
 

High Dependability Computing Program 
 
 
 
 
Evolving a Dependability Requirements  
Elicitation and Modeling Framework Based on Use  
 
 
 
 
Paolo Donzelli1 
Forrest Shull2  
Sima Asgari1 
Victor Basili1,2 
 
 
 
 
 
Computer Science Department1 
University of Maryland  
College Park, Maryland 20742 
 
Fraunhofer Center for Experimental Software Engineering2 
College Park, 20742 MD, USA 
 
 
 
 
November 2006  
 
Technical Report CS-TR-4851 
   UMIACS-TR-2007-06 

 

 1



 
 

 2



Evolving a Dependability Requirements  
Elicitation and Modeling Framework Based on Use - 

 
 
 
 

Abstract 
 
 
 
 

Correctly identifying and expressing dependability requirements for software systems has 
wide-ranging consequences for planning and conducting software development as well as for 
the final system success. Yet crucial difficulties exist, many stemming from the fact that 
definitions of “dependable” will vary not only from system to system, but will be perceived 
differently by different stakeholders of the same system.  

UMD is a requirements engineering framework for eliciting and modeling dependability 
requirements that has been devised, to mitigate such difficulties.  

In this report, we introduce UMD and describe an empirical study designed to shed some light 
on the feasibility of the ideas behind UMD and to identify which aspects of the framework could 
be improved, in the perspective that software technology transfer from research to industrial use 
should proceed iteratively and empirically. Subjects in the study consisted of 7 students in a 
graduate-level class. 

Empirical qualitative and quantitative results show that the UMD approach is feasible but also 
allowed us to identify important missing aspects, confirming our assumption that it was not yet 
mature enough for a rigorous industrial study. The contributions of this study have been twofold: 
Demonstrating the usefulness of the tech transfer approach which we have followed as well as 
the feasibility of the UMD approach. 

 3



 
Sommario 

 
 

Abstract....................................................................................................................................................... 3 

Sommario ................................................................................................................................................... 4 

1. Introduction ........................................................................................................................................... 5 

2. Practice under study: UMD ............................................................................................................... 6 

2.1. UMD modeling language................................................................................................................. 6 

2.2. UMD application process ............................................................................................................... 7 

2.3. UMD Tool ............................................................................................................................................ 8 

3. A Feasibility Study............................................................................................................................... 8 

3.1. Research Questions......................................................................................................................... 8 

3.2. The Study............................................................................................................................................ 8 

3.3. Subjects .............................................................................................................................................. 9 

3.4. Study Design...................................................................................................................................... 9 

3.5. Data Collection ................................................................................................................................ 12 

3.6. Data Analysis ................................................................................................................................... 14 

4. Lessons learned ................................................................................................................................. 19 

6. Conclusions ........................................................................................................................................ 20 

7. References ........................................................................................................................................... 21 

 

 
 

 4



1. Introduction 
 
Previous papers [18] have emphasized that transferring software development practices from 

research to industrial use should proceed iteratively and empirically. That is, mature practices 
that have been initially evolved through application to testbeds should next be applied in 
practice, in a context that to some degree approximates the expected environment of use; the 
results of this application should be rigorously observed; and this observation should be used to 
better tailor the practice and reduce risks inherent in its adoption. Once tailored, the new version 
of the practice should be again observed in use in order to test whether the expected 
improvement is in fact observed. 

In this report, we present an instantiation of the above paradigm for a practice for eliciting and 
modeling dependability requirements called UMD (i.e., the Unified Model of Dependability) [3,8]. 
This is a challenging area because: 

 
• Requirements engineering, the branch of software engineering concerned with methods, 

techniques, and tools for eliciting, modeling, and analyzing software requirements, is one 
of the most critical areas of software development: Not only are requirements errors the 
most costly and time-consuming to correct, but erroneous or omitted requirements are 
often indicated as the main reasons for project failures [1,7,16].  

• Among requirements, dependability requirements are particularly difficult to deal with for 
both stakeholders and analysts, as they cover many different aspects of a system at the 
same time [10,13,14,20], for example: failures modes and acceptable failure rates, 
potential hazards, recovery time and system reaction to specific failures, external events 
that could damage or prevent the system from functioning correctly. 

• Dependability requirements are deeply rooted in the specific context [6,19]. The 
International Federation for Information Processing (IFIP) [9] defines dependability as “the 
trustworthiness of a computing system that allows reliance to be justifiably placed on the 
services it delivers.” However, “reliance” is contextually subjective and depends on the 
particular stakeholders’ needs. Different stakeholders will focus on different system 
attributes—such as availability, catastrophic failure avoidance, and deliberate-intrusion 
prevention—as well as require different levels of adherence to such attributes. The same 
attribute can also mean different things to different people, and multiple definitions of the 
same attribute are common [5,11,15,19]. 

• Precise definitions of acceptable levels of dependability are widely varying, as application 
is being made in unorthodox application areas. A traditional issue for space, aeronautical, 
nuclear plants, and defense systems, where a complete absence of failure is required, 
dependability is now increasingly important for systems in many other sectors, including 
the health care and automotive industries, as well as mainstream systems, ranging from 
electronic commerce to mass-marketed products. In many of these new contexts, cost-
effective services are required with reasonably low failures rates, rather than a complete 
absence of failures, [3,4,12,17]. 

 
For all of these reasons, selecting and adopting a technology for elicitation and modeling of 

dependability requirements is a complex decision-making process that must be based upon firm 
empirical evidence showing pros and cons for the target environment. Addressing this problem 
thus requires an evaluation approach that allows researchers to proceed incrementally, gaining 
confidence in the feasibility of the technology under study before tailoring it for, and eventually 
transferring to, their specific industrial context. This report describes an initial study in this area 
that applies such an iterative, empirical approach to technology evolution. The report is 
organized as follows: Section 2 briefly describes UMD, highlighting its main characteristics. 

 5



Section 3 describes a study aimed at testing the feasibility of this technology, while Section 4 
reports the results, and shows how these results are being incorporated into an evolved version. 
Finally, conclusions are given in Section 5. 

 
2. Practice under study: UMD 

 
UMD is a requirements engineering framework for eliciting and modeling dependability 

requirements. UMD is based on a modeling language that adopts a small set of basic 
dependability concepts (e.g., failure and reaction) to facilitate involvement from stakeholders. An 
active involvement of all stakeholders (i.e. those who affect or are affected by the system) is 
crucial for the success of the requirements engineering process [16]: Requirements are the 
result of a cooperative effort, in which all participants, stakeholders and analysts alike, must 
contribute through continuous interaction. The availability of a modeling language that 
stakeholders can easily grasp and adopt to express themselves and interact is thus key for the 
success of the whole requirements engineering process.  

From this perspective, UMD aims at putting the stakeholder at the center of the requirements 
engineering process, providing a simple (but rigorous) language that could benefit stakeholders 
and analysts during elicitation and negotiation. During elicitation, stakeholders can precisely 
formulate their needs, while analysts can identify and highlight potential areas of improvement. 
During negotiation, stakeholders can better understand each other’s needs and become more 
willing to negotiate their initial positions, while analysts can more easily identify discrepancies 
and suggest reconciliation solutions.  

 
2.1. UMD modeling language 

 
UMD is failure-centered as it permits stakeholders to express their requirements by specifying 

what they see as potential failures, or classes of failures, that may arise but which should not 
affect the system or specific services (i.e., the failure scope). Stakeholders may also quantify 
what they assume could be the tolerable manifestation of a failure (i.e., the failure measure) and 
the desired corresponding system reaction. Whenever necessary, stakeholders may also specify 
external events that could harm the system. As illustrated in Figure 1, failure, scope, measure, 
reaction, and event are the basic modeling concepts of UMD that stakeholders use to express 
their dependability requirements. For example, for an on-line bookstore system, a dependability 
requirement expressed using UMD could be: “The service book search (scope) should not have 
a response time greater than 10 seconds (failure) more often than in 1% of the cases (measure); 
if the failure occurs, the system should warn the user and recover full service in one hour 
(reaction).” 

UMD is stakeholder-oriented, as failure, scope, measure, reaction, and event are basic 
concepts that stakeholders can easily grasp and associate with entities proper to their 
application domain. Rather than dealing with abstract entities (dependability and its attributes), 
stakeholders can focus on practical concepts and more effectively map their dependability 
needs to their context. Moreover, to better support stakeholders in formulating their 
requirements, and addressing the needs of a particular application context, UMD can be 
customized to refine the way in which these basic aspects are modeled. For example, to help 
stakeholders identify failures that should not affect the system or a service, we may suggest 
examples of the different types of failures that could occur. (Some examples are in Figure 1: 
response time, accuracy, etc.) Specifically, stakeholders can use the taxonomy items already 
available or tailor, expand, and modify them according to their specific needs.   

 

 6



scope
- Type
  - Whole System
  - Service
- Operational Profile
  - Workload volumes
  - Timeframes

reaction

- Impact mitigation
  - warnings
  - alternative services
  - mitigation services
- Recovery
  - recovery time / actions
- Occurrence reduction
  - guard services

- Type
  - Adverse Condition
  - Attack
  - etc.

event

measure

- Measurement Model
  - MTBF
  - Probability of Occurrence
  - % cases
  - MAX cases in interval X
  - Ordinal scale
     (rarely/sometimes/....)

cause

concern manifest

trigger

- Failure Type
  - Accuracy
  - Response Time
  - etc.
- Availability impact
  - Stopping
  - Non-Stopping
- Severity
  - High
  - Low

- Hazard Severity
  - People affected
  - Property only
  - etc.

failure

 
 
 

Figure 1. UMD concepts and relationships. 
 

2.2. UMD application process 
 
As described in more detail in other papers [2,8], UMD can be applied in different ways 

according to specific project needs, from helping stakeholders understand the context of and 
how to improve an existing system, to discovering requirements for a future system on the basis 
of an initial set of functional requirements. However, it is possible to identify some main activities 
that characterize its application: 
• Initial Scope definition. This is the starting point of the UMD application process, aimed at 

defining the services of the system on which stakeholders will focus to specify dependability 
requirements. To identify the initial list of services, stakeholders and analysts may work in 
collaboration starting from an existing system or from a set of functional requirements. It is 
important to note that this initial list can be enriched at any point during the application 
process.  

• Requirements Elicitation. Each stakeholder, supported by the analyst and guided by the 
UMD structure, specifies her/his dependability requirements by defining (either for the whole 
system or a specific service) a set of undesired failures, their tolerable manifestations, 
possible triggering external events, and desired reactions  

• Requirements Negotiation. Project stakeholders often have diverse and even conflicting 
needs that must be reconciled in order to produce the final requirements document. In any 
project we can have different stakeholders, so negotiation is possible among stakeholders 
playing the same role or stakeholders having different roles. 

 

 7



2.3. UMD Tool 
 
To implement UMD, a web-enabled tool has been developed [8], organized around two main 

tables for requirements collection: 
The “Scope Table” (Figure 2), which allows stakeholders to define the services for which 

dependability could be of concern, starting from the system functional description. 
The “Failure Table” (Figure 3), which allows stakeholders to specify their dependability 

requirements. In particular, for each service identified during the scope definition activity or for 
the whole system, the stakeholder can: a) Identify and describe the undesired failures (by 
specifying/selecting the appropriate characterization scheme, i.e., type, severity, potential 
hazards, etc.); b) Define the tolerable manifestations (by specifying or selecting the appropriate 
measurement model); c) Define or select the desired system reaction behavior (e.g., warning, 
mitigation, and alternative services). Finally, by using the concept of event, stakeholders may 
also specify (when appropriate) external events that could be harmful for the system and 
describe their possible impact on the system in terms of resulting failures and corresponding 
scope. 

 
3. A Feasibility Study 

 
Because the UMD framework is a new technology, we were interested in a study that would 

shed some light on the overall feasibility of the ideas and provide an indication of which aspects 
of the framework (i.e., the modeling language, the application process, and the supporting tool) 
could be improved. 

We felt that it was important to debug these aspects at a basic level before taking it to 
industry for a pilot study, in which a relatively minor problem with the language or tool interface 
would obscure the salient aspects of the underlying concept and methods that we wanted 
feedback on. 

Thus, the main goals for this study were to understand: 
• Goal 1: To what extent the UMD framework was effective at supporting stakeholders during 

elicitation and negotiation of dependability requirements; 
• Goal 2: How to enhance the UMD framework to improve its effectiveness. 

 
3.1. Research Questions 

 
The main hypothesis to investigate during this study was: 
“The UMD framework (modeling language, application process, and tool) supports 

stakeholders in dealing with the complexity of the concept of dependability and helps them 
during the elicitation, formalization, and negotiation of dependability requirements”. 

This hypothesis led to the following specific research questions: 
 
1. Does the UMD framework help elicitation? How and why is a stakeholder facilitated (or 

hindered) in expressing his/her requirements?  
2. Does the UMD framework help negotiation? How and why does the UMD framework help 

(or hinder) the negotiation process? Can stakeholders understand each other? Are critical 
discrepancies among stakeholders easier to identify? 

 
3.2. The Study 

 
The study consisted of applying UMD to a class project with the objective of defining the 

dependability requirements of an online bookstore called eBookstore. 

 8



We used the eBookstore problem as we assumed this type of system would represent a 
familiar domain for the students, so they could act as real stakeholders focusing on their 
dependability needs. We did not want the results of the feasibility study to be confounded by 
students having to learn an unfamiliar system and possibly misunderstand the likely interests of 
various stakeholders. We confirmed with a questionnaire before the study began that this type of 
system was familiar to all students. 

We considered this system to have two main classes of stakeholders:  
• Customers: A customer is anyone who accesses the eBookstore to find and potentially buy 

a book; 
• Sales managers: The sale manager wants customers to feel confident in using the system 

to search for and buy books, and to have a sufficiently pleasant experience that they will 
return for future business. At the same time, a manager also knows that developing a 
perfectly reliable system would require a prohibitive investment, so it is important to find the 
right balance between system cost and customer happiness. 

 
3.3. Subjects 

 
There were 7 subjects in this study. All were students in a graduate level software 

engineering class at the department of Computer Science, University of Maryland, titled: “A 
Quantitative Approach to Software Management and Engineering.” 

The students were assigned to represent 4 Customers and 3 Sales Managers to define the 
dependability requirements of the eBookstore. 

The level of subjects’ experience was assessed using a background questionnaire distributed 
at the beginning of the course. The subjects with the least past experience in software and 
requirements engineering were given the role of customers, while the subjects with more 
experience were selected to act as Sales Managers. 

Subjects were told that they would be graded on the outcome of each phase of the 
assignment. To encourage accurate data collection and representative results, they were told 
ahead of time that they would not be graded in any way on the effort they expended or the 
number of requirements generated. Instead, the announced grading criteria were based on the 
completeness of their submission (meaning whether as many fields as possible were filled out 
for each requirement) and whether each requirement generated was supported by a well-
reasoned rationale for its inclusion. 

 
3.4. Study Design 

 
Before running the study, subjects received a short training session, which consisted of a 2 

hour-lecture on the following topics: 
• Requirements engineering; 
• Dependability requirements; 
• Introduction to the UMD framework and supporting tool through a very simple case study. 

After the training, the subjects were divided into the two groups and assigned a specific 
stakeholder role to represent (customer or sales manager). 

 9



 
 

Figure 2: The UMD Tool “Scope” table for the eBookstore 
 

Before proceeding with the project the UMD tool was initialized, by researchers, with the 
basic settings needed by subjects in order to provide a common environment. Specifically,  
• The “scope table” tool was initialized (see Figure 2) with a set of services provided by the 

eBookstore (i.e., Login, Logout, Book Search, Shopping Cart, Wish List, Personal Data & 
Preferences, Online Payment, and Track Order). It is worth noting that these functions have 
been derived from the most commonly-used commercial systems. 

• As discussed in Section 2, the basic taxonomies for each field of the “failure table” were 
customized to provide guidance to users. The taxonomies adopted for the class project are 
summarized in Table 1. It is important to note that students could extend or modify them at 
any point during the elicitation process. 

Each subject was asked to apply the UMD process in a series of three treatments. Data was 
collected in each treatment through effort logs (see Section 3.5). 

 
Treatment one: Each subject, guided by the structure provided by the tool, was asked to fill 

in as many failure tables as necessary to define her/his dependability requirements. As an 
example of what a table entry might look like, Figure 3 shows the failure table filled in to express 
the following dependability requirement, which was noted by a student using the customer role: 
“The service book search (scope) should not have a response time greater than 10 seconds 
(failure, characterized as non -stopping but serious) more often than in 1% of the cases 
(measure); if the failure occurs, the system should warn the user about the reasons, suggest a 
better time to try again, and recover full service in one hour as maximum (reaction).” 

Taken together, these tables represent the dependability model of the eBookstore produced 
by the subject from the point of view of his/her role. Each subjects submitted their models 
individually, with a report explaining the reasons for their decisions, any problems using the 
model, and shortcomings of the model. Nine calendar days were available for completion of the 
assignment. 

 10



Treatment two: All subjects with the same assigned stakeholder perspective met to combine 
their individual models into one consensus model through negotiation. Each group submitted a 
unified model and a report explaining reasons for their decisions, the compromises they have 
made, problems using the model, and any shortcomings of the model for the unification process. 
One calendar week was allotted for completion of this activity. During this week two short (20-
minute) discussion sessions were arranged to help subjects with problems and questions about 
the assignment. 

 
Treatment three: Members of both stakeholder groups met to combine their models into one 

through negotiation. The class submits a unified model and a report explaining reasons for their 
decisions, compromises made, and other issues. The third part of the assignment took more 
than the one-week time frame that was originally planned. One of the researchers attended the 
discussion session between all subjects. During this meeting the subjects, with the researcher’s 
help, came up with a single model for all of the stakeholders of the eBookstore.  

 
Post-study follow-up: After completing the assignment, the subjects were given a 

questionnaire with focused questions to elicit their experience on various aspects of the process 
and tool (see Section 3.6, qualitative analysis). 

 
 

 
Failure characterization: 
Failure Types: 

• Functional correctness: System or service does not 
work or it does not implement the functional 
requirements. 

• Throughput: Average or peak number of items (e.g., 
books) per unit of time dealt with by the system or 
service is less than expected. 

• Response time: Response time of the system or the 
service greater than expected. 

• Static load: Max number of items handled by the 
system or the service is less than expected. 

• Accuracy: The accuracy (e.g. type of suggested books) 
of the system or service is less then expected. 

• Data freshness: The frequency of data updating is less 
than expected. 

• Confidentiality: Unauthorized disclosure of 
information by the system or a service. 

• Integrity: Unauthorized data alterations by the system 
or a service. 

• Usability: The easiness of using the system or the 
service is less than expected. 

Failure Impact over Availability: 
• Stopping: Failure makes the system or service unfit for 

use. 
• Non-Stopping: Failure does not make the system or 

service unfit for use 
Failure Severity: 

• High severity: Failure has a major impact on the utility 
of the system for the operator. 

• Low severity: Failure has a minor impact on the utility 
of the system for the operator. 

Event characterization: 
• Adverse Condition: Any unintentional event that could 

have some effect on the system. 
• Attack: Any intentional action carried out against the 

system. 
Measure characterization: 
Measurement Models: 

• Mean Time Between Failures (MTBF) 
• Percentage of cases 

Reaction characterization: 
Services Types: 

• Warning Services: Warn user about the situation. 
• Alternative Services: Provide alternative ways to perform 

same tasks. 
• Mitigation Services: Reduce issue impact on the user. 
• Guard Services: Reduce probability of occurrence of the 

issue. 
Recovery Behavior: 

• Mean Time To Recover (MTTR) – Max Time To Recover 
(MaxTTR) 

 
Table 1: UMD guidelines for eBookstore 

 

 11



 
Figure 3: Example of completed “Failure” table  

 
3.5. Data Collection 

 
The following types of information were collected: 
 
Information describing subjects’ background. A background questionnaire was distributed 

prior to the start of the study to ensure that students were familiar with the eBookstore domain 
and to assess their level of familiarity with requirements engineering and software engineering, 
which was used to assign the stakeholder role as described in Section 3.2. 

Individual and group effort log. The number of hours spent on each activity was self-
reported by the students. We tried to maximize the accuracy of the data by announcing ahead of 
time that no part of the grade would be based on the effort reported. 

Size of the dependability models. To measure the size of the dependability models created 
during the project (i.e., the models created by each student for Part 1, the models created by 
each group for Part 2, and the model created by the whole group for Part 3), we have adopted 
as a measurement unit the Line of Dependability (LOD). Each LOD represents a unique 
dependability requirement as captured by a failure table (see for example Figure 3). 

Negotiation dynamics (how requirements were selected, improved, merged, created, 
and dropped during negotiations). There are no features in the UMD tool specifically aimed at 
supporting negotiation among stakeholders to produce a consensus set of lines of dependability. 
However, the formality imposed by the UMD modeling notation is aimed at facilitating the 
discussion by both providing a common structure to make comparisons easier, and helping 
identify under-specified or missing pieces of information. Moreover, the tool provides a way of 
organizing, manipulating, and editing the various LOD that simplifies the overall task. By 
explicitly storing each LOD (i.e., a completed failure table), the effects of negotiation can then be 
studied by comparing different versions of the dependability model. More precisely, when 
individuals bring their own dependability models and meet to achieve consensus, for each LOD 
recorded by an individual one of the following can occur, as illustrated in Figure 4: 

 12



1) The LOD from one model is accepted into the consensus model, with no changes. We call 
this a “Winner LOD.” 

2) The LOD from one model is merged with another one from a different model, in which case it 
can be considered a “partial winner,” specifically: 
a) “Partial winner A,” if it appears in the consensus model with extremely minor changes 

(e.g., only one field of the LOD is modified by using values from another LOD, usually a 
Winner C) 

b) “Partial winner B,” if it appears in the consensus model with important changes (e.g., this 
LOD has been merged with another LOD). 

c) “Partial winner C,” if it appears in the consensus model with extremely important changes 
(e.g., only one field of this LOD has been maintained and has contributed to complete 
another LOD, usually a Winner A). . 

3) The LOD is dropped; it does not appear in even modified form in future versions of the 
model. 

4) A new LOD is created due to discussions among the team that had not been previously 
recorded by individuals. 

A large number of winners may indicate that the individuals brought many different 
perspectives to bear on the final system, so that the unified set of their lines of dependability is 
truly necessary to represent the system fully, or it may indicate that participants in the meeting 
did not truly negotiate the final model and tended to accept ideas without discussion. 

Finally, by comparing LODs in the different models created during the study, we can also 
measure whether LODs grew more complex or complete during discussion, that is, had more of 
their fields completed after group negotiation. 

Post study questionnaire. This questionnaire captured qualitative information that was not 
reflected in the other metrics collected, for example, concerning what difficulties students felt that 
they faced when applying UMD and what kinds of strategies they used to work around them. 

 

Stakeholder 1
Model

stakeholder 2
Model

Consensus
Model

Dropped LOD

Dropped LOD

Winner LOD
Partially Winner (A/B/C) LOD

New LOD

Dependability
Model

Negotiation
Flow

Winner LOD
Partially Winner (A/B/C) LOD

 
 

Figure 4: Negotiation Dynamics 
 

 13



3.6. Data Analysis 
 
Using the measures described above allowed our analysis to use a mix of quantitative and 

qualitative information, which was necessary to get a better understanding of the feasibility of 
UMD and to address our goals of maturing the technology for use in production environments. 

 
Quantitative Analysis. 
 

Model size. Figure 5 describes the size of the dependability models generated at each step 
of the elicitation and negotiation process, using the number of LOD in each model. The 4 
subjects representing customers generated individual dependability models with 22 LOD on 
average; their consensus model contained 33 LOD. The 3 subjects representing managers 
generated individual models with 23 LOD on average and 42 LOD in the consensus model. The 
final dependability model representing both stakeholder groups contained 62 LOD. 

 

0

10

20

30

40

50

60

70

C1 C2 C3 C5 M4 M6 M7 Mgroup Cgroup Final

Subjects

LO
D

 
Figure 5: Size of models (in LOD) 

 
Process Dynamics: Intra-group Negotiations. Figure 6 describes the results of the 

negotiations within each group, as measured using the categories defined in Section 3.5. 
The 4 subjects using the customer role reported a total of 90 LOD in the first step of the 

process. Of these:  
• Over one-third (38%) were dropped during the creation of a group consensus model;  
• 7% were accepted without modification, contributing 6 LOD to the customer model (winner 

LODs);  
• The majority (55%) were combined through negotiation and compromise: most of them 

(37%) as winner A, the remaining as winner B and C (12% and 6% respectively). The 49 
LOD in these categories were eventually combined into 24 unique LOD in the customer 
dependability model.  

Also, during the discussion 3 new LOD were created, bringing the total size of the consensus 
model to 33 LOD. 

A similar pattern characterizes the negotiations among managers. 70 LOD were created by 
individuals. Almost a quarter (23%) were dropped entirely, while a minority (16%) were adopted 
as is. The remaining 61% represented 43 LOD that were combined into 32 in the final model. 
(No new LODs were created by the managers during discussion.) 

These results show that, while subjects applying the same perspective were all focused in a 
similar area, there were a minority of important individual contributions that were accepted as 
they were originally written, without changes based on another subject’s results. In both cases, a 

 14



surprisingly large number of LODs were simply dropped from consideration in the consensus 
model, signifying that there were cases where individuals in their own analysis took an extreme 
position too far outside the group consensus. These results do provide clear evidence that 
negotiation was in fact being undertaken, i.e. that subjects took their responsibility to create a 
consensus viewpoint quite seriously. 

 

0%

5%

10%

15%

20%

25%
30%

35%

40%

45%

50%

Winner Winner A Winner B Winner C Dropped

Customers
Managers

 
 

Figure 6: Intra-group Negotiation 
 
Process Dynamics: Inter-group Negotiation. Figure 7 describes the results of the 

negotiations between the two groups, showing the different categories of LODs making up the 
final model and the contribution made by the two groups.  

Recall that the customers entered negotiations with a consensus model containing 34 LODs; 
the manager model was roughly similar in size with 43 LODs. Based on the results, it does not 
appear that either stakeholder group dominated the negotiation process. 

Both groups had a large percentage of their LODs carried into the new model as winners: 
52% of the final model is made up of winner LODs, 44% of which were taken from the 
customers’ consensus model and 56% from the managers’ consensus model. Both groups also 
had a minority that were dropped completely (8% for customers and 5% for managers). The 
remainder of each groups’ LODs were combined through negotiation: 18% of the final model’s 
LODs are of the category winner A (33% derived from the customers’ model and 67% from the 
managers’ one), while 17% are of the category winner B (63% from the customers’ model and 
37% from the managers’ model). This resulted in 27 different LODs transforming into 12 LODs in 
the final model describing eBookstore dependability requirements. 

These results imply that the two groups focused on slightly different areas of the system 
behavior, so more than 50% of the requirements could be taken as originally formulated  The 
final dependability model consisted of 61 LODs, among which only 3 new LODs were created 
during negotiation. 

 

 15



0%

10%

20%

30%

40%

50%

60%

Winner Winner A Winner B Winner C Dropped

Managers
Customers

 
 

Figure 7: Inter-group Negotiation 
 
Effort data. The effort required for each subject to generate their individual models of system 

dependability varied widely but were on average very similar between the two stakeholder 
groups: 7 person-hours for customers and 7.6 person-hours for managers.  

Negotiation was an equally time-consuming task. The time required for negotiation was very 
similar for both groups (8 hours for customer and 8.25 for managers), although to the best of our 
knowledge they did not coordinate on the time required. This time investment was larger than 
the time that 5 out of 7 students spent on their individual model building. 

As might be expected, negotiations between the two stakeholder groups were more time-
consuming than the time spent within each group. We expect this is due to the need to 
compromise between two very different views of system functionality. It took 12.25 hours to build 
the final model representing both groups. 

Figure 8 summarizes the overall cost of the elicitation and negotiation process by showing the 
effort spent on average to obtain each LOD of the customer model, of the manager model, and 
of the final dependability model. These measures are cumulative, that is, they include all effort 
spent within a phase plus that spent in all previous phases. We can see that most of the effort 
(about 70%) was spent in developing the models for each stakeholder group, while the 
negotiation to produce the final model was relatively efficient. 

 

1.06

0.75

1.30

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

H
ou

rs

Cumulative time per one Customer LOD

Cumulative time per one Manager LOD

Cumulative time per one Final LOD

 
Figure 8: Average effort per LOD 

 

 16



LOD completeness. We define a LOD as complete when all its main fields (scope, failure, 
measure, and reaction) have been given a value. LOD completeness is thus an index of the 
quality of a set of dependability requirements, as a greater degree of completeness means that 
more aspects have been taken into consideration by stakeholders. We can observe that LOD 
completeness increased during this study since, whereas complete LODs comprised an average 
of 20% of the models created by individual subjects, in the final dependability model the 
measure was 80%.  

 

 
 

Figure 9: Failure types distribution 
 
Qualitative Analysis. 
 
Analysis of LOD by group. Figure 9 shows the distribution of failure types in the various 
consensus models (customer perspective, manager perspective, and final). While these 
numbers do not permit a statistically rigorous comparison, the figure illustrates that the overall 
breakdown of concerns was fairly comparable for both stakeholder groups. Customers did focus 
a larger percentage of their LODs on functional correctness and throughput while managers 
focused more on response time. 
 

Analysis of subject rationales and comments. Since we were interested in gaining 
information that could be used to evolve the UMD modeling approach and the accompanying 
tool support into a version that would be better suited for use on industrial projects, we analyzed 
the qualitative information that students reported in their assignments and in the follow-up 
questionnaire. We summarize their answers focusing around some important questions: 

 
Q 1) Was the UMD approach useful for elicitation?  
 
Students reported a number of general points that could be improved, such as removing some 
ambiguity from definitions. Some deeper points touched on the nature of the approach: 
• It seemed good for novices: “It helped to have a standard format in which requirements are 

written and to emphasize issues that I would not have known to include in the requirements 

 17



(e.g., response time).” “The UMD approach helped a lot in expressing the dependability 
requirements (once I have got the hang of it).” 

• The UMD template (failure table) helped to make information explicit and comparable: “The 
model helped viewing the problem in a specific way that made various aspects of 
dependability described in a unified manner.” “Since everything was so structured, it was 
easy to break down stakeholders’ demands into their parts.” However not all subjects found 
the format appropriate: “I had trouble expressing functionality requirements using the given 
fields” 

• There were some difficulties expressed by different subjects about various fields in the 
template. However, there was no consistent agreement on these and most of the difficulties 
seem to have been overcome in time. 

• It helped by creating a mini-“experience base” that made requirements explicit and 
traceable: “UMD approach helped by organizing our thought process and codifying failure 
information in a way that can be analyzed later” 

• The most difficult part was “identifying the best measure (we had no information on the 
measure and it was difficult to negotiate).” 

 
Q 2) Was the UMD approach helpful for negotiation?  
 
• Overall, having a common format seemed to help the negotiation: “UMD approach helped in 

combining requirements, since everyone’s requirements could be easily understood by 
everyone else” 

• However, it was hard to resolve some of the ambiguities about details of the template 
definitions between the two groups of stakeholders: “Different individuals had different 
interpretations of what various fields in the model meant. This became even worse given that 
manager and customer groups arrived at different consensus” 

• Differences between the groups were made explicit, so they could not be omitted or deferred 
until later. “The model helped us very well in combining requirements, because we already 
had models in the same format (it would have been more difficult to start from scratch and 
reach same completeness).” “The greatest strength of UMD is being able to merge 
requirements. We had no trouble identifying potential conflicts and resolving them.” 

• However, resolving the issues that separated the groups was not easy: “Agreement on 
failure criteria [failure types and measures] was the most difficult aspect. Managers designed 
a very lenient system which was not satisfactory for the customers; managers did not want to 
design anything that would have add to their expenses; customers had to lower their 
expectations; few managers requirements were updated to increase customer satisfaction” 

• In general, conflicts between the groups were resolved by going with the more lenient criteria 
– which may not always be the optimal solution for the system as a whole. “Failures were 
very similar, only the degree was different, so we went with the most lenient criteria”  

 
Q 3) Suggestions for new tool requirements.  
 

There were some low-level suggestions about how the functionality could be improved; e.g. 
some functions like printing simply took longer than was convenient. More sophisticated 
commentary on tool functionality included the following: 
• It was necessary to have better connections between related information in the tool: “It was 

hard to look at [multiple] requirements [at the same time], navigate between requirements 
and scopes.” “Most difficult part was scrolling across the page to reach the different aspects 
(guard services, measure, etc.)” 

 18



• It was necessary to have better connections between the different models being created, to 
help with negotiating combined models: “Difficult to compare requirements within and 
between models (cannot copy requirements from one model to another).” “No way to 
transfer data from one model to another (we had to re-enter a good part of data by hand).” 
“There is not even a merge option in the tool!” 

 
4. Lessons learned 

 
Based on observation performed during this feasibility study, we now can provide the 

following information to address our study goals: 
 

Goal 1: To understand the extent to which the UMD framework (i.e., the modeling 
language, the application process, and the supporting tool) was effective at supporting 
stakeholders during elicitation and negotiation of dependability requirements. As a 
feasibility study, the data collected from our subjects directly addressed this issue. The 
quantitative data collected showed that students were indeed engaging in model-building and 
negotiation during the different phases of this project. The data show that compromises were 
being made (i.e. previous LODs were being modified or dropped while consensus was being 
sought). Also, as might be expected, the data show that activities and results were different 
depending on whether subjects were negotiating with others using the same stakeholder 
perspective or a different one. Moreover, the effort required for any of these tasks was not 
prohibitive. 

Thus the quantitative data strongly indicate that students found it relatively easy and feasible 
to use the modeling language to express their needs and to negotiate a common view. These 
indications are corroborated by the qualitative data. In their responses, multiple subjects 
mentioned that UMD helped with the mechanics of the negotiation process (i.e. the use of 
templates made sure that various stakeholders were identifying similar types of information, and 
those types were easy to compare) even if reaching an agreement between two different 
stakeholder groups was still difficult. 

Given the status of the tool as an early prototype, it was expected that many suggestions for 
enhancements would be received. The nature of the comments (specifically the ones regarding 
the need for more connections among various types of information) will help improve the 
functionality based on observation of actual use and the way in which users tried to interrelate 
information during negotiations. 
 
Goal 2: To understand how to enhance the UMD framework (i.e., the modeling language, 
the application process, and the supporting tool) to improve its effectiveness. The study 
has provided us useful feedback on concrete improvements necessary to the UMD framework. 
In particular, the following critical areas have emerged upon which we need to focus our 
attention: 

 
Supporting stakeholders during elicitation. Difficulties encountered by stakeholders could 

be reduced by augmenting the level of guidance, for example, by providing a reference list of 
suggested measures that are appropriate for defining the level of tolerable manifestation for 
different types of services and quality constraints. In this way, the tool could provide an evolving 
“experience base” in which future LODs can be defined based on measures and other 
component pieces that have proven useful in the past. Initial work has been undertaken to 
explore this possibility and validate this idea [8]. 
 

 19



Improving support for negotiation. Based on these results, we have a better idea what 
activities occur during negotiation: e.g. the percentage of LODs that are likely to change as a 
result of negotiation, and how completeness of LODs varies over time. This information gives us 
a better understanding of how to enrich the tool to improve its support to stakeholders. In 
particular, due to the structure of the UMD modeling language, stakeholders tend to focus during 
elicitation on each single LOD and have difficult in dealing with many LODs at the same time. 

Based on these observations, the tool has been improved and is under evaluation [8]. The 
new UMD tool allows for analysis based on two different views across the entire set of 
requirements expressed by the stakeholders: 

 
• The Visual Query Interface (VQI), developed at the Fraunhofer Center Maryland and based 

on the idea of the Starfield display [21], is used to analyze requirements geometrically, i.e. to 
analyze characteristics of sets of requirements rather than individual requirements. VQI 
allows the spatial visualization of the requirements distributed according the values of two or 
more of their attributes (e.g., failure type, availability impact and severity; hazard severity; 
type of external event, type of reaction). Different symbols, colors, labels, and sizes can be 
used to highlight the attributes of interest. 

 
• The “Dependability Analyzer”, a prototype tool, developed by combining features provided 

by MS Excel and Matlab [22], is used to visually represent the emerging system 
dependability properties. The measures expressing the tolerable manifestation for each of 
the identified issues are combined to provide “aggregate values of dependability”: for 
example, the aggregate MTBF of all the failures, or the MTBF of all the failures that are also 
stopping failures. 

 
Finally, information acquired by studying negotiation dynamics has allowed us to identify the 

requirements for “distance metrics” that could be used to actively support a more structured 
negotiation process, potentially reducing the effort for this phase of application. In particular, by 
applying distance metrics the tool will be able to identify clusters of similar LODs from multiple 
models. On the assumption that LODs within a cluster are likely to be those which could be 
merged in the consensus model or contain discrepancies that need to be reconciled, the 
negotiation process can become more efficient as analysts and stakeholders can focus on each 
cluster in a systematic way. 

 
6. Conclusions  

This study is a demonstration of the need to apply an iterative, empirical approach to 
technology evolution. The quantitative and qualitative results confirm our initial feeling that, 
although promising, the technology and especially the tool support underlying the UMD 
approach was not yet mature enough for a rigorous industrial study. In fact, our student subjects 
helped identify some important missing aspects, such as a need for better links among similar 
information within UMD models to support negotiations, which should be improved before 
industrial teams apply the approach. At the same time, the data collected in this study do show 
that the approach is feasible and worth further investigation. 

In terms of future work, the directions for further research described in the previous section 
show that the feasibility study was indeed useful for identifying concrete areas in which more 
functionality and hence more experimentation were needed. 

Thus, we feel that the contributions of this study have been twofold: Demonstrating the 
usefulness of the tech transfer approach which we have followed as well as the feasibility of the 
UMD approach and supporting measures. 

 20



 
Acknowledgements 

The authors wish to acknowledge support from the NASA High Dependability Computing 
Project under cooperative agreement NCC-2-1298. 

The authors wish to thank the researchers on the HDCP project team for their insights and 
suggestions, and also the students who performed as subjects in this study for their hard work. 

 
7. References 
[1] A. Finkelstein, J. Dowell, A Comedy of Errors: The London Ambulance Service Case Study, 
Proc. Of the 8th International Workshop on Software Specification and Design, pp. 2-5, 1996. 
[2] Basili, V., Donzelli, P., Asgari, S. The Unified Model of Dependability: Putting Dependability 
in Context, IEEE Software, Vol.21, Issue 3, Nov/Dec 2004. 
[3] Boehm B., Huang L., Jain A., Madachy R., The ROI of Software Dependability: The iDave 
Model, IEEE Software, Vol. 21, Issue 3, May/June, 2004. 
[4] Boehm, B., Huang, L., 2003. Value-based Software Engineering: A Case Study, IEEE 
Computer, Vol. 36, Issue 3, March, 34-41. 
[5] Boehm, B., Huang, L., Jain, A., Madachy, R., 2003. The Nature of Information System 
Dependability – A Stakeholder/Value Approach, Technical Report, University of Southern 
California, CA, US. 
[6] Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000. Non Functional Requirements in Software 
Engineering, Kluwer Academic Publisher. 
[7] D.R. Lindstrom, Five ways to destroy a development project, IEEE SW, pp. 55-58, 
September 2003. 
[8] Donzelli P., Basili V., A Practical Framework for Eliciting and Modeling System Dependability 
Requirements: Experience from the NASA High Dependability Computing Project, Journal of 
Systems and Software Vol 79/1 pp 107-119, 2006. DOI information: 10.1016/j.jss.2005.03.011 
[9] International Federation for Information Processing Working Group 10.4, 
www.dependability.org. 
[10] HDCP - High Dependability Computing Project, 2002. http://hdcp.org. 
[11] J.C. Laprie, ed., Dependability: Basic Concepts and Terminology—Dependable 
Computing and Fault Tolerance, vol. 5, Springer-Verlag, 1992. 
[12] Littlewood, B., Stringini, L., 2000. Software Reliability and Dependability: a Roadmap. In: 
Proceedings of the ACM Future of Software Engineering conference, Limerick, Ireland.  
[13] Melhart B., White S., Issues in defining, analyzing, refining, and specifying system 
dependability requirements, IEEE Conference on the Engineering of Computer Based Systems, 
April 2000.  
[14] Mellor, P., Failures, Faults and Changes in Dependability Measurement, 1992. 
Information and Software Technology, Vol. 34, Issue 10, October, 640-654. 
[15] Randel B., Dependability, A unifying concepts, Proceedings of Computer Security, 
Dependability and Assurance: from needs to solutions, York, UK & Williamsburg, VA, USA, July 
& November 1998. 
[16] Robertson S., Robertson J., Mastering the requirements process, ACM Press Book, 
Addison Wesley, 1999. 
[17] Shaw M., Everyday Dependability for Everyday Needs, Supplemental Proc of 13th 
International Symposium on Software Reliability Engineering, Maryland, 2002. 

 21

http://www.dependability.org/
http://hdcp.org/


[18] Shull F., Carver J., and Travassos G. H., "An Empirical Methodology for Introducing 
Software Processes", In Proceedings of European Software Engineering Conference, 
September 2001, pp. 288-296. 
[19] Sommerville, I., 2003. An Integrated Approach to Dependability Requirements 
Engineering. In: Proceedings of the 11th Safety-Critical Systems Symposium, Bristol, UK. 
[20] Virtanen S., Reliability in Product Design – Specification of Dependability Requirements, 
IEEE Reliability and Maintainability Symposium, 1998.  
[21] Ahlberg C. Shneiderman B., Visual information seeking: Tight coupling of dynamic query 
filters with starfield displays, Proc. CHI'94 Conference: Human Factors in Computing Systems, 
ACM, New York, NY (1994), 313-321 
[22] Matlab, http://www.mathworks.com 

 22

http://www.mathworks.com/

	Abstract
	Sommario
	1. Introduction
	2. Practice under study: UMD
	2.1. UMD modeling language
	2.2. UMD application process
	2.3. UMD Tool
	3. A Feasibility Study
	3.1. Research Questions
	3.2. The Study
	3.3. Subjects
	3.4. Study Design
	3.5. Data Collection
	3.6. Data Analysis
	4. Lessons learned
	6. Conclusions
	7. References

