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The implications of near-surface soil moisture (~5 cm) variability in land surface 

processes and land-atmosphere interactions is important in regional and global scale 

climatology since it controls the partitioning of precipitation and radiation fluxes that 

play a crucial role in dictating weather and climate. Passive microwave (PMW) remote 

sensing is an increasingly popular approach to measure soil moisture because of its global 

coverage of the Earth. This study evaluates the performance of the NASA Goddard Earth 

Observing System, Version 5 (GEOS-5) radiative transfer model (RTM) using Aquarius 

brightness temperature (Tb) observations with the eventual goal of integrating the RTM 

into a data assimilation (DA) framework for the purpose of improved soil moisture 

estimation. Statistics were calculated from two plus years of observations across different 

climate regions of the United States. Seasonal variations of soil moisture were also 

investigated. Results suggest the RTM reasonably reproduces Aquarius Tbs, but that 

systematic biases exist, which must be mitigated prior to inclusion into the DA 

framework.  
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Chapter 1:  Introduction and Motivation 

1.1 Motivation and Background 

Soil moisture plays a key role in hydrologic, meteorologic, and land surface 

processes (Cashion et al., 2005; Qiu et al., 2013; Su et al., 2013). Generally, soil moisture 

is defined as the water that is stored in the root zone (approximately top meter of soil), 

which interacts with the overlying atmosphere through evapotranspiration and 

precipitation (Pan et al., 2003). It strongly affects the surface energy and precipitation 

fluxes by acting as a first-order control on their partitioning (Brubaker and Entekhabi, 

1995; Corradini, 2014; Delworth and Manabe, 1989; Entekhabi et al., 1996; Moradkhani, 

2008; Reichle et al., 2002; Xia et al., 2014). Soil moisture-precipitation feedback plays a 

crucial role in controlling weather patterns and land surface processes, which are 

particularly evident in transitional climate regions (Koster et al., 2004, 2003; Seneviratne 

et al., 2010). Studies on soil moisture and related land-atmosphere interactions show it 

also affects other factors in the atmosphere such as humidity, temperature, and wind flow 

(Zaitchik et al., 2013).  

Frequent monitoring of soil moisture allows meteorologists, hydrologists, and 

climatologists to characterize and forecast hydrologic and climatic events such as 

precipitation, floods, droughts, and streamflow (Brocca et al., 2013a, 2013b; Cashion et 

al., 2005; Koster et al., 2010). However, soil moisture is highly variable in space and time 

(Ahmad et al., 2010), which impacts the uncertainty in its prediction. Further, this 

variability (and uncertainty) drives much of the large-scale anomalies in precipitation 

(Reichle et al., 2002) and has significant impacts on atmospheric behavior at seasonal and 
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annual timescales (Cashion et al., 2005) as well as long-term prediction of climatic 

conditions (Walker and Houser, 2001). Therefore it is of great importance to monitor and 

characterize soil moisture variability over space and time with precision across high-

frequency (~daily) timescales (Houser et al., 1998). 

Ground-based sensors are often installed to monitor soil moisture at a local scale 

(on the order of centimeters) that provide higher temporal (sub-hourly) frequency soil 

moisture measurements, but do not provide measurements over a large spatial domain. 

Since soil moisture and large-scale land atmosphere interactions operate over larger (on 

the order of kilometers) scales, ground-based measurement of point scale soil moisture is 

not always sufficient to model its spatial variability. Moreover, installing and maintaining 

ground-based sensors to be operational everywhere at all times would be both expensive 

and challenging. 

To overcome this issue, remote sensing measurements, which are generally 

collected by sensors on-board an aircraft or a satellite, possess significant advantages 

over traditional in-situ (i.e., point-scale) measurements of many hydrologic state 

variables (Schultz and Engman, 2000) such as soil moisture variability over a large area 

and long time periods. These sensors are typically active or passive microwave sensors 

that use the principle of the interaction between water particles and the photons emitted 

from the energy source at microwave frequencies (Dorigo et al., 2010). However, direct 

measurement of soil moisture (and its variability) is not possible using microwave 

sensors. Rather, they are inferred from brightness temperature (Tb) observations that vary 

with the near-surface surface soil moisture content (Jackson, 1993, 2001). Tb itself is a 

function of surface soil temperature, which is also highly variable like near-surface soil 
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moisture (Schmugge et al., 2002; Wang and Choudhury, 1981). However, retrieval of 

microwave emission is only limited to top 5 cm of the soil surface for L-band (1.4 GHz) 

radiometers (Kerr et al., 2001; Leroux et al., 2013). 

The Aquarius (Le Vine et al., 2007) satellite mission was launched in June, 2011, 

in order to monitor sea surface salinity (SSS) from space. The science objectives of 

Aquarius include better understanding of the movement of the Earth’s freshwater 

resources as well as interactions between the water cycle and ocean circulation, which 

require seasonal monitoring of the sea surface salinity over many years. The Aquarius 

instrument consists of a combined active/passive L-band microwave radiometer from 

which brightness temperature is inferred from the microwave emissions from the Earth’s 

surface. Utilizing the instrument’s microwave radiometer, this study focuses on 

brightness temperature observed due to soil moisture variability over the Earth’s land 

surface rather than SSS as originally envisioned by Aquarius’ creators. 

A zero-order (tau-omega) radiative transfer model (RTM) (De Lannoy et al., 

2013) is evaluated in this study using Aquarius Tb observations from numerous locations 

across the contiguous United States. These study locations are selected based on 

colocation between United States Climate Reference Network (USCRN) (Heim, 2001; 

Vose and Menne, 2004; Vose et al., 2005) stations and Aquarius satellite instrument 

observations. The RTM is fed by parameters from the Goddard Earth Observing System, 

version 5 (GEOS-5) Catchment Land Surface Model (CLSM) (Koster et al., 2000). The 

output from the RTM consists of L-band Tb predictions. The study conducted here 

evaluates the performance of a NASA RTM to reproduce Aquarius Tbs with the eventual 

(future) goal of improving model estimates of soil moisture. 
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Another focus of this study is to investigate how soil moisture variability is 

impacted by regional climate type. The contiguous United States consists of several 

different climate classes based on Köppen Climate Classification (Kottek et al., 2006; 

Peel, 2007) ranging from humid to dry continental climates. In order to investigate soil 

moisture variability as a function of climate class, the performance of the RTM is 

evaluated across a variety of Köppen Climate Classes across the United States. 

The overarching goal of this study is to eventually integrate remotely sensed Tb 

and predicted Tb (via a radiative transfer model) into a data assimilation (DA) 

framework. Data assimilation is a useful technique that provides improved knowledge of 

state variables than either the observations or models alone through the reduction of state 

variable uncertainty (Forman et al., 2012; Moradkhani, 2008; Sahoo et al., 2013). A DA 

framework improves state estimates by merging available information from both models 

and measurements (Forman et al., 2012; McLaughlin, 2002) and has been successfully 

applied to soil moisture studies (Crow and Wood, 2005; Margulis et al., 2002). 

Information and experience gleaned from this current study will eventually be used in the 

proposed DA framework for future study. 

1.2 Objectives and Scopes of the Study 

Motivated by the realization that soil moisture variability should be monitored 

and modeled frequently to better understand and predict its dynamics, this study will 

explore the following research questions: 

1. How do L-band Tb measurements and RTM predictions vary 

seasonally/annually at selected study areas? 
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2. How can L-band Tb variability be characterized by Köppen climate 

classifications across continental US? 

3. How do the GEOS-5 RTM Tb predictions perform compared to Aquarius Tb 

observations? 

4. How do Aquarius Tb observations compare to the USCRN near surface (top 5 

cm) volumetric soil moisture content time series? 

These research questions are explored in order to find potential solutions that better 

reflect the soil moisture variability across the study area.  

In order to investigate these research questions the Tb observations from Aquarius 

will be evaluated using a time series comparison with volumetric water content (VWC) 

from the existing USCRN station locations. This will improve the understanding of Tb 

retrieval performance from the passive microwave radiometers on board Aquarius. In 

addition, the evaluation of Tb prediction from the GEOS-5 RTM will be helpful in future 

DA studies of Tb assimilation from Aquarius in order to better estimate soil moisture 

conditions. 

1.3 Organization of the Thesis 

This thesis is organized into five chapters and an overview of each chapter is 

provided below: 

• Chapter 1: This chapter provides the motivation and background information 

for this study. It provides basic information about soil moisture and its 

measurement, necessity and advantages of using remote sensing relative to in-

situ measurements, an overview of the Aquarius satellite, the radiative transfer 
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model, and USCRN data. It also includes the objectives and scopes of the 

study. 

• Chapter 2: Provides a literature review on soil moisture, its measurements, 

and soil moisture induced land-atmospheric interactions. It includes basics of 

remote sensing, a brief discussion of the different types of sensors, details 

about soil moisture remote sensing, and an overview of the Aquarius satellite. 

Details of the radiative transfer model, Tb predictions and in-situ 

measurement of volumetric water content by USCRN are also included here. 

Discussions about Köppen climate classes across the US are also provided.  

• Chapter 3: Details of the study area and the distribution of climate classes 

across the domain are given. Further, discussions on Aquarius observations 

and RTM predictions are provided here. A detailed methodology is discussed 

along with statistics computed as part of the evaluation are also included in 

this chapter. 

• Chapter 4: This chapter includes the results from statistical analyses and 

related discussions. 

• Chapter 5: This final chapter includes concluding remarks as well as 

limitations of the study. Recommendations for future research are also 

provided. 
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Chapter 2:  Literature Review 

2.1 Soil Moisture 

2.1.1 Definition 

Soil moisture is the water held between the particles of soil in the unsaturated 

zone (i.e., vadose zone) (Hillel, 1998). The unsaturated zone extends from the land 

surface down to the ground water table (or saturated zone). Soil water is bound to the soil 

particles by the molecular forces of adhesion and cohesion (Tindall and Kunkel, 1999). 

Water enters the soil through precipitation and agricultural applications (e.g., irrigation) 

and re-enters the atmosphere through evaporation from soil and transpiration from plants. 

In practice, only a fraction of the soil moisture can be measured and considered with 

reference to a given soil volume (Seneviratne et al., 2010). The distribution of soil 

moisture is not homogenous but rather highly variable in space and time (Famiglietti et 

al., 1999). 

2.1.2 Measurement of Soil Moisture 

There are several methods for measuring soil moisture content. These methods 

include in situ soil moisture sensors as well as measurements from space using remote 

sensors. Brief descriptions of such methods are given below. 

2.1.2.1 Ground-based Measurements 

There are destructive and non-destructive methods for in-situ soil moisture 

measurements. Destructive methods use a soil sample taken from the field and directly 

measure the water content while non-destructive methods use sensors that are 

permanently placed in the soil (Kutilek and Nielsen, 1994). Destructive methods disturb 
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the existing soil profile each time a sample is collected. Repetitive sample collection 

destroys the sample area making long-term sampling infeasible. On the other hand, non-

destructive methods allow long-term repetitive sampling without altering the soil profile. 

 Measurements of in situ soil moisture content are further classified into direct 

and indirect measurements. The mass of the soil water can be obtained from direct 

measurements while indirect measurements measure some physical property of the soil 

that is dependent on soil water content (Kutilek and Nielsen, 1994). Specific types of soil 

moisture measurements are discussed in further detail below. 

Gravimetric Measurement: This is a direct and destructive procedure for the 

measurement of soil water content. This method is often used as a standard for 

constructing calibration curves for indirect measurements (Kutilek and Nielsen, 1994) 

despite the drawbacks of destructive measurements. Soil samples are extracted from the 

field and weighed, then dried in an oven and weighed again. The difference in mass is 

used to compute the soil moisture content. 

Capacitance Methods: This is an indirect approach that uses the dielectric 

permittivity of soil to derive soil moisture content (Seneviratne et al., 2010). The 

dielectric constant of water is about 80 [-] and that of dry soil is about 3.5 [-] (Jackson 

and Schmugge, 1989; Schmugge and Jackson, 1993). Time domain reflectometry (TDR) 

and soil capacitance sensors use this method, which are based on electromagnetic 

techniques. However, TDR sensors typically provide higher accuracy than the 

capacitance sensors (Robinson et al., 2008). 

Neutron Probes: This process uses a radiation source of fast neutrons that are 

attenuated when they interact with the medium surrounding the source (Kutilek and 
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Nielsen, 1994). Neutrons collide with the nuclei of the atoms in the surrounding soil and 

are eventually attenuated by the hydrogen nuclei present in the soil water. The neutrons 

reach thermal velocities (i.e., low-energy neutrons), which are detected by the detectors 

from which volumetric water content can be obtained via a calibration curve (Jury et al., 

1991). 

Other indirect sensors used to measure soil moisture content include electric 

resistance measurements, heat pulse sensors, fiber optic sensors, and gamma ray scanners 

(Hillel, 1998; Robinson et al., 2008; Robock et al., 2000). 

2.1.2.2 Remote Sensing Measurement 

Remote sensing is the process of acquiring data or information from an object 

without direct contact. It utilizes upwelling electromagnetic radiation (both reflected and 

emitted) from the land surface in order to estimate land surface parameters (Schmugge et 

al., 2002; Schultz and Engman, 2000). A remote sensing instrument is a sensor that 

detects electromagnetic radiation from the land surface. Active and passive microwave 

sensors are the most common types of instruments that are used in remote sensing of soil 

mositure; these sensors are typically placed on board an airplane or Earth-orbitting 

satellite in order to measure the upwelling radiation. Remote sensing, especially satellite-

based remote sensing, provides a greater advantage over in situ soil measurement because 

of its large spatial coverage (Jackson, 1993). Remote sensing of soil moisture using 

different sensors is described in subsequent sections. 

Active sensors (such as RADAR) send their own electromagnetic energy that 

interacts with the terrain and the backscattered energy is then recorded by the receiver. 

Passive sensors, unlike active sensors, are dependent on the Sun’s electromagnetic energy 
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that is reflected or emitted from the Earth’s surface (Jensen, 2007). The large difference 

between the dielectric constant of water and dry soil (80 for water and 3.5 for dry soil 

(Schmugge and Jackson, 1993; Schmugge et al., 2002)) results in a large emissivity 

contrast (0.6 for water and 0.95 for dry soil (Njoku and Entekhabi, 1996; Schmugge and 

Jackson, 1993; Schmugge et al., 2002)) at microwave frequencies. This is the principle 

that is utilized in remote sensing of soil moisture (Schmugge et al., 2002). Once the 

backscattered energy is measured by the radiometers, the large contrast in emissivity is 

inferred by brightness temperature (Tb) which is defined as (Chaouch et al., 2013; Njoku 

and Entekhabi, 1996; Schmugge et al., 2002): 

 𝑇! = 𝜖 ∗ 𝑇! 2-1 

where 𝜖 = [0 1] is the emissivity of the soil and 𝑇! [K] is the surface temperature of the 

soil (a.k.a. physical temperature). Further, the presence of water in the soil results in more 

evaporative cooling, hence the surface temperature is reduced and a lower brightness 

temperature is observed. In contrast, the absence of water results in higher brightness 

temperatures due to the lack of evaporative cooling. 

Soil brightness temperature is also affected by some features of the land surface 

such as soil roughness (Choudhury et al., 1979; Tsang and Newton, 1982), microwave 

attenuation by overlying vegetation canopy, emission of microwave radiation by 

overlying vegetation (De Lannoy et al., 2013; Jackson and Schmugge, 1991, 1989; 

Jackson et al., 1982; Pampaloni and Paloscia, 1986; Schmugge and Jackson, 1993; 

Schmugge et al., 2002), and surface heterogeneity (Tsang et al., 1975). It has been found 

that longer wavelengths can penetrate deeper into (or be emitted from deeper) soil 
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(Cashion et al., 2005) and are also less affected (i.e., more transparent) by vegetation and 

cloud cover.  

Schmugge et al. (2002) listed four unique advantages of using microwave 

frequencies in remote sensing of soil moisture, which include (1) all weather capability of 

capturing backscattered energy from the surface, (2) semi-transparency of vegetation 

cover that enables observation from the underlying surface soil, (3) microwave 

measurements are sensitive to the presence of water, and (4) measurements of related 

dielectric properties can be made both at day and night. Low frequency radiometers 

(Jensen, 2007) (e.g., L-band, 𝜆 = 23  cm, ν = 1.4  GHz) are most frequently used in 

satellite remote sensing of soil moisture. 

2.1.3 Land-Atmosphere Interactions 

Soil moisture is a dominant land surface variable that plays a crucial role in land-

atmosphere interactions by partitioning the precipitation, runoff, and net radiation 

(Dirmeyer et al., 2013; Famiglietti et al., 1999; Seneviratne et al., 2010). It is a major 

source of water in the atmosphere through evaporation from land, open water, and 

transpiration from plants. Evapotranspiration returns nearly 60 percent of the 

precipitation that falls on land back to the atmosphere (Oki and Kanae, 2006). Hence soil 

moisture variability has a profound influence on climate variability (Koster et al., 2011; 

Santanello et al., 2013) and prediction (Guo et al., 2012; Koster et al., 2006). 

The land water balance for a surface soil layer can be expressed as:  

 
𝑑𝑆
𝑑𝑡 = 𝑃 − 𝐸 − 𝑅! − 𝑅! 2-2 
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where !"
!"

 is the change in water storage in the soil layer, 𝑃 is the precipitation input, 𝐸 is 

the evapotranspiration from the soil and plants, 𝑅! is the surface runoff, and 𝑅! is the 

drainage component that later contributes to the base flow. Analogously, the land energy 

balance can be expressed (Shuttleworth, 2012) as  

 
𝑑𝐻
𝑑𝑡 = 𝑅! − 𝜆𝐸 − 𝑆 − 𝐺 2-3 

where !"
!"

 is the change in energy in the given soil layer, 𝑅! is the net radiation flux, 𝜆𝐸 is 

the latent heat flux, 𝑆 is the sensible heat flux, and 𝐺 is the ground heat flux. The net 

radiation is then defined as: 

 𝑅! = 𝑆𝑊!" − 𝑆𝑊!"# + 𝐿𝑊!" − 𝐿𝑊!"# 2-4 

where 𝑆𝑊!" and 𝑆𝑊!"# are the incoming and outgoing shortwave radiations, respectively, 

and 𝐿𝑊!" and 𝐿𝑊!"# are the incoming and outgoing longwave radiations, respectively. 

From equations 2-2 and 2-3, it is evident that soil moisture is a significant 

variable that controls the partitioning of incoming precipitation and radiation 

(evaporation terms 𝐸 and 𝜆𝐸 in both equations). Figure 2-1 provides an illustration of 

partitioning of the precipitation and radiation in the water balance and energy balance 

equations, respectively. 
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Figure 2-1: Schematic of the land water (left) and energy (right) balance for a given soil 

layer. (Adapted from (Seneviratne et al., 2010)). 

The classical conceptual framework in Figure 2-2 describes the role of soil 

moisture in controlling evapotranspiration in soil moisture-limited regimes (Koster et al., 

2004; Seneviratne et al., 2010).  

	  
Figure 2-2: Soil moisture regimes and corresponding evapotranspiration regimes 

(Adapted from (Seneviratne et al., 2010)). 

Two evapotranspiration regimes are defined (soil moisture-limited and energy-limited) 

and are characterized by the evaporative fraction, which can be expressed as: 
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 𝐸𝐹 =
𝜆𝐸
𝑅!

 2-5 

The evaporation fraction is independent of soil moisture (i.e., not controlled by soil 

moisture) in the energy-limited regime when the soil moisture content is above the 

critical value 𝜃!"#$. In the dry region where the soil moisture content is below the wilting 

point (𝜃!"#$), no evaporation takes place. Hence, soil moisture is a first order constraint 

on evapotranspiration in the transitional climate regime where 𝜃!"#$ ≤ 𝜃 ≤ 𝜃!"#$ 

(Koster et al., 2004; Seneviratne et al., 2006). 

2.2 NASA Aquarius Satellite 

The NASA Aquarius (Le Vine et al., 2007) instrument is a part of 

Aquarius/Satéllite de Aplicaciones Científicas (SAC-D), which was launched in June 

2011 to measure sea surface salinity from space. The mission is a collaboration between 

NASA and Argentina’s space agency, Comisión Nacional de Actividades Espaciales 

(CONAE), with participation from Brazil, Canada, France, and Italy. The Aquarius 

instrument, which was developed by NASA, is a combined active/passive microwave 

instrument that provides L-band (1.4 GHz) Tb observations.  

The primary science objective of the Aquarius mission is to capture seasonal and 

annual sea surface salinity (SSS) anomalies using the combined active/passive 

microwave radiometer assembly. However, the study presented here utilizes the same 

sensor in soil moisture-related studies. The passive radiometers measure Tb at 1.413 GHz 

with both horizontal and vertical polarizations. At horizontal polarization, the sensitivity 

of soil emissivity to the soil moisture state is greater than at vertical polarization. On the 

other hand, at vertical polarization, the sensitivity to surface temperature is greater (Owe 

et al., 2001). 
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The radiometers provide three beams of Tb observations with a spatial resolution 

of 76 x 94 km, 84 x 120 km, and 96 x 156 km, respectively, which are pointed away from 

the sun to avoid glint. The active scatterometer additionally measures the backscatter 

from the surface, enabling a surface roughness correction during data processing. 

2.3 L-band Radiative Transfer Model 

The RTM used in this study is the zero-order, tau-omega RTM. This particular 

RTM is coupled with the GEOS-5 Catchment Land Surface Model (Catchment) (Koster 

et al., 2000) and ultimately provides L-band Tb predictions as a function of land surface 

inputs from the Catchment model on a 36-km Equal Area Scalable Earth (EASE) grid 

cell. The inputs to the RTM derived from Catchment are soil moisture, soil temperature, 

vegetation water content, and reference-level (~2  m) air temperature. The Tb estimates 

are obtained at both horizontal and vertical polarization (De Lannoy et al., 2013). The Tb 

at the top of the vegetation and atmosphere are expressed as: 

 
𝑇𝑏!"#,! = 𝑇! 1− 𝑟! 𝐴! + 𝑇! 1− 𝜔! 1− 𝐴! 1+ 𝑟!𝐴!

+ 𝑇𝑏!",!𝑟!𝐴!!  
2-6 

 𝑇𝑏!"#,! = 𝑇𝑏!",! + exp −𝜏!"#,! 𝑇𝑏!"#,! 2-7 

where  𝑇𝑏!"#,! and  𝑇𝑏!"#,! are the top of the vegetation and atmosphere Tb [K] at 

polarization 𝑝 = (𝐻,𝑉) respectively, 𝑇! and 𝑇! are the surface soil (i.e., upper few 

centimeters) temperature [K]  and canopy temperature [K]  respectively, 𝑇𝑏!",! and 

𝑇𝑏!",! are the downward and upward atmospheric radiation [K] (Pellarin et al., 2003), 𝐴! 

is the vegetation attenuation [-], exp  (−𝜏!"#,!) is the atmospheric attenuation [-] 

(Pellarin et al., 2003), 𝜏!"#,! is the atmospheric optical depth [-], 𝑟! is the rough surface 

reflectivity [-], and 𝜔! is the scattering albedo [-]. 
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The rough surface reflectivity is defined as: 

 𝑟! = 𝑄𝑅! + 1− 𝑄 𝑅! exp −ℎ cos!"! 𝜃  2-8 

where 𝑄 [-] is the polarization mixing ratio, 𝑅! [-] is the smooth surface reflectivity 

(Choudhury et al., 1979; Wang and Choudhury, 1981), ℎ  [-] is the roughness parameter 

that accounts for dielectric properties of the soil, and N!" [-] is the angular dependence 

where 𝑞 = 𝑉 for 𝑝 = 𝐻 and (vice versa). The vegetation attenuation 𝐴! [-] is given by 

(Jackson and Schmugge, 1991) a vegetation opacity model as:  

 𝐴! = exp −
𝜏!

𝑐𝑜𝑠 𝜃  2-9 

where, 

 𝜏! = 𝑏! ∗ 𝑉𝑊𝐶 = 𝑏! ∗ 𝐿𝐸𝑊𝑇 ∗ 𝐿𝐴𝐼 2-10 

𝜏! [-] is the nadir vegetation opacity, 𝑏! [-] is the vegetation structure parameter, 𝑉𝑊𝐶 

[kg m-2] is the vegetation water content, 𝐿𝐸𝑊𝑇(kg m-2) is the leaf equivalent water 

thickness, and 𝐿𝐴𝐼 [m2 m-2] is the leaf area index. The parameters for this RTM were 

calibrated using Soil Moisture Ocean Salinity (SMOS) (Kerr et al., 2010) observations 

for eventual use in estimating Aquarius observations. 

2.4 ESA SMOS Satellite Mission 

The Soil Moisture Ocean Salinity (SMOS) mission (Kerr et al., 2010, 2001) is one 

of the first major satellite missions to specifically map soil moisture (Leroux et al., 2014) 

and sea surface salinity from a space-based platform. Realizing the significance of 

surface soil moisture and sea surface salinity in the global water cycle and energy budget, 

it was launched in November 2009 by the European Space Agency (ESA). It also uses the 

principle of a low frequency (i.e., L-band) radiometer to obtain upwelling microwave 
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emissions from the surface with reduced perturbations associated with overlying 

vegetation. It carries an L-band radiometer that provides multi-angular, dual polarized 

(i.e., horizontal and vertical polarization) Tb observations at 50 km spatial resolution with 

a repeat interval of 3 days and a root mean squared error of 0.043 m3 m-3 (Leroux et al., 

2014).  

The science objectives of the SMOS mission include better understanding of the 

global water cycle by monitoring surface soil moisture and ocean salinity and their 

subsequent contribution to global climate change by altering evaporation and 

precipitation flux. Monitoring ocean salinity will also allow scientists to better understand 

the global ocean circulation, the role of freshwater precipitation lenses, and other 

freshwater fluxes on salinity in the ocean and in the El-Niño Southern Oscillation 

(ENSO) (Kerr et al., 2010; Lukas and Lindstrom, 1991). Another objective of the mission 

is to estimate the root zone soil moisture that is biologically available to plants. Root zone 

soil moisture is correlated with surface soil moisture (Calvet et al., 1998) and is an 

important metric to estimate plant growth, transpiration, and photosynthetic activity from 

plants as well as impacts on short-term meteorologic forecasting (Calvet et al., 1998). 

SMOS soil moisture retrieval performance was evaluated using in situ 

measurements from the Soil Climate Analysis Network (Schaefer et al., 2007) 

measurements (Al Bitar et al., 2012) which showed a reasonable agreement in capturing 

soil moisture dynamics but that SMOS-derived soil moisture was underestimated. 

However, a newer version of the soil moisture product provides a significant 

improvement (Leroux et al., 2014). Several other studies (Jackson et al., 2012; Leroux et 

al., 2014) also show the root mean squared error (RMSE) obtained from the SMOS 
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validation studies are within an acceptable range (Jackson et al., 2012) and better agree 

with ground-based measurements (Leroux et al., 2013). 

2.5 SMAP Mission 

The Soil Moisture Active Passive (SMAP) mission is an upcoming satellite 

mission that is intended to provide L-band active and passive (radar and radiometer) soil 

moisture observations from space, which is scheduled to be launched in October 2014 

(Fang and Lakshmi, 2013). One of the key features of this mission is the observation of 

soil moisture and freeze/thaw state of the land surface that will help better represent 

water, energy, and carbon exchanges between the land and atmosphere (Entekhabi et al., 

2010). The combined active and passive instrument will be used to integrate both high 

resolution and low accuracy backscattered data from the active radar in conjunction with 

low resolution and high accuracy observations from the passive radiometer in order to 

produce soil moisture products at 10-km resolution and freeze/thaw state at 3 km 

resolution. Objectives of the SMAP mission include better understanding of the linkages 

among water, energy and carbon cycles. The overarching goal of SMAP is to develop 

better skill in climate, flood, drought and weather forecasting.  

2.6 Implications of Climate Variability on Soil Moisture 

Several studies have been conducted to study climate variations associated with 

soil moisture variability. Thornthwaite (1948) discussed the role of potential 

evapotranspiration as a climate factor. Certain regions of the world show substantial 

precipitation anomalies associated with soil moisture variability due to enhanced land-

atmosphere interactions. The Global Land Atmosphere Coupling Experiment (GLACE) 

(Guo et al., 2006; Koster et al., 2006) show that “hot-spots” exist where precipitation is 



19 
	  

governed by soil moisture (Koster et al., 2004). Such regions are generally located in 

transitional climate zones that lie between wet and dry climates where evaporation is 

controlled by soil moisture. Lawrence and Hornberger (2007) investigated soil moisture 

variability across climate zones, which largely explained the variance in measured soil 

moisture content. 

The United States consists of several climate zones based on Köppen Climate 

Classifications (Koppen, 1936). The Köppen Climate Classification system is one of the 

most widely used climate classification systems which defines climate zones on the basis 

of vegetation in conjunction with seasonal temperature and precipitation patterns 

(McKnight and Hess, 2000). Study areas were selected on the basis of major climate 

zones in the continental United States in order to evaluate the RTM performances relative 

to Aquarius observations. Details of the study areas with their climate zones 

characteristics are described in the following chapter (Section 3.2.2). 
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Chapter 3:  Data and Methodology 

3.1 General 

The objective of this study is to evaluate the RTM-predicted Tb when compared 

to the Aquarius Tb observations. Since Tb is a function of soil emissivity, which changes 

with soil moisture content, its variability will result in Tb variability. However, other 

factors such as soil roughness and overlying vegetation play a significant role in Tb 

retrieval from sensors and model estimates. This chapter includes details of the study area 

and their selection, the data used for this study, and the methodology used in the study. 

3.2 Study Areas 

The study sites were selected based on USCRN (Bell et al., 2013) station 

locations distributed across the continental United States in different climate regions as 

defined by Köppen Climate Classification. There are 114 USCRN observation stations 

across the contiguous US (Palecki and Bell, 2013) among which 33 stations were selected 

based on geolocation with Aquarius satellite orbit tracks (Figure 3-1). The study period 

spans from 25 August 2011 to 31 October 2013 based on availability of processed data 

from both Aquarius and the RTM.  

3.2.1 Study Location List 

The USCRN stations are identified by Weather Bureau Army Navy (WBAN) 

numbers. The full list of the study locations is provided in Table 3-1 and shown in Figure 

3-1. 
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Table 3-1: Selected study locations alphabetized by state. 

WBAN Name Location State Latitude Longitude 

63858 
Auburn University, Black 

Belt Research and 
Extension Center 

Selma AL 32.4567 -87.2422 

53131 Sonora Desert Museum Tucson AZ 32.2395 -111.1696 

93245 
University of California - 

Davis (Bodega Marine 
Laboratory) 

Bodega CA 38.32085 -123.07458 

53151 
San Diego State Univ's 

Santa Margarita Ecological 
Reserve (Old Mine Road) 

Fallbrook CA 33.4392 -117.1904 

93243 Kesterson Reservoir (US 
Bureau of Reclamation) Merced CA 37.2381 -120.8825 

53139 Death Valley National Park 
(Stovepipe Wells Site) 

Stovepipe 
Wells CA 36.602 -117.1449 

53150 Yosemite National Park, 
(Crane Flat Lookout) 

Yosemite 
Village CA 37.75918 -119.82073 

3061 Mesa Verde National Park 
(Far View Site) Cortez CO 37.2553 -108.5035 

3063 USDA Comanche National 
Grassland La Junta CO 37.8639 -103.8224 

94074 
Ag. Res. Svc. Central 

Plains Exp. Range (SGS 
LTER at CSU) 

Nunn CO 40.8066 -104.7552 

92826 
Big Cypress National 

Preserve (Ochopee 
Headquarters Vista Site) 

Everglades 
City FL 25.8996 -81.3183 

63850 USDA/ARS Watkinsville 
(Colham Ferry Site) Watkinsville GA 33.7837 -83.3896 

54811 
Northern Illinois 

Agronomy Research 
Center 

Shabbona IL 41.843 -88.8513 

63849 Mammoth Cave National 
Park (Job Corps Site) 

Bowling 
Green KY 37.2504 -86.2325 

63838 University of Kentucky 
(Woodford County Site) Versailles KY 38.0945 -84.7465 

53961 Ouachita National Wildlife 
Refuge Monroe LA 32.8833 -92.1165 

94644 University of Maine  
(Rogers Farm Site) Old Town ME 44.9281 -68.7006 

4994 
Agassiz National Wildlife 
Refuge (Maintenance Shop 

Site) 
Goodridge MN 48.3055 -95.8744 
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23908 Shawnee Trail 
Conservation Area Joplin MO 37.4273 -94.588 

23909 
White River Trace 

Conservation Area (Stand 
4, Compartment 7) 

Salem MO 37.6334 -91.72263 

4130 Glacier National Park (St. 
Mary Site) St. Mary MT 48.7412 -113.433 

4139 
Sheldon National Wildlife 

Refuge, (Little Sheldon 
Site) 

Denio NV 41.84834 -119.6357 

53136 Nevada Test Site (Desert 
Rock Meteorological Lab) Mercury NV 36.624 -116.0225 

54851 
North Appalachian 

Experimental Watershed 
(CRN site) 

Coshocton OH 40.3667 -81.7829 

3055 
OK  Panhandle Research & 

Extn. Center (Native 
Grassland Site) 

Goodwell OK 36.5993 -101.595 

53182 

Oklahoma Panhandle State 
Univ., School of 

Agriculture (Permanent 
Pasture) 

Goodwell OK 36.56828 -101.60915 

4125 
John Day Fossil Beds 

Nat'l. Mon.(Sheep Rock 
Hdqs.) 

John Day OR 44.556 -119.6459 

63826 
Clemson University 

(Edisto Research & Edu. 
Ctr.) 

Blackville GA 33.355 -81.3279 

94081 
SDSU Antelope Research 
Station (Calving Pasture 

Site) 
Buffalo SD 45.516 -103.3017 

3054 
Muleshoe National 

Wildlife Refuge 
(Headquarters Site) 

Muleshoe TX 33.9557 -102.774 

22016 Big Bend National Park Panther 
Junction TX 29.33 -103.2 

4138 
Golden Spike National 
Historic Site (Visitor 

Center Site) 

Brigham 
City UT 41.61652 -112.54567 

4223 North Cascades National 
Park (Marblemount) Darrington WA 48.5405 -121.446 
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3.2.2 Key Characteristics of the Climate Classes 

The climate classes in the continental US range from cold/humid subtropical to 

semi-arid (Figure 3-1) based on the criteria described in Peel et al. (2007). Different types 

of climate classes in the continental US are described below as defined in Peel et al. 

(2007). 

	  
Figure 3-1: Map of the study area with climate classes. 

Humid Continental/Cold Climate: This climate is characterized by cold winter 

and hot/warm summer, which is a dominant climate type in the continental US. Based on 

the summer time temperatures, this climate type is further divided into hot summer and 

warm summer type. The hot summer continental climate is generally found in high 30s 

and low 40s latitude whereas warm summer condition is found in the high 40s and low 

50s latitude in North America. In this region, there is a substantial amount of 

precipitation during all seasons, which is a key feature in this class. Further, it is 
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classified according to the temperature pattern. During the hottest month the temperature 

rises above 22oC in the hot summer climate and the temperature is above 10oC for at least 

4 months during the warm summer climate. 

Dry Continental Climate: This climate is characterized by cold climate with a dry 

summer where precipitation is less than 40 mm in the driest month. Further, it is 

classified according to the temperature in the hottest month below 22oC as well as at least 

four months of temperature above 10oC. 

Humid Subtropical Climate: This is a temperate climate zone with a temperature 

greater than 22oC in the hottest month and between 0oC to 18oC during the coldest month 

and with a significant amount of precipitation during all seasons. 

Dry-summer Subtropical Climate: This climate class is almost similar to the 

humid subtropical climate except for less than 40 mm of precipitation as well as less than 

one-third of the precipitation in the wettest winter month. 

Cold Semi-arid/Steppe Climate: This climate is characterized by hot and dry 

summers when the mean annual precipitation is less than a threshold value based on 

potential evapotranspiration. If the mean annual temperature is less than 18oC then it is 

classified as cold semi-arid climate. 

3.3 Data Sets 

3.3.1 USCRN Data 

The USCRN stations are established, maintained, and operated by the National 

Oceanic and Atmospheric Administration (NOAA) to provide reference information 

about climate change in the United States (Heim, 2001; Palecki and Bell, 2013). Among 

other climate data, the USCRN stations provide direct measurement of hourly in situ 
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volumetric soil moisture as well as air temperature and precipitation data at 114 locations 

across the contiguous United States. The USCRN data used for this study include hourly 

data of air temperature [oC], precipitation [mm/hr], shortwave flux [W/m2] and 

volumetric soil moisture [m3/m3] data at depths of 5, 10, 20, 50, 100 cm. To be consistent 

with the passive microwave data from Aquarius, only volumetric soil moisture time 

series data from 5 cm depth are compared to Aquarius Tb. 

3.3.2 Aquarius Brightness Temperature 

Data used in the study include the Level-2 (single orbit) product of Aquarius Tb 

processed by the NASA Jet Propulsion Laboratory (JPL) in Hierarchical Data Format 

(HDF5). Three radiometers onboard observe emitted energy from the Earth’s surface and 

provides Tb observations from three different beams. The beam incident angles are 

29.36, 38.49 and 46.29 degrees with a ground footprint of 76 x 94 km, 84 x 120 km and 

96 x 156 km, respectively (Figure 3-2). Aquarius is a polar-orbiting satellite that covers 

the entire globe with a repeat interval of 7 days (Le Vine et al., 2007). 

 

Figure 3-2: Illustration of Aquarius footprint (reproduced from (Koblinsky et al., 2003)). 
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Aquarius Level-2 data include Tb observations for an individual orbit (both ascending 

and descending) in both horizontal and vertical polarizations. Figure 3-3 shows processed 

Tb observation for a single day, which is an agglomeration of multiple ascending and 

descending orbits.  

 

Figure 3-3: Single day worldwide Tb [K] observation from Aquarius. 

The Aquarius Tb retrieval follows the principle of passive microwave radiometry 

for soil moisture as described in Jackson and Schmugge (1989). The Tb is defined as 

(Jackson and Schmugge, 1989): 

 𝑇𝑏 = 𝜏 1− 𝑒! 𝑇!"# + 𝑒!𝑇!"#$ + 𝑇!"# 3-1 

where 𝜏 is the atmospheric transmissivity [-], 𝑒! is the vegetation emissivity [-], 𝑇!"#  is 

the reflected sky brightness [K], 𝑇!"#$ is the thermal temperature of the surface [K] and 

𝑇!"# is the direct atmospheric contribution [K]. Further, 𝑒! is defined as 

 𝑒! = 1+ 𝑒!"#$ − 1 exp  (𝑏 ∗𝑊) 3-2 
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where, 𝑒! is the rough surface emissivity [-], 𝑏 is the vegetation attenuation parameter [-], 

and 𝑊 is the vegetation water content [m3/m3]. 𝑒!"#$ [-] is a function of soil emissivity 

𝑒!"#$ [-] and is defined as: 

 𝑒!"#$ = 1+ 𝑒!"#$ − 1 exp  (ℎ) 3-3 

where ℎ [-] is the surface roughness parameter. 𝑒!"#! [-] is a function of the complex 

dielectric constant of the soil and is given by, 

 𝑒!"#$ = 1−
𝑘 − 1
𝑘 + 1

!

 3-4 

where 𝑘 is the complex dielectric constant [-]. 

3.3.3 L-band Radiative Transfer Model Data 

The Tb estimates are obtained from the GEOS-5 L-band radiative transfer model 

(Section 2.3). The RTM parameters are calibrated against SMOS observations (De 

Lannoy et al., 2013) using multiple incident angles and horizontal and vertical 

polarizations in order to produce an unbiased estimate of Tb. 

 

Figure 3-4: Tb [K] prediction from L-band RTM on 25 August, 2011 at 00:00 hours 
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This RTM is processed so that it provides a prediction of Tb every three hours. 

However, microwave signals from the surface are highly prone to be contaminated by 

radio frequency interference (RFI) from a variety of transmitters used for communication, 

especially from low frequency radiometers (Li et al., 2004; Njoku et al., 2005). A large 

area in Europe and Asia were masked out during quality control because of strong RFI 

contamination. Moreover, during calibration of the RTM from SMOS observations, 

frozen soil conditions were neglected (De Lannoy et al., 2013) due to improper model 

physics when soil moisture is solid rather than liquid (Montzka et al., 2013). Further, 

extensive quality control (De Lannoy et al., 2013) of the SMOS observations were also 

applied to places near water bodies, during intensive precipitation events (greater than 10 

mm/h), freezing soil conditions (temperature below 273.4 K), and in the presence of 

snow (snow water equivalent greater than 10-4 kg/m2). As a result, Tb predictions at many 

locations on globe were masked. 

3.4 Methodology 

Measurements from Aquarius were collected from locations that were within 0.5 

degrees from the selected USCRN stations. A second geolocation constraint was added 

such that study locations were selected when the Aquarius overpass crossing-point of 

both ascending and descending orbits was within 0.5 degrees the USCRN stations. The 

latter search criteria was implemented in order to maximize the number of Aquarius 

observations for use during the statistical analysis. 

3.4.1 Algorithm 

The following algorithm was used for the study: 

1. Select a location 
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2. Set start date, finish date, distance, and temporal threshold 

3. Define polarization (horizontal or vertical) 

4. Set current time = start time 

5. Check if current time ≤ finish time. If yes, continue to step 6; otherwise 

go to step 15 

6. Load Aquarius and RTM files 

7. Get Tb observations from Aquarius and Tb predictions from the RTM 

8. Find Aquarius observations and RTM predictions within 0.5-degree 

spatial threshold 

9. Store observations and predictions into their respective vectors 

10. Increment to next time step, go to step 5 

11. Find observations and predictions within temporal threshold of 1.5 hours 

12. Calculate statistics 

13. Conduct seasonal analysis 

14. Start a new location and go to step 1 

This algorithm is illustrated using a flowchart in Figure 3-5. 
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Figure 3-5: Flowchart illustrating the methodology of the study 
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3.4.2 Analysis and Statistics 

Statistics are calculated from the Aquarius Tb observations and the RTM Tb 

predictions between the study period from 25 August 2011 to 31 October 2013. Statistics 

are the correlation coefficient, 𝑅 [-], the bias [K] and the root mean squared error 

(RMSE) [K] (a.k.a. standard error of estimate, 𝑆!), which are given by, 

 𝑅 =
cov 𝑇𝑏!"#$ ,𝑇𝑏!"#
𝜎!!!"#$𝜎!!!"#

 3-5 

 𝑏𝑖𝑎𝑠 =
1
𝑛 𝑇𝑏!"#$,! − 𝑇𝑏!"#,!

!

!!!

 3-6 

and 

 𝑆! = 𝑅𝑀𝑆𝐸 =   
1
𝑛 𝑇𝑏!"#$,! − 𝑇𝑏!"#,!

!
!

!!!

 3-7 

where cov(. ) is the covariance operator, 𝑇𝑏!"#$ is the predicted Tb [K] simulated by the 

RTM, 𝑇𝑏!"# is the observed Tb [K] by the Aquarius instrument, 𝜎 [K] is the standard 

deviation of the observed or predicted Tb, and 𝑛 is the number of nonzero Tb values. The 

correlation coefficient, 𝑅, provides the degree of linear association between the variables 

and is used as a measure of accuracy (Ayyub and McCuen, 2011). The bias is a measure 

of systematic error variation where a positive value indicates the model overpredicts the 

observation whereas a negative value indicates the model underpredicts the observations. 

The standard error of estimate or RMSE represents both systematic (bias) and 

nonsystematic errors. It is also a measure of accuracy that indicate the extent of spread of 

the predictions around the observation. 
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Seasonal variations in the observed and predicted Tb in the study area are also 

evaluated. Different climatic regions are characterized by precipitation patterns and 

temperature anomalies, which dictate seasonal soil moisture variation (Hong and Pan, 

2000) at a local scale. Tb data were segregated for each of the distinct seasons in the 

United States, namely, winter (December, January, February), spring (March, April, 

May), summer (June, July, August) and fall (September, October, November). Moreover, 

time series of volumetric water content [m3/m3] are compared against the Aquarius time 

series in order to determine whether the Tb observations are consistent with the 

theoretical volumetric water content anomaly, which verifies their inversely proportional 

relationship.  
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Chapter 4:  Results and Discussions 

4.1 General 

This chapter presents the results, relevant statistics, and discussions. First, 

comparisons at the study locations are presented with time series plots and tabular 

representation of statistics for the entire study period. Next, seasonal statistics over a 

given study period are presented. Finally, time series comparison of Aquarius Tb with 

USCRN near-surface volumetric soil moisture data are presented. 

4.2 Evaluation of RTM 

The NASA GEOS-5 RTM Tb is evaluated using the Aquarius Tb product. 

Climate characteristics on soil moisture variability are key to this study. For each of the 

climate classes, results are provided in the following subsections. 

4.2.1 Statistics in Different Climate Regions 

4.2.1.1 Humid Continental/Cold Climate 

One of the key characteristics of this climate region is the precipitation amount 

throughout the year. This region is generally cold and humid with a substantial amount of 

precipitation distributed all the year round. Figure 4-1 and Figure 4-2 show the observed 

Aquarius and RTM time series for this climate class (horizontal polarization and vertical 

polarization, respectively). Statistics for both polarizations are listed in Table 4-1 and 

Table 4-2. 
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Figure 4-1: Time series plots for humid continental/cold climate (horizontal polarization) 
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Figure 4-2: Time series plots for humid continental/cold climate (vertical polarization) 
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reflected by the lower RMSE and a higher correlation coefficient. The presence of snow 

during the winter, however, limits the validity of the RTM predictions. 

Figure 4-2 shows time series for vertical polarization in cold climate. Presence of 

snow is also evident here due the to unavailability of RTM predictions during winter. The 

sites 3061 (Mesa Verde National Park, CO), 54851 (North Appalachian Experimental 

Watershed, OH), and 23909 (White River Trace Coservation Area, Salem, MO) show a 

better agreement with the Aquarius in terms of correlation coefficient (Table 4-2).  

Table 4-1: Statistics for humid continental/cold climate (horizontal polarization) 

WBAN Beam Mean Tb [K] Standard 
Deviation [K] Bias 

[K] 
RMSE 

[K] 
R 
[-] Aquarius RTM Aquarius RTM 

4130 
1 254.3 255.6 15.7 14.2 9.3 14.9 0.67 
2 248.1 251.4 22.6 15.2 3.7 14.0 0.72 
3 241.6 246.8 17.1 16.5 6.9 14.2 0.75 

23909 
1 N/A N/A N/A N/A N/A N/A N/A 
2 257.5 256.0 19.3 12.8 7.8 16.3 0.63 
3 N/A N/A N/A N/A N/A N/A N/A 

94644 
1 N/A N/A N/A N/A N/A N/A N/A 
2 266.9 267.4 9.4 8.8 4.1 5.7 0.88 
3 N/A N/A N/A N/A N/A N/A N/A 

N/A: Not Available (due to Aquarius measurements not falling within the 
spatial/temporal threshold) 
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Table 4-2: Statistics for humid continental/cold climate (vertical polarization) 

WBAN Beam Mean [K] Standard 
Deviation [K] Bias 

[K] 
RMSE 

[K] 
R 
[-] Aquarius RTM Aquarius RTM 

3061 
1 N/A N/A N/A N/A N/A N/A N/A 
2 282.5 282.6 9.6 8.7 4.9 6.0 0.91 
3 N/A N/A N/A N/A N/A N/A N/A 

4994 
1 N/A N/A N/A N/A N/A N/A N/A 
2 260.9 257.3 14.1 13.1 7.9 11.4 0.79 
3 N/A N/A N/A N/A N/A N/A N/A 

54811 
1 265.4 270.8 13.7 12.2 5.6 10.8 0.70 
2 271.0 275.9 17.6 11.5 0.8 8.5 0.80 
3 271.5 280.7 12.5 10.5 3.3 7.3 0.84 

54851 
1 267.1 263.5 11.6 10.4 8.4 9.4 0.91 
2 N/A N/A N/A N/A N/A N/A N/A 
3 270.2 266.3 11.2 9.5 7.7 8.5 0.92 

23909 
1 256.5 253.9 6.5 5.9 5.5 6.1 0.91 
2 N/A N/A N/A N/A N/A N/A N/A 
3 259.5 255.7 6.4 5.6 7.5 7.7 0.94 

94644 
1 257.6 252.6 18.7 16.1 8.9 14.8 0.75 
2 N/A N/A N/A N/A N/A N/A N/A 
3 268.9 267.0 18.2 13.1 6.1 12.2 0.78 

N/A = Not Available (due to Aquarius measurements do not fall within the 
spatial/temporal threshold) 
 

4.2.1.2 Humid Subtropical Climate 

This climate region is also characterized by substantial amounts of precipitation 

during all seasons, but with a higher summertime temperature than the humid continental 

climate. Time series (Figure 4-3 and Figure 4-4) and statistics (Table 4-3 and Table 4-4) 

for this climate are provided below: 

 



38 
	  

 

 

Figure 4-3: Time series plots for humid subtropical climate (horizontal polarization) 
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Figure 4-4: Time series plot for humid subtropical climate (vertical polarization) 

From Figure 4-3, the site 23908 (Shawnee Trail Conservation Area, MO) has poor 

agreement with the measurement (Table 4-3), but smaller bias than the other site 63826 

(Clemson University, Edisto Research and Education Center, GA). However, the later 

site has poorer statistics (higher bias and RMSE). For vertical polarization the site 63850 

(USDA/ARS, GA) shows lower correlation than the other sites with a higher RMSE. 

Table 4-3: Statistics for humid subtropical climate (horizontal polarization) 

WBAN Beam Mean Tb [K] Standard 
Deviation [K] Bias 

[K] 
RMSE 

[K] 
R 
[-] Aquarius RTM Aquarius RTM 

23908 
1 262.2 265.0 13.2 10.8 3.0 9.9 0.67 
2 N/A N/A N/A N/A N/A N/A N/A 
3 257.9 257.5 14.3 12.6 4.5 10.7 0.70 

63826 
1 N/A N/A N/A N/A N/A N/A N/A 
2 248.8 239.9 20.3 19.6 7.3 10.9 0.91 
3 243.5 237.2 20.1 19.8 9.9 12.0 0.94 

N/A: Not Available (due to Aquarius measurements not falling within the 
spatial/temporal threshold) 
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Table 4-4: Statistics for humid subtropical climate (vertical polarization) 

WBAN Beam Mean Tb [K] Standard 
Deviation [K] Bias 

[K] 
RMSE 

[K] 
R 
[-] Aquarius RTM Aquarius RTM 

23908 
1 N/A N/A N/A N/A N/A N/A N/A 
2 265.0 255.6 17.6 17.1 7.5 11.1 0.89 
3 263.8 260.7 16.6 15.5 6.8 9.2 0.92 

92826 
1 268.8 273.5 12.1 9.5 1.1 8.1 0.70 
2 N/A N/A N/A N/A N/A N/A N/A 
3 276.8 279.4 12.6 8.6 0.1 4.7 0.86 

63826 
1 N/A N/A N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A N/A N/A 
3 264.3 264.5 14.5 8.8 4.7 7.0 0.89 

63850 
1 N/A N/A N/A N/A N/A N/A N/A 
2 276.8 276.0 16.4 10.3 6.7 12.8 0.69 
3 N/A N/A N/A N/A N/A N/A N/A 

N/A: Not Available (due to Aquarius measurements not falling within the 
spatial/temporal threshold) 

4.2.1.3 Semi-Arid Climate 

This climate region is dry during the summer with limited precipitation. The time 

series plot (Figure 4-5 and Figure 4-6) and statistics (Table 4-5 and Table 4-6) are 

provided below: 
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Figure 4-5: Time series plots for semi-arid climate (horizontal polarization) 
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Figure 4-6: Time series plots for semi-arid climate (vertical polarization) 
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region has low vegetation and bare soil with higher surface roughness that may affect the 

emission from the soil. 

Table 4-5: Statistics for semi-arid climate (horizontal polarization) 

WBAN Beam Mean Tb [K] Standard 
Deviation [K] Bias 

[K] 
RMSE 

[K] 
R 
[-] Aquarius RTM Aquarius RTM 

53131 
1 269.8 264.6 14.7 9.8 6.9 10.5 0.80 
2 N/A N/A N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A N/A N/A 

22016 
1 236.5 234.2 24.8 21.1 7.9 15.1 0.85 
2 N/A N/A N/A N/A N/A N/A N/A 
3 226.1 228.2 24.6 23.7 4.1 13.5 0.85 

3055 
1 243.8 240.4 20.4 18.6 7.1 15.7 0.74 
2 242.3 237.1 17.9 19.4 10.9 17.2 0.77 
3 235.1 233.5 23.6 20.5 6.1 15.8 0.78 

53182 
1 N/A N/A N/A N/A N/A N/A N/A 
2 246.3 242.0 16.3 15.8 9.1 12.8 0.82 
3 N/A N/A N/A N/A N/A N/A N/A 

94074 
1 269.8 264.6 14.8 9.8 6.9 10.5 0.80 
2 N/A N/A N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A N/A N/A 

94081 
1 252.2 250.5 6.6 5.1 4.4 5.1 0.91 
2 N/A N/A N/A N/A N/A N/A N/A 
3 248.6 245.5 6.6 6.5 6.5 6.9 0.93 

4125 
1 250.7 247.9 15.2 13.1 9.1 10.7 0.91 
2 N/A N/A N/A N/A N/A N/A N/A 
3 249.5 244.1 14.8 14.3 10.3 12.6 0.93 

4138 
1 236.4 234.7 24.7 21.3 7.6 15.5 0.83 
2 N/A N/A N/A N/A N/A N/A N/A 
3 226.2 227.5 24.7 22.7 5.6 13.8 0.86 

N/A: Not Available (due to Aquarius measurements not falling within the 
spatial/temporal threshold) 
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Table 4-6: Statistics for semi-arid climate (vertical polarization) 

WBAN Beam Mean Tb (K) Standard 
Deviation (K) Bias 

(K) 
RMSE 

(K) 
R 
(-) Aquarius RTM Aquarius RTM 

53136 
1 249.9 245.5 22.3 19.0 10.1 16.1 0.82 
2 N/A N/A N/A N/A N/A N/A N/A 
3 258.9 261.1 18.7 15.9 3.6 10.4 0.84 

53131 
1 277.4 273.2 13.3 9.3 5.7 8.7 0.83 
2 N/A N/A N/A N/A N/A N/A N/A 
3 N/A N/A N/A N/A N/A N/A N/A 

22016 
1 N/A N/A N/A N/A N/A N/A N/A 
2 267.8 267.3 12.0 7.8 10.6 11.7 0.88 
3 N/A N/A N/A N/A N/A N/A N/A 

3055 
1 259.2 262.3 9.2 8.0 7.3 9.7 0.68 
2 263.3 265.4 10.5 7.7 2.9 5.3 0.88 
3 263.5 268.9 7.8 7.2 4.7 6.0 0.87 

53182 
1 265.7 269.8 17.1 9.5 5.4 7.5 0.89 
2 265.7 273.7 18.5 9.2 8.0 9.1 0.84 
3 271.9 277.9 15.5 8.9 1.9 3.3 0.96 

94074 
1 268.3 271.2 12.1 7.5 5.3 9.7 0.57 
2 N/A N/A N/A N/A N/A N/A N/A 
3 271.2 276.4 7.4 6.6 4.5 6.9 0.54 

94081 
1 273.2 271.2 17.2 11.3 7.3 11.8 0.80 
2 N/A N/A N/A N/A N/A N/A N/A 
3 281.3 279.9 14.1 10.5 5.7 8.3 0.87 

4125 
1 278.7 276.7 14.6 10.0 5.0 12.8 0.60 
2 N/A N/A N/A N/A N/A N/A N/A 
3 287.7 283.1 10.2 9.8 7.2 7.7 0.95 

4139 
1 250.0 244.4 22.4 18.4 10.9 15.5 0.86 
2 N/A N/A N/A N/A N/A N/A N/A 
3 258.9 259.6 18.6 15.7 4.5 9.8 0.87 

N/A: Not Available (due to Aquarius measurements not falling within the 
spatial/temporal threshold) 

4.2.2 General Discussions on Evaluation of RTM 

Results show that spatial heterogeneity (land surface condition) and local climate 

are key factors in soil moisture distribution and variability. Local climate is mostly 

dictated by the precipitation pattern and temperature variability, which affects the soil 
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moisture variability across space and time by controlling evaporative flux to the 

atmosphere from the near-surface soil moisture. 

The performance of the RTM in Tb estimation appears to agree well with the 

Aquarius Tb observations. The mean estimates of Tb are within ~5K of the mean 

Aquarius observations. However, Aquarius observations contain more variability than the 

RTM estimates, which is evident from the higher standard deviation of the observations. 

The fluctuations are larger in semi-arid regions most likely due to sparse rainfall events in 

contrast to relatively consistent amounts of rainfall throughout the year in humid climate 

regions. 

The Tb retrieval algorithm in the RTM produces some systematic errors and local 

biases. Higher Tb values (i.e., low soil moisture conditions) are underestimated by the 

RTM while lower Tb values (i.e., higher soil moisture conditions) better agree with the 

observations. Also, Tb estimation from semi-arid regions (limited amount of 

precipitation) produces a larger bias and RMSE compared to the other climate regions. 

Other sources of systematic bias and RMSE may arise from the following: 

(i) The RTM parameters are calibrated using SMOS observations. The 

parameters come from the GEOS-5 Catchment model on a 36-km EASE 

grid with forcing inputs from Modern-Era Retrospective Analysis for 

Research and Application (MERRA) at a spatial resolution of !
!
°  x   !

!
°. On 

the other hand, Aquarius provides observations at spatial resolutions of 76 

x 94 km (inner beam), 84 x 120 km (middle beam), and 96 x 156 km 

(outer beam). Moreover, Aquarius measurements are completely 

independent of SMOS measurements originally used during RTM 
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calibration. Therefore, uncertainty can be anticipated in the SMOS-

calibrated RTM with respect to Aquarius observations. 

(ii) The temporal threshold used to match Aquarius observations with the 

RTM was selected as 1.5 hours in order to calculate the statistics, which 

can result in the presence of representativeness (i.e., temporal mismatch) 

errors. 

(iii) The Aquarius observations (and all observations in general) inherently 

contain random errors. 

(iv) The backscattered microwave signal consists of signals from multiple 

sources in addition to soil moisture (e.g., overlying vegetation canopy, 

cloud cover, neighboring water bodies). 

(v) The RTM does not provide Tb estimates during frozen soil conditions. 

When calculating bias and RMSE, the corresponding Aquarius 

measurements had to be excluded. 

Land surface heterogeneity (e.g., roughness and vegetation) also impact passive 

microwave emission (Zribi et al., 2011) and cause variations in retrieved Tb. The time 

series plots for horizontal and vertical polarizations implicitly include land surface 

heterogeneity. In addition, seasonality plays an important role in characterizing soil 

moisture variability. The plots indicate higher soil moisture content during the late 

summer to winter and early spring (hence low Tb) and lower soil moisture content (high 

Tb) during the late spring and early summer. It is worth stating that part of the seasonality 

in the Tb observations (and RTM estimates) is associated with seasonal changes in the 

physical temperature of the land surface, which adds to the complexity of the mixed-
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signal Tb values. That is, Tb variations show distinct seasonality, which is discussed in 

the next section. 

4.3 Seasonal Analysis 

The time series plots above (Figure 4-1 to Figure 4-6) clearly show seasonal 

variations of observed and estimated Tb from the Earth’s surface. The emitted Tb is 

dependent on the surface emissivity and temperature. Climatic variations such as 

precipitation and temperature cause fluctuations in surface temperature associated with 

evaporative cooling of the surface soil moisture in conjunction with partitioning of the 

incident radiative flux. Seasonal analyses for different climate regions are discussed in 

the following subsections. Figure 4-7 to Figure 4-12 provide seasonal statistics (i.e., 

seasonal bias and RMSE) across the different climate regions. 

4.3.1 Humid Continental/Cold Climate 

Figure 4-7 and Figure 4-8 provide seasonal statistics for cold climate regions for 

horizontal and vertical polarizations, respectively. The majority of the plots in these 

figures show higher springtime seasonal bias and RMSE than for the other seasons of the 

year. Since winter is the wettest season of the year in these climate regions, precipitation 

and snowmelt contribute to the soil moisture storage, which is also highly dependent on 

the soil infiltration characteristics. Most of the region is also frozen during winter when 

RTM fails to estimate Tb, which can result in an inadequate sample size to compute 

relevant statistics. The RTM overestimates the Aquarius observations at all locations 

except at locations 4130 and 54811 during the summer. This underestimation is perhaps 

due to some low predictions of Tb immediately following precipitation events or due to 

strong attenuation from overlying vegetation. 
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Figure 4-7: Seasonal statistics in humid continental/cold climate (horizontal polarization) 
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Figure 4-8: Seasonal statistics in humid continental/cold climate (vertical polarization) 

0

1

2

3

4

5

6

7

Bi
as

 [K
]

S

Location: WBAN 3061

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

1

2

3

4

5

6

7

R
M

SE
 [K

]

S

Location: WBAN 3061

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

5

10

15

Bi
as

 [K
]

S

Location: WBAN 4994

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

5

10

15

R
M

SE
 [K

]

S

Location: WBAN 4994

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

1

2

3

4

5

6

7

8

9

Bi
as

 [K
]

S

Location: WBAN 23909

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

1

2

3

4

5

6

7

8

9

R
M

SE
 [K

]

S

Location: WBAN 23909

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

−2

0

2

4

6

8

10

12

Bi
as

 [K
]

S

Location: WBAN 54811

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

2

4

6

8

10

12

14

R
M

SE
 [K

]

S

Location: WBAN 54811

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

2

4

6

8

10

12

Bi
as

 [K
]

S

Location: WBAN 54851

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

2

4

6

8

10

12

14

R
M

SE
 [K

]

S

Location: WBAN 54851

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

2

4

6

8

10

12

14

16

18

Bi
as

 [K
]

S

Location: WBAN 94644

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3

0

5

10

15

20

25

R
M

SE
 [K

]

S

Location: WBAN 94644

Wint
er

Spri
ng

Sum
mer Fall

 

 

Beam 1
Beam 2
Beam 3



51 
	  

4.3.2 Humid Subtropical Climate 

Humid subtropical climate also shows a similar seasonal pattern as the humid 

continental or cold climate with springtime high positive bias and RMSE. Possible 

reasons may include influence erroneous precipitation forcing, inadequate soil 

parameterizations, or vegetation cover or optically-thin vegetation estimates employed by 

the RTM. The locations 23908, and 92826 (Figure 4-9 and Figure 4-10) underestimate 

beam 3 predictions in summer. In general, summertime biases and RMSEs are low 

compared to those in other seasons, which may be associated with better estimates of 

vegetation characteristics and/or precipitation forcing. 
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Figure 4-9: Seasonal statistics in humid subtropical climate (horizontal polarization) 
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Figure 4-10: Seasonal statistics in humid subtropical climate (vertical polarization) 
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seasonal statistics also show higher extent of errors compared to other climate regions. In 

general, variance increases with the increase of mean soil moisture content in semi-arid 

regions (Lawrence and Hornberger, 2007). High forest density and topographical 
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complexity is a characteristic in these regions. Forest density and vegetation type play a 

significant role in attenuating the PMW signal from the Earth’s surface. Therefore, larger 

error is expected in these region where RTM overestimates the observations. In addition, 

bare soil can contribute to an underestimation by the RTM in some locations (e.g., site 

3055, Oklahoma Panhandle Research and Extension Center, OK; site 4138, Golden Spike 

National Historic Site Visitor Center, UT; site 53136, Desert Rock Meteorological 

Laboratory, NV). For vertical polarization (Figure 4-12), its sensitivity to surface 

temperature may result in relatively lower bias than horizontally polarized observations.  
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Figure 4-11: Seasonal statistics for semi-arid climate (horizontal polarization) 
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Figure 4-12: Seasonal statistics in semi-arid climate (vertical polarization) 
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For semi-arid climate, most of the study area has high springtime bias in Tb. In 

some places, the summer and fall seasons have as large of a bias as during the spring. 

Temperature and precipitation play a key role in determining soil water storage and 

evaporation. Unlike the precipitation pattern in humid continental or humid subtropical 

climates, the amount of total precipitation is much less here, which may cause a reduction 

in soil water content resulting in similar type of systematic bias all the year round. 

Again, the passive microwave signature from the Earth surface is not entirely 

based on soil moisture content. Other factors such as vegetation water content, water 

bodies, and soil type can alter the emission of in the microwave spectrum that is inferred 

as Tb by the radiometer on board a satellite. The fact that the RTM is calibrated against 

SMOS is also another probable cause of error and uncertainty in the Tb estimates. 

4.4 Aquarius Time Series Comparison with USCRN 

USCRN stations provide volumetric water content (VWC) at multiple depths. 

Time series comparison with the USCRN measurements is a useful means of checking 

the consistency of Tb measurements. Moreover, precipitation data are provided with 

USCRN data to further evaluate the Tb response. 
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Figure 4-13: USCRN VWC and Aquarius Tb time series comparison at USCRN 23909 

station in humid continental climate 

Figure 4-13 shows near-surface VWC variability with precipitation inputs as 

recorded at the USCRN 23909 station along corresponding Tb signal within the distance 

threshold of 0.5-degrees. Near-surface soil moisture shows high variability and responds 

immediately with the external precipitation forcing. External atmospheric fluxes that are 

responsible for its dynamics are precipitation and evaporation from soil. Nearby Tb 

observations from Aquarius in the time series shows the response of the Earth’s surface 

emission with the soil moisture variability. Lower Tb observations are associated with 

higher VWC (in the range approximately between 0.25 to 0.4 m3/m3) and higher Tb 

observations correspond to lower VWC (in the range approximately between 0.08 to 0.2 
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m3/m3). The effect of precipitation also affects the nearby Tb signal as it results in a 

reduction in the Aquarius observations. The zoomed in portions in the Figure 4-13 shows 

a closer view of the Tb response with the variations in soil moisture and the effect of 

precipitation. 

The RTM variability also captures the soil moisture variability except for the 

frozen land conditions and some precipitation events. Since the model utilizes inputs 

from the Catchment model, which is forced with MERRA forcing, it does not always 

perform well at capturing individual precipitation events. The lack of accurate 

precipitation inputs at all times could, in part, result in erroneous RTM estimates. 
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Chapter 5:  Conclusions and Future Recommendations 

5.1 Summary and Limitation of the Study 

Although soil moisture accounts for only a small part of the global hydrologic 

cycle (Oki and Kanae, 2006), its importance in land-atmosphere interactions cannot be 

neglected, since it is the main driver of the evaporative flux from the land surface. 

This study evaluates the zero-order tau-omega NASA RTM with respect to 

Aquarius Tb observations. The RTM parameters are preprocessed so that they provide L-

band Tb predictions over non-frozen soil condition. The performance of the NASA RTM 

is assessed based on Aquarius Tb observations across portions of the continental United 

States. The RTM is calibrated against ESA SMOS observations, therefore some 

discrepancy exists between the Aquarius observations and the SMOS-calibrated RTM 

predictions. The key points from the results show that: 

i. Soil moisture variability is largely controlled by spatial heterogeneity 

(land surface conditions such as surface roughness, vegetation type, soil 

type) and local climatology (precipitation pattern, temperature variability) 

throughout the year.  

ii. The RTM performs reasonably well when compared to the Aquarius 

observations with mean estimates of Tb within ~5K of the mean Aquarius 

Tb values. Some systematic biases in the RTM predictions do exist. 

iii. The time series plots show that the RTM underestimates high Tb values 

(i.e., low soil moisture conditions) while lower Tb values (i.e., higher soil 

moisture conditions) agree better with Aquarius Tb. 
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iv. Seasonal variations were observed in the Aquarius Tb observations and 

the RTM Tb predictions.  

v. Other factors that may contribute to the seasonal variations in Tb are 

vegetation cover and vegetation type. Vegetation cover is highly dynamic 

in time. L-band frequency is semi-transparent to moderate vegetation and 

does not perform well in dense forest cover.  

vi. Springtime Tb overestimates the observations in humid continental and 

humid subtropical climates. This is partially due to relatively small sample 

sizes available from the RTM for comparison with Aquarius Tb 

observations due to frozen soil conditions. 

vii. In semi-arid climate, relatively larger variations (i.e., larger uncertainty) in 

Aquarius Tb observations and RTM Tb predictions were found due to 

higher temperature anomalies and irregular precipitation patterns. Surface 

heterogeneity (i.e., variations in elevations, vegetation pattern) plays a 

crucial role in these regions. 

Soil moisture anomaly does not cause variations in Tb predictions or observations 

alone. More factors such as soil roughness, soil types (compaction and infiltration 

properties), and vegetation cover type also contributes to the PMW signal. This study 

does not cover these issues, which is a limitation to the Tb estimate from the RTM. 

Another limitation of the study is the fact that the influence of soil type on soil moisture 

content was not investigated. The influence of soil type and compaction determine the 

soil infiltration characteristics which is a major contributor to the soil water content 

(Miller et al., 2002) and hence PMW emission. Another important limitation of the study 
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is the frozen soil state during which the RTM is not capable of predicting PMW Tb. This 

limitation resulted in the removal (masking) of Aquarius Tbs during the quality control 

check in order to ensure consistency with the RTM output. 

5.2 Recommendation for Future Study 

Since PMW signature from the Earth’s surface is a function of numerous factors, 

it is of great interest to study the contribution from individual components. For example, 

more work is needed to investigate the relationship between PMW Tb and soil type. 

Similarly, more work is needed to investigate the role of vegetation type and vegetation 

cover dynamics on PMW Tb estimation. 

The overarching goal of this study is to integrate model and observations into the 

data assimilation framework to better estimate soil moisture. Data assimilation has been 

used extensively in hydrologic science in order to enhance our knowledge of the 

hydrologic system. Since measurements and models contain error (and uncertainty), work 

needs to be conducted in order to reduce this error (and uncertainty)  
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