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The past few decades have seen a renaissance in the field of food safety, with 

the increasing usage of genomic data (e.g., whole genome sequencing (WGS)) in 

determining the cause of microbial foodborne illness, particularly for multi-serovar 



 

 

agents such as Salmonella enterica. However, utilizing such data in a preventative 

framework, specifically in the field of quantitative microbial risk assessment (QMRA) 

remains in its infancy, because incorporating such large-scale datasets in statistical 

models is hindered by the sheer number of variables/features introduced. Thus, the goal 

of this research is to introduce machine learning (ML)-based approaches to potentially 

incorporate WGS data in various stages of a risk assessment for Salmonella enterica.  

Specifically, we developed a machine learning-based workflow to obtain an 

association between gene presence/absence data from microbial whole genome 

sequences and severity of Salmonella-related health outcomes in host systems. A key 

contribution of this dissertation is assessing the applicability of Elastic Net model, a 

recursive feature selection technique, which resolves a well-known issue concerning 

WGS-based data analysis: variables/features outnumber the count of observations. 

Building on this finding, we developed a gene weighted Poisson regression method to 

incorporate genes into a dose-response framework for Salmonella enterica, thereby 

incorporating genetic variability directly into a risk assessment framework. Finally, we 

combined machine learning with count-based models to determine how significant 

genes interact with meteorological factors in impacting the severity of salmonellosis 

outbreaks.  

This dissertation uncovers some interesting findings. First, although commonly 

used classifiers (such as random forest) performed well in predicting disease severity, 

logistic regression, in conjunction with Elastic Net, performed significantly better. This 

finding is important, as the result of a logistic regression is generally more interpretable 

than that of other classifiers, easing its incorporation into predictive microbial 



 

 

modeling. Next, machine learning-supported count-based models, such as Poisson 

regression also proved to be a good fit for gene-informed dose-response modeling and 

determination of outbreak severity when combined with extrinsic factors such as 

atmospheric temperature and precipitation. Overall, this dissertation identified areas 

within a QMRA framework that could benefit from incorporating genetic information, 

and introduced ML models to incorporate such information.  
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Chapter 1: Introduction  

1.1 Predictive microbiology and quantitative microbial risk assessment in food 

safety 

Food safety is a major public health issue in the U.S. and worldwide. This is of 

particular relevance in modern times when the food being consumed is very diverse and 

being sourced from across the globe; ensuring that food is “safe” requires a very proactive 

approach towards identifying the sources of, and factors affecting, contamination, and 

minimizing them across the farm-to-fork paradigm. Despite measures being taken by 

regulatory agencies, the industry, and the educational sector, incidences of foodborne 

disease outbreaks and food recalls in the U.S. and across the globe continue on a steady 

scale. This clearly shows the need for improvement in the safety and security of our food 

supply. Foodborne illnesses affect an estimated 1 in 6 Americans every year, causing 

128,000 hospitalizations and 3,000 deaths (Scallan et al., 2011; U.S. CDC, 2021a). Food 

safety risk assessment has gained momentum in recent decades, as it can be used to provide 

a scientifically sound basis for informed management and policy decisions.  

 

QMRA is a systematic approach to evaluate the likelihood of adverse health effects 

in humans as a result of exposure to a pathogenic microorganism, which was developed to 

understand and manage microbial risks to inform risk management practices and policy 

making (Rantsiou, Mataragas, Jespersen, & Cocolin, 2011). It uses statistical and 

mathematical models to understand, predict, and prevent the risks posed by pathogenic 
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microorganisms (Whiting & Buchanan, 1997; Pradhan et al., 2009; Guo et al., 2016 a, b). 

Briefly, QMRA can be used to predict the behavior and transmission of pathogens across 

the food production, processing, and supply chain, identify areas in the chain that could 

lead to contamination, and estimate the probability and consequence of adverse public 

health effects upon consumption of potentially contaminated products (FAO, 2001; 

Pradhan et al., 2009; Guo et al., 2016b, 2017; Pang, Lambertini, Buchanan, Schaffner, & 

Pradhan, 2017). QMRA consists of four steps: (i) hazard identification – which involves 

gaining knowledge about the microorganism and its association with adverse health effects 

in the host; (ii) hazard characterization – the likelihood of infection given the dose and the 

consequences of infection; (iii) exposure assessment – wherein the numbers of 

microorganisms, and the impact of various processing techniques on these numbers, are 

assessed to estimate the microbial quantities in the final food product; and (iv) risk 

characterization – wherein the level of risk to the exposed individual is estimated. This can 

then be employed to make informed management decisions based on the risk of microbial 

contamination to human health.     

   

1.2. Whole genome sequencing 

1.2.1. Background and applications 

Whole genome sequencing is a method that can be used to provide a detailed 

characterization of an organism. Recently, we have seen an upswing in the use of WGS to 

describe what makes up a foodborne pathogen, primarily due to its rapid turnover time and 

cost effectiveness. Since WGS enables the extraction of the complete genetic information 
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of an organism, it can facilitate the identification and in silico prediction of genes that can 

be indicative of clinically important phenotypic traits, such as serotype, survival, increased 

virulence in human infections, and antimicrobial resistance, as well as identify the 

pathogen’s genealogy (Deng, den Bakker, & Hendriksen, 2016). 

 

WGS of foodborne pathogens has played a major role in identifying the key 

mechanisms behind pathogen virulence and survival, for improved understanding and, 

ultimately, control of pathogen in food (Gilmour et al., 2010). Moreover, WGS data can 

help identify factors that promote microbial proliferation in food and disease outbreak, 

such as the virulence or adaptability of specific subtypes to ecological niches in foods and 

their processing environments (Chen et al., 2006).  

 

1.2.2. Applicability in quantitative microbial risk assessment 

While its use in QMRA and predictive microbial modeling is not as prevalent as 

that in outbreak investigations, source attribution, and epidemiological investigations, 

WGS data has nevertheless shown great promise in this field. Recently, Njage and 

colleagues attempted to use next generation sequencing data to predict possible clinical 

outcomes resulting from exposure to shiga-toxigenic Escherichia coli and Listeria 

monocytogenes (Njage, Leekitcharoenphon, & Hald, 2019; Njage, Henri, 

Leekitcharoenphon, Mistou, & Hald, 2019). Similarly, molecular data has been used 

successfully to confirm source of pathogens associated with foodborne illness in pet food 

(Jones et al., 2019). Such models are believed to show great promise in revising existing 
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microbial dose-response models (Njage, Leekicharoenphon, & Hald, 2019; Njage, Henri, 

Leekitcharoenphon, Mistou, & Hald, 2019), as well as in improving the accuracy of models 

predicting pathogen growth and survival in the farm-to-fork environment (Collineau et al., 

2019). Overall, the development and application of such modeling approaches has been 

predicted to improve the accuracy of current risk estimates for a number of foodborne 

pathogens, by reducing the uncertainty and variability that are inherent in such models. 

 

In conclusion, the large molecular data set can offer the opportunity for increased 

insight and better decision-making than that which can be accomplished by analyzing small 

data sets. However, identification of the underlying trends, correlations, and relationships 

from such data, which would typically be absent in one-dimensional data alone, requires 

new and improved analytical and data management considerations (Strawn et al., 2015). 

This would include developing models that can effectively analyze and derive meaningful 

patterns from the large, noisy WGS datasets, and identifying data with the right kind of 

metadata to identify significant correlations between gene expression and a definite 

endpoint or impacting factor, as well as drawing reasonable conclusions about the same. 
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Chapter 2: Literature review, project rationale, and objectives 

 

2.1. Whole genome sequencing 

Whole genome sequencing is a method that can be used to provide a detailed 

characterization of an organism. WGS has increasingly become routine in the surveillance 

of bacterial foodborne pathogens, and epidemiological and outbreak investigations due to 

the advances in sequencing technologies (making them more mainstream; Figure 2.1) and 

their ability to completely characterize a pathogen down to its genomic level (Chen et al., 

2016; Phillips et al., 2016). 

 

2.1.1. WGS for foodborne outbreak investigation 

 WGS has become a viable resort for epidemiologic investigation into, and 

surveillance of, bacterial foodborne pathogens; thanks to the recent advances in sequencing 

technologies and bioinformatics tools. In fact, the term genomic epidemiology has been 

increasingly used to describe the practice of utilizing WGS to access, index, and analyze 

DNA sequence features of epidemiologic importance (Deng, den Bakker, & Hendriksen, 

2016; Inns, et al., 2016; Chen, et al., 2016; Phillips, et al., 2016). Whole genome 

sequencing allows for the extraction of the complete genetic information of an organism; 

therefore, it facilitates the identification, as well as in silico prediction, of genetic 

determinants of clinically important phenotypic traits, such as serotype and antimicrobial 

resistance (Deng, den Bakker, & Hendriksen, 2016). Moreover, recent studies have shown 

that WGS of bacterial genomes can detect superspreaders, predict the existence of 
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undiagnosed cases and intermediates in transmission chains, suggest the likely 

directionality of transmission, and identify unrecognized risk factors for onward 

transmission (Nubel, Strommenger, Layer, & Witte, 2011; Snitkin et al., 2012; Octavia et 

al., 2015). In fact, WGS of foodborne pathogens has played a major role in identifying the 

major mechanisms behind pathogen virulence and survival, for improved understanding 

and, ultimately, control of pathogen proliferation in food. For example, a model was 

developed to describe the chromosomal evolution of strains involved in a nation-wide 

foodborne outbreak of Listeria monocytogenes in Canada, using the distribution and 

segregation of genetic traits such as SNPs, indels, and prophage, identified by WGS. This 

was the first instance wherein a next-generation sequencing (NGS) technology was used 

to perform a detailed genetic comparison of isolates displaying distinct pulsed field gel 

electrophoresis (PGFE) bands (Gilmour, et al., 2010). On the other hand, WGS data can 

help identify factors, such as the virulence or adaptability of specific subtypes to ecological 

niches in foods and food processing environments, which could promote microbial 

proliferation in food and infection outbreak (Chen, et al., 2006).  

 



 

7 

 

 

Figure 2.1. Timeline depicting usage and incorporation of WGS-based surveillance and investigations in U.S. regulatory agencies. 
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High-throughput sequencing technologies, or next generation sequencing (NGS) 

technologies, have been introduced and implemented in outbreak investigations only over 

the past decade, eclipsing the previously dominant automated Sanger technology-based 

methods (Figure 2.1; van Dijk, Auger, Jaszczyszyn, & Thermes, 2014). A major advantage 

of these technologies is that they produce massive amounts of data at greatly reduced per 

base-pair sequencing costs, allowing for the sequencing of complete microbial genomes at 

a price comparable to that of traditional subtyping methods such as PFGE or multi-locus 

sequence typing (MLST) (Deng, den Bakker, & Hendriksen, 2016). 

 

2.1.2. WGS in predictive modeling and QMRA 

2.1.2.1. Advantages and Limitations 

 Accurate risk estimation necessitates taking into account all sources of uncertainty 

and variability in the data used in the various steps of a risk assessment (Membre & 

Guillou, 2016). This could be accomplished using “omics” technologies, such as genomics, 

proteomics, metabolomics, and transcriptomics. Omics data could potentially be used to 

identify genes that encode proteins that could be involved in microbial preservation, stress 

response, survival, growth, and/or virulence. Therefore, these technologies have been 

predicted to play important roles in understanding the various functional properties of 

pathogens (such as survival under stress and interaction with potential hosts). Moreover, 

omics-based input may reduce the uncertainty involving species identity in risk 

assessments by providing full genome coverage, as well as new perspectives on strain 

diversity and physiological uncertainty. However, while sequencing data are becoming 
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increasingly comprehensive, they do not necessarily indicate function, nor do they always 

correlate to phenotypic response. Therefore, a key challenge will be to incorporate the data 

generated by these new technologies in the risk management decision making process 

(Brul, et al., 2012).  

 

Sequencing of the entire genome helps in the identification of virulence and stress-

related response. Genomic data helps identify the potential environmental stress response, 

survival, and virulence of microorganisms; however, these qualities may never be 

expressed in the microorganism, necessitating a thorough understanding of the true 

capabilities of microorganisms in different environments using transcriptomics (which can 

be used to quantify and confirm the differential expression of important genes). 

Transcriptional data can be analyzed by transforming the raw data into a gene expression 

matrix (data normalization to account for non-biological variation between samples) and 

subsequent data analysis (ANOVA, clustering, principle component analysis, 

multidimensional scaling and methods for class prediction) (Rantsiou, Mataragas, 

Jespersen, & Cocolin, 2011). Subsequently, bioinformatics and computational tools can be 

used to identify the functional elements in this data and predict the functions of genes in a 

genome. Furthermore, a complete metabolic profile for the microorganism can be compiled 

by identifying metabolic reactions that may be present due to their role in metabolic 

reaction cascades or pathways, which could function as indicators or interpretors of data, 

thereby validating the predicted phenotypic data (Alkema, Boekhorst, Wels, & van Hijum, 

2016; Rantsiou, Mataragas, Jespersen, & Cocolin, 2011). 
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However, predicting the functions of all genes in a bacterial genome to identify its 

potential health and safety hazards is highly inefficient; a feasible alternative would be to 

selectively screen the microbial genome sequence for genes with specific functionalities, 

such as virulence, stress response, and persistence in unfavorable environments. The 

virulence potential of a bacterium can be investigated by comparing its genome sequence 

to data from previous epidemiological and outbreak investigations, or by comparing with 

a reference database containing known resistance genes and virulence factors, functionality 

of specific genes, and gene-function relations, such as the Salm-gene database for the 

serotyped isolates of Salmonella (Alkema, Boekhorst, Wels, & van Hijum, 2016; Deng, 

den Bakker, & Hendriksen, 2016). Similar approaches have been described for the 

identification of persistence of bacteria in food products (Vangay, Steingrimsson, 

Wiedmann, Stasiewicz, 2014), anaerobic spore-forming organisms in food (Doyle, et al., 

2015), and potential pathogens in metagenomics data (Naccache, et al., 2014). This 

genomics-based method can also be applied to scenarios such as resistance to cleaning 

practices employed during food production (Bore & Langsrud, 2005; Fernandes, et al., 

2015). However, a primary issue with employing such a manual selective screening 

approach is the potential loss of very informative genetic features that could significantly 

impact the predictive model. Therefore, there is a critical need for novel methods to analyze 

the available data and make impersonal decisions based on the features’ contribution to the 

models and the model outcomes. 
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2.1.2.2. Potential areas for inclusion of WGS data in a modeling framework 

 While its use in QMRA and predictive microbial modeling is not as prevalent as 

that in outbreak investigations, source attribution, and epidemiological investigations, 

WGS data has nevertheless shown great promise in this field. Recently, Njage and 

colleagues attempted to use next generation sequencing data to predict possible clinical 

outcomes resulting from exposure to shiga-toxigenic Escherichia coli and Listeria 

monocytogenes (Njage, Leekitcharoenphon, & Hald, 2019; Njage, Henri, 

Leekitcharoenphon, Mistou, & Hald, 2019). Similarly, molecular data has been used 

successfully to confirm source of pathogens associated with foodborne illness in pet food 

(Jones et al., 2019). Such models are believed to show great promise in revising existing 

microbial dose-response models (Njage, Leekitcharoenphon, & Hald, 2019; Njage, Henri, 

Leekitcharoenphon, Mistou, & Hald, 2019), as well as in improving the accuracy of models 

predicting pathogen growth and survival in the farm-to-fork environment (Collineau et al., 

2019). Overall, the development and application of such modeling approaches has been 

predicted to improve the accuracy of current risk estimates for a number of foodborne 

pathogens, by reducing the uncertainty and variability that are inherent in such models 

(Figure 2.2). 
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Figure 2.2. Potential areas for inclusion of WGS in a basic QMRA framework (adapted 

from Collineau et al., (2019)). 

 

 Recent reviews have postulated that the inclusion of WGS data would add novel 

dimensions to every aspect of a QMRA. For example, Collineau et al. (2019) described a 

basic framework for the areas in a risk assessment for antibiotic-resistant bacteria that could 

function as potential inclusion points for WGS data. Gaining knowledge about the differing 
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virulence, stress response, and antimicrobial genetic profiles of pathogens in the Hazard 

identification step of risk assessment would help in the development of differing 

pathogenicity profiles for the same. These profiles can, in turn, be used to adjust the 

survival capacity of the pathogen in the gut, as well as develop models to predict the 

adjusted clinical outcome or disease severity (hazard characterization/dose-response 

modeling). Simultaneously, these differing stress response profiles can be used to adjust 

the growth and survival capacity of the pathogen of interest in the farm-to-fork chain (farm, 

abattoir/processing, retail, food preparation, and consumption), which would significantly 

reduce uncertainty in the exposure assessment module of risk assessment. Finally, the 

revised models would lead to adjusting the variability in the model according to the strains 

of interest, reduce overall uncertainty by focusing on specific phenotypic behavior, and 

improve the overall accuracy of the model. 

 

2.1.2.3. Early work in WGS-based predictive modeling 

Human disease-associated sequence variation provides indirect information about 

the complex environmental stresses imposed on bacteria during the various steps in the 

food processing chain. This data can also be used to identify lineages that survive in food 

under stress, and subsequently infect humans after the consumption of contaminated food. 

Although genome-wide association studies (GWAS) have been increasingly used to 

identify genetic elements associated with particular phenotypes in humans, the strong 

population structure of bacteria resulting from clonal reproduction impedes the use of 

simple association mapping approaches in these microorganisms. Phenotypic differences 
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between complex isolates of bacteria could include differential metabolic abilities, and cell 

virulence, adhesiveness and invasiveness. Moreover, different complex isolates could be 

predominantly isolated from specific sources (while others could display a larger spread). 

An analysis of these observed divergences in disease-associated genetic variation between 

various clonal complexes should reflect different interactions with the selective conditions 

engineered during the food processing chain. Therefore, a thorough understanding of the 

functional traits associated with bacterial survival through processing plays a major role in 

developing models to estimate the risk of contamination and disease, as well targeted 

interventions to control said contamination.  

 

In order to achieve this goal, Yahara et al. (2016) developed a GWAS approach to 

investigate genetic variations in Campylobacter jejuni isolates obtained from poultry 

processing and clinical infection sources, based on the capacity of bacteria to survive 

outside of the host through the poultry processing chain. Using a method that minimized 

the potential confounding effects of the strong population structure in C. jejuni by adjusting 

for the effect of relatedness between individual strains in the clonal genealogy compared 

to the null distribution (developed by Monte-Carlo simulation) of expected associations 

within each clonal complex, they identified genetic elements that were significantly over-

represented among clinical C. jejuni, and subsequently mapped these elements to known 

virulence and candidate survival genes (Yahara, et al., 2016).  

 



 

15 

 

Alternatively, Franz et al. (2015) attempted to investigate the distribution of known 

virulence factors among clinical, food, and animal Shiga toxin-producing Escherichia coli 

(STEC) isolates, with the aim of identifying associations between virulence factors and 

phylogenetic groups, isolation sources, seropathotypes, serogroups, the presence or 

absence of adhesion factors such as intimin, a type of Shiga toxin, and the rpoS genotype 

in relation to the epidemiology of STEC in the Netherlands. Basically, they determined the 

virulence characteristics of putative pathogens from genomic information, using a method 

is referred to as ‘predictive hazard identification.’ Franz et al. (2015) performed a Chi-

squared test to analyze the differences in frequencies of genetic markers and the 

associations between these markers. Among their most significant results, they observed 

that isolates expressing certain Shiga-toxin genes (stx2a, stx2c, and stx2f) showed higher 

numbers of other virulence genes, as well as a strong correlation between the expression 

of the adhesion gene eae and virulence characteristics of the bacteria. 

 

This was expanded upon by Pielaat et al. (2015), who introduced a conceptual 

method for hazard identification linking genotypic information (whole-genome sequencing 

data) with epidemiological (subset of STEC O157:H7 isolates) and phenotypic (in vitro 

adherence to epithelial cells as a proxy for virulence) data. Assuming a homogeneous 

distribution of cells in the in vitro culture, the fractional adherence of the genotyped isolates 

to Caco-2 cells was calculated by dividing the number of STECs after the adhesion assay 

by the number of STECs added to the cells. Subsequently, isolates that were associated 

with an increased virulence behavior were identified by a simple linear regression model: 
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𝑦𝑖 =  𝜇 + 𝛽𝑥𝑖 + 𝜀𝑖 

With yi, μ, β, and ε indicating the fractional Caco-2 adhesion for strain i, mean 

response, SNP effect, and the residual error (with an independent normal distribution), 

respectively, and xi indicating 0 or 1, depending on the concordance of the marker score 

with the reference strain. Possible errors arising from population variation, such as the 

effect of between-group variations (assuming a negligible within-group variation) were 

corrected by introducing an additional term “Gi” in the regression model (to correct for 

group effect): 

𝑦𝑖 =  𝜇 + 𝛽𝑥𝑖 + 𝐺𝑖 +  𝜀𝑖 

Moreover, the authors suggested the use of the Bonferroni correction method to 

account for additional error terms arising from the large number of identified SNPs 

(compared to the number of isolates), identification of strains with an acceptable minor 

allele frequency (MAF) compared to the reference strain. They reasoned that despite being 

an informative ex post facto determinant of virulence potential, the dynamic nature of 

STEC virulence in the real world reduces the robustness of the seropathotype concept of 

classifying STEC serogroups into different risk classes based on the severity of disease and 

involvement in outbreaks as a predictive indicator of microbial risk. This issue was 

transcended by their approach, which offered a standardized, reproducible, serogroup-

independent method for identifying potential candidate genes to be included in refined 

hazard identification, as SNP analysis of a broad spectrum of isolates may lead to a less 

biased association between genotypic and phenotypic strain characteristics. However, the 

authors also cautioned against blanket acceptance of their results, as (i) SNP analysis based 
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on comparing test strains with one reference strain would not be sufficient in identifying 

relevant SNPs for hazard identification, and (ii) the presence of a biomarker alone may not 

be the best predictor of risk, without controlling or accounting for the dependent biological 

factors. In conclusion, they suggested the use of a pan-STEC O157:H7 genome for a more 

comprehensive assessment (Pielaat et al., 2015).  

 

2.2. A novel development – integration of machine learning strategies into a 

food safety modeling framework 

 Recent efforts toward the incorporation of WGS data into predictive modeling and 

risk assessment have focused on the development of advanced modeling strategies and data 

analytical methods to compress WGS data into a format applicable in a mathematical and 

statistical framework of risk. This has led to increased exploration into machine learning 

and deep learning methods to analyze WGS data in order to identify patterns indicative of 

specific pathogen behavior and derive meaningful outcomes that are relevant to a risk 

assessment. Simply put, machine learning is a subfield of artificial intelligence wherein a 

computer is trained to identify patterns based on example data or past experience to solve 

a given problem. Machine learning is principally different from traditional algorithmic 

problem-solving, as in the former, explicit instructions are not programmed, Instead, 

learning occurs one of two ways – (i.) via instance-based learning, i.e., from examples and 

generalizing to new cases based on their closeness to learned examples, or (ii) by model-

based learning, i.e., training a model with data to learn parameters through optimization, 

and making predictions using new test data (Deng, Cao, & Horn, 2021). 
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 Machine learning models require a certain amount of training: based on the amount 

of supervision provided, the primary learning models can be supervised, semi-supervised, 

or unsupervised. Supervised learning involves feeding the learning system with training 

data that are labeled with the ground truth or outcome. Examples of such models include 

random forest, support vector machine, Naïve Bayes, boosting (classification models) and 

logistic regression (regression). Unsupervised learning algorithms such as principal 

component analysis (PCA) involves inputting the learning system with unlabeled training 

data, allowing the algorithm to identify hidden patterns on its own. Semi-supervised 

learning occurs when few labeled or tagged instances are available among many unlabeled 

ones in very large datasets. Under such constraints, a semi-supervised learning algorithm 

weighs in on the contribution of unlabeled data on the relationship between the predictor 

and the outcome (Deng, Cao & Horn, 2021).  

 

Machine learning, specifically supervised learning, has seen increasing usage in the 

biological and medical domain to effectively analyze the usually noisy, non-linear, high-

dimensional datasets generated (Kampichler, Wieland, Calme, Weissenberger, Arriaga-

Weiss, 2010). Examples include the use of machine learning to identify disease severity in 

patients with heart disease (Tripoliti, Papadopoulos, Karanasiou, Naka, & Fotiadis, 2017), 

Crohn’s disease (Schuffler et al., 2013), and Parkinson’s disease (Tsanas, 2012; 

Armañanzas, Bielza, Chaudhuri, Martinez-Martin, & Larranaga, 2013) in the biomedical 

field, plant disease severity indicators and genetic responses to stress in the plant sciences 
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domain (Mwebaze & Owomugisha, 2016), and identify ecological factors contributing to 

decreasing bird populations in the ecological domain (Kampichler, Wieland, Calme, 

Weissenberger, Arriaga-Weiss, 2010), among many others. However, their widespread 

usage in microbial predictive modeling especially in the food safety domain, have been 

hindered by the lack of available metadata and endpoints, differences in the type of data 

being collected and collated between different agencies (lack of consistency), and a lack of 

transparency in case of many of the datasets that are available.  

 

However, despite this, strides have been made towards developing and employing various 

such machine learning-based modeling strategies in predictive modeling, and therefore, 

risk assessment. So far, researchers have made great strides in incorporating machine 

learning models, primarily binary classification models, into the prediction of antimicrobial 

susceptibility and source attribution (Table 2.1). However, very few studies have analyzed 

such large datasets with the end goal of incorporating genomic data into predictive 

modeling and risk assessment. Recently, Farrell, Soyer, & Quince (2018) employed a 

machine learning approach and a lasso logistic regression statistical model to resolve 65 

functional and metabolic capacities (i.e., phenotypic traits) of 9,407 prokaryotic full-draft 

genomes. Wheeler, Gardner, & Barquist (2018) used a random forest approach to predict 

invasiveness in Salmonella, as well as identify a common theme of degradation of 

metabolic pathways in extraintestinal lineages. More recently, however, Njage, 

Leekitcharoenphon, & Hald (2019) & Njage, Henri, Leekitcharoenphon, Mistou, & Hald 

(2019) have analyzed a number of machine learning algorithms, including random forests, 
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support vector machine, logistic regression, and boosting to identify genetic patterns 

indicative of increased severity of clinical outcomes in humans infected with Escherichia 

coli and Listeria monocytogenes.  These papers were of special relevance to food safety 

and QMRA, as they proposed methods to incorporate the results from such models in a risk 

assessment framework. A point to be noted is that, in the context of food safety, specifically 

in food safety risk assessment and predictive microbiology, researchers have mostly 

clustered around the concept of supervised machine learning. This could be due to the 

relative newness of the ‘big data’ explosion in this field (resulting in researchers not having 

a clear, standardized idea of the type of data to collect to assist in machine learning-based 

modeling). Moreover, compressing WGS data into its most important and relevant genetic 

features considering the outcome (stress survival, virulence in the host, disease severity, 

etc.) that could be informative to a risk assessment, is a task as yet unfulfilled by the 

research body.  
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Table 2.1. Some selected works in the food safety domain demonstrating the use of machine learning in analyzing and predicting 

patterns from WGS data. Most included works apply the supervised learning structure. 

Overall goal of 

the study 

Microorganism Reference Method 

used 

Supervised (S), 

unsupervised 

(US) or semi-

supervised (SS) 

Basic study 

design (type of 

prediction) 

Features used 

as predictors 

Predicting 

antimicrobial 

resistance 

Mycobacterium 

tuberculosis 

Niehaus et al. 

(2014) 

LR, SVM S Classification 

of AMR 

SNPs 

Enteric bacteria (E. 

coli, Enterobacter, 

etc.) 

Pesesky et al. 

(2016) 

LR S Classifying 

based on 

antimicrobial 

susceptibility 

AMR genes 

Klebsiella 

pneumoniae 

Nguyen et al. 

(2018) 

Boosting, 

bagging, 

RF, SVM, 

extremely 

random 

tress 

S Determining 

the MIC 

k-mer 

S. enterica Maguire et al. 

(2019) 

LR, SCM S Classifying 

based on 

antimicrobial 

susceptibility 

AMR genes, 

k-mer 

S. enterica Nguyen et al. 

(2019) 

Boosting S MIC 

determination 

k-mer 
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Predicting host 

specificity 

E. coli O157:H7 Lupolova et 

al. (2016) 

SVM S Classifying into 

correct 

isolation hosts 

pan-genome 

content 

S. enterica multiple 

serovars and lineages 

Wheeler et al. 

(2018) 

RF S Identifying 

invasive, host-

adapted species 

of Salmonella 

Pan-genome 

content 

Source 

attribution 

S. enterica serovar 

Typhimurium 

Munck et al. 

(2020) 

Logistic 

boost 

S Zoonotic 

attribution 

Core genome 

MLST 

LR – logistic regression; SVM – support vector machine; AMR – antimicrobial resistance; SNP – single nucleotide polymorphism; RF 

– random forest; MIC – minimum inhibitory concentration; SCM – set covering machine; MLST – multi-locus sequence typing. 
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2.3. Salmonella – a prime etiological agent for WGS-based predictive modeling 

Salmonella enterica subsp. enterica is a major foodborne pathogen responsible for 

an estimated 1.2 million cases of foodborne illnesses per year. Despite the implementation 

of several preventative and control measures against Salmonella over the past several years, 

this has failed to make a significant impact on its worldwide prevalence rates. Salmonella 

is a major food-borne pathogen, with high morbidity and mortality rates and demonstrated 

major economic loss worldwide. This Gram negative, facultative anaerobic bacterial 

species consists of over 2,500 named serovars with a highly variable pathogenicity profile 

(CDC, 2021b). Studies have shown that, although different serovars do not actually imply 

pathogenicity, a limited number have been associated with a majority of the cases of human 

infections (U.S. CDC, 2019a, b). However, genetic evolution and horizontal gene transfer 

between traditionally virulent and non-virulent serovars of Salmonella has resulted in a 

significant upsurge in the incidences of foodborne salmonellosis over the past several 

years, with several serovars being associated with human cases of infection from 

consuming animal-based food sources alone (Ferrari et al., 2019; Figure 2.3). For example, 

earlier cases of chicken-borne salmonellosis were primarily attributed to the serovars 

Typhimuirum and Enteritidis, while recent years have seen outbreaks of salmonellosis 

attributed to previously unknown serovars including Schwarzengrund, Infantis, Agona, 

Anatum and Oranienburg (U.S. CDC, 2019a, b).  
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Figure 2.3. Salmonella enterica serovar prevalence in food animal matrices in North 

America (adapted from: Ferrari et al., 2019). 

 

While all serovars belonging to Salmonella enterica share a common genome 

structure, and the same core genome (Anjum et al., 2005; Jacobsen, Hendriksen, Aaresturp, 

Ussery, & Friis, 2011; Hoffman et al., 2014), there is enormous variation in their 

pathogenicity (Table 2.1), host range (Figure 2.3), and epidemiology (Cheng, Eade, & 

Wiedmann, 2019). In terms of pathogenicity, some non-typhoidal Salmonella serovars 

have been shown to be particularly proficient in causing invasive (isolated from blood, 

joint fluid, etc. (Jones et al. (2008)) infections in hosts (particularly humans), similar to that 

shown by serovars Typhi and Paratyphi. Such serovars are of particular importance, as they 

are the most severe, showing a capacity to transcend the gastrointestinal tract, causing 

severe infection, and ultimately, hospitalization. However, it is also difficult to definitively 

characterize serovars as a whole as being invasive or non-invasive, as most invasive cases 

are associated with individuals from high-risk populations, such as very young children, 

the elderly, the immunodeficient (including those with human immunodeficiency virus – 

acquired immunodeficiency syndrome (HIV-AIDS)), and pregnant women (Scott et al., 

2011; Feasey, Dougan, Kingsley, Heyderman & Gordon, 2012; Okoro et al., 2012; Ao et 

al., 2015; Lan et al., 2016).   

 

In terms of epidemiology, only specific serovars (S. Typhi, S. Paratyphi A and C, 

and S. Sendai) have been shown to cause enteric fever, with a majority of the other serovars 
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causing only gastroenteritis. However, a few non-typhoidal serovars such as Choleraesuis, 

Dublin, Panama, and Sandiego are more likely to cause the more serious bacteremia and 

other forms of invasive disease, than simply diarrhea (Fierer & Guiney, 2001; Jones et al., 

2008; Marzel et al., 2016). However, despite being associated with a higher incidence of 

invasive disease, these serovars contribute lower towards the total number of human 

salmonellosis cases, compared to other, less invasive serovars, such as serovar 

Typhimurium. Such discrepancies in invasiveness compared to overall impact on the 

human health index has been postulated to be due to one or more of several factors – higher 

level of exposure of susceptible populations to these more invasive serovars, 

underreporting of less severe cases, and even genetic adaptations making the more invasive 

serovars inherently more ‘dangerous’ (Jones et al., 2008). With respect to host range, some 

serovars are host adaptive (such as Enteritidis or Typhimurium) while others are more host-

specific (Graziani et al., 2011; Capuano et al., 2013), although some serovars previously 

thought to be host-specific are also being implicated in human cases of infection (such as 

serovar Derby). 

 

This knowledge, combined with recent findings that multiple individual virulence 

genes are variably distributed across the different serovars of Salmonella, allows us to 

conclude that a complicated combination of genes contribute to the overall virulence 

diversity (Suez et al., 2014), which presents a big challenge for virulence profiling and, by 

extension, for predictive modeling and risk assessment. So far, risk assessments of 

Salmonella in different food sources have focused on overall species-level count data, as 
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opposed to serovar- or gene-level classification, primarily due to the complexity it would 

introduce to the models. However, this known difference in Salmonella virulence, 

pathogenicity in the host, survival ability under various environmental and processing 

conditions, and antimicrobial resistance introduces significant uncertainty and variability 

into any predictive models for Salmonella. Therefore, this agent is a prime example of an 

etiological agent to be subjected to WGS-based distinction in terms of risk profile 

development. 

  

2.4. Potential for development of advanced machine learning and data 

analytical models to assist in the development of WGS-based risk assessment 

for Salmonella 

 Although a huge volume of data in being produced in nearly all sectors of society 

and economy worldwide, the term ‘big data’ is rarely applied in the context of food and 

food safety. As a result, the utilization of advanced methods to analyze such data in this 

particular domain remains untapped. This represents an untapped resource for the use and 

application of the large amounts of data being generated by the combined agricultural, 

health, and environmental domains that comprise and impact the food sector. Here, we 

discuss the availability of such data, modeling strategies to analyze large volumes of data, 

and the issues with applying such methods currently being faced by researchers in the food 

safety and predictive microbiology domain.    
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2.4.1. Availability of WGS data 

Several public repositories of sequencing data are currently available, with 

published sequences being made available for comparative genomic analysis, 

epidemiological investigations, and source attribution, and provides us with an 

unprecedented opportunity for the development of WGS-based risk assessments. Several 

databases and initiatives for Salmonella Genomic Analyses, including the National Center 

for Biotechnology Information’s (NCBI) GenBank database, the U.S. FDA GenomeTrakr 

network, the NCBI Pathogen Detection database, the Collaborative Management Platform 

for Detection and Analyses of (Re)-Emerging and Foodborne Outbreaks in Europe 

(COMPARE), the Global Microbial Identifier (GMI), and the National Antimicrobial 

Resistance Monitoring System (NARMS), among others. The National Center for 

Biotechnology Information’s (NCBI) GenBank database 

(https://www.ncbi.nlm.nih.gov/genome/genomes/152) currently lists over 10,935 

complete (and annotated) genome assemblies of Salmonella. A majority of the labs, 

programs, and initiatives that are responsible for the generation of WGS data (and its 

related metadata) exchange data with the NCBI; these include the major worldwide WGS 

data repositories, the United States Food and Drug Administration’s (U.S. FDA) Center 

for Food Safety and Applied Nutrition (CFSAN), the United States Department of 

Agriculture (USDA) Food Safety Inspection Service (FSIS), the U.S. Centers for Disease 

Control and Prevention (U.S. CDC), the CDC’s National Antimicrobial Resistance 

Monitoring System for Enteric Bacteria (NARMS), the European Molecular Biology 

Laboratory (EMBL), and the DNA Data Bank of Japan (DDBJ) (Chen et al., 2020).  
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The GenomeTrakr network, established by the U.S. FDA 

(https://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-

network) is the first open-source network of its kind that utilizes WGS for pathogen 

identification. As of October 2021, GenomeTrakr participants includes 15 federal 

laboratories, 36 state public health and academic laboratories, 1 U.S. hospital lab, 2 other 

labs located in the U.S., and 21 laboratories outside the U.S., and several other laboratories, 

which are authorized to collect WGS data and metadata of foodborne pathogens, including 

their food sources, geographic origins, and diseases manifestations, subsequently sharing 

them via publicly accessible databases at the National Center for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nih.gov/bioproject/?term=genometrakr). This 

information is publicly accessible, allowing for real-time comparison and analysis of 

foodborne microorganisms, thereby aiding in speedy investigations of foodborne 

outbreaks. The bacterial sequences collected from food, the environment, and human 

patients collected by these international agencies during real-time, active surveillance of 

pathogens and foodborne disease is then uploaded to the centralized NCBI Pathogen 

Detection database (https://www.ncbi.nlm.nih.gov/pathogens/). This allows for easier data 

exchange, identification of potential sources of foodborne contamination, and rapid 

reporting of potential relationships between the type and source of food and human illness 

during traceback investigations and outbreak response (Chen et al., 2020). 

 

https://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-network
https://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-network
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The Collaborative Management Platform for Detection and Analyses of (Re-) 

Emerging and Foodborne Outbreaks in Europe (COMPARE; http://www.compare-

europe.eu/) is a large EU project comprising a multidisciplinary research network of 29 

European participants from 10 EU countries and Australia, which is funded by the 

European Union’s Horizon 2020 research and innovation program, with the aim of 

speeding up the detection of, and response to, disease outbreaks among humans and 

animals worldwide through the use of new genome technology. Additionally, COMPARE 

aims to develop risk assessment models, risk-based strategies for sampling and data 

collection, and harmonized standards for sample processing and sequencing. The Global 

Microbial Identifier (GMI) (http://www.globalmicrobialidentifier.org/About-GMI) is a 

network of approximately 160 representatives from 32 countries working to develop a 

global system to aggregate, share, mine, and use microbiological genomic data to address 

global public health and clinical challenges. The primary goal of GMI is to employ a system 

that promotes equity in access and the use of current genomic technology worldwide. The 

GMI database gathers microbial (bacterial, fungal, viral, and parasitic) genomic 

information, as well as related metadata such as epidemiological information, to address 

the clinical challenges associated with these microbes. The GMI is an ongoing initiative, a 

global solution for the analysis of WGS data (including the creation of networks and 

regional hubs). Online bioinformatics platforms for genomic analysis include the 

Pathosystems Resource Integration Center (PATRIC; 

https://www.patricbrc.org/portal/portal/patric/Home), a genomics-centric relational 

database and source for the analysis of bacterial gene expression data, which can be quite 
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helpful for data integration. Similarly, the Center for Genomic Epidemiology 

(http://www.genomicepidemiology.org/) is another ongoing collaborative endeavor 

initiated by the National Food Institute in Denmark that aims to provide the scientific 

foundation for a future central database of genome data, a platform of spatio-temporal tools 

for the analyses of such data along with epidemiological information, as well as a web-

based interface capable of facilitating the exchange of required microbial data (Chen et al., 

2020). 

 

2.4.2. Review of available modeling strategies 

 Currently, predictive models for microbial agents in food are restricted to the 

application of classification strategies to group specific isolates based on a defined 

endpoint, such as disease severity. Briefly put, a classification algorithm, is a function that 

weighs the input features so that the output separates one class into positive values and the 

other into negative values. Training a classification algorithm, also known as classifier 

training, is performed to identify the weights (and functions) that provide the most accurate 

and best separation of the two classes of data (Netoff, 2019). While a linear discrimination 

analysis is the simplest form of such an algorithm, a majority of available microbial 

datasets do not have a clear relative separation between the two classes. Under such 

conditions of complexity, novel classification methods such as random forests, support 

vector machine, and boosting have been developed. Random forest is an ensemble method 

wherein several decision trees are trained in parallel with bootstrapping, followed by 

aggregating the decisions of individual trees for a final decision (Misra & Wu, 2020). 
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Support vector machine, on the other hand, is a kernel-based method that attempts to find 

the optimal separating surface by projecting nonlinear separable samples onto another 

higher dimensional space via the use of different types of kernel functions (Pisner & 

Schnver, 2020). Alternatively, boosting refers to a family of classifiers that can be used to 

convert weak learners to strong ones. On the other hand, the application of k-means 

clustering and principal component analysis (PCA), two major unsupervised machine 

learning methods, in delineating patterns from datasets without any fixed ground truth 

(outcome variable, or unlabeled datasets), have been primarily restricted to the analysis of 

(i.) images obtained from various imaging technologies (viz. hyperspectral and 

multispectral imaging) that are currently being used or proposed for food quality and safety 

analysis (Qin, Burks, Kim, Chao, & Ritenour, 2008; Powell, Jacob, & Chapman, 2011; 

Qin, Chao, Kim, Lu & Burks, ), and (ii.) irradiation damage detection for food quality and 

safety testing purposes (Guillén-Casla, Rosales-Conrado, León-González, Pérez-Arribas & 

Polo-Díez, 2011; Yang et al., 2021). 

 

Overall, a majority of these classifiers have been found to be significantly more 

powerful than simple logistic regression in effectively separating classes, identifying non-

linear trends, reducing the bias and variance, and reducing model overfitting. A popularly 

employed method to identify the most appropriate classifier for the given set of data is by 

training and using multiple classifiers, and subsequently making a classification decision 

based on the results of all the classifiers. Reporting on the success or failure of classifiers 

in defining the classes involves the identification of accuracy simple metrics. These include 
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the sensitivity (true positive rate) and specificity (true negative rate). Another metric that 

is commonly used as a critical measure of the classifier performance is to determine the 

area under the curve of a receiver operating curve (AUC-ROC), which is obtained by 

plotting the sensitivity against the specificity. Specifically, the latter measure is considered 

as a non-parametric measure of classifier performance and is very useful for comparing 

classifiers (Netoff, 2019). However, each of these classifiers have a number of pros and 

cons – while a majority of the classifiers are particularly good at gleaning patterns from 

noisy datasets, the results are hard to interpret, and eventually, incorporate in a predictive 

modeling framework. Thus, it is of utmost importance to identify a learning-based method 

that will accurately identify significant genes from a dataset with many more predictor 

variables than number of samples, while providing a simple means to interpret the results. 

 

2.5. Project overview and objectives 

 Whole genome sequencing and other such molecular data is fast becoming standard 

in microbial epidemiology, source attribution, and pathogen tracking. However, due to the 

large scale of WGS datasets, its application in microbial modeling and QMRA to calculate 

the public health burden of pathogenic organisms remains in its early stages. In this 

dissertation, we aim to develop advanced statistical learning methods and data analytical 

techniques to overcome the challenges of incorporating large molecular datasets in 

different aspects of a QMRA framework. In this dissertation, we utilize a multi-pronged 

approach to (i.) identify areas in microbial predictive modeling and a QMRA framework 

that could be improved upon using WGS data, and (ii.) develop machine learning models 
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to analyze WGS for important expression trends that could be indicative of important 

bacterial phenotypes and outcomes in host systems. The following objectives have been 

set for this dissertation, and their relationship to each other and a QMRA framework have 

been highlighted in Figure 2.3. 

 

1) Development of an advanced machine learning-based workflow to identify and 

predict severe disease phenotype in Salmonella enterica. Microbial WGS data 

introduces extremely large dimensions (small number of samples compared to 

predictor variables) that regular algorithmic statistical models cannot handle 

without model overfitting and introducing dimensionality issues. Currently, there 

is no published information on how to combat dimensionality issues in multi-

collinear datasets such as WGS datasets. Moreover, a majority of available genomic 

data is not labeled, precluding their use in predictive models. This necessitates the 

development of a workflow to label, and subsequently analyze large WGS datasets 

for microbial modeling. 

 

2) Development of a weighted modeling approach to incorporate genetic 

heterogeneity in a dose-response modeling framework. Current dose-response 

models for Salmonella enterica are generalized to the species level, employing 

generalized data from a select few serovars. Genomic data can help delineate 

patterns within bacteria that could be indicative of increased infectivity (and 

thereby, increased disease incidence). There is a need to develop an advanced 
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genomics-based workflow to adequately capture this genetic heterogeneity and its 

correlation to human disease incidence. 

 

3) Predicting foodborne salmonellosis outbreak severity based on genetic and 

meteorological trends. Meteorological factors and innate genetic changes have 

been independently shown to impact salmonellosis occurrence and severity (in 

terms of case numbers). However, there is no published research on the combined 

impact of the two on outbreak severity. There is a need to quantify the interaction 

effects between meteorological factors (such as temperature and precipitation) and 

the probability of expression of various significant genes in Salmonella enterica, 

would help predict the most significant combination of genes and meteorological 

factors that contribute to the incidence and outbreak of food-associated 

salmonellosis. 

It is evident that whole genome sequencing information could reduce the 

uncertainty due to lack of information about individual serovar behavior in a predictive 

modeling and QMRA framework. However, it introduces new dimensions that regular 

statistical models are unable to handle effectively. Machine learning can help analyze such 

high dimensional datasets, identifying important predictor variables in the process. 

However, in addition to identifying the exact areas within a QMRA framework that such 

information can be introduced in, the utilization of such models introduce their own set of 

issues and challenges. Identifying effective means to handle such data would greatly assist 

in futuristic, WGS-assisted risk assessments, and help risk managers take necessary action 
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to control and reduce the public burden of Salmonella enterica (and other such pathogens 

with multiple subspecies and serovars) in the future.
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Figure 2.4. Diagram demonstrating relationships among the objectives and potential paths of integration of WGS data into a QMRA 

framework. 
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Chapter 3: Development of an advanced machine learning-based 

workflow to identify and predict severe disease phenotype in Salmonella 

enterica 

 

3.1. Abstract 

The increase in availability of WGS information seen in the past decades has 

allowed for its incorporation in predictive modeling for foodborne pathogens to account 

for inter- and intra-species differences in their virulence. However, this is hindered by the 

inability of traditional statistical methods to analyze such large amounts of data compared 

to the number of observations/isolates. In this study, we have explored the applicability of 

machine learning models to predict the disease outcome, while identifying features that 

exert a significant effect on the prediction. This study was conducted on Salmonella 

enterica, a major foodborne pathogen with considerable inter- and intra-serovar variation. 

WGS of isolates obtained from various sources (human, chicken, and swine) were used as 

input in four machine learning models (logistic regression with ridge, random forest, 

support vector machine, and AdaBoost) to classify isolates based on disease severity 

(extraintestinal vs. gastrointestinal) in the host. The predictive performances of all models 

were tested with and without Elastic Net regularization to combat dimensionality issues. 

Elastic Net-regularized logistic regression model showed the best area under the receiver 

operating characteristic curve (AUC-ROC; 0.86) and outcome prediction accuracy (0.76). 

Additionally, genes coding for transcriptional regulation, acidic, oxidative, and anaerobic 
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stress response, and antibiotic resistance were found to be significant predictors of disease 

severity. The genes, which predicted each outcome, could possibly be input in amended, 

gene-expression-specific predictive models to estimate virulence pattern-specific effect of 

Salmonella and other foodborne pathogens on human health. 

 

3.2. Introduction 

Recent advances in scientific testing methodologies has resulted in the widespread 

application of whole genome sequencing (WGS) for epidemiological investigations and 

surveillance of bacterial foodborne pathogens. Several scientific reviews and studies have 

concluded that the larger molecular data set afforded by WGS analysis can offer 

researchers with the opportunity for increased insight and better decision-making than that 

which can be accomplished by analyzing smaller data sets. However, integrating WGS 

information in a predictive microbial modeling framework has proven to be a challenging 

prospect due to data disaggregation caused by splitting a generalized species into its genetic 

content (i.e., exponential increase in the number of predictors to be considered) (Brul et al., 

2012; Mughini-Gras et al., 2014; Pielaat et al., 2015; Strawn et al., 2015; Membre & 

Guillou, 2016). 

 

The different serovars of the major foodborne pathogen Salmonella enterica subsp. 

enterica show enormous variation in pathogenicity profile, virulence, host range, disease 

severity, and epidemiology (Abbott, Ni, & Janda, 2012). Certain serovars of Salmonella 

have demonstrated a higher propensity for causing extraintestinal disease, including 
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bacteremia, systemic disease, sepsis, and infection in extraintestinal sites such as the brain, 

lymph, and lungs, compared to others, indicating a significant variability in cause-specific 

mortality (Parkhill et al., 2001; Austin, Tu, Ho, Levy, & Lee, 2013; Nuccio & Baumler, 

2014; Wheeler, Gardner, & Barquist, 2018). This highlights the clear need to take into 

account the distinction in virulence-associated characteristics of each strain when 

calculating the risk of disease and disease management. This would, in turn, demonstrate 

the applicability of including whole genome sequencing and other genetic characterizations 

into predictive microbial modeling. However, the sheer number of predictor variables that 

this would introduce makes the modeling of genomic data a challenging prospect, while 

methods that can be employed to reduce the number of predictor variables may result in 

the loss of important predictor variables (Houle, Govindaraju, & Omholt, 2010). 

 

Machine learning is a field of study wherein advanced computational systems are 

“trained” to make predictions or decisions based on inference and patterns alone, thereby 

simplifying complex statistical models and algorithms. A specific subset of machine 

learning algorithms, known as classification algorithms, have seen increasing use in the 

life sciences domain over the past few decades due to their particular efficacy in identifying 

hard-to-discern patterns from large, noisy, and complex data sets (Friedman, 1998; Bishop, 

2006; Austin, Tu, Ho, Levy, & Lee, 2013). In the food safety domain, Pielaat et al. (2015) 

and Njage, Leekitcharoenphon, & Hald (2019), and Njage, Henri, Leekitcharoenphon, 

Mistou, & Hald (2019) proposed the use of ensemble classification algorithms to predict 

bacterial host disease characteristics using WGS data with an aim to ultimately incorporate 
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WGS into microbial risk assessment. However, to our knowledge, this has not been 

attempted in Salmonella so far. Additionally, making sense of genotypic data using 

machine learning is difficult due to the lack of availability of associated useful biological 

information (Austin, Tu, Ho, Levy, & Lee, 2013; Njage, Leekitcharoenphon, & Hald, 

2019). This is because, in the context of exploratory sampling or epidemiological analyses, 

the emphasis has not so far been on associated genetic signatures to specific endpoints, 

including bacterial growth, survival, and host reaction. This is particularly true for bacteria 

such as Salmonella with considerable intra-species variation in virulence, survival, and 

host characteristics. Therefore, a major step towards the application of WGS to a modeling 

framework is the identification of appropriate associated endpoints.  

 

In our study, we have attempted to obtain an association between WGS data and 

severity of Salmonella-related health outcomes in the host, indicative of virulence 

capacities of different strains of Salmonella, based on their genetic makeup. The objectives 

of this study were (i) to compare the accuracy of different statistical learning/machine 

learning algorithms in predicting gastrointestinal (disease severity = low) or extraintestinal 

(disease severity = high) outcomes in Salmonella isolates from human, poultry, and swine, 

based on genome sequencing data, (ii) to determine the applicability of a powerful 

recursive feature selection tool, which is useful in reducing data dimensionality issues, in 

increasing model accuracy, and (iii) to identify genetic signatures significantly associated 

with each outcome to possibly be input in amended microbial risk models. 
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3.3. Material and Methods 

3.3.1. Bacterial genomes – Sample selection 

Isolates of Salmonella enterica subsp. enterica were obtained from literature. 

Studies were selected using stringent inclusion criteria – availability of sequence accession 

numbers, availability of data regarding the source of isolation (host system, place of 

isolation within the host), and availability of disease severity information (or, alternately, 

information to deduce the same). Based on this, two studies were identified (Pornsukarom, 

van Vliet, & Thakur (2018); Rakov, Mastriani, Liu, & Schifferli (2019)) and WGS 

accession numbers were obtained. These studies were unique in that the studies specifically 

distinguished the site of isolation of the Salmonella isolates, the clinical endpoints in the 

host, and/or specified the invasive or non-invasive nature of the isolates in the host, 

allowing the use of this information to derive our outcome variables. The isolates included 

in our study were curated from among human cases of Salmonella infection (n = 73), and 

animal hosts (such as swine (n = 25) and poultry (n = 52)). Metadata associated with the 

included samples, including source of isolation, invasive or non-invasive subtypes, and 

availability of sequencing data are outlined in the referenced manuscripts.  

 

3.3.2. Classification criteria 

Several serovars of Salmonella are associated with a range of illnesses, from 

localized gut infections to bacteremia, systemic infections and sepsis, and it would be 

extremely useful to identify genetic signatures that are associated with an increased risk of 

severe disease. Prior epidemiological records have led to the classification of serovars into 
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the gastrointestinal and extraintestinal pathovars. A majority of serovars in Salmonella 

enterica subsp. enterica belong to the gastrointestinal pathovar and are most often 

associated with gastrointestinal infections. On the other hand, a small percentage of these 

serovars are believed to have evolved beyond this level, allowing them to disseminate 

beyond the intestinal mucosa and colonize systemic sites within the host (Metris et al., 

2017). In this study, we employed this understanding of gastrointestinal and extraintestinal 

serovars, as well as the classifications detailed by Abbott, Ni, & Janda (2012) and Nuccio 

and Baumler (2014), wherein the site of isolation and clinical characteristics of the infected 

host played a key role in determining the ability of Salmonella serovars and subspecies to 

invade the intestinal epithelium to infect the blood, therein causing severe disease, to 

putatively divide the samples into extraintestinal and gastrointestinal serovars (Figure 3.1). 

This allows the use of potential disease severity as dependent variables in model 

development. 
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Figure 3.1. Extraintestinal and gastrointestinal virulence classification strategy for 

endpoint determination. 

 

3.3.3. Bioinformatics analyses and development of a Salmonella pan genome 

Short read sequences of all isolates from the included studies were obtained from 

the National Center for Biotechnology Information’s (NCBI) BioProject and Sequence 

read archive (SRA) repositories, as well as the European Molecular Biological Laboratory 

database, and assembled using the PATRIC (v. 3.6.3) Bacterial Bioinformatics Resource 

Center, a freely available web-based platform for comprehensive comparative genomics 

and analyses, using the Rapid Annotation using Subsystem Technology (RASTk)-enabled 

genome annotation service (Brettin et al., 2015). The in-built SPAdes strategy was 
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employed for assembly, and assembly quality was assessed using the Quality Assessment 

Tool for Genome Assemblies statistics (Bankevich et al., 2012). The genomes were 

annotated on the same platform for uniformity of data using the in-built RASTk toolkit. 

Among the 850 sequenced Salmonella genomes obtained from the studies, 150 genomes 

that fit the parameters of our research and assembly and annotation quality (good sequence 

quality, sequence completeness score of >80%, and a contamination score <10%) were 

chosen in our final analysis.  

 

The baseline machine learning model input included a Salmonella pan genome (in 

machine learning terminology, a “dictionary” of genes and gene homologs from the 

annotated sequences). This was created by aligning nucleotide sequences all-against-all 

using the pairwise2 module in Python (Pedregosa et al., 2011). Briefly, each new annotated 

gene encountered by the program was locally aligned at 95% sequence similarity against 

the genes present in the “dictionary,” with any sequences not showing a sufficient match 

being added as a new gene to the dictionary. This generated a dictionary of 33,185 unique 

genes, including potential gene homologs, which were nevertheless assumed to be 

heterologous, and thereby included as predictors in the initial model. 

 

3.3.4. Predictive modeling by supervised machine learning 

 The genes identified in the gene “dictionary” were input in a range of ensemble 

classification and boosting models, including logistic regression, random forest, linear 

Support Vector Machine, and a gradient boosted tree model (AdaBoost), in order to find 
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the best prediction accuracy in distinguishing isolates according to clinical outcomes using 

genotype data. The overall machine learning schema is provided in Figure 2.2. 

 

Figure 3.2. Machine learning-based disease outcome severity model schematic 

 

3.3.4.1. Machine learning models 

1. Logistic regression (LR) is a simple method to model the probability that a single 

or combination of genes can predict disease status. The simplest approach to model 

this probability is by fitting a pre-selected set of parameters (genes) to a linear 

logistic model:  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1|𝑥𝑖)) =  𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗
𝑝
𝑗=1 ……………………………….......(3.1) 

Where Yi is a binary indicator for the disease severity of isolates i = 1,…, n, Xij 

denotes the values of individual genes j = 1,…, p, coded as 0, 1, or m for absence, 

presence, and m multiple copy numbers, respectively. This approach will be carried 
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out on data sets of the p most significant genes/predictors. Since logistic regression 

does not perform satisfactorily when p>>n, the predictors are being pre-selected 

using the ridge penalty (which averages highly correlated predictors) on the training 

data alone (Bielzaa, Robles, & Larrangaa, 2011; Austin, Tu, Ho, Levy, & Lee, 

2013).  

2. Random forest (RF) is a generalized decision tree method wherein the data is 

repeatedly partitioned based on the values of the predictor variables into multiple 

decision trees using random samples of observations bootstrapped for each tree and 

random samples of the predictors. The resulting “forest” of these trees provides 

fitted values, which are more accurate than those of a single tree. The RF method 

is particularly useful in the analysis of data with n<<p, protecting against data 

reduction, overfitting, and multi-collinearity (Breiman, 2001; Liaw & Wiener, 

2002; Matsuki, Kuperman, & van Dyke, 2016). 

3. Support vector machine (SVM) with linear kernel is a kernel-based modeling 

algorithm that discriminates data points into specific categories by separating them 

with a hyperplane. In our analysis, a binary SVM was trained for binary 

classification using the sequential minimal optimization (SMO) algorithm. 

Maximum separation between the two classes is achieved by selecting the 

hyperplane with the largest “margin” (summation of the shortest distance from the 

separating hyperplane to the nearest data point of both categories) (Friedman, 1998; 

Hastie & Tibshirani, 1998; Yu & Kim, 2012).  
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4. Ada-boost (AB) or adaptive boosting is an ensemble method that has shown a great 

degree of accuracy in several fields of study. Boosting, a machine learning method 

proposed by Schapire (1990) and Freund (1995), is an ensemble method that 

postulates several hypotheses on different distributions, combining them to obtain 

a final hypothesis, yielding a final model by aggregating a large number of 

weighted models, which performs better than the individual constituent models 

(Ren, Zhang, & Suganthan, 2016). In essence, boosting creates a strong learner by 

reducing the bias and error in a weak learner algorithm (that proposes hypotheses 

with a precision that is intuitively better than random chance (>50%)), allowing for 

indefinite improvement in model precision and confidence (Collet, Fonlupt, Hao, 

Lutton, & Schoenauer, 2001). 

 

3.3.4.2. Training the classifiers 

Classifiers to identify significant features among the list of several features were 

trained on the scikit learn package in Python (Pedregosa et al., 2011), using a variety of 

parameters to assess model accuracy. Data was explored for class imbalance, which greatly 

impacts model accuracy and class-specific model performance (Velez et al., 2007; Lu et 

al., 2019) if the dataset is not perfectly class-balanced. However, as our combined and pre-

processed dataset was not skewed towards any single clinical outcome class, we did not 

employ any additional methods for class-based bias reduction. Models were built by 

randomly dividing our dataset into training and testing sets (2/3rd–1/3rd split), described to 

be optimal based on the sample size (n>100) (Dobbin & Simon, 2011). Hyperparameter 
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tuning was performed to determine the best model parameters using a 10-fold cross 

validation.  

 

3.3.4.3. Model evaluation 

Since our data fits the typical parameters of a high-dimensional, low sample size 

dataset, with the total number of predictors/features far outnumbering the total number 

of isolates/observations (p>>n), classifier accuracy could be very high for the training 

set, but low for the separate test set, known as model overfitting (Simon, Radmacher, 

Dobbin, & McShane, 2003; Subramanian & Simon, 2013). This was tested by analyzing 

the results of a confusion matrix, a tabular visualization of model performance, 

comprising two dimensions (“actual” and “predicted”), and identical sets of “classes” in 

both dimensions (Figure 3.3).  

 

Figure 3.3. Confusion matrix setup to calculate model sensitivity, specificity, and 

accuracy. 

 

A confusion matrix is an indicator of the number of correct and incorrect 

predictions made by the classifier compared to the actual outcomes (target value) in the 
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data, which allows us to evaluate model performance. Since our models analyze a binary 

classification problem (extraintestinal/positive vs. gastrointestinal, negative), a 2×2 

confusion matrix was constructed, with the calculated accuracy depicting the agreement 

between the observed and predicted classes (Lasko, Bhagwat, Zou, & Ohno-Machado, 

2005). We also analyzed model performance by determining the area under the receiver 

operating characteristic curve (AUC-ROC). The AUC measures the probability of 

differentiation between outcomes from a randomly collected sample independent of 

prior probabilities or test threshold, with AUC=0.5 indicating random or chance 

discrimination of the clinical outcome of isolates, and AUC=1 denoting perfect 

discrimination (Hastie, Tibshirani, & Friedman, 2001; Guyon, Elisseefi, & Kaelbling, 

2003; Lin, Sintchenko, Kong, Gilbert, & Coiera, 2009). Analysis of variance at α = 0.05 

was used to analyze the differences in mean accuracy between the models. 

 

3.3.4.4. Feature selection 

Since the predictor variables to be used in the model are individual genes, and 

n<<p, it could lead to model overfitting. Reducing the number of non-discriminative 

features in genetic data with high dimensionality may improve the performance of 

machine learning algorithms, in a process known as regularization (Kooperberg, 

LeBlanc, & Obenchain, 2010; Subramanian & Simon, 2013), which shrinks the 

coefficient estimates towards zero, and discourages learning a more complex or flexible 

model to avoid the risk of overfitting. Elastic net is a penalized regression method that 

combines lasso and ridge to minimize data overfitting (StataCorp, 2021). When l(β; Yi, 
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xi, i = 1,…,n) is the logistic log‐likelihood, the elastic net estimate of β is the maximizer 

of  

𝑙(𝛽; 𝑌𝑖 , 𝑥𝑖 , 𝑖 = 1, … , 𝑛) − 𝜆1 ∑ |𝛽𝑗|
𝑝
𝑗=1 − 𝜆2 ∑ 𝛽𝑗

2𝑝
𝑗=1 ………………………………(3.2) 

where λ1 and λ2 are selected manually. This approach will effectively perform model 

selection, as the l1 penalty 𝜆1 ∑ |𝛽𝑗|
𝑝
𝑗=1  effectively sets many coefficients βj to 0, and the l2 

penalty 𝜆2 ∑ 𝛽𝑗
2𝑝

𝑗=1  encourages averaging of highly correlated predictors (Saabos, 2014).  

 

3.3.5. Identification of significant predictors 

In addition to determining prediction accuracy, it is important to identify features 

that make a relevant and informative impact on the phenotype of interest. Here, we rank 

features based on their importance to the phenotype of interest. In the case of a regularized 

logistic regression, this can simply be achieved by analyzing the coefficients for the 

variables. Simply put, the magnitude of the coefficient determines its importance to the 

model, that is, when all features are on the same scale, features adding substantially to the 

model have the highest coefficients, with uncorrelated features expressing coefficient 

values close to zero (Bielzaa, Robles, & Larrangaa, 2011). Proteins coded by the important 

genes were predicted by conducting a Protein Basic Local Alignment Search Tool 

(BLASTP) search on the NCBI web server 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) and compared against the 

Gammaproteobacteria sequences from Uniprot (http://www.uniprot.org) (Uniprot, 2017). 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://www.uniprot.org/
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3.4. Results 

3.4.1. Strain characteristics 

Our dataset included Salmonella genomes obtained from human clinical specimens, 

and chicken and swine specimens (Table 3.1), and incorporated a mix of serovars, 

including Enteritidis, Typhimurium, Kentucky, Choleraesuis, Johannesburg, Senftenberg, 

Rissen, Derby, Newport, Gallinarum, and Pullorum, among others. The genomes were 

characterized as “extraintestinal” or “gastrointestinal,” according to classifications made 

in previous epidemiological studies (Abbott, Ni, & Janda, 2012; Nuccio & Baumler, 2014; 

Wheeler, Gardner, & Barquist, 2018), based on the site of isolation within the host (blood 

or extraintestinal site such as the liver, brain, and kidneys), patterns of host restriction, and 

clinical characteristics observed in hosts.  

 

Table 3.1: Isolate characteristics. 

Isolate characteristics Extraintestinal Gastrointestinal 

 (n = 85) (n = 65) 

Human  41 (27.3%) 32 (21.3%) 

Poultry 3 (2%) 22 (14.6%) 

Swine 41 (27.3%) 11 (7.3%) 

 

3.4.2. Predictive analyses using machine learning 

Here, we employed an approach for classification of Salmonella enterica into 

extraintestinal or gastrointestinal isolates based on clinical characteristics of infection in 

the host. 
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3.4.2.1. Baseline predictive modeling and model evaluation 

The predictive performances of the different machine learning models were 

evaluated based on hold-out accuracy. The AUC (Figure 3.4) and balanced accuracy and 

predictive power obtained from the 2×2 confusion matrix (Table 3.2) were evaluated.  

 

Figure 3.4. Receiver operator characteristic (ROC) curve depicting model 

accuracies of different machine learning classifiers without feature selection. Using 

BioPython, 33185 unique genes were identified from our sample isolates, which were 

analyzed by machine learning. Receiver operating characteristic (ROC) curves for (a) 

Random Forest (area under the curve, AUC = 0.85), (b) Support Vector Classifier with 
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linear kernel (AUC = 0.84), (c) Logistic regression (AUC = 0.85), and (d) AdaBoost 

(AUC = 0.83) classifier performance. 

 

Although RF and LR resulted in a high AUC value (0.85), the models showed very 

low specificity (true negative rate = 0.23 for both) and positive predictive value (0.68), 

indicative of model overfitting. On the other hand, the boosting model AdaBoost, which 

has been previously shown to perform remarkably in filtering gene-gene interaction effects 

(Hoffmann, 2001; Zou & Hastie, 2005) (thereby excluding parameters that do not 

contribute to the predictive capacity of the model), showed comparatively better model 

accuracy, with an AUC value of 0.83, and higher sensitivity (0.8). However, the specificity 

remained dismal at 0.23 (Figure 3.4; Table 3.2).   

 

Table 3.2: Sensitivity and accuracy of the machine learning (ML) classifiers with (w) 

and without (w/o) feature selection using Elastic Net.  

  RF SVM LR AB 

w w/o w w/o w w/o w w/o 

Sensitivity TP/TP+FN 0.7 0.75 0.6 0.7 0.75 0.7 0.75 0.8 

Specificity TN/TN+FP 0.73 0.23 0.76 0.23 0.76 0.23 0.7 0.23 

Positive Predictive 

value 

TP/TP+FP 0.63 0.68 0.63 0.67 0.68 0.67 0.62 0.69 

Negative 

Predictive value 

TN/TN+FN 0.78 0.82 0.74 0.79 0.82 0.79 0.80 0.85 

Class balance 

accuracy 

TP+TN/total 0.72 0.76 0.7 0.74 0.76 0.74 0.72 0.78 

1Sensitivity, specificity, positive and negative predictive values, and model accuracy were 

computed using the confusion matrix for the test dataset (33% of included observations). 
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2RF – Random Forests, SVM – Support Vector Machine, LR – Logistic regression with 

ridge correction, AB – AdaBoost, TP – true positive, TN – true negative. 

 

3.4.2.2. Application of feature selection algorithms 

The accuracy of models developed with a large number of predictors is generally 

low due to dimensionality issues and model overfitting. However, the application of sparse 

regression methods such as Elastic Net (Baker & Dougan, 2007), can greatly reduce this 

issue by estimating parameters (genes) that are significant to the model, and can also help 

in selection of the final model. Application of the Elastic Net correction to our four machine 

learning models (2/3rd–1/3rd train-test split) using an approach detailed by Kooperberg, 

LeBlanc, & Obenchain (2010), led to the following test-sample-validated predictions. The 

Elastic Net-corrected LR model with ridge penalty showed the best AUC (0.86; Figure 

3.5) and balanced accuracy (0.76), which was significantly different from the remaining 

models, both with and without feature selection (p < 0.05). The sensitivity, specificity, 

negative predictive values were all ≥ 0.7, and the positive predictive value was > 0.65, 

showing a significant improvement compared to the non-feature selected models (Table 

3.2). 
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Figure 3.5. Receiver operator characteristic (ROC) curve depicting model 

accuracies of different machine learning classifiers with feature selection. Elastic Net 

regularization selected 176 predictor genes and eliminated the other 33009 as not being 

significant to the model. Receiver operating characteristic (ROC) curves for (a) Random 

Forest (area under the curve, AUC = 0.84), (b) Support Vector Classifier with linear 

kernel (AUC = 0.84), (c) Logistic regression (AUC = 0.86), and (d) AdaBoost (AUC = 

0.76) classifier performance. 
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3.4.3. Salmonella molecular markers associated with extraintestinal vs. 

gastrointestinal disease 

Analyzing for feature importance identified a number of genes that were important 

towards predicting severity of clinical outcome (Figure 3.6). These included genes 

putatively coded for integrases, lipoproteins, virulence proteins, phage proteins, 

transcriptional regulators, fimbrial and mobile element proteins, metabolite transporters, 

type III secretion system (T3SS) effectors, and heat shock proteins, among others. We 

observed that genes coding for proteins associated with bacterial membrane stability, DNA 

replication, and transcription were significantly associated with prediction of 

extraintestinal isolates (p < 0.05), while those coding for proteins required for survival in 

host tissue (transcriptional regulators, RNA transporters, etc.) appeared to play a role in 

predicting isolates capable of gastrointestinal infection. This appears to be in agreement 

with the results observed for gastrointestinal and extraintestinal serovar prediction shown 

by Wheeler, Gardner, & Barquist (2018) and Nuccio and Baumler (2014). Interestingly, a 

number of genes coding for hypothetical proteins were shown to be significant in the 

prediction of both endpoints, indicating the need for additional studies to identify their 

specific functional properties. 
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Figure 3.6. Genes identified as important predictors of disease outcome by the 

regularized logistic regression model. 

 Subsample analyses were additionally performed on individual host systems to 

identify any host-specific gene presence/absence patterns of importance. Although the 

results did not differ significantly from those observed for the generalized model, notable 

a 

b 



 

59 

 

differences were disregarded to preserve the generalizability of the model, as well as to not 

compromise on sample size. 

 

3.5. Discussion 

The aim of this study was to identify the best machine learning classifier to predict 

Salmonella clinical outcomes, highlight the need for feature selection in genomic dataset 

analysis, as well as identify genetic signatures significantly associated with each clinical 

outcome. Foodborne pathogens such as Salmonella exhibit many important phenotypic 

traits such as resistance to stress, host adaptation, survival and growth potential (Franz, 

Mughini-Gras, & Dallman, 2016), traits that could increase the specificity of microbial 

modeling by focusing on subtypes of pathogens that could pose the greatest risk (Deng, 

den Bakker, & Hendriksen, 2016). For the purpose of this research, a simple discriminative 

approach was selected to accurately model the boundary between two classes 

(extraintestinal vs. gastrointestinal), in order to obtain a quantitative metric for disease 

severity. 

 

Machine learning algorithms predict the outcomes of complex mechanisms by 

isolating the most relevant input from large datasets for a specific output, while 

circumventing the need to understand the underlying mechanisms (Baker, Pena, 

Jayamohan, & Jerusalem, 2018; Vilne, Meistere, Grantiņa-Ieviņa, & Ķibilds, 2019; Xu & 

Jackson, 2019). Typically, disease gene prediction in biological systems, wherein the most 

significant disease genes are identified, can be formulated as machine learning 
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classification problems (Speiser, Miller, Tooze, & Ip, 2019). The past few years have seen 

an emergence in popularity of various ensemble methods, including tree-based RF, the 

kernel-based SVM, and boosting algorithms, for classification-based disease or disease-

severity prediction (Austin, Tu, Ho, Levy, & Lee, 2013; Huang et al., 2018; Kegerreis et 

al., 2019; Njage, Leekitcharoenphon, & Hald, 2019). However, logistic regression, the 

simplest form of machine learning, is not commonly used for classification problems using 

genetic data since they perform poorly under conditions where p>>n, even though they are 

generally easier to interpret compared to other methods such as RF (Hanley & McNeil, 

1983; Subramanian & Simon, 2013). Therefore, for a logistic regression to be effectively 

used in WGS data-based disease prediction, there is a need to incorporate a method to 

include only the most relevant features in the model. This is generally accomplished by the 

inclusion of a pre-selection method such as feature selection, which in this case means the 

identification and selection of the smallest possible set of relevant genes that can help 

achieve good predictive performance in sample classification. In our study, we propose the 

use of Elastic Net to identify features significant to the prediction, because it has been 

previously shown to outperform other feature selection methods in identifying true 

positives with high accuracy (Koller & Sahami, 2006).  

 

A typical measure of classifier performance is classification accuracy, percentage 

of correctly classified observations. However, this metric is generally not suitable when 

dealing with two-class problems with skewed classes. In such cases, computing the AUC-

ROC, which ranges from 0 (random classification) to 1 (perfect discrimination between 
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both classes) is an effective alternative (Díaz-Uriarte & Alvarez de Andrés, 2006). In our 

study, classifier performance was computed both by analyzing the classification accuracy 

and the AUC. We observed that, although the AUC was consistently high for all 

algorithms, the classifiers resulted in dismal specificity in identifying true negatives. Since 

the baseline models were developed using all genes in the developed dictionary, we 

attribute this to model overfitting. On the other hand, we saw a marked improvement in 

classification accuracy and prediction of true positives and true negatives in Elastic Net-

regularized models, with LR showing the best AUC and accuracy values. 

 

The final LR model identified a number of Salmonella genes that were significant 

in predicting host disease severity. Our analysis showed that a number of genes coding for 

Salmonella phage proteins were significant to predicting severe disease in the host. These 

genes coded for proteins that ranged in functionality from virulence and systemic infection 

acceleration, type III secretion system effectors, and putative/hypothetical proteins 

associated with bacterial survival under conditions observable in extraintestinal regions 

(Worley, Nieman, Geddes, & Heffron, 2006; Thornbrough & Worley, 2012). 

Bacteriophages in Salmonella have been known to harbor a number of virulence proteins, 

such as SrfH, which has been previously shown to promote phagocyte motility and 

accelerate systemic infection spread (Worley et al., 2006). Additionally, these elements 

have been isolated from many serovars of Salmonella previously considered to be 

avirulent, indicating their transmissibility among strains (Thornbrough & Worley, 2012). 

Similarly, the phage proteins NinF and NinG have been associated with enteric infections, 
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bacteremia, and meningitis, among others extraintestinal isolates of Escherichia coli and 

S. Typhimurium (Pizza, 2006; Desai & McClelland, 2013). The putative membrane protein 

yfjD has been shown to be express positive fold change in S. Typhimurium subjected to 

desiccation stress (Maserati, 2017). Additionally, the transcriptional regulatory protein 

TorR, which encodes one half of the two component regulatory system TorR/TorT in the 

tor operon (Hu et al., 2019), has also been identified as a significant predictor of severe 

extraintestinal disease in the host. Finally, the putative protein YfjD, while undefined in 

Salmonella, has been associated with hemolysis in Bacillus subtilis. This could be another 

example of horizontal transmission of virulent genes, causing an increase in disease 

severity in the hosts (Liu, Fang, Jiang, & Yan, 2009). On the other hand, genes predicting 

gastrointestinal disease worked towards enabling Salmonella survival, growth, and 

expansion under severe and harsh conditions, such as anaerobic, acidic, and oxidative 

stress. For example, the stress response protein BolA has been shown to help S. 

Typhimurium overcome host defense conditions (host cellular response), allow bacterial 

proliferation during the latter stages of bacterial growth, and survive acidic and oxidative 

stress (Mil-Homens et al., 2018). Similarly, ydhL, belonging to the ydh protein family, is 

an oxidoreductase that helps Salmonella survive oxidative stress caused by host phagocyte 

activity (Kim, Liu, Husain, M., & Vasquez-Torres, 2016). Alternatively, the Salmonella 

pathogenicity island 1 (SPI-1) effector protein sopE has been previously shown to elicit 

intestinal inflammation in the in vivo murine host model (Hapfelmeier et al., 2004). 

Additionally, proteins responsible for cellular maintenance, including znuC, an ATPase 

that provides energy to the bacteria for zinc uptake (Liu, Yan, Liu, & Chen, 2013), and the 
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membrane protein yohC were found to be significant. Finally, the aminoglycoside 

adenylyltransferase (aadA) protein, responsible for conferring streptomycin resistance in 

Salmonella (Singh, Drolia, Bai, & Bhunia, 2015), and the outer membrane protein ompF, 

responsible for conferring cephalosporin antibiotic resistance in Salmonella (Choi et al., 

2018), were also found to be significant in predicting gastrointestinal disease. 

 

These results provide us with a clearer idea of genes that play a role in determining 

the severity of host disease. This could be attributed to niche adaptation caused by parallel 

evolution undergone by the various Salmonella isolates, which allows the different isolates 

to survive in different host environments despite belonging to the same genus (Wheeler, 

Gardner, & Barquist, 2018). Salmonella infections and disease in the host have a wide 

range, from infections isolated to the gastrointestinal system (including nausea, vomiting, 

and diarrhea, among others), to those that transcend the intestinal barrier to colonize other 

parts of the body (i.e., extraintestinal infections, including bacteremia, systemic disease, 

and sepsis). This distinction is important to identify strains of Salmonella posing a 

relatively higher risk of severe infection in the host, and can potentially help in the 

development of virulence-subtype-specific dose response models, as proposed by Fritsch 

et al. (2018).  

 

3.6. Conclusion 

In conclusion, machine learning is a powerful tool that can be trained to identify 

patterns from WGS and other such high dimensional datasets that are indicative of a 
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specific outcome. However, the widespread use of this method, especially in predictive 

microbiology and WGS-informed risk assessment, is hindered by the lack of availability 

of enough number of isolates with associated metadata to draw meaningful inferences. 

Metadata, including isolation date, time, and health outcome information, are the need of 

the hour. However, data with such granularity is currently unavailable, since this may not 

fit the parameters for sample collection set by the collection agency. Therefore, an 

important step towards developing and validating these models is to update these metadata 

parameters during the collection phase of bacterial isolates. Our model helped identify 

genes that were significant predictors of disease severity in the host. These ranged from 

transcriptional regulators and stress response genes (gastrointestinal) to virulence and 

survival under anaerobic conditions (extraintestinal), allowing us to identify patterns 

associated with each form of disease. However, a number of significant predictors 

remained undefined, and warranted further investigation for homology with other 

virulence-associated genes or signals of horizontal gene transfer. We envision this as the 

first step towards the widespread incorporation of WGS in a predictive modeling 

framework, in delineating risk patterns based on the predicted disease severity in the host. 
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Chapter 4: Development of a weighted modeling approach to incorporate 

genetic heterogeneity in a dose-response modeling framework 

 

4.1. Abstract 

Estimating microbial dose-response is an important aspect of a food safety risk 

assessment. In recent years, there are considerable interests to advance these models with 

potential incorporation of gene expression data. The aim of this study was to develop a 

novel machine learning model that considers the weights of expression of Salmonella genes 

that could be associated with illness, given exposure, in hosts. Herein, an Elastic Net-based 

weighted Poisson regression method was proposed to identify Salmonella enterica genes 

that could be significantly associated with the illness response, irrespective of serovar. The 

best-fit Elastic Net model was obtained by 10-fold cross validation. The best-fit Elastic Net 

model identified 33 gene expression-dose interaction terms that added to the predictability 

of the model. Of these, 9 genes associated with Salmonella metabolism and virulence were 

found to be significant by the best-fit Poisson regression model (p < 0.05). This method 

could improve or redefine dose-response relationships for illness from relative proportions 

of significant genes from a microbial genetic dataset, which would help in refining 

endpoint and risk estimations. 
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4.2. Introduction 

 Salmonella enterica is a major cause of foodborne illness and significant economic 

burden worldwide, and has a high morbidity and mortality rate. Recent years have seen the 

emergence of new pathogenic serovars of Salmonella in cases and outbreaks of foodborne 

salmonellosis, necessitating the identification and development of novel methods and 

models to estimate the human health risk posed by these emerging variants of this bacteria 

(CDC, 2019). Quantitative microbial risk assessment (QMRA) is a modeling approach for 

estimating the risk of infection and illness as a result of exposure to microorganisms in the 

environment. Estimating and predicting the dose-response relationship is one of the most 

important aspects of a food safety risk assessment. Dose-response models provide us with 

the probability estimate of a specific response (such as infection, illness, or death) as a 

result of consuming/ingesting a specific dose of the pathogen (USDA-FSIS, 2005; 

QMRAWiki, 2019). A major challenge in food safety microbial risk analysis is to identify 

and predict relationships between low-level pathogen exposure and the potential public 

health outcomes (Buchanan, Havelaar, Smith, Whiting & Julien, 2009). Some of the major 

factors that affect the probability estimates of host illness or infection include (i) the dose, 

or the number of ingested organisms, over a defined period of time, (ii) virulence factors, 

gene expression, and other factors describing the nature of the pathogen, and (iii) the 

pathogenic strain (due to there being substantial strain-to-strain differences) (USDA-FSIS, 

2005).  
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A current major limitation of existing QMRAs is that dose-response models for 

pathogens with multiple subtypes and serovars that can successfully infect human hosts 

(such as Salmonella) do not always take into account differences in survivability and 

virulence among strains. Such information is best gleaned from bacterial “omics” 

information, which could assist researchers in exploring bacterial growth, survival, and 

virulence dynamics, as well as various pathogen-host interactions leading to variations in 

susceptibility in the host (Brul et al., 2012; Njage, Henri, Leekitcharoenphon, Mistou, & 

Hald, 2019). With this in mind, efforts have been made to account for this variability in 

Salmonella virulence in developing dose-response models by defining its serotypes or 

serovars as strains (Oscar, 2004; Teunis et al., 2010). However, these models do not 

account for intra-serovar differences, or the potential for horizontal gene transfer between 

pathogenic and non-pathogenic variants of the same bacteria, necessitating the 

incorporation of higher-resolution data (such as WGS data) to improve their precision in 

capturing the variability in Salmonella virulence and its resulting effects in the host.  

 

The inclusion of WGS data would introduce a substantial number of variables that 

current predictive microbial models are not equipped to handle. This can be overcome by 

the application of machine learning techniques to identify genetic variables that could add 

significance to these models. Prior research studies have (Wheeler, Gardner, & Barquist, 

2018; Njage, Henri, Leekitcharoenphon, Mistou, & Hald, 2019; Njage, 

Leekitcharoenphon, & Hald, 2019; Munck, Njage, Leekitcharoenphon, Litrup, & Hald, 

2020) proposed incorporating genetic data into dose-response models by assuming each 
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bacterial unit to be composed of individual genetic units. Such a method would remove the 

need for individual subspecies or serovar count data to determine the individual subtype-

based response in human cases of foodborne disease, by instead including the probability 

of expression of individual genes as potential “weights” to a regular dose-response model. 

However, the development of such a model is hindered by the lack of studies that analyze 

bacterial gene expression in the context of host response to an ordered exposure to 

microbes.  

 

In this study, our aim was to propose a novel machine learning-based approach to 

incorporate genes into a dose-response framework for Salmonella enterica. Herein, we use 

Elastic Net to identify genes from a multi-serovar pan-genome that could significantly 

impact dose-based host response to Salmonella enterica exposure irrespective of serovar. 

For this purpose, we used a weighting method that considers the weights of expression of 

genes that could be associated with a host response, obtained from pooled data from prior 

Salmonella dose-response modeling studies (Oscar et al., 2004; Teunis et al., 2010). The 

method proposed in this study could provide us with a new means to incorporate WGS data 

into a QMRA framework for Salmonella, as well as other pathogenic microorganisms.  
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4.3. Material and Methods 

4.3.1. Data collection and preliminary analyses 

4.3.1.1. Curation of prior dose-response models 

A combination of human-feeding trial and outbreak-based dose-response model 

data were included in our study. Dose-response data were obtained from 1) prior human 

feeding trials conducted by McCullough & Eisele (1951 a, b), and described in Oscar 

(2004), and 2) outbreak data previously reported by George (1976), Fontaine et al. (1978), 

and Kasuga et al. (2004). Of the outbreak data, only those studies with relatively complete 

counts were employed for model building (Table 4.1). 

 

4.3.1.2. Isolate selection for creation of Salmonella gene dictionary (pan genome) 

Isolates of Salmonella belonging to the serovars Anatum, Bareilly, Derby, 

Enteritidis, Heidelberg, Oranienberg, Newport, Schwarzengrund, and Typhimurium were 

sampled from the National Center for Biotechnology Information’s (NCBI) Pathogen 

Detection database. The isolates were selected from among those isolated from food 

sources (such as meat and poultry in the various stages of processing), farm animals, the 

environment, and from human clinical cases, in order to incorporate the genetic variations 

observable in various isolate environments. Additionally, isolates were randomly picked 

between years 1998 and 2019 to ensure that any potential gene mutations or horizontal 

gene transmission over time would be captured while computing the probability of gene 

expression. Approximately 50 isolates were selected per serovar, a number which was set 

based on data availability, in order to be on par with the serovar with the lowest number of 
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sequenced isolates, and not introduce imbalance in our final model. Metadata, including 

the year of isolation, place of isolation, and collection agency, among others, were collected 

for all included isolates. 

 

4.3.1.3. Bioinformatics analysis and creation of Salmonella pan genome 

Sequence Read Archive (SRA) Run Accession numbers for all included isolates 

were obtained from the NCBI SRA repository. The isolates were de novo assembled and 

annotated using the PATRIC (v.3.6.3) Bacterial Bioinformatics Resource Center, a freely 

available web-based platform for comprehensive comparative genomics and analyses. All 

bioinformatics analyses were performed in accordance with the method described in 

Section 3.3.3. A total of 414 isolates across the 9 included serovars which fit the quality 

parameters detailed in 3.3.3. were included for the creation of our gene dictionary/pan-

genome and to compute the probability of gene expression per serovar.  

 

A Salmonella pan genome (or dictionary) was created from the 414 annotated 

sequences, with each individual gene being input as a variable in our baseline model. In 

simple terms, this comprises a set of features that represent the input data, providing some 

form of parametrization of the input space used to represent the prediction function (de 

Mol, de Vito, & Rosascode, 2009). This was created by aligning nucleotide sequences all-

against-all using the pairwise2 module in Python, as described in Section 3.3.3. The 

dictionary comprised 31,030 unique genes, including potential gene homologs, which were 

included as predictors in the initial model. Ninety-six CRISPR repeats and an equal number 
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of CRISPR spacers (and their homologs) were removed from the final gene dictionary due 

to being repetitive, despite potentially contributing to the virulence and pathogenicity 

potential of Salmonella (Louwen, Staals, Endtz, van Baarlen, & van der Oost, 2014), 

similar to the Roary platform.  

 

4.3.2. Calculating the probability of gene expression 

The empirical probability of gene expression was calculated to add weights to our 

dose-response model as: 

𝑝(𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑝𝑒𝑟 𝑠𝑒𝑟𝑜𝑣𝑎𝑟
……………………………………………….….(4.1) 

For example, the gene Arsenic metallochaperone ArsD (transfers trivalent 

metalloids to ArsAB pump) showed a p(gene expression) = 0.98 in serovar Typhimurium, 

whereas the same gene had a p(gene expression) = 0 in serovar Newport. 

 

The empirical probability was computed, as opposed to the theoretical probability 

(which reflects the number of times an event is expected to occur relative to the number of 

times it could potentially occur), which is calculated based on the circumstances that result 

in the expression of the gene, such as the specific environmental, stress, or host-interaction 

conditions that Salmonella is exposed to, that are as yet to be quantified thoroughly. 

Briefly, in an ideal experiment for gene-based dose-response modeling, we would be 

presented with the genetic data from isolates obtained from test subjects fed with a specific 
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dose of Salmonella. However, since this is not possible, we determine which genes are 

differentially present within each serovar (with the understanding that genes present in all 

serovars would not provide us with a statistically differential effect in the final model). 

Computing the probability allows us to estimate the potential for a gene to be expressed in 

a random isolate of the same serovar, and provide us with a differential metric to 

incorporate into our dose-response model.   

 

Finally, the dose-gene expression interaction terms were created from the dose from 

the original dose-response models interacted with the probability of gene expression. For 

example, if a gene is expressed 60% of the time, our interaction term used in the model 

would multiply the dose with 0.6. We input this interaction term into the elastic net 

regularization model to identify the most significant genes/gene interaction terms adding 

value to the dose-response model. 

 

4.3.3. Identification of important dose-gene interaction terms by Elastic Net 

All statistical analyses and modeling were performed on STATA 16 (StataCorp, 

2019). The predictability of the outcome and simplicity of a model suffers in cases where 

the number of features p in the input space is very large (or over-complete) compared to 

the number of samples n, which is simply referred to as the “large p, small n” problem 

(Candes & Tao, 2007). Additionally, genes sharing the same biological pathway would 

show a high number of correlations (Zou & Hastie, 2005). Therefore, based on suggestions 

from prior research, we employ Elastic Net, a powerful penalization technique, to shrink 
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the β of unimportant variables towards zero. Elastic Net automatically selects important 

features and apply continuous shrinkage to the feature dictionary, while selecting groups 

of correlated variables that add significantly to the model (instead of just retaining one in 

the group and discarding the others; Zou & Hastie, 2015). Elastic net is a penalized 

regression method that combines lasso (wherein many of the coefficient estimates are 

exactly zero) and ridge (all coefficients are nonzero, although many are small) to minimize 

data overfitting. The penalized objective function for Elastic Net is  

𝑄 =  
1

𝑁
∑ 𝑤𝑖𝑓(𝑦𝑖 , 𝛽0 + 𝑥𝑖𝛽′)𝑁

𝑖=1 +  𝜆 ∑ 𝜅𝑗(
1−𝛼

2
𝛽𝑗

2 + 𝛼|𝛽𝑗|
𝑝
𝑗=1 ………………………..(4.2) 

where N indicates the number of observations, wi denotes the observation level 

weights, f() denotes the likelihood contribution for the Poisson model, β0 denotes the 

intercept, xi is the 1 x p vector of covariates, β is the p-dimensional vector of coefficients 

on covariates x, λ is the lasso penalty parameter that must be greater than or equal to 0, j 

are coefficient level weights, and α is the Elastic Net penalty parameter that can only take 

on values in the [0, 1] dimension. Estimated β are those that minimize Q for given values 

of α and λ (penalty coefficient). Here, when α = 1, Elastic Net reduces to lasso, and when 

α = 0, it reduces to ridge regression. The functional form for the function f() used when the 

model is Poisson is 

𝑓(𝛽0 + 𝑥𝑖𝛽) = −𝑦𝑖(𝛽0 + 𝑥𝑖𝛽′) + 𝑒(𝛽0+𝑥𝑖𝛽′)…………………………………….......(4.3) 

Elastic Net regularization was performed on STATA using the elasticnet function. 

In order to fit the model with Elastic Net, a set of candidate α values and a fine grid of λ 

values was selected. This followed the rationale set by Hastie, Tibshirani & Wainwright 



 

74 

 

(2015) that only a few points in the space between ridge regression and lasso (i.e., α value) 

need to be reviewed, but a finer grid over λ is needed to identify non-zero coefficients. In 

addition to the default candidate α values of 1, 0.75, and 0.5, lower and upper bounds of α 

(0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) were tested. The λ grid was set automatically. 10-fold 

cross validation was performed on the combined set of (α, λ) values, and the (α, λ) pair that 

minimized the value of the cross validation function was ultimately selected. The non-zero 

coefficients identified by this (α, λ) pair were then deemed as being significant and 

employed in further models (Stata, 2021). 

 

4.3.4. Dose-response model development 

We propose a weighted approach to the incorporation of genes of importance in a 

dose-response paradigm. The response variable was set as the %incidence, obtained from 

dose-response data from prior human-feeding and outbreak studies. We analyzed our 

pooled dataset (outbreak and human-feeding trial), as well as the individual subsamples 

(outbreak-associated dataset and human-feeding trial-associated dataset), against important 

genes from corresponding Salmonella whole genome sequences obtained via machine 

learning (predictor variables). 

 

4.3.4.1. Elastic Net-based weighted Poisson regression model 

In this study, we propose a weighted Poisson regression model for gene-based dose-

response. This is in agreement with prior Salmonella enterica dose-response, which has 

typically followed the beta-Poisson format (McCullough & Eisele, 1951a, b; Meynell & 
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Meynell, 1958). This also applies to our dataset since the outcome variable is expressed in 

terms of rate data, i.e., illness (Y) given exposure (t) to a Salmonella dose (Anderson, 2019; 

Dataquest, 2019). Hence, we can interpret our model outcome as a percentage change in 

our predictor variable triggers a unit change in the response variable (which in itself is a 

percentage value). Therefore, our model is structured as: 

𝑦𝑖
𝑡⁄ =  𝑒𝛼𝑒∑ 𝛽𝑖𝑘𝑋𝑖𝑘

𝑛
𝑘=1 ………………………………………………………………….(4.4) 

Where, the response variable y/t denotes the probability of illness given exposure, 

i is the individual dose-response observation included in the model, Xik denotes the 

probability of a gene k being expressed in observation I, and βik denotes the weights of 

genes k = 1…n (n = 31,030). While the total number of included genes from the initial 

dictionary is very large, the βik values for only those genes that are deemed significant by 

the Elastic Net model were included in the final regression model (with all genes with zero 

values being automatically eliminated from the model).  

 

We also performed separate subsample analyses for outbreak and human feeding 

trial data to determine the effect on data type on the identification of genes informative to 

dose-response modeling. 

 

4.4. Results  

Here, we propose a machine learning-based method to incorporate whole genome 

sequencing data in a dose-response modeling framework that transcends serovar-level 

heterogeneity. In order to achieve this, (i) whole genome sequences of Salmonella enterica 
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serovars corresponding to available dose-response data were pre-processed to create a gene 

dictionary, (ii) gene expression weights were assigned based on serovar-level expression 

data, (iii) important genes were identified using Elastic Net regularization, and (iv) 

significant genes were incorporated in a log-linear dose-response regression model.  

 

4.4.1. Dose-response and WGS data collection and pre-processing 

Dose-response data from prior human feeding trials and Salmonella enterica 

outbreaks was obtained from literature. Datasets were pooled based on availability of 

complete dose-response data as well as bacterial isolates corresponding to the individual 

serovars. We employ a pooling design similar to the Collaborative Study Design (CSD) 

described by Lesko et al. (2018). In essence, the scientific commonality between the studies 

(i.e., dose-response) was the driver for dataset selection, irrespective of study design 

heterogeneity (trial vs. observational studies). This was done in order to increase our 

sample size, as well as investigate effect heterogeneity due to diversity in data types (Lesko 

et al., 2018). The response variable (probability of illness given exposure) was then 

standardized across the studies to remove a potential source of heterogeneity across the 

data. The final dataset comprised dose-response data across nine serovars (Table 4.1). 

 

In order to identify the predictor variables, whole genome sequences across nine 

Salmonella enterica serovars (Anatum, Bareilly, Derby, Enteritidis, Heidelberg, 

Oranienberg, Newport, Schwarzengrund, and Typhimurium) were sampled from the NCBI 

Pathogen Detection web server. Isolates were selected from across a number of human, 
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animal, and environmental isolation sources to account for genetic recombination, and 

directionality and timing of evolutionary changes within and among serovars (Grad & 

Lipsitch, 2014). Short reads for each isolate were assembled and annotated on the PATRIC 

web server for homogeneity. The Salmonella pan-genome was created from the annotated 

sequences using settings similar to that employed by Roary (Page et al., 2015), resulting in 

a gene dictionary composed of 31,030 genes. 
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Table 4.1. Dose-response data from human feeding trials and salmonellosis outbreaks used in model building. 

Study Serovar Food source (for 

outbreak-related cases 

only) 

Dose 

(log10CFU) 

Number 

Ill 

Number 

fed 

Incidence 

(%) 

Human feeding trial-associated data points 

Eisele & 

McCullough 

1951a 

Anatum A1 

  

Salmonella-spiked 

eggnog 

4.08 0 5 0 

4.38 0 6 0 

4.82 0 6 0 

4.97 0 6 0 

5.15 0 6 0 

5.41 0 6 0 

5.77 2 6 33 

5.93 3 6 50 

Anatum A2 4.95 0 6 0 

5.65 0 6 0 

6.02 0 6 0 

6.59 0 6 0 

7 0 6 0 

7.38 0 6 0 

7.65 1 6 17 

7.38 4 8 50 

Anatum A3 5.2 0 6 0 

6.1 2 6 33 

6.67 4 6 67 

Bareilly 5.1 1 6 17 
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Eisele & 

McCullough 

1951b 

5.84 2 6 33 

6.23 4 6 67 

Derby 5.14 0 6 0 

5.85 0 6 0 

6.22 0 6 0 

6.81 0 6 0 

7.18 3 6 50 

Newport 5.18 1 6 17 

5.59 1 8 13 

6.13 3 6 50 

Outbreak-associated data points 

Kasuga et 

al. 2004 

Bareilly Sauce for octopus 

pancake 

7.14 34 68 50 

Kasuga et 

al. 2004 

Enteritidis Tartar sauce 3.55 36 126 28.6 

 Omelet 5.17 10 11 90.9 

 Seared beef 5.38 3 5 60 

 Natto with raw eggs 5.87 9 9 100 

 Scallop cream sauce 6 30 38 78.9 

 Grated yam diluted with 

soup 

6.27 113 123 91.8 

 Spaghetti salad 7.14 73 78 93.5 

 Natto with raw eggs 7.78 45 191 23.56 

Fontaine et 

al., 1978 

Heidelberg Cheese 2.3 339 1211 28 

   2 1 1 100 
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Kasuga et 

al. 2004 

Oranienburg Grated yam diluted with 

soup 

9.87 11 11 100 

George, 

1976 

Schwarzengrund Pancreatic extract 1.64 1 1 100 

Kasuga et 

al., 2004 

Typhimurium Grated yam diluted with 

soup 

5.14 40 99 40.4 

 Grated yam diluted with 

soup 

6.38 39 79 49.37 

 

4.4.2. Machine learning-based identification of features informative to a Salmonella dose-response 

Of the 31,030 p(gene)-dose interaction terms from our Salmonella pan-genome, the Elastic Net model dropped 25945 variables 

due to collinearity. The  value and  penalty for the model comprising the remaining 5085 covariates were selected by 10-fold cross 

validation. Cross-validation helps in choosing the model that minimizes the cross-validation function (Figure 4.1). The overall best-fit 

Elastic Net model, with an  value of 0.300 and  penalty of 28.1061 identified 33 non-zero p(gene expression)-dose interaction terms 

that were most informative to the model (Table 4.2). The functionality of these genes ranged from adhesion and invasion to stress 

response and bacterial metabolism, and also included eleven hypothetical proteins. 
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Figure 4.1. Elastic Net (a.) Cross-validation plot and (b.) Coefficient path plot indicating 

the best-fit  value and  penalty that minimizes the cross validation function. 

 

Table 4.2. Important genes associated with the gene-dose interaction terms identified by 

the best-fit Elastic Net model. 

 Gene name RefSeq ID 

1 Zinc-binding GTPase YeiR NP_416678.1 

2 ABC transporter involved in cytochrome c biogenesis 

CcmB subunit  

NZ_CP009516.1 

3 FIG01046564 hypothetical protein  NA 

4 SSU ribosomal protein S20p CP007542 

5 Polysaccharide export lipoprotein Wza WP_014907221.1 

6 Hypothetical protein NA 

7 Biofilm regulator BssS NP_415578.3 

8 NADH dehydrogenase (EC 1.6.99.3) NP_460181.1 

9 Putative oxidoreductase YdjL NP_416290.1 

10 Hypothetical zinc-type alcohol dehydrogenase-like 

protein YdjJ 

NP_416288.1 

11 Putative aldolase YdjI NP_416287.1 

12 Uncharacterized transcriptional regulator (DeoR 

family) YdfJ 

WP_000347482.1 

13 Secretion system chaperone SscB NA 

14 Hypothetical protein NA 

15 Secreted effector protein SteA NP_460542.1 

16 FIG01048335 hypothetical protein NA 

17 Putative invasin NA 

a b 
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18 FIG01045615 hypothetical protein  NA 

19 Putative membrane protein NA 

20 Cell division-associated ATP-dependent zinc 

metalloprotease FtsH 

NC_011916.1 

21 tRNA (guanine(46)-N(7))-methyltransferase (EC 

2.1.1.33) trmB 

NC_000913.3 

22 Murein hydrolase activator NlpD NP_417222.1 

23 Hypothetical protein NA 

24 Cyclic di-GMP-binding protein BcsB NP_312439.1 

25 Phosphoglycerate transport regulatory protein PgtC NP_461339.1 

26 Hypothetical protein NA 

27 FIG01048353: hypothetical protein NA 

28 Hypothetical protein NA 

29 Hypothetical protein NA 

30 Deoxyribose-phosphate aldolase (EC4.1.2.4) NP_418798.1 

31 Putative periplasmic protein NA 

32 LysR-family transcriptional regulator STM3834 WP_000687412.1 

33 Hypothetical protein NA 

 

 

4.4.3. Elastic Net-based Poisson regression model outcome 

The Poisson regression dose-response model was fit on the gene expression 

probability-weighted log10 CFU doses. The Poisson model was selected primarily because 

our outcome variable (probability of illness given exposure) is a numeric count with a 

limited range compared to a continuous variable (Chesaniuk, 2021). The Elastic Net-based 

Poisson regression model identified 9 gene-dose interaction terms that significantly 

impacted the probability of illness (p < 0.05) when exposed to Salmonella enterica (Table 

4.2). The model containing these 9 predictors showed a significant improvement and fit 

over the null model (Likelihood ratio chi-square statistic = 869.62; McFadden’s R2 = 0.423; 

probability > chi-square = 0.0000). The weighted genes varied in functionality from 

bacterial virulence, metabolism, and stress response.  
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The regression coefficients from this model can be interpreted as the predicted 

change in the log count of the response variable for every one unit increase in the predictor 

variable, i.e., p(gene)-dose interaction (controlling for the remaining predictors). A simple 

means of explaining the results of such a model would be that, a positive coefficient 

indicates an increase in the predicted value of the response variable (probability of illness) 

with an increase in value of the predictor variable, whereas a negative coefficient implies 

a decrease in the predicted response variable with an increase in the value of the predictor 

variable. In general, we found that genes coding for bacterial metabolism had the greatest 

impact on the probability of illness given exposure to Salmonella enterica (Table 4.3, 4.4; 

Figure 4.2). 
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Figure 4.2. Predicted plot of the impact of the predicted values of significant p(gene)-

dose interaction terms (predictor variables) on the probability of illness given exposure 

(response variable) to Salmonella enterica.  

 

Finally, the subsample analysis using human feeding trial data or outbreak data 

alone yielded insignificant results, with the best-fit model ( value = 0.800; -penalty = 

27.9430) identified by 10-fold cross validation selecting zero significant covariates. 

Therefore, for the purposes of this study, we have retained the model fit and parameters 

identified by the Elastic Net-based Poisson regression model developed using the pooled 

dataset.  

 

Table 4.3. Significant predictor terms identified by the final Poisson model. 

Significant predictor terms Model 

coefficient 

Standard 

error 

P > |z| 

Zinc-binding GTPase YeiR -14.4135 1.1398 0.000 

ABC transporter involved in cytochrome c 

biogenesis CcmB subunit  

-13.9821 1.0935 0.000 

SSU ribosomal protein S20p -26.4459 2.0598 0.000 

Polysaccharide export lipoprotein Wza -27.9688 2.2478 0.000 

Biofilm regulator BssS -97.2884 7.5971 0.000 

NADH dehydrogenase (EC 1.6.99.3) 178.1859 13.9816 0.000 

Putative oxidoreductase YdjL -235.0121 18.2942 0.000 

Hypothetical zinc-type alcohol dehydrogenase-

like protein YdjJ 

53.3194 4.0035 0.000 

Putative aldolase YdjI 203.2633 16.0184 0.000 
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4.5. Discussion 

 Traditionally, the hazard characterization step of QMRA has relied on strains of 

pathogens from selected cases to define and characterize hazards. However, a major issue 

with this approach has been the assumption that the pathogen is a single unit, thereby 

neglecting intra-species variation in pathogen virulence and virulence-associated 

functions. However, the recent advances and widespread application of sequencing 

technologies provides us with an unprecedented opportunity to attempt to account for these 

variations in predictive modeling and risk assessment approaches to potentially reduce the 

uncertainty and variability in the models. This is because the larger molecular data set can 

offer the opportunity for increased insight and better decision-making than that which can 

be accomplished by analyzing smaller data sets. However, the use of WGS in predictive 

models comprising a microbial QMRA is largely untapped and faces valid challenges 

related to disaggregation since the number of hazards to be considered increases 

exponentially when zooming in from a previous generalized species or serovars into 

specific genotypes (Pielaat et al., 2015). 

 

In classical dose-response modeling of pathogens such as Salmonella, one must 

consider the high variability of the pathogen at low doses, and the potential for infection 

from survivors of the innate host defense systems. Infection and subsequent illness from a 

pathogen occurs from the proportion of ingested microorganisms that survive the human 

host barriers; for example, surviving the nutrient-starvation conditions typically seen in the 

host gastrointestinal system, adhering to, and transcending, the intestine, biofilm 
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formation, and virulence signaling. While current dose-response models function under the 

assumption that each ingested microorganism is a taxonomic unit with equal probability of 

inducing illness, the heterogeneity rendered as a result of horizontal gene transmission 

between the various taxonomic units is completely excluded or discounted (Njage, 

Leekitcharoenphon, & Hald, 2019).  

 

However, the application of WGS data in a dose-response modeling framework is 

hindered by a number of issues. These include (i) the lack of a standardized dose-response 

dataset from which to make genetic inferences (e.g. separate dose-response profiles per 

serovar, differences in data collection), (ii) the lack of molecular data specifically 

associated with illness response to a given pathogen dose, necessitating the development 

of association models using comparable genome sequences, (iii) unavailability of sufficient 

molecular data from a single host (e.g. humans) to fit the requirements of a power analysis, 

necessitating the use of genome sequences from a myriad of hosts, and (iv) the large 

number of genes from such a compilation of isolates compared to the number of isolates 

themselves (p >> n). Therefore, the method proposed in this study does away with the 

concept of pathogenicity of a specific subgroup or serovar of a pathogen, as well as 

potential heterogeneity introduced due to gene transmission and differences in the 

pathogenic host, by directly taking into account the expression probabilities of genes 

identified as significant by a learning model. This is principally similar to the inverse-

variance weighted methods proposed earlier for summarized data from multiple genetic 

variants (Ritchie et al., 2006; Burgess & Bowden, 2015; Reifeis, Hudgens, Civelek, 
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Mohlke, Love, 2020). Herein, the probability of expression of each genetic unit is 

computed and input as weights in a predictive model to estimate the dose-based response, 

taken here as the probability of illness (salmonellosis) as a result of exposure to the 

pathogen for simplicity. This all-in regression approach, similar to the whole genome 

random regression methods proposed for genome-wide association studies (Janss, los 

Campos, Sheehan, & Sorensen, 2012), towards simultaneously fitting all markers from the 

sample set was done to account for unaccounted population stratification. This would 

contribute to redefining dose-response relationships for initial infection from the relative 

proportions of each significant gene from a WGS dataset, which would help in refining 

endpoint and risk estimations.  

 

A major issue contributing to substantial uncertainty in dose-response models is the 

type of data used to generate and assess the models. Dose-response relationships for 

pathogenic microorganisms are generally developed on data obtained from foodborne 

outbreaks, human trial studies, or experimental model studies. Each of these approaches 

have some limitations due to the inherent variability of the pathogen, host, and food source 

(Buchanan, Havelaar, Smith, Whiting & Julien, 2009). Moreover, the models that fit such 

varied types of data are different. For example, the generally agreed-upon model used in 

the development of dose-response relationships based on outbreak data for salmonellosis 

is the beta-Poisson model, with an emphasis on the difference in infection and illness. 

Alternatively, human feeding trial data generally fit more linear models, as evidenced in 

Oscar (2004). This distinction was not made in our study, since a majority of the dose-
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response data points included in our study were from human feeding trials, as opposed to 

outbreak data, primarily due to lack of information. Moreover, we have only considered 

outbreak data where the pool of potentially exposed subjects have been clearly reported. 

Since the probability of illness (response variable) data is treated as a continuous variable 

between 0 and 1, but with a limited range, Poisson regression perfectly fits the requirements 

for this model. Hence, we can interpret our model outcome as the predicted change in the 

log count of the probability of illness given exposure for every one unit increase in the 

gene-dose interaction.  

 

An important consideration of utilizing WGS data in any modeling studies is to 

work around the p >> n problem described in Section 3.5. In our study, we work around 

this issue using Elastic Net feature selection to identify features significant to the 

prediction. The α value = 0.300 and  penalty = 28.1061 were chosen by a 10-fold cross 

validation to minimize the bias-variance trade-off. The bias measures the accuracy of the 

estimates, by describing the difference between the true population parameter and the 

expected estimator, and the variance measures the uncertainty of the estimates. While 

traditional statistical modeling strategies involve the use of information criteria, such as the 

Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC), to 

determine the penalty terms to obtain a best-fit model, cross-validation is a more popular 

machine learning-based approach to obtain the best fit model (Oleszak, 2019). It is 

important to note that the McFadden’s pseudo R2 value was acceptable (0.42), despite 

eliminating 99.9% of the genes from the initial gene dictionary, which indicates that the 
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handful of genes (n = 33) selected for model building could be strongly indicative of the 

response metric, and gives us confidence in the elimination strategy employed by the 

Elastic Net model. However, it is important to note that Elastic Net is a predictor variable 

selection tool, and therefore does not give inferential results, necessitating further modeling 

(in our case, the weighted regression method) to identify significant predictor variables.   

     

A number of genes identified by the Elastic Net-based Poisson regression model as 

being significant (p < 0.05) have been implicated in bacterial functions ranging from 

bacterial metabolism to virulence (Table 4.4). Interestingly, three of the genes (YdjL, YdjJ, 

and YdjI) identified as significant currently coding for hypothetical proteins or putative 

proteins. This demonstrates the need for further analyses to determine the functionality and 

effect of these proteins to the overall virulence and pathogenicity of Salmonella. Moreover, 

the large number of genes coding for metabolic functions being found as significant by our 

model is telling, since bacterial metabolism has been previously found to be key towards 

determining bacterial persistence (Amato et al., 2014), as well as defining the host-

pathogen interface (Passalacqua, Charbonneau, & O’Riordan, 2016). 

 

Our study has a few limitations. The biological basis for microbial dose-response 

models is a function of interactions between the pathogen, host and the matrix. This 

complexity was not captured in our proposed weighted gene-based modeling approach due 

to a number of factors, including (i) the lack of standardization of available data regarding 

Salmonella dose-response, (ii) unavailability of Salmonella molecular data collected in the 
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context of dose-response determination, and (iii) non-standardization of Salmonella 

genome sequencing data. Additionally, the non-linear beta-Poisson model is recommended 

for dose-response of Salmonella (QMRAWiki, 2021). However, our model employs a 

more generalized Poisson regression approach because of the limitations of Elastic Net 

regression. Moreover, we chose an arbitrary number of isolates per serovar (n ~ 50) to 

ensure that even the lowest sampled serovar is equally represented. However, choosing 

only 50 isolates for a serovar whose incidence is very high may not capture the overall 

spread; therefore, it may be better in future studies to weigh the genes based on the global 

probability of outbreaks involving the serovar in question to identify the trends.  



 

91 

 

Table 4.4. Functionality and significance of genes identified as ‘significant’ by gene-weighted Poisson regression. 

Significant 

gene 

Associated protein Function Relationship to dose-response References 

YeiR Zinc-binding 

GTPase 

Zinc homeostasis in 

Escherichia coli 

Mismetallation of bacterial proteins can 

erode their functionality, which in turn 

has broad implications in bacterial and 

host metabolism during infection 

(Blaby-Haas, Flood, 

Crecy-Lagard, & 

Zamble, 2012; Palmer & 

Skaar, 2016) 

CcmB ABC transporter 

involved in 

cytochrome c 

biogenesis CcmB 

subunit 

Exports heme to 

periplasm for 

biogenesis of c-type 

cytochromes 

(transfers electrons 

between complexes 

III and IV of the 

respiratory chain), 

and also shows 

transmembrane 

transporter activity 

Metabolism and mitochondrial function (Stevens et al., 2011; 

Hough, Silkstone, 

Worrall, & Wilson, 

2014) 

SSU S20p SSU ribosomal 

protein S20p 

Structural 

constituents of 

ribosome 

Reduction in mRNA binding, which in 

turn impacts rate of protein synthesis 

(Tobin, Mandava, 

Ehrenberg, Andersson, 

& Sanyal, 2010) 

Wza Polysaccharide 

export lipoprotein 

Wza 

Part of Wzy-

dependent pathway 

responsible for  

assembly and export 

of capsular 

Main virulence factors of bacterial cell Cuthbertson, Mainprize, 

Naismith, & Whitfiled, 

2009; Morais, Dee, & 

Suarez, 2018 
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polysaccharides, 

constituting the 

outermost layer of the 

bacterial cell 

BssS Biofilm regulator 

protein BssS 

Cellular maintenance Global regulator of genes involved in 

catabolite repression and stress response 

Domka, Lee, & Wood, 

2006 

ndh NADH 

dehydrogenase 

- Respiratory metabolism Heikal et al., 2014 

YdjL Putative 

oxidoreductase 

Catalyzes certain 

elements of 

glycolysis pathway 

- Huddleston et al., 2019 

YdjJ Putative zinc-type 

alcohol 

dehydrogenase-like 

protein 

Metabolism Bacterial physiology and pathogenicity 

YdjI, Aldolase of 

unknown specificity 

Metabolism Bacterial physiology and pathogenicity 
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4.6. Conclusion 

While current microbial dose-response models are effective in providing us with 

the probability estimate for a response such as illness, illness given exposure, and illness 

given infection, they are unable to sufficiently capture heterogeneity arising due to genetic 

differences, which can be highlighted by whole genome sequencing data. Current models 

are unable to handle the large amount of data introduced by such data, requiring the use of 

advanced machine learning methods. Here, we propose a machine learning-supported 

weighted regression method to model the dose-augmented effect of significant genes on 

the illness response due to exposure to Salmonella enterica. Our method is unique in that 

it attempts to transcend inter-serovar and inter-host environment genetic heterogeneity 

using a weighted approach. This method could redefine dose-response relationships for 

initial infection from relative proportions of significant genes from a microbial genetic 

dataset, which would help in refining endpoint and risk estimations in the future. 
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Chapter 5: Predicting foodborne salmonellosis outbreak severity based 

on genetic and meteorological trends  

 

5.1. Abstract 

 Several studies have shown a correlation between outbreaks of Salmonella enterica 

and climatological and meteorological trends, especially related to temperature and 

precipitation. Additionally, current outbreak-related studies are performed on data pooled 

by Salmonella species without taking into account its intra-species and genetic 

heterogeneity. In this study, we analyzed the effect of differential gene expression and a 

suite of meteorological factors on salmonellosis outbreak severity (typified by case 

numbers) using a combination of machine learning and data analytical methods. Elastic 

Net regularization was used to identify significant genes from a Salmonella pan-genome, 

and a multi-variable Poisson regression developed to fit the individual and mixed effects 

data. The best-fit Elastic Net model (α = 0.5000; λ = 2.18399) identified 53 significant gene 

expression variables. The final multi-variable Poisson regression model (χ2 = 5748.22; 

psuedo R2 = 0.6688; probability > χ2 = 0.0000) identified 127 significant predictor terms 

(p < 0.10), comprising 45 gene-only predictors, average temperature, average precipitation, 

and snow cover, and 79 gene-meteorological interaction terms. The significant genes 

ranged in functionality from bacterial metabolism, cell survival, ion transport, to stress 

response and bacterial virulence, and included gene variables not considered as important 

or significant by the baseline model. The results of this study indicate the need to co-
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evaluate novel data with environmental data to develop a more holistic model to predict 

disease outcome severity, and thereby calculate the risk to human health. 

 

5.2. Introduction 

 Despite ongoing efforts to curb the spread and proliferation of Salmonella enterica, 

its ubiquitous nature and considerable subtype diversity has contributed to a significant 

increase in the number of salmonellosis cases being reported both in the U.S. and globally 

(Scallan et al., 2011; CDC, 2021a). Moreover, Salmonella covers a diverse genetic 

landscape, with Salmonella enterica subsp. enterica (which can infect humans) alone 

comprising >2500 named serovars. Currently, models predicting bacterial outcome and 

severity do not account for intra-species variability in microbial behavior because, for the 

most part, the variabilities existing at the gene-level are too large in scale to be incorporated 

in basic statistical models. Genetic analyses of isolates could provide us with information 

regarding the expression of genes associated with stress tolerance, virulence, and antibiotic 

resistance. This could help in developing a differential virulence profile to aid in re-

evaluating the existing infectivity and outbreak predictive estimates for Salmonella 

enterica. 

 

Several studies have investigated the impact of environmental factors, specifically 

temperature, and precipitation, on the incidence of Salmonella-associated foodborne 

outbreaks. The impact of environmental factors on the genetic profiles of Salmonella plays 

a particularly important role in its pathogenicity; conditions unfavorable to pathogen 
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growth could induce a variety of survival mechanisms in the cells, which could impact the 

overall rate of Salmonella infection, modulating outbreak and illness risk estimates. Studies 

have shown how varied combinations of ambient temperatures, precipitation levels, and 

the resultant changes in food habits contributes to salmonellosis numbers in the population 

(Munnoch et al., 2009; Sidhu et al., 2013; Mun, 2020). This is particularly the case with 

higher temperatures and Salmonella proliferation and notifications of salmonellosis 

(McMichael, 2015). In general, studies have reported that the risk of Salmonella 

contamination, and subsequently, infection, increases under higher ambient temperatures, 

as it supports the growth of Salmonella. Similarly, increasing precipitation levels are also 

believed to increase the risk of salmonellosis incidence, as run off can increase pathogen 

loads in water sources. Therefore, it is important to take the impact of these variations into 

account when estimating the overall human risk due to Salmonella.  

 

Recent studies have shown the applicability of novel approaches to re-quantify the 

risk of disease and outbreaks based on differences in gene expression. Chief among them 

is the application of novel modeling or machine learning to predict the severity or endpoint 

of diseases caused by pathogenic agents such as Listeria (Njage, Leekitcharoenphon, & 

Hald, 2019), Escherichia coli (Pielaat et al., 2015; Njage et al., 2019), and Salmonella. 

However, one of the most important contributions of this new wave of the use of advanced 

data analytical methods in bacterial predictive modeling is the incorporation of feature 

selection algorithms to reduce whole genome sequencing data into a format that can be 
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employed in predictive models without resulting in model overfitting or introducing bias 

to the same.   

 

The objective of this project was to develop a machine learning-based regression 

approach was developed to attempt to quantify the interaction effects between 

meteorological factors (such as temperature and precipitation) and the probability of 

expression of various significant genes in Salmonella enterica. This, in turn, would help us 

predict the most significant combination of genes and meteorological factors that 

contribute to the incidence and outbreak of food-associated salmonellosis. 

 

5.3. Material and Methods 

5.3.1. Data collection 

5.3.1.1. Salmonella outbreak data 

Data regarding foodborne outbreaks of Salmonella was obtained from the U.S. 

Centers for Disease Control and Prevention’s (CDC) National Outbreak Reporting System 

(NORS) database, which receives such data from the CDC’s Foodborne Disease Outbreak 

Surveillance System (FDOSS). For the purpose of this study, we have only included data 

on outbreaks of Salmonella definitively associated with a food source (i.e., foodborne 

salmonellosis). The NORS toolkit contains a comprehensive list of outbreaks attributed to 

different etiological agents occurring between 1998 and 2017, and includes metadata such 

as the month and year of the outbreak, food source, and resultant number of illnesses, 
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hospitalizations, and deaths. We employed inclusion criteria, such as the availability of 

serovar and state data to identify relevant and complete information. 

 

5.3.1.2. Meteorological data 

 Meteorological data was obtained from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Centers for Environmental Information (NCEI; 

previously the National Climactic Data Center) database (https://www.ncdc.noaa.gov/cdo-

web/). Collected data included monthly climatological measures of temperature, 

precipitation, and snow-related statistics from the suite of climatological statistics 

collectively referred to as “U.S. Global Summary of the Month,” measured at stations 

operated by the NOAA (Heim 1996; Owen & Whitehurst 2002; Arguez et al. 2012; Durre 

et al., 2013). In this study, data was obtained in the form of monthly averages. Specifically, 

we obtained the monthly average mean daily temperature, monthly average precipitation, 

and monthly average snowfall from all weather stations within each state of interest from 

NCEI. In the NCEI website (Index of /data/global-summary-of-the-month/access 

(noaa.gov)), temperature data is reported in °F and precipitation data is reported in inches, 

and the same metric is utilized in our models. 

 

 NOAA measures temperatures with the aid of numerous weather stations spread 

across the U.S. Incorporating data from these stations allows us to incorporate the variation 

in weather conditions seen across the state, specifically those with a significantly larger 

land mass. However, since we are taking average values across states, we standardize the 

https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/
https://www.ncei.noaa.gov/data/global-summary-of-the-month/access/
https://www.ncei.noaa.gov/data/global-summary-of-the-month/access/
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included meteorological data based on the state-specific mean and standard deviation for 

each month and year of interest. 

 

5.3.1.3. Salmonella isolates for development of pan-genome 

 Salmonella isolates obtained by U.S. regulatory agencies during routine 

surveillance corresponding to salmonellosis outbreak occurrence were sampled from the 

National Center for Biotechnology Information’s (NCBI) Pathogen Detection database. 

We applied the following inclusion criteria for isolate selection using available metadata: 

‘serovar’ and ‘state’ corresponding to an outbreak, ‘availability of short reads data,’ and 

‘month and year corresponding to an outbreak’ or ‘month and year up to two months before 

an outbreak.’ The latter criteria was included to account for lag time between infection in 

animals (or contamination of food) and actual consumption. Based on these inclusion 

criteria, 541 isolates spread across serovars Dublin, Enteritidis, Heidelberg, Infantis, 

Javiana, Montevideo, Munchen, Muenster, Newport, Reading, Saintpaul, Senftenberg, and 

Typhimurium were used to create our pan genome (gene dictionary). 

 

5.3.2. WGS pre-processing and creation of pan genome  

 Sequence Read Archive (SRA) Run Accession numbers for all included isolates 

were obtained from the NCBI SRA repository. The isolates were de novo assembled and 

annotated on the PATRIC (v.3.6.3) Bacterial Bioinformatics Resource Center, a web-based 

platform for genomic analyses, as previously described in Section 3.3.3. The WGS of 

isolates that fit our quality parameters (n = 497) were used in creating an environmental 
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Salmonella enterica gene dictionary (pan genome) using pairwise2 in Python, as described 

in Section 3.3.3. Genes annotated as coding for ‘hypothetical proteins,’ ‘hypothetical xyz,’ 

‘putative xyz,’ CRISPR repeats, and CRISPR spacers (and their homologs) were removed 

for ease of use (similar to Roary), despite potentially contributing to the virulence and 

pathogenicity potential of Salmonella (Louwen, Staals, Endtz, van Baarlen, & van der 

Oost, 2014). This generated a dictionary/pan-genome of 18,520 unique genes. 

 

5.3.3. Model development and statistical analysis 

 Here, we modeled the individual and combined effects of the predictor variables 

gene expression (categorical; 1 or 0), mean daily average temperature (in °F) (continuous), 

precipitation (in inches), and snow attributes (in inches) on the response variable (number 

of illnesses, or case numbers). All models were run with standardized meteorological 

variables recorded during the month of an outbreak (no lag), and two months before an 

outbreak (two-month lag) to determine the effect of sustained weather factors on illness 

outcome. All statistical analyses and modeling were performed on STATA 16 (StataCorp, 

2019). Model significance was set at α = 0.05, and predictor significance was tested at both 

α = 0.10 and α = 0.05. 

 

5.3.3.1. Feature selection  

 Since our gene predictor matrix is very large (n = 18,520), it could result in 

dimensionality issues and model overfitting. Additionally, a gene-based dataset is bound 

to comprise a large number of variables that are highly correlated. Thus, we combat this 
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using the Elastic Net feature selection method, as described in Sections 3.3.4.4. and 4.3.3. 

Elastic Net regularization was performed on STATA using the elasticnet function. The 

penalized objective function for Elastic Net is provided in equation 4.1. The functional 

form for the function f() from equation 4.1. used in a linear (ordinary least squares) and 

Poisson (or another count model, such as a negative binomial) model are provided in 

equations (5.1) and (5.2), respectively. 

𝑓(𝑦𝑖 , 𝛽0 + 𝑥𝑖𝛽′) =
1

2
(𝑦𝑖 − 𝛽0 − 𝑥𝑖𝛽′)2……………………………………………....(5.1) 

𝑓(𝑦𝑖 , 𝛽0 + 𝑥𝑖𝛽) = −𝑦𝑖(𝛽0 + 𝑥𝑖𝛽′) + 𝑒(𝛽0+𝑥𝑖𝛽′)……………………………………...(5.2) 

In this study, we tested the default α values (1, 0.75, and 0.5) and a fine grid of λ values, 

according to Hastie, Tibshirani & Wainwright (2015). The λ grid is set automatically during 

the run. The (α, λ) pair that minimized the value of the cross validation function during 10-

fold cross validation was selected, and the significant non-zero coefficients identified by 

this (α, λ) pair were employed in further models as independent predictor variables (Stata, 

2021). 

 

5.3.3.2. Poisson regression 

 A Poisson regression model was developed to explain the outcome of case numbers 

(count data; response variable), with gene presence/absence data functioning as the primary 

predictor, and meteorological factors as the covariates. Simply put, our model is structured 

as: 

Pr(𝑌𝑖 = 𝑦𝑖|𝜇𝑖 , 𝑡𝑖) =
𝑒−𝜇𝑖𝑡𝑖(𝜇𝑖𝑡𝑖)𝑦𝑖

𝑦𝑖!
....................................................................................(5.3) 
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Where, 

𝜇𝑖 =  𝑡𝑖𝑒(𝛽1𝑋1𝑖+𝛽2𝑋2𝑖+⋯….+𝛽𝑘𝑋𝑘𝑖) ….………………………………………………..….(5.4) 

Where, the response variable denotes case numbers over the included time period, 

i the outbreak observation included in the model, and Xi denotes a vector of independent 

variables – significant genes identified by Elastic Net, monthly average mean daily 

temperature, monthly average precipitation, and monthly average snowfall – and their 

interaction terms, β = 1…k indicates the regression coefficients, and µ the risk of a new 

occurrence of the event during a specified exposure event t (if no exposure is given, t is 

assumed to be 1). Hence, the model outcome can be interpreted as, for a one unit change 

in the predictor variable, the difference in log of expected counts (response) is expected to 

change by the respective regression coefficient, given the other predictor variables in the 

model are held constant. While the total number of included genes from the initial 

dictionary is very large, the values for only those genes that are deemed significant by the 

Elastic Net model were included in the final regression model (all genes with zero values 

being automatically eliminated from the model). 

 

5.3.3.3. Negative binomial regression 

 Since a Poisson regression makes a restrictive assumption that the mean is equal to 

the variance, we also fit the data to a negative binomial regression, which is a generalization 

of the former model that loosens this restrictive assumption, as shown in another study 

(Shirriff, 2019). The fundamental negative binomial regression equation is written as: 
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Pr(𝑌𝑖 = 𝑦𝑖|𝜇𝑖 , 𝛼) =
Γ(𝑦𝑖+𝛼−1)

Γ(𝛼−1)Γ(𝑦𝑖+1)
(

1

1+𝛼𝜇𝑖
)𝛼−1

(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)𝑦𝑖………………………………(5.5) 

Where µi, or the mean incidence rate per unit exposure t (if no exposure is given, t 

is assumed to be 1) is: 

𝜇𝑖 = 𝑒(𝑙𝑛𝑡𝑖+𝛽1𝑋1𝑖+𝛽2𝑋2𝑖+⋯𝛽𝑘𝑋𝑘𝑖)……………………………………………….............(5.6) 

Here β = 1….k denote the regression coefficients, α = 1/v, where v denotes the scale 

parameter of the gamma (or negative binomial) noise parameter, and X=1…k indicates the 

matrix of predictor variables. As in the Poisson regression, important genes and 

meteorological factors recorded during the outbreak period were used as independent 

variables. 

 

5.4. Results 

 Here, a machine learning-based method to identify important genes, meteorological 

factors (and their combinations) that impact salmonellosis outbreak numbers irrespective 

of Salmonella enterica serovar-level heterogeneity is developed using whole genome 

sequencing information. In order to achieve this, (i) whole genome sequences of 

Salmonella enterica serovars isolated from varied environmental sources, corresponding 

to human outbreaks of salmonellosis, were pre-processed to create a Salmonella pan 

genome, (ii) meteorological data corresponding to human outbreaks of salmonellosis were 

obtained and processed, (iii) important genes were identified using Elastic Net 

regularization, and (iv) significant genes were incorporated in count-based models, along 
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with meteorological factors as predictor variables to identify their individual or combined 

impact on illness numbers. 

 

5.4.1. Outbreak and WGS data collection and preprocessing 

 Data from human outbreaks of Salmonella enterica was obtained from the NORS 

dashboard. Relevant outbreaks were selected for further analyses based on our inclusion 

criteria. Two hundred and eighty five outbreaks without serovar information and 338 multi-

state occurrences were dropped, leaving us with 2844 outbreaks definitively attributed to 

different serovars of Salmonella that were included for further analyses. Subsequently, we 

matched the outbreaks to Salmonella enterica isolates obtained from food sources and the 

environment based on the date and time of the outbreak and matching serovar, in order to 

build our Salmonella pan genome. This provided us with 249 data points (outbreaks), with 

a salmonellosis case (illness) number of 7385 (Figure 5.1). Of these, the public health 

burden of a large number of these outbreaks was comparatively lower, with a majority of 

outbreaks having salmonellosis case (illness) numbers ≤60. As is common with most 

count-based datasets, our dataset has a large number of data points for a few values (i.e., 

case numbers ≤60), resulting in a skewed frequency distribution of data points (Figure 

5.2).   
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Figure 5.1. Data trends - yearly trend in foodborne salmonellosis case numbers (1998–

2017) included in our study. Error bars indicate standard error and the trend line is 

calculated by simple two-period moving averages method. 
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Figure 5.2. Histogram depicting trends in foodborne salmonellosis illness cases per 

outbreak included in our study. A majority of the outbreaks included in our study had a 

small number of overall reported case numbers (n < 20), with some outlier outbreaks with 

> 60 reported illnesses, representing a skewed distribution of discrete values that are 

generally handled using count models. 

 

The Salmonella pan genome serves as the raw dataset to identify important gene 

predictor variables. Whole genome sequences across the included Salmonella enterica 

serovars (and matching the time frame of salmonellosis outbreaks) were sampled from the 

NCBI Pathogen Detection web server. Isolates were selected from across a number of 

human, animal, and environmental isolation sources to account for genetic recombination, 

and directionality and timing of evolutionary changes within and among serovars (Grad & 

Lipsitch, 2014). Short reads for each isolate were assembled and annotated on the PATRIC 

web server for homogeneity. The final Salmonella pan-genome, composed of 18,520 

annotated genes, was created from the annotated sequences using settings similar to that 

employed by Roary (Page et al., 2015), with further restrictions (as described in section 

2.2.2) to obtain interpretable model results. 

 

 A preliminary comparison of month-wise outbreak trends with the most impactful 

meteorological data (temperature and precipitation) revealed that the highest temperatures 

(summer months – June–August; Figure 5.3.) and months with highest rainfall (and 
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consequently, highest precipitation in spring and early fall; Figure 5.4.) were correlated 

with increased salmonellosis case numbers. 

 

Figure 5.3. Monthly trend in salmonellosis cases (included in our study) and mean 

temperature. Solid black line indicates the monthly trend in salmonellosis cases, dotted 

black line indicates a simple 2-point moving averages trend line, error bars indicate 

standard error, and the grey line indicates the monthly average temperature. 
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Figure 5.4. Monthly trend in salmonellosis cases (included in our study) and mean 

precipitation. Solid black line indicates the monthly trend in salmonellosis cases, dotted 

black line indicates a simple 2-point moving averages trend line, error bars indicate 

standard error, and the grey line indicates the monthly average precipitation. 

 

5.4.2. Machine learning-based identification of genes informative to Salmonella 

outbreak prediction model 

 Of the 18,520 genes comprising our Salmonella pan-genome, the best-fit Elastic 

Net model ( value = 0.500 and  penalty = 2.18399) selected by 10-fold cross validation, 

which helps in choosing the model that minimizes the cross-validation function (Figure 

5.5), identified 53 distinct, non-zero genes that were most informative to the model (Table 

5.1). The functionality of these genes ranged from adhesion and invasion to temperature 

stress response and bacterial metabolism. Of note, 13 of the selected significant genes 

coded for bacterial phage proteins. 
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Figure 5.5. Best-fit Elastic Net cross-validation plot and coefficient path. 
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Table 5.1. Important genes identified by the best-fit Elastic Net model. 

Gene name Function Reference 

TnpA transposase  Sets threshold for activation of Salmonella pathogenicity island 

(SPI1) effector proteins, thereby impacting bacterial virulence. 

Ellis, Trussler, Charles, & 

Maniford (2017) 

Iron-sulfur cluster assembly 

protein SufD  

Oxidative stress response through the formation and protection of 

iron-sulfur clusters. 

Saini, Mapolelo, Chahal, 

Johnson, & Outten (2010) 

Conjugative transfer protein 123  Spreading of mobile genetic elements (transposons, plasmids, etc.) 

among bacteria – indicative of horizontal gene transmission. 

Zatyka & Thomas (1998) 

Replication protein Involved in biochemical pathway allowing for interaction between 

Salmonella and E. coli. 

Maurer, Osmond, 

Shekhtman, Wong, & 

Botstein (1984) 

Phototransferase system (PTS), 

D-glucosaminate-specific IIA 

component (EC 2.7.1.203)  

Found only in bacteria, catalyzes transport and phosphorylation of 

many monosaccharides, disaccharides, and sugar derivatives such 

as amino sugars. 

Deletion of this gene could result in inefficient utilization of 

glucose and glycerol during invasion of host systems. 

Deutscher, Francke, & 

Postma (2006); Zhi et al. 

(2020) 

PTS – IIB component (EC 

2.7.1.203) 

Oxaloacetate decarboxylase 

Na(+) pump, alpha chain (EC 

4.1.1.3)  

Involved in bacterial growth and survival Liu et al. (2013) 

Beta chain (EC 4.1.1.3) 

Secreted effector protein SteA  Salmonella virulence – suppression of host inflammatory response. Gulati, Shukla, & 

Mukhopadhyaya (2019) 

Phage lysozyme R (EC 3.2.1.17)  Lytic transglycosidases Holtje, Mirelman, Sharon, 

& Schwarz (1975) 
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Two-component transcriptional 

response regulator BtsR  

Together with YpdA/YpdB, balances physiological state of cells 

within the population via nutrient uptake. 

Vilhena et al. (2018) 

Uncharacterized protein YciW  L-cysteine and L-methionine metabolism. Kawane et al. (2014) 

Phage tail fiber protein GpH  Potential horizontal transmission from Yersinia pestis, with 

putative receptive binding function. 

Born, Braun, Scholz, & 

Grass (2020) 

Large repetitive protein  Putative adhesin during initial cell surface interactions, highly 

specific to Salmonella. 

Danckert, Hoppe,  Bier, & 

von Nickisch-Rosenegk 

(2014) 

Copper/silver efflux RND 

transporter, transmembrane 

protein CusA   

Protein in the cus operon of the Copper Homeostasis and Silver 

Resistance Island (CHASRI) mobile element, which allows for 

protection under copper-mediated stress under aerobic, anaerobic, 

and facultative anaerobic conditions. 

Haendiges, Brown, 

Tikekar, & Hoffmann,  

Fructokinase (EC 2.7.1.4)  Potentially assists in Salmonella growth in presence of fructose and 

absence of phosphorylation. 

Postma & Stock (1980) 

Phage protein Ogr  Late gene expression function in SopEΦ phage that encodes 

virulence protein SopE. 

Pelludat, Mirold, & Hardt 

(2003) 

Phage tail tip, host specificity 

protein J   

Potential presence of adhesion proteins that help in host 

recognition. 

Dunne et al. (2018) 

Cobalamin synthase (EC 

2.7.8.26)   

Required for synthesis of cobalamin, which in turn is used by 

Salmonella to uptake B12, required for anaerobiosis, especially 

during infected host systems.  

Paiva, Penha Filho, Junior 

& Lemos (2011) 

Aminoglycoside 3''-

nucleotidyltransferase, AadA 

family (EC 2.7.7.-)   

Involved in streptomycin stress response Singh, Drolia, Bai, & 

Bhunia (2015) 

RNA polymerase sigma factor 

RpoS  

Stress sigma factor, required for Salmonella survival under 

starvation and stress conditions. 

Nickerson & Curtiss 

(1997) 



 

112 

 

IncF plasmid conjugative 

transfer protein TraD  

Pilus extension, pilus retraction, formation of stable mating pairs, 

and formation of lumen through which plasmid transfer occurs. 

Frost, Ippen-Ihler, & 

Skurray (1994) 

TolA protein Virulence, membrane integrity, lipopolysaccharide production, and 

bile and serum resistance. 

Paterson et al. (2009) 

Salmonella enterica serovar 

Choleraesuis 50k virulence 

plasmid DNA   

N/A   - 

Mobile element protein   N/A - 

SbmA protein Inner membrane protein in Gram-negative bacteria involved in 

internalization of glycopeptides and prokaryotic and eukaryotic 

antimicrobial peptides.  

Runti et al. (2013) 

Phage tail protein GpU   Potential Mg(II)-mediated oligomerization and biological function. Edmonds et al. (2007) 

Phage integrase   Helps delineate Salmonella diversity; Mediate unidirectional site-

specific recombination between two DNA recognition sequences. 

Groth & Calos (2004); 

Colavecchio et al. (2017) 

Rep protein    N/A  

Phage baseplate assembly 

protein GpV  

Phage spike protein. Buttner et al. (2016) 

HTH-type transcriptional 

regulator MlrA  

Regulatory protein that binds to large intergenic region upstream of 

the csgD promoter to modulate gene expression in response to 

changing environmental stimuli. 

Gerstel, Park, & Römling 

(2003); Shen & Fang 

(2012) 

L-carnitine/gamma-

butyrobetaine antiporter 

Exchanger for l-carnitine and γ-butyrobetaine. Jung et al. (2002) 

Type III secretion spans 

bacterial envelope protein 

(YscO)   

Required for high-level expression and secretion of V antigen and 

Yops. 

Virulence type III export chaperone ortholog of InvI, with effector 

delivery (to host) function 

Payne & Straley (1998); 

Evans & Hughes (2009) 
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Type III secretion and flagellar 

regulator RtsA  

Belonging to Salmonella pathogenicity island 1 (SPI1), encoding a 

type III secretion system (T3SS) required for invasion of epithelial 

cells. 

Ellermeier & Slauch 

(2003) 

Uncharacterized J domain-

containing protein YbeV    

N/A - 

ADP-ribose pyrophosphatase of 

COG1058 family (EC 3.6.1.13) / 

Nicotinamide-nucleotide 

amidase paralog YfaY 

N/A 

 

- 

Transcriptional regulator 

STM2275, GntR family  

Transcriptional regulator that controls a variety of cellular 

processes such as cell motility, glucose metabolism, bacterial 

resistance, pathogenesis and virulence. 

Li, Wang, Su & Lu (2021) 

Uncharacterized major 

facilitator superfamily (MFS)-

type transporter  

Multidrug efflux pump, which can extrude compounds like 

metabolites, quorum-sensing molecules, and virulence factors, with 

a large spectrum of substrate specificities. 

Pasqua et al. (2019) 

Methionine ABC transporter 

permease protein  

Biological transport Interpro (2021) 

Multidrug efflux system 

MdtABC-TolC, inner-

membrane proton/drug 

antiporter MdtC (RND type)  

Extrusion of substrates such as novobiocin, bile salts, quinolones, 

fosfomycin, detergents, zinc, and myricetin. 

Anes, McCusker, Fanning, 

& Martins (2015) 

Phage activator protein cII   Transcriptional activation. Obuchowski et al. (1997) 

DNA-damage-inducible protein 

I   

Cold adaption. Smith, Arany, Orrego & 

Eisenstadt (1997) 

tRNA-(ms[2]io[6]A)-

hydroxylase (MiaE)  

Di-iron binding domain (MiaE) - 
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Tn21 protein of unknown 

function Urf2   

N/A  

ABC transporter, permease 

protein STM1634 (cluster 3, 

basic aa/glutamine/opines)   

Indispensable for transport of solutes across biological membrane 

and ATP hydrolysis function.  

Schneider & Hunke (1998) 

Phage tail fiber, side tail fiber 

protein Stf  

Host recognition and important effectors during the infection 

process. 

Andres, Baxa, Hanke, 

Seckler, & Barbirz (2010) 

Phage tail fiber assembly protein 

GpG   

Phage protein   

Resolvase   Nucleases involved in genetic recombination. Massey, Boew, Sheehan, 

Dougan & Dorman (2000) 

Zinc binding domain / DNA 

primase (EC 2.7.7.-) Phage P4-

associated / Replicative helicase 

RepA  

Virulence plasmid. Rychlik, Gregorova, & 

Hradecka (2006) 

FIL protein     Filamentation. Uniprot (2017) 

Phage replication protein GpB   DNA replication and packaging. Fane et al. (2006) 

Phage replication protein GpA, 

endonuclease 

N/A – not available 
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5.4.3. Poisson regression model outcome 

Poisson regression models were developed using a matrix of predictor variables 

comprising genes and meteorological data (and a combinations of these factors). The 

Poisson model was selected primarily because our outcome variable (illness case numbers) 

is a numeric count with a limited range compared to a continuous variable (Chesaniuk, 

2021). Here, we can interpret the model coefficients as follows: for a one unit change in 

the predictor variable (x1), the difference in log of expected case numbers changes by the 

corresponding regression coefficient (β1). A simple means of explaining the results of such 

a model would be that, a positive coefficient indicates an increase in the predicted value of 

the response variable (salmonellosis illness/case numbers) with an increase in value of the 

predictor variable, whereas a negative coefficient implies a decrease in the predicted 

response variable with an increase in the value of the predictor variable. 

The baseline Poisson regression model identified 28 Salmonella genes that were 

significant in predicting salmonellosis case numbers at p < 0.05 and 5 that were significant 

at p < 0.10 (Table 5.2). The model containing these 33 predictors showed a significant 

improvement and fit over the null model (Likelihood ratio χ2 statistic = 4604.21; pseudo 

R2 = 0.5357; probability > χ2 = 0.0000). The weighted genes varied in functionality from 

metabolism (antiporters, efflux pump-related, ion transport-related, transcriptional 

regulators), survival (e.g. replication protein), virulence (phage proteins), and stress 

response (iron sulfur cluster assembly protein, for example). Of note is that a majority of 

predictor variables that negatively impacted the outcome were associated with bacterial 

metabolism.  
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Table 5.2. Baseline Poisson regression model coefficients. 

Predictor variable Coefficient Standard 

error 

z P>z [95% confidence 

interval] 

Iron-sulfur cluster assembly protein SufD 28.01664 6.891953 4.07 0 14.47036 41.56293 

Replication protein 27.246 7.898414 3.45 0.001 11.72149 42.77051 

PTS system D-glucosaminate-specific IIA component (EC 

2.7.1.203) 

33.38321 6.588831 5.07 0 20.43271 46.3337 

Oxaloacetate decarboxylase Na(+) pump  alpha chain (EC 

4.1.1.3) 

-10.6636 4.13916 -2.58 0.01 -18.7992 -2.528 

Secreted effector protein SteA 48.02776 5.872315 8.18 0 36.4856 59.56992 

Phage lysozyme R (EC 3.2.1.17) -10.9388 4.016991 -2.72 0.007 -18.8342 -3.04327 

Two-component transcriptional response regulator BtsR 15.31843 4.756487 3.22 0.001 5.969454 24.66741 

Uncharacterized protein YciW 25.77064 5.295008 4.87 0 15.36319 36.1781 

Large repetitive protein -5.58476 2.869412 -1.95 0.052* -11.2247 0.05513 

Copper/silver efflux RND transporter  transmembrane protein 

CusA 

4.673564 2.556099 1.83 0.068* -0.3505 9.697633 

PTS system ascorbate-specific IIC component 10.75809 3.805999 2.83 0.005 3.277311 18.23886 

Phage tail tip  host specificity protein J  8.521956 3.662542 2.33 0.02 1.323149 15.72076 

Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3) 

11.03298 4.310288 2.56 0.011 2.561012 19.50495 

Phage tail fiber protein GpH -13.5206 4.676838 -2.89 0.004 -22.713 -4.32816 

IncF plasmid conjugative transfer protein TraP 18.70792 9.034205 2.07 0.039 0.95099 36.46485 

TolA protein 10.50026 4.994796 2.1 0.036 0.682878 20.31764 

SbmA protein 40.63866 8.477824 4.79 0 23.97531 57.30201 

Rep protein 12.78836 6.803667 1.88 0.061* -0.58439 26.16112 
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IncF plasmid conjugative transfer protein TraD 15.53458 6.889965 2.25 0.025 1.992205 29.07696 

HTH-type transcriptional regulator MlrA     22.73903 5.480819 4.15 0 11.96636 33.5117 

L-carnitine/gamma-butyrobetaine antiporter 29.93934 6.410017 4.67 0 17.34031 42.53837 

Type III secretion spans bacterial envelope protein (YscO) -3.41751 1.29988 -2.63 0.009 -5.97245 -0.86257 

ADP-ribose pyrophosphatase of COG1058 family (EC 

3.6.1.13) 

-19.3482 6.497515 -2.98 0.003 -32.1192 -6.5772 

Methionine ABC transporter permease protein -15.5589 7.862062 -1.98 0.048 -31.0119 -0.10579 

PTS system D-glucosaminate-specific IIA component (EC 

2.7.1.203) 

-4.09485 2.194291 -1.87 0.063* -8.40777 0.218082 

Multidrug efflux system MdtABC-TolC inner-membrane 

proton/drug antiporter MdtC (RND type) 

-20.5966 9.031413 -2.28 0.023 -38.348 -2.84515 

ABC transporter  permease protein STM1634 (cluster 3 basic 

aa/glutamine/opines)   

2.031516 0.986939 2.06 0.04 0.091667 3.971366 

inhibits host DNA replication  6.708811 2.776113 2.42 0.016 1.2523 12.16532 

Phage tail fiber side tail fiber protein Stf 7.215132 4.295992 1.68 0.094* -1.22874 15.659 

Phage tail fiber assembly protein GpG 20.62922 8.136763 2.54 0.012 4.636236 36.62221 

Phage replication protein GpB 29.05992 12.73747 2.28 0.023 4.024143 54.0957 

Phage replication protein GpA endonuclease  -38.1249 13.51386 -2.82 0.005 -64.6867 -11.5631 

Mobile element protein 9.907769 2.68062 3.7 0 4.63895 15.17659 

Constant 72.14902 15.7775 4.57 0 41.13801 103.16 

Data for variables that did not pass the threshold for significance, or which were automatically omitted by the model, not included 

herein. 

P values indicated with * are significant at α = 90%. All other significant observations are significant at α = 95%. 
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The final Poisson regression model (no lag) with monthly average mean daily 

temperature, monthly average mean precipitation, and monthly average snowfall identified 

125 predictor terms that were significant (at p < 0.10 (n = 8) or 0.05 (n = 117)) in predicting 

the outcome variable. These terms included 45 gene only predictors, each of the 3 

meteorological predictor covariates, and 79 gene-meteorological interaction terms (Table 

5.3). The model containing these 127 predictors showed a significant improvement and fit 

over the null and baseline models (Likelihood ratio χ2 statistic = 5748.22; pseudo R2 = 

0.6688; probability > χ2 = 0.0000). We observed that a number of gene predictors that were 

dropped by the baseline model as not significantly associated with outcome prediction were 

included in this model, indicating the significance of the joint impact of meteorological 

stressors and bacterial gene composition on the severity of outbreaks (as typified by case 

numbers).  

 

Although the two-month lag model also showed a significant improvement in fit 

compared to the null and baseline models, it only identified 63 significant individual and 

mixed effect predictors, dropping important covariates like mean average daily temperature 

and mean average daily precipitation. Moreover, the coefficients (and their relationship to 

the outcome) of the remaining covariates more or less corresponded to the no-lag model 

(with the notable exception of SteA; data not included). Thus, the results of this model were 

dropped from further consideration. 
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Table 5.3. Poisson regression coefficients for multi-variable Poisson regression. Presence/absence of genes identified as significant by 

the Elastic Net model were input along with the standardized covariates monthly mean average daily temperature (tavg, in °F), 

monthly mean precipitation (prcp, in inches), and monthly mean snow cover (snow, in inches). 

Significant predictor variables Coefficient Standard 

error 

z P>z [95% confidence 

interval] 

 

Individual effect (gene or meteorological factor only) 

 

TnpA transposase -4.24205 0.774781 -5.48 0 -5.76059 -2.7235 

Iron-sulfur cluster assembly protein SufD 1.681351 0.281515 5.97 0 1.129592 2.23311 

Conjugative transfer protein 123  2.26942 1.234303 1.84 0.066* -0.14977 4.68861 

PTS system  D-glucosaminate-specific IIA component (EC 

2.7.1.203) 

0.472935 0.200257 2.36 0.018 0.08044 0.865431 

Secreted effector protein SteA 1178.586 422.1747 2.79 0.005 351.1385 2006.033 

Phage lysozyme R (EC 3.2.1.17) -1.96364 0.330304 -5.94 0 -2.61103 -1.31626 

Two-component transcriptional response regulator BtsR 1.401105 0.181993 7.7 0 1.044405 1.757805 

Uncharacterized protein YciW 0.342621 0.169996 2.02 0.044 0.009435 0.675807 

Fructokinase (EC 2.7.1.4) -20.6446 5.038915 -4.1 0 -30.5207 -10.7685 

Phage protein Ogr 1.076102 0.692009 1.56 0.12 -0.28021 2.432414 

PTS system  ascorbate-specific IIC component 1.45159 0.864899 1.68 0.093* -0.24358 3.146761 

Phage tail tip host specificity protein J  1.624397 0.658393 2.47 0.014 0.333971 2.914824 

RNA polymerase sigma factor RpoS 1.493614 0.501178 2.98 0.003 0.511322 2.475905 

IncF plasmid conjugative transfer protein TraP 0.741612 0.220333 3.37 0.001 0.309768 1.173456 
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TolA protein 2.054254 0.428836 4.79 0 1.213751 2.894757 

SbmA protein 5.159942 0.737322 7 0 3.714817 6.605067 

Phage tail protein GpU 9.279699 2.714573 3.42 0.001 3.959234 14.60016 

Phage tail fiber protein GpH 140.9729 18.1362 7.77 0 105.4266 176.5192 

Rep protein -7.31411 1.011574 -7.23 0 -9.29676 -5.33146 

IncF plasmid conjugative transfer protein TraD 1.908935 0.637275 3 0.003 0.6599 3.15797 

Phage baseplate assembly protein GpV -8.76387 2.61576 -3.35 0.001 -13.8907 -3.63707 

HTH-type transcriptional regulator MlrA     1.343493 0.383769 3.5 0 0.591319 2.095667 

L-carnitine/gamma-butyrobetaine antiporter 25.93318 15.80572 1.64 0.101* -5.04548 56.91183 

Type III secretion spans bacterial envelope protein (YscO) -0.74477 0.202041 -3.69 0 -1.14077 -0.34878 

Type III secretion and flagellar regulator RtsA -0.87805 0.497011 -1.77 0.077* -1.85218 0.096069 

Uncharacterized J domain-containing protein YbeV 268.0571 95.46974 2.81 0.005 80.93987 455.1744 

ADP-ribose pyrophosphatase of COG1058 family (EC 

3.6.1.13) 

-35.2471 5.016747 -7.03 0 -45.0798 -25.4145 

Transcriptional regulator STM2275  GntR family 4.146038 1.159361 3.58 0 1.873731 6.418344 

Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => 

ANT(3'')-Ia (AadA family); ANT(9)-I 

136.1866 49.16544 2.77 0.006 39.82414 232.5491 

Multidrug efflux system MdtABC-TolC  inner-membrane 

proton/drug antiporter MdtC (RND type) 

-1.44521 0.230433 -6.27 0 -1.89685 -0.99357 

Phage integrase  0.474894 0.179422 2.65 0.008 0.123233 0.826554 

Phage activator protein cII 1.050271 0.333611 3.15 0.002 0.396407 1.704136 

DNA-damage-inducible protein I -0.71886 0.292764 -2.46 0.014 -1.29267 -0.14505 

ABC transporter  permease protein STM1634 (cluster 3  basic 

aa/glutamine/opines)   

-0.96144 0.178365 -5.39 0 -1.31103 -0.61185 

Phage tail fiber  side tail fiber protein Stf 14.19948 1.549145 9.17 0 11.16321 17.23575 
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Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3)  

-0.54206 0.287737 -1.88 0.06 -1.10602 0.021891 

Phage activator protein cII -1.50948 0.486527 -3.1 0.002 -2.46306 -0.5559 

Phage protein 1.440505 0.450688 3.2 0.001 0.557172 2.323837 

Resolvase 1.599016 0.802224 1.99 0.046 0.026687 3.171346 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA   

9.330222 0.949352 9.83 0 7.469527 11.19092 

Oxaloacetate decarboxylase Na(+) pump  alpha chain (EC 

4.1.1.3)  

1.930903 0.590861 3.27 0.001 0.772838 3.088968 

FIL protein -8.39159 3.500809 -2.4 0.017 -15.2531 -1.53013 

Phage replication protein GpB -114.636 46.17484 -2.48 0.013 -205.137 -24.1348 

Phage replication protein GpA endonuclease 122.9997 45.98945 2.67 0.007 32.86203 213.1374 

Mobile element protein -1.15607 0.523836 -2.21 0.027 -2.18277 -0.12937 

Tavg -14.5395 4.47902 -3.25 0.001 -23.3182 -5.76077 

Prcp 4.655756 1.668996 2.79 0.005 1.384584 7.926927 

Snow 0.124827 0.035906 3.48 0.001 0.054452 0.195202 

 

Gene-meteorological factor interaction effects 

 

Iron-sulfur cluster assembly protein SufD*tavg -0.05214 0.020777 -2.51 0.012 -0.09286 -0.01142 

Conjugative transfer protein 123*tavg -1.33849 0.5176 -2.59 0.01 -2.35297 -0.32401 

PTS system  D-glucosaminate-specific IIA component (EC 

2.7.1.203)*tavg 

0.116912 0.037725 3.1 0.002 0.042973 0.190851 

Secreted effector protein SteA*tavg -52.5854 18.76711 -2.8 0.005 -89.3682 -15.8025 

Uncharacterized protein YciW*tavg 0.062993 0.011097 5.68 0 0.041243 0.084742 

Large repetitive protein*tavg -0.08067 0.023613 -3.42 0.001 -0.12695 -0.03439 
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Copper/silver efflux RND transporter transmembrane protein 

CusA*tavg 

-0.13928 0.032813 -4.24 0 -0.2036 -0.07497 

Oxaloacetate decarboxylase Na(+) pump alpha chain (EC 

4.1.1.3)*tavg 

0.06511 0.026838 2.43 0.015 0.012509 0.117711 

Fructokinase (EC 2.7.1.4)*tavg 17.74434 6.26332 2.83 0.005 5.468461 30.02022 

Phage protein Ogr*tavg -0.34707 0.177876 -1.95 0.051* -0.6957 0.001565 

PTS system  ascorbate-specific IIC component*tavg -0.32484 0.100093 -3.25 0.001 -0.52102 -0.12867 

Phage tail tip  host specificity protein J*tavg -0.13404 0.042579 -3.15 0.002 -0.21749 -0.05058 

Cobalamin synthase (EC 2.7.8.26)*tavg 0.183903 0.067219 2.74 0.006 0.052156 0.31565 

TolA protein*tavg 0.074754 0.024308 3.08 0.002 0.027111 0.122398 

Phage tail fiber protein GpH*tavg -0.05204 0.023564 -2.21 0.027 -0.09822 -0.00586 

Phage tail protein GpU*tavg -0.88777 0.199956 -4.44 0 -1.27968 -0.49587 

Mobile element protein*tavg -0.55117 0.112759 -4.89 0 -0.77217 -0.33017 

IncF plasmid conjugative transfer protein TraD*tavg 0.628332 0.223032 2.82 0.005 0.191196 1.065467 

Phage baseplate assembly protein GpV*tavg 1.188794 0.360594 3.3 0.001 0.482042 1.895545 

Uncharacterized J domain-containing protein YbeV*tavg 4.236758 1.532786 2.76 0.006 1.232552 7.240964 

ADP-ribose pyrophosphatase of COG1058 family (EC 

3.6.1.13)*tavg 

2.558907 0.390711 6.55 0 1.793127 3.324687 

Transcriptional regulator STM2275  GntR family*tavg -0.16095 0.044063 -3.65 0 -0.24731 -0.07459 

Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => 

ANT(3'')-Ia (AadA family); ANT(9)-I*tavg 

8.074298 2.95607 2.73 0.006 2.280507 13.86809 

Phage integrase*tavg -0.02751 0.011759 -2.34 0.019 -0.05056 -0.00446 

Phage activator protein cII*tavg -0.07942 0.020528 -3.87 0 -0.11965 -0.03918 

DNA-damage-inducible protein I*tavg 0.073154 0.016927 4.32 0 0.039977 0.106331 

Tn21 protein of unknown function Urf2*tavg 0.066194 0.018991 3.49 0 0.028971 0.103416 
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ABC transporter  permease protein STM1634 (cluster 3  basic 

aa/glutamine/opines)*tavg 

0.078788 0.009355 8.42 0 0.060453 0.097122 

Phage tail fiber  side tail fiber protein Stf*tavg -0.99623 0.108582 -9.17 0 -1.20905 -0.78341 

Phage activator protein cII*tavg 0.069115 0.039959 1.73 0.084* -0.0092 0.147432 

Resolvase*tavg 0.58649 0.111544 5.26 0 0.367867 0.805113 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA*tavg 

-0.6919 0.073709 -9.39 0 -0.83636 -0.54743 

Conjugative transfer protein 123*prcp 0.146314 0.057701 2.54 0.011 0.033222 0.259406 

Secreted effector protein SteA*prcp -18.0371 6.515214 -2.77 0.006 -30.8067 -5.26754 

Copper/silver efflux RND transporter transmembrane protein 

CusA*prcp 

0.020353 0.003022 6.73 0 0.014429 0.026276 

Oxaloacetate decarboxylase Na(+) pump alpha chain (EC 

4.1.1.3)*prcp 

-0.01043 0.004412 -2.36 0.018 -0.01908 -0.00178 

Fructokinase (EC 2.7.1.4)*prcp -2.72804 0.978749 -2.79 0.005 -4.64635 -0.80973 

PTS system  ascorbate-specific IIC component*prcp 0.032766 0.010782 3.04 0.002 0.011633 0.053898 

Cobalamin synthase (EC 2.7.8.26)*prcp -0.02309 0.005223 -4.42 0 -0.03333 -0.01286 

Oxaloacetate decarboxylase Na(+) pump beta chain (EC 

4.1.1.3)*prcp 

0.042143 0.005954 7.08 0 0.030474 0.053812 

Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => 

ANT(3'')-Ia (AadA family); ANT(9)-I*prcp 

0.009526 0.004561 2.09 0.037 0.000587 0.018465 

TolA protein*prcp -0.02852 0.005031 -5.67 0 -0.03838 -0.01866 

Phage integrase*prcp -0.02598 0.011609 -2.24 0.025 -0.04874 -0.00323 

Type III secretion and flagellar regulator RtsA*prcp 0.006916 0.00275 2.51 0.012 0.001526 0.012307 

Uncharacterized J domain-containing protein YbeV*prcp -3.10552 1.107264 -2.8 0.005 -5.27571 -0.93532 

Transcriptional regulator STM2275  GntR family*prcp -0.01364 0.005098 -2.67 0.007 -0.02363 -0.00364 

Uncharacterized MFS-type transporter*prcp 0.011674 0.004931 2.37 0.018 0.002009 0.021339 



 

124 

 

PTS system  D-glucosaminate-specific IIA component (EC 

2.7.1.203)*prcp 

0.005396 0.002515 2.15 0.032 0.000466 0.010326 

tRNA-(ms[2]io[6]A)-hydroxylase (MiaE)*prcp -0.00374 0.001347 -2.78 0.006 -0.00638 -0.0011 

Tn21 protein of unknown function Urf2*prcp -0.00756 0.002201 -3.44 0.001 -0.01188 -0.00325 

Phage tail fiber  side tail fiber protein Stf*prcp -0.10854 0.012485 -8.69 0 -0.13301 -0.08407 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA*prcp 

0.040433 0.005659 7.14 0 0.029341 0.051525 

FIL protein*prcp 0.057762 0.015416 3.75 0 0.027547 0.087977 

Phage replication protein GpB*prcp -0.04512 0.015057 -3 0.003 -0.07464 -0.01561 

Conjugative transfer protein 123*snow -0.05152 0.020964 -2.46 0.014 -0.09261 -0.01043 

Phage tail fiber protein GpH*snow -0.00324 0.001211 -2.68 0.007 -0.00561 -0.00087 

Large repetitive protein*snow -0.00601 0.001517 -3.96 0 -0.00898 -0.00304 

Copper/silver efflux RND transporter transmembrane protein 

CusA*snow 

-0.01487 0.003705 -4.01 0 -0.02213 -0.00761 

Fructokinase (EC 2.7.1.4)*snow 0.976185 0.336255 2.9 0.004 0.317137 1.635233 

Phage protein Ogr*snow -0.00667 0.002224 -3 0.003 -0.01103 -0.00231 

PTS system  ascorbate-specific IIC component*snow -0.04662 0.015005 -3.11 0.002 -0.07603 -0.01721 

Phage tail tip host specificity protein J*snow 0.003887 0.002257 1.72 0.085* -0.00054 0.00831 

Phage integrase*snow -0.02156 0.00385 -5.6 0 -0.0291 -0.01401 

Type III secretion spans bacterial envelope protein 

(YscO)*snow 

0.004681 0.0012 3.9 0 0.002328 0.007034 

Uncharacterized J domain-containing protein YbeV*snow 0.010743 0.003605 2.98 0.003 0.003677 0.01781 

Transcriptional regulator STM2275  GntR family*snow -0.01245 0.003713 -3.35 0.001 -0.01972 -0.00517 

Uncharacterized MFS-type transporter*snow -0.01828 0.007975 -2.29 0.022 -0.03391 -0.00265 

PTS system  D-glucosaminate-specific IIA component (EC 

2.7.1.203)*snow 

-0.01652 0.00356 -4.64 0 -0.02349 -0.00954 
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Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => 

ANT(3'')-Ia (AadA family); ANT(9)-I*snow 

-0.09406 0.035315 -2.66 0.008 -0.16327 -0.02484 

DNA-damage-inducible protein I*snow 0.006397 0.001231 5.2 0 0.003985 0.008809 

Tn21 protein of unknown function Urf2*snow 0.004971 0.001707 2.91 0.004 0.001626 0.008317 

ABC transporter  permease protein STM1634 (cluster 3  basic 

aa/glutamine/opines)*snow  

0.00568 0.000893 6.36 0 0.003929 0.007431 

Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3)*snow 

0.003524 0.001564 2.25 0.024 0.000458 0.006589 

Phage activator protein cII*snow 0.010357 0.003427 3.02 0.003 0.00364 0.017074 

Phage protein*snow -0.00533 0.003119 -1.71 0.088* -0.01144 0.000785 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA*snow 

-0.06416 0.007295 -8.79 0 -0.07845 -0.04986 

FIL protein*snow 0.049875 0.03015 1.65 0.098* -0.00922 0.108969 

Phage replication protein GpB*snow -0.06796 0.029887 -2.27 0.023 -0.12654 -0.00938 

Mobile element protein*snow 0.017178 0.006452 2.66 0.008 0.004532 0.029824 

Constant -371.006 144.9256 -2.56 0.01 -655.055 -86.9568 

Data for variables that did not pass the threshold for significance, or which were automatically omitted by the model, not included 

herein. 

P values indicated with * are significant at α = 90%. All other significant observations are significant at α = 95%. 
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5.4.4. Negative binomial regression model outcome 

 The negative binomial model, a variant of a Poisson regression model was 

developed similar to the Poisson model, using significant gene presence/absence and 

meteorological factors as covariates. The negative binomial regression model was used to 

loosen the restrictions set by a Poisson model (mean = variance). We found that the 

negative binomial model did not perform as well as the Poisson regression in fitting the 

data. The mixed negative binomial model, using all covariates and interaction terms did 

not show a good improvement over the null model (χ2 statistic = 912.44; Pseudo R2 = 

0.2442; probability > χ2  = 0.0000). Moreover, we observed that the covariates ‘mean 

average daily temperature’ and ‘mean precipitation’ did not significantly impact the model 

(Table 5.4). Thus, the results of this model were dropped from further consideration. 
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Table 5.4. Negative binomial regression coefficients for multi-variable regression. Presence/absence of genes identified as significant 

by the Elastic Net model were input along with the standardized covariates monthly mean average daily temperature (tavg, in °F), 

monthly mean precipitation (prcp, in inches), and monthly mean snow cover (snow, in inches). 

Predictor variables Coefficient Standard 

error 

z P > z [95% confidence 

interval] 

 

Individual effect (gene or meteorological factor only) 

 

TnpA transposase 6.350179 3.259748 1.95 0.051* -0.03881 12.73917 

Iron-sulfur cluster assembly protein SufD 0.906526 0.367715 2.47 0.014 0.185818 1.627233 

Replication protein 6.724287 3.396197 1.98 0.048 0.067864 13.38071 

PTS system  D-glucosaminate-specific IIA component (EC 

2.7.1.203) 

0.847904 0.301911 2.81 0.005 0.256168 1.439639 

Phage lysozyme R (EC 3.2.1.17) -1.29812 0.436763 -2.97 0.003 -2.15416 -0.44208 

Two-component transcriptional response regulator BtsR 1.239956 0.186895 6.63 0 0.873648 1.606264 

Phage tail fiber protein GpH -0.61126 0.283359 -2.16 0.031 -1.16664 -0.05589 

Large repetitive protein -1.48541 0.580664 -2.56 0.011 -2.62349 -0.34733 

Phage protein Ogr -3.77682 1.003906 -3.76 0 -5.74444 -1.8092 

Phage tail tip  host specificity protein J  3.969457 0.890443 4.46 0 2.224221 5.714693 

Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3) 

10.99693 4.53113 2.43 0.015 2.116079 19.87778 

IncF plasmid conjugative transfer protein TraP 1.55751 0.305619 5.1 0 0.958509 2.156512 

Mobile element protein  -9.02398 3.478404 -2.59 0.009 -15.8415 -2.20643 
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SbmA protein 2.568552 0.522142 4.92 0 1.545173 3.591932 

Rep protein 10.23198 4.57048 2.24 0.025 1.274002 19.18995 

Mobile element protein 26.07243 10.95793 2.38 0.017 4.595289 47.54957 

IncF plasmid conjugative transfer protein TraD -845.222 372.908 -2.27 0.023 -1576.11 -114.336 

HTH-type transcriptional regulator MlrA     2.109655 0.55162 3.82 0 1.0285 3.190811 

L-carnitine/gamma-butyrobetaine antiporter 2.014045 0.600934 3.35 0.001 0.836236 3.191854 

ADP-ribose pyrophosphatase of COG1058 family (EC 

3.6.1.13) 

12.58691 2.259701 5.57 0 8.157979 17.01584 

Multidrug efflux system MdtABC-TolC  inner-membrane 

proton/drug antiporter MdtC (RND type) 

-1.6171 0.324067 -4.99 0 -2.25226 -0.98194 

DNA-damage-inducible protein I 0.796208 0.348809 2.28 0.022 0.112556 1.47986 

Tn21 protein of unknown function Urf2 Type III secretion 

spans bacterial envelope protein (YscO) 

0.715662 0.304443 2.35 0.019 0.118966 1.312358 

ABC transporter  permease protein STM1634 (cluster 3  

basic aa/glutamine/opines)   

0.744915 0.177554 4.2 0 0.396915 1.092915 

Phage tail fiber  side tail fiber protein Stf 32.33057 16.73855 1.93 0.053* -0.47639 65.13753 

Resolvase -21.2964 11.64346 -1.83 0.067* -44.1172 1.524357 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA  Phage P4-associated 

8.789888 2.868127 3.06 0.002 3.168463 14.41131 

tavg 0.466526 0.30291 1.54 0.124 -0.12717 1.060219 

prcp 0.074717 0.164465 0.45 0.65 -0.24763 0.397062 

snow 0.03985 0.0206 1.93 0.053* -0.00053 0.080225 

 

Interaction effects 

 

TnpA transposase*tavg -5.17343 2.416302 -2.14 0.032 -9.9093 -0.43757 
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Phage tail fiber protein GpH*tavg -0.06262 0.022853 -2.74 0.006 -0.10741 -0.01783 

Large repetitive protein*tavg 0.080944 0.049002 1.65 0.099* -0.0151 0.176987 

Phage protein Ogr*tavg 0.86395 0.280612 3.08 0.002 0.313961 1.413939 

Phage tail tip  host specificity protein J *tavg -0.24449 0.060643 -4.03 0 -0.36335 -0.12563 

Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3)*tavg 

2.037308 0.989519 2.06 0.04 0.097887 3.976729 

Aminoglycoside 3''-nucleotidyltransferase (EC 2.7.7.-) => 

ANT(3'')-Ia (AadA family)*tavg   

-0.06018 0.036491 -1.65 0.099* -0.1317 0.011343 

TolA protein*tavg 0.158033 0.050522 3.13 0.002 0.059012 0.257055 

Mobile element protein*tavg -6.48205 2.728607 -2.38 0.018 -11.83 -1.13408 

IncF plasmid conjugative transfer protein TraD*tavg 46.00818 20.17627 2.28 0.023 6.463419 85.55293 

Phage baseplate assembly protein GpV*tavg -0.57812 0.315755 -1.83 0.067* -1.19698 0.040751 

HTH-type transcriptional regulator MlrA*tavg     0.087311 0.034408 2.54 0.011 0.019874 0.154749 

Type III secretion and flagellar regulator RtsA*tavg -0.05393 0.031872 -1.69 0.091* -0.1164 0.00854 

Phage integrase*tavg  -0.02937 0.017225 -1.7 0.088* -0.06313 0.004394 

DNA-damage-inducible protein I*tavg -0.06352 0.020778 -3.06 0.002 -0.10425 -0.0228 

tRNA-(ms[2]io[6]A)-hydroxylase (MiaE)*tavg -0.03361 0.016187 -2.08 0.038 -0.06534 -0.00189 

ABC transporter  permease protein STM1634 (cluster 3  

basic aa/glutamine/opines)*tavg   

-0.03902 0.012758 -3.06 0.002 -0.06402 -0.01401 

Phage tail fiber  side tail fiber protein Stf*tavg -1.00217 0.522355 -1.92 0.055* -2.02597 0.021625 

Resolvase*tavg 6.021522 2.869371 2.1 0.036 0.397659 11.64539 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA  Phage P4-

associated*tavg 

-0.8177 0.382217 -2.14 0.032 -1.56683 -0.06857 

Uncharacterized J domain-containing protein YbeV*tavg -0.103 0.044536 -2.31 0.021 -0.19029 -0.01572 

Secreted effector protein SteA*prcp 0.094434 0.036348 2.6 0.009 0.023193 0.165675 
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Phage tail fiber protein GpH*prcp 0.009745 0.003258 2.99 0.003 0.00336 0.01613 

Large repetitive protein*prcp -0.00813 0.003052 -2.66 0.008 -0.01411 -0.00215 

Oxaloacetate decarboxylase Na(+) pump alpha chain (EC 

4.1.1.3)*prcp 

-0.01337 0.004625 -2.89 0.004 -0.02243 -0.0043 

Cobalamin synthase (EC 2.7.8.26)*prcp -0.01207 0.003514 -3.44 0.001 -0.01896 -0.00519 

Phage tail fiber protein GpH*prcp 0.106022 0.064268 1.65 0.099* -0.01994 0.231985 

Phage integrase*prcp -0.03064 0.016849 -1.82 0.069* -0.06367 0.002381 

HTH-type transcriptional regulator MlrA*prcp     -0.01746 0.006582 -2.65 0.008 -0.03036 -0.00455 

Type III secretion and flagellar regulator RtsA*prcp 0.003708 0.002238 1.66 0.098* -0.00068 0.008095 

ADP-ribose pyrophosphatase of COG1058 family (EC 

3.6.1.13)*prcp 

-0.21986 0.033612 -6.54 0 -0.28574 -0.15398 

PTS system  IIA component - PTS system D-glucosaminate-

specific IIA component (EC 2.7.1.203)*prcp  

0.008889 0.002989 2.97 0.003 0.00303 0.014747 

Phage activator protein cII*prcp -0.0083 0.002331 -3.56 0 -0.01287 -0.00373 

DNA-damage-inducible protein I*prcp 0.007461 0.002108 3.54 0 0.00333 0.011592 

ABC transporter  permease protein STM1634 (cluster 3  

basic aa/glutamine/opines)*prcp   

0.002627 0.000744 3.53 0 0.001169 0.004085 

Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3)*prcp  

0.012045 0.002537 4.75 0 0.007071 0.017018 

Resolvase*prcp -0.02429 0.007435 -3.27 0.001 -0.03886 -0.00972 

FIL protein*prcp 0.013396 0.006395 2.09 0.036 0.000862 0.02593 

Mobile element protein*prcp 0.043004 0.007958 5.4 0 0.027407 0.058601 

Large repetitive protein*snow 0.012401 0.003546 3.5 0 0.005452 0.01935 

Oxaloacetate decarboxylase Na(+) pump alpha chain (EC 

4.1.1.3)*snow 

0.015105 0.005222 2.89 0.004 0.004869 0.02534 

Phage protein Ogr*snow 0.01511 0.003915 3.86 0 0.007438 0.022783 
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Phage tail tip  host specificity protein J*snow  -0.01283 0.003155 -4.07 0 -0.01901 -0.00665 

Cobalamin synthase (EC 2.7.8.26)*snow 0.010069 0.004247 2.37 0.018 0.001744 0.018393 

Oxaloacetate decarboxylase Na(+) pump  beta chain (EC 

4.1.1.3)*snow 

0.057655 0.024671 2.34 0.019 0.009302 0.106009 

Type III secretion and flagellar regulator RtsA*snow -0.00582 0.002826 -2.06 0.039 -0.01136 -0.00028 

Uncharacterized J domain-containing protein YbeV*snow 0.008446 0.002693 3.14 0.002 0.003167 0.013725 

Phage activator protein cII*snow 0.006826 0.001782 3.83 0 0.003332 0.010319 

DNA-damage-inducible protein I*snow -0.00746 0.001757 -4.25 0 -0.01091 -0.00402 

ABC transporter  permease protein STM1634 (cluster 3  

basic aa/glutamine/opines)*snow   

-0.00467 0.000966 -4.83 0 -0.00656 -0.00277 

Zinc binding domain / DNA primase (EC 2.7.7.-)  Phage P4-

associated / Replicative helicase RepA  Phage P4-

associated*snow 

-0.06552 0.038122 -1.72 0.086* -0.14023 0.0092 

FIL protein*snow -0.01141 0.002534 -4.5 0 -0.01638 -0.00644 

 

Constant 

 

-6.82743 

 

5.862327 

 

-1.16 

 

0.244 

 

-18.3174 

 

4.66252 

Data for variables that did not pass the threshold for significance, or which were automatically omitted by the model, not included herein 

(excluding individual meteorological factors, as applicable). 

P values indicated with * are significant at α = 90%. All other significant observations are significant at α = 95%. 
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5.5. Discussion 

Climatological and meteorological factors have been repeatedly implicated in the 

rise in incidence and impact (in terms of number of illnesses, hospitalizations, etc.) of 

illnesses caused by bacterial agents such as Salmonella enterica (Rose et al., 2001; 

Simental & Martinez-Urtaza, 2008; McMichael, 2015). Particularly, a positive association 

has been reported between diarrheal disease numbers and temperature increase (Singh et 

al., 2001). Moreover, a number of studies have indicated that factors such as increased 

temperatures and precipitation (as well as relative humidity) in the environment lead to an 

increase in environmental Salmonella presence and persistence (Akil, Ahmed & Reddy, 

2014).  

 

The bacterial genetic code holds the key to unlocking the many secrets governing 

bacterial pathogen growth, survival, proliferation, and pathogenicity. However, its 

potential is only now being realized with the advent of whole genome sequencing. 

Currently, WGS is being applied to surveillance and disease outbreak investigation, and 

identifying the key mechanisms behind pathogen virulence and survival to understand and 

control pathogens in food (Fritsch, Guillier, & Augustin, 2018; Pornsukarom, van Vliet, & 

Thakur, 2018). However, identifying the underlying trends, correlations, and relationships 

from such data adds multiple dimensions to even simple survival kinetics, necessitating 

multi-dimensional analytical considerations (Strawn et al., 2015). Thus, a primary 

consideration of researchers is to develop methods to analyze and obtain meaningful data 

from WGS, specifically in the case of preventative modeling of pathogen growth, survival, 
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and overall human health risk. Researchers are increasingly looking towards machine 

learning and advanced data analysis to overcome these issues. However, so far, the joint 

impact of a pathogen’s genetic expression and meteorological factors such as temperature 

and precipitation on the pathogen’s infectivity and outbreak severity (in terms of case 

numbers) has not been analyzed. In this project, we utilize gene presence-absence data, 

which is more readily obtainable from whole-genome sequencing, compared to gene 

abundance data, which would be a more ideal metric for effect estimation. 

 

Here, we used outbreak case numbers consolidated by outbreak area (state), month 

and year as the outcome variable, and gene expression data and meteorological variables, 

specifically state-wise mean daily temperature, mean daily precipitation, and mean 

snowfall, as predictor variables in a Poisson regression model (since the outcome variable 

is in counts). While only the most important among the large number of genetic predictors 

were selection by Elastic Net feature selection, meteorological data for each observation 

was averaged from data obtained from all weather stations in the respective state during 

the month of the outbreak, similar to the approach used by Akil, Ahmed, & Reddy (2014). 

The best-fit Poisson regression model identified a number of genes and gene-

meteorological factor interaction terms (n = 127) that significantly contributed to 

salmonellosis outbreak numbers (Table 5.3). In general, we observed that a majority of 

significant gene-only variables were positively correlated with salmonellosis case 

numbers. Among those that were negatively correlated, the gene functionality ranged from 

phage-related virulence, bacterial metabolism, and membrane transport. In sharp contrast, 
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interaction effects of a large number of phage proteins with environmental temperature 

were negatively correlated with outbreak severity, indicating that the combined effect of a 

unit increase in temperature and gene expression led to corresponding decrease in the log 

counts of outbreaks. Concurrently, we observed that the temperature-interaction effects of 

a large percentage of metabolism and cell maintenance-related proteins were positively 

correlated with outbreak severity. This is in agreement with the conclusions of Pin et al. 

(2012) and Dawoud et al. (2017), who reported an upregulation in stress-, energy 

metabolism-, and cellular mechanism-related genes in Salmonella enterica under thermal 

and other stress conditions. We also observed a positive correlation between the mean 

precipitation effect and outbreak numbers, which is in line with a prior report by Soneja et 

al. (2016). The precipitation-gene expression interaction patterns were similar to those 

observed for the temperature-gene expression effects. Interestingly, we also observed a 

positive correlation between average snowfall and outbreak numbers, which in turn could 

be correlated with the increased precipitation (Holley et al., 2008; Piekarska, 2010).  

 

We obtained some confounding results regarding the effect of temperatures on 

outbreak severity (as defined by case numbers). We observed that, for a one °F increase in 

average temperature, the difference in log of expected case numbers would be expected to 

decrease by 14.5395. While this relationship is contrary to published literature and our own 

research into the relationship between meteorological factors and outbreak trends (Figure 

4.3), that have repeatedly found a positive association between increasing temperature and 

salmonellosis incidence rates, these results are in agreement with those of Semenov, van 
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Bruggen, van Overbeek, Termorshuizen, & Semenov (2007), who reported similar 

inconsistent conclusions about temperature levels contributing to Salmonella survival. In 

essence, they found that Salmonella survival significantly declined with increasing mean 

temperatures, indicating that fixed measures of parameters such as temperature and 

precipitation need not necessarily capture the impact of fluctuating temperatures (as is 

commonly seen under natural conditions, captured by meteorological measurements) on 

the characteristics of Salmonella. We attribute these results to the discrete nature of our 

data, and to the secondary nature of our study, which make it impossible to pinpoint exact 

causal relations between the predictor and response variables.  

 

Our study has a few limitations. As in the case of most analyses pertaining to 

foodborne outbreaks, our dataset is limited by underreporting of illnesses. For example, a 

majority of illnesses may not be serious enough to warrant testing, let alone hospitalization. 

Second, since our WGS dataset is built from among isolates obtained to correlate with 

salmonellosis outbreaks, the initial pan genome dataset is not wholly representative of all 

Salmonella serovars that have caused foodborne diseases in humans. Moreover, while 

WGS can determine if a microbe is the root cause of a foodborne outbreak, a lack of defined 

thresholds regarding genetic differences and the dependency of similarity (to other isolates) 

identification on prior knowledge (from previous outbreaks, etc.) makes it difficult to 

conclusively determine the level of mutation needed to identify an isolate as truly being 

‘different.’ Finally, due to the small number of data points, meteorological factors have 

been pooled across all sampled states, since the effects of these factors taken from 
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individual state level data were not significant. Such issues necessitate field- and 

laboratory-level analyses of the changes observed in pathogens under specific conditions 

that can be observed in the environment to truly capture the genome-level effect of factors 

(such as meteorological factors) on Salmonella persistence and virulence, and 

subsequently, its effect on outbreak numbers.   

 

5.6. Conclusion 

Meteorological factors such as ambient temperature, precipitation, and humidity 

have been shown to significantly impact the incidence and severity of bacterial foodborne 

outbreaks. The increase in availability of WGS data has allowed for the rapid detection of 

bacteria to help with disease epidemiology, as well as predict disease severity based on 

presence or absence of significant genes or gene groups. Studies have also shown how 

meteorological factors specifically upregulate or downregulate the expression of specific 

bacterial genes, such as those coding for stress tolerance and bacterial metabolism. 

However, so far, there have been no studies attempting to identify the combined impact of 

bacterial gene expression and meteorological factors on outbreak severity, primarily due 

to the lack of controlled datasets and models to efficiently analyze such large datasets. 

Machine learning is a powerful tool that can be trained to identify patterns from large 

datasets that are indicative of a specific outcome. In this project, we developed multi-

variable Poisson regression models to determine the impact of Salmonella enterica genes, 

pooled (by month and year) meteorological factors, and combinations of the two, on 

Salmonella outbreak severity. We identified a large number of genes that significantly 
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impacted the outcome, specifically those coding for metabolism, cellular function, and 

stress response. Ambient temperature and precipitation also played a role (individually and 

in combination with significant genes) in predicting outcome severity. We envision this as 

the first step towards incorporating the effect of bacterial gene expression in models 

predicting bacterial foodborne outbreak severity, which are traditionally based on 

environmental and processing-related factors.  
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Chapter 6:  Summary and future studies 

 

6.1. Summary 

 Although WGS and other molecular data help delineate the specific characteristics 

of microbial and host systems under conditions encountered in the food system and under 

infection conditions, their utilization in the field of QMRA remains in its infancy. This is 

due to the vast number of variables/features introduced by such data, which traditional 

algorithmic models are unable to process effectively. Machine learning and advanced data 

analytics are novel methods that have recently entered the food safety domain. The 

applicability of these methods in predictive microbial modeling, explanatory modeling, and 

in quantitative microbial risk assessment is increasingly being explored. This project has 

identified and successfully evaluated the applicability of these novel techniques in 

microbial genomic modeling. These in turn, would be eventually incorporated in various 

stages of a molecular data-informed QMRA framework to better inform  

 

 In Chapter 3, we focused on the development of machine learning-based methods 

to analyze whole genome sequences of Salmonella enterica, and subsequently classify 

isolates based on the severity of infection in host systems. A primary obstacle towards 

utilizing gene expression datasets in microbial modeling frameworks is the non-availability 

of associated metadata and endpoint data, as well the very large number of predictors 

compared to the number of available samples. In this project, we developed a workflow to 

identify genes that significantly contributed to the model outcome using a combination of 
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Elastic Net feature selection and machine learning classification modeling. Among the four 

classification models tested, Elastic Net-regularized logistic regression with ridge proved 

to be the most accurate, with an AUC-ROC of 0.86 and high sensitivity and specificity 

values, compared to the other tested models. This is especially important, as it is easy to 

interpret the coefficients of a logistic regression, compared to other machine learning-based 

models. The best-fit logistic regression model identified a number of genes, varying in 

functionality from virulence, stress response, to bacterial metabolism, that contributed to 

different illness outcomes in the host, and could therefore be the focus of further outbreak 

severity studies.  

 

Chapter 4 focused on the development of a machine learning-based workflow to 

modulate Salmonella enterica dose response based on gene expression. In this project, we 

developed a method to directly incorporate gene expression data and machine learning 

modeling into a risk assessment framework. Multi-serovar bacterial species like 

Salmonella tend towards differing dose-response profiles in host systems. Studies have 

postulated that the genetic makeup, influenced by recombination and horizontal gene 

transmission, of each serovar could impact this differential response. In our study, we 

developed a machine learning-based weighted regression method to incorporate genes into 

a dose-response framework, using the weights of expression of genes that could be 

associated with a host response. A weighted Poisson regression was employed for this 

purpose in order to effectively deal with count data (%incidence). The cross-validated 

model identified 9 predictor variables – a majority of which coded for metabolism-related 
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functions – as contributing significantly towards model performance. Tellingly, only 

dehydrogenases and aldolases, which are responsible for bacterial survival under anaerobic 

host conditions, and contribute significantly to bacterial pathogenicity, were found to 

positively impact the dose-response. This study provides a potential means to identify and 

directly incorporate significant genetic entities (as opposed to serovar-level information) 

in refined dose-response modeling frameworks.   

 

 Chapter 5 focused on developing a machine learning-based method to identify and 

correlate genetic and meteorological factors to salmonellosis outbreak incidence and 

severity. Although previous studies have reported on a relationship between 

meteorological events (extrinsic factors) and genetic factors (intrinsic factors) on 

salmonellosis outbreak severity individually, none have analyzed or reported on the joint 

effect of these extrinsic and (microbial) intrinsic effects on outbreak severity. In our study, 

we employed a machine learning-supported weighted count-based regression approach for 

this purpose. We found that a weighted-Poisson approach provided the best model fit, with 

a pseudo R2 value > 0.68, compared to the less restrictive negative binomial model. The 

final model identified a number of genes, mostly coding for bacterial metabolism, stress 

response, and (less frequently) virulence, that independently, and interacting with 

meteorological factors, contributed to salmonellosis outbreak severity. These models are 

envisioned as the first step towards incorporating the effect of bacterial gene expression in 

models predicting bacterial foodborne outbreak severity, which are traditionally based on 

environmental and processing-related factors.  
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6.2. Future studies 

 This dissertation represents our current best knowledge of the applicability of 

machine learning and advanced data analytical methods to incorporate molecular data into 

a predictive modeling and risk assessment framework. Several data gaps were identified 

and elaborated on in each chapter. Potential areas of research and methods required for, 

and pertaining to, the incorporation of molecular data in a QMRA framework are proposed 

as follows: 

1. A majority of molecular data that is currently being collected for pathogenic 

surveillance and outbreak investigations do not have, collect or report on, 

associated metadata. Such information is very useful to establish the outcome 

variable (confirmed, as opposed to inferential) in machine learning-based 

modeling. This could help in the development of more accurate, representative 

models to predict bacterial characteristics and behavior under various food 

processing and infective conditions to be employed in a risk assessment framework. 

2. Currently, a majority of the available WGS and other molecular data does not 

support the determination of causal relationships – i.e., machine learning can at best 

identify correlations between the expression or non-expression of certain genes or 

gene subsets and relevant phenotypic functions. However, in order to determine 

causal relationships from WGS-informed predictive microbial growth, survival, 

and death models, experimental data is needed to determine gene expression 

patterns under various processing and stress-related conditions.  
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3. Salmonella enterica, in particular, is composed of a number of serovars that infect 

humans at various levels of infectivity, and interacts differently under various 

processing-related stress conditions. Our current knowledge on Salmonella 

infectivity, pathogenicity, dose-response, and survival, is dependent on 

experimental data generated from a select few serovars. In order to obtain a more 

representative, labeled dataset, with which to train learning models, more 

experimental data from serovars that are under-represented, but are highly 

infective/invasive, or demonstrating specific stress-response profiles are needed.   

4. Although whole genome sequences alone, and the resultant pan genome, provide a 

wealth of information that could be very informative to predictive microbial 

models, studies have repeatedly indicated that the presence of a gene in and of itself 

does not guarantee its expression and functionality. Thus, analyzing the expression 

characteristics of bacteria under the various food processing- (such as temperature 

stress, acid stress, desiccation stress, etc.) and infectivity-related (such as the impact 

of host immune system) stressors, in the form of stress-specific proteomics and 

transcriptomics could help in further refining existing growth and survival models 

using laboratory-informed data.   
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