj n; 1 iaj
proeers] e Ve d e e Ve
Nia ia ia jes.. Pjjia ia ia jes, Pjlia
(A.24)

Now applying Theorem 2,

E, 1 > Wy =Var, Yy E
Nia j€Sia pj||a nla Jes p]||a

ty 7 i

1 iaj+

= F’j|ia[ . ‘tuiaJ | 2y (A.25)
1a JEUia pjlla JGUia

862 i
Wr jla

Nia @

N
VO
S
o |'_‘
o
m
o
Qo
2| <&
T |E
N—
N
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Substituting Eq. (A.43) into Eq. (A.42), and applying Theorem 2, we obtain

. n; V3iaj n; tﬁi-
E2|:522Aia:|=n |a1[ z 3|aj}rn |a1 z _laj

ia =+ jeu,, Pilia ) Mia =3 jeu;, Pilia

U
Mg ~1Mia { <5, Pjia ) Ma—1 M Nig —1

_ Mg > Vaigj 1 > V3igj
Nia —1| jia  Nia| ; 1l

2
Nia i{ V3iajJ Nia SUZ(pwr)ia_ Nia 2

jeu,, Pilia jeu,, Pilia
t5 S
n nla z Uiaj —tE' _ nla UZ( pWr)
Nig —1 jeU,, Pjlia 21 Nig—1  nj
_\Q|a _1 V3|aj
Nia Nia jeU;, Pjlia
2 S
" nla z tUiaj _tU B nla U 2( pWr)
N, —1 P jia D ia n,—1 n
ia jeU, jlia ia ia
2
_ V3iaj N Nia S SU2(pwr)ia
= =4 32 AT Je
ju., Pilia Ma—1 (puir)ia Nia
_ Z V3iaj +\Qia m—lsg .
- Ty N U 2( pwria
jeU;, Pjlia ia ia
V3|aj
_SUZ pwr a™ Z
i€eVia Pjlia

Define

\VA
2 3iaj
SZBia= Z -
jeu,, Pilia
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Then substituting Eq. (A.27) into Eq. (A.44), we obtain
E[$2.:.. |=S3 _+S2.. (A.28)
21nia U 2( pwr )ia + 928ia .
The bias of S, is

; 22 22 2
BIaS|:82Aia:| =E |:82Aia:| - SU 2( pwr)ia
2 2 2
=50 2(pwria T S2sia = S0 2( pwr)ia

2
= S213ia

and an unbiased estimator of the bias, §223ia’ is

22 1 Viiaj / Pija
Sgaia =" 2, — :
ia jes;, pJ||a

To form an unbiased estimator of SLZJ 2 we subtract an unbiased estimator of the

pwr)ia ’

bias, $2,ix, from the biased estimator of S3 2 pur)ia $2.ia , and obtain

pwr)
22 22 22
SG 2(pwr)ia ~ S2aia — S2zia (A.29)
such that

22 22
2nia — S213ia}
22 22
2AiaJ -E [SZBiaJ
2 2 2
=(S02(pwr)ia + S2zia ) —S2zia

2
=50 2( pwr)ia®

(A.30)
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Finally, we show that E [vssy | =Vssy -

1 &1
E[vssu]=E Ez[Es[ —— > Sz(pwr |5132} |51}

ies (mpi ) a-1 Nia

a5t Lol )]

s (mp;)” 2 Mia

1 A& SGo(pur)ia 11| 1 & SSxpurya
=B|>—— =B =2~ —2
ies (mpi) a=1 Nia Mics Pi| MPi o5 Nia

SL212(pwr SU2 (pwr)i
I3 Z —y LA

icul MPi g5 Nia Mico Pigzr Nia
=Vggy O
(A31)

Theorem 5. An unbiased estimate of the PSU component of relvariance,

2 -
Vpsu = SUl( pwr)/m’ IS

§2
1( pwr)
Vpsy = m

where

§2 z z SZAla

1 pwr) = St pur) o7 2 n,
with

¢ 2
2 1 i(pwr) .
SEowrin =—— . —f
pwr)a pwr
e mliesl[ Pi }

and §22Aia as defined in Theorem 4.
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2
Proof. First, we show that 812( pwr) is an unbiased estimator of Sﬁl( pwr) = > (t—i—tu J

ieU 1

A biased estimator of 551( pwr) 1S Obtained by writing what would be the estimator of

861( pwr) In @ single-stage sample:

. 2
) 1 i(pwr)
S1( pwr)A ~ m_liél[ B _tper (A.32)
here ¢ L 5 Lol ig tne estimated total for PSU i with £, - Qs
where ti(pwr)ZZF_z - is the estimated total for i with £, = > — >
a 'ia jes, jlia b qlajb kes.

iajb

and £, = e > i[zi > '—"’“} is the estimate of the population total.

Mics, Pi| a Nia jes, Pilia
By expanding and simplifying Eq. (A.32), and using the fact that mf,,,,, = > ifi(pwr)’
ics, Pi
ies
f 2
3 1 i(pwr) .
S2 = > —f
pwr)A pwr
1 Z fi%pwr) zfi(pwr)f Lf2
- 2 pwr pwr
m-lis| P Pi
1 I tAi%pwr) N tAi(pwr) A2
-— Z 5 _ZtF’WfZT+ZtPWV (A.33)
| 1esy Pi les; ! ies;
1| ¢ o)
i( pwr 2 2
= Y~ 2purm+{gum

_iesl Pi

1 f’% )
1 pwr ~2
= § l, 2 mt pwr
ies, Pi
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Using the alternative form of Sft pwr)A in Eg. (A.36) and taking its expected value with

respect to the third stage of sampling we obtain,

02
N 1 t .
& [Somn 3% | =85| 5] S5t | s
IES]_ |
1 1 2
Tm-1. —Es [t (pwr) |51 S2 J_—lEB[ pwr| S1,82 J
ies; Pi
1 1 R 2
=— {Var{ i( pur) |51 S, }+[E3(ti(pwr)| S )} }
m-1.5 pf

_ml_l{Va@ [ Eowr | 51,52 :|+|:E3(fpwr| 51,82 )}2}

(A.34)

Now,

A 1 Varz| figi | 51,5,
Var3[ti(pwr)|51752J Vaf{z 2 o | st 32] Zr? [Iajg |
a 1a

Nia jes. Pjlia jesia Pijia

_ Z Z V3|aj

a nla jesia p]||a

—Z— y L | Yo
Nia jesia pj||a Nia pj|ia

(A.35)
1 Es (figj | 51,52

E[(pwr)siszJ ESZ Z IaJ|S'152 :Z_ ( )

a Nig jesia pj|la a Nia j€Sia pj|ia (A 36)

—Z— > Ju Zt.a

Nia jesia pj||a

where fiais defined by the last equality, that is ‘E ! ty._. .
ia jes, Pilia
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Also,

1
Var3[ Eowr | St 52 =Var. [E [Z 3 igj 51,5, ]
|esl pl

|a JGS pj|la

1 1 A
=2 Z —2 Z > Vafs | iaj B ]]
ies; P

! nla J€Sia pJ||a

=%z%z > v}
ies; P Jlla

|a j€Sia

:iz iz Z z V3|aj/pj||a}

Pi| a nla jes, Pilia

ies;
(A.37)
and
= |:fpwr| 51,82 ]= Z Z > L | 1.5
|es1 Pi Nia jesia Pjlia ]
1 1 . y
=3 = fa |58
m igs:l P Z Nia Jezs:‘a Pjlia [|a1| %2 '}
rdriy ol iyoyi,
Mics, Pi Nia jes,, pjlla Mics, Pi‘a
(A.38)

Substituting Egs. (A.53) — (A.56) back into Eq. (A.52), we obtain

V. .
Es| $7 s S
3[ 1(pwr)A| 1 2] m — 1|esl pl {z Nia jezs: pJ||a{ iapj”a} l:

L Z {z 5 V3|a1/p1|a] [% iztua}

m-1|m s pl a nla jes, Pilia
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Next taking the expected value of Eq. (A.57) with respect to the second stage sample, we
1 1 | Vaig

Bl =2 —|——| I
Nia jes. Pjlia | Mia Pjlia

+—— 2 B [%ﬁa]2|51

L %{Z;Ez[i - Vai /P, Slﬂ

obtain

EZ[ES(SA]ipwr)A| 5182 ) | Sl}

Nia jes.  Pilia

S EPIEDI a

LS ol G Ma jeu;, Pilia

2
1 —Ez [Ztla] sy

ies, pl

m 1 V3iaj
_—l_zlesl pl l:z_ z —]

Nia jeU,, Pjlia

mEZ[ z ZtlaJ

ies; Pi 3

(A.40)
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Now using basic properties of expectation, Theorem 2, and the definition of SS 2( pwr)ia

we have

|58 1o s o h0e]

=Var, Z > 'a’ |31J+[E2 Z > 'aJ | J]

Nia j€sia Pjlia Mia j€Sia Pjlia

PP, -

|a jeVia p]lla G jeViq
S .
_ z U 2( pwr)ia +tL2Ji+++
a nia
(A.41)
and
2 2
1 12 1 12 1 12
=) {H Eztia} E =Var{a_2a2tua Sl}{Ez[mZEztia 51”
ies; I a les; a les; a

J

:izz Var{Zt,abl}[ > Ez[%ﬁa

M~ jes, pl ies P
1 1 SS wr )i i
2(p
—Fiz pzz n|a [ z pl tu|+++
es, Mi a ies,

(A.42)

154



Substituting Eq. (A.59-A.60) back into Eg. (A.58) and simplifying, we obtain

o[BS ) 19]-p 5 Z ST - T

|esl p| Nia JeU Pjlia

Wr 1 t5|+++
=y z >

m -1:

15 pf i~ pf
. m 1 i V3iaj

—1m 2 p? n,a jeU pJIJ
om o1 izsuzmwn it
m-1m? ics, pFa Ma m-1imis Pi

m-1 m-1m? ies; pi2 a Nia
2 2
+ m iz tU|+++ _ iz tU|+++
2
m=1m ies Pi m ies; Pi

| m-1 11 V3iaj
CIm(m-1) | p2 S in, 5 pi
ies; Pi a 'la jeu,, Vijlia

ies, Pi a Nia
3 e, |
m l i+++ 1 U|+++
e = ‘[52 J
ies, Pi ies; Pi

(A.43)
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Continuing from Eq. (A.61),

EZ[E3(§12(pwr)A| 51,52 ) |81} => 22 3 V3iaj

|es,1 P a MNia jeUs, Pjjia

SU2 (pwr)i
_Z P (A.44)
'651 Pi a Nia
t3 f 2
m l Ui+++ 1 i+++
*azaz—r[az—f}
sy Pi ies; Bi

Next taking the expected value of Eq. (A.62) with respect to the first stage sample, we

obtain

_Z 22_2@

Mics, P a Ma JeU Pjjia

El{EZ[ES(élz(pWF)A|SleZ)|51}}=E + = z 22 U2 (pwr)i

lesl Pi a Nia
t5 R
i ! ERas 1 i+++
s D Dy
ies Pl ics, Pi

lsglils1d V3iaj
—

| Mies, Pi a Na jeu;, Pilia
_1 111 <SS owni
+E | =D —| = 2U2(pwr)ia
mlesl p pl a nia
t3 ) 2
m 1 1 Ui+++ 1 Ui+++
g Ly A B || g | Ly Y
m-1 mies1 Pi P miesl P;

(A.45)
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Continuing from Eq. (A.45),

ics, Pi | Pi 2 Mia jeu,, Pjlia

El{EZ[EB(éﬁpwr)AM’sz)'51}}:El nZ | n T \ﬂﬂ

(A.46)
Now simplifying the third, fourth, and fifth terms of Eq.(A.46)

m tﬁi m ? ly, ?
eat ] e

ieU T Tieu Pi

__m tﬁi 2 1 _ W, i
—m{gﬁ‘%}mz d (?j%]

ieU

m Ly, S by, i A 47
_mieu p{?i_tu] _m——lz p{p- _tUJ (A.47)

ieU !
B m—lsg
T 1 Yi(pwr)

2
= SUJ( pwr)
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Substituting Eq. (A.64) into Eq. (A.63) and rearranging terms, we obtain
22 22
E[SJ( pwr)A} =E {EZ [EB (Sl( pwr)A | S1:52 ) | Sl} }

1 52 wr ia 1 1 V3iai
:sgj(pwr)+z_zw+z_z_ s Sl

icu Pi'a M icu Pi 3 Mia jeu,, Pjlia
2 1 SL2J2 pwr Jia 1 SZZBia
- SU](pwr) + z _Z—"' Z _z—

(
icu Pi 3 Nia icu Pi 7 Nia

2
a JrSZBia

1 S§ wr )i
:SLZJJ(pwr)+Z_Z bl

icu Pi 3 Nia
(A.48)

The bias of 512( pwr)A IS

Bias [S}i pWI‘)A:| =E [§12( pwr)A:| - SL2J1( pwr)

1 S5 wr
=SL211(pwr)+z_Z 2 4{pwr)

icu Pi 3 Nia

1 SS 2( pwr)
SED)

ieU pl a nia

2
ia tS2Bia o
_ _SU]( pwr)

2
ia T SZBia

and an unbiased estimator of the bias is

22 12
izi LZSU 2(pwr)ia+SZBia
Mics, Pi| Pi g Mia

(A.49)

Recall from Eq. (A.47) SS 2 + §228ia = §22Aia, we can rewrite Eq. (A.67) as

pwr )ia

1« 1 w55
O D S (A.50)
ies; Pii a 'lia
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To form an unbiased estimator of Sﬁj(pwr), we subtract an unbiased estimator of the bias,

292 . .
%Z %Zsiﬂ , from the biased estimator, 812( pwr)a » and obtain
ies; Pim a lia

$2..
2Aia (A5l)

such that

. P l o 1 «S5ia
E[Slz(pwr)J:E Slz(pwr)A_aZTZ ZTA ]

Il
m
>
2o
o)
=
=
B
1
|
m
1 M
3= <
5 | -
7 N\
k=l
» M
S |\
,'JZN
QO
N—e
| — |

ics, Pi ia
2 2 2 2
2 1 SU 2( pwr)ia +32Bia 1 SU 2( pwr)ia +S2Bia
= SUl( pwr) + _Z - ) —
icu Pi a Mia icu Pi a Nia
2
SUl( pwr)H

Finally, we show that E [Vpgy | =Vpsy -

E[vesu]= El{EZ[E3(§12(pwr)/m| sz ) | Sl} }
L e (S [ 552 )1

2
SUl( pwr)

m
=Vpsy o

Corollary to Theorem 5. Assume that for each PSU i, n;, =n, and for every PSU/SSU
ij combination, Gj,j = 0. - Then the estimated ANOVA relvariance fpw can be written

as:
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V(fpwf) EJFEA:V\A/zZa +ZA:ZB: W
A2 —_ = =
twe M a3 Ma 35p5 MNaban
where
§2
B2 _ 1( pwr)
YY)
Lowr
~ o pwr )ia
Wia =2 2 2
tpwr ies,  MP;
) 1 1 1 12 K2
Waap = 5—1 2. 5— QiajbS3iajb
towr [ies, mp, jesiy MiaPjjia
Proof
V(fpwr) 1
) ——(Vpsu +Vssu +VHu )
owr Lowr
32 2 Zv3lajb
_ 1 S1(pwr) N 1 S2(pwr) Z ZA: Z b=l
pwr |€31(mp|) a=1 1a Iesl(mp|) a_ljes,a( Iapjlla)
) ) z Qlajb S
3 3 3iajb
1 S1(pwr) +Z 1 ZA: S2(pwr) z ZA: Z b=t Jab Tab
£2 m 2 m 2
pwr ics, (MP; )~ a2 a ics, (MP; ) a1 jes,, (apjha)
22 12
1S pwr) & 1|1 S(pwr)'
m 2 +Zmn 2
tpwr =1""4a tpwr ies; mpl
A B Q2. $2
iajb 3|ajb
YLty v
a=1b-1 MNalab pwr ies; mp, jesia apj||a
52 A2 A B (7 2
_B", W2a+zz Waap
M aaMMa 3215 MNalan
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A.4 Derivation of Anticipated Variances

For the following section, consider a model for y, with common mean, x, and random

effects for PSUs, «;, SSUs within PSU/SSU stratum ia, y;,j, HUs within PSU i/ SSU

stratum a/ HU substratum b, Zi,jp, , and elements, &;ajp :
Yk = M+ + Yigj * Aiajh T Eiajbk
with o; ~ (0. O'é), Viaj ~ (0, aﬁa), Aiajh ~ (0, J/%O), Eiajbk ~ (0, O'Eab) and the
errors being independent.
We first establish some preliminary results in Lemmas 1-4 that will be used in the
proofs of the theorems and corollaries that follow.

Recall the following notation:

M = the number of PSUs

_ A
N=> % the average number of SSUs per PSU, N; =" Nj,
ieU a=1

Ra= Nia , the proportion of SSUs in strata a, PSU i
N;

A
Q=D Q;, the total number of HUs in the population, Q=Y > Qi ,

ieU a=1jeU;,
Qiaj = 2, Quajb
5-3Q_Q
Q —z =—, the average number of HUs per PSU,
oM M
euU
= Qia' = Qia'b
Qa= D, N—J Qa= 2. Qigj+ Qasb= 2, N—_J’Qia-b = > Qb
jeUj, "1 jeVia j€Viap 1a jeUiq
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52
chg,pwr Q g is the unit relvariance of PSU sizes Q;, when the PSUs are selected

2
using ppswr, S(%'pwr =3 p (&—Qj
) _SG, " | ; 1 2
Vg, = is the unit relvariance of SSU sizes Qjy; ,SQIa N1 > (Qiaj _Qia)
Qla ia jeUiy

s3
éla-b P'a'b is the unit relvariance of HU substratum sizes Qjyjp,, Within iab

Qla-b
2 1 — 2
SQia.b - Ni. —1 Z (Qiajb _Qia-b)
ia ™ JjeViap
8§
vé_a _—— = pW’ is the unit relvariance among SSU counts of HUs within SSU stratum
1a, pwr Qla

2
a when SSUs are selected using ppswr, SQIa = Z ”Ia( Q|aJ —QiaJ

= jlia
84
vé, = —“BOPY s the unit relvariance among SSU counts of HUs within SSU
iaeb, pwr Q2

iaeb

stratum a and HU substratum b when SSUs are selected using ppswr,

162



A.4.1Lemmal

Lemma 1. Assume a large number of SSUs in every PSU/SSU stratum ia combination is

large so that N;; = N;; —1. Then the following equalities hold:

@ > Qfjb=Ni (Séia,b +Qi2a-b)

jeVia

(B) > Qajp=NiaQias (chgia,b +1)

jEUia

o V3

1a 2 2R/2 ia, pwr

(C) Z __J = Qla pwr Qla Q|a pwr + NiaQia aQ|a N P +1
jeU;, Pilia A

(@) > Qf =NiQi (V(%ia +1)

jeUia

2

Qla b 2 2 ~N2 VQia- L pwr
(e) Z J - SQ|a-b pwr Qla‘b SQ|aob pwr + Nlana°b iaQia°b b2p +1
jeU;, Pilia Nia

leaj 2 Q|a pWI‘ VQla
() Z - z Qiaj |aQ|a +1
\F Nia

jeu,, Pilia | jeu,, ia

2. 2 2
@ > o [ 2 Qi%jb] = Ni2Qiaep (VQia'b’pwr - Vﬁia'b +1J
ia

2
jeU,, Pilia | jeu;, Nia
Qf v
(h) > =t=M 2Q2 pW' —2U
ieU Pi M

i > Q2 =MQ? (vé +1), assumingM = M —1.
icU
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Proof.

1

_ 2
T > (Qiajp ~Qiaeb)  be the unit variance of the number of HUs
la

j€Viap

2 _
(@) Let SQia-b =

for SSU j in PSU i, SSU stratum a, HU substratum b where Qi,.p :%. Suppose a

ia
large number of SSUs so N;, = Nj; —1. Expanding and simplifying we obtain

_ 2
Niasczgia,b = (Qiajb_Qia-b)

jEUia

=[ > Qi%\jb]_Nia(ji%ob

jeVia
Rearranging terms leads to

Nia Q,a,b [ z Qlajb} ia(ji%-b

JjeUia

{ > Qi%jb] ’\|ia(~'°’c29ia,b +6i%1-b) =

jeVia
(b) Define the unit relvariance of the count of HUs across all SSUs in PSU i, SSU

stratum a, HU substratum b as véia.b = S(%ia_b / Qi%,b . Suppose a large number of

SSUs such that N;; = Nj; —1. Then

2 2 =2
> Qiaip =(Nia =1)SG,, + NiaQizeb
jeUiq
=2 2 =2
NiaQiaebVQ,, + NiaQiaeb

= Niaéi%ob (Véia +1)
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2
(c) Let SQ.a or = = > ”,a{ o —Qia] be the unit variance when SSUs are selected
jeVia

ppswr of the number of HUs for SSU j in PSU i, SSU stratum a, HU substratum b,

when SSUs are selected ppswr. Expanding and simplifying we obtain:

Q. 2
Qla pwr z pJ||a = _Qia\]

jeU,, Pijlia

jeUia pj||a pl|'a

= 2. Pjja Q'a’ —2Qja —— Q. QiZaJ

Q.Z.
jEUia pjlla jEUia jeUia
leaj 2 .
=2 —2QjaQia + Qia since Y. Pjja =1
JVia Pifa jeUia
_ Qi | 2
- z _Qia
jeU,, Pjlia
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Rearranging terms leads to

Qi
z g | _ Séia our + Q,%
jUia  Pilia |
Qi%i 2 2 /2 . =
Z Pjli = Qia, pur +NigQia  since Qja = NijaQia
jeUs, | Pilia

_ 2
(d) Let N;zS§, = > (Qiaj —Qia)” be the unit variance of the number of HUs for SSU j
jeVia

in PSU i, SSU stratum a. Then

NiaS4, = 2. (Quaj —Qia)2

jeUia

=[ > Qi%\j}_NiaQi%a

jeVia
Rearranging terms leads to

Niaséia :{ > Qiij} Nia Q2

jeUia

( > Qi%j] NiaSG, + NiaQia

jeVia

= NiaQf (v, +1) by definition of v3_

2
(e) Let S(%ia.b e Z Pjlia [M—Qia.bj be the unit variance when SSUs are
BT i
selected ppswr of the number of HUs for SSU j in PSU i, SSU stratum a, HU

substratum b. Expanding and simplifying we obtain:
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2
Qiajb
Qlaob pwr Z lela = _QiaOb

jeVi P jlia

2
- z Pjjia ngjb —2Qjqep —— Qlajb Qiza.bJ

jeU,, Pijia Pjlia
Qi%ljb 2
= > | == |-2Qiaeb| 2, Qiajp |~Qaeb 2, Pjjia
jeUia pj|ia jeVia jeVia
Qi%jb 2 .
= > — 2QjaehQiaeh — Qiaeb since > pjja=1
jeu, \ Pilia jeVia
2
Qiajb 2
= Z N _Qiacb
jeu,, | Pilia

Rearranging terms leads to

2 Qiajb 2
SQiaob,pwr = Z _Qia.b

jeUsa \ Pilia

2
3 Qiajp | _ 52 02
. p - Q|a.b pwr iaeb
jeVia jlia
2
Qia'b _
J _c?2 2 =2
Z .o - Qiaob, pwr N iaQia.b o
jeVia p jlia
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()] Using results from Lemma 1(c)-1(d) and assuming N;, = N;; —1, we obtain

Qi _ _
> Y Qg = Séia,pwr +NZQE ~NiaS5_ —NipQh by Lemma 1(c)-1(d)

jeUi, Pilia | jeu;,
2 2 22 =2
- SQia,pwr B NiaSQia + NiaQia - NiaQia
2 2 =2
- SQia,pwr B NiaSQia T QiaNia (Nia _1)
.2 2 =2 2 .
- SQia,pwr N NiaSQia +QiaNia since Nia z(Nia _1)
_.[s& 52
= N2QA| el Ra_ g
NiaQia NiaQia
[ V2 V2
= Ni%Qii QP Qa4 by definition of relvariance
N2 N
1a 1a

(9) Using results from Lemma 1 and assuming N;; = Nj; —1, we obtain

Qb = =
Z ﬁ - Z Qi%.jb = Séia-b,pwr + Ni%.Qi%lOb - Niaséiaob - NiaQi%-b by Lemma 1(8),1(6)
jeUi, Tia jeUia

2 2 252 =2
= SQuaen, pur ~ NiaSQiey T NiaQiash ~ NiaQiash

2 2 ~N2
= SQiaob,pwr N NiaSQia.b +Qia-bNia ( Nia _l)
o2 2 ~2 2 .
- SQiaob,pwr N NiaSQiaob + Qia’bNia since Nia ~ ( Nia _l)

SZ SZ
_ Ni%\éi%. 1 Qiaeb PWI — “Qjaap +1
NGQa  NiaQd

2 2
— N232 VQuep W VQuup
= NiaQjaeb 2 - N
Nia ia

+1J by definition of relvariance
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(h) Let S(%(pwr) be the unit variance of PSU sizes when a ppswr sample is selected. Then

2
Q; Q.
Sé( pur) 2P { J =2 =--Q°

Pi icu Pi

Rearranging terms leads to

e e
=52 M
Qpur) TM7Q
22 Vé(pwr) e el 2
=M-“Q vﬂ by definition of VQ( o)
(i) Let S(% = (Mi—lj > (Qi —6)2 be the unit variance of PSU sizes Q; where
icU

=2 % Additionally, suppose a large number of PSUs such that M ~ M —1.
icU

Expanding and simplifying we obtain:

Msg =Y (Q-Q)

icU

{zet)

Rearranging terms leads to

> Qf=M(s5+Q7)
icU

—M (QZVQ+Q )

- MQ? (vQ +1) o
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A.4.2 Lemma 2

In Lemmas 2 - 3, we assume following:
(A1) Every SSU stratum/HU substratum ab combination occurs in every SSU in

the population.

(A2) p; :% and pj"a:%. That is, PSUs and SSUs are sampled with

ia
probabilities proportional to the number of HUs they contain.

(A3) Qiajp =(3b. That is, every PSU/SSU stratum a/SSU iaj combination, has the

same number of HUs in HU substratum b.

N; . . . . .
(Ad) Ry = N—'a = P,, i.e., the proportion of SSUs in stratum a is the same in every
i

PSU i.
(A5) The number of SSUs in every PSU/SSU stratum ia combination is large, i.e.,

Nig = Nijz —1.

Lemma 2. Assume that (A1) - (A3) hold. Assumptions (A2) and (A3) imply that all SSUs

have the same number of elements, (3 = 2(1 . Then the following hold:
b

(@ Qigj =Q

(b) Qiaeb = NiaQy

© Qiaeb =%
(d) Qia = NiaQ
© Qia=Q
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(J) Qa = Naé
(K) Qap = NaQp

0 Qa=%

Na

(M) Qa = N

(n) Q2a=Q

1
o -y et
(0) Pjjia _Nia
N

() pi= MN

Proof.

(@) Qigj = Qiajp = %@ -Q
b

(0) Qiaeb = 2. Qajp = 2, Q = NiaQ

jeUia jeUia
s _ Qiaeb _ Mg Q _
(C) Qlaob Nia %

Q

() Qa= 2. D Qiajp= . Q=Ni,Q

jeUia b

jeVia
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© Qo-p2-12-q
1a la

5 -2 _1tso _ 1y G
(f) QI_N Ni %Qm NileaQ

i a

@ Q=NiQ =NQ

() Qa= ZQia = Z I\liaéz Na(j

icU icU

(K) Qap = Z Z Qiajb = Z Z 6b = I\Iaéb

icU jEUia icU jEUia
S _%_Naéb_:
() Qap= N, N, =Qp
_ _%_Naé
(M) Qa = MM
(1) Qoo =2 =122 -Q
a a
_Qiaj_ be 1
©) Pjia==—"= ==
Qia Niaz b Nia
b
_:&: Ni6_:_|_
(P) P 0 —MN_Q MN
A.4.3 Lemma 3
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Lemma 3. Assume that (A1) - (A3) hold. Then
(a) sé(pwr) 5(%) 0 if only (A1) holds
(b) 8§, =G, =0
(c) 8§, =v5, =0
(d) Séia(pwr) :Véia(pwr) =0 ifonly (A1) holds

2 2
(E) SQZa =VQ2a =0

f) S2 = Q. ~N) =52s2 assuming M ~ M —1
) Sg= M — ZU( ) Q"SN g

wn

2
(9) vQ EN—N =vﬁ, assuming M ~ M -1

2 _ (32 NV _A2e2
(h) S, =~ > (Ni-N)"=Q°s{,
iU

2
= N_
M SQ (pwr) -Q Zp ( £-N J Estlgla(pwr) where p2i=WI
ieU

Proof.

2 2
S
Qpur)
@ S3 Zp( J Zp[iZ - J =0;then vy =—"0_¢
Q(pwr oy ! pl oy | Q(pwr) Q2

which holds when only (A2) is true.

2 1 . 2 1 = =2
(b) Q.a.b_Nia_ljeZ:Uia(Qlajb Qlaob) _Nia_ljezuia(Qb Qb) =0; then
SZ
V=g
Qiaeb Q2
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(©) S&, =(Nia1_1]_2 (Qiaj_éia)zz(Ni:_]_] > [Z@b—Z@,]Zo;then

jeU, \b b

S
@

2
Qlaj % ia _
(d) a(pwr) z jlla[p _Qia] = z N; [ % Q,aJ =0; then

jeUia Jlia jeUia
S
vé_ —ﬂ 0 which holds when only (A2) is true
ia( pwr) Qla

(e) We know that Qj,; = 6 =Q, by Lemma 2(a) and 2(n). Expanding and

substituting we obtain,

S(%Za:(Na_l)_lz Z (Qiaj_QZa) N _1[2 z Qlaj Q2a J

ieU jeU;, icU jeU;,

520 82N )
- _J% ,ezu,aQ -Q°N J o g(@Na QN )=0

15 (Z N?—MI\_IZ]=M6—:Z(Ni -N)’

M-1 icU

=Q?%s3 assumingM ~M -1
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(9) v(% === :—:vﬁ, assumingM =~ M -1

(h) QlaZWZ(Qla Qla) :l\/l [lea MQla]

icU ieU

a5 5[5 o manza]

ieU

=M——1_Z NEQ? M (M_ZNgéz)}

LieU

M-l (IZU: 'a__]_M 59 2 (N M)’

ieU

2 2
(i) S4,(pur) Zp.[Q'a ] =Z%—Q§

ieU icu Mi
N2 G2 2 32 S
iaQ 52 NlaQ MNQ 2~2
= 2Q° ———=—-N3Q
Zu Qe zu N'R ]

_ =, N2 N2 )
=MNQ~) 12— aQ - Q2 MN D> —&_NJ
icu Ni i Ni

2
52
LN [ NN J
— N 2
Q% pa Mo, |
ieU P2i
Estlgla(pwr)

A.4.4 Lemma4
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Lemma 4. For any p,

Proof.
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A.4.5 Model Expectation of B2

Theorem 6. The approximate model expectation of B2 is

252 201 2R2 Vzpwr a =2 (.2
Ey (t58%) = 0gM*Q?| =5 yz ZNiaQia(ina+1)
M2 icu Pi la=
A B s

"‘Zzo'g o Qiach [+ 4 Q VQpur)

a=1b=1
Proof.
Recall that

2 p2 2
tjB :SU1(pwr)

=Zpi(tu—f—tu

icU I

jz (A52)

A A B
where ty = >ty and ty =Dty =D, >, > > Y. Substituting the model form

icU a=1 a=1 jEUia b=1 keuiajb

of Yy = p+aj+7iaj + Eigjok 1Nt Equation (A.52), we have

A
tUi - ztuia
ot (A.53)
_QI /J"'al z Z Qiaj7iaj * i
a=l jeU;,
tu =21,
ieU
A (A.54)
=Qu+ D Qi+ 2. D> D Qiajliaj +¢
ieU ieU a=1jeU;,

A B
where Ej :z z Z Z giajbk and 6‘=Z€i .

a=1 jEUia b:]-keuiajb |EU
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Taking the expected value of Egs. (A.53) and (A.54) we obtain
Em (tui ) =Ey (Qiu)=Qu

Em (tu)=Em (Qu)=Qu
(All other terms have expected value with respect to the model equal to zero.)

Taking the expected value of Equation (A.52) we obtain,

Ew (t5B%)= X piEn (h—tu ]2

icU pi
:% pi {EM (%‘tuﬂig pVary, {%_tuj

So we need to find

pole( ]|

2. > p;Vary L%—tuj

icU

and

1. Taking the expectation in Equation (A.58), we obtain

RERELRSRET

178

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)



Multiplying Equation (A.60) through by p; and summing over the all PSUs i in the

population, we obtain

'EZU p[EM (tu__tuﬂz :iezu & [%:_ ]2 “

= ﬂzsépwr (A.61)

Still solving Equation (A.58), but now assuming p; =%,we obtain
2 2
by Q 2
ofeu 2o [ -3 a0 2o
.% '{ P %: ' Q‘Qj (A.62)
=0 o

2. To evaluate Z p; Vany (E—tu ] , first find
iU Py

[tU__tUJ ((SI j+a,__—2a,Q,+Z[Z PRy Zy.a,Q.aJ}

Pi [ i iU 1| jeU;, i ieU jeU;,

=u[@—Q]+aiQi (i—l} > @

i'zieU

UVja
+Z{ Z 7|aJQ|aj( - J_ Z J/i'aj’Qi’aj}

=l| jeUia i'=(ij)

ol 51 3

(A.63)
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Now taking the variance of Equation (A.63) with respect to the model, and using the

assumption that the random effects are uncorrelated, we have

Qv

ty.
! =Vany | ¢
P j M |: ( Py

VarM [— _tU

QHWW { of

TR

Z o Qy

i'zieU

|

I A 1 UlUi'a
Vary | 2| D 7iajQaj (——1j— Y. 7iajQiaj
| a-i{ jeUj, Pi (i)
(1
+Vary | & [——lj > gil
Pi i"zicU
(A.64)
Next, we show the details of evaluating the terms of Equation (A.64) :
A Var,v{ (Q' J:I:LQ—'— ]Var,v, (1)
i Py
=0.
1 1 2
B. VarM l:O{iQi (——1}— z aiQi:l=Qi ——1] (7 + z le 2
Pi i"2icU Pi i"2icU
i 2
1
=Q? [--1} ~1lo5+ > Qfcl
i Pi i'eU
2
=c2 Q'2 —ZQ' +>.QF }by Lemma 4.
Lh Py
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a=1 jEUia

A 1 U Uiq
C. Vany Z Z ViajQiaj [F—lJ Z Viaj' Qiraj

2o 2 (1 2 W 2
=0, 2| 2. Qy ——1] + 2, Qe

a=1\ jeU, Pi i1#(ij)

22 2 (1 ) Vi
=0, 2| 2 Qi L——lj “11+ > Qg

a-1| jeU,, Pi (i)

LA ) (1 2] Yl
=0yZ > Qi3 —2——} z Q,aj by Lemma 4.

a=1\ jeU,, LR P iy #(ij)

D. Vary [gi [%i_l]_i'éu gil
—[VarM (&) {——1] +i,§€“UVarM (gi)J

=Vary (&) (

2
1 J ~1[+ > Vary (&)
Pi i'eU
, [ 1 2 2
=Qiasb0s, | =5 —— | + 2 QiashOz,, by Lemma4.
| Pi p i'eU

since Varny (&)=Y, > > > Vary (e,ajbk) ZZZZo—fab:Qia,bafab.
a b j ok

a jeUj, b kel

Substituting A, B, C, and D back into Equation (A.64) we obtain,

2 2
Vary (%—QJZOWL%% {Q—iz—&+ ZQiZ}

P P U

2 Qi 20 | 2 2 2
*0y 2 2 |5 +0y 2,2, 2 Qi

a-ljeU,| Pi Pi icU a-1 jeU;,

A B _
+Z zagab l:Q|a20b 2Q|aob + Z Qlaob}
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Multiplying through by p;, summing over all PSUs i in the population, and reversing the

sum over i and the other sums, we obtain

iy Q?
> pvary (__tUJ {Z <% 2qf [Z piJZQiZ}
icU Pi icu Pi o icu JieU

+0222 > [Q'aj ZQi%u']“ff[Z PiJZZA > Qi

ieU a=1jeU;,| "i ieU ieU a=1 jeU;,

333t | Fen g | [z pijiiazabzqa.b

ieU a=1b=1 Pi icU a=1b=1 icU
(A.65)

Since Z p; =1, Equation (A.65) reduces to
icU

5 pvany %y |-2| s &-vo?

ieU iU M jeu

3 {Q'al Qigj} (A66)

iU a=1 jeU;, Pi

ORIEAE S

ieU a=1b=1

Assuming L is large so i—1~i we obtain
Pi Pi Pi

. pVary (tu——tuJ D of
ieU Pi ieU pl
icU |a:ljeUia

D — ZZ 01 Qiaeb

icu Piazib=
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Substituting the results from Eqgs. (A.61) and (A.67) back into Equation (A.57),

E (382) 202y L1023y 1S 3 Q2

icu Pi icu Piaz1jeu;,

DIESH) gabo..a.wzp.[pl ] 2

ieU Pi a=1b=1 icU

2y @

icu Pi

1 A
+oL > =2 > Qi

iU Mi azljeUia

+ Z Z Z galeaOb

iU Ia_1b =1
TH Q VQ (pwr)

(A.68)
Assuming Nj, is large so, Nj; = Nj; -1

A VQ( pwr)

Ey (tfJ B%) = 0gM*Q? +1| by Lemma 1(h)

A
102y i 3 N Q2 (Véia +1) by Lemma 1(d)
ieU Ml a=1

*2 ZZ 74, Qiash

ieU Pi a=1b=1
+u Q VQ pwr)D

(A.69)
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Corollary to Theorem 6. Assume that conditions (A1) — (A5) in Appendix A.4.2 hold.

Then in the special case of no b strata so that agzab =a§a and 6b :6, the model

expectation of B2 can be simplified to
2 2
2 0}, (7
EM(tUB) MNQ! 2 N_:]

and when there are no a strata so that P, =1and agza =0y,

Proof.

When (Al) - (A3) hold, vé( pwr) :v(%ia = 0. Substituting this result back into Eq. (A.69),

Ey (t58%) 2 02M*Q?

18 -
+op 2= NiaQ (A70)
icU Pia=1
+ z z Z ealeaOb
icu Piaziba
When (A3) holds, we can use the results from Lemma 2 to obtain
Ey (tU B ) c2M2N2Q? by Lemma 2(i)
s Z Z N., Q2 since Q2 = Q2 Lemma 2(e)
ieU Pi a=1

+ Z Z Z O iaéb since Qjaep = Nia(sg Lemma 2(b)

icU Piaz1b-1

(A.71)
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By Lemma 2(p), p; = % Rearranging terms in B, = NN_ = P, from (A4), we have

NiR4 = Niz = N;P,. And so, —y/P MN _ P,MN . Substituting 12 = P, M,

b N p.

= A = A B —
Ey (15B%) = 0aMN2Q% +07 3 3 PMNQ? + Y 37> 02 PaMNQ,

ieU a=1 ieU a=1b=1
2 A B _ 2
“M2R2Q2| 62 + 2L [+ M2N2S B, 3§ Zoat
N a=l b=l N

Z|

_ 2 A
=(MN@)2{G§+GN—7+ZP ZQb gab }

a=l b= 1Q

(A.72)

Note that reversing the a and b summations in Eg. (A.72) assumes that every SSU

stratum a contains all HU b substrata. In the special case of no b strata so that agzab = agza

and 6b = 6 the model expectation of B2 can be simplified to

Ew (tSBZ)é(MI\_Ié)Z a§+05+ZA:{P G*’"ZaJ

N a=1

185



A.4.6 Model Expectation W2,

Theorem 7. The approximate model expectation of W22a is

2

Y 2
22 ). o 1 2n2@/2 | Qagewr)  VQ,
Em (tUaWZa): z_ (ﬂ tO, )QlaVQ )"'O';/NiaQia (; i _N_+1
iU Fi Nia ia
B Q.
2 iajb
+Zagab[ Z J Qiaob]}.
b=1 jeu;, Pilia
Proof.
Recall that
A ZSUZ (pwr)ia ty 2
tUaWZa < - Z Z J|Ia[ - tUia] (A.73)
Pi icu Pi ieVia Pjlia
B - - -
where tUiaj = Z Z yx and ty, = Z tUiaj . Substituting the model form of y, into
b:]-keuiajb JEUia
Eq. (A.73), we have
tUIaJ z z H+ O tViaj T+ Eiajbk
b 1kEUIajb
B B
=2Qiajb(ﬂ+ai +7iaj)+z D Siajbk (A.74)
b:]. b:]-keuiajb
= Qigj (1 + @i +7iaj ) + &iaj
and
tu, = 2. Quj(4+ai+7iaj)+ D iaj
jeVia jeVia
(A.75)
=Qia (,U"' Oﬁ Z Qlaﬂ’laj * &ja
JeUia

Taking the expected value of Egs. (A.74) and (A.75) we obtain
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Ew (10, ) = Em (Qujér) = Qa4 (A76)

Em (tuia ) =Ewm (Qiat) = Qiat (A.T7)

(Al other terms have expected value with respect to the model equal to zero.)

Taking the expected value of Equation (A.73) we obtain,

2
ty.
Em (tﬁawzza):EM zi > pjlia(ﬂ_tUiaJ

icu Pi jeu,, P jlia

2
1 t iaj
=>.— 2. PjjiaEm (U. ‘tuia}

icu Pi jeu,, Pji
2
1 tUiaj tUiaj
=2.— 2. Pjiay| Em “ty, || *Van | —-ty,
icu Pi jeu,, Pjlia Pjjia
(A.78)
So we need to find
2
tUiaj
1L > Pjial Em ~ly, (A.79)
jUi P jia
and
tUiaj
2. Z pj"aVarM _tUia (ASO)
jeUi, Pjlia

1. Solving Equation (A.79), we obtain

2 2 2
N TS N A
Pjlia Pjlia Pilia
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Multiplying Equation (A.81) through by pj;, and summing over all SSUs jlia in the

population, we obtain

2 pj"{EM [tUia_lj ‘tUiaHZ > pjlia[%—Qianﬂz

jEUia j|la

2
=u°S A.82
H Qia( pwr) ( )

.
4. Toevaluate ) pjjaVary | ———ty_ |, firstfind
v Pjia "

tUia' Qi j iaj
{ J —tuiaJ : (ﬂ"‘ai"'?/iaj)"';i_Qia(ﬂ"'ai)__Z Qiaj7iaj — €iaj

Pijlia jlia jeU,,

= { Qi M= Qiaﬂj + [ﬁai —Qiaci J
Pjlia Pjlia

‘{ﬂ?’iaj - Qiaj?’iaj}"‘[%ﬁaj}

jlia jeUia ilia

1
+ Siaj {p——]}— Z 8iajf] O
i jlia i'=jeUi,

(A.83)
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Now taking the variance of Equation (A.83) with respect to the model, we have

i jlia j'#jeU,
1
+VarM giaj —-1|- z giaj'
.\ Pjia j# iU
(A.84)
Evaluating each term of Equation (A.84) separately, we obtain
Q Q i
A Vary | u| =3, Y Q| Vany (1)=0 (A.85)
|\ Pjlia jlia
- 2 2
B Vany | ar| 29 ~Q, || = 28_q, | Vany (a)=| 28 -qa | 02 (ASS)
Pjlia Pjlia Pjlia
1
C. Vary | 7iajQiaj | —-1|— D 7iajQiay
Pjlia j%jeU,
. 2
2 2
=Qfj ~1| Vany (rig)+ 2. QéjVaru (7ia)
Pjlia j'#jeUi,
. 2
2 2 2 2
=Qaj| 5 -1 oy + 2. Qayoy
Pjfia % jeUi,

2
1
=0’ | Q4 (—p- —1} + > Qb +Qh —Qf;

I'#jeUjy

189



Continuing from C,

1
Vary, [7ianiaj {@—q— ) Zu 7iaj'Qiaj']
J#])eUjy

2
2| A2 1 2
=0, | Qiaj { ~1| =11+ ) Qf

Pjlia j<Uia

1-2pj
2 2 ia
21 Q3 jl

> + Y Qf | by Lemma4
Pjjia jeUia

Q% 204

Pjia  Pilia  jeu,,

(A.87)

D. To evaluate Var, {ﬁaj (pi—l]— z 5iaj’] , first we find
jlia

J'#JeUiq
B
Vary, (b“iaj)‘z Y, Vary (giajbk) Z > © sab ZQuanUgab
b—lkeUlan b—lkeU,an b

Then

2
1 1 B 2 B 2
Vary, lgiaj [f—lj— > 8iaj'] = —1] 2 Quaipoey + 2. 2. Qiajnos,

jlia j#jeU,, P jlia b=1 j'#jeUigb=1

2
1
= [ —1} -1 ZQ|ajbagb+ Z ZQlano-gab

Pjlia jeU,, b1

Il
Mo
mmq'\)

(0., 20..
@—ﬂ+ Y Qiajp [by Lemma 4
b=t | Pjia  Pilia jeu,

B [Q., 2
:ZGZ Ql;ub Qlajb Q|aob

b1 | Pjia  Pilia
(A.88)
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Substituting A - D back into Equation (A.84) we obtain,

2

tU Qia’ J 2

Var < —1y, J: J —Qia | 0a
! ( Pjia ° Pjjia

[ A2 2
5| Qiaj  2Qiy 2
oy | S -—— 4 3 Qiaj]

2 n
| Pjia  Pila  jeu,

2
jlia

(A.89)

Multiplying through by pjjia and summing over the all SSUs jlia in the population, we

obtain
2
tUia' Q i
> pj"aVarML : —tuiaJZ p > Pjjia = —Qia]
jeUia Pjlia iU, Pjlia

Q% 202
+0y 2 Pjia| o+ 2, Qg

jeViq

20..:
Z T 2. JIIa(QIthlJb F?.Iéjb"'QiaobJ

b=1 jeUiy Pma jlia

2
_02 z pj||a[Qlé_lj _Qia]

jeViq

.2.
+0§[ > %—2 > Qi%\j"' Y. Pjja 2. Qi%j]

jeU, Pilia jeu,, jeU,  jeUy,

B Qi .
+Za§ab[ > b o > Qiajb + > pj|iaQia-b]
b=1 i

jeu,, Pilia  jeu;, jeUs,

(A.90)
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Since Z Pjjia =1, Equation (A.90) reduces to
JjeVia

2
Uiy iaj
= —tuia}: o 2 Pija (S__J_Qia]

il

Y. Pjjavary L

jeUia

.2.
+Gf[ > Q& , > Q4+ Y Qi%ljJ

jeu,, Piia  jeu,, jeU,,

Qiajb

jeu;, Pilia

—2Qjaep + Qiaob}

(A.91)
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Substituting the results from Eqgs. (A.82) and (A.91) back into Eq. (A.78), we have

2
tUiaj tUiaj
EM _tUia +VaI‘M _tUia
Pjlia Pjjia

En (tﬁaWZZa): Zi Z Pjlia

ieU Pi jeVia

=3 i{(ﬂz +0} )Qiivé. by definition of relvariance
oy Pi ia( pwr)

2

_ | Vo vé_
+02NZQ5 .a(;wr) ——&.11| by Lemma 1(f)
ia 1a
B Q .
2 iajb
+ZO_‘9ab Z J —Qiasb
b=1 jeu;, Pilia
2 2
1 2 2\R2.,2 22 R2 VQia(pwr) VQia
=2 —1(#"+05)Qavg, +0, NigQia| —=———=+1
P ( a) Qia(pwr) ~ 77 Ni% Ni,

S Qiajb
T2 b —Qiae o
Ei ol 2 " (A.92)

jeU;, Pilia
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Corollary to Theorem 7. Assume that conditions (A1) — (A5) in Appendix A.4.2 hold.

Then in the special case of no b strata so that agzab =a§a and 6b :6, the model

expectation of W22a can be simplified to

Proof.

We rewrite Equation (A.92) as

2
v,
2\ 2 1 2 2\n2~2  Qia(pw
Em (tuawza)zz— (ﬂ +%)Nia ia a<§ L
icu Pi Nia
2 2
V,
= Qia wr Vo
+02NGQ4 (2 )——Q_'a +1 (A.93)
ia Ia

B . .
+Z‘7§ab { Z QIanJQiaOb

b=1 jeu,, Pjlia

When (A2) holds, we use the result from Lemma 2 that véia =vg_ =0, and obtain

(pwr)

iU Pi b=1 jeu, Pilia

B »
Em (tLZJaWZZa) =2 i{UfNi%Qii +Y o H > s ]Qia.b] (A.94)

Assume that Qjzjp =Qp and pjjq = % asin (A2) and (A3).

1a
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Thenby Lemma 2, pjjia :Ni- and Qjgep = Niaéb . When (A5) holds, N;; = N;; -1 and
1a

1 — = =
Em (tﬁawzza)= ZH oZNEQA +20§ab [{ > NiaQbJNiaQb}

ieU M b=1 jeUia

INZAZ e 2 &
Z ayNiaQia +2 oz, NiaQp (Nia -1) (A.95)
icu Pi b=1

B _
2/2 2 A
= Z_Nla£ yQia +Zo'gabe]
IeU b=1

When (A2) holds, we know that from Lemma 3, Q;, = 6 Using this together with the

fact that p; = I\I;I by Lemma 2 and R, —NN— = P, by (A4), we obtain

MN = B =
Em (tﬁawzza):_ZU:N_lN Fa { §Q2+§l0€2abe:l
1€ =

= B = . p—
-M 2N2Pa2{o-fQ2+Zo-§abe] since > Nj=MN  (A.96)

ieU
(MNQ) P2 |:0' " Zaﬁab g—b}

In the special case of no b strata so that agzab = agza and (3b = (3 the model expectation of

sza can be simplified to
o2
Ey (tU WZa) (MNQ) P2| o2+ Lo (A.97)

and when there are no a strata so that P, =1 and agab = o2

2
24 G?S}D (A.98)
Q
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A.4.7 Model Expectation of W2,

Theorem 8. The model expectation of W3Zab is

Em (tl%abWS%b) gab Z Z Qlajb

icu Pi jeu;, Pilia

Proof.
Recall that
Qi%l'b
G, Waap = Z > > pJ SU 3iajb
iU Fi jeu,, Filia
with
2 -1 <V
S 3iajp = (Qiajb —1) > (yk - inajb)
kEUiajb
and
Yk
Yu, Z a
Sy Qiajb

iajb

Substituting the model form of y, into the above, we have

_ 1
Yk—YUiajb=(ﬂ+ai+7iaj+€iajbk) Q Z (ﬂ+0!|+%aj+€|ajbk)
Iajb kGUIan
Qiajb
=(ﬂ+0!i+7iaj+8iajbk)— — (ﬂ+ai+7’iaj) Q > Ciajbk
iajb iajb keUigip

= Eiajbk — Eiajbk

(A.99)
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and

Em [SLZJ 3iajb] =Epy (Qiajb —1)_1 > (yk ~ Wi, )2
keUiajp

(Quait .
A

= iajp ~ N M Eiajbk ~ Eiajb e
(Qap 1) "Em| 2 | )

kEUiajb

2
€ab

(A.100)

Then

2 (2 1 Qi%jbsﬁ 3iajb
Em |:tUabW3abJ:EM 22—

icu Pi jeu,,  Pilia

1 1
=> = > ——QfjpEm [Sﬁ3iajb:|

icu Pi jeu,, Pilia

1 1
=2 — 2 —Qipos,o

icu Pi jeu,, Pilia
(A.101)

Corollary to Theorem 8 Assume that conditions (A1) — (A5) in Appendix A.4.2 hold.
Then in the special case of no b strata so that agzab :aga and 6b :(3, the model
expectation of W32ab can be simplified to
=\2
2 W2 S8\ p2.-2
Em (tUabwsab) :(MNQ) P O¢,

and when there are no a strata so that P, =1 and agza = ag,

Em (tLZJabWSZab) =(MNQ
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Proof.

When (A1)- (A3) holds, we obtain

8202 : =
Em (tUabWSab) = Z > Qo since Qjajp = Qp
icu Pi jeUia pJ|'a
2 1 =2 . 1
=o; > —Nig > Qf since pjj, =—— Lemma 2(0)
icU Mi jeVia Nia
2 o 1 252 N
=o; MN Y —N{3Qf since pj=—— Lemma2(p)
AN, MN
eU
(A.102)
When (A4) holds, we obtain
Ey (tﬁabwfab) angNZ—N P2Q2 since N; Py = Ni,
ieU
=02 MNY N;PIQ{
icU
:agaszﬂz(sgP; since > N; =MN
ieU
(A.103)
In the special case of no b strata, so that agzab = agza and 6b = (5
2 2 2 \12[2p232
., (A.104)
:(MI\_IQ) Pazaga
and when there are no a strata so that P, =1 and agza = af,
2
Ew (15, W3ab) = (MNQ) = (A.105)

198



A.4.8 Model Expectation of W?

Theorem 9. The approximate model expectation of w2 is

Em (tLZJWZ) =2 &ZA: Nia {Uféia{ %'a (VQ +1)}+Z ops me.b}

ieU Mla=1 :
Proof.
Recall that
.2 2 -
tﬁwz _ Z M (A.106)
ieU p'
where
1 & v )V
SG3 :—12 > Z 2 (yk—in)
i a=1 jeU;, b=1keUjy,
and

a=1 jEUia b=1keU iajb i

Substituting the model form of y, into the above, we have

H~+ & + Viaj T €iajbk )

I
i M >
Mo

1 jeU;, b=1keUj,; Q

/H‘Oﬁ ZA: Z Yiaj QIaj"‘ZA: z Z Z glajbk_

a=1 jeU;, Q a=1 jeU;, b=1keUjy;,

(A.107)
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Then,

&
Yk = YU, = Ziaj — z z 7|aj+5|ajbk_ I++_++
a jeUj, I QI
Qiaj Qiaj
=7iaj( -3 X QJ
a j'=jel;, |

+€|ajbk[ J 222 X glajbkél

a J'eUj, b'#bk'#keUjy,
(A.108)

Taking the expected value of Equation (A.106), we obtain

= (tﬁv\/Z): Ey (Z QizzGSi]
ieU I

Q Enm (Sl.ZJSi)

ieU Pi
Q 1 A B Y
e e PIDIDIP WM 1Y
ieU Mi a=1 jeUj, b=1keUjy,
1 A B _\2 _
3L LS55 5 e (o) van (550
icu Pi a=1 jeUj, b=1keUjy,
(A.109)
We need to find
2
1. [EM(yk—in)} (A.110)
2. Vany (yk -y, ) (A.111)
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1. Solving Eqg. (A.110), we obtain

Em (Yk—Vui)=

[EM (Yk -, )T =0 (A.112)

2. Taking the variance of Eq. (A.111) with respect to the model, we have

Vary (Yk —yui):VarM 7iaj( —%J:l 2. 2. Vany {chgaj 7|aj}

I a j'#jelU;,

i 1 Uia,BUigjny 1
+VarM ‘9Iajbk (1 —j + z z VarM {Eiaj'b’k’ —i|
Q' (]'b k )ijbk Qi

Qi Qf
_ 0_2 (1 iaj j 2 iaj’
Q Za: i ;t%U,a QI

lJla'Bvuiaj'b' 1
+o2 (1——] +> ) 02'—2

Eab
a jbk=(jok) Qi

2 2
_ 2 Qiaj 2 Qiaj 2 Qlaj o2 Qiaj
=0, (1— Q) j -0, — z Z o, —
! Qi a j#=jeli, QI i
2 Ui ,BUizin:
2 1 2 1 a2 “iaj'b 9 1 ) 1
+o-gab (1__.] _Ugab _2 * z . Z . O-gab’ _2 * O-“:elb’ _2
! Q" a j’b'k'#( jok) Qi Qi

Let (jbk) denote a HU k , in a specific SSU j, HU substratum b . Then

Uia:B.Uigjy
denotes the sum of all SSUs j in U;, , over all HU substratum b, for
jo'k = ( jbk)

all HUs k in Uiy, inagiven PSU i, SSU stratum a, except the single ( jbk) term.
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. . .2. .2.
vt () - 1- 20 2B,
1 i i

+a§ab {1—%+§—é}+

=a§[ 2Q.a,j T o 2Q|aj

Q a jeUj, QI

A (EPT T Y T

gab
Q a jeUjy b kelUjy QI

(A.113)

Substituting Egs. (A.112) and (A.113) back into the SLZJ 3j portion of Equation (A.109),

EM( )=—Z > Z > {[EM(Yk—Vui)TJrVarM(yk—Vui)}

I a=l jeU;, b= lkeU,ajb
1 A

2—12 > Z > VarM(yk_yU)

I a=1 jeU;, b=1keUjy

>—22225@”ﬂ 2yl

i 7% a jeUj, b keUjy, Q i~a jeu, Q7

> (i Try sl

Qi 13 &0, b kel i 742 jeUi, b kel Qf

P—ZZ%[—%]yzzz%

I a jeU, Qi ! a jeUj, |

et (L2 T T s L

1 a jeUj, b keUjy

(A.114)
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Continuing from Eq. (A.114),

1 Qi 1 Qi
Em (SSSi):Q__ _12‘72[ z Qiaj —2 _J]Jr _ ZZ ‘72;?]

a jeVia jeUia QI

[ QJ Q- ZZQlaob eabQ

1 0_2 Q z Qizaj ZZQ 2 [1 1]
= - AL B DI w0 =
QI _1 ~ V4 1a jEUia QI . — 1a Eab QI
Using the definition of Q= > Qi . then NizQia = D Qi - And by definition
jeUia N jeVia
S _ Qlajb
Q|a-b - Z N then Nlanaob = Z Qlajb Assuming Nia = Nja =1, we have
jeUigy 12 JjeUiap

1 .
Em (SLZJ 3i ) = mza‘,(fﬁ ( NiaQia ey NiaQfa (Véia +1)} by Lemma 1(d)

o2 Ll—iJ
al Ql

T B, )

D [

(A.115)
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Substituting Eq. (A.115) back into Eq.(A.109) and assuming Q; ~ Q; -1,

Q7En (SLZJSi)

En (tﬁwz)iz

icU Pi

ZQ.Z ZNanla[ Qia (VQ. +1)J (A.116)
ieU Ia QI

+Z S ZZ Nlana-bO'g ab

icu Pi'a b

Rearranging terms in Eq. (A.116),

Ey (t5W?)= ZQIZN.a{ yﬁ.a{ %‘:’J‘(VQ +1)}+Zang,a,b}u

icu Piaz

Corollary to Theorem 9. Assume that conditions (A1) — (A5) in Appendix A.4.2 hold

In particular assume that (A2) p; =%; Djjia = g'aj (A3) Qiajp = Qv (A4) R :%E P,
ia i

and (A5) N;; = Nj; —1 hold. Then in the special case of no b strata so that o = agza and

o) (5 the model expectation of W? can be simplified to

Qp
En (tﬁwz)z(Mﬂé)nga [aﬁ +052J
o2,
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Proof.

When (A2) holds, by Lemma 3, v§_=vg__ =0. Substituting this result back into Eq.

(A.116),

210/ 2 Q < 2~ Q 8 2 =
Em (tuW )= 2 =D Nia {UyQia {1—§}Z O'gabQiaob}
b=1

iU Fla=1 i
(A.117)

When (A3) holds, we use the results from Lemma 2(g) that Q; = Nié and obtain

_— B B
= (tﬁwz) = mz Nig {an ll—i:} since Q; =Q Lemma 2(e)

ieu Pi az N;Q
B = p— =
+ Zagabe} since Qjaep = Qp Lemma 2(c)
b=1
(A.118)
Nia Nia
Assuming (A4) R, =N— =P, , and substituting —2 = P, MN,
p.
Ey ( ) MNZNQZP{ {1——}2%&}
icU i
(A.119)

Using the fact that MN = > N; and N; ~ N; —1 by (A5),
ieU

A = N
Em (tSWZ):Ml\TZ NiQZPaa}?Q{%} +MNZNQZPaz o2 Qo

icU a=1 icU

= M?2 ZGZZP +M NQZPZo-ngb

a=l b=l

(A.120)
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And so
2 2 252A2 2A 2_2:A 8 2 A
G Ew (W?)=MPN2Q%7 Y P+ MPN2QY P Y 07 Qs

(A.121)

In the special case of no b strata so that agzab = aga and 6b = 6 the model expectation of

W2 can be simplified to

Ey (tﬁwz)ﬁ(mﬁé)z zA: P, [aﬁ +0'§a}

a=1

(A.122)

and when there are no a strata so that P, =1 and aﬁa =2

&

(A.123)
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A.4.9 Model Expectation of W2,

Theorem 10. The model expectation of W32a Is

Ev (G w2)=Y = 3

icu Pi jeu,, Pjlia

Proof.

Recall from Section 2.3.3 that

.2.
G-y Sy

g2 .. .
] — SU3igj
icu Pi jeu,, Pilia

(A.124)

where

2 1 8 _ )2
S3 3iaj = Q. __12 Z (Yk —YUiaj)
Iaj b=lkeUiajb

and

B

. y
yuiaj=z Z =k

b:]. kEU iajb Qla.]

%
.. Qiajb-

b=1

Substituting the model form of y, into the above, we have

C ey e
yuia,.—ZZ

b=1 kEU iajb Qlaj

B (ﬂ+0!i +7iaj +‘9iajbk)

=2 2

b=1 kEUiajb Q|aj

[

1 B
Qiaj (ﬂ+ai+7iaj)+—z D Siajbk

QIaJ b:1 kGU iajb

B
1
:(,U"'ai +7’iaj)+z Z €iajbk =

b:]. kEU iajb Qlaj

" Qu
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Then,

B
_ 1
Yk = Yu,,; = Eiajbk — Z Z iajbk =
b—1keU g, Qiaj
1 BUjajp: 1
= Eiajbk l_F — D ik o
iaj ) b'k#(bk) iaj

(A.126)

Taking the expected value of Equation (A.124), we obtain

1 Q2.
E (15,42 ) = >3 ey (3..)
ieU Mi jeu;,, Filia
1 Qiij 8 1 B 2
T Em (Vi ~Yu,,
%J: Pi jz‘ia P jlia bz—lke%: Qigj —1 M( “ U'al)

iajp '

= Zi 2 QI_%JZB: : {':EM (yk ~Yu, )T+VarM (Yk -Yu,, )}

icu Pi jeU,, Pilia boikeu,,, Qiaj 1

(A.127)
Need to find
2
1. [EM = )] (A.128)
2. Vany (yk Yo, ) (A.129)

1. Since all terms in Eqg. (A.126) have expected value with respect to the model

equal to zero, solving Eq. (A.128) we obtain
Em (Yk ~Yu,, )20

|:EM (yk YU, )T =0 (A.130)
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2. Now taking the variance of Equation (A.126) with respect to the model, we have

1 B.Ujajp- 1
VarM(Yk—Vuiaj)=Van Sigjok | 1-—— | [+ 2 Varny | igjie =—
iaj )] bk'(bk) Qiaj

2 BU..
’ b'
) 1 L T T T |
%b[l_Q_J MDA My pad M e W
iaj ) bke(bk) Qi Qiaj Qiaj

) 2 1/ 1/ Bdaw 1

_ B B 2
=0y, |1 o + + > Oy —5
iaj  Qiaj iaj bk’ Qiaj

(A.131)

Substituting Egs. (A.130) and (A.131) back into the formula for S§z;; , we have

1{0 +Vary (yk - yUIaJ )}

(85, )2 ¥

b=1keU 5 Qiaj

B Qi
g 1— 52 iajb
té Usaio QIaJ -1 ab( Qlaj] bzike%,:a,b QlaJ [bz:l * Qb }

Qiajb 52 [ J 9/ Z 2 Qlajb
Qlaj

Eab ‘9ab

b1 Qiaj —1 Qiaj 153 Q.a,

1 B 2 . _zQiajb Qlajb B . _Qiajb
Qiaj _1b§1083b [Qlajb Qiaj Qlaj ] Q|aj Z—‘i Qlajb Qiaj
1 B Q Qi
=——— oz, Quajp Q! Z ol —2a
th/lb=1 Qiay b=1 QlaJ

(A.132)
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Substituting Eq. (A.85) back into Eq. (A.80),

2
By (GW2) -~ 3 g, (s3, )

icu Pi jeu, Pilia

Z B
_ i Qiaj 2 Qiajb
Z z Zggab %

icu Pi jeu.. Piliab=t
1a

B
= Zi > hZCf(,;ZabQiaij

icu Pi jeu,, Piliap=
(A.133)

Corollary to Theorem 10. Assume that conditions (A1) — (A5) in Appendix A.4.2 hold.

In particular assume that (A2) pi:%; pj"a:%, (A3) Qiajb:(ib,

(A4) Ry :% =P, and (A5) Nj5 = Njz —1 hold. Then in the special case of no b strata
|

2

so that agzab =0, and 6b = 6 Then in the special case of no b strata so that agzab = agza

and 6b = 6 the model expectation of W32a can be simplified to

Em (tﬁawsi) :(MN6)2 Paz%za

and when there are no a strata so that P, =1 and aga = 03,
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Proof.

When (A2) and (A3) hold p; = % , Pjja = % and Qjgjp = Qp- Then we have
ia

fu(603)= T L ¥ 0y g0,

icu Pi jeu, Piliaba

Qla
Q0
by QI vl 9/%2 hO. ab

Q 8=
:QZ —4a Z ZQbO-gab

ieU Qi jeU;, b=1

_ _ B _
-MNQY. 2 Y Y02,

ieU Q jeU;, b=l

(A.134)
and when (A4) holds such that R, —NN— = P,, we have Nj; =N;P, and
> 2 1=2 Nia
icU jeU;, ieU
z Nia = Z N;P,
icU icU
Na =Pa Z N;
icU
N, = P,MN
(A.135)
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Also when (A3) holds, we know that from Lemma 2, Q;, = 6 Qi =Q,and Qiuep = 6,0 .

Using this together with the fact that Nj; = NjP, and > > 1=N, =P,MN , we obtain
icU jeU;,

Ey (t5,Wa2 | =MNQ Y |\Ilana D ZQbagab

ieU <l jeU;, b=1

:MNQZ P, 5 > ZQbagab

ieU jeU;, b=1

(A.136)

In the special case where there are no b strata so that, agzab = agza and (3b = 6 the model

expectation of W32a can be simplified to

(A.137)
(A.138)
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A.4.10 Model Expectation of V

Theorem 11. The approximate model expectation of V' is
27\ . 2 1(2
EM (yUV) =0, I:l—M(VQ +1)}
§{1—— 3 z NiaQa (v, +1)}

Q? icU a=1
2 Q °
+ZZZ% o .
ieU a=1b=1
Proof.
Recall that
2.5
=ghIE T Y Y () 4139
icU a=1 jeU,, b= lkeU.an
where

Vu=Z§ZZBI by X

ieU a=1 jEUia bzlkEUiajb

Substituting the model form of y, into the above, we have

B

T390 WD

ieU a=1 jEUia b:]. kEU iajb

i L 2SS Y

Yiaj
icU icU a=1jeU;, Q

+Z§ 2 i 2 giajbk%

iEU a=1 jEUia b:]. keuiajb

(A.140)
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Then,

Yk = Yu =ai—i§ai%

I IR

Yiaj
ieU a=l jeU;, Q

TEiajbk -2 ZA: > Z > 5iajbki

icU a:].jEUia bzlkeUiajb Q

=a,[ QJ HZ,U%%'

Qlaj U ’A’U ia’ Ql varj/
+7/iaj( —? - z iajy —~

i'aj'#(iaj) Q
U, AU;4.BU;
1 Y i'a’j'’’ 1
+Eiajbk [1—6J - Erabk’ )
i'a’j'b'k (iajbk ) (A.141)

Taking the expected value of Eq. (A.139) we obtain

By (V6V)=E [Q 12222 > (w-W) J

ieU a=1 jeU;, b=1keU;y,

1 A B _ N2
EEDPIPIDIDICHUERY
€U a=1 jeU;, b=1keUjy,
1 A B 2 .
EPIDIPIDI {[Em(yk‘yu )+ Vet (=)
Q iU a=1 jeUj, b=1keUjy,
(A.142)
Need to find
2
L [Em(W-%W)] A9
2. Vary (Y -W) (A144)
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The expected value of all terms in Eq.(A.141) is zero. Consequently Ey (Vx —Yu )=
and hence

[Em (%~ W0)] =0 (A.145)

Solving Eqg. (A.144) we obtain,

Vary (k- Yu ) =Vary :a{ —%ﬂ > Vany {a, QQ }

i'zielU

[ - U,AUjy
+Vary 7iaj( —%H+ > Vary {}/Iaj Q'(;J }

i'aj'#(iaj)

U,AU;,,BU;
1 Y Iajb EitalitL!
+VarM 5iajbk [1——j:|+ z VarM Lbk

i'a’j'b'k ‘#(iajbk)
Q 2Q|
=O'a[ ——'] + > o,
Q i'zieU Q
Qui ¥ YAU o2
5(1_ﬂ] R SR
Q e . V4 Q2
i'aj'#(iaj)

12 YAViaBUisp 1
+o2 (1——] + z o2 L

Fab' ~2
iajb'k=(iajok)  Q

(A.146)
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Continuing on from Eq. (A.146) ,

2 2
- Qi Qi Q| QI
o)1= -t 2 ekt

] 2 2 U’A'Ui'a' g [H 2
o (1—%] —02%+[ Z O'ZQIaJ J+02%

i'aj’b'k '=(iajbk) e Q2 e Q2
(A.147)
And so
2|, 20 O R 2 QF
VarM(Yk_VUi):Ua 1—?'+—' Q—'2 +Z%Q_'2
ieU
2| 2Qig Qi%lj |a1
1-
+oy 1—£+9i//1 + o2 1
ab[ Q ; Q2 i%)l Za: jeZ:UiaZb:keUZiajb ab Q2
2( 2Qij 2 QF
:06{ 1—— + Ga_
Q icU Q2
+o ( 'ajj zz Z %
Q U a jeu, 7 Q?
+ng (1——) Ug i
"LQ Uza: Jzu:. % Ty @ (A.148)
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Substituting Egs. (A.145) and (A.148) back into Eq. (A.142), we have

Em (LZJ ) o 122 > Z > {[EM yk_YU)]2+VarM(yk_7U)}

icU a—ljeU,a b= 1keU,an

LYY S Y (orvany (-0

Q- lleU a=l jeU;, b= 1keU,an

LYS S Y Y van(n-5)

Q 1|eU a=1 jeUj, b=1keUjy,

ZE YT T R} L d

IeU a jeUjy b keUjy Q IeU

Lrryy s Rl sy

IeU a jeUj; b kel

P IIDID DR () S )

IeU a jeUj, b kel IeU

Q&
o2 il
JGZ:UK& ’ QZ

IDID WA
ab
jeUiz b keUigp QZ

1 0, 1 v @
EOR ( Q ]+Q—1§“‘” Q
2Q; 1 Q2
T T Y a1 Ly 3 2
IeU a jeUj, eU a jeU;,

e iZE T Tomeh (15 g T T Tomel g

IeU a jeU;, b

(A.149)
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Continuing from Eq.(A.149),

2.~ 1 - 1 Q
EM(yUV)=Q—_1%(ZQ. ZQ.}Q— >

icU IeU

+—O-}/ZZ£ Z Quaj Z Q|aJJ Q -1 722 Z Qiaj

iU a \ jeU;, JeU,a iU a jeU;, Q

zzzQ.a.ba%[ ——j 1% T Qe

ab
IeU a IeU a Q

O\

- (ZQ. ZQ.}Q—layZZ(ZQ.a, ZQ.a,J

ieU IeU iU a \ jeU;, jeU,a

=tasiiAes

(A.150)
Rearranging terms in Eq. (A.150) and assuming Q ~Q -1,

+Q—1‘77(Z 2. Qi __ZZ > QlaJ}

iU a IeU a jeUj,

+— z zleaobUg ab

IeU a

=%g§ 1——ZQI }

-1 ieU

+%aﬁ PP Q]
N iU a jeUj,

+= ZZZQ.a.b O

IeU a

(A.151)
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Using the definition of MQ=Q =Y Q; and NizQjaep = >, Qiajp »
icU j€eVia

Em (75\7)&0025 MZQZ /QZ( +1)J by Lemma 1(i)

+a§ 1—— > > NiaQi (v(% +1)J by Lemma 1(d)

icU a

= z ZZ Nlanaobo_gab

|eUa b

— 52 {1-%(\/5 +1)} {1-(}-5 az_:lN,aQ,a (V8. +1)}
%302, G,

icU a=1b=1

(A.152)
Corollary to Theorem 11. Assume that conditions (A1) — (A5) in Appendix A.4.2 hold.

. . Qi -

In particular assume that (A2) p; :%; Pjjia :éj, (A3)  Qigjo = Qb

(A4) Ry :%E P,, and (A5) N;; ~ N;; —1 hold. Furthermore, assume M ~M -1 and
1

MN ~ MN —1. Then in the special case of no b strata so that agzab = aga and 6b = 6 the

model expectation of V' can be simplified to

Ey (tﬁv) (MNQ)Z{G +o? +ZP0' }

a=1

and when there are no a strata so that P, =1 and ag =2

Em (t5\7) M2N? (j [O‘ +02+02}
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Proof.

2

When (A2) holds, we know from Lemma 3 that vé_ =VQ, = 0, and from Section

ia( pwr)

2.4.2.3 that vé = vﬁ . Substituting this result back into Eq. (A.152), we obtain

En (V) =02 {1-%(@ +1)} [1--% az_lN,aQ,a}
o ZZZ 0. NiaQiaeb

IeU a=1b=1

(A.153)

Assuming Qjajp = 6b , we know that from Lemma 2, Qi =Q; = (3 . When (A4) holds, we

ana ia6 Qia

N; . o
have R, =—12 = —=—2=P,. Then assuming R, =P, implies

Ni N; QI Nl(j Qi

Niq = N;P, . Substituting these results back into Eq. (A.153) , we obtain

v (V)= o 1_5(@ +1)}

+af 1—— DN z Xo) } since Qi =Q (A.154)
ieU a=1
+_ Z N Z Zo'g bPaQb since Qjaep = 6b
Qi atiba

Substituting Q = MNQ and using the fact that MN = DN
ieU

)i ot P B

,O|||O||

2 12 2_ 83
=c; [1—M(VN +1)}+07 }+ZZo-gab X
= a=1b=1

(A.155)
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Continuing from Eqg. (A.155), if M is large, we assume%(vﬁ, +1) ~0, and

MN

+aﬁ Z since MN ~ MN -1
N

1AB
+Ezzo-gabpaQb
Q az1b—1

A B
2 2 2
=045 +0; +ZZagab
a=1b=1

In the special case of no b strata when o’ =o?

€ab &a

V can be simplified to

Em (7&\7)=0§ +U§+ZA:G§aPa§

LRy

A
2 2 2
=0,+0, + z Pac:,
a=1

and when there are no a strata so that P, =1 and aga =0
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&

(A.156)

and (3b = 6 the model expectation of

(A.157)

(A.158)

(A.159)

(A.160)



A.4.11 Model Expectation of V,
Theorem 12. Assuming Q,, M, N, are large such that, Q; =Q, -1, M *M -1, and

N, ~ N, —1, the approximate model expectation of V, is

Em (Vﬁava)i%zz {1 Q2 MQla(le +1)}+ o) {1 ng NaQ3a (VéZa +1)}

+ z Zab %Zb

Proof.

We use the following equalities to get the result. The derivation is straightforward and are

similar to those for Lemma 1 in Section A.4.1.
i) ., Q4 =(M-1)Sk, + MO ~ MRS (v(zgla +1) where

88, =(M-1)" Y, (Qu-Qu) ¥, =53, /Qh and Q=M 'Y, Q-
(i) i, Qb =(Na—1)S8, +NaQfa ~ N, V8, +1) where

B0 = (Na=1) " Ty T, (Qui = Qa) VB, =58, /@B and

2a — Na_lzieu Zjeuia Qiaj .

Recall that

12 2 Z ) (yk—Vua)2 (A.161)

Qa ieU jeUj, b=1keUjy,

B
where iy => > > > Yk,
a

ieU jEUia b=1 keUiajb
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Substituting the model form of y, into the above, we have

Y Yy Y %

ieU jEUia b:]. keuiajb

—u+Za.g'a+Z > Vi o ey Y Z D Ciajok o

ieU a ieU ]EU icU JEU b= lkeU,an Qa

(A.162)

Then,

Qi
Yk_yU =aj— Zal Qla
icU a

Qiaj
i~ 2 X Vit

iaj
iU jeUi, Qa

*Eiajbk Z Z z z Eiajbk =

ieU jeUj, b=1keU;y, Qa

—a (1_%} z Qla
|
Q) i ' Qa
Qiaj Ui Qv Niaj’
+7iaj [1—— - D Ve
Qa ) i)  Qa
1 U Ui, BUjaj 1
+&igjbk | 1—— |~ Eirajk’
a)  ijbk(ijbk) a

(A.163)

Taking the expected value of Eq. (A.161) we obtain

B

LY S Y (wew,)

Qa ieU jeU;, b=1keU

iajb

Z > Z > {[EM (Yk—)_/ua)TJrvarM (Yk—)_/ua)}

Qa ieU jeUj, b=1keU;y,

(A.164)
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We need to find
1. [EM (Yo, )T (A.165)
2. Vary (yk - yua) (A.166)

The expected value of all terms in Eq.(A.163) is zero. Consequently Ey, (yk -Yu, ) =0
and hence

v (w10, )] =0 (A.167)

Solving Eqg. (A.166) we obtain,

Vary, (yk —yua):VarM ai( —ij}r > Vary, {ai/%}

a i'zieU a

B . U Ui, -
+VarM }/iaj [1—%)}4— Z VarM [}/iraijQl;aJ:|

a (i} a

U Uia,B.Uiajry Eirains
]:|+ > Vary {—' ajbk }
Q i'j o'k #(ijiok) Qa

Evaluating the variances and adding and subtracting terms to complete various sums of

O

+VarM giaj bk [1—

(A.168)

squares gives
2 2 2 9
o ln-so)- 218 et 3 [ o2 2]
a i'zieU a a a
e (]
Qa i)l Qa Qa Qa

2 UUi BUin
5 l 1 i'a i'aj’b 5 l 2 1 1
+O-‘9ab _Q_ + N Z Ggab’ _2+Ggab _2__2
a i’k (ijbk ) Qa Qa @

(A.169)
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Collecting terms leads to

2
Vary, (Yk —Vua)zaé [1—2%J+002! > [%}

a i'eU Qa
- UUia[ Q. 12

+a§[1—2%]+a§ > {Q"”“} (A.170)
Qa 77 | Qa

Uy, B
5 1 1 Y lia
+ 0% [1—2—]+— Y. e, Qiajy
’ Q) Q& ifm

Summing over PSUs, SSUs, b strata, and elements gives

2 2 i 2 VarM(yk—Vua)=

iEU jEUia b=1 keuiajb

prt s () z[e)

iEU jEUia b=1keUiajb a i'EU

wrpbr -t

IeU jeUi, b=1keUjy

1 1 U\U;,,B )
+Z Z Z z { gab( Q_J‘l'? - O'gab,Qi'ajvb,}
a

ieU jeUj, b=1keUjy, a i''p’
(A.171)
Continuing from above we have,
B
Z Z Z Z Vary, (yk_yua)zo'é{Qa ZQla ZQla}
ieU jeUj, b=1keUjy, Qa ieU Qa ieU
Qa TN z Z Qlaj Z Z Qlaj
Qa ieU jeU;, Qa icU jeU;,

2 | 1
+ (l_Q_ajbglo'gaanb + Q_ zo'gaanb

a b=l

(A.172)
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Note that to obtain the preceding expression, we used the assumption that all b substrata
of HUs occur in every PSU and SSU to move the sum over b outside the other sums.

(Qa‘l)EM(YU ) > > Z > VarM(yk_yU )

ieU jeUj, b=1keUiy,

- éQa{l—éZQi%}waa{ 23y Qm}

aieU a iU jeU;,
1)\& 2
+|1-— Zﬂgaan_b
Qa )b
(A.173)
Dividing through by Q, —1 and assuming that Q, is large so that Q, ~ Q, —1 gives

B (78, )2 { —ZQ.a}+ {1——2 ZQ.a,} 20 Eab%—zb

a iU a ieU jeU,

Next, we use (i) — (ii) above to obtain

EM(—gav;)iag{l_ "%, +1)} ;{1_ b2 (VQRH)}éagab %

a
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Corollary to Theorem 12. Assume that conditions (A1) — (A5) in Appendix A.4.2 hold.

Furthermore, assume M ~ M —1,and MN = MN —1. Then in the special case of no b strata

so that agab =o2 and 6b = 6 the model expectation of \7a can be simplified to

€a

EM (_Sava)£002(+05+0§a and EM (kza)ﬁ

and when there are no a strata so that P, =1 and agab =0

2 2
~ o,to = =
EM (_LZJ Va)£0'026+07%+0'§ and El\/l (kZa)i%,When Q~=Q+1.
@ g toy, to;

Proof.

By Lemma 3, we know that v§_ =V and v§_ =0, substituting this back into Eq.

(A.175),

2\ 2], 1 =22 2], 1\ A2 iBz
EM(yUaVa)—oa 1 ¥ MQla(vN +1) +o2i1 ¥ N,Q2, 5 > o2 Qap

a a a b=l
(A.176)
Also assuming Qj,jp = (3,0. and N;, = N;P,, we know N, = MNP, . Using this with the

results from Lemma 3, it also follows that:

Q=R G, Gu-Q
Qa = NaQ = MNQP,, Qab = NaQp = MNQ,P, .
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Expression (A.176) then reduces to,

= 2
M (NQPa) MNP 52
22\ \e 2 2 2 Q
By (V6,Va) =05 41-——— (Vi +1) f+ of {1- ——2=
(MNQPa) MNQPa)
Sy
+— o2 MNQ,P (A.177)
MNQP, g; b :
B =
—c2 {1—i(v§, +1)}+a§ {1—;}+ Zagzab Q—:b
MNP, | 3 Q
When M, MN is large,
. B o)
Enm (_ﬁaVa) ZoL+0y+ ) 00 2 (A.178)
b1 Q
If there are no b strata, then agab = agza , (5b = (3 and
Ey (—ﬁava) =62+l 402 (A.179)
If there are no a strata so that agza = 0'(3, and
i\ 2, 2 2
=0, +0,+0, O (A.180)

o2
Em ( Uava) y
Also note that Eq. (A.180) is the same as Eq. (A.158) for Ey, (7&\7) as it should be.

we can rewrite Eq. (A.179) as

tj
Using the definition of ——=— = yﬁa ,
)
Ey (t6,Va) (MN6)2 [og, +o? +0'§a} (A.181)
and Eq. (A.180) as
Ey (tﬁa\ia) = (MN6)2 [ag +o? +0'€2}|:| (A.182)
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A.4.12 Model Expectations of Measures of Homogeneity
When there are no a or b substrata, assuming N and N6 are large and using the results in

Appendices A.5.6 - A.5.9, gives the approximate model expectations of &; and k; :

252
(s Ewm (tuB) Ey (tﬁBZ)+EM (tﬁwz)
M(l)_ 2.2 ) EM(kl):
Ev (t58%)+ En (GW?) - (t& ~)
2 2 2 2
(o2 (o2
o2 +-L 4% 02+T7+%+0'§+0'§
_ N NQ ~ N  NQ
- 2 - 2, 2. 2
(o2 o, t+o,+0
a§+é+%+af+a§ @« T e
N NQ
2
=— 602‘ 5 0'026+0'§+0'€2:
Ta 0y +0 002,+c7§+c7§
(A.183)

Likewise, assuming 6 iIs large, the approximate model expectations of 6,, and k,, are

E (tLZJ W22 ) EM (tSaWZZa)-I- EM (tSaW?,Za)
Ep (52a) = 2 Mz — 2\ 2 B (K2a) = Ey (t2 V
v (6. WA )+ Ew (G.W2) m (1.V%)
2 2
0'7% +GQ:'9 a§+o-(%a +0'§a
i 2 0-62‘ 2 ) a§+02+a§
O-}/ +?+O'g 4 a
0 o2+02
E.
. 05 -2 - 2 . 2
:ﬁ O'a+O-7+O-8
o, +0;
(A.184)
2 2 (s ) 2 =\2_»
where tj =Y (MN ) and 5 :(MNQ) Yo, -
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A.5 Derivation of Estimators Needed For Anticipated Variances

A.5.1 Estimator of Sé( needed for Anticipated Variances

pwr)

. . 2 .
Theorem 13. An unbiased estimator of SQ(pwr) 18

., 5 - &
SQ(pwr) ﬁlesl(_-_ J_lz Z (la 1)[2 - IaQIaJ

Pi m ies; pl J€Sia p jlia

where if the third stage is SRS

Cjiaj =Qjaj» Qia :ni Z Qiaj Q| ZQW and Q== Z Q'

ia jes,, Pilia mic P
Proof.

The variance S5 is the special case of Equation (1.12) with y, =1. The estimator of
Q(pur) K

2 - : 2 _ &2 _ Q2 - _
SQ(pwr) is the estimator from Section 2.4.1.1, Sy pyr) = Sy pwr)a ~ Si(pwr)s: With Yy =1.

Letting y, =1 in Eq. (1.12) we have,

2
SS](pwr zpl(__tUJ ZQ[%‘Q] zsé(pwr)' (A.185)

ieU Pi

We know that 51% pwr) 1S @n unbiased estimator of Sﬁl(pwr)for all yy including yy =1.So0

plugging in y, =1 into SAf(pwr)will give an unbiased estimator of Sé( since

pwr )
2 2 - - 22 : :
SUj(pwr) = SQ( pwr) when y, =1. Letting y, =1 in the components of 51( pwr) I Section

2.4.1.1 gives:
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tiajb =Q iajb s tiaj =Q iaj ! fia( pwr) ~ Qia

A oy A A

ti( pwr) — Qi tAiab(pwr) = Qiaob ' tpwr =Q

Making these substitutions in the formula for 812( pwr)a 91Ves

5 2
29 1 QA
Si( pwr)a _—m_lizsl[ o QJ : (A.186)
S
S' §2 — 1 1 §22Aia d
Ince, l(pr')B _Elélp_lzgf We nee
¢ 2 5 2
2 1 EI 1 iaj A
SZZA- =— —f - e}
- ”ia‘ljezs.a{pjlia 'a(pwr)] ”ia‘ljezs.ipjua “
/\2 A
1 Qaj 4 Qiai =
= N > ;a’ ~2Q > 2 4+Q5 D1
Nia =4\ jes, Pjjia jes, Pilia =
A2
1 Qiaj A .
- 1 Z ;aj _ZniaQiaQia"'niaQi%l
Mia = jes, Pjlia

Mia = jes, Pjlia
(A.187)
So,
£ i 52
. 1 i(pwr) 1 1 Soaj
82 _ —f - - Ala
(o) " 2| T, prJ & o2 n,
1 6 F 11 1 Q5
. A 1a 12
:—1 _I_QJ - —22—1 Z Tj—niaQia O
m-— =y Pi miesl Pi a r]ia(nia_ ) j€Sia Pilia
(A.188)
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A.5.2 Estimator of Séi ( needed for Anticipated Variances

a( pwr)

2
Theorem 14. An unbiased estimator of SQ (pwr)= 2 p”,aL o —QiaJ is
j€eVia

A 2
A9 1 Qaj 4
SQia(pWI’) - ni. —1 Z [ - _QiaJ
J€Siq

1a

where if the third stage is SRS

Qiaj = Qjaj, and Qia = L Z Qiaj-

ia jes, Pjlia

Proof. Expand

~ 2
. 1 Qiaj A
Séia(pwr) Ny —1 Z 2 Qia]

J€sia pjlia

1 Qiza' Qia' A A
= 1 > L 2= Qia"‘QiZa]

. 2 -
Nia =1 jcs_ | Pjia  Pilia (A189)
A2 ~
1 Qiaj .4 Qiaj A2
“ho 1 > ZJ ~2Qi3 Y, __J +NiaQia
ia jesi, Pjlia J<Sia Pjlia
22
1 Qiaj Nia A2
= Z - Qia
2
MNia =1, Pjia Ma—1

Using E, and Ej as in earlier sections to denote expectations with respect to the second
and third stages of sampling,

E2E3(§(23ia(pwr ) 1E2 > ES[QIaJ J Ny _1E2E3 (Q'Za)

j€sia jlia
1 Qiaj n A9
= Ep| D ~——E»E3(Qfa
M~ [iesia Plia ) Ma L ( | )
=C-D

(A.190)
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Solving for C and assuming nj, /(njz —1) ~1,

2 . 02. 2
1 Ez[ 3 Qi J Nia_ 5 MQ'E‘J =y ﬁ (A.191)

- 2 -
Ma =1 "\ jsa Plia ) Mal

Solving for D and assuming nj, /(nia —1) ~1,

2
3 1 Qiaj
EoE3(Qf )= EoFs| | — X —+ (A.192)
Mia ~1 (%) Nia Jé Pjfia
with
Qi | Q 0w I o ¥
E3 i Z '3y :Vars i z 3 + E3 i Z 13y = i Z 13
Nia jes., Pilia Nia jes. Pilia Nia jcs,, Pilia Na jes. Pjlia
(A.193)
and
2 2
nla J€Sia leIa nla J€Sia pJ||a nIa J€Sia pJ||a
Q 2
-1y J|.a[ & QiaJ +Q (A.194)
Ia JEUla pj||a
52
Qia
M-i_Qla
nla
Taking the difference of C and D,
2
3 Qi%j 2 5a (pwr)
E2E3(82_ )ﬁ 02 | Qa(pwr)
Qla(pwr) jEZUIa pj|ia 1a nia
2
_2_SQu(pw)
= “Qia( pwr) n (A.195)
la
Nia -1 2
N nia SQia(pWI’)
2
_SQia( pr)D
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A.5.3 Estimator of Sé (

.(pwr) Needed for Anticipated Variances

2
Theorem 17. An unbiased estimator of SQ —— Z b; (Qla Qaj
1=V) 1

Qla:_z =_zé_i-a'

|a Jesla j||a

Proof. Expand

(A.196)
1 Z 32 . ) .
- ml[ (i)l; ~2Qq Ql-a +mQ§J

ies; Mi jesiy ™1

A2 A
1 ZQIa_ m §2

- 2
m-1;5 pr m-1

Using E, and Ej as in earlier sections to denote expectations with respect to the second
and third stages of sampling,

ElEZ(éQa(F’Wf)) m— EI.ZQE (Q_Iia}mElEz(Qa)

1 [Z Q.aj__ EE, (Qa) (A.197)

ics, P m-1
=C-D
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Solving for C and assuming m/(m-1) ~1,

1 Qla b\Qla Qla
—_— . A.198
m-1 [l% J mll; p |§J:pl ( )
Solving for D,
Q.a . Qla
mElEZ(Qa):—ElEZ { gsll 0 J =EE [ gsll 0 J
(A.199)
with
ez [z ezt ezt
ies; I ies; Pi ies; Tl ies; Fl
(A.200)
and

 \2 . R 2
150 a2y %e[g[ty G

2
—>'n [Q—‘?*—Qaj +QZ (A.201)

Taking the difference of C and D,

% gz | Sautmn)
E2E3( pwr) Z

icu Pi m

SZ
2 Qa( pwr)
=53 (pur) ~ (A.202)

m 1
SQa( pwr)

= Soa( pwr)
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A.5.4 Estimator of S(%ia needed for Anticipated Variances

Theorem 18. An approximately unbiased estimator of

1 — \2
S(%ia - Nj, -1 z (Qiaj _Qia)

jelUi,
is
22 _ &2 12
SQia - SAQia +SBQia
where
A ~ \2
> Wj|ia(Qiaj—Qia) -
2 Nia  jesia 22 22
AQ, = and Sg =5 50 .
et S (g O "R g
je%a
Proof.

A biased estimator of S(%ia is obtained by writing what would be the estimator of Séia in

a single-stage sample:

A2
> leia(Qiaj —Qia)
A n; jES'
$24 =—1a I (A.203)

J€Sjy

where if third stage is SRS

1 (2 (an
Wj|ia Qlaj Qlaj and Qla —1 with Qla = Z and
Nia Pjjia N|a Nia jes.. pj||a
~ 1 1
Nig =— .
Mia jes. Pilia

-1
By expanding and simplifying Eq. (A.203) and using the fact that w/;, =(niapj|ia) , We

obtain an alternative expression for S,\%Qia .

236



Expand,

> leia(éiaj _éia)z = > Wj|ia(@i2$j _Zéiajéia +6i§)

j€sia j€sia
_ 1 Q|aJ i l Q|aJ 1
T, R n; 2 +Qf Nig P if
ia jes, pj||a ia jes, Pj jlia jesiy 12 pj||a
pwr estimator of Q;,
52
1 Qiaj A A2 2o A
=F Z ~ = 2QjaNiaQia + QiaNia
ia jes;, Pjlia
A2
1 Qaj « 22
= —NiaQja
Nia jesia pJ||a
_ 1 D Qi G2

Nia jesia Pjia  Nia
(A.204)
Then

2. Wiia (Qiaj —(3ia)2

Nia  j<Sia

$2o =
AQj, Nia -1 Z (Wj|ia —l)

J€Siap

I\2 A
_ e [ 1y O Q& 1
Ma —1{ Ma jo, Piia  Nia ) Nia —Nia

— Nia 1 i QIaJ _ Al%l
“ia‘lmia[l_'iiaJ Mia jes, Pifa Nia

Nia

_ 32 A2
— Nia Al 1y Q% 13 | jf sampling Mia_fraction is small
Nia =1 Nia | Nia jes, Pjlia Nia Nia

(A.205)

237



Rearranging and taking the expectation with respect to the sample design,

A9 -
Nig —1 22 101 Qj G
EzEs( = SAQiajz E B3| —| — — _~a
Nia I\Iia Nia jesia pjlia Nia
11 « Q4 1 2
= E2E3 ~ — Z —E2E3 ~ ,\Ia
Nia | Ma jes,, Pilia Nia Nia
=F-G
(A.206)
Assuming that n;, is large and using the fact that Qiaj = Qjaj , We solve for F as
1 (1 <« Q|| 1 )
F=BEEs|——|— 2 —||2— > Qf (A.207)
Nia | Nia jes;, Pilia Nia jeU,,
pwr estimator of % Qizaj

Now solving for G,

jeUja

Zﬁ

ia jes. Pjlia

|

Var, {

1
L nia

SZ

— 2

Qia( pwr

Qiaj

Nia jes. Pjlia

)+Qi2a}'

1

o)

pwr estimator of Qjz |

Z Qiaj

ia jes, Pjlia

}

(A.208)
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Substituting F and G back in Eq.(A.206),

n; —1 . g2 2
E2E3[ la ]:— z Q|a _[_ . + iaj
17N g S

ia jeUj,

1 » Q3 1 1
S B oY M < W IS (A.209)
Nia [j;l-ha @ Nia | N2 Nia Qo)

And when nj, /(njz —1) ~1

2 11
E(S2, =S5 ———52 (A.210)
(AQ.a) Qia N2 i Qi pwr)
Define
2 1 1 o
SBQia = N_Zn_ SQ (pwr) (A211)
Ia

Then substituting Eq. (A.211) into Eq. (A.210), we obtain
E (SAI%*Qia ) - S5ia N S]%Qia (A212)
The bias of S%Qia is —S]%Qia and an unbiased estimator of the bias, —5223ia , 1S

2 1 1 2
82, =—— =8 A.213
BQIa N|2a nla Qia(pwr) ( )

To form an unbiased estimator of S(%ia , we subtract an unbiased estimator of the bias,

—$4q,, . from the biased estimator of S§_, SZq._, and obtain

A

SA%ia - S’gﬁQia N (_ééQia ) - SAi%Qia + S]—%Qia (A'214)

such that
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A.5.5 Estimator of S(% needed for Anticipated Variances

Theorem 20. An approximately unbiased estimator of

1 —\2
-7 2 (@-0)
Q 1
I\/I_:l'ieU
is
22 Q2 22
SQ ZSAQ +SBQ
where
.~ 2\2
ZWi(Qi_Q)
I3 m IS
§2 jes
AR "ot > (wi-1) and
jesy
§2
é]% _ 1 ls"z _ 1 Z Qia\(pwr) 1— 1
Q™ M2 m “Upwr) i ;4 Mn, Mmp;
with
1 » o1l Qi ws2 2~ 0 2 10 . 11
W|__ Q=Z_Z =ZQ 1 Q: ~o Q:_ _Iv MZ_ .
mp T SN jes, Pilia  a ° M m% Pi miss, Pi
Proof.

We will show that S(% = SAiQ + S%Q is an unbiased estimator of
S(% = Mi—l Z (Qi —Q)Z . A biased estimator of Sé is obtained by writing what would be
icU

the estimator of Sé in a single-stage sample:
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(A.216)

By expanding and simplifying Eq. (A.216) and using the fact that w; = (mpi )—1 we

obtain an alternative expression for ng. First expand,

2 W (Qi —5)2 =) w (QAi2 —26i6+62)

ies; ies;
Q' o) QI 2
=—Z ~Q | =Y Z—
Mics, Pi { ics, Pi ics, MPi
pwr estimator of Q
:—ZQ' -MQ?
Iesl pl
Ly o
Iesl pl M
Then
~ 2)\2
2 W (Qi—Q)
22 M ey
20 =
? m-1 Z (Wj||a 1)
J€Siap
oM [1eQ Q7 1
m_l m|€5_|_ pl M M -

6?
—i Z Q' ——A if sampling M fraction is small
M |es1 pi M M
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Rearranging and taking the expectation with respect to the sample design,

1 11 -QF @
et )-ee 2 1542 |

111 «Q? 102
= EE, V{_ZQ_I-BE@ (M?/I } (A.217)

Assuming that m is large and using the fact that Q; = Z(jia , We solve for F as

I\/I( |§s:1p|Ql]_

F= E1E2[

:El I\]/-I ;Esl%IEZ(QI )

. ;; L vy ()1 (@i)f}}si_

ies; Pi

izt ol

M mIesl P

gl llyl ZVarz[l ZQI&JJ SE, iz%

M mis Pi Mia jes,, Pilia Nia jes, Pilia
—_

pwr estimate of Q;,

2
=E, 1 1 1 Zi (o) I:ZQia}

M mIesl Pi | Z Nia
11 1 -
:El zpz_ Qlapwr MmZFQII
|esl I a ies; Vi
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11 1
F= E1 Z Z— (o) +——Z—Q,

Mics, Pi 3 MNia Mics, Pi

=_zz_ Qla (pwr) ZQI

IeU a Nia IeU
=—ZZ— ) iM(SQ+Q ) by Lemma li and M ~ M-1

|eU 3 |a ia( pwr)

1 g2
_SQ+Q +_zzn_ Q a(pwr)
ieU a

(A.218)

Now solving for G,

2 1 o

G=5152[M ]=ElEZ(M2jE2E3(Q )

1 1ol ! Q i
1a

=7 Sl Egg:l Egﬁ & pmj

-1 el Lty LS var Li 3 R J{l v 1y {i 3 Qe HZ

ia jes. Pjlia Mics Pia ia jes. Pjlia
2

1 Qi
-~ E 2 1
M 2 1 m2 Iél pi % Qla (pwr) Iél pi

:iz _Z Z_SQ.a (o) T VAR —ZQ' +{E1[%Z%]}

Mico Pia Nia Mics, Pi ics, Pi

=% S —Zp.(p ]Q]

M i IeU Pi a ieU
1 1
=—F| — e — +
M2 | Zu pé i T *C }

(A.219)
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Substituting F and G back into Eq.(A.217),

ElEz(m—lsAQj F-G

- SQ +Q? +—ZZ—SQIa (o)

icU a Nia
11 11, Q*
P _S - =
M2 ng: plz Qla (pwr) M m Q(pwr) M2
11, 1
=S5 -————5§ = —
Q Mzm prr N M zug |a Q|a pwr(
11, 1 1 1
=52 __~_~3 = il _
Q7 m MZU:%” [ Mmpij

And when m/(m -1)~1

22 Ve2 11 1
E(SAQ)—SQ{M—E Q(pur) ‘_ZZ_ Qi pwr[ Mmpiﬂ

IeU a Nia

Define

11, 1
@ MZm® o .gza: Nia S |1 ~ Mmp;

Then substituting Eq. (A.222) into Eq. (A.221) we obtain

E(Shq)=55-SEo

1
Mmp;

(A.220)

(A.221)

(A.222)

(A.223)

Since the bias of S%Qla is —SéQ and an unbiased estimator of the bias, —S]%Q, is
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To form an approximately unbiased estimator of Sé , We subtract an unbiased estimator

of the bias, —SEQ , from the biased estimator, §§Q , and obtain

S = SZq—(~Sq (A.224)

sue that (S5 €82 ) (820 ) - (53 - 20 |+ $2 - 54
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A.5.6 Estimator of Séla needed for Anticipated Variances

Theorem 21. An approximately unbiased estimator of

1 — 2
52 _ _
Qia M_lieU(Qla Qla)
is
22 Q2 12
SQla - SAQla + SBQla
where
R A \2
ZWi(Qia_Qla)
§2 M es
B mor Y (w-1)
ies
and §2, -+ Lgz _Zgéa(w) -1t
BQla_I\’/‘IZm Qa(pwr) by Mnia |\7|mp| .

22
SO P e LI P
Qa m~Qa(pwr) S mp, Mnj, Mmp;

Proof.

A biased estimator of Séla can be obtained by writing down an estimator in a single

stage sample.

Z Wi (Qia _éla )2

A m ies
$2, = A.225
AQa "y > (w-1) ( )
ies;
where,
L 4 1 vQ 5 _.% g _1vQ
WIZ_, Q —_—— _ Ql =—, Q :—Z_
mp; %Ny jZ:a Pjlia M ] Mics, Pi
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Expanding,

Z Wi (Qia —61a)2 = Z Wi (Qia _61a)2

ies; ies;
1 ~ A 2 S
= Z _(Qi% - 2Qiana + lea)
ies; mp;

1%  1¢Gus 10k
I

Mics, Pi Mics, Pi ics, Pi

A-2 A 2 a2
=£z%_2Qana+MQ12a

32 S AL
ZEZ%_ZMlea + Mlea

1-Q2 .2
:_Z%_Mlea
miesl Pi
(A.226)
And

=M-m (A.227)

=M [1—%} if m/M is small

A

=M
Substituting Eq. (A.226) and Eq. (A.227) back into Eq. (A.225) gives us,
X~ 2 )2
Z Wi (Qia _Qla)
§2 _ m ies
AQa "y g > (w-1)
ies;

ﬁl{[izé_émslz%

m-1M mis, Pi

(A.228)
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Rearranging and taking the expectation with respect to the sample design,

m-1 4,
EiEy | —
m

Assuming that m is large and using the fact that Qiajb = Qiajb when the third stage

AQu

1 % .
Ia ~n
IR EVERE. Jpw
1 (1 ) -
ia ~
=5E|—|— > — —ElEz[Qlaj
M rnies1 pi
=H-J

sample is SRS, we solve for H as

A2
EE|— |= > —
M miESl pi
pwr estimator of X Qiza
ieU
11 1 A9
SERS RTEY
11 10 A N2
e A CAR LI
MMics Pil
11 1 1 Qiaj
Bl == —|vap| — ¥ — |+@2
M Mics Pi Ma jes, Pjlia
11 11
B —— T _Sczg. +Q|2a}
M M;cs Bi [Nia 12 (pur)
1 1 5 2
— —S + Q:
PEL L
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Solving for J,

1 A L2
= — | Van (Qa )+Ez (Qa)
M
¢ 6 )|
1 1 - 1 -
= —E|vap | =Y ZlHE| =Y =2
2 m. m. .
M les pI e pl
2
1 1 1 A 1 1 5
=—&|— > — Van, (Qia)+ — > —5 (Qia)
M m” ies, P, Mics Pi
2
1 1 1 1 1
=—&||l5 X —5 +| = > —Qq | |bypg235
M me ies, pi Nia ia, pwr ics Pi
82
11 1 Qua(pur) 1 1 1 1 1 1
-— =¥ = P—Var | = ¥ = Qq [+— B[ = ¥ —Qq
M mieU Pi Nia M miesl Pi M miesl i
82
11 1 Qaw) 1 1 1 1
=—=> — +—Van | = > —Qq |+— Q3
M2 Micy Pi M M 2 mics Pi M 2
s? 2
11 1 Qagey 1 1 Qia 1
=——= 2, — +——— 2 P | —-Qa | +—Q
M2 Mico P Ma M2 M’y Pi M2
32
11 1 Qa1 1, ~,
= —— — + —SQ +Q,
M2 M2 P Nia M2 m a(pw)
(A.231)

249



Substituting H and J back into Eq. (A.229),

EEp (m—lsAQlaj S} { > % ] -gE (Qla)

ies pl
32 g2
1 pwr Z 1 Qia(pwr) 11, —9
Ly lyp L1y 1w Llg g
MiZ  Ma Mg M? Mo P Ma M2 m Qu(pur)

54 1115 11
ia( pwr) ia( pwr) 2
Qi - Qf ) oy o M S
[ EU: e MEU: Nia MzmieZU: Pi Mg M2 m " Qa(pur)
50
gy S ]-#35
* 5 Mn U Mmp; ) m2Zm e
11 2 a( pwr) [ 1 j
-g2 | - =
(A.232)
And when m/(m_l)zl
a a M2 m a( pwr) < Mnla Mmpi
Define
1 1 1
SRo, =—5—S - ""‘“’W” [1— J (A.234)
BQ, M 2'm a( pwr) |§ Mnla Mmp|
Then substituting Eq. (A.234) into Eq. (A.233), we obtain
32 -2 2
E (SAQla ) =5Q., ~SBQ, (A.235)
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The bias of éz%Qla is _SéQm and an unbiased estimator of the bias, —S]%Qla , 1S

2 1 1 2 Q|a Wr 1
—SZQ == —==— - E (e —— A.236
EQua M2 m Q apar) Mn., ( Mmpi] ( )

To form an approximately unbiased estimator of Sém , We subtract an unbiased estimator

of the bias, _é]%lQa , from the biased estimator of SfQa , SAZZ%lQa , and obtain

58, = SZQi, _(_S]%Qla) (A.237)
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A.5.7 Estimator of S(%Za needed for Anticipated Variances

Theorem 22. An approximately unbiased estimator of

SQZa (Qlaj QZa)
N _1leU jeUi, _ Q
where Qp =—2
Na
Qa
> 2 Qe
Na 1[|€U jeUia Na
IS
2 32 Q
Qs = SAQza +SBQ2
where
A2
> 1 1 Qaj &2
= - N,Q5;
A 2
Q24 N, 12811 MP;i jes., NiaPjjia e
32
"é _ 1 lSAZ n 1 i i Qia,pwr
Q2a Nazm Qa(pwr) Ng mzi651 piz N,
and
1

. 1
Na=z

ics, MPi jes,, MaPjlia
Proof.

A biased estimator of Sé2a can be obtained by writing down an estimator in a single

stage sample.

. 2y
SAQza - N Z Z Wi w j|IaQIaj aQZa (A.238)
a  ~|lies jesy

1 1 A ~ ~ Q
where Wi = Wijq = Qigj = 2. Qiajp = Qiaj» Qo =2, ,and

mp ' i b e . ° N,
A Qiaj
Qia = Z -

jes,, NiaPjjia
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Taking the expectation with respect to the sample design,

a Iesl jesia a

N. =
Z Z Wiw J'aQ'aJJ ElEZ[N aleza]

22
ElEZ (SAQZa ) = E1E2 L
(A.239)

=K-L

. -1 _
Assuming that m is large, EjE; [(Na —1) }é(Na —1) 1, and using the fact that

Qiajb = Qiajbwhen the third stage sample is SRS, we solve for K as

.2.
Ko 1 ElEZ[l 11 ZQ.a,]

Ng -1 ics, Pi Ma jes, Pjlia
Q (A.240)
e { ) '*“j
Z > Q
Na ieU jeU;,

Using results from Eq.(A.231), we solve for L as

N, = N, O
L=EE, aleza]ZElEz(N a N2

=KE,

Na(Na—l)
1 [15 1% 1
Na(Na=1)| M i Nia m "~ Qa(pur)

(A.241)
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Substituting K and L back into Eg. (A.239)

2

S
~ 1 2 1 1 1 Qia(pwr) 1 2 2
EE (% )oY Y Q- [y L Reen T2 g
( QZa) Na_lieU jeUi, - Na(Na _l) Mmoo P Nia m Qa(pwr) :

1
Ny -1

2
2 1 1 < 1 Qumn 1
LZ > Qi%j—Q—a]—— —Z—¢)+535a(pwr)

iU jeUy, Na | Na(Na-1)| mi5pi i

82
2 1 1 1 Qia(pwr) 1 2
)
a

= —_ +_
e Na(Na_l) Mico Pi Nia ma(pur)

(A.242)
And when N, = N, -1

S
? TINZMIZ P Mg Ng Mo

Define
82
_tlgg 111 Qia(pur) (A.244)
N2m ~aew)  N2ZmSp N
Then substituting Eq .(A.244) into Eq. (A.243) we obtain
22 - g2 2
E (SAQZa ) - SQZa B SBQZa (A.245)

The bias of $Zq,, is Bias(SAg,, ) =—SAa,,

and an unbiased estimator of the bias, —SéQ261 , 1S
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To form an approximately unbiased estimator of SéZa , We subtract an approximately

unbiased estimator of the bias, —SA]%Q2a , from the biased estimator of S(%Za, S%Q2a , and

obtain

§2
1 A2 A~ XD 11 22 1 1 1 Qia(pwr)
= — Z z Win|iaQiaj+NaQ2a+ = _SQa +— > —
Na —1iSs jes, Na2 m (pwr) Ng m? ies, pi2 Nia
(A.246)

such that E(SA%2a ) = E(§£Q23)+ E(ééQZa ) = (85261 ~SEq,, )+ S8q,, =54,,0
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B Appendix Supplement to Chapter 3

Appendix B lists the fields in the Health and Retirement Study dataset used in
calculations and the fields available from the MSG file. Detailed tables are shown of
point estimates associated with the ANOVA relvariance component estimates in section
B.3. The model variance component estimates used as inputs to anticipated relvariances
are shown in B.4 and the estimated anticipated relvariance components themselves in

B.5.

B.1 Partial List of HRS Variables

HH Level Data Set
Continuous:
[0 Income - HRS 2010 Total HH Income (imputed)
(1 Wealtha - HRS 2010 Total Wealth excluding secondary residence
(imputed)
(1 Wealthb - HRS 2010 Total Wealth including secondary residence
(imputed)
Categorical:
[ Sex (1=Male, 0=Female)
Currently Employed — HH Level (1=Yes; 0=No)
Self-Rated Health — HH Level (Low/Poor vs. Other)
Own Primary Residence — (1=Yes; 0=No)
Own Stock (1=Yes; 0=No)
Other Debts - Any Debts Not Asked About Before HH Level (1=Yes;
0=No)
Own Second Home -HH Level (1=Yes; 0=No)
Own Transportation - HH Level (1=Yes; 0=No)
Whether Donate to Charity - HH Level (1=Yes; 0=No)

(I O B A B A

O Ood
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B.2 List of MSG Variables and HRS Screener Variables

Table 5.1. Selected MSG Variables

MSG Variables

Description

Age for Person 1

Head of Household (HoH) age in 2010 provided by MSG.
A" value means no information provided by MSG

Age for Person 2

The age of a second person in the HH in 2010 provided by
MSG. A" value means no match

Head of household Head of Household (HoH) race/ethnicity matched to the

race/ethnicity address by MSG. (1. Hispanic; 2. non-Hispanic Black; 3.
non-Hispanic non-Black; -99 if not sent to MSG to match
race/ethnicity; -98: if sent to MSG but no race/ethnicity
information provided

Gender M = Male, F = Female, U=Unknown

Hispanic_surname

MSG indicator about whether the HoH has a Hispanic
surname. 1=Yes, " = Not sent or No MSG Match

Asian surname

MSG indicator about whether the HoH has an Asian
surname. 1=Yes, " = Not sent or No MSG Match

Own/Rent

MSG Own Rent HH Status. O=0Own, R=Rent, U=Unknown

Income

MSG HU Yearly Income

Marital status

MSG Marital status of HoH for HRS 2011 address
selection. M=Married, S=Single

Number of adults

MSG count of number of adults in HH for HRS 2011
address selection

Number of children

MSG count of number of children in HH for HRS 2011
address selection. Note that MSG does not provide a value
of 0 so unable to tell if HH has zero kids or MSG had no
child age data

Education

1 =HS Diploma, 2=Some College -Extremely Likely,
3=Bachelor’s degree, 4=Graduate Degree, 5= Less than HS
Diploma-Extremely Likely

Status of Dwelling Unit
(SDU)

S= Single Family Dwelling Unit (SFDU), M= Multiple
Family Dwelling Unit (MFDU)
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Table 5.2. Selected HRS Screener Variables

HRS Screener Variables

Description

Ages for Person 1-8

Ages of all persons 18 and above from HRS HH listing

Coupleness status

Coupleness status of persons from HRS screener. Only
asked if Informant indicates that persons’ YoB was
between 1948-1965 (~ age 45-62). 1=Married, 3=Partnered,
6=Not married or partnered)

Hispanic ethnicity

Hispanic ethnicity for selected respondent only

Race for selected
respondent only

Values are 1. Hispanic; 2. non-Hispanic Black; 3. non-
Hispanic White; 4. non-Hispanic Other; -98. Don’t
know/Refusal; -99. if HRS Age Eligibility not in (1,2)

HRS Age Eligibility

Known age eligibility status based on data collection
outcome. ('0' = 2004 selected address, no HH roster ages
provided; '1'=2010 or 2011 selected address, completed HH
listing, age eligible; '2'=2010 selected address, completed
HH Listing, age ineligible; '3'=2011 selected address,
answered short screening question to more quickly identify
age eligible HHs than full rostering, age ineligible; '7'=2010
or 2011 selected address, HU nonresponse to screening
questions, age eligibility undetermined; '8' = Unoccupied
HU; '9' = Address not selected for data collection). NOTE:
In 2011, HRS used a short screening question to more
quickly identify age eligible HHs. HHSs that indicated that
no one in the HH was age 40-64 did not complete a HH
Listing.

Asian surname

Number of people in HU aged 45-62
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B.3 Design-Based ANOVA Variance Component and Measures of Homogeneity Estimates from 2010-11 HRS

Data

Table 5.3 Relvariance Component Estimate, W2, , for Selected HRS Interview Variables from the 2010-2011 HRS for SR and NSR PSUs.

Negative values are highlighted.

Wi
SSU . other charity own own own 2nd own self-rated
Stﬁ(’[)tljm income  wealtha  wealth debts donate employed Home Stock Home  Transport  health
Self-Representing
02 0.1195 0.3899  0.3170 0.02991  0.0603  0.0505 0.0597 0.2003 -0.0986  0.0574 0.0433
03 0.0275  0.0200 0.0135 0.04377 -0.0337 0.0606  0.1753  0.1194 -0.3423 0.0972  -0.0038
04 0.1316  0.1490 0.1353 0.08816  0.1940  0.0971  0.0255 0.2237 -0.1203  0.1073 0.0097
Non Self-Representing

02 4.5861 6.1577 8.5233  0.2626  1.0379 0.4567 0.7290 13021  -0.1911  0.8236 0.1426
03 1.0776 6.7750 71520 0.6789 -0.3909 0.6246 0.8896 2.7831 -4.7891  0.7307  -0.4539
04 6.2956  18.2309  6.0885  -0.8055  1.0917 0.1224  -0.5640 -2.4624 -0.6247  0.9904  -1.4984
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Table 5.4 Relvariance Component Estimate, W2, , for Selected HRS Interview Variables from the 2010-2011 HRS for SR and NSR

PSUs
Wia
SSU other charit employe own own own 2nd own self-
Stratum  income  wealtha wealthb y pioy Transpor rated
debts donate d Home Stock Home
No. t health
Self-Representing
02 0.0651  1.0989 0.9212 0.11560 0.1648  0.0890 0.0840 0.3287 0.9081  0.0558 0.1762
03 0.1622  1.6534 1.5516 0.16427 0.5787 0.1139 0.1346 0.3068  4.0933  0.0503 0.2361
04 0.1414  1.0849 0.9833 0.16206 0.2570  0.0788 0.2112 0.7617 2.6670  0.0579 0.1674
Non Self-Representing
02 18526 73.8981 66.4174 1.78012 4.1237 14398 17302 55844 7.7686  0.5512 2.0482
03 2.7470  28.9609 34.3562 3.81277 9.4482 3.2523 43606 6.7858  7.3561  1.2173 6.0074
04 19326 829359 68.5960 7.23227 16.7853 5.0263 8.7629 21.2107 15.4013 2.5609 6.1113
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Table 5.5 Measure of Homogeneity Estimate, &,,, for Selected HRS Interview Variables from the 2010-2011 HRS for SR and NSR PSUs

S2a
SSU . other charity own own own 2nd own self-rated
Strl\i?m income  wealtha  wealthb debts donate employed Home Stock Home  Transport  health
Self-Representing
02 0.6473  0.2619  0.2560 0.2055  0.2679  0.3623  0.4153 0.3787 -0.1218 0.5070  0.1974
03 0.1451  0.0119 0.0086  0.2104 -0.0618 0.3474  0.5657 0.2802 -0.0913 0.6589  -0.0164
04 0.4820  0.1207  0.1210  0.3523  0.4302 05521  0.1079  0.2270 -0.0472  0.6494  0.0545
Non Self-Representing
02 0.7123  0.0769  0.1137 0.12857 0.2011  0.2408 0.2964 0.1891  0.1612  0.5991  0.0651
03 0.2818 0.1896  0.1723 0.15115 -0.0432 0.1611 0.1694 0.2908  0.1969  0.3751  -0.0817
04 0.7651  0.1802  0.0815 -0.12533 0.0611  0.0238 -0.0688 -0.1313  0.1157  0.2789  -0.3248
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Table 5.6 Estimates of the factor, k,, , for Selected HRS Interview Variables from the 2010-2011 HRS for SR and NSR PSUs

k2

SSU . other charity own own own 2nd own self-

Stratum  income  wealtha wealthb debts donate employed Home Stock Home  Transport rated
No. health

Self-Representing
02 0.1108 0.2050 0.1788 0.1366 0.1683  0.1306 0.1893 0.1295 0.1157 0.1883  0.0985
03 0.1675 0.2638 0.2594 0.1880 0.1922  0.2812 0.2600 0.2006  0.4247  0.3558  0.1446
04 0.1782  0.1910 0.1824 0.2064 0.1712  0.2137 0.1484 0.1687 0.1635 0.2564  0.1549
Non Self-Representing

02 35886 1.8031 1.8841 1.85172 2.3332 1.7252 2.3505 1.1136 1.2250  3.4996  1.5932
03 3.2026  5.0420 6.0290 4.59189 3.7721  5.3918 6.4221 23014 1.0041 6.7396  2.6731
04 89707 14772 11719 531251 7.5008  4.5194 7.1442 3.3666  1.0672 10.1645 3.6392
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Table 5.7 Relvariance Component Estimate, V, , for Selected HRS Interview Variables from the 2010-2011 HRS for SR and NSR PSUs

~

Va
St?zftldm income  wealtha  wealthb other charity employed own own own 2nd own self-rated
No. debts donate Home Stock Home  Transport  health
Self-Representing
02 1.6665  7.2613  6.9262 1.0651 1.3379 1.0685  0.7587  4.0847 6.9977  0.6015 2.2292
03 11328  6.3423  6.0344 1.1068 2.8360 0.6206 11919 21252  8.8325  0.4148 1.6068
04 1.5319 6.4604 6.1325 1.2125 2.6347 0.8227 1.5954  5.8399 15,5717  0.6443 1.1425
Non Self-Representing
02 17942 444002 39.7743  1.1032 2.2122 1.0993 1.0462 6.1840  7.5603  0.3929 1.3751
03 1.1942 7.0877  6.8848  0.9782 2.4012 0.7190 0.8175 4.1579  9.1218  0.2890 2.0775
04 0.9172 68.4846 63.7281  1.2098 2.3833 11393  1.1476 55688  16.3205 0.3494 1.2675
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Table 5.8 Proportion, K, , for Selected HRS Interview Variables from the 2010-2011 HRS for SR and NSR PSUs

A

Ka
StSraSLtL:m income  wealtha  wealthb other charity employed own own own 2nd own self-rated
No. debts donate Home Stock Home  Transport  health
Self-Representing
02 0.3552  0.4066  0.4238  0.29078  0.3503 0.2588 0.3202 0.2522  0.3561  0.2550  0.2566
03 0.3390 0.3626  0.3485  0.38437  0.2880 0.3851 0.4221 0.4695  0.3709  0.4167 0.3774
04 0.3058  0.2308  0.2277  0.32485 0.3617 0.3561 0.2577 0.2783  0.2730  0.3283 0.3660
Non Self-Representing
02 05513 05368 05243  0.6092  0.6035 05941 0.6027 05429  0.6464 05990  0.6294
03 0.3122  0.3808 0.3903  0.2745  0.2843 0.2862 0.2939 0.3864  0.2700  0.2925  0.2372
04 0.1366  0.0824  0.0854  0.1163  0.1123 0.1197 0.1033 0.0708  0.0836  0.1084  0.1334
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Table 5.9 Relvariance Component Estimate, V\Algib,SR , for Selected HRS Interview Variables from the 2010-2011 HRS for SR PSUs

Weap R
SSU/MSG self-
Stratum other charity own own own 2nd own rated
No. income  wealtha  wealthb debts donate  employed home stock home  transport  health
0201 0.225 4.096 0.125 0.676 0.378 0.139 0.050 0.317 0.044 0.363 0.030
0202 0.020 0.113 0.106 0.178 0.250 0.145 0.047 1.044 2.902 0.112 1.664
0203 0.373 0.609 0.647 0.567 0.502 0.326 0.176 4.746 6.536 0.213 1.856
0204 0.167 1.097 1.133 0.244 0.359 0.212 0.142 0.464 6.809 0.054 1.579
0205 0.027 0.171 0.140 0.146 0.191 0.079 0.095 0.183 0.996 0.099 0.255
0206 0.105 1.496 1.527 0.216 0.598 0.226 0.453 1.237 3.425 0.160 0.1601
0301 0.239 1.702 1.685 1.549 0.745 0.451 0.298 2.606 65.151 0.247 1.399
0302 4.408 5.560 5.461 1.227 0.623 0.408 0.850 2.028 5.621 0.175 0.942
0303* 0.695 3.914 2.790 1.074 0.664 0.313 0.302 3.241 1.598 0.266 2.571
0304 0.198 0.515 0.504 0.345 0.249 0.249 0.047 0.092 1.514 0.052 0.597
0305 0.212 0.305 0.265 0.115 1.015 0.099 0.195 1.486 2.696 0.057 0.611
0306 0.089 0.974 0.948 0.504 4.025 0.192 0.363 0.712 2.586 0.127 0.297
0401 0.146 0.450 0.347 1.440 7.058 0.646 0.306  50.887 3.873 1.117 1.090
0402 0.237 2.172 2.138 0.236 0.558 0.177 0.478 1.247 10.171 0.279 0.564
0403 0.695 3.914 2.790 1.074 0.664 0.313 0.302 3.241 1.598 0.266 2.571
0404 0.346 1.910 1.880 0.278 0.619 0.075 0.153 0.189 4.781 0.093 0.973
0405 0.077 0.226 0.243 0.245 0.311 0.170 0.154 1.301 1.910 0.071 0.285
0406 0.096 0.988 1.077 0.280 0.293 0.162 1.034 1.576 8.080 0.100 0.227

* Estimates from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
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Table 5.10 Relvariance Component Estimate, V\A/32ab,N3R , for Selected HRS Interview Variables from the 2010-2011 HRS for NSR PSUs

Wezp NSk
SSU/MSG self-
Stratum other charity own own own 2nd own rated
No. income  wealtha wealthb debts donate employed home stock home transport  health
0201 9.97 13291 101.72  38.69 7.53 3.68 15.46 25.99  160.90 2.85 5.25
0202 1.58 1.97 1.93 3.27 9.59 1.99 1.63 11.31 27.96 0.87 8.88
0203 4.23 22.01 21.71 3.98 6.32 3.85 1.65 32.38 87.45 1.65 6.36
0204 2.48 13.20 13.86 3.88 4.16 2.19 1.09 10.95 85.87 0.13 12.71
0205 0.69 5.37 574 2.82 4.36 2.19 2.11 8.86 45.21 0.88 3.61
0206 1.50 45.55 37.68 2.88 9.50 3.19 8.60 34.91 18.26 1.37 2.88
0301 3.74 30.84 28.76 5.83 30.30 4.56 4.12 9351 214.20 3.37 12.42
0302 5.90 9225 169.43 7.10 8.86 3.25 3.65 11.02 63.78 0.56 26.50
0303* 19.72 5.52 4.13 24.53 22.851 47.49 8.67 14446  59.63 2.79 57.84
0304 3.24 9.89 12.79 8.32 6.10 3.39 1.47 5.07 64.41 0.79 139.83
0305 4.42 11.48 9.81 9.22 10.65 5.70 5.60 16.55 55.28 1.58 13.39
0306 491 37.96 33.65 6.69 25.08 6.85 12.25 29.05  180.85 3.27 6.63
0401 6.46 71.62 66.19 62.18 108.83 21.17 38.20 1156.84 47.11 2.78 47.57
0402 6.93 206.31  205.99 5.16 44.24 8.07 23.93 76.10  267.45 2.62 6.30
0403 19.72 5.52 4.13 24.53 22.85 47.49 8.67 14446  59.63 2.79 57.84
0404 5.19 25.23 32.26 10.36 13.33 5.33 4.19 5486  827.26 1.34 22.79
0405 131 2.79 2.79 12.40 13.62 7.20 8.06 36.84  726.95 591 8.88
0406 1.69 805.81 447.34 5.82 37.08 6.18 18.76 70.82 9.95 3.51 6.61

*Estimates for categorical variables only from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
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Table 5.11 Proportion, K, g5 for Selected HRS Interview Variables from the 2010-2011 HRS for SR PSUs

~

Kab,SR
SSU/MSG

Stratum charity own own 2nd own self-rated

No. income wealtha wealthb other debts donate employed home own stock home transport health
0201 0.004 0.006 0.030 0.003 0.006 0.002 0.004 0.003 0.012 0.001 0.005
0202 0.061 0.032 0.031 0.030 0.038 0.027 0.035 0.030 0.038 0.021 0.010
0203 0.020 0.017 0.018 0.021 0.036 0.023 0.035 0.011 0.027 0.024 0.012
0204 0.065 0.099 0.092 0.039 0.051 0.032 0.049 0.056 0.026 0.042 0.015
0205 0.124 0.159 0.159 0.096 0.151 0.096 0.141 0.108 0.150 0.088 0.095
0206 0.076 0.091 0.089 0.099 0.083 0.072 0.055 0.054 0.094 0.076 0.121
0301 0.021 0.022 0.020 0.022 0.030 0.036 0.047 0.022 0.014 0.035 0.036
0302 0.016 0.075 0.070 0.018 0.018 0.014 0.023 0.029 0.010 0.022 0.015
0303* 0.016 0.009 0.010 0.016 0.025 0.023 0.026 0.016 0.025 0.020 0.013
0304 0.087 0.085 0.080 0.063 0.093 0.048 0.102 0.145 0.083 0.074 0.025
0305 0.085 0.082 0.081 0.148 0.090 0.105 0.143 0.095 0.071 0.130 0.090
0306 0.123 0.095 0.094 0.126 0.044 0.170 0.093 0.171 0.187 0.147 0.201
0401 0.018 0.012 0.014 0.013 0.009 0.019 0.028 0.003 0.033 0.014 0.023
0402 0.020 0.011 0.011 0.025 0.013 0.021 0.011 0.020 0.009 0.016 0.018
0403 0.016 0.009 0.010 0.016 0.025 0.023 0.026 0.016 0.025 0.020 0.013
0404 0.045 0.024 0.022 0.030 0.033 0.038 0.033 0.064 0.036 0.032 0.014
0405 0.080 0.089 0.084 0.084 0.086 0.085 0.078 0.044 0.053 0.081 0.089
0406 0.121 0.084 0.084 0.152 0.170 0.163 0.072 0.114 0.109 0.158 0.206

* Estimates from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
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Table 5.12 Total, f,;, s, for Selected HRS Interview Variables from the 2010-2011 HRS for SR PSUs

al

~

tab,SR

SSU/MSG

Stratum other charity own own own 2nd own self-rated
No. income  wealtha  wealthb debts donate  employed home stock home transport health
0201 1.89E+09 6.14E+09 3.51E+10 9.74E+03 1.30E+04 1.07E+04 1.31E+04 4.97E+03 8.09E+03 7.43E+03  1.55E+04
0202 2.96E+10 3.49E+10 3.67E+10 1.09E+05 8.94E+04  1.20E+05 1.18E+05 5.23E+04 2.62E+04 1.09E+05 3.05E+04
0203 9.55E+09 1.81E+10 2.12E+10 7.56E+04 8.30E+04 1.02E+05 1.19E+05 1.86E+04 1.84E+04 1.26E+05 3.72E+04
0204 3.156E+10 1.08E+11 1.09E+11 1.41E+05 1.18E+05 1.43E+05 1.66E+05 9.69E+04 1.78E+04 2.17E+05 4.62E+04
0205 6.00E+10 1.73E+11 1.87E+11 3.42E+05 3.53E+05 4.27E+05 4.78E+05 1.86E+05 1.04E+05 4.57E+05 2.87E+05
0206 3.66E+10 9.93E+10 1.05E+11 3.55E+05 1.93E+05  3.21E+05 1.86E+05 9.38E+04 6.51E+04 3.93E+05 3.66E+05
0301 1.03E+10 2.37E+10 2.40E+10 7.69E+04 7.07E+04  1.60E+05 1.58E+05 3.78E+04 9.94E+03 1.83E+05 1.08E+05
0302 7.86E+09 8.22E+10 8.29E+10 6.50E+04 4.10E+04  6.42E+04  7.81E+04 5.06E+04 7.22E+03 1.13E+05 4.62E+04
0303* 7.92E+09 1.00E+10 1.19E+10 5.61E+04 5.86E+04  1.04E+05 8.65E+04 2.68E+04 1.71E+04 1.05E+05 3.88E+04
0304 4.23E+10 9.30E+10 9.43E+10 225E+05 2.18E+05  2.15E+05  3.44E+05 251E+05 5.76E+04 3.87E+05 7.50E+04
0305 413E+10 8.91E+10 9.51E+10 5.27E+05 2.09E+05  4.65E+05 4.83E+05 1.64E+05 4.91E+04 6.74E+05 2.73E+05
0306 5.96E+10 1.03E+11 1.10E+11 4.50E+05 1.02E+05 7.58E+05 3.14E+05 2.95E+05 1.30E+05 7.62E+05 6.08E+05
0401 8.50E+09 1.25E+10 1.63E+10 4.52E+04 2.21E+04  8.58E+04  9.58E+04 4.78E+03 2.26E+04 7.14E+04  7.02E+04
0402 9.72E+09  1.24E+10 1.25E+10 8.79E+04 3.10E+04  9.50E+04  3.82E+04 3.45E+04 6.22E+03 8.12E+04 5.31E+04
0403 7.92E+09 1.00E+10 1.19E+10 5.61E+04 5.86E+04  1.04E+05 8.65E+04 2.68E+04 1.71E+04 1.05E+05 3.88E+04
0404 2.20E+10 259E+10 2.62E+10 1.07E+05 7.73E+04  1.69E+05 1.11E+05 1.10E+05 253E+04 1.66E+05 4.20E+04
0405  3.90E+10 9.69E+10 9.96E+10 2.99E+05 2.01E+05 3.76E+05 2.62E+05 7.63E+04 3.69E+04 4.19E+05 2.68E+05
0406 5.85E+10 9.13E+10 9.94E+10 542E+05 3.96E+05  7.25E+05 2.42E+05 1.96E+05 7.53E+04 8.22E+05 6.22E+05

*Estimates for categorical variables only from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
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Table 5.13 Proportion, K, ysg» for Selected HRS Interview Variables from the 2010-2011 HRS for NSR PSUs

Kab,Nsr
SSU/MS
G self-
Stratum other charity own own own 2nd own rated

No. income  wealtha  wealthb debts donate  employed  home stock home  transport  health
0201 0.002 0.001 0.001 0.002 0.005 0.003 0.002 0.002 0.005 0.003 0.004
0202 0.042 0.171 0.157 0.044 0.037 0.049 0.049 0.049 0.035 0.043 0.024
0203 0.047 0.055 0.052 0.055 0.070 0.052 0.079 0.048 0.041 0.051 0.049
0204 0.075 0.081 0.077 0.069 0.109 0.079 0.113 0.122 0.049 0.077 0.040
0205 0.211 0.160 0.159 0.188 0.224 0.196 0.231 0.208 0.197 0.199 0.216
0206 0.174 0.069 0.078 0.249 0.172 0.215 0.127 0.108 0.311 0.224 0.296
0301 0.015 0.024 0.024 0.016 0.013 0.018 0.022 0.009 0.011 0.015 0.013
0302 0.031 0.035 0.041 0.020 0.025 0.023 0.023 0.028 0.029 0.020 0.010
0303* 0.001 0.000 0.000 0.003 0.008 0.003 0.007 0.003 0.003 0.005 0.003
0304 0.070 0.143 0.148 0.038 0.060 0.048 0.066 0.109 0.064 0.043 0.007
0305 0.091 0.095 0.097 0.077 0.105 0.087 0.103 0.125 0.095 0.101 0.064
0306 0.106 0.083 0.080 0.123 0.077 0.108 0.081 0.118 0.069 0.113 0.143
0401 0.004 0.004 0.004 0.003 0.004 0.006 0.005 0.001 0.007 0.005 0.005
0402 0.009 0.003 0.003 0.012 0.007 0.007 0.006 0.011 0.008 0.010 0.013
0403 0.004 0.006 0.006 0.003 0.008 0.003 0.007 0.003 0.003 0.005 0.003
0404 0.014 0.017 0.017 0.012 0.018 0.018 0.023 0.014 0.004 0.015 0.013
0405 0.047 0.031 0.028 0.026 0.032 0.035 0.030 0.021 0.006 0.026 0.036
0406 0.059 0.022 0.027 0.059 0.028 0.050 0.027 0.021 0.062 0.047 0.062

*Estimates for categorical variables only from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
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Table 5.14 Total, f,, \sg . for Selected HRS Interview Variables from the 2010-2011 HRS for NSR PSUs

al

~

tab,NSR

SSU/MSG

Stratum other charity own own own 2nd own self-rated
No. income  wealtha  wealthb debts donate  employed home stock home transport health
0201 2.02E+09 1.23E+09 1.50E+09 1.69E+04 2.72E+04  3.42E+04 2.03E+04 7.25E+03 8.28E+03 4.42E+04 3.03E+04
0202 470E+10 3.08E+11 3.11E+11 4.38E+05 2.19E+05 5.23E+05 4.44E+05 158E+05 6.29E+04 6.42E+05 2.01E+05
0203 530E+10 9.98E+10 1.03E+11 545E+05 4.21E+05 5.60E+05 7.09E+05 1.54E+05 7.25E+04 7.63E+05 4.17E+05
0204 8.50E+10 1.46E+11 153E+1l1 6.86E+05 6.52E+05 8.51E+05 1.02E+06 3.91E+05 8.83E+04 1.17E+06 3.40E+05
0205 2.38E+11 2.89E+11 3.15E+11 1.86E+06 1.35E+06 2.10E+06 2.08E+06 6.67E+05 3.52E+05 3.00E+06 1.83E+06
0206 196E+11 1.25E+11 1.55E+11 2.46E+06 1.03E+06  2.31E+06  1.14E+06 3.47E+05 5.57E+05 3.38E+06 2.52E+06
0301 1.64E+10 4.42E+10 4.68E+10 1.54E+05 7.85E+04 197E+05  1.96E+05 2.74E+04 2.05E+04 2.20E+05 1.13E+05
0302 3.45E+10 6.24E+10 8.12E+10 1.93E+05 1.53E+05 251E+05 2.07E+05 9.10E+04 520E+04 2.95E+05 8.33E+04
0303*  1.06E+09 543E+08 6.72E+08 3.38E+04 4.57E+04  3.13E+04 6.27E+04 1.07E+04 5.79E+03 7.63E+04 2.51E+04
0304 7.87E+10 258E+11 292E+11 3.72E+05 3.57E+05 5.12E+05 5.95E+05 3.49E+05 1.14E+05 6.47E+05 5.73E+04
0305 1.02E+11 1.71E+11 1.92E+11 7.59E+05 6.29E+05 9.41E+05 9.27E+05 4.00E+05 1.70E+05 1.53E+06 5.44E+05
0306 1.19E+11 150E+11 159E+11 1.22E+06 4.61E+05 1.17E+06  7.31E+05 3.80E+05 1.24E+05 1.71E+06 1.21E+06
0401 4.83E+09 8.10E+09 8.43E+09 3.20E+04 2.50E+04  6.46E+04  4.53E+04 4.08E+03 1.24E+04 7.08E+04 4.32E+04
0402 9.81E+09 4.57E+09 4.96E+09 1.14E+05 4.01E+04  7.54E+04  5.44E+04 3.47E+04 150E+04 1.45E+05 1.15E+05
0403 476E+09 1.08E+10 1.25E+10 3.38E+04 4.57E+04  3.13E+04 6.27E+04 1.07E+04 5.79E+03 7.63E+04 2.51E+04
0404 158E+10 2.99E+10 3.44E+10 1.23E+05 1.10E+05 1.90E+05 2.09E+05 4.61E+04 7.66E+03 2.30E+05 1.14E+05
0405 5.24E+10 5.52E+10 553E+10 2.54E+05 1.93E+05 3.78E+05 2.71E+05 6.75E+04 9.99E+03 3.97E+05 3.06E+05
0406 6.62E+10 3.99E+10 5.35E+10 5.86E+05 1.69E+05 5.41E+05 2.46E+05 6.59E+04 1.10E+05 7.10E+05 5.23E+05

*Estimates for categorical variables only from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
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B.4 VVariance Component Estimates for SR and NSR PSUs from PROC MIXED SAS

Table 5.15 Variance Component Estimates, ¢;, for SR PSUs for selected 2010-11 HRS variables.

SR PSUs only

Perameter income  wealtha wealthb ggg:i; ZZ?:;Z employed ownHome  ownStock ovr:/gnfgd tracr)l\év:mt Se:egﬁ:‘ed
Intercept 66.168  187.340  205.020  0.5382 0.3716 0.5787 0.5419 0.3259 0.1140  0.7349 0.2775
PsU4 23391  -142.440 -145880 -0.1850  -0.0978  -0.1527  -0.1276  -02116 00929  -0.2649  0.0407
PSU 6 15357  -46.920  -61.355  -0.1000  -0.1806  0.0634  -0.1234  -0.1391  -0.0428  -0.0022  0.1346
PSU7 27275  -80.570  -82.980  -0.1097  -0.1453 00515  -0.0334  -0.0440  -0.0383  0.0387  0.0509
PSU 10 44552  -161.740 -190.980 -0.2134  -0.0785  -0.2680  0.1358  -0.2944  -0.0879  -0.4003  0.3281
PSU 17 34357 -146.290 -156.230  0.0096  -0.2057  -0.0059  0.0254  -02230  -0.0845 01274  0.1575
PSU 23 20757  -68.044  -86582  -0.3430  -0.1617  -0.2920  -0.1997  -02481  -0.1140  -0.1940  0.1445
PSU 30 2503  -80.732 94990  -0.1089  0.2389 00832  -0.1460 -0.2383  0.0135  -0.0527  0.0694
PSU 35 3558 108530  101.800  -0.1922  0.0744  -0.0316 01498  -0.1626 00222  -0.1499  -0.0452
PSU 40 -14.994 55161  -63.256  -0.0003  -0.0241  0.1227  0.0837  -0.0886  -0.0636  0.0700  -0.0955
PSU 41 33415 -180.950 -198.380 -0.1977  -0.3716  -0.0743  -0.0486  0.0590  -0.1140  -0.1888  0.5098
PSU 47 26918 -112.910 -103.920 -0.0598  -0.1203  -0.0962  -0.1524  -0.2370  -0.0717  -0.1701  0.0631
PSU 48 21609 -106290 -103.860 -0.0793  -0.1184  -0.1582  -0.0143  -0.1871 00331  -0.3463  0.2031
PSU 53 52613 -183260 -200.160 -0.0477  -0.2876  -0.1787  -0.4503  -0.2477  -0.0650  -0.5445  0.2917
PSU 54 24832  -26.719  -29.477  -0.1328  -0.1280  -0.0687  -0.2252  -0.1661  -0.0587  -0.4299  0.1846
PSU 59 -6.404  -127.760 -113.230 -0.1746  -0.0398  0.1151 01126  -0.2021  0.0370  -0.1136  0.0963
PSU 60 0 0 0 0 0 0 0 0 0 0 0

PSU 60 is the reference category
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Table 5.16 Variance Component Estimates for Residual term, &2 , for NSR PSUs for selected 2010-11 HRS variables.
b

€al

SSU stratum/

NSR PSUs only

subst';itsu?n ab income wealtha wealthb 3;[;;; charity donate employed ownHome ownStock O‘a’grﬁgd tra(;\\lsvgort segeF;ﬁthed
0201 1.30E+03 5.24E+05™ 7.94E+03  0.2482 0.2858 0.1934  0.1485 0.0982  0.2003 0.0801 0.3156
0202 2.01E+03 5.06E+06 5.10E+06  0.2482 0.1839 0.2283 0.1640 0.1130  0.0677 0.1129 0.1910
0203 2.20E+03 3.11E+04 3.62E+04  0.2425 0.2419 0.2244 0.1729 0.1209 0.0525 0.1479 0.2216
0204 3.11E+03 3.78E+04 4.66E+04  0.2489 0.2911 0.2156 0.1898 0.2139 0.0560 0.0331 0.1782
0205 3.32E+03 2.38E+04 3.27E+04  0.2362 0.1892 0.2313 0.2042 0.1042 0.0771 0.1714 0.2525
0206 1.32E+03 4.98E+04 6.72E+04  0.2432 0.1398 0.2218 0.1687 0.0568  0.0663 0.2268 0.2429
0301 1.42E+03 1.95E+05 2.07E+05  0.2459 0.1795 0.2210 0.1899 0.0758 0.0754 0.1513 0.2247
0302 1.02E+04 7.10E+05 1.13E+06  0.2485 0.2361 0.2150 0.1781 0.2044 0.1568 0.0978 0.1615
0303* 4.00E+03 8.04E+03 1.61E+04 0.2349 0.3394 0.2706 0.2559 0.1232  0.0918 0.0707 0.1645
0304 7.11E+03 3.57E+05 4.48E+05 0.2452 0.2302 0.1939 0.1459 0.2756  0.1434 0.0738 0.1078
0305 2.90E+03 7.38E+04 8.71E+04  0.2408 0.2059 0.2290 0.2421 0.1379 0.0847 0.1490 0.2002
0306 1.38E+03 1.68E+04 1.98E+04 0.2392 0.1237 0.2185 0.1994 0.0700 0.0696 0.2330 0.2451
0401 7.04E+02 2.78E+03 4.90E+03  0.2473 0.1920 0.2246 0.1872 0.0558  0.0548 0.0919 0.2231
0402 1.87E+03 1.33E+04 2.03E+04  0.2335 0.1755 0.2083 0.1976 0.1999  0.0810 0.0892 0.2256
0403 4.00E+03 8.04E+03 1.61E+04 0.2349 0.3394 0.2706 0.2559 0.1232 0.0918 0.0707 0.1645
0404 1.25E+03 1.32E+05 1.57E+05 0.2369 0.2054 0.2098 0.2076 0.1510 0.0262 0.1069 0.2461
0405 7.31E+02 2.75E+04 2.99E+04  0.2296 0.1396 0.2612 0.1590 0.0512 0.0190 0.3018 0.2446
0406 152E+03 2.45E+06 2.46E+06  0.2377 0.1233 0.2261 0.1485 0.0476 0.0378 0.2365 0.2368

* Estimates from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
** Standard Error (SE) was 0
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Table 5.17 Variance Component Estimates, o—gab , for SR PSUs for selected 2010-11 HRS variables.

SSU stratum/ SR PSUs Only T
Subst':;liﬁn ab income wealtha wealthb 32;1 ZZ?;Z employed ownHome  ownStock 0\;1v(r)\rr2]2d trar?gggrt HR;\;?'[(;
0201 3.53E+03  5.15E+05 5.25E+05 0.2423 0.3769 0.2470 0.0478 0.2666 0.3181 0.2363 0.0635
0202 1.17E+04 5.89E+04  6.02E+04 0.2550 0.2243 0.2018 0.1373 0.1230 0.1388 0.1824 0.1694
0203 2.56E+03  2.85E+04  6.84E+04 0.2255 0.2560 0.2265 0.2063 0.0941 0.1316 0.1919 0.1646
0204 1.90E+04  6.43E+05 7.34E+05 0.2903 0.2456 0.2007 0.1956 0.2225 0.0977 0.1229t  0.1218
0205 2.34E+03 1.29E+05 1.36E+05 0.2485 0.2298 0.2264 0.2091 0.0811 0.1082 0.2093 0.2151
0206 2.59E+03 1.73E+05 1.95E+05 0.2333 0.1664 0.2348 0.2122 0.1099 0.0421 0.2283 0.2638
0301 2.76E+03  3.14E+04  5.03E+04 0.2442 0.1732 0.2365 0.1162 0.1050 0.0645 0.1382 0.2370
0302 6.90E+03 1.09E+06 1.13E+06 0.2387 0.2359 0.2258 0.2204 0.2332 0.0710 0.1229 0.2263
0303" 2.26E+03  2.39E+04  2.26E+04 0.2439 0.2346 0.2259 0.1949 0.1271 0.0608 0.1855 0.2262
0304 9.14E+03  2.29E+05 2.27E+05 0.2425 0.3494 0.2301 0.1341 0.3866 0.1488 0.1229+  0.1530
0305 3.77E+03  7.33E+04  8.15E+04 0.2927 0.2277 0.2239 0.2157 0.1544 0.0629 0.1503 0.2288
0306 8.18E+02  3.19E+04 3.41E+04 0.2384 0.0738 0.2416 0.1298 0.1082 0.0760 0.2408 0.2276
0401 1.37E+03 5.34E+04  9.12E+04 0.2304 0.1343 0.2123 0.1774 0.0581 0.1148 0.1765 0.2519
0402 3.41E+03  3.72E+04  3.97E+04 0.2554 0.1903 0.2122 0.1533 0.1499 0.0519 0.1908 0.2139
0403 2.26E+03  2.39E+04  2.26E+04 0.2439 0.2346 0.2259 0.1949 0.1271 0.0608 0.1855 0.2262
0404 1.18E+04  2.34E+05  2.35E+05 0.2510 0.2143 0.1796 0.1607 0.2449 0.1183 0.1809 0.1584
0405 3.81E+03  7.30E+04  8.32E+04 0.2501 0.1890 0.2427 0.1546 0.0961 0.0490 0.1872 0.2313
0406 1.43E+03 1.12E+05 1.15E+05 0.2376 0.1524 0.2432 0.1637 0.0671 0.0392 0.2086 0.2450

* Estimates from the SSU stratum/ MSG substratum 0403 used as a replacement for those in 0303
+ The minimum estimate of own transport from the SSU stratum/ MSG substratum 0204 used as a replacement
**Not Significant

273



B.5 Anticipated Variance Component and Measures of Homogeneity Estimates from 2010-11 HRS Data

Table 5.18 Anticipated Variance Component Estimate, E,, (sza) , for Selected HRS Interview Variables from the 2010-2011 HRS for SR
and NSR PSUs.

Em (sza)
StSraSLtL:m income wealtha  wealthb other charity emploved own own own 2nd own self-rated
No debts donate ploy Home Stock Home  Transport  health

Self-Representing

02 0.0092 0.0402 0.0351 0.1075  0.1088 0.1119 0.1315 0.2432 0.3474 0.0888 0.2169
03 0.0339 0.1721 0.1789 0.0711  0.2160 0.0666  0.1181  0.1340 0.4526 0.0447 0.1093
04 0.0227 0.2420 0.2381 0.0621  0.0955 0.0500 0.2024  0.2595 0.4755 0.0438 0.0778

Non Self-Representing

02 0.0882 12.0790  8.8319 0.0850  0.1821 0.0699  0.0736  0.2913 0.5909 0.0240 0.0961
03 0.1113 6.9880 5.6369 0.1543  0.3069 0.1105 0.1189  0.1805 1.4353 0.0369 0.2544
04 0.1387 17.6053  8.5748 0.2189  0.5077 0.1625  0.2426  1.3172 3.1735 0.0660 0.2009

Values highlighted were negative in ANOVA but now corrected to non-zero values through Anticipated Variances
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Table 5.19 Anticipated Variance Component Estimate, E W.2 ), for Selected HRS Interview Variables from the 2010-2011
M 3a
HRS for SR and NSR PSU:s.

En (Wsza)

SSU . other  charity own own own own self-

Stratum  income wealtha  wealthb debts  donate employed Home  Stock 2nd Transport rated
No. Home health

Self-Representing
02 0.0804 0.4471 0.3948 0.1043 0.1324 0.0791 0.0767 0.2429 0.6522 0.0533 0.1629
03 0.1555 0.9671 0.9423 0.1739 0.4964 0.1059 0.0961 0.3144 1.5480 0.0522 0.2194
04 0.1239 1.5202 14181 0.1691 0.2407 0.0900 0.1971 0.4073 13416 0.0648 0.1814
Non Self-Representing

02 1.8038 114.82 102.93 2.0261 4.0501 1.6710 1.7659 5.5884 13.212 0.6513  2.4943
03 3.4334 35.930 38.015 4.5249 7.8095 3.1848 3.7912 54051 44529 1.2454 7.0669
04 1.7496 1573.96  1216.25 5.7452 10.201 45490 5.8179 21599 44466 2.6355 5.9465
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Table 5.20 Anticipated Variance Component Estimate, 523, for Selected HRS Interview Variables from the 2010-2011 HRS for SR and

NSR PSUs
d2a
SSU . other charity own own own 2nd own self-rated
Stﬁgjm income - wealtha  wealthb debts donate employed Home Stock Home  Transport  health
Self-Representing
02 0.1028 0.0825 0.0816 0.5076  0.4510 0.5859 0.6317 0.5003 0.3475 0.6250 0.5711
03 0.1787  0.1511  0.1596  0.2902 0.3032  0.3863 0.5514 0.2989  0.2262  0.4612 0.3324
04 0.1547  0.1373  0.1438 0.2686  0.2839  0.3571 0.5067 0.3892  0.2617  0.4034  0.3002
Non Self-Representing
02 0.0467  0.0952 0.0791  0.0402  0.0430  0.0401 0.0400 0.0493 0.0426  0.0354  0.0371
03 0.0315 0.1629 0.1293 0.0329 0.0377 0.0334 0.0303 0.0322 0.0311  0.0287  0.0346
04 0.0738  0.0111  0.0070  0.0365 0.0471  0.0343 0.0397 0.0571 0.0662  0.0242  0.0325
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Table 5.21 Anticipated Variance Component Estimates of the factor, k,, , for Selected HRS Interview Variables from the 2010-2011 HRS
for SR and NSR PSUs

kza
SSU . self-
. other charity own own own 2nd own
Stratum  income  w