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We report a novel approach to electromyographic (EMG) biofeedback for post-stroke 

hemiparetic gait rehabilitation, using a videogame. An integrated hardware/software 

system facilitates gameplay of Tiger Woods PGA Tour 2004 in driving range mode 

by performing rehabilitation exercises. Real-time visual EMG biofeedback is 

provided as the patient performs exercises. Custom-built bioamplifiers and software 

collect, amplify, and filter the surface EMG signals from six lower-limb muscles, and 

score them by feature extraction. The ball is driven a distance proportional to each 

score. Exercises are scored by comparing the patient's EMG activation with target 

profiles. The user-friendly system is controlled by prompts on a personal computer. 

We envision two major benefits from this system. First, the biofeedback is offered in 

real-time, in a clear, intuitive form, and coupled with task-specific motions. Second, 

we hypothesize that adopting rehabilitation exercises to control a fun videogame will 

lead to greater adherence to the exercise regime, with accompanying improvements in 

gait. 
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Chapter 1: Introduction 

 Our research aimed to create a system that improves the physical 

rehabilitation of post-stroke patients by encouraging them to play a videogame that 

provides real-time feedback about their progress.  This game was controlled by 

monitoring electromyographic (EMG) signals that reflect the patients' muscle 

activations in their weak limb.  While the use of EMG in gait rehabilitation has been 

common in clinical settings, an interface with a videogame that is adaptable for 

home-use has not been previously implemented.  The main components of the system 

include the EMG sensor hardware, the signal conditioning and classification software, 

and the videogame feedback. 

Background 

 A stroke occurs when blood clots in the brain, resulting in damaged brain 

tissue and impaired brain function.  About 795,000 individuals in the U.S. suffer a 

stroke every year.  87 percent of these cases are ischemic strokes, caused by lack of 

glucose and oxygen supply, and 13 percent are hemorrhagic strokes, caused from 

blood escaping the circulatory system (American Heart Association, 2009).  Of these 

people, only 37 percent of hemorrhagic cases and ten percent of ischemic cases die 

within 30 days.  50 percent of those who survive suffer from some form of 

hemiparesis, relative weakness or neurodegeneration of one side of the body in 

comparison to the other.  In order for the survivors to overcome these obstacles and 

regain effective use of their muscles, they require physical rehabilitation.  In our 
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study, we focused on hemiparetic patients, and our system was intended for the 

rehabilitation of lower-limb functionality. 

 Over a lifetime, stroke recovery costs an average of $104,048 per person, with 

the majority of costs coming from a combination of inpatient, rehabilitation, and 

secondary care costs (American Heart Association, 2009).  The cost of stroke 

rehabilitation for hemiparetic patients is about 2.5 times higher than it is for 

nonparetic patients (Zorowitz, Chen, & Tong, 2008).  However, these outpatient 

rehabilitation costs are only ten percent of those for inpatient treatment (Mauritz, 

2004). 

 Perhaps the biggest challenge for post-stroke patients to overcome is 

community ambulation, the ability and willingness of stroke patients to walk with 

normal gait outside of a medical setting.  In a recent study, community ambulation 

was viewed as extremely important in 91 percent of the stroke population (Lord, 

McPherson, McNaughton, Rochester, & Weatherall, 2004).  While achievement of 

community ambulation could be clearly defined in clinical studies as based on gait 

velocity (Lord & Rochester, 2005), it is difficult for stroke patients, especially those 

with hemiparesis, to achieve community ambulation (Mayo et al., 2005; Michael, 

Allen, & Macko, 2005; Wade, Wood, Heller, Maggs, & Langton Hewer, 1987; 

Goldie, Matyas, & Evans, 1996). 

 Since the focus of physical rehabilitation is on retraining neural networks and 

strengthening muscles rather than simply moving body parts, our rehabilitation 

system used electromyography to monitor specific muscle activations.  Every time a 

muscle extends or contracts, it generates an electric potential that can be measured 
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with surface sensors on the subject’s skin.  These EMG signals contain information 

about which muscles are activating, when they are activating, and to what extent they 

are being activated.  This information was used by a classification algorithm to 

determine how correctly the subject performed a particular exercise. 

 Displaying these signals to the patient is a form of biofeedback.  By using 

electromyographic information as biofeedback, the patients could see which muscles 

they were activating and relative activation levels between muscles.  Biofeedback has 

been proven as an effective technique in rehabilitation for improving muscle 

recruitment and even reforming neural connections to compensate for those lost due 

to stroke (Glanz et al., 1995). 

 Our system aimed to take this biofeedback method one step further by instead 

of just displaying the signals, incorporating them into an interactive videogame.  

Based on the accuracy of the user’s performance on the exercise, our system reacted 

with a corresponding performance by the character in the videogame.  The user was 

also able to see sliding bars in real-time that indicated the user’s level of muscle 

contraction for the exercise’s two most relevant muscles, relative to the desired level 

of contraction.  The user immediately saw how much higher s/he had to make the bars 

move, which indicated how close s/he is to a healthy performance. 

 The following chart in Figure 1 shows the sequence of events that took place 

in our system’s feedback loop.  The patient performs an exercise, and the resulting 

voltages from the patient’s muscles are read by the system electrodes.  These signals 

are immediately amplified and filtered by the sensor boards before passing through 

cables to the data acquisition card in the system’s computer.  On the computer, the 
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signals are processed in several stages including further filtering, detrending, feature 

extraction, and possible classification.  A computer program determines the patient’s 

score for that exercise, and controls the videogame feedback appropriately.  Once the 

patient sees the result in the game, she knows how well see did and how to improve.  

With this knowledge she repeats the exercise, and the feedback loop continues.  An 

example of the videogame screen is shown in Figure 2.  The realtime feedback bars 

showing target muscle activation levels is to the left, while the videogame driving 

range with Tiger Woods avatar is to the upper-right.  In this version there are various 

other boxes and controls for adjusting the difficulty, as well as for debugging 

purposes. 

 

Figure 1: An overview of the overall EMG interactive videogame system from patient input 

to videogame operation and feedback. 
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Figure 2: A view of the driving range of the EA Sports Tiger Woods PGA Tour 2004 game 

for the PC. 

Current Methods and Trends 

 EMG signal acquisition and classification is a rather developed field, with 

investigations about the signals beginning in the late eighteenth century (Basmajian, 

1979).  Needle electrodes, electrodes placed internally via surgery, and surface 

electrodes are all used today.  EMG signals have been used to control many devices 

such as prostheses and robot arms, and also have other applications in medicine 

because of their ability to measure muscle activation (Artemiadis & Kyriakopoulos, 

2008; Fukuda, Tsuji, Kaneko, & Otsuka, 2003; Shenoy, Miller, Crawford, & Rao, 

2008; Song, Tong, Hu, & Li, 2008; Veneman et al., 2007).  Consequently, many 

physical therapy centers possess EMG sensors, even though the sensors are often 

bulky and expensive (Hughes, 2007). 
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 EMG-based rehabilitation is commonly used as a method to improve gait in 

post-stroke patients.  Currently, there are several methods to achieve community 

ambulation – namely gait symmetry, prosthetic or assistive devices, and robotics.  

Gait symmetry methods have traditionally revolved around utilizing EMG as a 

diagnostic tool to measure muscle strength.  These methods, which have focused on 

eliminating irregular contractions, did not prove to make hemiparetic stroke patients 

any more ambulatory after clinical treatment (Mauritz, 2004).  Robotic therapy has 

also emerged as a promising stroke rehabilitation tool.  While robotic prosthetics, 

which compensate for the lack of neural activity in affected regions during gait, have 

been proven relatively effective for rehabilitation, they do not present enough of a 

clinical and occupational advantage to be used outside of a controlled setting 

(Johnson, 2006: Hornby et al., 2008).  Furthermore, traditional assistive devices, such 

as walkers, canes, and ankle-foot orthoses (AFOs) have remained as the primary 

means of rehabilitation, even with the advent of EMG sensing capabilities (Mauritz, 

2004).  For an EMG-based rehabilitation to be successful, it must revolve around 

retraining and re-strengthening target muscles and their associated neurons, rather 

than focus on gait symmetry. 

 The feasibility and effectiveness of videogames have recently become more 

prominent in the physical therapy field, likely inspired by the popularity of the 

Nintendo Wii gaming console (Johnson, Ramachandran, Paranjape, & Kosasih, 

2006).  EMG-controlled videogames have been attempted (Dipietro et al., 2005), but 

the area remains largely unexplored, especially for lower-limb rehabilitation.  For this 
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reason, we believe our project contributes significantly to this developing field.  Our 

project was guided by one overarching research question:  

How can a custom EMG controlled videogame be designed and built to 

improve the efficacy of gait rehabilitation for hemiparetic stroke patients? 

Research Objectives 

Although EMG biofeedback has been used successfully to retrain specific 

isolated muscles to fire appropriately (Aiello et al., 2005), training of isolated 

movements often demonstrates little transfer into improvements in the activities of 

daily living (Moreland, Thomson, & Fuoco, 1998).  Important factors that have been 

noted in reports of successful EMG biofeedback in the literature include: real-time 

feedback which occurs as the task is conducted, training which performs functional 

task-related actions rather than isolated movements, and biofeedback that motivates 

patients and engages their attention in the rehabilitation task (Huang, Wolf, & He, 

2006).  We aimed to create a system that would allow patients to play an interactive 

videogame, controlling an on-screen avatar by performing rehabilitation exercises.  

To accomplish this task, we developed a portable EMG sensor system to gather data 

from patients undergoing rehabilitation.  The data was interpreted to aid the 

development of our signal processing and classification algorithms by providing a 

standard for comparison against patients' EMG signals while performing particular 

tasks.  The sensors initially used to gather data were later integrated with this 

classification software and a videogame to create a complete biofeedback 

rehabilitation system.  Finally, we investigated the performance of the system in 

conducting physical therapy of stroke victims. 
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 The essential, desired characteristics necessary for our classification 

subsystem were fast runtime, and robust and accurate signal classification.  Accuracy 

in signal classification is the ability to consistently map a particular voluntary motion 

to a particular signal.  Robustness means that the classification system will produce 

equally valid results across a diverse user population.   



 

 9 

 

Chapter 2: Literature Review 

Electromyography and Signal Acquisition 

 The discovery that the contraction of muscles could be initiated electrically 

and that an electric voltage could be measured across contracting muscles first came 

in the late eighteenth century after a series of experiments by Italian biologist and 

physician Luigi Galvani (Basmajian, 1979).  However, it was not until the twentieth 

century that improved methods for the detection of small electrical signals permitted 

investigation into the electrical properties of muscle contractions (Basmajian, 1979).  

Since then, there have been an increasing number of papers written regarding the 

topic of electromyography, the study of the relationship between muscles and 

electricity.  An understanding of this literature contributes to the design of an EMG 

signal classifier because it provides valuable insight into EMG signal acquisition, 

EMG signal waveform characteristics, current methods of correlating EMG signals to 

muscle tension states, and existing hardware implementations of EMG signal 

classification and their applications. 

 A clear understanding of the EMG signal and its different characteristics is 

essential for signal acquisition and classification.  It is first important to understand 

how the biological process of a muscle contraction invokes an electrical potential and 

how specific muscle actions can be identified as the cause.  EMG signals represent 

the electrical potential across a motor unit as specific muscles contract.  The motor 

unit consists of: the nerve cell body; the long axon running down the motor nerve; its 

terminal branches; and muscle fibers (Basmajian, 1979).  Muscle fibers are 
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responsible for contraction, wherein small bundles of muscle fibers contract 

simultaneously, corresponding to the activation of a particular muscle.  A chemically 

induced localized depolarization of the nerve cell membrane, or action potential, 

propagates along a nerve fiber and eventually activates a muscle fiber by an amplified 

cascade of net ion movements that results in an amplified voltage in the muscle.   

 

Figure 3: Diagram of the motor unit. 

 

 A surface electrode can measure a signal, which is the combination of all the 

muscle fiber action potentials occurring underneath the skin where it is placed.  This 

combination of electrical potentials from a particular motor unit is known as the 

motor unit action potential (MUAP).  The duration of the electrical potential 

generated by just one twitch is between 5 and 12 milliseconds and usually varies 

between 0 and 10 millivolts (mV) prior to amplification (Basmajian, 1979).  Larger 

motor units generally correspond to higher signal amplitudes and therefore to larger 

recorded potentials.  It has been proven that the amount of force that a muscle is 
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capable of producing is directly proportional to its cross-sectional area, though not 

directly related to its length (Lamb, 1992).  This information will be important when 

considering which muscle groups to focus on and which groups will emit the 

strongest and most easily resolvable signals.  Stronger muscle contractions also 

correspond with higher rates of motor unit firing, with the upper limit of activation 

lying around 50 Hz (Basmajian, 1979).  In addition to these physiological 

considerations, we must also consider the documented effects of age, fatigue, 

handedness, and gender on these signals.  The recorded MUAP is a function of 

muscle fiber characteristics, orientation of muscles with regard to electrodes, and the 

specific electronic measurement equipment used (Lamb, 1992). 

 Of equal importance to the signal acquisition process is electrode preparation 

and placement, which can cause significant variations in the recorded EMG signal 

(Basmajian, 1979).  One general assumption in terms of muscle selection is that 

smaller muscles usually require smaller electrodes to measure the signal, with 

electrode diameter ranging anywhere between 1 and 5 millimeters (Soderberg, 1992).  

There have been several studies to determine the optimal arrangement for electrodes 

in order to obtain the best recorded signals.  In general, electrode contacts should lie 

parallel to muscle fibers, and should have a center-to-center distance ranging between 

2 and 10 mm (Soderberg, 1992).  Electrodes are also most commonly arranged in a 

bipolar configuration, which includes two electrodes dedicated to detection and a 

third electrode that serves as a ground at a different electrically neutral location, such 

as a bony prominence that is unlikely to detect any EMG signals (Soderberg, 1992). 
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 One area still in question within electromyography literature concerns the test-

retest reliability of electrode recording.  Although one should expect slight variance 

within different tests, surface electrodes demonstrate higher test-retest reliability than 

fine wire electrodes (Soderberg, 1992).  This variability was therefore essential to 

consider in regards to the algorithm and signal recognition, because a less consistent 

signal requires a more flexible signal classifier to discern intended motions.  

Regarding skin and electrode preparation, conduction gel is generally applied to the 

skin after thorough cleansing with alcohol, and electrodes are then attached by means 

of a double-sided adhesive washer (Soderberg, 1992).  A further investigation of the 

effects and methods for electrode placement will be conducted in order to achieve the 

highest possible signal quality.  For example, to simplify the process of searching for 

the strongest signal associated with certain hand motions, Konishi et al. (2007) 

developed an elastic band to be worn around the forearm, embedded with multiple 

channels of electrodes. 

Current State of the Art in EMG Sensing Systems 

EMG systems are usually bulky affairs consisting of multiple sensors being 

placed on the skin with wires connecting the sensors to a central hub, usually worn in 

a backpack or other storage device placed on the body.  These systems are usually 

rather awkward and often very expensive, with estimated costs at around 2000 dollars 

per channel (Hughes, 2007).  Typical electromyographic sensor systems consist of 

some form of electrode and signal amplifier.  An analog-to-digital (A/D) converter is 

needed to feed the signal into a computer if signal processing is necessary.  The 

computer does all of the signal processing and feature extraction.  To reduce the need 
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for bulky desktop or laptop interfaces, some more advanced systems implement 

signal processing algorithms on microprocessors.  In 2006, a group from Japan 

introduced a prototype for a “Wearable EMG Sensor” system that measures the two 

forearm muscles to detect a grasping movement (Nishida, Kawakami, & Mizoguchi, 

2006).  This system records the signal with an electrode and then passes it through a 5 

Hz high pass filter, an amplifier, and finally a 3 Hz high pass filter, to cut out low 

frequency noise.  The signal then passes through a full wave rectifier before entering 

the microprocessor, which does the A/D conversion. 

Although medical wireless sensor systems have not yet made it into practical 

use, EMG sensing systems, especially for rehabilitation applications, are quickly 

moving in this direction.  In 2005, a group from the University of Alabama developed 

a prototype wireless sensor system, coined “Wireless Body Area Network,” to be 

used with computer-assisted rehabilitation (Jovanov, Milenkovic, Otto, & de Groen, 

2005).  The wireless sensors communicate with a computer that performs real-time 

data processing and provides feedback to the user.  The computer can further upload 

this data to medical servers to store it in research databases or a patient’s medical file.  

This system was designed to combat two of the major problems with sensor-based 

rehabilitation today.  The first problem is the issue of bulky wires, which inhibit the 

patient’s movement and comfort.  The second problem is the need for extensive 

physical therapist supervision that is simply not available.  These wireless sensor 

rehabilitation systems, which utilize off-the-shelf sensors, may be able to reduce the 

amount of direct supervision by a physical therapist.   
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Another wireless surface EMG system has recently been developed using the 

ZigBee wireless standard (Hughes, 2007).  Each node has a gain of 300, a low pass 

filter with a 500 Hz cut-off, and a microcontroller with an internal 10-bit ADC.  The 

authors claim that their system could reduce the costs of each channel by 50 percent 

or more.  They also state that the system can accommodate up to 256 channels, 

although only two have been tested so far. 

Recently, Noraxon Corporation’s ZeroWire™ wireless EMG system has 

arrived on the market.  The system enables more remote operation, allowing data 

collection from up to 80 meters away from the subject.  The system shows a sampling 

range of EMG signals from 10 to 1000 Hz for each of its 32 channels, and has a 

battery life of up to eight hours (Noraxon, 2010).  The ZeroWire™ system has 

additional gait analysis features for rehabilitation-specific applications (Noraxon, 

2010).  However, as a complete EMG system, it was well beyond our budget range, 

and was released after we had built our own wired EMG system. 

Another innovative design to reduce the need for inconvenient wires involves 

implementing EMG sensors into conductive fabrics.  A group in Japan has created the 

“TextileNet” cable-free network system using two layers of conductive fabric with a 

shielding layer in between.  The prototype they created can transmit data at 9.6 kbps 

and supply 3 watts of power to each device.  Another group has also begun working 

on surface electrodes capable of reading EMG signals through a thin insulator, 

specifically cloth.  They were able to obtain a synchronized signal of comparable 

quality to those obtained via individual electrodes, albeit with a lower signal-to-noise 

ratio (Ueno et al., 2007). 
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Current State of the Art in EMG Classification Algorithms 

 There are several different methods currently in use for decomposition and 

classification of surface EMG (sEMG) signals.  One of the simplest techniques for 

evaluating the activity of multiple muscles during a complicated activity is to use a 

simple “on/off” classification for each muscle involved, a technique that has been in 

use for over a decade.  Pelland and McKinley (2004) accomplished this by 

subtracting the mean from each collected signal and then performing a full-wave 

rectification.  On-off activity was determined by comparing 50-ms windows of 

rectified data to a baseline noise threshold, computed using data collected in a 

motionless initial trial.  The noise threshold was computed individually for each 

subject using one-second bins across a six-second trial.  Pelland and McKinley found 

that this provided a relatively stable baseline for their noise threshold, and moreover 

was largely consistent across patients.  Thus transformed into “on” or “off”, the state 

of all muscles involved in a given action can be implemented in a vector to see which 

muscles work together for a given activity. 

 EMG signal acquisition yields an electrical signal represented as an amplitude 

or voltage in the time domain, which must then be processed to yield an output 

corresponding to a movement or muscle contraction.  Signal processing is a vast field, 

with applications at every level of science and engineering.  The scope of this 

literature review precludes mention of many signal processing techniques which 

might potentially have application in the study of EMG.  However, many of the signal 

processing techniques that have been used effectively for the purpose of EMG 

classification are mentioned here. 
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 In general, signal processing of EMG can be split into several phases: 

conditioning, clustering or criteria selection, feature extraction, and classification.  

The raw signal is an aggregate of the electrical potential changes caused by the 

contraction of the targeted muscle cells, and of the noise components from various 

electrical devices and other, untargeted muscle groups.  Therefore, it is necessary to 

condition the signal to minimize the effect of the noise components before the signal 

can be classified, and to better isolate the data of interest.  Then, depending on the 

characteristics of the phenomena studied, a variety of techniques may be used to 

identify distinct groups of signals that map to an action, and to classify individual 

signals as belonging to a specific group. 

 Ideally, an acquired signal contains only information relevant to identifying it 

to a particular class.  However, in practice, it is necessary to use filters to remove 

unwanted noise from the data, such as electrical interference, motion artifacts, and 

crosstalk between muscle groups.  At the most basic level, a filter acts by attenuating 

certain frequencies within the signal (Kuruganti, 1995).  Often, this filtering is either 

implemented within the signal acquisition hardware or through the use of the Fourier 

transform, which converts the time domain of a signal to the frequency domain of the 

signal, so that the signal is re-expressed as the sum of sinusoidal waves.  Particular 

frequencies can then be easily filtered out by zeroing the ranges corresponding to 

noise. 

 In developing an algorithm for classifying the signal, it may be advantageous 

to remove information from the signal that is not noise, but that does not help to 

distinguish between the different target classes.  Reducing the space of the dataset in 
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this way can make data-intensive algorithms more efficient or help to identify 

patterns in the data.  One algorithm that accomplishes this task is principal 

components analysis (PCA).  In PCA, the eigenvalues of a covariance matrix are used 

in order to determine the most distinguishing features of the signal.  The less 

distinguishing characteristics can then be discarded in order to reduce the 

dimensionality of the data with minimal loss in resolution.  Güler and Koçer (1995) 

used PCA to determine the most distinguishing components of the EMG frequency 

domain. 

 After the data has been conditioned, signal classification can begin.  One of 

the easiest and most widely used methods of classifying EMG signals is based on 

amplitude thresholding.  A threshold value is either manually set after looking at the 

data or automatically set from previously collected data.  Abbink et al. (1998) took 

the latter approach and used characteristics of the amplitude distribution of the entire 

signal to detect repetitive muscle contractions associated with the chewing of food.  

Because the EMG signal is bipolar, thresholding of the raw signal resulted in very 

short bursts of activity as peaks in high-amplitude sections of the signal crossed the 

threshold.  In most cases, this type of data would result in incorrect behavior.  A 

better approach would classify the muscle as tensing over the entire high-amplitude 

section.  Inman et al. (1952) applied signal rectification and low-pass filtering to 

better estimate the sections of the EMG signal characterized by high-amplitude peaks.  

Because the resultant signal appears to outline the raw signal, this technique is termed 

linear envelope generation. 
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 Simple amplitude thresholding is a fast, efficient way to classify the 

contractile state of a muscle, but has two major drawbacks.  The first drawback is that 

thresholding allows only binary classification of the muscle groups as relaxed or 

tensed at a specific force.  Clearly, tensed muscles can produce varying levels of force 

and do not act in an all-or-nothing fashion.  The second drawback is that a simple 

threshold may be susceptible to rapid switching between relaxed and tensed muscle 

classifications when the signal amplitude is close to the threshold level, or during the 

transition from relaxed to tensed muscle states.  This switching is caused by the high-

frequency components of the signal. 

 In addition to noise filtering applications, the Fourier transform may also be 

used to extract features from the signal that are important for classification.  For 

example, signals generated from muscle contractions may have a specific frequency 

signature that can be detected using the transform.  For EMG signals, even if the 

waveform of a particular muscle contraction does not have the exact same voltage-

versus-time graph as another, the frequency components of waveforms originating 

from the same muscle groups performing the same motion should be similar.  Fourier 

analysis can thus facilitate the comparison of two signals that are fundamentally 

similar in terms of their frequency components and underlying physiology.  This is 

true even if the signals occur at different times or vary in amplitude, due to otherwise 

confounding factors. 

 However, the Fourier transform does have limitations.  Conversion of the time 

domain to the frequency domain results in loss of time resolution, so that particular 

points in the transformed data no longer correspond to exact times, but rather to spans 
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of time.  A simple method of partially compensating for this limitation is to use a 

windowed Fourier transform, in which a Fourier transform is performed not on the 

entire signal, but rather on discrete sections.  The size of each of these sections, or 

windows, is determined by both the sampling rate at which the data was collected and 

by the duration of the features targeted for detection.  Fourier limitations are 

especially evident in the study of signals that were not originally sinusoidal in nature.  

Signals with time-varying frequency components, such as EMG signals, often result 

in less than optimal Fourier decompositions (De Michele et al., 2003).  

 Wavelet analysis was introduced specifically to address this problem, and 

permits better resolution of time and frequency components of signals (De Michele et 

al., 2003).  By expressing the signal as a sum of non-sinusoidal component signals, a 

more precise decomposition may be achieved.  Specifically, if the correct basis of 

component signals is chosen, such that they more closely correlate to the MUAP 

signals within EMG signals than would simple sinusoids, then the original EMG 

signal can be expressed more compactly as the sum of a smaller number of these 

basis waveforms.  This aspect is useful because features in the signal that are shaped 

similarly to those of the chosen wavelet basis can be more readily resolved from 

background noise. 

 Another method used to classify the signals is an artificial neural network 

(ANN).  A neural network is comprised of a set of simple, interconnected signal 

processing nodes, the model for which is approximately based on a physiological 

understanding of biological neurons (Hassoun et al., 1994).  Such a network can be 

employed with relatively simple general learning algorithms to the problem of pattern 
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recognition, in our case, EMG signal classification.  They are particularly well-suited 

to applications where little is known about the input signal, and are also highly 

effective in recognizing noisy variations of previously learned patterns (Hassoun et 

al., 1994).  One drawback of such systems is that they can be computationally 

expensive; however, it is possible to implement simple neural networks very 

efficiently.  The outputs of the neural network may generate very useful signal 

processing models that can be coded or realized explicitly on a chip to increase 

efficiency.  Many current EMG-analysis algorithms make use of ANNs in order to 

interpret and categorize the EMG signals (Hassoun et al., 1994). 

 A different approach to the classification of EMG signals is the analysis of 

statistical properties such as the Euclidean distance between MUAP waveforms, and 

the mean and standard deviation of inter-pulse intervals of individual MUAP trains 

(Raez, Hussain, & Mohd-Yasin, 2006).  In essence, these algorithms attempt to detect 

signal events corresponding with MUAPs based on the presence of features that differ 

from a control or base signal in a statistically significant manner. 

 Each of these signal processing techniques has been useful in the 

classification of EMG waveforms for a particular application (Pelland and McKinley, 

2004; Kuruganti, 1995; Güler and Koçer, 1995; Abbink et al., 1998; Inman et al., 

1952; De Michele et al., 2003; Hassound et al. 1994; Raez, Hussain, & Mohd-Yasin, 

2006).  In our study, we sought to determine a signal processing algorithm for a 

classification algorithm that was accurate, efficient, and robust.  In addition, in order 

to produce a marketable product, the selected signal processing algorithm aimed to 
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limit complexity in order to reduce the costs of implementation and to increase 

efficiency, while minimizing any resultant decrease in classification accuracy. 

Current State of the Art for Hemiparetic Treatment 

 Methods to improve community ambulation have historically included the use 

of orthoses, assistive walking devices, and restoration of walking symmetry (Mauritz, 

2004).  In particular, metal ankle-foot orthoses (AFOs) placed on the paretic leg have 

been shown to improve the gait within the paretic leg (Mauritz, 2004).  Unfortunately, 

they only achieve this by holding the paretic foot in gait position, to prevent spastic 

foot movement.  Assistive walking devices, such as walkers and canes used opposite 

of the paretic leg, can also improve community ambulation, or at least mask a lack of 

community ambulation (Mauritz, 2004).  These devices require the patients to have 

relatively normal upper body control and coordination (Mauritz, 2004).  Restoration 

of gait symmetry has traditionally included practicing walking patterns and weight 

shifting on the paretic leg, and using electromyography to track neuromuscular 

recruitment in the clinic.  Sadly, when patients left the clinic, researchers found that 

concentrated walking did not necessarily translate to community ambulation 

(Mauritz, 2004).   

 Thus, methods of neural restoration and improvements in gait endurance have 

proved more promising with the advent of treadmill rehabilitation and gait machines.  

For this reason, treadmill rehabilitation showed high potential in animal studies.  

However, patients were significantly more comfortable walking on a stationary floor 

rather than on a treadmill (Mauritz, 2004).  Similarly-designed gait machines may 

provide further improved gait analysis.  Still, there have not been any large-scale 
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studies to prove their effectiveness or improvement in comfort over treadmill 

treatment (Tong, Ng, Li, & So, 2006). 

 Robot-assisted locomotion is another promising method of treatment, in which 

a robot orthosis corrects or compensates for the lack of proper neural activity in the 

paretic leg during gait.  These robot-assisted locomotors may also use virtual reality 

(VR) or game-based systems to provide this correction (M. J. Johnson, 2006).  

Hornby et al. (2008) showed that such a device would provide the needed 

adjustments.  However, this improvement was too small relative to traditional 

therapist-assisted locomotion to currently be more widely used (Hornby et al., 2008).  

Even with its high potential, the costs associated with such a complex virtual learning 

or similar learning environment may be too cost-ineffective due to the high cost of 

processing such elements.  There are few such devices on the market outside of the 

Lokomat® Gait Trainer systems (Brincks, Nielsen & Kock-Jensen, 2009).  These 

limited choices suggest that alternative stroke rehabilitation treatments are necessary 

to provide successful rehabilitation to patients who may neither have access to robot 

assisted locomotion nor want to use a treadmill-based device. 

 Brain-computer interfaces (BCIs) using non-invasive electroencephalography 

(EEG) have also been investigated with the potential to improve motor control in 

individuals with severe neurological disorders or impairment brought on by 

amyotrophic lateral sclerosis (ALS) or stroke.  For post-stroke patients, BCI 

technology could be used as a form of neurofeedback to indicate brain activity and to 

help them isolate and decrease abnormal activity.  The safest method of neural signal 

acquisition is through the use of surface electrodes.  Non-invasive signal acquisition 
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has a limited frequency range and resolution but is safer and easier to implement than 

invasive methods (Daly and Wolfpaw, 2008). 

 The signal processing occurs in two steps.  The first is feature extraction 

where signal features such as amplitudes, sensorimotor rhythms, or firing rates are 

used to characterize the signal.  The second step is to translate the decoded signal into 

an output command.  These commands could be anything from moving a cursor on a 

screen to controlling the movement of a prosthetic device.  One aim of BCIs is to 

restore normal function in the central nervous system (CNS) through plasticity.  

Neuroplasticity is the changing of neuron functions or rearrangement of networks to 

perform new functions based on experience.  Therefore, for stroke patients, activity-

based CNS plasticity can create a framework for motor re-learning.  However, 

rehabilitation efforts involving BCIs are still in a developmental phase and future 

implementations will depend on further research into the type of signals and signal 

features necessary to effectively retrain motor functionality (Daly and Wolfpaw, 

2008). 

Current State of the Art in Videogame Rehabilitation 

 There are several forms of videogame control systems that can be used in 

rehabilitation, including some that use EMG or EEG techniques.  While very few 

gaming studies focus on rehabilitation applications, these existing games can still 

serve this purpose.  The current state of the art in gaming proves that EMG signals are 

a viable approach to entertainment systems.  Therefore, incorporating gaming into 

rehabilitation should encourage our patients to want to use our system and aid in their 

rehabilitative processes through increased exercising. 
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 One study presented an analysis of the strengths, weaknesses, opportunities, 

and threats (SWOT) of virtual reality in rehabilitation (Rizzo, 2006).  The authors 

concluded that the field is still in its developmental stages because several “proof of 

concepts” have shown successful results; however, few systems have made it into 

mainstream or clinical use.  One weakness they noted was the bulky interfaces that 

required many wires and different types of hardware.  These physical issues imposed 

limitations on patient movement, comfort, and even the game and system functions.  

However, the authors suggested that the incorporation of wireless technologies would 

reduce these limitations.  They insisted that strong multidisciplinary collaboration and 

user-centered input and evaluation methods were essential in developing successful 

applications.  They also suggested that the front-end of the systems needed to be more 

user-friendly and aimed towards the physical therapist, so that computer science 

technical support would not be necessary.  This suggestion was one of the big 

problems they found with university systems.  For clinical utility, programs must also 

deliver basic summary scores, comparison statistics with accumulated normative data, 

and graphical representations of the data for the physical therapists to evaluate the 

results.  They suggested these aspects as the main back-end limitation. 

 Another group of authors reviewed studies on virtual reality-based stroke 

rehabilitation from 1980 to 2005 and chose 11 studies for their evaluation (Crosbie et 

al., 2007).  Five studies addressed upper limb rehabilitation, three studies addressed 

gait and balance, two studies addressed cognitive interventions, and one study 

addressed both upper and lower limb rehabilitation.  They assessed these studies as a 

review of the state of virtual reality in rehabilitation.  Tables 1, 2, and 3 below 
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describe the parameters of each system/study.  They found that eight of the 11 studies 

presented positive results, while the remaining three studies had statistically 

significant results.  Two of the studies examined are the Rutgers glove and ankle, 

which are cited in greater detail below. 

Table 1: Crosbie et al. sources: Empirical Research (Levels I and II) 

Study Level 

& 

Quality 

Design Reported 

type  

Age 

(years) 

VR 

Intervention 

Display 

Device 

Interface Control 

1 I/W RCT Vascular 

brain 

injury 

(n=24) and 

stroke 

(n=24) 

25-85 Active & 

passive 

desktop VE to 

explore virtual 

bungalow for 

memory and 

layout training 

Desktop 

PC 

Mouse Non-

impaired 

group 

(n=48) 

2 I/W RCT Hemiplegia 

single 

incident 

(n=20) 

41-79 Immersive 

VR system in 

conjunction 

with treadmill 

training 

Head-

mounted 

display 

Video camera Real 

training 

(n=10) 

3 I/W RCT Hemiplegia 

(n=14) 

Not 

reported 

VR 

augmented 

treadmill 

training, 

interactive 

balance 

training 

LCD 

monitor 

Speed/position 

sensors 

Treadmill 

training 

(n=7) 

* All results statistically significant with intervention. 

 

Table 2: Crosbie et al. sources: Empirical Research (Levels III and IV) 

Study Level 

& 

Quality 

Design Reported 

type & 

time since 

stroke 

Age 

(years) 

VR 

Intervention 

Display 

Device 

Interface Control 

4 III/W ABA Right 

internal 

capsule 

12 weeks 

Late 

50s 

Non-

immersive 

arm training 

See 

through 

glasses 

Haptics Healthy 

males as 

reference 

group 

5 IV/W Before 

& after 

case 

series 

Infarct, 

embolus, 

other 

6-46 

months 

26-72 Augmented 

VR system 

with virtual 

teacher for 

arm motor 

tasks 

Desktop 

PC 

Electromagnetic 

sensors 

None 
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6 IV/W Before 

& after 

case 

series 

Internal 

capsule 

infarct, 

parietal 

hemorrhage  

3-6 years 

54-83 Desktop 

system for 

hand function 

Desktop 

PC 

Electromagnetic 

sensors 

None 

7 III/W Before 

& after 

case 

series 

with 

control 

Right 

hemisphere 

stroke 

≥ 6 weeks 

55-75 PC based 

system to 

train people 

w/ spatial 

neglect to 

cross a street 

safely 

Desktop 

PC 

Keyboard Unequal 

number 

of age-

matched 

controls 

(n=6) 

* All results were positive effects with intervention. 

Table 3: Crosbie et al. sources: Non-empirical Studies (Level V) 

Study Reported type 

& time since 

stroke 

Age 

(years) 

VR 

Intervention 

Display 

Device 

Interface 

8 Right CVA (n=1), 

right middle 

cerebral artery 

ischemia (n=1) 

18 months & 2 

years 

73 & 70 Haptic feedback 

with glove & 

ankle VR 

devices 

Desktop PC Haptics 

9 Left & right 

internal carotid 

occlusion (n=2) 

1.5 & 3.5 years 

76 Virtual teacher & 

VE training for 

upper extremity 

tasks 

Desktop PC Electromagnetic Sensors 

10 Right hemisphere 

stroke (n=1) 

6 months 

72 Gesture Xtreme 

project system 

for range of 

sitting & 

standing balance 

tasks 

Video 

projection 

Large screen 

 

 One form of rehabilitative gaming includes the use of computer games as a 

training aid.  Specifically, there was a case study on the use of games to resolve 

sensorimotor deficits in a 34-year-old male recovering from subarachnoid 

hemorrhage.  Researchers found that with increased training via the game, the patient 

improved control significantly (Taylor & Berry, 1998).  The patient used the 

keyboard to exercise control over his fingers in a shooting range game, and over time, 
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gradually improved his response time and accuracy.  Even though this study did not 

use EMG, this article proves that gaming can be used to aid in rehabilitation. 

 Another noteworthy system is the Rutgers Ankle, a platform-type haptic 

interface that supplies resistive forces in six degrees of freedom in response to virtual 

reality-based exercise (Deutsch, 2001).  Patients exercise their ankle in different 

positions in order to virtually pilot an airplane in a game.  This system can be 

adjusted to each individual patient, and can be adjusted throughout long-term use by 

changing the force applied by the interface, the difficulty of the simulation, and the 

degrees of freedom involved in the game.  This variability makes the system 

applicable to patients with a broader range of disabilities, and allows for targeted 

adjustments as the patient progresses.  This product focuses only, however, on ankle 

movement as the patient sits in a chair.  The system does not monitor all muscle 

activation associated with walking, nor does it allow the patient to practice the 

complete motions involved.  In a nine-month case study after six sessions of training, 

results showed improvement in force generation, endurance, and coordination of the 

affected ankle (Deutsch, 2001).  Improvements in the simulation tasks correlated with 

improvements in walking and stair climbing.  The findings of this study helped guide 

us towards our end goal of an effective rehabilitation system with high variability. 

 A second system under development at Rutgers University targets upper-

extremity post-stroke rehabilitation, specifically for the hand.  It uses a CyberGlove 

and a Rutgers Master II-ND haptic glove to reduce impairments in patients’ finger 

range of motion, speed, fractionation independence, and strength.  Feedback is 

displayed through virtual reality through a PC in the forms of playing a piano, scaring 
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away a butterfly, and displacing pistons.  In one study, four subjects, aged between 58 

to 72 years old, used the system over a three-week period (Boian, 2002).  The system 

was implemented over the internet, so that the physical therapist could remotely 

follow patient progress.  The CyberGlove was used in exercises for the first three 

parameters (range of motion, speed, independence), while the haptic glove was used 

for the last parameter (strength).  Along with task-oriented feedback, the program 

displayed a numerical evaluation of each exercise.  The patients requested this feature 

as a better indication of their progress.  Results from the study showed improvements 

in fractionation for all four subjects, in thumb range and finger speed for three 

patients, and only modest improvement in strength, which they attributed to a 

hardware malfunction.  Both the subjects and the therapist gave positive evaluations 

of the system.  Our system also incorporated real-time quantitative feedback because 

this study proved it to be a desirable feature for the patients and therapists. 

Perhaps most similar to our project is a system designed for arm rehabilitation 

for stroke survivors (Dipietro et al., 2005).  They used the patient’s EMG signals to 

manipulate a robot that assists him or her to perform point-to-point movements in a 

horizontal plane.  The tasks are presented as a simplistic game, where the user moves 

in one of eight directions.  Clinical testing has not yet been completed, so no firm 

conclusions can be made about its efficacy. 

Another EMG videogame system was developed at Catholic University using 

an Xbox and Xbox360 (Mathews, Judge, & Ortega, 2007).  The system involves four 

electrodes that are used to control four buttons on a video game controller. The 
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system also includes software to assess a user’s ability to contract specific muscles 

without also activating unwanted muscles. 

A U.S. Defense Advanced Research Projects Agency (DARPA)-funded study 

utilized surface EMG as an interface to the commercial videogame Guitar Hero 

(Armiger & Vogelstein, 2008).  The researchers created a novel rehabilitation device 

for upper-extremity amputees.  The system trains the amputees using a virtual 

integration environment (VIE).  A VIE is a virtual reality training tool in which an 

onscreen animated arm mimics the user’s intended movements in real-time, based on 

inputs from multiple electrodes attached to the user’s residual arm.  The user controls 

the game by flexing his or her index, middle, or ring finger muscles of his or her 

residual hand.  The muscle flexion’s resulting myoelectric activity is recorded by six 

or more EMG electrodes placed on the forearm.  Real-time data processing via 

pattern recognition algorithms determines the user’s intended motion and resulting 

control of the game.  A built-in scoring system evaluated the classifier’s performance.  

Three healthy control subjects found the EMG-controlled gaming system to be 

“effective, fun, and engaging” (Armiger & Vogelstein, 2008).   

 One example of an EMG gaming system that has yet to be applied to 

rehabilitation is a new EMG entertainment interface for the Othello videogame on the 

Sony PlayStation 2 gaming console (Shima, Bu, Okamoto, & Tsuji, 2005).  

Researchers found that by using a probabilistic neural network (PNN) based on 

measured EMG signals, they could estimate the user’s intended motion with a high 

degree of precision to determine game control commands.  Furthermore, the system 

could be easily changed so that the final product could run on a multitude of various 
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gaming or other entertainment systems.  The researchers grouped various types of 

games based on two sets of criteria: fast or slow response, and low or high number of 

commands needed to be executed in the game.  The games that were slow in response 

with a low number of commands were clearly easier to control via this EMG system.  

This result indicates that ideally, we should select one of the suggested games in this 

category. 

 Another product called the TheraDrive system consists of an off-the-shelf 

steering wheel that provides force feedback and a software platform that records 

wheel movement, allowing patients to complete tasks displayed on a screen.  It 

incorporates a combination of custom and commercial games, such as Nintendo’s 

MarioKart and EA Games’ Need for Speed.  Subjects moved the wheel to track 

objects or simply steered to follow a course using only their impaired arm.  Johnson 

et al. presented two major studies: one to determine the usability of the TheraDrive 

system for stroke therapy, and another to measure the ability of the system to 

motivate subjects and keep them engaged during therapy (2006).  For the first study, 

the researchers found a correlation between performance in the game and motor 

impairment levels, but no correlation between improved performance and improved 

clinical measurements of functionality.  For the second study, results showed that the 

subject enjoyed and was motivated by the game.  She felt driven to play by the desire 

to obtain better scores.  Aside from accurate and effective results, this type of attitude 

is the ultimate goal of videogame systems in rehabilitation.  Therefore, this outcome 

also suggests that a gaming system, such as the one we developed, can be an effective 

tool for motivating patients in rehabilitation. 
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 Weiss and colleagues gave a good general overview of virtual reality in 

rehabilitation of cognitive and motor impairments (2004).  In particular, video capture 

virtual reality involves a system of camera-based motion sensors that records the 

user’s movement and translates it to a screen in a simulated environment.  One 

specific example was the use of Sony’s EyeToy application used for the PlayStation 

2.  The digital camera device allows the user to interact with virtual objects by 

capturing and displaying real-time images of the user on a TV monitor.  There are 

other similar systems, such as the VividGroup GX system that was used to allow a 

stroke patient to play the role of a soccer goalie in a simulated environment.  At the 

time of Weiss’ review, the EyeToy was cheaper and more easily implemented, while 

the GX was more advanced, yet also more expensive and difficult to use.  The 

advantage of video capture VR over other gaming rehabilitation systems is the first 

person experience, where the user can see him or herself instead of an avatar.  

Additionally, video capture VR does not require the patient to wear or be wired to 

extraneous devices.  However, video capture VR does not provide any information 

about the actual muscle contractions, and therefore is of limited use for our project. 

 There are several EEG gaming systems in place or slated for launch in the 

near future.  These include the Neural Impulse Actuator, the Mindball Game, Emotiv 

Systems’ EPOC, and NeuroSky products.  The Neural Impulse Actuator costs 

roughly $150, and simply reads EEG signals to map them to keyboard strokes on a 

PC (OCZ Technology, 2009).  The Mindball Game involves a $20,000 table that 

contains a physical ball in which two players compete to move the ball with their 

minds (Interactive Productline IP AB, 2008).  The ball is controlled via an EEG 
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interface that both players attach themselves to.  The EPOC is a $300 EEG system 

released in 2009 that uses two-axis gyros to measure head rotation in addition to EEG 

signals (Emotiv Systems, 2008).  Finally, NeuroSky products use a single electrode as 

opposed to the other systems that require more electrodes, which makes their 

products cheap and easy to set up (NeuroSky, 2009).  These EEG systems prove that 

biological signals can be used to control games and are capable of gaining acceptance 

in the general gaming world. 
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Chapter 3: Methodology 

 Our approach to designing and building an EMG biofeedback videogame 

consisted of three stages of development:  

Stage Zero: To design and build the prototype EMG sensor hardware, create an initial 

signal processing algorithm, and gather preliminary data from team members. 

Stage One: To refine and test the sensor system, determine rehabilitation exercises 

and muscles of interest, develop an experimental procedure for patient testing, and 

finalize the signal processing algorithms. 

Stage Two: To develop a classification algorithm, interface the system with the 

chosen videogame, and test the completed system on hemiparetic subjects in a 

laboratory setting.   

Stage Zero 

 A full data acquisition system was designed that includes multiple hardware 

components that connect together with some degree of modularity.  Pairs of gel 

electrodes capable of detecting EMG signals are placed on the skin over selected 

muscle groups.  Each of these pairs of electrodes is attached to a sensor circuit board 

containing a simple differential amplifier with filtering. 

 Although commercial EMG electrodes with built-in signal conditioning are 

available, such as from B&L Engineering, each sensor carries a price tag of at least 

$200 (Whyte Griffith Associates, 2008).  We did not have a budget that would allow 

for this kind of purchase, but we did luckily have the time to design our own sensor 

boards.  This had the added advantage that we were familiar with the underlying 
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functionality of the boards, which allowed the team to debug problems and tailor the 

signal conditioning to specific preferences.  Six of these boards are powered 

concurrently by a central battery board held in a fanny pack around the waist, which 

also contains a connection to reference ground and a connector for sending the 

outputs from each board to a computer with data acquisition software.  The design of 

each of these components will be discussed in further detail below. 

Sensor System Design 

 The sensor boards were designed as amplifying and filtering circuits, which 

have been shown to be effective for electromyographic recording in previous research 

using operational-amplifiers (op-amps) (Pierce, 2004).  The same design has also 

been used to read input for an EMG classification algorithm (Eisenhower & 

McMichael, 2005), a goal similar to that of our research.  Low-noise surface-mount 

components were chosen to obtain a clean, clear signal.  Also, the differential inputs 

to the boards were obtained through lead wire connections adapted from EKG 

recording methods.  The lead wires have button snaps to connect onto the gel 

electrodes, and the other ends were cut, stripped, and soldered directly onto the input 

pads of the boards.  Several other improvements intended to address safety and ease 

of implementation were considered in the design stage, not all of which were 

incorporated into the final circuit. 

 First, a four-op-amp circuit implementation was simulated using PSpice 

ORCAD, giving the frequency response, phase response, and transient output for 

various input frequencies.  This initial circuit was reviewed and broken down into 

separate stages using hand calculations, to further understand the purpose of each op-
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amp, resistor, and capacitor within the circuit.  In the initial parts ordering, a very-

low-noise quad op-amp OP470 chip was chosen to allow for the clearest potential 

signal outputs, a decision that turned out to be instrumental in the system’s ultimate 

success.  Each component of the circuit was then chosen to take the specific op-amp 

characteristics into account.  For example, the pass band range of the filtering 

component needed to include the range of the majority of EMG frequencies.  Initially, 

the resistor-capacitor pairs in the circuit that constituted the low-pass filters seemed to 

include frequencies that were too high for what we wanted, so the values of the 

capacitors were halved by adding another capacitor of the same value in series.  The 

resulting frequency response range proved to be adequate.  The final schematic of the 

printed circuit board is shown in Figure 4.  A detailed explanation of the functionality 

of each part of the circuit follows. 

 

Figure 4: Final schematic representing the behavior of the working amplification and 

filtering circuits. 

 

 U1 and U2 are the two op-amps that make up the first stage of the circuit, a 

differential amplifier.  R1 and R6 are both 100 kΩ, and R3 and R4 are both 10 kΩ.  
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R2 and R5 are simply 1 kΩ and have no bearing on these op-amps’ function.  

According to hand calculations, the voltage level before capacitor C3 is equal to 

11V2 – 11V1, where V1 and V2 are electrode inputs 1 and 2, respectively.  The third 

op-amp, U3, and the capacitors and resistors connected to it create the second stage, a 

second-order high-pass filter, with a transfer function: 

 

where R7 = 150 kΩ, R10 = 150 kΩ, R15 = 10 kΩ, R8 = 5.6 kΩ, R9 = 330 Ω, C3 = 

C4 = 0.1 μF, and s is the complex frequency of the voltage before it reaches C3.  The 

gain of this stage is dependent on both the specifications of the op-amp and the values 

of resistors R15, R8, and R9, but is about 1.6 V/V.  The cut-in frequency is about 10 

Hz. 

 The two resistor-capacitor segments in the third rectangle are the third stage, a 

second-order low-pass filter.  The resistors and capacitors have values of 10 kΩ and 

0.005 µF, respectively, which cause the frequency response using these particular op-

amps to cut off significantly around 2 kHz.  The final op-amp and accompanying 

resistors is the fourth and final stage of the sensor board circuit, and is simply a post-

filtering amplifier, to bring the signal up to a voltage level that allows for easy feature 

extraction.  R13 is 10 kΩ and R14 in the final working boards is a potentiometer, with 

its resistance tuned to a value anywhere between 1 MΩ and 5 MΩ.  The exact value 

of the potentiometer’s resistance varies from board to board in an effort to counteract 

the imprecise nature of all of the tiny components and their connections to each other, 

which result in differing gains at the end of the third stage.  The potentiometer adjusts 
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for this and greatly amplifies the signal so that every board’s final gain is 2500 V/V at 

a frequency of 100 Hz. 

The magnitude and phase response vs. frequency for this circuit is seen in 

Figure 5.  The transient output response for several select input frequencies is shown 

in Figure 6. 

 

Figure 5: Phase and magnitude response for the final circuitry.  The frequency axis is on a 

logarithmic scale, and the magnitude response axis is in terms of total gain, which is the ratio 

between the output voltage and the input differential voltage. 
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Figure 6: Transient output responses at different frequencies.  Green: 10 Hz; Red: 500 Hz; 

Blue: 1 kHz; Yellow: 2 kHz; Pink: 3 kHz.  Note that the relative amplitudes agree with the 

gains shown in Figure 5. 

 

Additionally, in preparation for further development of the EMG system, 

conductor pads for a 40-pin chip were placed on the backside of the printed circuit 

board, including connections to what is intended to be a positive voltage rail, negative 

voltage rail, and ground.  However, the intended use for these pads was soon deemed 

to be unnecessary, so no actual component is attached to them.  There is no 

perceptible difference in the output or voltages at any point in the circuit due to the 

presence of these pads.  Another component that appears in the board layout but was 

not used in the final sensor circuit is a single-op-amp chip that was intended as a 

simple voltage follower between reference ground and the sensor circuit.  It was 

meant as an added precaution for limiting the current that a patient wearing the sensor 

boards could be subject to.  It was taken out early on because it prevented the board 
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from working as intended and is unnecessary due to the high impedance of the 

electrodes and other parts of the circuit.  Instead, a solder bridge was used to make a 

direct connection between the USB ground pin and the circuit’s reference ground. 

The layout for these sensor boards was done using PCB Artist, a free printed 

circuit board layout program available at 4pcb.com, from Advanced Circuits.  The 

entire board was designed from scratch, with overall dimensions of 6 cm x 3.12 cm.  

The conductor paths were largely inspired by the paths done in David Pierce’s EMG 

sensors (2004), since his circuit also included a general instrumentation amplifier 

with a quad op-amp chip.  The printed circuit board design, front and back, as seen in 

PCB Artist, is shown in Figure 7.  The USB connector for each of the boards is 

explained next. 
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Figure 7: The top copper, solder mask and silkscreen is shown in 7a, and the bottom copper, 

solder mask and silkscreen is shown in 7b.  Note the unevenly-spaced holes designed for the 

USB receptacle at left, the solder pads for the quad op-amp chip U1, the single op-amp 

follower U2, and the 40-pin chip U3.  POT1 is a placeholder for the final op-amp’s feedback 

resistance, which eventually was implemented using a 5 MΩ potentiometer. 

 

These sensor boards required power, a reference ground connection, and a 

method of sending its output to the data acquisition system.  To this end, every sensor 

board was designed with a USB connector, and a central board was created with two 

battery holders, a 50-pin connector for a data acquisition card cable, and six USB 

connectors.  Each sensor board was connected via a USB cable to one of the 

connectors on the central board.  Every USB connection had 4 pins that allowed 

7a) 

7b) 
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positive voltage rail VCC, negative voltage rail VEE, reference ground, and the 

sensor board output to be shared between the sensor board and the central board as 

needed. 

a) Two 9-volt batteries, which were placed in the central board’s battery 

holders, were wired up to every USB connector to provide the positive 

and negative 9-volt rails, which were essential for the functionality of 

the op-amps on the sensor boards. 

b) The reference ground for every board is connected to a common pin on the 

central board, which has a four-foot long lead wire connected to it.  

This lead wire was designed to be long enough to reach away from the 

central board to snap onto a reference gel electrode, which was usually 

placed on the back of a testing subject’s hand. 

c) The output from each sensor board was wired to its corresponding pin on a 

50-pin connector which was attached to the central board.  A cable 

from a data acquisition card hooked onto this 50-pin connector, 

allowing the outputs to be recorded on a computer using a 

preprogrammed data acquisition program in MATLAB. 

This powering board can be held in a waist pack worn by the patient and allows for 

minimal wire connections from the body of the patient to the feedback system. 
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Signal Acquisition System Validation 

 After completion of the sensor boards, the first round of testing was conducted 

on members of the team itself.  There were two main objectives for this round: first, 

to evaluate the functionality of the team-built hardware and acquire preliminary EMG 

signals for the signal classifier subgroup to work with, and second to determine which 

muscles to monitor to best classify the rehabilitation exercises.  Team members were 

fitted with electrodes on a single muscle, such as the calf, and performed basic 

movements to test whether the system operated correctly. 

Stage One 

 Once the signal acquisition system was functioning, we needed to refine and 

further test the sensor system, determine muscles of interest, determine the 

rehabilitation exercises, develop an experimental procedure for patient testing, and 

finalize the signal processing algorithms.  To gain access to post-stroke patients, we 

secured a partnership with Dr. Jill Whitall and Dr. Sandra McCombe Waller, 

Figure 8: EMG sensor hardware.  Left: power board with connectors for six USB cables and two 9V 

batteries.  Middle: sensor board.  Right: sensor board in place on the lower leg (tibialis anterior). 
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professors in the Department of Physical Therapy and Rehabilitation Science (PTRS) 

in the School of Medicine at the University of Maryland, Baltimore (UMB).  Dr. 

McCombe Waller is also a physical therapist.   

Rehabilitation Exercises 

Drs. McCombe Waller and Whitall encouraged focusing the design of the 

EMG videogame system around four gait training exercises they developed.  For each 

exercise, specific muscles to monitor with EMG were chosen from groups of muscles 

activated by that exercise.  The first exercise entails hip abduction and knee 

extension; the second, hip and knee flexion; the third, knee flexion and ankle 

dorsiflexion, and the fourth, knee extension and ankle plantarflexion.  The exercises 

are described in more detail below.  

Exercise #1 

In a standing position, the patient shifts their weight to their paretic 

leg, and then attempts to straighten their knee.  This exercise activates the 

gluteus medius and the quadriceps. 

Exercise #2 

In a standing position, the patient shifts their weight to their nonparetic 

leg and swings their paretic leg forward, bringing their knee up and their heel 

towards the gluteus.  It flexes the hip and knee.  This exercise activates the 

tensor fasciae latae (TFL) and the hamstrings. 

Exercise #3 

In a standing position, the patient shifts their weight to their nonparetic 

leg and focuses on kicking their paretic leg out by straightening the knee and 
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pulling the toes upward (i.e. like kicking a ball).  This exercise activates the 

anterior tibialis and the quadriceps. 

Exercise #4 

In a standing position, the patient shifts their weight to their nonparetic 

leg, then steps forward with their paretic leg and plants their foot on the 

ground, heel first, “controlling” the amount of knee contraction.  They are 

putting weight on their paretic leg without knee buckling.  This exercise 

activates the quadriceps and the gastrocnemius. 

Muscle Selection Criteria 

 We received instructions from Drs. McCombe Waller and Whitall on which 

physiological functions each exercise involves, but that left us with several potential 

muscles to choose from for some exercises.  Exercise 1 uses hip abductors and knee 

extensors, Exercise 2 uses hip flexors and knee flexors, Exercise 3 uses knee 

extensors and ankle dorsiflexion, and Exercise 4 uses hip flexors and knee extensors.   

The gluteus medius is the major hip abductor, and the tibialis anterior is the sole 

muscle responsible for ankle dorsiflexion, so these muscles were automatically 

chosen for their respective functions.  Still left to be determined were which muscles 

to use to measure knee extension (Exercises 1, 3 and 4), hip flexion (Exercises 2 and 

4), and knee flexion (Exercise 2).  The criteria for selection for these muscles were 

the strength and consistency of the signal during their designated exercises and the 

relative lack of activity during other exercises.  Together these two features 

determined the usefulness of a particular muscle in discriminating certain exercises 

from others. 



 

 45 

 

 The quadriceps muscles are responsible for knee extension, so the muscles in 

this group were our candidates for measuring knee extension.  These muscles are: the 

vastus medialis, vastus lateralis, and rectus femoris.  The rectus femoris was 

eliminated from contention because it is also a hip flexor.  Thus, selecting the rectus 

femoris to measure knee flexion would not help us discriminate Exercises 1, 3 and 4 

from Exercise 2, because we would still expect to see significant activity from the 

rectus femoris during Exercise 2 as a hip flexor.  Choosing a knee extensor muscle 

that is not involved in hip contraction allowed us to better distinguish Exercise 4 from 

the others.  This method, used across all muscles, hopefully provided enough 

information to consistently distinguish each exercise from every other. 

Final Muscle Selection and Electrode Placement 

 The gluteus medius was selected to measure hip abduction.  The quadriceps 

control knee extension, and of these, the vastus medialis was selected for our EMG 

monitoring.  As explained previously, the rectus femoris was passed over because of 

its dual role in hip flexion.  Of the vastus medialis and vastus lateralis, the medialis 

was chosen due to observed superior signal quality relative to the lateralis in testing 

on a (20-year-old male) team member.  The hamstring muscle group controls knee 

contraction, and of these, the biceps femoris was selected by virtue of greatest signal 

strength and quality during testing on the team member.  Specifically, superior signal 

quality was observed relative to the semitendinosus.  For ankle dorsiflexion, the 

major muscle involved is the tibialis anterior.  For ankle plantarflexion, the 

gastrocnemius (lateral and medial head) and soleus muscles are at play.  

Gastrocnemius was initially chosen over the soleus for ease of electrode 
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placement/location.  Between the medial and lateral head, the medial head was 

chosen because the lateral head showed spikes in activity whenever the (group 

member) test subject shifted weight from his monitored leg to his other leg.  For hip 

flexor, tensor fascia latae (TFL) was chosen over rectus femoris due to significantly 

stronger signal quality observed during group member testing. 

 

Figure 9: The methods for determining the electrode placement for each of the six targeted 

muscles; from left to right, top to bottom: tibialis anterior, gastrocnemius medialis, vastus 

medialis, biceps femoris, tensor fasciae latae, and gluteus medius (Hermens et al., 2006). 

 

 For all muscles, electrodes were placed in the middle of the muscles, both 

length- and width-wise, shown in Figure 9 and Figure 10.  For all muscles except the 

TFL, electrode placement guidelines were taken from the SENIAM project group 

(Hermens et al., 2006), although testing on group members was done to ensure that 

suggested locations did indeed yield good signals. 
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The Improved, More User-friendly Integrated Sensor System and Hardware 

For Stage One, the sensor system stayed largely the same as in Stage Zero in 

terms of functionality.  However, there were many improvements in terms of 

aesthetics and convenience that greatly improved the testing process and the testers' 

experience. 

First of all, the initial waist pack was replaced with a new one that could better 

hold the central board, and had a zipper allowing the USB cables to come out of the 

sides of the pack.  It also had a fully-adjustable waist strap that did not stretch, 

preventing the pack from sagging to a level that would get in the subject's way as they 

performed their leg exercises.  Most importantly, we developed a safer, more 

comfortable method of attaching the sensor boards to the testing subject.  Instead of 

using tape to hold the sensor boards onto the body, we fabricated elastic straps with 

Figure 10: A muscular view of the leg muscles to be monitored, and the precise placement 

for each electrode pair for each muscle.  The muscles are labeled in Figure 9. 
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plastic buckles that could wrap around the leg and tighten in place.  The sensor boards 

were then attached on the outside of these elastic straps using strips of Velcro placed 

on the straps and the back of each of the boards.  This arrangement meant that the 

boards were no longer in direct contact with the patient’s skin.  Also, the straps were 

not sticky, unlike the tape used before, and allowed for a secure connection without 

being too tight.  These changes provided a much more comfortable experience for the 

testing subjects.  In addition, as long as the Velcro stayed secure, this arrangement 

was much safer for the sensor boards, which were no longer tightly wrapped up in 

tape that caused stress on the boards as the subjects contracted their muscles.  A 

feature of the new waist pack was that a few Velcro elastic straps could be looped 

around the waist strap of the pack and hang down, so that the sensor boards connected 

to the hard-to-reach muscles on the hip and waist could attach to these straps.  This 

practice avoided the need to wrap an elastic strap all the way around the waist or the 

upper thigh, which was hard to reach and would have undoubtedly been 

uncomfortable. 

 

Figure 11: Picture of Velcro elastic strap, which holds the sensor board. 
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Late in the sensor system development, a pushbutton was added that 

connected directly to the central board.  This pushbutton was simply a single-pole, 

double-throw (SPDT) switch that had an AAA battery connected to one pole, and 

reference ground connected to the other pole.  The output of the switch was 

connected to a pin on the 50-pin connector, so the data acquisition software could 

read it the same way it read the sensor board outputs.  Every time this switch was 

pressed, its output switched between 1.2 V (the output of an AAA battery) and 

reference ground.  This button was used to indicate precisely when a testing subject 

performed particular landmark actions in an exercise.  For example, consecutive 

button presses indicated when a subject stepped forward and planted their foot on the 

ground, when they pushed off, and when they returned to standing position again.  

Using this method, the team could study the EMG data with its corresponding 

pushbutton output to determine the times when a patient performed a certain task.  

Matching the EMG data to its corresponding physical movement was supposed to be 

easier.  This was essential for the development and fine-tuning of the classification 

algorithm.  It also helped to quantify any latency problems that may have been 

present, although realistically human error in the timing of the button pushes may 

have obscured the lag time between muscle activation and the data acquisition system 

registering an EMG spike. 

Hemiparetic Test Subjects and Testing Procedure 

 Drs. Whitall and McCombe Waller developed the patients’ training regimen, 

and supervised the preliminary testing to ensure safe collection of electromyographic 

data from multiple subjects.  The testing was completed at a physical therapy 
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laboratory in the Department of PTRS in Baltimore at UMB.  For step-by-step details 

of the data collection procedures, see the protocol in Appendix I. 

 The subject pool was comprised of post-stroke patients that had suffered from 

hemiparesis or spasticity in leg muscles, in order for the data to be most relevant to 

the intended application.  There were four middle-aged patients, two men and two 

women, labeled as EMG01, EMG02, EMG03 and EMG04.  Participants came from a 

preexisting pool of post-stroke therapy patients who had voluntarily consented in 

writing to be contacted when research studies associated with the Department of 

PTRS were in need of testing participants.  These patients, who have participated in 

similar research before, received an e-mail, letter or telephone call inviting them to 

participate in the research from Dr. Whitall or Dr. McCombe Waller.  The contents of 

the e-mail and the letter appear as part of the Institutional Review Board application 

included in Appendix II.  We also recruited four healthy age- and gender-matched 

control subjects, labeled as EMG05, EMG06, EMG07, and EMG08. 

 

 During testing sessions, Dr. McCombe Waller was responsible for prepping 

and placing the electrodes on each patient before data collection.  For each of the four 

Figure 12: Test subjects participating in the EMG data collection for Stage One.  From left to right, the 

patients are performing the exercises: weight shift, knee lift, knee swing, step support.  These pictures 

represent 3 of the 4 participants.  The extra person in the foreground in the two right panels is a team 

member who was coaching the study participants during the trial. 
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patients, we collected EMG data of an isolation exercise for each target muscle, as 

well as several repetitions of all four exercises, shown in Figure 12.  The purpose of 

the five isolation exercises was to develop baseline readings of the strength of each 

target muscle.  We repeated this data collection three times for the paretic leg and 

once for the healthy leg, over the span of several data collection sessions.  The data 

taken from the non-paretic leg was intended to be used as a template for what the 

EMG signal from the paretic leg should look like, but the data was too dissimilar to 

be compared in this way.  We also completed one testing session for each of the 

control subjects using the same testing procedure.  This data was also not useful as a 

relevant template for the paretic data.  Data collection generally involved one team 

member demonstrating and guiding the patient through each exercise, one team 

member controlling the data collection software on the system PC (to be described in 

further detail in the next section), and one or more members for taking video and 

recording notes.  To provide comparison to the hemiparetic patient data, we also 

collected data from four age-matched healthy control subjects using the same testing 

procedure described above. 

Signal Conditioning 

 Our MATLAB interface for data collection is shown in Figure 13.  Our initial 

signal conditioning process converted the raw EMG data into a more convenient form 

for our classification program.  The data acquisition card was set to record samples at 

1000 Hz.  The raw signal was detrended, rectified, and then passed through a fifth-

order low pass Butterworth filter with a 5 Hz cutoff frequency in MATLAB.  For our 

purposes, 5 Hz was found to be under the lower limit of frequency content for 
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conscious muscle contraction.  The higher limit of frequency contents of the signal 

were irrelevant since EMG signals have an upper limit of 2 kHz, so the Butterworth 

filter was used to remove these components as well (Basmajian, 1979).  As the testing 

went on, newer versions of the program were created to add new features including a 

graphical user interface (GUI) and the ability to save and load data files.  The final 

version of the MATLAB program is included in Appendix III. 
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Figure 13: EMG data recorded from control subject EMG06, 4/29/2009.  GUI program 

screenshots with (a) raw, (b) detrended and (c) filtered versions of data recorded from 

Exercise 3. 

 

 Figure 14 shows an example of the data comparison between a patient’s 

paretic and non-paretic tibialis anterior.  Note in particular the scales for each graph, 

which show the difference in EMG signal strength, representing the discrepancy in 

muscle strength.  Post-conditioned results of these signals are also shown, after 

detrending, rectification, and further filtering.  The conditioned signals were then 

used to determine the amplitudes and thresholds used by the Stage Two grading 

programs. 

 

c 
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Stage Two 

As opposed to Stage One, which focused on EMG data collection from 

patients, Stage Two focused on data interpretation in order to provide rehabilitative 

feedback.  Stage Two therefore integrated both real-time visual biofeedback, to allow 

patients to monitor muscle activation, and game play that rewarded patients for 

improving exercise performance.  LabVIEW was used as a front end real-time data 

collection and display module.  User-selected options determined which muscle 

signals were displayed in real-time as the patient was performing an exercise.  Each 

Figure 14: EMG data recorded from tibialis anterior during a step support exercise by patient 3.  a) 

Raw data from paretic leg. b) Detrended, rectified, filtered data from paretic leg. c) Raw data from 

nonparetic leg. d) Detrended, rectified, filtered data from nonparetic leg.  Data in (a) and (c) were 

amplified by a factor of 2500 and bandpass filtered from 10 Hz to 2 kHz by the EMG sensor boards.  

Data in (b) and (d) was additionally detrended, rectified, and filtered using 5
th
-order lowpass 

Butterworth filter. 
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patient’s performance was related to an individually-set benchmark, obtained from 

three calibration trials of each exercise, performed before playing the game.  It was 

necessary to calibrate the system to each individual patient because activation levels 

vary for different muscles and between different patients.  As a result, the system is 

custom-tailored to each patient’s individual rehabilitation needs.  The patient exercise 

data was scored and classified using the classification program, and the results were 

used to generate a swing for the on-screen videogame avatar.  The quality of the shot 

was determined by the patient’s performance of the exercise.  Computer macros were 

written to interface the videogame with the classification program. 

Videogame Interface 

Our desired visual interface was to have a windowed version of Tiger Woods 

PGA Tour 2004 in the center of the screen with various feedback meters on the 

borders of the screen.  Because Tiger Woods PGA Tour 2004 does not have a built-in 

window mode, we had to improvise by running a second instance of our operating 

system in a window.  To accomplish this feat, we used Sun Microsystems’ 

VirtualBox program and ran the Tiger Woods videogame in this windowed instance 

of Windows.   

To allow for communication between the signal processing program and the 

videogame, we used an open-source macro program called AutoHotkey.  The 

processing algorithm evaluated the user’s exercise and returned a numerical value 

corresponding to the activation level of the desired muscles for the particular 

exercise.  This value was written to a .txt file named “goodness.txt”.  We wrote an 
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AutoHotkey script that continually monitored this .txt file.  When a value was written, 

the script would then generate a golf swing corresponding to the value. 

EMG Visual Feedback 

For Stage Two testing, a LabVIEW program was used to provide real-time 

visual indicators of muscle activity during an exercise.  Depending on the exercise, 

the program automatically displayed the real-time EMG data of the muscles of 

interest for that particular action.  The sliders displaying the data also change color 

when certain benchmarks have been exceeded (from blue to red), so the patient can 

easily see when they have performed well.  Furthermore, the program not only 

collects data but also scores the patient’s performance based on amplitude in relation 

to a set of calibration amplitudes.  The difficulty and sensitivity of the scoring system 

is adjustable and can be modified during a session with the patient easily.  The score 

is passed to a programmed macro that controls an avatar in Tiger Woods PGA Tour 

2004.  The avatar hits the ball in the driving range mode with the distance and 

accuracy of the hit determined by the performance of the patient, with a higher score 

resulting in a longer, straighter shot. 

As can be seen in Figure 15 below, there are three vertical slide indicators on 

the left side of the picture that represent the two important muscles for the particular 

exercise and a third indicator to monitor a spastic muscle, if desired. There is also a 

difficulty dial located just beneath the vertical slide indicators that shows the chosen 

difficulty, which can vary between 1 and 10, with 10 being the most difficult. The 

benchmark activation is marked by the solid black line across the slider and varies 

based on the difficulty level. 



 

 58 

 

 The slide indicators represent concurrent feedback that the patient receives 

while performing the exercises.  This form of biofeedback was highlighted in our 

literature review as crucial for successful EMG biofeedback therapy.  The Tiger 

Woods game itself also serves as terminal feedback, giving the patient an easily-

understandable final evaluation of their degree of success in performing the previous 

exercise.  Our primary motivation in including this terminal feedback was to engage 

the patient in a goal-oriented and motivating task to maintain patient interest and 

compliance with the exercise regimen. 

 The system does not use faded feedback, or feedback that is faded out over 

time as the patient learns the exercise on his/her own.  However, the adjustable 

difficulty dial does allow for adjustment of the game so that it adapts to 

improvements in the patient’s ability.  Without adjustment, patients may quickly 

improve and find the game too easy, but with adjustment the patient will not find it 

too easy to score well in the game even after a period of improvement.  Furthermore, 

if the patient masters the exercises to the point where the sliders are redundant or 

annoying and only desires to play the Tiger Woods game, a simple button could be 

added to make the sliders invisible. 
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Figure 15: Data collection and biofeedback displayed with Tiger Woods PGA Tour 2004. 

 

 Figure 16 below shows how the vertical slide indicators change color if the 

patient has exceeded the benchmark level in accordance with the chosen difficulty 

level. 
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Figure 16: Slider bar when color change activated. 

 

 The LabVIEW program has another feature that remains hidden while the 

game is in play. It displays a plot of the activations of the two targeted muscles over 

time for each exercise after the patient has completed the exercise. The patient or 

therapist can refer back to this chart to see a graphical recording of the muscle 

activation over the entire time that the patient performed the exercise as a secondary 

reference, similar to the output of the previous MATLAB program from Stage One. 
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Figure 17: Close up of LabVIEW GUI with signal graph.  The videogame is hidden. 

 

Classification 

Measuring improvement in muscle recruitment levels offers valuable feedback 

that can be used to improve patient rehabilitation.  However, it is also important to 

look at the sequence of muscle activations when evaluating exercise performance.  At 

the current time, this is an ongoing effort and both the attempted methods and 

ongoing avenues of research will be discussed in this section.  In order to study the 

muscle activation sequences, we attempted to develop a signal classification method 

that would allow us to categorize incoming EMG signals into the four different 

exercises.  This serves two primary purposes.  The first is to quantify exercise 

performance based on the identifying characteristics of the four exercises.  The 

classification process was confounded by the difficulty in determining normative data 



 

 62 

 

to classify against, however.  The exercises performed by the patients were unique 

and therefore, no standard template of EMG activation sequence was available. 

The second purpose is to use the EMG classifications to enhance gameplay.  

For example, in a golfing game, the four exercises could be linked to the use of 

differing types of golf clubs.  Implementations of the following classification methods 

have been done in MATLAB. 

Linear Discriminant Analysis 

In order to classify and score the EMG signals, our team attempted to use a 

technique called Linear Discriminant Analysis (LDA).  In order to use LDA, the 

signals must first be represented as a vector of numbers, each of which quantifies a 

given signal characteristic, such as frequency content, amplitude or slope of the signal 

over a specific time frame.  Therefore, the determination of which characteristics to 

use in this feature vector is extremely important for classification, and will be 

discussed at a later point. 

 LDA is a mathematical technique which can be used to determine the optimal 

n-dimensional plane, where n is the length of the feature vectors, which best separates 

two given sets of training data corresponding to two different classes of interest.  In 

other words, LDA splits the n-dimensional space into two domains, each of which 

corresponds to vectors which have a higher probability of indicating the 

corresponding class.  LDA thus attempts to determine into which class, A or B, any 

given vector x belongs.  Mathematically, if P(A|x) > P(B|x), then x will be 

characterized as belonging to class A, otherwise it will be classified as belonging to 
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class B (Friedman, 1989).  The solution to this problem is not trivial, but is made 

easier by the Bayes' Theorem, which states: 

  P(A|x) = P(x|A)P(A)/P(x) 

Therefore, a vector x will be classified as belonging to class A if 

  P(x|A)P(A)/P(x) > P(x|B)P(B)/P(x) 

Multiplying by P(x) on both sides: 

  P(x|A)P(A) > P(x|B)P(B) 

Assuming that P(A) = P(B) for the classification problem, this is reduced further to: 

  P(x|A) > P(x|B) 

This can be restated using matrix notation as: 

  uAC
-1

x
T

 – 0.5uAC
-1

uA
T 

> uBC
-1

x
T

 – 0.5uBC
-1

uB
T 

where uA is the average and C is the covariance matrix. 

 LDA solves this equation to find the plane that splits the space properly.  On 

one side of this plane, data corresponds to class A, and the other side corresponds to 

class B. 

Determination of Features 

The original choice of feature selection was to use average signal amplitude of 

each of the six EMG channels over six equally spaced time windows in the data.  This 

showed good classification performance when other signals from the same subject 

were included, but poorly otherwise.  In order to rectify this error, genetic algorithms 

were used based on average amplitude over differing frames.  Genetic algorithms are 

stochastic methods of optimizing solutions by treating potential solutions to a given 

problem as individuals within a population.  A random population of solutions is then 
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generated and evaluated using a problem-specific fitness function.  Based on the 

individual's fitness relative to the fitness of other population members', a number of 

members “die” probabilistically.  The population is restored to its original size by the 

mating of other individuals in the population.  This mating is also problem specific. 

 In our study, individuals were represented by randomly generated time 

windows over which the signals were averaged to create smaller vector 

representations.  The fitness measure was based on the ability of these vectors to be 

used as input to an LDA classification and produce accurate classifications.  

Specifically, for data from n patients, LDA was used to classify patient i based on 

training data from the other n-1 patients.  The fitness score was the root-mean-square 

of the true positive and true negative fractions across all individuals.  Mating between 

individuals produced offspring with half of their windows from one parent and half 

from the other.  Time windows were passed randomly, with time windows which 

contributed to higher fitness scores being selected preferentially. 

 Other methods of representing solutions were attempted, but showed generally 

poorer results.  These included counting the number of times muscles toggled 

between contracted and relaxed states within specific time windows. 

Dynamic Time Warping 

Classification of EMG signals to determine sequential correctness is 

complicated by the fact that different people may perform the same action differently.  

Local accelerations and decelerations cause features to be misaligned between 

different people, even though the overall sequence is preserved.  For example, during 

exercise two, patients could choose to keep their legs lifted for longer periods of time 
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relative to the time spent lifting and lowering the leg.  Although previous time-

window based attempts to classify the data attempted to compensate for this by 

averaging broad time windows, time resolution was lost and the results were not able 

to account for these timing differences satisfactorily. 

 Dynamic Time Warping (DTW) aims to solve this problem by finding the best 

alignment between two signals while permitting local temporal distortions, or time 

slowing and speeding up.  The overall sequence of the signal is preserved, but 

differences in relative timing can be reduced.  DTW is accomplished by finding the 

least-cost path through a cost-matrix between the two signals which are being aligned 

(Ellis, 2003).  For a signal f of length m being aligned to a signal g of length n, the 

cost matrix is an m×n matrix.  In each element (i,j) of the matrix, the cost between f(i) 

and g(j) is calculated.  Currently, we are experimenting with two different cost 

functions.  The first cost function is simply the absolute value of the difference | f(i) – 

g(j) |.  Additionally, the cost function corresponding to the absolute value of the 

difference of gradients | f'(i) – g'(j) | is being investigated.  Our project currently uses 

the open source implementation of DTW provided by D. Ellis (2003). 

 In order to generate appropriate templates, the data for each exercise was 

visualized in sequence in order to determine typical data patterns.  From this 

qualitative investigation, it was determined that the four typical patterns to see in the 

data were signals with one through three peaks, or else no significant peaks. 
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Figure 18: Different templates were used to detect features in the data.  Based on qualitative 

study of the data, it was found that most signals corresponded to having one, two, three or no 

peaks.  Therefore, these templates were chosen. 

 

 Determination of which template was best matched to the signal was 

accomplished by minimizing the root mean square of the difference between the input 

signal and the aligned template. 

60 Hz Electrical Interference 

 Electrical power in the United States is delivered through wall outlets at 120V 

and 60 Hz AC. This high-voltage electricity source can become capacitively coupled 

between the sensor boards and either devices connected to the power outlet or the 

120V supply wires themselves. This effect can be observed by taking the Fourier 

transform of the data, where interference can be seen as a higher-amplitude spike at a 

frequency of 60 Hz (Figure 19). 
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Figure 19: Signal demonstrating 60 Hz Noise 
 

 Although higher-amplitude spikes were observed at 60 Hz for many of the 

collected EMG signals, it was also absent in many of the collected EMG signals. 

Furthermore, filtering this peak out completely resulted in minimal changes to the 

observed signal envelope (Figure 20). 
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Figure 20: Signal demonstrating minimal change in the EMG envelope profile before 

and after filtering out 60 Hz noise. Specifically, Fourier transform peaks 

corresponding to 59-61 Hz were set to 0. 

 

 However, in the interest of reducing the risk that 60 Hz noise substantially 

affects signal quality, we have decided to filter out the 60 Hz noise during the digital 

processing of the collected signals. 
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Chapter 4: Results 

Stage One 

 During each data collection session, we recorded EMG data for four different 

exercises, each performed three or four times.  We monitored six muscles at all times, 

although each exercise required the use of only two muscles in particular that we 

represented using visual biofeedback to the patient.  The main difference we observed 

between EMG data from hemiparetic patients and control patients EMG data was the 

amplitude of the signal, which was much lower for hemiparetic patients than for 

controls.  For example, displayed in Figure 21, for both subjects tested May 20
th

, 

2009, the EMG peaks for both the hip flexor and knee flexor were about one tenth in 

magnitude for the hemiparetic patient as for the control subject.  Data for a control 

subject is displayed in Figure 22.  Observe the scale on the left-hand side of the 

graphs for perspective. 
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Figure 21: EMG02 data for hemiparetic patient, Exercise 2, May 20
th
, 2009.  Green line is 

for TFL, blue line is for biceps femoris. 

 

 

Figure 22: EMG08 data for control patient, Exercise 2, May 20
th
, 2009.  Green line is for 

TFL, blue line is for biceps femoris. 
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 The low amplitudes complicated the task of designing a signal classifier to 

determine which exercise was performed.  Specifically, the spikes in the main 

muscles of interest in the hemiparetic population were less distinguishable from 

background noise than the spikes in other muscles when exercises were performed.  

In fact, the hemiparetic data was often much worse.  Figure 23 shows a lower-

functioning patient who performed the same exercise as the subjects above, but in this 

instance it was difficult to ascertain when the exercises were initiated.  Even in ideal 

situations, classifying the signal was still challenging.  Potential complications arose 

from background noise, signals from other muscles, hardware inconsistencies, and the 

need for a classifier to distinguish between all four exercises in deciding which 

exercise was attempted and when it occurred. 

 

Figure 23: EMG03 data for hemiparetic patient, Exercise 2, April 3
rd

, 2009.  Green line is for 

TFL, blue line is for biceps femoris. 
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 The last complication we encountered from the hemiparetic EMG signals was 

an inconsistent ability across paretic patients to perform certain “isolation” exercises.  

We initially hoped to use these to develop a baseline reading of the strength of each 

muscle.  Since we monitored and evaluated EMG from six different muscles, we 

anticipated that the EMG readings from the muscles of interest for each patient's 

performance of the actual exercises would be calibrated against the scores of those 

same muscles during the initial isolation exercises.  This was intended to compensate 

for the fact that, especially among hemiparetic patients, different subjects have 

different strength levels and body types.  For example, some patients may register 

EMG readings of around 0.2 V for a muscle of interest during a specific exercise, 

when that exercise would be characterized by an EMG amplitude that was at least 

three times than that for the same muscle during the isolation exercise. 

 Unfortunately, however, we found that different patients exhibited 

significantly varying levels of difficulty in performing the isolation exercises 

themselves.  Specifically, they not only had different strength levels, but different 

relative strength levels between muscles.  Thus, one patient's exercise might be 

characterized by three times the isolation exercise, while another's might be five 

times.  To address this issue, we scrapped the whole process of calibrating exercise 

scores by separate isolation exercises.  We then proposed to calibrate muscle-specific 

EMG scores during exercises by initial repetitions of those very same exercises, taken 

at the beginning of a testing session.  This process was put into place during Stage 

Two, and was intended to aid in our ability to use the EMG data from the exercises to 

not only score the exercises, but determine which exercise was attempted. 
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After Stage One testing, we created a new version of the data collection 

program to incorporate EMG biofeedback during the exercises.  EMG biofeedback 

has been used since the late 1960s as a part of stroke rehabilitation.  Feedback is 

given to indicate that a specific neuromuscular pathway has been activated.  

Theoretically, undamaged pathways can be recruited to assume the functionality of 

those that have been damaged (Glanz et al., 1995).  Furthermore, EMG biofeedback 

has been shown to be more effective at improving functional abilities if the training is 

done with task-specific actions (Huang et al., 2005). 

Stage Two 

Determination of Features 

Initially, vectors were reduced by averaging the signals over six equally 

spaced time windows.  Because the data tracked six muscles, this produced 36-

element vector representations of each exercise.  When first estimating the ability of 

these vectors to be used for signal classification, each trial was classified using all 

other data as training data for LDA.  This method showed reasonable rates of 

classification, approaching 50 to 60 percent correct classification.  In order to 

improve this rate, a genetic algorithm was used to find the optimal set of time 

windows in order to classify the data.  After several thousand generations, it was 

found that classification could be as high as 90 percent.  However, when the data was 

separated by person and each exercise was classified using the data trials collected 

from other people, the classification rate immediately dropped to roughly 20 percent.  

Attempting to use genetic programming to optimize the time windows resulted in 

classification rate of almost 80 percent; however, when looking at the resulting planes 
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of separation, it was found that there was no consistency between the planes 

generated with different sets of data.  The lack of consistency convinced us that there 

was no underlying reason for the high rate of classification and that rather the small 

sample size of our data set permitted numerical manipulation to determine windows 

that would happen to produce good separation in our data set. 

 Despite this inconclusive result, this phase of testing confirmed some very 

important conclusions regarding the data.  The first conclusion was that within a 

single person on a single day, the EMG signals collected for each of the four 

exercises were highly consistent.  This matches physiological predictions, as it was 

expected that one person performing the same exercise twice would be more similar 

than two different people performing the same exercise.  Additionally, it was 

indicative of the fact that the EMG signal is capable of differentiating between the 

different exercises since there were consistencies in the data.  Second, it demonstrated 

that the temporal alignment between different people was too disparate in order to 

produce a good classification using any method which did not attempt to compensate 

for the differences. 

Dynamic Time Warping 

 At the moment, dynamic time warping (DTW) alignment appears to perform 

very well in determining the best-aligned template and in aligning the template to the 

signal.  Representative figures are shown below in Figure 24.  Red lines are the data, 

and white lines are the aligned template. 
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Figure 24:  Alignment shows good matching of template and data.  Additionally, the best 

template was automatically chosen based on minimizing the root mean square of the signal 

and template difference. 

 

This alignment and automatic detection of optimal template is very 

encouraging, and we believe that it will serve as the first step towards better 

classification.  Additionally, during our qualitative analysis of the data, we have 

begun to recognize patterns in the data.  As a small example shown in Figure 25, for 

Exercise 3, we have seen that the biceps femoris tends to fire before the vastus 

medialis, and potentially again afterwards.  Additionally, there may be co-contraction 

between the two muscles.  Encouragingly, these patterns also make sense 

physiologically as the leg lifts, kicks out, is brought back in, and lowered. 
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Figure 25:  Exercise 3 patterns.  Here is an example of the pattern which was seen regarding 

Exercise 3.  The solid line is the vastus medialis and the dotted is the biceps femoris.  

Although this example is from data collected from non-hemiparetic patients, most data did 

not look as clear.  Nevertheless, most showed similarities to this pattern. 

 

 Patients can be scored based on their adherence to the expected muscle 

patterns.  Currently, Exercise 3 is awarded 15% for strong TFL or gluteus medius 

activation and 20-55% for the presence of a strong vastus medialis contraction 

occurring during the TFL/gluteus medius contractions.  An additional 25% is awarded 

for the presence of flanking biceps femoris contractions, with penalties occurring for 

temporal overlap between the biceps femoris and vastus medialis contractions.  The 

final 5% is rewarded for ankle flexion occurring between the vastus medialis and 

subsequent biceps femoris contractions. 
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This score can be integrated into the game by affecting the ability of the Tiger Woods 

avatar to aim the ball during shots.  Additionally, the detection of incorrect muscle 

activation sequences using this method can be used to provide feedback to the 

patients about how to better perform the exercise. 

 Although this method of scoring exercises offers a promising approach to both 

detecting movement quality and providing rehabilitative feedback, there remain 

several concerns.  Currently, the percentage distribution for scoring Exercise 3 was 

developed arbitrarily based on the perceived importance of particular signal features 

to proper exercise performance.  These percentages could potentially be better 

determined based on the feature distribution present in the overall patient population.  

However, given the small sample size, implementing such a solution would be a poor 

choice for this study.  Additionally, the arbitrary number of points associated with 

each feature is not necessarily important so long as the provided feedback allows 

patients to determine which exercise feature they need to improve upon. 

 A more critical issue arises when considering the scoring of Exercises 1, 2 and 

4.  From an EMG envelope perspective, exercises three and four appear very similar, 

as the muscles involved in stabilizing a step landing are similar to those involved in 

kicking a leg forward.  The inability of the above scoring mechanism to consistently 

score Exercise 3 signals higher than Exercise 4 signals is therefore troubling, as it 

suggests that some of the provided feedback may not be appropriate.  For instance, a 

user may be able to fool the system into believing a leg kick was performed when 

instead a modified lunge was performed.  Exercise 2 demonstrates a different 

activation pattern, but has not yet been well-defined.  Exercise 1 is believed to be 
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inconsistent to the point that it is considered “patternless.”  This arises from both the 

fact that there are a large number of methods in which a weight shift might be 

accomplished, and also from the fact that a weight shift primarily involves 

contraction of a hip abductor on the non-paretic leg, which was not monitored at all 

in our study. 

 Some of these issues might be addressable through the consideration of 

frequency-domain signal information.  At the current level of investigation, 

contraction patterns were determined solely based on time-series amplitude 

information.  It is thought that the incorporation of time-series frequency information 

into our classification scheme could provide additional data that would allow better 

discrimination between the exercises.  To this end, an initial investigation into the 

frequency-domain characteristics of the collected EMG signals has been conducted. 
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Figure 26: Typical spectrogram of control patient EMG signal for biceps femoris (top) and 

vastus medialis (bottom).  Spectrogram is shown with corresponding raw EMG signal.  Green 

line represents current enveloping algorithm result.  Red line represents envelope generated 

using first principal component of the frequency distribution. 
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Figure 27: Typical spectrogram of a paretic patient EMG signal for biceps femoris (top) and 

vastus medialis (bottom).  Spectrogram is shown with corresponding raw EMG signal.  Green 

line represents current enveloping algorithm result.  Red line represents envelope generated 

using first principal component of the frequency distribution. 

 

 Shown in the above figures are the typical spectrogram for control and paretic 

patients (Figure 26 and Figure 27, respectively).  It can be seen that for both control 

and paretic patients, muscle contractions are characterized by increased amplitude of 

signal frequency components, especially high-frequency components.  There is 

evidence of a build-up of higher-frequency components in the earlier contraction 
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stage, followed by peak, followed by a reversal process where the higher-frequency 

components dissipate first. 

 It can be seen, however, that the paretic patient may have more difficulty in 

achieving the high amplitude high-frequency components, evidenced by the central 

peak of the vastus medialis plot for the paretic patients.  This suggests that patients 

might be awarded for increased high-frequency activation in the collected EMG 

signal.  The presence of high-frequency components is also valuable because it 

provides a certain level of noise immunity from 60Hz noise, and also confirms that a 

60 Hz notch filter will not significantly alter the frequency distribution during 

contraction. 

 When studying the spectral distribution of the EMG signal using the short-

term Fourier transform, it appears that the spectral distribution of the signal during 

muscle contraction can be characterized by a random distribution with the highest 

power density below 300 Hz.  From this, we believe that without more sophisticated 

techniques it will be difficult to extract more information from the frequency content 

than is already extracted via envelope generation techniques.  These results are 

consistent with a pink noise model of the EMG signal during contractions. 

 At this stage of investigation, it is unclear whether or not frequency-domain 

content could help to discriminate between Exercises 3 and 4.  If differences are seen, 

we expect that they will appear either in the sustained frequency distribution 

difference during the leg kick/leg land and stabilization regimes, or else in the 

frequency content build-up and roll-off.  In order to detect these features, a wavelet 
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transform might allow better visualization of the signal frequency content, as it would 

better preserve time and frequency resolution. 

Qualitative Results 

During Stage Two testing at the laboratory in UMB, we were able to test our 

complete EMG videogame system on our original four hemiparetic patients.  We used 

a very similar testing protocol as Stage One, in that we had one teammate operating 

the computer with the LabVIEW display, one teammate coaching the patient through 

exercises, and one or two teammates taking notes and videos.  Each patient completed 

a single training session consisting of all four exercises.  Before gathering data for 

each exercise, at least three calibration values were collected.  The values were purely 

based on the amplitudes of muscle contraction for that particular exercise.  These 

values set the baseline average that the patient had to strive for and improve upon.  

Then, the patient performed multiple trials of all four exercises, receiving real-time 

feedback from our LabVIEW interface with the Tiger Woods game.  After doing the 

required set of tests of each exercise, the patient could opt to repeat specific exercises 

to perfect their performance. 

 We noticed a variety of user styles amongst the patients when using our 

system for gait rehabilitation.  One patient tended to just stare at his legs while 

completing the exercises, rather than look at the real-time slider bars on the computer 

monitor.  However, he did watch Tiger Woods’ performance in the driving range 

after he completed an iteration of an exercise.  He suggested we add an audio feature 

to complement the slider bars to accommodate those who do not look at the monitor 

directly while doing the exercises.  Other patients used the real-time slider bars to 
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gauge their muscle contraction and accuracy while executing the exercises.  All the 

patients were intrigued by their ability to track their performance throughout the 

session based on their driving range distance scores. 

 There were a few problems with our system that we noticed during Stage Two 

testing with the patients.  The pop-up feedback messages that showed up while the 

patients were performing exercises did not always provide accurate guidance.  During 

a few trials we may have experienced some technical difficulties with the macro 

communication.  This problem caused the patient to miss the ball when they took 

their swing after performing an exercise.  The macro was easily reloaded and we did 

not experience this problem again.  There were also a few minor issues with changing 

the names of the files.  Ultimately, files should be named automatically, eliminating 

the need for an extra person.  

 The patients provided valuable feedback about the preliminary prototype of 

our system.  One patient said he would play our game at home if there was a way for 

him to hook himself up to the system without any assistance.  He stated that it would 

be nice to be able to connect our system to a big screen television at his house to 

enhance the overall experience.  Other feedback was focused on our LabVIEW 

display.  The patients and physical therapists both agreed that the muscle labels were 

too small to read.  The muscles could also be written in basic terms such as “calf” 

because many patients are not familiar with the scientific names of muscles.  Patients 

were captivated by the slider bars because they directly correlated to their efforts 

associated with the exercise.  It would be more helpful if the bars remained red longer 

to give the user more time to see, instead of just briefly flashing red for one second.  
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The physical therapists commented that although the bars were going up, we still are 

not sure if the exercise is actually being performed correctly. 

 In regards to the Tiger Woods PGA Tour 2004 game, the patients had mixed 

feelings.  One patient thought it would be more enjoyable to choose his own avatar, 

such as a character that is more cartoon-like and larger than Tiger Woods appears.  

They also wished the driving range scores were much larger since we were merely 

reading out the scores to them.  Another patient said he would enjoy a wider variety 

of games to play.  Patients also suggested we add a video of someone demonstrating 

the exercises along with the patient to make home-use more effective.  Another 

feature that patients would like to see is a scorecard showing all their past scores in 

the driving range, so they can track their progress across sessions.  The physical 

therapists wished that the golf swing could occur more concurrently with the patients 

exercise performance. 

 Despite these suggestions for improvements to the prototype, our system did 

show promise in making rehabilitation more fun.  In terms of motivation, many of the 

patients desired to continue the session after the initial regimen of four exercises in 

order to top their previous scores.  In particular, one patient would not move on to the 

next exercise until she surpassed her personal best driving range score.  We 

recalibrated Exercise 2 for her, since she had improved significantly since the start of 

the session.  It was evident that she was actually performing the exercise more 

accurately.  For another patient, we decided to test out the difficulty variable by 

adjusting the difficulty indicator from the default setting of 1 up to 2 then to 4.  Since 

he started to get numerous high scores in the 300 yard range with muscle amplitudes 
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above baseline, we increased the difficulty level.  This adjustment caused him to have 

to try harder to get those high scores, allowing him to become considerably better at 

the exercise.  The patient said the difficulty adjustment made him want to push 

harder. 

 We are pleased with these qualitative results, however informal they are.  We 

hope that future work can support these observations with a more quantitative 

process. 
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Chapter 5: Conclusions 

Challenges & Limitations 

One of the main challenges of our study was gathering a large test population 

to collect data from.  Establishing the partnership with the Department of Physical 

Therapy and Rehabilitation Science at the UM School of Medicine was a major step 

forward in validating our project by testing our system on actual post-stroke 

hemiparetic individuals.  However, among the patients receiving therapy from this 

institution, only four patients were able to participate in our study, along with four 

healthy, age-matched controls.  The small test population of hemiparetic patients may 

have limited our study in terms of applicability for all post-stroke individuals, 

especially given the wide range of ability/disability among this target group.  

However, our results still demonstrate the possibility of such a system being realized 

for stroke rehabilitation.  

 We encountered many challenges during the testing phases of Stage One and 

Stage Two.  Our system had numerous technical problems that caused delays in 

testing on subjects in Baltimore.  It was difficult to establish a consistent training 

schedule with the patients due to the need for repairs to our system.   

Our first hardware problem with our sensor boards was that they were too 

fragile, with the electrode wires sometimes falling off and potentiometers becoming 

miscalibrated over time from getting bumped.  These problems would sometimes 

manifest during testing sessions themselves, leading to delays in testing or even loss 

of data collected when the system was not functioning properly.  One such problem in 
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particular was the button snaps becoming disconnected from the sensor electrodes.  

Other times we detected no problems or obvious failings of the hardware during 

testing but still returned to campus to find a channel or two that had collected 

nonsensical data.  We attempted to remedy these problems by encasing our sensor 

boards in a potting compound to make them sturdier, but this provided only a partial 

fix. 

We also experienced delays when the power supply of our computer failed 

during our first testing session in which we attempted to test the full integrated iEMG 

video game system.  The power supply failed abruptly so we had to abandon testing 

for that day and wait weeks to return after a new power supply had been procured.  

Aside from hardware problems, we also experienced several delays resulting from 

coordinating schedules between ourselves, the doctors at UMB and their patients.  

The initial rounds of testing were also delayed due to poor coordination of IRB 

submissions between ourselves and UMB. 

Another challenge during testing was gel electrode placement.  This procedure 

was a time consuming, intricate process, requiring up to 30 minutes to place 

electrodes on all six muscles of each subject.  Electrode placement requires precision 

in order to ensure the EMG signals will be the strongest.  To avoid further delays in 

testing, we started staggering our patient training so that the therapists would begin 

placing electrodes on the next patient, while the current patient completed their 

training.  However, there were concerns over the first few sessions that EMG 

electrode placement was not precisely standardized, which could lead to 

inconsistencies in data collection.  After the first few sessions, skin markers were 
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used to ensure electrodes were placed in the exact same location across different 

testing sessions.   

 The greatest challenge in our study was the classification algorithm.  Many 

classification methods were attempted, but drawing concrete conclusions was very 

difficult.  For the LDA algorithm, there was low success in classification when the 

training group only included data from the other patients not currently being graded.  

We believe the problem is due in large part to two factors – first, that hemiparetic 

EMG data across different subjects was very heterogeneous even within certain 

exercises, and second, that different individuals sometimes did the same exercise 

slightly differently.  Even if neither way was 'wrong' they would yield different EMG 

signatures.  To address this problem, we are looking to use a patient's own EMG data 

from the initial exercises they do to classify later exercises, since EMG data was more 

uniform within patients over time than across patients.  Scoring exercises, which 

would be handled separately than simply identifying whether an action was Exercise 

1 or Exercise 2 for example, would be done by measuring the amplitude of EMG data 

for certain target muscles for each exercise. 

Contributions to the Field 

 Our team has many accomplishments and has provided contributions to the 

field of rehabilitation therapy.  We have developed an EMG signal collection 

hardware and software system from the ground up.  We tested this system on team 

members, a small group of hemiparetic patients, and a small group of healthy 

controls.  We have a physical, working prototype that is ready to be tested in clinical 

trials to see if it can improve gait rehabilitation relative to traditional methods.  While 
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we were unable to conduct such clinical trials ourselves due to limited time, we are 

optimistic about how our system would perform under such testing.  This is because it 

was designed in accordance with important elements from the EMG rehabilitation 

literature, namely that exercises be task-specific (in this case gait) and that visual 

feedback be delivered in real-time.   

Our further contribution is creating a system with not only these functional 

characteristics of other successful EMG training programs, but which is also fun and 

engaging because it transforms an integral part of the rehabilitation process itself into 

a way to play a golf videogame.  While we found in our literature review instances of 

virtual reality used in interactive rehabilitation programs, as well as one instance of a 

simple computer game controlled by EMG data from one simple motion, we believe 

our contribution is the first truly integrated system for allowing seamless control of an 

established, popular videogame via functional rehabilitation exercises.  Finally, we 

presented our research findings in the poster session at the 3
rd

 International Congress 

on Gait & Mental Function in February 2010.  
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Chapter 6: Future Directions 

 There are many ways that our system can be used or improved to further 

evaluate its potential impact on physical rehabilitation.  Some of these future 

directions were originally goals of this research, but could not be completed because 

of time and resource constraints.  First of all, the results of the research reported here 

would be more significant if the system were thoroughly tested on a larger population 

of post-stroke hemiparetic individuals.  Multiple test groups and a several-week 

training program are required to reliably evaluate the clinical benefits of the system.  

One test group would use the interactive EMG biofeedback videogame for gait 

rehabilitation training, while a control group would perform standard rehabilitation 

exercises without our system.  The way in which data from these testing groups could 

be used to formulate further results is described below in “System Efficacy Testing: 

Pre/Post-Training Functional Assessments,” and is similar to the process described in 

“Randomized Controlled Trial in the Home Setting,” with the exception that it would 

occur in the clinic under therapist supervision. 

System Efficacy Testing: Pre/Post-Training Functional Assessments 

In order to determine how effective our system is for improving patients’ 

rehabilitation experience, we are interested in the quantitative improvement in patient 

gait performance as well as level of comfort and motivation while using the system.  

To determine these factors, patients will be evaluated according to the suite of 

functional assessments described below, once prior to and once following six weeks 

of lower extremity training with the interactive EMG system.  The time commitment 
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for each pre- and post-training test session will be approximately 90 minutes.   

1.  Kinematic analysis of joint/segmental coordination during gait:  A three 

dimensional motion analysis system (OPTOTRAK, Northern Digital 

Inc., Waterloo Ontario) will be used to measure joint kinematics at 

each joint (peak and amplitude velocity) and across joints (cross-

correlations).  We will also collect the limb movement during the 

gaitmat trials in procedure 2.  The variables that will be measured in 

this test are hip, knee, and ankle joint angles, as well as hip-knee, hip-

ankle and knee-ankle cross correlations within and between legs 

(Barela et al., 2000; Whitall and Getchell, 1995). 

2.  Spatial/temporal parameters of functional gait:  Subjects will walk along a 

GAITRite instrumented gait walkway (CIR Systems, Inc., Clifton, NJ) 

to measure spatial/temporal parameters particularly of velocity and 

symmetry.  This 8 m rubberized walkway is instrumented with 

pressure sensors to record location and time of foot contacts. Five 

trials will be at a preferred speed and five at a fast but safe speed.  Two 

speeds are used because one represents activities of daily living and 

the other represents the ability to adapt the gait according to changing 

environmental situations.  

3. Active and Passive Lower Extremity (LE) Range of Motion (A/PROM):  

Standard goniometry will be used to determine subject impairment 

levels of bilateral hip, knee and ankle. 
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4. Isometric LE strength:  A Chatillon Force Dynamometer will be used to 

measure the strength of key muscles involved in gait. This 

dynamometer has been validated for use on stroke patients. 

5. EMG Analysis:  Subjects will perform five trials each of the exercises used 

to collect the EMG library with the EMG sensors placed over the same 

6 muscles.  We will analyze the EMG waveforms measured by the 

sensors and will record such features as frequency, amplitude, and 

whatever other characteristics of the signal are important for the 

control of the videogame. 

6. Dynamic Gait Index: This quick, useful, reliable and valid instrument 

evaluates dynamic balance in a number of ambulatory situations in 

order to assess the likelihood of falling.    

7. Pre-Survey:  A Lickert scale questionnaire will be administered to 

determine comfort level with videogames and exercise.   

8.  Post-Survey:  The same Lickert scale questionnaire will also include 

questions related to acceptability, self-efficacy and tolerability of 

iEMG. 

9. Stroke Impact Scale: This tool measures quality of life including mobility 

in both the home and community. This will be used to assess 

behavioral change of the patient in response to training. 

10. Analysis:  Pre to post data will be analyzed using a one-way ANCOVA 

with covariates including age, gender, time since stroke and stroke 

severity.  
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Randomized Controlled Trial in the Home Setting 

Another future aim is to test the iEMG system for training of hemiparetic 

subjects at home.  For a six week training period, participants will be asked to 

participate in training sessions in the home setting at least three times per week for 

about one hour each session.  They will be encouraged to participate more frequently 

if they elect to, but no more frequently than one hour of training per day since we do 

not know the limits for fatigue or repetitive stress injuries.  Subjects will be recruited 

and screened using the same criteria used before, with one addition.  Since the 

interactive EMG videogame involves the execution of exercises in a standing 

position, the therapist screening the subjects must determine whether the interactive 

EMG-controlled videogame is safe for the subject to perform without assistance.  If it 

is deemed unsafe, then in order to continue in the study the subject must have an 

assistant available at home at least three days per week to help with the setup and safe 

execution of the game.  

The home therapy will be preceded by two sessions in the laboratory.  Session 

1 will be screening, consent and a repeat of the existing procedure in order to 

personalize the game parameters.  Session 2 will be pre-testing as described above in 

“System Efficacy Testing: Pre/Post-Training Functional Assessments.”  Session 3 

will comprise a visit by a therapist and a technician to the subject’s home and will 

consist of installation of the EMG system, training of the subject (and the subject’s 

assistant as appropriate) in the safe execution of the exercises and use of the system, 

and the first training session with the interactive EMG-controlled videogame.  For 

session 4, the therapist will again visit the subject’s home and will coach the subject 
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during the second training session with the game.  All remaining sessions will occur 

at home in a self-directed fashion.  The therapist and technician will both be available 

during regular business hours to answer any questions that arise during the training 

period.  In order to ensure treatment fidelity, the trainer will visit each subject at least 

once during the six week period (about week 3/4).  At the end of the six week period, 

a final visit will be scheduled to the subject’s home to retrieve the equipment.  The 

final session will be in the laboratory and will consist of the post-testing as described 

above.  Participants will also be asked to complete midpoint and final surveys to 

assess the subject’s perceptions of the interactive EMG training.  In addition, 

participants will be invited to attend a focus group in order to provide feedback about 

their experience with the videogame. 

iEMG Training 

Subjects randomized to the iEMG group will complete the same training as in 

the lab setting, except that it will be adapted to the home setting as described above. 

A description of the training regimen completed by subjects randomized to the 

control group follows: 

Control Group 

The control group for the interactive EMG training will consist of subjects 

that participate in conventional home-based self-training based on the isolated 

exercise of each of the six target muscles in sitting.  The self-training for the 

"conventional care” group would be three sets of ten repetitions of the following 

exercises: 
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1. Active hip flexion of paretic leg in sitting 

2. Active knee extension of paretic leg in sitting 

3. Active knee flexion (from extended position) of paretic leg in sitting 

4. Active ankle dorsiflexion of paretic leg in sitting  

5. Theraband exercises for hip abduction in sitting (theraband around thighs, 

subject pushes knees apart)  

Control subjects would be evaluated using the same pre/post tests as for the 

interactive EMG group.  Data from these tests will be stored by the data collection 

system and returned to the researchers along with the hardware at the end of the 

training period.  Each patient will keep a log of their exercising and the program will 

also save a diary of exercise execution and performance (how often used, how long, 

performance records for each session). 

Analysis 

Pre to post data will be analyzed using paired t-tests for the whole group as 

well as within individual for the gait mat/joint kinematics/muscle patterns.  However, 

given the small sample size and the potential heterogeneity across trials or subjects, it 

is probable that the most meaningful results will be reported on an individual basis as 

absolute and relative changes.  A group by time ANCOVA will also compare the 

training effects of both groups with covariates including age, gender, time since 

stroke and stroke severity.  

Hardware Improvement 

There are also several ways in which the system can, and will have to, change 

in order to better suit the end-users.  Ideally, the system should be transformed into a 
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more portable, take-home system.  One of the greatest hardware improvements 

possible is to remove the need for a physical cable connection between the user and 

the computer containing the system’s software.  This can be done by introducing a 

wireless transmitting device on the central board held in the user’s waist pack.  This 

transmitter can send each of the output signals and the system’s reference ground 

voltage through the air to a receiver plugged into the system’s data acquisition card in 

the computer.  As the data is received, it can be read and processed by the signal 

conditioning and feedback programs in the same way as before, since the signals are 

still being sampled and formatted by the acquisition card. 

With the absence of the data acquisition cable, users will no longer be limited 

to within 10 feet of the system’s computer.  The cable will no longer be a concern for 

tripping or pulling, which may potentially injure the user or damage the system.  This 

is particularly prudent considering that the user will be moving their legs extensively 

while performing the training exercises.  The range of the wireless transmitter 

depends on the specific model used, but can generally be at least 15 feet, a 

comfortable improvement over the cable’s 10 foot length. 

 Additionally, the system could be constructed with more user-friendly and 

durable materials to allow the patients to easily put on and remove the system with 

minimal discomfort.  An alternative way to accomplish this is to minimize the size 

and number of parts by attaching a miniature wireless transmitter to each of the six 

sensor boards, similar to the aforementioned “Wireless Body Area Network” 

developed by University of Alabama researchers (Jovanov et al., 2005).  This would 

remove the need for the waist pack and any cable connections at all, theoretically 
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maximizing user mobility and eliminating the risk of wires catching or pulling out 

while the user performs exercises.  However, doing so would require completely 

redesigning the sensor network, since each sensor board would have to handle its own 

power, reference ground, and output transmitting, functions that are presently handled 

by the waist pack’s central board.  This option is not feasible if the addition of these 

capabilities to each sensor board increases the board size to the point where it cannot 

be easily worn in all six muscle locations. 

 A significant barrier to the use of our system in the home is the current hassle 

of placing the electrodes on the patient and wiring all the boards together.  While this 

hassle would be largely reduced by switching to wireless transmission of EMG data, 

retaining the current six individual sensor boards for placement would still require a 

patient to remember the correct locations for placement in the home. 

 To facilitate power for wireless sensors and allow patients to place their own 

electrodes, a neoprene “sleeve” could be fashioned with embedded sensors that would 

be placed around the leg to align each sensor in the desired position.  The first time 

the system is used, the sleeve could be custom-fit to each user with the aid of physical 

therapists.  The patient could later ensure the sleeve was oriented properly by using 

simple body landmarks.  For example, a small hole that fits around the kneecap could 

indicate that the sleeve is in place, as well as the embedded sensors.  Power could 

potentially be integrated as well.  This feature would make sensor placement much 

quicker and more accurate. 

 The main issue with this method is that a leg-sleeve would only encompass 

four of our current six muscles/electrode placements – it would likely be cumbersome 
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or impractical to extend it all the way up to the hip muscles.  However, given the 

strong correlation we have seen in our data between our two hip muscles (flexor and 

abductor), a future system might be able to work by monitoring only one (likely the 

TFL).  In this case, a leg sleeve would likely encompass the four muscles of the lower 

and upper leg, and a single wireless sensor might be applied to the TFL. 

Portability could be further improved by running the videogame on a hand-

held computer with LabVIEW.  This computer could use an IEEE 802.11 protocol 

(wireless local area network) to communicate to a central computer displaying and 

playing the videogame.  Networking also allows the system to add new methods of 

patient-doctor interaction.  If connected to the internet, the system could send the 

physical therapist updates on the patient’s frequency of practice and performance 

scores, allowing the therapist to better shape and direct the patient’s physical therapy. 

Any changes to the design of the sensor network and overall system should 

improve its ease of use in the home setting.  These changes should also be suitable for 

mass production in order to facilitate successful commercialization.  The system 

should be relatively low-cost, so that patients can afford it themselves.  The current 

computer system could easily be plugged into a home TV or PC monitor, so users 

will not have to spend extra money for another one. 

Videogame Development 

In terms of the videogame, future systems will have multiple games for the 

user to choose from, possibly corresponding to different exercises required for gait.  

An increase in game complexity could also be beneficial to reduce the chances of the 

users becoming bored with the game once they begin to do well.  A partnership with a 
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gaming development company would be optimal, so that videogames could be 

conceptualized and designed from the beginning with gait rehabilitation patients in 

mind.  For example, the user should be able to train and switch between different 

exercises without the need for a mouse or keyboard, which may be annoying to use 

since the patient is already wearing the signal collection system and standing a good 

distance away from the computer.  Other important features that should be 

incorporated into the game include an improved graphical interface that provides real-

time feedback and records performance online via the Internet.   

The improved interface must include a graphical representation depicting a 

target level of muscle activation for the patient for a given exercise, with his or her 

own EMG activation level superimposed, as well as visual guidance for the correct 

sequence of activation of separate muscles (Aiello et al., 2005).  Providing a more 

visually appealing virtual environment is also desirable, as it would help enrich the 

user’s experience. 

To keep the patient engaged and motivated to continue using the system, 

certain design changes can be made to the game.  The addition of characters or 

features that can only be used once the participant has attained a certain level of 

performance or investment in the game (i.e. time played) will reward the player for 

effort and improvement, providing extra motivation to continue playing.  Other 

additions of this sort include benchmark goals or challenges that change depending on 

the skill level and displayed records of performance history.  By adapting to the 

user’s ability, the game will remain challenging, so that the user does not become 

complacent and can continue to develop his or her skills.  It would also be greatly 
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beneficial to incorporate a wide array of game modes and activities to prevent the 

game from becoming monotonous.  Although the exercises may remain the same, 

simply a change in setting or visual feedback, such as a jump or hurdle instead of a 

golf swing, should keep the game feeling fresh.  We currently use only the driving 

range mode from Tiger Woods PGA Tour 2004, which the patient will likely become 

bored of after extensive use.  By expanding the game to include completing actual 

golf courses or activities other than golf, we will better be able to keep the user 

engaged even after prolonged use of the system. 

The incorporation of online records and improved real-time feedback can also 

further improve the efficacy of our system.  The use of online performance 

information will give the therapist the option of reviewing a patient’s data from a 

separate location.  This feature is particularly convenient if the patient’s records are 

automatically uploaded to the therapist’s computer.  The current real-time feedback 

can also be improved by using dynamic scoring of the exercise as it is performed.  

This improvement provides an opportunity to use simple auditory feedback, such as 

clapping of varying volume and intensity.  In this way, both visual and auditory real-

time feedback would instantly and intuitively notify the patient of bad habits or 

particularly good performances.  The game could also be designed to give the user 

specific hints and suggestions of how to improve his or her performance using the 

real-time data acquisition.  For example, the game could tell the user to try relaxing a 

certain muscle that is incorrectly activating.  The inclusion of this feedback would 

help improve the utility of the game, as the user will theoretically only have to follow 

the suggested instructions to improve their gait. 
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A partnership with a game software developer would also provide a chance to 

diversify the games offered to patients.  This is important for realizing the objective 

of developing a rehabilitation system that is fun and engaging, and motivates the 

patients to engage in long term use of the system in order to prevent regression after 

cessation of regular rehabilitation.  After development of software to properly classify 

EMG signals from various interacting muscles, identifying physiological bad habits 

by EMG signatures, and scoring particular exercises, the extension of the program to 

additional gaming platforms should not pose a significant difficulty.   

Assessment of Videogame 

 It is critical that the videogame be interesting enough to engage the patient’s 

attention and motivate them to continue their participation in the game, both in the lab 

setting and at home.  In order to gauge the degree to which the game is enjoyable and 

compelling, the participants’ experience of the game during training will be assessed 

through surveys and focus groups.  The information received can be used to modify 

the game and/or create additional modules for the game.  Guidelines for these surveys 

can be seen in the IRB Application in Appendix II-F and II-G.  Since we were unable 

to complete training with our complete integrated system as extensively as we 

originally intended, we were unable to administer these surveys in a relevant way. 
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Appendices 

Appendix I: Procedure for Testing 

Topics to go over with the Drs before working with the patients. 

 -To make sure we are completely on the same page, go over every exercise. 

-What position should patients be in for electrode placement? Tib ant, gastroc 

medialis and vastus medialis should all be able to be done simply with patient sitting. 

For the biceps femoris, it would probably be helpful for the patient to lie on their 

stomach (SENIAM recommendation). The tensor fasciae latae and gluteus medius 

might be a bit trickier, SENIAM recommend lying sidewise on a table. 

 -For reference (patient-specific) iso contractions, we probably need a backup 

if subjects (likely) can't lift themselves up onto their toes with their calves. Perhaps 

subject could extend their leg while sitting and push against a flat surface with their 

toes? 

 -Any obvious reference iso for hip abductor gluteus medius? 

 

Potential Issues 

 -Do we have the little loops of Velcro to hang down from the fanny pack for 

the gluteus medius and the tensor fasciae latae? If not it might be quite hard to 

comfortably reach. 

 Also, can we attach longer electrode wires, or extensions to a board or two for 

these muscles? This might be more comfortable for the patient so that they don't have 

to have boards under their shorts. 
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1) Greet subject. Brief on experiment procedure and movements. 

(a) We're students at the University of Maryland working on 

modifying a popular golf computer game so that it can be played 

by performing certain exercises 

(b) The green boards we have here record electrical activity, or EMG 

data, that indicates when the muscles under them have fired, and 

how strongly they fired. With a bit of software which we are 

working on, these signals will tell our golf game when to swing, 

how hard, and how accurately.  

(c) We have tested these boards and recorded data on group members 

several times. We really appreciate your participating in this 

project. 

2) Have patient read and sign consent form. 

 

3) One group member will set up laptop. 

a) Open MATLAB 

b) Navigate to the directory with the files temp.fig and temp.m (These should 

also have the necessary c code files in there as well but we will check this 

before the testing begins) 

c) Type “temp” into MATLAB (w/o quotes) and the program should start 

d) After program starts, change voltage range to 5V 

e) Change total time to a desired number in seconds   If you are unsure with 
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how long the trial will take, overestimate the amount. 

f) After you have set the total time and changed the voltage range to 5V, wait 

for the electrodes to be attached, the exercise to be explained and for the 

patient to be ready. 

 

4) Place each pair of electrodes (6) on the targeted muscles (so that the location 

of the orange X's falls between the electrodes). Electrode pairs should be 

placed right next to each other. 

(a) Tibialis Anterior: Place one set of electrodes at 1/3 on the line 

between the (top) of the fibula and the tip of the medial malleolus 

(ankle on the inside of the foot). 

 

(b) Gastrocnemius Medialis: Place one set of electrodes on the most 

prominent bulge of the gastrocnemius medialis. 
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(c) Vastus Medialis: Place one set of electrodes at 80 percent on the 

line between the anterior spina iliaca superior and the joint space in 

front of the anterior border of the medial ligament.  

 

(d) Biceps Femoris: Place one set of electrodes at 50 percent on the 

line between the ischial tuberosity and the lateral epicondyle of the 

tibia. 
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(e) Tensor Fasciae Latae:  Place one set of electrodes on the line from 

the anterior spina iliaca superior to the lateral femoral condyle in 

the proximal 1/6. 

 

(f) Gluteus Medius: Place one set of electrodes at 50 percent on the 

line from the crista iliaca to the trochanter.  

 



 

 107 

 

 

(g) Place Velcro straps around leg and thigh near electrode pairs. 

Depending on the subject, the tibialis anterior and gastroc may be 

able to share one Velcro strap. There is one strap with Velcro on 

both sides for this case. 

(h) Attach one sensor board to each Velcro strap, attaching the 

electrodes on the board to the pair of gel electrodes on the muscles. 

(i) Have Patient attach fanny pack around waist. 

(i) Drop down Velcro loops from fanny pack for the hip 

muscles?  

(j) Attach USB cables from Fanny Pack to USB inputs on boards 

5) Connect fanny pack to DAQ 

(a) (INSERT DIAGRAM HERE) 

ii) Ensure that no wires create any potential hazard to subject. 

 

6) Begin Recording Data 

a) For all Data Recordings: 

Hit the “Go Go Gadget Sensing” button 

i) The program feedback bar will display “Recording…” 

ii) After the total time has been reached, the program will display: “Finished 

Recording.” 

b) IMPORTANT: Save the file after you have recorded the data by typing in 

DATE_SUBJECT_TRIAL_Exercise-Repetitions.mat, substituting the date 
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for DATE, subject for SUBJECT, etc. and hitting the save button. (Do not 

use slashes as that will indicate you are trying to save in a different directory)  

The program feedback should indicate the file was saved. 

i) If you make a mistake, simply retype what you want the filename to be 

and hit save once again. 

c) Once you have done this, you can start with a new exercise.  You can simply 

change the time and rehit the sensing button or you can quit out of temp and 

re run the program.  Either option will work fine. 

d) Set up DAQ 

 

e) Collect reference maximum comfortable contraction data on iso's for 

relevant muscles. Do two reps for each exercise and save data. 

i) Tib Ant: As patient sits with feet flat on the ground, ask patient to raise his 

or her toes while leaving the heel on the ground. 

ii) Vastus Lateralis: Also while patient is sitting, ask patient to swing knee 

out as far as possible or comfortable. 

iii) Biceps Femoris: Ask patient to stand up, and offer a surface to hold onto 

for support and balance. Ask patient to lift their heel towards their gluteus. 

iv) Gastrocnemius Medialis: While patient is still standing and has support 

available if needed, ask patient to lift themselves onto their toes with their 

calves. 

v) Tensor Fasciae Latae: While patient is still standing, ask patient to lift 

knee upwards, flexing the hip. (similar to Exercise 2 but would like patient 
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to focus exclusively on hip flexion without knee flexion).   

 

f) Explain and Demonstrate exercise #1 

g) (1) In a standing position, patient shifts weight to paretic leg and then 

attempts to straighten their knee (activation of Gluteus medius and 

quadriceps). 

h) Instruct Patient to perform exercise #1 4 times. Set GUI to 60 seconds. If 

patient completes exercises easily within the allotted time, may adjust time 

down accordingly for future sets.  

 

7) Explain and Demonstrate exercise #2 

a) (2) In a standing position, patient shifts weight to nonparetic leg and swings 

the paretic leg forward, bringing knee up and heel towards gluteus. Flexes 

hip and knee (activation of tensor fasciae latae and hamstrings). 

b) Instruct Patient to perform exercise #2  4 times. Set GUI to 60 seconds. 

8) Explain and Demonstrate exercise #3 

a) (3) In a standing position, patient shifts weight to nonparetic leg and focuses 

on kicking paretic leg out by straightening the knee and pulling the toes 

upward (i.e. like kicking a ball) (activation of anterior tibialis and 

quadriceps). 

b) Instruct Patient to perform exercise #3  4 times. Set GUI to 60 seconds. 

 

9) Explain and Demonstrate exercise #4 
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a) (4) In a standing position, the patient shifts weight to nonparetic leg steps 

forward with paretic leg and plants foot on the ground, heel first,(?) 

“controlling” the amount of knee flexion (putting weight on paretic leg 

without knee buckling) (activation of quadriceps and gastrocnemius). 

b) Instruct Patient to perform exercise #4  4 times. Set GUI to 75 seconds. 

 

10) Go over reference iso contractions for all muscles again.  

11) If there is time and patient is willing, go through each set of exercises once 

more. 

 

12) Disconnect patient from system. 

13) Disconnect fanny pack from DAC. 

14) Disconnect USB Cables. 

15) Remove Fanny Pack from patient’s waist. 

16) Remove elastic straps. 

17) Remove Sensor Boards and Electrodes. 

 

18) Thank patient for participation in testing. 
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Appendix II: IRB Application and Addendum 

UNIVERSITY OF MARYLAND, COLLEGE PARK 
Institutional Review Board 

Initial Application for Research Involving Human Subjects 

Name of Principal Investigator (PI) or 

Project Faculty Advisor Dr. Pamela Abshire 
Tel. 

No 301-405-6629 

(NOT a student or fellow) 

Name of Co-Investigator (Co-PI) Alfred Haas 
Tel. 

No 301-405-8974 

E-Mail Address of PI pabshire@umd.edu 
E-Mail Address 

of Co-PI ahaas@umd.edu 

 

Name and address of contact to receive approval 

documents 

Dr. Pamela Abshire 

Institute for Systems Research 

University of Maryland, College Park 

College Park, MD, 20742 

 

Name of Student Investigator Benjamin Tousley Tel. No. 240-478-7240 

E-Mail Address of Student Investigator btousley@umd.edu 

Check here if this is a student master’s thesis ⁯ or a dissertation research project ⁯ 

Department or Unit Administering the Project UMCP Gemstone Program 

 

Project Title Interactive EMG Training System for the Rehabilitation of Hemiparetic Individuals 
 

Funding Agency: UMCP Gemstone Program 

ORAA Proposal ID Number:  N/A 

Names of any additional Federal agencies providing funds or other support for this research project: None 

 

Target Population: The study population will include (Check all that apply): 

□ pregnant women 

□ minors/children 

□ human fetuses 

□ neonates 

□ prisoners 

□ students 

□ individuals with mental disabilities 

X    individuals with physical disabilities 

 

Exempt or Nonexempt (Optional): You may recommend your research for exemption or nonexemption by checking the 

appropriate box below.  For exempt recommendation, list the numbers for the exempt category(s) that apply.  Refer to pages 6-7 

of this document. 
 

 Exempt----List Exemption Category(s) 
 

      

 

Or           Non-Exempt 

If exempt, briefly describe the reason(s) for exemption. 
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1. Abstract 

 Our research goal is to create a training regimen that is enjoyable enough to 

induce improved patient cooperation over conventional rehabilitation regimens.  We 

intend to meet this goal using a simple videogame, where game control is achieved by 

contracting certain muscles, as opposed to pushing buttons.  The muscle contractions 

will be read by sensors on the skin and classified to produce an appropriate output to 

control the videogame. 

 The videogame system will include a gaming console, television screen, and 

wires that are connected to one or more sensor pairs placed on the skin over different 

lower leg muscles.  Up to six sensors will be held in place on the leg using 

comfortable surgical tape, to ensure placement during the testing sessions.  We have 

consulted with electrical engineers and clinicians to ensure that direct skin contact 

with the sensors during testing is safe and that there is no significant risk of shock to 

the patient.  Furthermore, to keep the participants safe, an electrical engineering 

expert will always be present to ensure proper use of the electrodes and game 

interface.  The testing will take place at the University of Maryland, Baltimore, 

Department of Physical Therapy and Rehabilitation Science Research Lab, and a 

physical therapist will be on hand at all times for supervision.  Our partners at UMB 

have helped us to design the training regimen to ensure the maximum safety of the 

patients. 

 

2. Subject Selection 

 a. We have secured a partnership with Dr. Jill Whitall and Dr. Sandra 

McCombe Waller, professors and physical therapist, respectively, in the Physical 

Therapy and Rehabilitation Science Department in the School of Medicine at the 

University of Maryland, Baltimore (UMB).  They have worked with us already in 

developing the patients’ training regimen, and will supervise the preliminary testing 

to ensure safe collection of electromyographic data from multiple subjects. 

Electromyographical (EMG) data are the electrical potentials generated when muscles 

contract, which can be detected at the skin surface by EMG sensor electrodes. The 

EMG data, along with videotaped recordings of the muscle movements ("EMG data 

library"), will be used to train a signal classifier that can identify a particular muscle 

movement from the correlated EMG signals measured by one or more sensors.  After 

we have trained a working classifier, we would like to test our final game on these 

same hemiparetic patients.   

The subject pool will comprise post-stroke patients that have suffered from 

hemiparesis or spasticity in leg muscles, in order for the data to be most relevant to 
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the intended application.  Hemiparesis is muscle weakness on one side of the body 

often induced by a stroke.  Muscle spasticity, which can also be induced by stroke, 

causes involuntary contractions and stiffness that may interfere with functions such as 

gait.      

Participants will come from a preexisting pool of post-stroke therapy patients 

who have voluntarily consented in writing to be contacted when research studies 

associated with the Physical Therapy Department are in need of testing participants.  

These patients, who have participated in similar research before, will receive an e-

mail, letter or telephone call inviting them to participate in the research from Dr. 

Whitall or Dr. Waller.  The contents of the e-mail and the letter appear in Appendix 

A.  The text in Appendix A will also serve as the script for telephone recruitment. 

 

 b. Yes, subjects will be selected for specific characteristics.  The general 

inclusion criteria, as determined by our partners from UMB, are those who (1) have 

had a unilateral ischemic or hemorrhagic stroke (cortical or subcortical), (2) are aged 

40 – 80 years, (3) are at least six months post stroke having completed all 

conventional inpatient and outpatient therapy, (4) have residual hemiparetic motor 

dysfunction of the leg, and (5) are able to stand for 5 minutes with arm support. 

The general exclusion criteria include those subjects who have:  

(1) An alcohol consumption > 3 oz liquor, or 3 x 4oz of wine, or 3 x 12 oz of beer per 

day; or 

(2) Cardiac history of (a) unstable angina (a partial blockage of a coronary artery 

leading to decreased blood flow to heart); (b) recent (< 3 months) myocardial 

infarction (heart attack, generally full blockage of a coronary artery); (c) congestive 

heart failure (NYHA category II); or (d) hemodynamically significant valvular 

dysfunction; or 

(3) Medical history of (a) recent hospitalization for severe disease or surgery, (b) 

poorly controlled hypertension (>160/100) or uncontrolled diabetes (c) significant 

orthopedic or chronic pain conditions limiting exercise, (d) active tumor(s) on one or 

both legs, (e) debilitating respiratory or kidney disease, or (f) presence of any serious 

medical condition with a prognosis for death or dependency in the next 2 months; or 
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(4) Neurological history of (a) untreated major post-stroke depression, (b) dementia 

based on Folstein Mini-Mental Status Score or diagnostic confirmation by neurologist 

or geropsychiatrist, or (c) severe receptive or global aphasia (loss of ability to 

communicate with others following brain damage)  that confounds testing and 

training (unable to follow 2 point commands); or 

(5) A non-stroke neuromuscular disorder restricting exercise (e.g., Parkinson’s 

Syndrome); or 

(6) A notable history of noncompliance; or 

(7) Dense flaccid hemiparesis of the lower extremity. 

These characteristics will be evaluated by our clinical partners, Dr. Waller and 

Dr. Whitall, who will examine the subjects’ medical records and conduct a brief pre-

study screening interview to ensure that all of the inclusion criteria are met and none 

of the exclusion criteria apply to a subject prior to allowing that individual to 

participate in the study.  In order to do this, Drs. Waller and Whitall must obtain 

permission from subjects to review their medical records if they previously did not 

have such permission.  In addition to the eligibility criteria listed above, our clinical 

partners will also exclude a potential subject if they show any signs of recent illness 

or infection.  Hemiparesis will be determined through professional evaluation by Dr. 

Waller.  Dr. Waller and Dr. Whitall will perform the same screening evaluations on 

all subjects prior to their participation in Stage Two, to confirm that each subject is 

still eligible. 

 c. The bases of post-stroke hemiparesis and age are essential for selecting 

subjects because the EMG data we record to recognize a weak agonist or incorrect 

antagonist muscle movement will only be applicable if it is obtained from subjects 

who match our end-user demographic.  The nonparetic leg of each participant will 

provide the most accurate data reflecting the EMG signals that s/he should strive 

towards using the paretic limb.  All of the other inclusion and exclusion criteria are 

necessary to ensure that no other unforeseen, unrelated, and uncontrollable risks 

complicate or compromise the safety and comfort of the patients during testing. 

 d. We hope to obtain initial EMG data from about six test subjects.  While we 

understand this is an ambitious target, we believe that more heterogeneity in the 
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initial data will enable us to construct a more robust classifier that will be more 

successful during final testing, and eventually applicable to a wider population of 

hemiparetic individuals.  The first few subjects tested will ideally include subjects 

from both genders with a fair range of walking ability/stroke severity. 

 

3. Procedures 

 We intend to conduct Stage One testing in fall 2008, collecting initial EMG 

data that will be used to determine the thresholds and specific characteristics of our 

classification algorithm and guide subsequent hardware development.  Stage Two 

testing will commence in the summer of 2009, combining the classifier with the game 

and evaluating how effective the classifier is at matching movements to 

corresponding actions in the game.  The rate of muscular improvement and gait 

efficiency in the patients will also be tracked.  All testing will occur in the clinic in 

the Allied Health Building, 100 Penn Street, Baltimore, MD, which is part of the 

University of Maryland School of Medicine. 

 

Stage One 

When the prospective subjects initially come in to the lab, before any testing 

is actually done, they will have enough time to read and fill out the consent form 

located in Appendix B.  Any subject can discontinue his/her participation in the study 

at any time, and need only contact the research team, Dr. Whitall, or Dr. Waller to do 

so.  In Stage One testing, we will have the patients perform physical exercises 

intrinsic to traditional physical therapy.  For each subject we test, we will conduct 

four testing sessions on four different days, for about 30 minutes each.  The first of 

these sessions will involve testing of the patient’s healthy leg, to serve as a basis for 

comparison against the performance of the paretic leg.  The following three sessions, 

which will be done on the patient’s paretic (weaker) leg, will help us to determine the 

level of variation within individuals, and to make sure we encompass the full range.  

We will request that subjects do not conduct strenuous physical activity or therapy 

prior to our tests, as fatigue may play a confounding role in the data collected.  
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“Prior” will be relative to the recovery period for the test subject, but the essence will 

be that we request they not begin our testing sessions tired. 

 EMG data from 6 key muscles will be collected from subjects during the 

execution of 4 discrete exercises, as detailed in Appendix E.  The procedure that 

researchers will adhere to when interacting with patients is found in Appendix C.  

The Stage One dataset will consist of the amplitude of the electromyographic signal 

detected by each sensor, versus time.  Signal frequency will also be a characteristic of 

interest.  This will take the form of multiple EMG waveforms per patient, per testing 

session.  In addition, in order to accurately map movements to EMG signals, we will 

videotape testing sessions, and this data will be stored digitally.  These data will be 

used to determine the general characteristics and changes in EMG signals recorded 

from particular muscles when patients attempt a particular muscle movement. 

Contractions generally will be slow and deliberate, at a pace comfortable for 

the subject.  However, every fourth contraction we will ask the subject to move faster, 

at close to their maximum speed without feeling uncomfortable, risking overexertion, 

or pulling a muscle.  In the event that our eventual patients truly do get involved in 

the games, we need to ensure that the signal classifier can correctly identify quicker, 

more forceful contractions.  Having these more forceful contractions at regular 

intervals will also allow us to observe the development of the signal over the course 

of the training period, as the subject gets more tired.  The study of this development is 

essential to an effective, robust classifier.  We will also ask for several (three to five 

depending on the age and physical condition of the patient) quick contractions in a 

row at the end, to determine to what extent these contractions accelerate the fatiguing 

process or the potential change in the signal.  Leaving successive forceful 

contractions until the end of the testing session will avoid fatiguing the participant 

because they will be able to rest afterwards, since they will be finished with their 

testing session for that day.  The total commitment time for each patient for Stage 

One testing should not exceed 2 hours with the patient’s cooperation. 

 

 Stage Two 
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 Stage Two testing will likely not occur until around summer 2009, and will 

quantify any differences in effectiveness between our interactive training program 

with videogame versus conventional rehabilitation.  The videogame will be controlled 

by the same pairs of agonist/antagonist muscles that were tested in Stage One, i.e., 

gluteus medius, quadriceps, iliopsoas, hamstrings, anterior tibialis, and the 

gastrocnemius.  The videogame will contain unstartling, entertaining material 

appropriate for the advanced age group of our participants.  Music and visual 

stimulation will be included as part of the videogame, but volume levels will be 

adjustable to the participant’s choosing.  A single USB cable from each sensor will 

connect to the classification and power system, attached near the patient’s waist.  

These cables will be sized to the individual subjects – they will be just long enough to 

permit freedom of movement, but will not extend below the calf sensors, so that they 

do not pose a tripping or falling hazard.  Similarly, the cable that sends output from 

this system to control the game will be of sufficient length to allow a healthy distance 

from the monitor as well as freedom of movement.  However, this cable should not 

constitute a falling or tripping hazard because it will be kept away from the active leg, 

at waist level, and all other individuals will be kept away from the area between the 

videogame system and the patient.  As an added precaution, all wires attached to the 

sensors on the patients and the classification system can be easily detached when any 

pulling force is applied.  This will eliminate the possibility of injury to the patient or 

damage to the videogame interface due to any sudden movements. 

 We will be able to see if the signals from a patient’s agonist muscles on the 

paretic (post-stroke weakened) limb are strong enough, compared to the signals taken 

from the healthy limb, or if the signals from the antagonist muscles are too strong 

(due to spasticity) to achieve the desired movement.  The strength of the contraction 

from each muscle will be represented graphically and/or with tone cues in the 

videogame, which will be used as feedback for the patient to analyze their own 

performance.  Gains from our program would be measured by evaluating walking 

performance of the patients before undergoing the training program and at the end of 

the program.  Subjects will receive the testing and analysis procedures listed in 

Appendix D twice, once prior to and once following 6 weeks of lower extremity 
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training with the EMG-activated Videogame. The time commitment for each pre- and 

post-training test session is approximately 90 minutes. 

 During the 6 week training program, participants will come into the clinic at 

the Allied Health Building three times a week for approximately 1 hour each to 

perform the same exercises found in Appendix E, but with the classification system 

and videogame attached as well.  We will test the non-paretic (healthy) leg in the first 

and final sessions of the training program as a baseline for comparison with the 

performance of the paretic leg, both before and after training.  In each of these 

sessions, we will test the paretic leg for the first 60 minutes, and will test the non-

paretic leg for the final 30 minutes.   

Activation of a particular combination of muscles will produce a 

corresponding action in the videogame.  Subjects will be asked to perform each 

exercise as a different part of the game, for approximately 5 minutes each, with a 5 -

10 minute rest between each part of the game.  The procedure is roughly the same as 

what is shown in Appendix C, with the exception that the patient will be reacting in 

response to a videogame rather than simply performing actions for data collection.  

The one hour training sessions that occur three times a week for six weeks will total 

eighteen hours.  With the addition of the preliminary and post-training testing 

sessions which each last about 90 minutes each, the total time commitment for Stage 

Two testing and training is 21 hours. 

 Although it is each study member’s personal choice to come and participate 

on each testing day, we will also give them an option between the videogame and 

conventional therapy without the EMG system.  We will also keep logs of how often 

each study member played/trained.  Each study member’s participation will allow us 

to judge whether the game was entertaining enough to spur impressive patient 

cooperation.  Furthermore, in the event that not much in the way of improvement is 

made over the course of the program, the logs will allow us to examine the issue of 

whether the exercises were fundamentally flawed (e.g. not strenuous enough, too far 

removed from actual walking, etc.) or if in fact the training regimen was never 

earnestly adhered to.  If the latter were the case, we would then examine whether 

fundamentally our hypothesis that a game could improve patient cooperation was 
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flawed, or if perhaps our game just wasn’t fun enough.  In order to help determine 

this, each participant will also be asked to complete a very brief survey at the post-

training testing session, shown in Appendix F.  They will also be asked to complete a 

similar survey halfway through Stage Two, shown in Appendix G. 

 

4. Risks and Benefits 

 For our study participants, we will choose otherwise healthy subjects free of 

illness or infection, as the same sensors will be used for every participant.  This will 

be determined based on the subjects’ medical histories as evaluated by our clinical 

partners, and the pre-study screening interview conducted by Dr. Waller and/or Dr. 

Whitall that they must complete before participating.  As an additional precaution the 

sensors will be sanitized with alcohol swabs between each testing session. 

 There is some risk of muscle overexertion or overextension associated with 

any repetitive muscle movement, especially for those trials that are asked to be at 

maximal contraction speed.  The desired hemiparetic state of our subjects may also 

affect this risk, as their muscles may be unfamiliar with the movements that we will 

ask of them, after long periods of disuse or misuse.  The patients’ age and condition 

may therefore make them more susceptible to fatigue as well, which further increases 

the risk of accidental muscle overexertion.  Also, following chronic stroke, this same 

muscle disuse and spasticity is shown to lead to a decrease in bone mineral density 

and cortical thickness, which can increase the risk of bone fracture.
1
  However, 

ultimately the subject’s goal is to correctly perform the movements that we will ask of 

them, since those movements are fundamental to healthy, efficient walking.  The 

subjects run a very similar risk every day that they continue to walk incorrectly.  The 

energy-inefficient, potentially dangerous walking and the clinically-supervised 

training regimen carry the same risks, however in the training there is an additional 

end-goal of strengthening those muscles and bones to allow for the development of a 

healthy and risk-free walking technique. 

                                                 
1
 “Muscle weakness, spasticity and disuse contribute to demineralization and geometric changes in the 

radius following chronic stroke,” Pang, M. Y. C., et al. (2007) Osteoporosis International, Vol. 18, No. 

9, pp. 1243-1252. 
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 Due to this increased fragility, the patients will be at increased risk of injury 

not only during game play, but also in every action they partake in.  For this reason, 

Dr. Waller and Dr. Whitall will be the sole persons authorized to handle the patients 

during testing, as the researchers do not have the appropriate training.  They will also 

supervise the placement of the sensors on the patient.  In the event that the sensor is 

physically compromised and an unanticipated packaging failure occurs and the 

patient’s skin is damp, there may be slight risk of shock.  We have taken every 

reasonable precaution to ensure that the sensor packaging may not be compromised. 

 The Stage One testing will lead to the development of a classifier that can be 

used with a videogame to make the physical therapy that subjects must already take 

part in more entertaining.  For Stage Two testing, to the extent that some 

improvement may be gained from repetitive exercise of certain muscles, we 

hypothesize several benefits of our proposed program over a traditional exercise 

regimen prescribed for home practice.  First, there is the potential for improved motor 

function recovery, or retention of previous gains, due to improved patient 

cooperation.  The best physical therapy training program in the world will achieve 

limited to no success if the patient does not follow it diligently.  By combining 

exercise with videogame play, and making it fun, we hope to circumvent the problem 

of lack of patient cooperation.  We also hypothesize that the improvement with our 

program relative to others would increase with time, as a patient’s enthusiasm for 

repetitive daily exercise may erode over time. 

 Also, our training regimen might be able to reduce the necessary duration of 

later physical therapy sessions.  Furthermore, it could potentially reduce the need for, 

or frequency of, return visits to the therapist after the initial therapy sessions.  Return 

visits would likely be necessary generally to avoid patient regression from gains made 

in therapy.  To the extent that our game might achieve even incremental 

improvements in either of these aims, it could offer significant savings of both the 

patient’s money, and the time of health care professionals. 

 There is also an inherent benefit to our program, even if the patient would 

otherwise be willing to engage in steady exercise such as walking.  Post stroke 

patients with gait problems may develop bad habits, which arise as undesired 
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compensatory measures to achieve the task (such as stride) without the full aid of 

certain important muscles.  These bad habits can introduce risk of biomechanical 

injury.
2
  Our game, however, will focus on training and reinforcing those discrete 

muscular movements that as a whole can be strung together to be immediately 

applied to healthy ambulation.  Thus, our program would give post-stroke individuals 

a means of strengthening weakened muscles crucial to walking and reminding their 

bodies how to walk correctly, without developing the detrimental habits that result 

from a struggling walker’s need to balance or support their own weight. 

 

5. Confidentiality 

 Identifiable information of subjects such as name and contact information 

must be kept while the testing phases are in progress, so that we can organize data 

collected by each individual subject.  We will need to compare the results gathered 

within each subject’s trials as well as between all of the subjects, which can only be 

done if we know who each subject is every time they come in for another testing 

session.  We will keep our information and data from the testing in electronic form, 

most likely in charts, graphs, tables, documents, and videos using various 

organizational computer applications.  All of our data will be associated with an 

alphanumeric code for each patient.  We will separately maintain a file that matches 

these codes to their corresponding patient information.  These labels should prevent 

anyone uninvolved with the testing procedure from inferring the identity of the testing 

subjects.  This identification key as well as all of our collected data will be kept on 

password-protected memory drives accessible only by Dr. Whitall, Dr. Waller, 

members of Gemstone Team CHIP, our mentors, namely, Dr. Pamela Abshire and 

Alfred Haas, and system administrators from the Office of Information Technology of 

the Department of Electrical and Computer Engineering at the University of 

Maryland, College Park.  The Office of Information Technology is well accustomed 

to maintaining sensitive information in a confidential and professional manner. After 

all final testing sessions are complete, however, there will be no need to refer to our 

                                                 
2
 “An algorithm to assess stiff-legged gait in traumatic brain injury,” Kerrigan, D.C., et al.  J Head 

Trauma Rehabil, 1999. 14(2): p. 136-45. 
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subjects by any personally identifiable information, so simple numbers or letters will 

be adequate to organize our data.  Any identifiable information will be destroyed 

when we no longer have need to associate person with data, which will most likely be 

in the spring of 2010.  No personally identifiable information will be disclosed in our 

final thesis or in any of the data that will be made publicly available as a result of our 

project. 

 To determine the effect our program has had on the subjects’ walking 

technique using the measurements described in the procedures section and Appendix 

D, we will videotape the testing sessions.  These tapes will be digital files that are 

kept long enough to analyze information that we wish to use, and possibly kept until 

after final testing for reference purposes.  Videos may be used as a part of 

presentations and University of Maryland websites, but only with the written consent 

of subjects, as provided for in the consent form in Appendix B.  Once again, these 

files will be saved on password-protected lab computers at UMB and the ECE IBIS 

lab, and be available only to our UMB partners, Team CHIP, and our mentors.  

Without the patient’s expressed written consent to keep them, the videos will be 

destroyed or erased at the time that the rest of the identifiable information is erased, in 

or before the spring of 2010.  In keeping with University of Maryland records 

retention policy, a copy of this final IRB application and all of the consent forms 

signed by study participants will not be destroyed, and instead will be kept until 

spring 2020, 10 years after the official completion of this research, in possession of 

the UMCP Gemstone program. 

 

 

 

6. Information and Consent Forms 

 We will provide detailed information about the investigation, free of any 

deception, to the subjects using a consent form that must be signed before the testing 

sessions begin.  An example of the exact wording and structure of the consent form is 

located in Appendix B.  It will be provided in English only, as we do not foresee that 

any of the subjects will be non-English speakers. 
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7. Conflict of Interest 

 We anticipate no conflicts of interest. 

 

8. HIPAA Compliance 

 Yes, we will require access to HIPAA protected health information, and will 

comply with all applicable laws and regulations.  Specifically, we will be interested in 

name, age, and length of time since most recent stroke for all of the patients in our 

study, as well as duration of any previous lower limb physical therapy and all of the 

other inclusion and exclusion criteria that are detailed in the subject selection section 

(2.b.) of this application. 

 

9. Research Outside of the United States 
 Not Applicable. 

 

10. Research Involving Prisoners 
 Not Applicable.  
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Appendix A 

This is the text of the e-mail and/or letter to be sent to pre-existing pool of post-stroke 

patients who have previously volunteered to help with research, asking for study 

participants.   Any telephone invitations will also use this text as a script. 

 

Department of  

Physical Therapy and 

Rehabilitation Science 

 
University of Maryland 

School of Medicine 

 

100 Penn Street  Baltimore, Maryland 21201-1082  410 706 7720, 7721  410 706 6387 fax 

 
Dear _____________________ 

 

 

My name is Sandy McCombe Waller and I am a researcher at the University of 

Maryland, Baltimore.  I am writing to ask you to participate in a research study. 

 

The purpose of this research is to find out if exercising your leg muscles with the use 

of interactive videogames will help improve leg function and walking ability in 

people such as you who have had a stroke. 

 

Your participation in this study would include two distinct stages.  Stage One 

includes a total of 4 testing sessions.  Testing would include looking at how well you 

can move your legs and how well you can walk as well as how the muscles in your 

legs function.  These testing sessions will take place on four separate days, over no 

more than two weeks.  Stage Two is planned to occur about six months later, and we 

would be grateful for your participation in this part as well.  Stage Two is comprised 

of a six week training program that will include completing leg exercises in a 

standing position either with or without the use of an interactive videogame, three 

times a week.  A 90 minute testing session will occur before and after this six week 

program.  The testing and all training will take place at the Department of Physical 

Therapy and Rehabilitation Science, 100 Penn Street, Baltimore, MD, 21201. 

 

Overview:  

We will determine your eligibility for this study by examining the degree of weakness 

you have in your weak leg since stroke and by evaluating your medical history.  Once 

we have determined you are eligible for the study and you have signed the consent 

form we will complete testing to see how well your leg functions before we begin 

training.  

 

The Stage One procedures involve a simple workout of the leg muscles on your 

weaker side, which include weight shifting, hip swinging, knee bending, and leg 
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stretching in such a way that will prepare you for the actions necessary for a healthy 

gait.  You will be asked to perform both slow, simple movements and quick, stronger 

movements at a speed you feel is safe.  You will have several sensors placed over the 

muscles you are exercising during this procedure.  Each testing session will take no 

longer than 30 minutes with your cooperation. 

 

During Stage Two, which will be approximately six months later, you will be 

performing the same exercises, but your movements will be used to control a 

videogame.  You may use this videogame as part of a physical therapy program for 

no more than six weeks.  Prior to and after this six week period, you will be asked to 

participate in a data collection session composed of tests to see how well you can 

perform certain leg exercises while standing in place, and also some functional tests 

of your walking ability (walking speed, etc), while we monitor your muscle 

contractions with our sensors.  This testing is necessary so that we may quantify the 

improvements you have made over the six week training program.  The total time 

commitment for Stage One is approximately 2 hours.  The total time commitment for 

Stage Two is approximately 21 hours over six weeks including all training and testing 

sessions. 

 

There is little to no risk introduced as a result of the leg function tests, other than 

temporary muscle fatigue.  A physical therapist will be on hand to assist you as 

needed to ensure safety.  Breach of confidentiality is a potential study risk; however, 

all records will be housed in a locked file or password-protected memory drive to 

minimize the possibility of confidentiality problems.  Only the researchers will have 

access to personally identifiable information.  In the case that you are a student and/or 

employee of UMB, UMMS or any other UMB affiliate, your academic standing or 

employment will not be adversely affected by your decision to participate or not 

participate in this research study. 

 

Your participation is entirely voluntary and you may withdraw from the study or stop 

the interview at any time.  The benefits of participating in this study are that you may 

have improved movement of and use of your weak leg after participating in this 

study.  However, you may receive no benefit from participating.  The tests performed 

will be free of charge and we will provide the results to you if you so choose.  Your 

participation may help investigators in individualizing stroke rehabilitation.  Your 

decision to participate or not participate in this research study will not affect any 

current or future care you receive at UMB.  UMMS arrangements to and from the test 

are also available if needed.  

 

If I do not hear from you in two weeks, I will contact you by telephone to answer any 

questions you may have about the study.  If you have any questions at any time, 

please feel free to contact me at 410-706-0787. 

 

Sincerely 

 

Sandy McCombe Waller PhD, PT, NCS 
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Page 1 of 3  Initials _______ Date ______      

  

Appendix B - CONSENT FORM 

Project Title Interactive EMG Training System for the Rehabilitation of Hemiparetic Individuals 

Why is this research being done? 
This is a research project being conducted by the undergraduate Gemstone team CHIP at the University of 

Maryland, College Park.  We are inviting you to participate in this research project because you have shown 

evidence of muscular hemiparesis (muscle weakness on one side of the body) and/or spasticity (stiffness and/or 

involuntary muscle contractions, loss of muscle control) in one of your legs.  We would like to study the 

electrical signals generated by your muscles as you perform certain leg exercises.  The data we collect when you 

perform these exercises will help us to develop a computer program that can determine what leg movement a 

person is making (for example, kicking) just by measuring their muscle contractions.  If we are successful, this 

program will allow you to control a videogame just by moving certain leg muscles, instead of pushing buttons.  

We plan to use the program to enable a person to play a fun videogame, like golf, just by performing normal 

rehabilitation exercises.  We are trying to determine if playing such a "rehab videogame" helps with the 

effectiveness of therapy and with the retention of proper walking technique versus traditional rehabilitation. 
What will I be asked to do? 

The Stage One procedures involve a simple workout of the leg muscles on your paretic (weaker) 

side, which include weight shifting, hip swinging, knee bending, and leg stretching in such a way that 

will prepare you for the actions necessary for a healthy gait.  You will be asked to perform both slow, 

simple movements and quick, stronger movements at a speed you feel is safe.  You will have several 

sensors placed over the muscles you are exercising during this procedure.  In preparation for sensor 

placement, parts of your leg may be shaved and the area cleaned with an alcohol swab.  A pack will be 

placed around your waist that weighs about 1 pound and contains the necessary connections for the 

sensors.  There will be four testing sessions, each on different days, spreading over no more than two 

weeks, which will all occur at the UMMC rehabilitation clinic in the Allied Health Building.  The first 

session will focus on your healthier leg, and the last three sessions will focus on your weaker leg. Each 

testing session will take no longer than 30 minutes with your cooperation.  The total time commitment 

for Stage One will be 2 hours. 

During Stage Two, which will occur approximately six months after Stage One, you will be 

performing the same exercises with your weaker leg, but your movements will be used to control a 

videogame.  You may use this videogame as part of a physical therapy program for no more than 3 

days a week for six weeks.  You may also choose to forgo the videogame physical therapy program for 

a conventional physical therapy session on any given therapy day.  These training sessions will be 

approximately an hour long.  Prior to and after this six week period, you will be asked to participate in 

a 90 minute data collection session that will evaluate your muscle strength and walking ability.  This is 

necessary so that we may quantify the improvements you have made over the six week training 

program.  On these 90 minute days, you will be asked to play the game using your healthy leg as well.  

Also, during these 90 minute days, the testing will include the attachment of IR emitting diodes (small 

infrared lights, like the ones in a television remote control) along various locations on your leg and 

torso.  You will be asked to walk on a treadmill that will analyze your gait both with and without any 

assistive walking device you may normally use.  In addition, halfway through Stage Two and again at 

the end of your participation in the study, we will ask you to respond to a very brief survey so that we 

may determine the effectiveness of our training program.  The total time commitment for Stage Two 

will be 21 hours including all training and testing. 

As far as attire is concerned, shorts should be worn or brought to all testing and training sessions.  

During all training and testing sessions, Dr. Waller and/or Dr. Whitall will be on hand and will be the 
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only individuals to place sensors on your body.  They will also supervise any exercises you are asked to 

perform. 

Do I have to be in this research?  May I stop participating at any time? 

Your participation in this research is completely voluntary.  You may choose not to take part at all.  If you 

decide to participate in this research, you may stop participating at any time.  If you decide not to participate in 

this study or if you stop participating at any time, you will not be penalized or lose any benefits to which you 

otherwise qualify.  All data collected as a result of your participation may still be used for research purposes, and 

all identifiable information will be destroyed at the conclusion of this research project. 



 

 128 

 

Page 2 of 3 Initials _______ Date ______  

Project Title Interactive EMG Training System for the Rehabilitation of Hemiparetic Individuals 

What about confidentiality? 
We will do our best to keep your personal information confidential.  To help protect your confidentiality, all 

data collected, including any videos, sensor data, analysis, or observations will be kept digitally in password-

protected computer files.  Also, (1) your name will not be included on any collected data; (2) a code will be placed 

on all collected data; (3) through the use of an identification key, the researchers will be able to link your data files 

to your identity; and (4) only the researchers will have access to the identification key.  If we write a report or 

article about this research project, your identity will be protected to the maximum extent possible. Your information 

may be shared with representatives of the University of Maryland, College Park or governmental authorities if you 

or someone else is in danger or if we are required to do so by law. 

This research project involves making digital videos of you, so that we may analyze your walking gait and 

technique and determine if our training program is an improvement over conventional physical therapy.  These 

videos may be used in presentations or placed on University of Maryland websites, but only with your approval.  

The researchers alone will have access to these videos and any copies that may be made, which will be stored 

digitally on password-protected computer files.  Unless you ask in writing otherwise, all files and any copies that 

pertain to your participation in this study will be erased at the end of all analysis, by the end of spring 2010. 

___  I agree to be videotaped during my participation in this study and allow these videos to be used in 

presentations or placed on University of Maryland websites. 

___   I agree to be videotaped during my participation in this study but DO NOT allow these videos to be used 

in presentations or placed on University of Maryland websites. 

___   I do not agree to be videotaped during my participation in this study. 
What are the risks of this research? 

Temporary muscle fatigue in the lower leg is expected, due to the repetitive movements you will be 

asked to perform.  There may also be some risk of muscle overexertion or overextension associated with 

any repetitive muscle movement, especially for those trials that are asked to be at maximal contraction 

speed, but the level of force that you demonstrate is up to your discretion.  As a hemiparetic individual, 

you are also at increased risk of bone fracture.  In the event that the sensor is compromised and an 

unanticipated packaging failure occurs, there may be a risk of shock.  Irritation may occur from the 

surgical tape used to secure the sensors to your body.  A clinician will be on hand to assist you as needed 

to ensure safety.  For Stage Two, the videogame system that you will be using is experimental and its 

effectiveness has not been established.  Progress made in previous physical therapy sessions may be lost 

or expected progress may not be made. 

What are the benefits of this research? 
The benefits to you include participation in an alternate training program similar to traditional physical therapy 

for hemiparetic patients, but with the addition of a videogame as feedback, which aims to be simple enough to be 

conducted at home and enjoyable enough to make physical therapy more appealing.  We hope that, in the future, 

other hemiparetic patients might benefit from this study in the same way, through utilization of a videogame 

designed to make physical therapy more appealing and effective, and easier to implement. 

Is any medical treatment available if I am injured? 

The University of Maryland does not provide any medical, hospitalization or other insurance for 

participants in this research study, nor will the University of Maryland provide any medical treatment or 

compensation for any injury sustained as a result of participation in this research study, except as required 

by law. 
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Page 3 of 3 Initials _______ Date ______  

Project Title Interactive EMG Training System for the Rehabilitation of Hemiparetic Individuals 

What if I have questions? 

This research is being conducted under the supervision of Dr. Pamela Abshire of the University of Maryland 

Electrical and Computer Engineering department at the University of Maryland, College Park.  If you have any 

questions about the research study itself, please contact Pamela Abshire at: 2211 A.V. Williams, University of 

Maryland, College Park, MD, 20742; tele: (301)405-6629. 

If you have questions about your rights as a research subject or wish to report a research-related injury, please 

contact: Institutional Review Board Office, University of Maryland, College Park, Maryland, 20742;             

(e-mail) irb@deans.umd.edu;  (telephone) 301-405-0678. This research has been reviewed according to 

the University of Maryland, College Park IRB procedures for research involving human subjects. 

Statement of Age of Subject and Consent 

Your signature indicates that: 

-you are at least 18 years of age;  

-the research has been explained to you; 

-your questions have been fully answered; and  

-you freely and voluntarily choose to participate in this research project. 

NAME OF SUBJECT 

 

SIGNATURE OF SUBJECT 

 

DATE 

 

 

mailto:irb@deans.umd.edu


 

 130 

 

Appendix C 
 

Potential Script for Stage One Testing 
 

At this time we only anticipate having the equipment necessary to test on one subject 

at a time. 

1. Greet the patient: “Hi, nice to meet you, thank you for expressing interest in our 

research.” 

2. “We are going to ask you to do some simple leg movements while wearing six 

electromyographic sensors over various muscles in your leg.  These movements will 

use both your paretic (weaker) and non-paretic (healthy) legs, and are used in normal 

walking.  Before we begin, we’d like you to read over this consent form to get more 

details about what we will be asking you to do.  We will answer any questions you 

may have before you sign the form.  If you read it and decide you don’t want to 

participate, you don’t have to sign the form or participate.” 

3. When the consent form is signed, attach each of the six EMG sensors over each 

muscle that we wish to measure data from.  All channels will be checked for adequate 

EMG recording, which will require shaving any excessive leg hair in the sensor area, 

and scrubbing the skin surface with an alcohol cleansing pad to reduce skin resistance 

and EMG noise.  Since exact placement is very important to reading clear and 

consistent signals, the physical therapist will supervise.  Then attach the central 

system around the patient’s waist (it will be in a fanny-pack-type holder with the 

batteries and output connectors – together it weighs about 1 lb.).  Connect the cables 

between the sensor boards and the central system, and then connect the output from 

the central system to the data acquisition device plugged into a laptop, using a long 

cable. 

4. Patients will be asked to complete the exercises found in Appendix E, each for 5 

minutes duration.  A 10 minute rest will be given in between each exercise. 

5. At the end of testing for that patient, save all data, disconnect all connectors, 

remove sensors as carefully as possible from patient leg, thank patient for their time 

and help, and see them away safely. 
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Appendix D 

 

Pre-training and Post-training Testing Procedures / Script 

  

During Stage Two testing, patient performance will be evaluated using the procedures 

described below, once prior to and once following 6 weeks of lower extremity 

training with the EMG-activated Videogame. The time commitment for each pre- and 

post-training test session is approximately 90 minutes. 

 

1.  Kinematic analysis of joint/segmental coordination during gait:  Before 

undertaking the following trials, subjects will first be seated while infra-red emitting 

diodes are attached to the sacrum and the iliac crest, greater trochanter, lateral 

condyle of the tibia, lateral malleolus and head of the 5th metatarsal on the shoe of 

each leg.  Subjects will be requested to wear shorts.  These sensors will be used to 

detect the coordination of the limb segments both within and between legs using a 

three dimensional motion analysis system collecting at 100 Hz (OPTOTRAK, 

Northern Digital Inc., Waterloo Ontario).  Custom-designed software (Co-I Morton) 

will be used to analyze limb kinematics.  Therefore, during the trials on the gaitmat in 

procedure 2, we will also collect the movement of the limbs in order to detect whether 

changes in speed and symmetry are also reflected in intra- and interlimb coordination 

changes at the joint/segmental levels.  The variables that will be measured in this test 

are hip, knee, and ankle joint angles, as well as hip-knee, hip-ankle and knee-ankle 

cross correlations within and between legs.
3,4

 

 

2.  Functional Gait:  Temporal-spatial parameters  

Subjects will be asked to walk along a GAITRite instrumented gait walkway (CIR 

Systems, Inc., Clifton, NJ).  This is a portable 8-meter rubberized walkway that has 

pressure sensors embedded throughout the device, centered at 0.5” increments to give 

full coverage of the active area. The effective sampling rate is 33 Hz. Analysis 

                                                 
3
 Barela JA, Whitall J, Black PO, Clark JE. Can Intralimb Coordination in Hemiplegic Gait be 

Explained by Speed and Mechanical Constraints. Human Movement Science. 2000;19:251-273. 
4
 Whitall J, Getchell N. From walking to running:  using dynamical systems approach on the 

development of locomotor skills. Child Development. 1995;67:1541-1553. 
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software identifies both location and time of sensor activations due to foot contacts, 

providing spatial-temporal data for each gait cycle that is generated immediately 

following each trial.  Subjects who habitually use an assistive device will be 

requested to undergo half the trials without their assistive device (two out of four 

trials for each condition).  This will enable us to control for the effect of the assistive 

device in pre-post comparisons but at the same time determine exactly how each 

subject ends up since we expect that some of our subjects may not need their assistive 

device after the 6 week training period.  All subjects will wear a gait belt and be 

closely attended by a research assistant to ensure safety on all trials. The subject will 

be asked to rest as needed after every second trial.  The trials will be as follows: 

1.  Four trials-comfortable speed.  “Walk at a comfortable speed until we say 

stop.”   

2.  Four trials-fast, safe speed. “Walk as fast as you can but safely until we say 

stop.” 

We assess two speeds because one represents everyday activity of daily living and the 

other represents the ability to adapt the gait according to changing environmental 

situations (e.g., crossing a road).  It demonstrates the “best” performance for this 

movement skill and the existing stride length/time ratio changes across speed.  The 

specific variables that will be measured include gait speed, which quantifies time 

taken to walk across a 24-foot walkway, and step-time and step-length symmetry 

ratios, which quantify the temporal and spatial relationships between each leg stride 

(paretic/non-paretic).  For symmetry the ratio is 1. 

 

3. Active and Passive Lower Extremity (LE) Range of Motion (A/PROM):  Use of 

standard goniometry to determine subject impairment levels of bilateral hip, knee and 

ankle; demonstrated to be reliable and sensitive (within 5º).
5
 

 

                                                 
5
 Norkin C, White D. Validity and Reliability. Measurement of Joint Motion A Guide to Goniometry 

Edition 2. 1995:36-37. 
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4. Isometric LE strength:  Use of Chatillon Force Dynamometer to measure the 

strength of key muscles involved in gait. This dynamometer has been validated for 

use on stroke patients.
6
 

 

5. EMG Analysis:  Subjects will also perform five trials each of the exercises laid out 

in the Stage One testing procedures with the EMG sensors placed over the same 6 

muscles.  Similar to Stage One testing, we will analyze the EMG waveforms 

measured by the sensors, and will record such features as frequency, amplitude, and 

whatever other characteristics of the signal are important for the control of the 

videogame. 

                                                 
6
 Bohannon R, Smith M. Assessment of Strength Deficits in Eight Paretic Upper Extremity Muscle 

Groups of Stroke Patients with Hemiplegia. Physical Therapy. 1987a;67:522-525. 
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Appendix E 
 

 These are the exercises that each patient will be asked to perform for Stage 

One testing and the Stage Two training program, as well as for the EMG analysis that 

is part of the Stage Two post-and pre-training testing procedures.  There are four 

different exercises, which are designed to encompass the full range of muscle 

movements and muscles used in a healthy gait.  Subjects will have the EMG sensors 

placed on the gluteus medius, quadriceps, iliopsoas, hamstrings, anterior tibialis, and 

the gastrocnemius.  All exercises are to be completed in a standing position with 

upper extremity support for balance.  The patient will perform each exercise one at a 

time, in the following order of complexity: 

 

(1) In a standing position, patient shifts weight to paretic leg and attempts to then 

straighten their knee (activation of Gluteus medius and quadriceps). 

(2) In a standing position, patient shifts weight to nonparetic leg and swings the 

paretic leg forward, bending at the hip and knee (activation of iliopsoas and 

hamstrings). 

(3) In a standing position, patient shifts weight to nonparetic leg and focuses on 

kicking paretic leg out by straightening the knee and pulling the toes upward (i.e. like 

kicking a ball) (activation of anterior tibialis and quadriceps). 

(4) In a standing position, the patient shifts weight to nonparetic leg steps forward 

with paretic leg and plants foot on the ground “controlling” the amount of knee 

flexion (putting weight on paretic leg without knee buckling) (activation of 

quadriceps and gastrocnemius). 
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 Appendix F 

Survey to be completed by each participant at the end of the Stage Two six week 

training program 

Post-Training Survey 

 

IDENTIFICATION NUMBER: __________________ (for use by researchers 

only) 

 

Respond to each of the following statements in terms of your own personal opinion or 

experience while participating in our study.  All questions are in reference to the 

Stage Two six-week training program that involved training three times a week.  Put 

a mark on the line that appears in front of the option you choose. 

 

1. How would you describe the overall effect that the training program has had on 

your walking ability? 

______  It helped me improve a lot.  

______  It helped me improve a little. 

______  I improved a little, but I don’t think the training program had an effect. 

______  I did not improve at all. 

______  The training program was detrimental to my walking ability.  I would have 

been better off with other/no rehabilitation procedures. 

 

2. How would you describe the degree to which your interaction with the videogame 

is responsible for the effect of the training program (as determined in question 1)? 

______  The inclusion of the videogame made all of the difference. 

______  The inclusion of the videogame made just enough of an impact to make it 

unlike any other rehabilitation that does not include a videogame. 

______  In terms of walking rehabilitation, this program would have had the same 

effect with or without the videogame.  The exercises and other factors 

included in the training program were the only things that mattered in terms of 

the amount of recovery I experienced. 

 

3. How often did you dedicate time solely to physical therapy exercises for your leg 

muscles during the six-week training period (aside from your participation in this 

research study)?  Choose the option closest to your answer. 

______  I never did any other lower-limb physical therapy during the six-week 

period. 

______  Less than once a week. 

______  About once a week. 

______  About twice a week. 

______  About three times a week. 

______  More than three times a week. 

 

4. How do the exercises that you were asked to perform for the training program 

compare to other lower-limb physical therapy you have done before? 

______  The exercises were more strenuous than anything else I have done before. 
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______  The exercises were just as strenuous as some of the physical therapy I have 

done. 

______  The exercises were less strenuous than some of the physical therapy I have 

done. 

______  The exercises were less strenuous than most or all of the physical therapy I 

have done. 

 

5. Regardless of the effect that the training program has had on your walking ability, 

how would you describe your motivation as a result of the videogame in your 

training? 

______  The videogame made physical therapy fun and engaging. 

______  The videogame just barely kept my interest throughout the training program. 

______  The game did not affect my motivation throughout the training program. 

______  I was more motivated to participate in physical therapy without the game.  I 

did not like some part of the game. 

______  I was more motivated to participate in physical therapy without the game.  

Wearing the sensors or the control system was too much of a hassle. 

 

6.a. Do you plan to continue with some form of physical therapy in the future? 

______  Yes. 

______  No. 

______  I am unsure. 

 

b. If so, would you be interested in further physical therapy involving a videogame, 

much as you have experienced in this study? 

______  Yes. 

______  No. 

______  Neutral. 

 

 

Thank you very much for your generous participation in Team CHIP’s research 

study!  We could not have done it without you! 

Please return this survey to a researcher. 
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Appendix G 

Survey to be completed by each participant at the midway point of the Stage 

Two six week training program 

Mid-Training Survey 

 

IDENTIFICATION NUMBER: __________________ (for use by researchers 

only) 

 

Respond to each of the following statements in terms of your own personal opinion or 

experience while participating in our study.  All questions are in reference to the 

Stage Two training you are currently receiving.  Put a mark on the line that appears in 

front of the option you choose. 

 

1. How would you describe the overall effect that the training program has had on 

your walking ability? 

______  It helped me improve a lot.  

______  It helped me improve a little. 

______  I improved a little, but I don’t think the training program had an effect. 

______  I did not improve at all. 

______  The training program was detrimental to my walking ability.  I would have 

been better off with other/no rehabilitation procedures. 

 

2. How often did you dedicate time solely to physical therapy exercises for your leg 

muscles during the three-week training period (aside from your participation in this 

research study)?  Choose the option closest to your answer. 

______  I never did any other lower-limb physical therapy during the three-week 

period. 

______  Less than once a week. 

______  About once a week. 

______  About twice a week. 

______  About three times a week. 

______  More than three times a week. 

 

3. How do the exercises that you were asked to perform for the training program 

compare to other lower-limb physical therapy you have done before? 

______  The exercises were more strenuous than anything else I have done before. 

______  The exercises were just as strenuous as some of the physical therapy I have 

done. 

______  The exercises were less strenuous than some of the physical therapy I have 

done. 

______  The exercises were less strenuous than most or all of the physical therapy I 

have done. 
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UNIVERSITY OF MARYLAND COLLEGE PARK 

Institutional Review Board 

Addendum Application 

 

Protocol Number 08-0421 

Protocol Title Interactive EMG Training System for the Rehabililtation of 

Hemiparetic Individuals  

Risk Classification 
(check one)  

Greater than Minimal Risk
    

 
Minimal Risk

 

 

 

 

 

To ensure an accurate and streamlined review of your Addendum Application, please 

provide the following information: 

 

1) State what is being proposed and where in the protocol and/or consent what was 

changed. 

Principal Investigator Dr. Pamela Abshire  Email 

Address 

pabshire@umd.edu 

Address for Approval 

Letter  

Dr. Pamela Abshire  

Institute for Systems Research  

Univ. of Maryland, College 

Park  

College Park, MD, 20742  

 

 

Telephone 

Number 

301-405-6629 

Student/Co-

Investigators 

Benjamin Tousley Email 

Address 

btousley@umd.edu 

Telephone Number 240-478-7240 
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2) Provide the rationale/justification for the change. 

 

Our protocol for Phase II testing was described in the original IRB application; very little has 

changed from that description, but we can now be more specific on some details that were left 

out of the original.  The protocol will follow closely the procedures established in Phase I testing, 

and will analyze the behaviors of the same muscles. 

 

The patient will wear the same data collection board and sensors as in Phase I, which will be 

attached to a computer as before.  For Phase II the patient will be able to see what is on the 

computer monitor, which will display the game window for the driving range minigame for the 

computer game Tiger Woods PGA Tour 2004 as well as a LabVIEW readout.  As the patient 

performs one of the four exercises the LabVIEW window will display a real-time bar graph of 

the EMG signal amplitude from each of the six muscles being tested.  This display will allow the 

patients to see how their different muscles are working. 

 

After each exercise is completed, the classification algorithm will analyze the EMG data 

collected and score the quality of the exercise based on how closely the muscle activations 

matched the goal for that particular exercise.  Based on this qualitative assessment the classifier 

will output a file that will act as an input to the game.  Tiger Woods will swing his club and the 

quality of the hit will correspond to the quality of the exercise; a properly performed exercise will 

result in a good hit, and an improper one in a shank.  There will be some gradation on the quality 

of hit based on the final resolution we are able to achieve with the classifier; either 5 different 

levels, or 10, etc. 

 

The patient will perform four repetitions of each of the four exercises, with the ability to adjust 

between repetitions based on both the real-time biofeedback and the qualitative score of the golf 

game.  The EMG data will be collected just as in Stage One, and the exercises will again be 

video recorded and stored digitally.  This data will allow us to iterate the design of our hardware 

and classifier and to analyze its success. 

When the original IRB application was submitted, we had developed hardware and detailed 

experimental protocols for Phase I testing but were still developing the hardware and protocol for 

Phase II testing.  It has always been our intention to submit an addendum to describe any changes 

in protocol for the Phase II testing, in order to cover any details that arose as the system for Phase 

II testing was developed.   Since the initial application and its renewal we have decided which 

game to use (Tiger Woods PGA Tour 2004, and specifically its driving range minigame) and how 

we will be using it.  We have also decided to provide real-time biofeedback to the patients as they 

perform the exercises, in the form of the LabVIEW readout. 
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3) State what impact the change has on risks to participants.  Please state the number 

of currently enrolled participants and if the change in risk will require re-consent.  If 

the changes will not require re-consent, please state why. 

 

 

 

 

 

 

 

4) State whether the change has an impact on the scientific integrity of the study, (i.e. 

decreases, increases, no impact). 

The changes described above will have minimal impact on patients.  Phase I testing has been 

carried out on 8 subjects, 4 hemiparetic patients and 4 age-matched controls.  Phase II testing will 

likely try to recruit the same pool of subjects.  There is no change in risk, and the minor changes 

described above simply add more detail and will not require re-consent.  The consent form will 

remain the same.   

These changes have no impact on the scientific integrity of the study, and merely reflect the 

anticipated changes in the study as the tools have been developed and more detail has been 

available on how those tools will be used. 
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5) List the documents included with the application that have been modified (consent 

forms, flyers, data collection forms, surveys). State what has been changed in each 

modified document. 

 

Appendix H 
 

Potential Script for Stage Two Testing 
 

At this time we only anticipate having the equipment necessary to test on one subject 

at a time. 

1. Greet the patient: “Hi, nice to meet you, thank you for expressing interest in our 

research.” 

2. “We are going to ask you to do some simple leg movements while wearing six 

electromyographic sensors over various muscles in your leg.  These movements will 

use both your paretic (weaker) and non-paretic (healthy) legs, and are used in normal 

walking.  Before we begin, we’d like you to read over this consent form to get more 

details about what we will be asking you to do.  We will answer any questions you 

may have before you sign the form.  If you read it and decide you don’t want to 

participate, you don’t have to sign the form or participate.” 

3. When the consent form is signed, attach each of the six EMG sensors over each 

The modified testing procedure is reflected in the attached Appendix H, the potential script for 

Stage Two testing. 
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muscle that we wish to measure data from.  All channels will be checked for adequate 

EMG recording, which will require shaving any excessive leg hair in the sensor area, 

and scrubbing the skin surface with an alcohol cleansing pad to reduce skin resistance 

and EMG noise.  Since exact placement is very important to reading clear and 

consistent signals, the physical therapist will supervise.  Then attach the central 

system around the patient’s waist (it will be in a fanny-pack-type holder with the 

batteries and output connectors – together it weighs about 1 lb.).  Connect the cables 

between the sensor boards and the central system, and then connect the output from 

the central system to the data acquisition device plugged into a laptop, using a long 

cable. 

4. Patients will be asked to complete the exercises found in Appendix E, each for 5 

minutes duration.  As the patients perform each repetition, they will see real-time 

feedback in the form of LabVIEW-generated sliders representing muscle activation.  

After each repetition, they will see the in-videogame Tiger Woods make a swing on 

the driving range, with the quality of the exercise corresponding to the quality of the 

swing.  A 10 minute rest will be given in between each exercise. 

5. At the end of testing for that patient, save all data, disconnect all connectors, 

remove sensors as carefully as possible from patient leg, thank patient for their time 

and help, and see them away safely. 
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Appendix III: MATLAB Data Acquisition Code (Final Version) 

 
function varargout = temp(varargin) 
% TEMP M-file for temp.fig 
%      TEMP, by itself, creates a new TEMP or raises the existing 
%      singleton*. 
% 
%      H = TEMP returns the handle to a new TEMP or the handle to 
%      the existing singleton*. 
% 
%      TEMP('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in TEMP.M with the given input 

arguments. 
% 
%      TEMP('Property','Value',...) creates a new TEMP or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before temp_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property 
%      application 
%      stop.  All inputs are passed to temp_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help temp 

  
% Last Modified by GUIDE v2.5 21-Apr-2009 16:29:56 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @temp_OpeningFcn, ... 
                   'gui_OutputFcn',  @temp_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  
% --- Executes just before temp is made visible. 
function temp_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
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% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to temp (see VARARGIN) 

  
% Choose default command line output for temp 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% This sets up the initial plot - only do when we are invisible 
% so window can get raised using temp. 
if strcmp(get(hObject,'Visible'),'off') 
    plot(rand(5)); 
end 

  
% UIWAIT makes temp wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = temp_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global data; 
axes(handles.axes1); 
cla; 

  
data_to_plot = []; 
legend_string = ''; 
for i=1:6; 
    if( eval(['get(handles.checkbox_channel' num2str(i) ', ''Value'') 

== 1']) ) 
            data_to_plot = [data_to_plot; data.voltage(i,:)]; 
            legend_string = [legend_string; 'Channel ' num2str(i)]; 
        end 
end 

  
if(get(handles.radio_raw,'Value') == 0 && length(data_to_plot) > 0 ) 
    y = data_to_plot'; 
    data_to_plot = detrend(y); 
    if( get(handles.radio_detrended,'Value') == 1) 
        data_to_plot = data_to_plot'; 
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    else 
        [b,a]=butter(5,10/data.SS,'low'); 
        data_to_plot = filtfilt(b,a,abs(data_to_plot))'; 
        if( get(handles.radio_filtered,'Value') == 0 ) 
           %define 101 steps between min and max 
           numsteps = 51; 
           v_min = min(data_to_plot); 
           v_max = max(data_to_plot); 
           histogram_bins = v_min:(v_max-v_min)/(numsteps-1):v_max; 
           histogram_values = zeros(numsteps,1); 
           for i=1:length(data_to_plot) 
               histogram_values_index = floor((data_to_plot(i)-

v_min)/(v_max-v_min)*(numsteps-1))+1; 
               histogram_values( histogram_values_index ) = 

histogram_values( histogram_values_index ) + 1;  
           end 

            
           for i=51:-1:2 
              histogram_values( i ) = histogram_values(i)-

histogram_values(i-1); 
           end 
           histogram_values(1) = histogram_values(2); 
        end 
    end 
end 

  
if( get(handles.radio_histogram, 'Value') == 1 ) 
    time_axis = histogram_bins; 
    data_to_plot = histogram_values; 
else 
    if( get(handles.checkbox_timestamp, 'Value') == 1 ) 
        data_to_plot = [data_to_plot; data.timestamp]; 
        legend_string = [legend_string; 'Timestamp']; 
    end 
    time_axis = 0:length(data_to_plot)-1;%may want to use size() 

function for conditions where number of channels exceeds number of 

samples.... when would you want to do this? 
    time_axis = time_axis/data.SS; 
end 

  
plot( time_axis, data_to_plot' ); 
legend( handles.axes1 , legend_string ); 

  
% popup_sel_index = get(handles.popupmenu1, 'Value'); 
%  
% if(get(handles.radio_raw,'Value') == 1) 
%     switch popup_sel_index 
%         case 1 
%             plot(data.voltage(1,:)') 
%         case 2 
%             plot(data.voltage(2,:)') 
%         case 3 
%             plot(data.voltage(3,:)') 
%         case 4 
%             plot(data.voltage(4,:)') 
%         case 5 
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%             plot(data.voltage(5,:)') 
%         case 6 
%             plot(data.voltage(6,:)') 
%         case 7 
%             plot(data.timestamp') 
%     end 
% else 
%     switch popup_sel_index 
%         case 1 
%             y = data.voltage(1,:)'; 
%             y = abs(detrend(y)); 
%             [b,a]=butter(5,10/data.SS,'low'); 
%             filter_y = filtfilt(b,a,y); 
%             plot(filter_y) 
%         case 2 
%             y = data.voltage(2,:)'; 
%             y = abs(detrend(y)); 
%             [b,a]=butter(5,10/data.SS,'low'); 
%             filter_y = filtfilt(b,a,y); 
%             plot(filter_y) 
%         case 3 
%             y = data.voltage(3,:)'; 
%             y = abs(detrend(y)); 
%             [b,a]=butter(5,10/data.SS,'low'); 
%             filter_y = filtfilt(b,a,y); 
%             plot(filter_y) 
%         case 4 
%             y = data.voltage(4,:)'; 
%             y = abs(detrend(y)); 
%             [b,a]=butter(5,10/data.SS,'low'); 
%             filter_y = filtfilt(b,a,y); 
%             plot(filter_y) 
%         case 5 
%             y = data.voltage(5,:)'; 
%             y = abs(detrend(y)); 
%             [b,a]=butter(5,10/data.SS,'low'); 
%             filter_y = filtfilt(b,a,y); 
%             plot(filter_y) 
%         case 6 
%             y = data.voltage(6,:)'; 
%             y = abs(detrend(y)); 
%             [b,a]=butter(5,10/data.SS,'low'); 
%             filter_y = filtfilt(b,a,y); 
%             plot(filter_y) 
%         case 7 
%             plot(data.timestamp') 
%     end 
% end 

  
% -------------------------------------------------------------------- 
function FileMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to FileMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 
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% -------------------------------------------------------------------- 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 
file = uigetfile('*.fig'); 
if ~isequal(file, 0) 
    open(file); 
end 

  
% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to PrintMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 
printdlg(handles.figure1) 

  
% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to CloseMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 

  
delete(handles.figure1) 

  

  
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')

); 
end 

  
set(hObject, 'String', {'Channel 1', 'Channel 2', 'Channel 3', 

'Channel 4', 'Channel 5', 'Channel 6', 'Time Stamp'}); 
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function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 

as a double 

  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit4_Callback(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of edit4 as text 
%        str2double(get(hObject,'String')) returns contents of edit4 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit4_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit5_Callback(hObject, eventdata, handles) 
% hObject    handle to edit5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of edit5 as text 
%        str2double(get(hObject,'String')) returns contents of edit5 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit5_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
function radio_detrended_Callback(hObject, eventdata, handles) 
% hObject    handle to radio_detrended (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hint: get(hObject,'Value') returns toggle state of radio_detrended 

  

  
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
global data; 

  
data.CHlo = str2double(get(handles.edit1,'String'))-1; 
data.CHhi = str2double(get(handles.edit2,'String'))-1; 
data.SS = str2double(get(handles.edit4,'String')); 
data.TT = str2double(get(handles.edit5,'String')); 
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if ((data.CHlo<0)||(data.CHlo>5)||((floor(data.CHlo)-data.CHlo)~=0)) 
    set(handles.text_feedback,'String','Bad channel low') 
elseif ((data.CHhi<data.CHlo)||(data.CHhi>5)||((floor(data.CHhi)-

data.CHhi)~=0)) 
    set(handles.text_feedback,'String','Bad channel high') 
elseif ((data.SS<1)||(data.SS>200000)||((floor(data.SS)-data.SS)~=0)) 
    set(handles.text_feedback,'String','Bad sampling rate') 
elseif ((data.TT<=0)||((floor(data.TT*data.SS)-(data.TT*data.SS))~=0)) 
    set(handles.text_feedback,'String','Bad total time') 
else 
    set(handles.text_feedback,'String','Recording...') 
end 

  
drawnow; 
data.TS = data.TT*data.SS; 

  
popup_sel_index = get(handles.popupmenu2, 'Value'); 
switch popup_sel_index 
    case 1 
        data.VR = 0; 
    case 2 
        data.VR = 1; 
    case 3 
        data.VR = 2; 
    case 4 
        data.VR = 3; 
end 

  
% data.voltage=pclamp(1,data.CHlo,data.CHhi,data.VR,data.SS,data.TS); 
% data.voltage = reshape(data.voltage,(data.CHhi-

data.CHlo+1),data.TS); 
% [m n] = size(data.voltage) 
% data.timestamp = data.voltage(m,:) 
% data.voltage=data.voltage(data.CHlo+1:data.CHhi,:); 
data.voltage = pclamp(0,0,6,data.VR,data.SS,data.TS); 
data.voltage = reshape(data.voltage,7,data.TS); 
data.timestamp = data.voltage(7,:); 
data.voltage = data.voltage(data.CHlo+1:data.CHhi+1,:); 

  
set(handles.text_feedback,'String','Finished Recording.') 

  
function edit6_Callback(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of edit6 as text 
%        str2double(get(hObject,'String')) returns contents of edit6 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit6 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  

  
% --- Executes on selection change in popupmenu2. 
function popupmenu2_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: contents = get(hObject,'String') returns popupmenu2 contents 

as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

popupmenu2 

  

  
% --- Executes during object creation, after setting all properties. 
function popupmenu2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
set(hObject, 'String', {'10V','5V','2.5V','1.25V'}); 

  

  

  
function text_feedback_Callback(hObject, eventdata, handles) 
% hObject    handle to text_feedback (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user eventdata (see 

GUIeventdata) 

  
% Hints: get(hObject,'String') returns contents of text_feedback as 

text 
%        str2double(get(hObject,'String')) returns contents of 
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text_feedback as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function text_feedback_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to text_feedback (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  

  

  
function edit_filename_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_filename (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_filename as 

text 
%        str2double(get(hObject,'String')) returns contents of 

edit_filename as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit_filename_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_filename (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global data; 
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global fn_num; 

  
DATE = datestr(now,'yyyymmdd'); 
ex_val = get(handles.exercise_popupmenu,'Value'); 
EX=''; 
switch(ex_val) 
    case 1 
        EX = 'PreIso1'; 
    case 2 
        EX = 'PreIso2'; 
    case 3 
        EX = 'PreIso3'; 
    case 4 
        EX = 'PreIso4'; 
    case 5 
        EX = 'PreIso5'; 
    case 6 
        EX = 'Ex1'; 
    case 7 
        EX='Ex2'; 
    case 8 
        EX='Ex3'; 
    case 9 
        EX='Ex4'; 
    case 10 
        EX = 'PostIso1'; 
    case 11 
        EX = 'PostIso2'; 
    case 12 
        EX = 'PostIso3'; 
    case 13 
        EX = 'PostIso4'; 
    case 14 
        EX = 'PostIso5'; 
    case 15 
        EX='Other'; 
end 
SUBJECT = get( handles.subject_text,'String'); 
if(fn_num < 10) 
    FN_END = ['-0' num2str(fn_num) '.mat']; 
else 
    FN_END = ['-' num2str(fn_num) '.mat']; 
end 

  
file_handle = [DATE '_' EX '_' SUBJECT FN_END]; 

  
fn_num = fn_num + 1; 
if(fn_num < 10) 
    FN_END = ['-0' num2str(fn_num) '.mat']; 
else 
    FN_END = ['-' num2str(fn_num) '.mat']; 
end 
set(handles.filename_end_text,'String',FN_END); 

  
%file_handle = get(handles.edit_filename,'String') 
% save(file_handle{1,1}, 'data'); 
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dir_listing = struct2cell(dir); 
while( length(intersect(dir_listing(1,:),file_handle)) > 0 ) 
file_handle = [DATE '_' EX '_' SUBJECT FN_END]; 

  
fn_num = fn_num + 1; 
if(fn_num < 10) 
    FN_END = ['-0' num2str(fn_num) '.mat']; 
else 
    FN_END = ['-' num2str(fn_num) '.mat']; 
end 
set(handles.filename_end_text,'String',FN_END);     
end 

     
save(file_handle, 'data'); 
set(handles.text_feedback,'String',['Saved data to ' file_handle]); 

  

  

  

  

  
% --- Executes on button press in checkbox_channel1. 
function checkbox_channel1_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox_channel1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of checkbox_channel1 

  

  
% --- Executes on button press in checkbox4. 
function checkbox4_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of checkbox4 

  

  
% --- Executes on button press in checkbox5. 
function checkbox5_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of checkbox5 

  

  
% --- Executes on button press in checkbox_channel4. 
function checkbox_channel4_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox_channel4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hint: get(hObject,'Value') returns toggle state of checkbox_channel4 

  

  
% --- Executes on button press in checkbox_channel5. 
function checkbox_channel5_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox_channel5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of checkbox_channel5 

  

  
% --- Executes on button press in checkbox8. 
function checkbox8_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of checkbox8 

  

  
% --- Executes on button press in checkbox_timestamp. 
function checkbox_timestamp_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox_timestamp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of 

checkbox_timestamp 

  

  

  

  
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global data; 

  
file_handle = get(handles.edit_filename,'String') 
load(file_handle); 
set(handles.text_feedback,'String',['Loaded data from ' file_handle]); 
set(handles.edit_filename,'String',['Loaded data from ' file_handle]); 

  

  
function peak_array = peak_detection( channel_number , threshold_low , 

theshold_high ) 
global data; 
[m n] = size(data.voltage(channel_number,:)); 
peak_array = zeroes(m,n); 
peak_bool = 0; 
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for i=1:n 
    if(peak_bool == 0) 
        if(data.voltage(channel_number,i) > threshold_high ) 
            peak_bool = 1; 
        end 
    else 
        if(data.voltage(channel_number,i) < threshold_low ) 
            peak_bool = 0; 
        end 
    end 
    peak_array(i) = peak_bool; 
end 

  

  
%general integration function 
function integration_values = 

triggered_integration(trigger_channel_number, 

integration_channel_number, threshold_low, threshold_high, 

integration_window ) 

  
global data; 
channel_length = length(data.voltage(integration_channel_number)); 
%ASSERT: all channels are of same length; 

  
trigger_peak_channel = peak_detection( trigger_channel_number, 

threshold_low , threshold_high ); 
%three methods of determining the start time for integration: 
%   1. edge flip 
%   2. max value within peak 
%   3. amplitude-weighted average (moment of rotation!) 
%also may potentially want to use some relationship between these 

different 
%peak values in order to create an adaptive time window for 

integration 

  
%EDGE FLIP ALGORITHM! 
edgeflip_indices = []; 
for i=1:channel_length-1 
    if( trigger_peak_channel(i) == 0 && trigger_peak_channel(i+1) == 1 

) 
        edgeflip_indices = [edgeflip_indices i]; 
    end 
end 
integration_values = [edgeflip_indices;edgeflip_indices]; 
%setup ==> final form will be integration_values(1,:) as the indices 

and 
%integration_values(2,:) as the integration values 
for i=1:length(edgeflip_indices) 
    if(edgeflip_indices(i)+integration_window > channel_length) 
        integration_sum = 0; 
    else 
        integration_sum = sum( 

data.voltage(integration_channel_number,edgeflip_indices(i):edgeflip_i

ndices(i)+integration_window) ); 
    end 
    integration_values(2,i) = integration_sum; 
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end 

  

  

  
% --- Executes on selection change in popupmenu3. 
function popupmenu3_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = get(hObject,'String') returns popupmenu3 contents 

as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

popupmenu3 

  

  
% --- Executes during object creation, after setting all properties. 
function popupmenu3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')

); 
end 

  

  

  
function subject_text_Callback(hObject, eventdata, handles) 
% hObject    handle to subject_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of subject_text as 

text 
%        str2double(get(hObject,'String')) returns contents of 

subject_text as a double 

  
global fn_num; 

  
fn_num = 1; 
set( handles.filename_end_text , 'String' , '-01.mat' ); 

  

  
% --- Executes during object creation, after setting all properties. 
function subject_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to subject_text (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')

); 
end 

  

  

  

  
% --- Executes during object creation, after setting all properties. 
function filename_end_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to filename_end_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
global fn_num; 

  
fn_num = 1; 

  

  
% --- Executes during object creation, after setting all properties. 
function date_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to date_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
set(hObject,'String',[datestr(now,'yyyymmdd') '_']); 

  

  

  
% --- Executes during object creation, after setting all properties. 
function pushbutton5_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  

  
% --- Executes on key press over pushbutton5 with no controls 

selected. 
function pushbutton5_KeyPressFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over 

pushbutton5. 
function pushbutton5_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  

  
% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over 

filename_end_text. 
function filename_end_text_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to filename_end_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% global fn_num; 
%  
% fn_num = 1; 
% set( hObject , 'String' , '-01.mat' ); 

  

  
% --- Executes on selection change in exercise_popupmenu. 
function exercise_popupmenu_Callback(hObject, eventdata, handles) 
% hObject    handle to exercise_popupmenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = get(hObject,'String') returns exercise_popupmenu 

contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

exercise_popupmenu 

  
global fn_num; 

  
fn_num = 1; 
set( handles.filename_end_text , 'String' , '-01.mat' ); 

  

  

  

  
function edit_ymax_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_ymax as text 
%        str2double(get(hObject,'String')) returns contents of 
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edit_ymax as 
%        a double 

  
currentaxes = axis; 
currentaxes(4) = str2double(get(hObject,'String')); 
axis(handles.axes1,currentaxes); 

  

  
% --- Executes during object creation, after setting all properties. 
function edit_ymax_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_ymax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_ymin_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_ymin as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_ymin as a double 

  
currentaxes = axis; 
currentaxes(3) = str2double(get(hObject,'String')); 
axis(handles.axes1,currentaxes); 

  

  
% --- Executes during object creation, after setting all properties. 
function edit_ymin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_ymin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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Appendix IV: MATLAB Classification Code 

@abstract_vector_generator/abstract_vector_generator.m 
classdef abstract_vector_generator < handle 
    properties (SetAccess=protected,GetAccess=public) 
        exercises = cell(0); 
        vectordesc = []; 
    end 

  
    methods 
        function this = abstract_vector_generator(varargin) 
            if nargin > 0 && length(varargin) > 0 
                emg_exercises = varargin{1}; 
                if isa(emg_exercises{1,1},'char') 
                    this.load_exercises(emg_exercises); 
                elseif isa(emg_exercises{1,1},'cell') && 

isa(emg_exercises{1,1}{1},'double') 
                    this.emg_exercises = emg_exercises; 
                else 
                    disp('abstract_vector_generator: argument given, 

but no exercises loaded. Wrong format.'); 
                end 
            end 
        end 
    end 

  
    methods(Abstract) 
        vector = genvector( this , exercise , vectordesc ); 
        mapping = pop2lda( this ); 
        mutated = mutate( this , vectordesc ); 
        desc = randomdesc( this ); 
    end 
end 

 

@abstract_vector_generator/extract_vectors.m 
function emg_cell_vectors = extract_vectors(this,varargin) 

  
if nargin > 1 
    this.vectordesc = varargin{1}; 
end 

  
size_emg_cell_emg = size(this.exercises); 
emg_cell_vectors = cell(size_emg_cell_emg); 
for(i=1:size_emg_cell_emg(1)) 
    for(j = 1:size_emg_cell_emg(2)) 
        tmp_emg_cell_array = this.exercises{i,j}; 
        for( k = 1:size(tmp_emg_cell_array,1) ) 
                emg_cell_vectors{i,j} = [ emg_cell_vectors{i,j} ; 

this.genvector( tmp_emg_cell_array{k} ) ]; 
        end 
    end 
end 
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@abstract_vector_generator/load_exercises.m 
function load_exercises(this,emg_cell_list) 

  
size_emg_cell_list = size(emg_cell_list); 
emg_cell_emg = cell(size_emg_cell_list); 
for( i = 1:size_emg_cell_list(1) ) 
    for( j = 1:size_emg_cell_list(2) ) 
        patient_ex_list = emg_cell_list{i,j}; 
        emg_cell_emg_ij = cell(0); 
        for( k = 1:size( patient_ex_list , 1 ) ) 
            load(strtrim(patient_ex_list(k,:)),'-MAT'); 
            if(isfield(data,'valid_regions')) 
                emg_array = +slp.emg_filter(data.voltage); 
                %emg_array = +slp.emg_detrend(data.voltage); 
                region_i = 1; 
                emg_size = size(emg_array); 
                while( region_i <= emg_size(2) ) 
                    if( data.valid_regions(1,region_i) == 0 ) 
                        region_i = region_i + 1; 
                    else 
                        start_index = region_i; 
                        while( region_i <= emg_size(2) && 

data.valid_regions(1,region_i) == 1 ) 
                            region_i = region_i+1; 
                        end 
                        end_index = region_i - 1; 
                        emg_vector_region = 

emg_array(:,start_index:end_index); 
                        emg_cell_emg_ij{end+1,1} = 

emg_vector_region; 
                    end 
                end 
            else 
                disp( 'Empty valid_regions array' ); 
            end 
            emg_cell_emg{i,j} = emg_cell_emg_ij; 
        end 
    end 
end 

  
this.exercises = emg_cell_emg; 

 

 

@avgregions_vg/avgregions_vg.m 
classdef avgregions_vg < abstract_vector_generator 
    methods 
        function this = avgregions_vg(varargin) 
            this = this@abstract_vector_generator(varargin{:}); 
        end 
    end 
end 

 

 

@avgregions_vg/genvector.m 
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function vector = genvector( this , exercise , varargin ) 
    %varargin is only for a vectordesc 

  
if nargin > 2 
    vectordesc = varargin{1}; 
else 
    vectordesc = this.vectordesc; 
end 

  

  
emg_size = size(exercise); 
vectordesc_size = size(vectordesc); 
vector = zeros(emg_size(1),vectordesc_size(1)); 
emg_mean = mean(exercise,2); 
for( i = 1:vectordesc_size(1) ) 
    start_index = 

emg_in_bounds(round(vectordesc(i,1)*emg_size(2)),1,emg_size(2)); 
    stop_index  = 

emg_in_bounds(round(vectordesc(i,2)*emg_size(2)),1,emg_size(2)); 
    vector(:,i) = 

mean(exercise(:,start_index:stop_index),2)./emg_mean; 
end 

  
vector = reshape(vector',1,emg_size(1)*vectordesc_size(1)); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%SUBFUNCTION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function emg_bounds_value = emg_in_bounds( emg_value , emg_lower , 

emg_higher ) 

  
if(emg_value < emg_lower ) 
    emg_bounds_value = emg_lower; 
elseif( emg_value > emg_higher ) 
    emg_bounds_value = emg_higher; 
else 
    emg_bounds_value = emg_value; 
end 

 

 

@avgregions_vg/mutate.m 
function mutated = mutate(this,vectordesc) 

  
mutated = this.randomdesc(); 

 

 

 

@avgregions_vg/pop2lda.m 
function mapping = pop2lda(this) 

  
mapping = [ 1 2 3 4 5 6 ... 
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            1 2 3 4 5 6 ... 
            1 2 3 4 5 6 ... 
            1 2 3 4 5 6 ... 
            1 2 3 4 5 6 ... 
            1 2 3 4 5 6 ]; 

  
end 

 

 

@avgregions_vg/randomdesc.m 
function vectordesc = randomdesc(this) 
vectordesc = rand(6,2); 
for(i=1:6) 
    vectordesc(i,:) = sort(vectordesc(i,:)); 
end 

 

 

@toggle_gene/toggle_gene.m 
classdef toggle_gene 

  
    properties 
        bp 
        vg 
    end 

  
    methods 
        function this = toggle_gene(vg,varargin) 
            this.vg = vg; 
            if nargin > 0 && length(varargin) > 0 
                this.bp = varargin{1}; 
            else 
                channel = floor(6*rand())+1; 
                    if(channel == 7) 
                        channel = 6; 
                    end 
                this.bp = [channel round(rand())+1 rand()]; 
            end 
        end 
    end 

  
end 

         

 

 

@toggle_gene/eq.m 
function iseq = eq( gene1 , gene2 ) 

  
if size(gene1) ~= size(gene2) 
    iseq = 0; 
    disp( 'Error: gene1 == gene2: gene1 and gene2 must be same size' 

) 
    return; 
end 
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if( length(gene1) ~= 1 ) 
    iseq = zeros(size(gene1)); 
    for i = 1:size(gene1,1) 
        for j = 1:size(gene1,2) 
            iseq(i,j) = gene1(i,j) == gene2(i,j); 
        end 
    end 
    return; 
end 

         
if( gene1.bp == gene2.bp ) 
    iseq = 1; 
    return; 
end 

  

  
g1_vectors = gene1.vg.extract_vectors(gene1); 
g2_vectors = gene2.vg.extract_vectors(gene2); 

  
num_exercises = size(g1_vectors,2); 

  
iseq = 0; 

  
for( i = 1:num_exercises ) 
    tf = cell2mat(g1_vectors(:,i)) == cell2mat(g2_vectors(:,i)); 
    tf = max(min(tf)); 
    %if either of the two vector columns that result from the gene 

are not linearly independent 
    if( tf ) 
        iseq = 1; 
    end 
end 

 

 

@toggle_gene/gt.m 
function gtval = gt( gene1 , gene2 ) 

  
    gtval = gene1 >= gene2 && gene1 ~= gene2; 

     

 

 

@toggle_gene/gte.m 
function gteval = gte( gene1 , gene2 ) 

  
if( gene1 == gene2 ) 
    gteval = 1; 
end 

  
[y,i] = sortrows( [gene1.bp;gene2.bp] ); 
if( i(1) = 1 ) 
    gteval = 0; 
else 
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    gteval = 1; 
end 

  

  

 

@toggle_gene/lt.m 
function ltval = lt( gene1 , gene2 ) 

  
    ltval = gene1 <= gene2 && gene1 ~= gene2; 

     

 

@toggle_gene/lte.m 
function lteval = lte( gene1 , gene2 ) 

  
if( gene1 == gene2 ) 
    lteval = 1; 
end 

  
[y,i] = sortrows( [gene1.bp;gene2.bp] ); 
if( i(1) = 1 ) 
    lteval = 1; 
else 
    lteval = 0; 
end 

  

  

 

@toggle_gene/ne.m 
function n = ne(gene1 , gene2) 

  
n = ~(gene1 == gene2); 

 

 

 

@toggle_gene/sort.m 
function sorted = sort(gene_array); 

  
for n = 1:size(gene_array,2) 
    bp_array = zeros(size(gene_array,1),2); 

  
    for i = 1:length(gene_array) 
        bp_array(i,:) = gene_array(i,n).bp; 
    end 

  
    [y,gene_i] = sortrows(bp_array); 

  
    sorted(:,n) = gene_array(gene_i,n); 

  
end 
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@toggle_gene/sortrows.m 
function [sorted,gene_i,J] = sortrows(gene_array) 

  
bp_array = zeros(size(gene_array,1),3); 

  
for i = 1:length(gene_array) 
    bp_array(i,:) = gene_array(i,1).bp; 
end 

  
[y,gene_i] = sortrows(bp_array); 

  
sorted = gene_array(gene_i,:); 

  
J = {}; 

  

  

@toggle_gene/unique.m 

function [niq,i,j] = unique( gene_array , rr ) 

  
if( nargin > 1 ) 
    if( rr ~= 'rows' ) 
        disp('unique on toggle_gene objects should only use 

''rows'''); 
    end 
end 

  
j = {};%j is for LOSERS... j/k 

  
rep_i = []; 
niq = sortrows(gene_array); 
for( i = 2:size(niq,1) ) 
    comp_i = i-1; 
    while( ~isempty(find(rep_i == comp_i)) ) 
        comp_i = comp_i - 1; 
    end 
    if( niq(comp_i) == niq(i) ) 
        if(round(rand()) == 0 ) 
            rep_i(end+1) = i; 
        else 
            rep_i(end+1) = comp_i; 
        end 
    end 
end 

  
niq(rep_i,:) = []; 

  
i = 1:size(gene_array,1); 
i(rep_i) = []; 

 

 

@toggle_vg/toggle_vg.m 
classdef toggle_vg < abstract_vector_generator 
    methods 
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        function this = toggle_vg(varargin) 
            this = this@abstract_vector_generator(varargin{:}); 
        end 
    end 
end 

 

 

@toggle_vg/genvector.m 
function vector = genvector( this , exercise , varargin ) 
    %varargin is only for a vectordesc 
    %vectordesc is a 18x1 toggle_gene array 

  
if nargin > 2 
    vectordesc = varargin{1}; 
else 
    vectordesc = this.vectordesc; 
end 

  
vector = zeros(1,length(vectordesc)); 

  
for i=1:length(vectordesc) 
    channel = vectordesc(i).bp(1); 
    tog_type = vectordesc(i).bp(2);%inactive to active/active to 

inactive 
    step_point = vectordesc(i).bp(3); 
    vector(i) = nearest_step( 

exercise{vectordesc(i).bp(1)}{tog_type} , step_point ); 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function nn = nearest_step( step_array , step_point ) 
if( isempty(step_array) ) 
    nn = -3; 
    return 
end 
step_diff = abs(step_array - step_point); 
[y,step_i] = min(step_diff); 

  
nn = step_array(step_i); 

     

 

@toggle_vg/load_exercises.m 
function load_exercises(this,emg_cell_list) 

  
size_emg_cell_list = size(emg_cell_list); 
emg_cell_emg = cell(size_emg_cell_list); 
for( i = 1:size_emg_cell_list(1) ) 
    for( j = 1:size_emg_cell_list(2) ) 
        patient_ex_list = emg_cell_list{i,j}; 
        emg_cell_emg_ij = cell(0); 
        for( k = 1:size( patient_ex_list , 1 ) ) 
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            load(strtrim(patient_ex_list(k,:))); 
            if(isfield(data,'valid_regions')) 
                emg_array = data.voltage; 
                region_i = 1; 
                emg_size = size(emg_array); 
                while( region_i <= emg_size(2) ) 
                    if( data.valid_regions(1,region_i) == 0 ) 
                        region_i = region_i + 1; 
                    else 
                        start_index = region_i; 
                        while( region_i <= emg_size(2) && 

data.valid_regions(1,region_i) == 1 ) 
                            region_i = region_i+1; 
                        end 
                        end_index = region_i - 1; 
                        emg_vector_region = 

emg_array(:,start_index:end_index); 
                        emg_cell_emg_ij{end+1,1} = 

+slp.emg_filter(emg_vector_region); 
                        emg_thresh = 

+slp.emg_find_threshold(emg_cell_emg_ij{end,1}); 
                        emg_cell_emg_ij{end,1} = 

+slp.emg_apply_threshold(emg_cell_emg_ij{end,1},emg_thresh); 
                        emg_cell_emg_ij{end,1} = 

+slp.emg_threshold_stutter_join(emg_cell_emg_ij{end,1}); 
                        emg_cell_emg_ij{end,1} = 

+slp.emg_threshold_stutter_eliminate(emg_cell_emg_ij{end,1}); 
                        emg_cell_emg_ij{end,1} = 

toggle_loc(emg_cell_emg_ij{end,1}); 
                    end 
                end 
            else 
                disp( 'Empty valid_regions array' ); 
            end 
            emg_cell_emg{i,j} = emg_cell_emg_ij; 
        end 
    end 
end 

  
this.exercises = emg_cell_emg; 

 

 

@toggle_vg/ randomdesc.m 
function vectordesc = randomdesc(this) 
vectordesc = [toggle_gene(this)]; 
for( i=2:this.num_genes() ) 
    vectordesc(i,1) = toggle_gene(this); 
end 
vectordesc = unique(vectordesc); 

  
while(size(vectordesc,1) < this.num_genes() ) 
    num_to_add = this.num_genes() - size(vectordesc,1); 
    size(vectordesc,1) 
    for( i = 1:num_to_add ) 
        vectordesc(end+1,1) = toggle_gene(this); 
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    end 
    vectordesc = unique(vectordesc); 
end 

 

 

@toggle_vg/mutate.m 
function mutated = mutate(this,vectordesc) 

  
%i = floor(6*rand())+1; 
%if i == 7 
%   i = 6; 
%end 
%mutated = vectordesc; 

  
%mutated(i,:) = sort(rand(1,2)); 

  

  
mutated = this.randomdesc(); 

 

 

 

 

@toggle_vg/pop2lda.m 
function mapping = pop2lda(this) 

  
mapping = 1:this.num_genes(); 

  
end 

 

 

@toggle_vg/private/toggle_loc.m 
function locations = toggle_loc( emg_threshed ) 

  
num_channels = size(emg_threshed,1); 
num_steps = size(emg_threshed,2); 

  
locations = cell(num_channels,1); 

  
for i=1:num_channels 
    locations{i} = cell(2,1); 
    locations{i}{1} = []; 
    locations{i}{2} = []; 
    state = emg_threshed(i,1); 
    for step_i = 2:num_steps 
        if(state ~= emg_threshed(i,step_i)) 
            locations{i}{state+1}(end+1) = step_i/num_steps; 
        end 
        state = emg_threshed(i,step_i); 
    end 
end 
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@toggle_vg/private/num_genes.m 
function ng = num_genes( this ); 

  
    ng = 20; 

  
end 

 

@emg_ga_engine/emg_ga_engine.m 
classdef emg_ga_engine < handle 
    properties (Access=public) 
        emg_ga_vg = emg_vector_generator(); 
        emg_ga_population = cell(0); 
    end 
    properties (SetAccess=private,GetAccess=public) 
        emg_ga_lda_coeff = cell(0); 
        emg_ga_roc = cell(0); 
        emg_ga_score = []; 
    end 

  
    methods 
        function this = emg_ga_engine(emg_vector_generator , 

emg_ga_population) 
            this.emg_ga_vg = emg_vector_generator; 
            if( nargin > 1 ) 
                this.emg_ga_population = emg_ga_population; 
            end 
        end 
    end 
    methods (Access=private,Static) 
        roc = calc_roc(found,expected); 
        score = roc_score(ga_roc_cell); 
        score = deviance_score(ga_lda_coeff_cell); 
        [emg_cell_training , emg_cell_group , emg_to_classify , 

emg_expected_groups ] = ... 
        emg_create_training_group_from_cell(emg_cell_vectors, 

emg_subject , emg_exercise ) 
    end 
end 

 

 

@emg_ga_engine/init_pop.m 
function init_pop(this,size) 
    this.emg_ga_population = cell(size,1); 
    for(i=1:size) 
        disp( ['init vectordesc ' num2str(i) ' of ' num2str(size)] 

); 
        this.emg_ga_population{i} = this.emg_ga_vg.randomdesc(); 
    end 
end 

 

 

@emg_ga_engine/score_pop.m 



 

 173 

 

function score_pop(this) 

  
emg_ga_lda_coeff = cell(size(this.emg_ga_population,1),1); 
emg_ga_roc = cell(size(this.emg_ga_population,1),1); 
emg_ga_score = zeros(size(this.emg_ga_population,1),1); 

  
%For each individual in the population 
for n=1:size(this.emg_ga_population) 

     
    emg_vectors = 

this.emg_ga_vg.extract_vectors(this.emg_ga_population{n}); 

  
    emg_ga_lda_coeff{n} = cell(size(emg_vectors)); 
    emg_ga_roc{n} = cell(size(emg_vectors)); 

  
    %for each person/exercise pair 
    for i=1:size(emg_vectors,1) 
        for j=1:size(emg_vectors,2) 
            

[emg_cell_training,emg_cell_group,emg_to_classify,emg_expected_group

s] = create_training_group(emg_vectors,i,j); 
            [class,err,POSTERIOR,logp,coeff] = 

classify(emg_to_classify,emg_cell_training,emg_cell_group); 
            emg_ga_lda_coeff{n}{i,j} = coeff; 
            emg_ga_roc{n}{i,j} = 

calc_roc(class,emg_expected_groups); 
        end 
    end 

  
    emg_ga_score(n) = 

roc_score(emg_ga_roc{n})/deviance_score(emg_ga_lda_coeff{n}); 

  
end 

  
this.emg_ga_lda_coeff = emg_ga_lda_coeff; 
this.emg_ga_roc = emg_ga_roc; 
this.emg_ga_score = emg_ga_score; 

 

 

@emg_ga_engine/recombine_pop.m 
function recombine_pop(this) 
    new_pop = cell(size(this.emg_ga_population)); 
    for i=1:size(new_pop,1) 
        %mommy and daddy are structs with field: pop,score,lda_coeff 
        [mommy,m_i] = this.select_pop_to_mate(); 
        [daddy,d_i] = this.select_pop_to_mate(); 
        while( m_i == d_i ) 
            [daddy,d_i] = this.select_pop_to_mate(); 
        end 
        new_pop{i} = this.mate_pops( mommy , daddy ); 
        if( rand() < .05 ) 
            new_pop{i} = this.emg_ga_vg.mutate(new_pop{i}); 
        end 
    end 
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    this.emg_ga_population = new_pop; 
end 

             

 

@emg_ga_engine/private/calc_roc.m 
function roc = calc_roc(found,expected); 

  
roc = zeros(1,4); 
for i=1:size(expected) 
    roc_i = 4 - (found(i)*2+expected(i));  % 1 is positive, 0 is 

negative, so [TP FP FN TP] 
    roc(roc_i) = roc(roc_i) + 1; 
end 

  

 

@emg_ga_engine/private/create_training_group.m 
function [emg_cell_training , emg_cell_group , emg_to_classify , 

emg_expected_groups ] = emg_create_training_group(emg_cell_vectors, 

emg_subject , emg_exercise ) 
% Retrieve information about the size of the cell array and of the 

arrays 
% filling the individual cells of the array 
size_emg_cell_vectors = size(emg_cell_vectors); 
emg_cell_vector_count = zeros(size_emg_cell_vectors); 
for( i=1:size_emg_cell_vectors(1) ) 
    for(j=1:size_emg_cell_vectors(2)) 
        emg_tmp_size = size(emg_cell_vectors{i,j}); 
        emg_cell_vector_count(i,j) = emg_tmp_size(1); 
        if( emg_cell_vector_count(i,j) ~= 0 ) 
            emg_vector_size = emg_tmp_size(2); 
        end 
    end 
end 

  
%setup the training groups 
emg_cell_training = 

zeros(sum(sum([emg_cell_vector_count(1:emg_subject-

1,:);emg_cell_vector_count(emg_subject+1:end,:)])),emg_vector_size); 
emg_cell_group = zeros(size(emg_cell_training,1),1); 
emg_training_rows = 1:size_emg_cell_vectors; 
emg_training_rows(emg_subject) = []; 
emg_training_row_index = 1; 
for( i=emg_training_rows ) 
    for( j=1:size_emg_cell_vectors(2) ) 
        if(size(emg_cell_vectors{i,j},1) > 0 ) 
            emg_start_i = emg_training_row_index; 
            emg_training_row_index = emg_start_i + 

emg_cell_vector_count(i,j); 
            emg_stop_i = emg_training_row_index - 1; 
            emg_cell_training(emg_start_i:emg_stop_i,:) = 

emg_cell_vectors{i,j}; 
            if( j == emg_exercise ) 
                emg_cell_group(emg_start_i:emg_stop_i) = 1; 
            else 
                emg_cell_group(emg_start_i:emg_stop_i) = 0; 
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            end 
        end 
    end 
end 

  
if( size(emg_cell_training,1) ~= size(emg_cell_group,1) ) 
    disp('Error: training groups dim unmatched'); 
end 
i = NaN; 

  
%setup the groups to classify 
emg_to_classify = 

zeros(sum(emg_cell_vector_count(emg_subject,:)),emg_vector_size); 
emg_expected_groups = zeros(size(emg_to_classify,1),1); 
emg_to_classify_row_index = 1; 
for( j=1:size_emg_cell_vectors(2) ) 
    if(size(emg_cell_vectors{emg_subject,j},1) > 0 ) 
        emg_start_i = emg_to_classify_row_index; 
        emg_to_classify_row_index = emg_start_i + 

emg_cell_vector_count(emg_subject,j); 
        emg_stop_i = emg_to_classify_row_index - 1; 
        emg_to_classify(emg_start_i:emg_stop_i,:) = 

emg_cell_vectors{emg_subject,j}; 
        if( j == emg_exercise ) 
            emg_expected_groups(emg_start_i:emg_stop_i) = 1; 
        else 
            emg_expected_groups(emg_start_i:emg_stop_i) = 0; 
        end 
    end 
end 

  
if( size(emg_to_classify,1) ~= size(emg_expected_groups,1) ) 
    disp('Error: to classify groups dim unmatched'); 
end 

 

 

@emg_ga_engine/private/deviance_score.m 
function score = deviance_score(coeff_cell) 

  
num_exercises = size(coeff_cell,2); 
num_people = size(coeff_cell,1); 
exercise_deviance = zeros(1,num_exercises); 

  
for i=1:num_exercises 
    coeff_vectors = 

ones(num_people,size(coeff_cell{1,1}(1,2).linear,1)); 
    for j=1:num_people 
        coeff_struct = coeff_cell{j,i}(1,2); 
        coeff_vectors(j,:) = coeff_struct.linear/coeff_struct.const; 
    end 
    exercise_deviance(i) = sqrt( mean(std(coeff_vectors,0,1).^2) ); 
end 

  
score = sqrt( mean(exercise_deviance.^2,2) ); 
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@emg_ga_engine/private/lda_contribution.m 
function contrib = lda_contribution(coeff_cell) 

  
num_exercises = size(coeff_cell,2); 
num_people = size(coeff_cell,1); 
exercise_lda = cell(num_exercises,1); 

  
for i=1:num_exercises 
    coeff_vectors = 

ones(num_people,size(coeff_cell{1,1}(1,2).linear,1)); 
    for j=1:num_people 
        coeff_struct = coeff_cell{j,i}(1,2); 
        coeff_vectors(j,:) = coeff_struct.linear/coeff_struct.const; 
    end 
    exercise_lda{i} = sqrt( mean(coeff_vectors.^2,1) ); 
end 

  
contrib = sqrt( mean(cell2mat(exercise_lda).^2,1) ); 

 

 

@emg_ga_engine/private/mate_pops.m 
function child = mate_pops( this , mommy , daddy ) 
    %mommy and daddy are structs with fields pop,score,lda_coeff 
    %child is just a pop 

  
    mommy_lda_score = zeros(size(mommy.pop,1),1); 
    daddy_lda_score = zeros(size(daddy.pop,1),1); 

  
    pop_to_lda_mapping = this.emg_ga_vg.pop2lda(); 

     
%   mommy_cumulative_lda = 

reshape(mommy.lda_coeff,size(mommy.lda_coeff,1)*size(mommy.lda_coeff

,2),1); 
%   mommy_cumulative_lda = mean(cell2mat(mommy_cumulative_lda),2); 
%   daddy_cumulative_lda = 

reshape(daddy.lda_coeff,size(daddy.lda_coeff,1)*size(daddy.lda_coeff

,2),1); 
%   daddy_cumulative_lda = mean(cell2mat(daddy_cumulative_lda),2); 
    mommy_cumulative_lda = mommy.lda_coeff; 
    daddy_cumulative_lda = daddy.lda_coeff; 

  
    vector_indices = unique(pop_to_lda_mapping); 
    for i=vector_indices 
        lda_indices = find(pop_to_lda_mapping==i); 
        mommy_lda_score(i) = sqrt( 

mean(mommy_cumulative_lda(lda_indices).^2) ); 
        daddy_lda_score(i) = sqrt( 

mean(daddy_cumulative_lda(lda_indices).^2) ); 
    end 
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    gene_pool = [mommy.pop;daddy.pop]; 
    gene_pool_score = [mommy_lda_score;daddy_lda_score]; 
    [gene_pool,I] = sortrows(gene_pool); 
    gene_pool_score = gene_pool_score(I); 
    [gene_pool,I,J] = unique(gene_pool,'rows'); 
    gene_pool_score = gene_pool_score(I); 

  

     
    child = mommy.pop; 
    for child_i = 1:size(child,1); 
        i = 0; 
        countdown = sum(gene_pool_score)*rand(); 
        if countdown == 0 
            i = 1; 
        end 
        while( countdown > 0 ) 
            i = i + 1; 
            countdown = countdown - gene_pool_score(i); 
        end 
        child(child_i,:) = gene_pool(i,:); 
        gene_pool_score(i) = 0; 
    end 
end 

 

 

@emg_ga_engine/private/roc_score.m 
function score = roc_score(roc_cell) 

  
num_exercises = size(roc_cell,2); 
num_people = size(roc_cell,1); 
roc_score_by_exercise = zeros( 1 , num_exercises ); 
roc_score_by_person = zeros( 1 , num_people ); 

  
for i = 1:num_exercises 
    exercise_roc = sum(cell2mat(roc_cell(:,i)),1); 
    tp_frac = exercise_roc(1)/(exercise_roc(1)+exercise_roc(2)); 
    tn_frac = exercise_roc(4)/(exercise_roc(3)+exercise_roc(4)); 
    roc_score_by_exercise(i) = sqrt( mean([tp_frac^2,tn_frac^2]) ); 
end 
for i = 1:num_people 
    person_roc = 

sum(reshape(cell2mat(roc_cell(i,:)),num_exercises,4)',1); 
    tp_frac = person_roc(1)/(person_roc(1)+person_roc(2)); 
    tn_frac = person_roc(4)/(person_roc(3)+person_roc(4)); 
    roc_score_by_person(i) = sqrt( mean([tp_frac^2,tn_frac^2]) ); 
end 

  
score = sqrt( mean( [roc_score_by_exercise roc_score_by_person].^2 ) 

); 

 

 

@emg_ga_engine/private/select_pop_to_mate.m 
function [parent,i] = select_pop_to_mate(this) 
    i = 0; 
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    countdown = sum(this.emg_ga_score)*rand(); 
    if countdown == 0 
        i = 1; 
    end 
    while( countdown > 0 ) 
        i = i + 1; 
        countdown = countdown - this.emg_ga_score(i); 
    end 
    parent.pop = this.emg_ga_population{i}; 
    parent.score = this.emg_ga_score(i); 
    parent.lda_coeff = lda_contribution(this.emg_ga_lda_coeff{i}); 
end 

         

 

 

+slp/emg_threshold_stutter_join.m 
function [emg_joined,emg_stutter_areas] = 

emg_threshold_stutter_join( emg_thresh , emg_min_time , 

emg_sampspersec) 

  
import slp.*; 

  
if(nargin < 2 || isempty(emg_min_time) ) 
    emg_min_time = 0.2;%seconds 
end 
if(nargin < 3 || isempty(emg_sampspersec) ) 
    emg_sampspersec = 1000; 
end 

  
emg_min_window = round(emg_min_time*emg_sampspersec); 

  
emg_size = size(emg_thresh); 

  
emg_joined = emg_thresh; 
emg_stutter_areas = zeros(emg_size); 

  
emg_last_value = emg_thresh(:,1); 
emg_last_flip = ones(emg_size(1),1); 

  
%start marking stutter areas 
for( j = 1:emg_size(2) - 1 ) 
    for(i = 1:emg_size(1)) 
        if(emg_thresh(i,j) ~= emg_last_value(i) ) 
            emg_last_value(i) = emg_thresh(i,j); 
            if(j - emg_last_flip(i) < emg_min_window) 
                emg_stutter_areas(i,emg_last_flip(i):j) = ones(1,j-

emg_last_flip(i)+1); 
            end 
            emg_last_flip(i) = j; 
        end 
    end 
end 

  
j = emg_size(2); 
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for(i = 1:emg_size(1)) 
    if(j - emg_last_flip(i) < emg_min_window) 
        emg_stutter_areas(i,emg_last_flip(i):j) = ones(1,j-

emg_last_flip(i)+1); 
    end 
end 
%end marking stutter areas 

  
%start consolidate stutter areas 
for( i = 1:emg_size(1) ) 
    j = 1; 
    while( j <= emg_size(2) ) 
        if(emg_stutter_areas(i,j) == 1) 
            emg_window_start = j; 
            while( j <= emg_size(2) && emg_stutter_areas(i,j) ==1 ) 
                j = j + 1; 
            end 
            emg_joined(i,emg_window_start:j-1) = 

round(mean(emg_thresh(i , emg_window_start:j-1) )); 
            if( j-emg_window_start >= emg_min_window ) 
                emg_stutter_areas(i,emg_window_start:j-1) = 

zeros(1,j-emg_window_start); 
            end 
        else 
            j = j + 1; 
        end 
    end 
end 
%end consolidate stutter areas 

  

 

+slp/emg_threshold_stutter_eliminate.m 
function emg_elim = emg_threshold_stutter_eliminate( emg_thresh , 

emg_min_time , emg_sampspersec) 

  
import slp.*; 

  
if(nargin < 2 || isempty(emg_mintime) ) 
    emg_min_time = 0.2;%seconds 
end 
if(nargin < 3 || isempty(emg_sampspersec) ) 
    emg_sampspersec = 1000; 
end 

  
[emg_elim, emg_stutter_areas] = emg_threshold_stutter_join( 

emg_thresh , emg_min_time , emg_sampspersec ); 

  
emg_min_window = round(emg_min_time*emg_sampspersec); 

  
emg_size = size(emg_stutter_areas); 

  
%start consolidate stutter areas 
for( i = 1:emg_size(1) ) 
    j = 1; 
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    while( j <= emg_size(2) ) 
        if(emg_stutter_areas(i,j) == 1) 
            emg_window_start = j; 
            while( j <= emg_size(2) && emg_stutter_areas(i,j) ==1 ) 
                j = j + 1; 
            end 
            %stutter_area_found in range (emg_window_start:j-1) 
            if( j-emg_window_start < emg_min_window ) %window is too 

small 
                if( j <= emg_size(2) ) 
                    emg_elim(i,emg_window_start:j-1) = 

emg_elim(i,j)*ones(1,j-emg_window_start); 
                elseif( emg_window_start > 0 ) 
                    emg_elim(i,emg_window_start:j-1) = 

emg_elim(i,emg_window_start)*ones(1,j-emg_window_start); 
                end 
            end 
        else 
            j = j + 1; 
        end 
    end 
end 
%end consolidate stutter areas 

  

 

+slp/emg_threshold_filter_test.m 
function emg_threshold_filter_test( emg_array ) 

  
import slp.*; 

  

     
    emg_det = abs(detrend(emg_array)); 
    emg_filt = emg_filter( emg_array ); 
    emg_thresh = emg_find_threshold( emg_array ) .* ones( 

size(emg_array ) ); 

  

 

+slp/emg_histogram.m 
function [emg_hist , emg_bins] = emg_histogram( emg_array , 

emg_num_bins ) 

  
import slp.*; 

  
if( nargin < 2 || isempty( emg_num_bins ) ) 
        emg_num_bins = 50; 
end 

  
emg_size = size(emg_array); 
emg_bins = zeros( emg_size(1) , emg_num_bins ); 
emg_hist = zeros( emg_size(1) , emg_num_bins ); 

  
emg_min = min( emg_array , [] , 2 ); 
emg_max = max( emg_array , [] , 2 ); 
emg_range = emg_max - emg_min; 
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for( i = 1:emg_num_bins ) 
    emg_bins(:,i) = emg_min + emg_range * (i-0.5)/emg_num_bins; 
end 

  
for( i = 1:emg_size(1) ) 
    for( j = 1:emg_size(2) ) 
        if( emg_array(i,j) == emg_max(i) ) 
            emg_bin_num = emg_num_bins; 
        else 
            emg_bin_num = floor((emg_array(i,j) - 

emg_min(i))*emg_num_bins/emg_range(i)) + 1; 
        end 
            emg_hist(i,emg_bin_num) = emg_hist(i,emg_bin_num) + 1; 
    end 
end 

 

 

+slp/emg_find_threshold.m 
function emg_thresh = emg_find_threshold(emg_array) 

  
import slp.*; 

  

  
    [emg_hist , emg_bins] = emg_histogram( emg_array ); 
    emg_drv = emg_derivative(emg_hist); 
    [emg_min,emg_mindex] = min(emg_drv,[],2); 

     
    emg_thresh = zeros( size(emg_array, 1) , 1 ); 

     
    for( i = 1:size(emg_drv,1) ) 
        emg_flag_zero = false; %zero was found after the min 
        for( j = emg_mindex(i):size(emg_drv,2) ) 
            if(emg_drv(i,j) >= 0 ) 
                emg_thresh(i) = emg_bins(i,j); 
                emg_flag_zero = true; 
                break; 
            end 
        end 
        if( ~emg_flag_zero ) 
            if( emg_mindex*2 <= size(emg_bins(1)) ) 
                emg_thresh(i) = emg_bins(i,emg_mindex*2); 
            else 
                emg_thresh(i) = emg_bins(i,size(emg_drv,2)); 
            end 
        end 
    end 

     

 

+slp/emg_filter.m 
function emg_filtered = emg_filter( emg_array , emg_samppersec ) 

  
import slp.*; 
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if( nargin < 2 || isempty( emg_samppersec ) ) 
    emg_samppersec = 1000; 
end 

  
emg_filtered = emg_detrend(emg_array); 
[b,a]=butter(5,10/emg_samppersec,'low'); 
emg_filtered = filtfilt(b,a,emg_filtered')'; 

 

 

 

+slp/emg_detrend.m 
function emg_det = emg_detrend( emg_array ); 

  
import slp.*; 

  
emg_size = size(emg_array); 
emg_det = zeros(emg_size); 

  
for( i=1:emg_size(1) ) 
    emg_det(i,:) = abs(detrend(emg_array(i,:))); 
end 

 

 

+slp/emg_derivative.m 
function emg_drv = emg_derivative( emg_array ) 

  
import slp.*; 

  
emg_array_size = size(emg_array); 
emg_drv = ones( emg_array_size ); 
for( i=2:emg_array_size(2)-1 ) 
    emg_drv(:,i) = (emg_array(:,i+1)-emg_array(:,i-1))/2; 
end 

  
emg_drv(:,1) = emg_array(:,2) - emg_array(:,1); 
emg_drv(:,emg_array_size(2)) = emg_array(:,emg_array_size(2)) - 

emg_array( :, emg_array_size(2) - 1 ); 

 

 

+slp/emg_apply_threshold.m 
function emg_threshed = emg_apply_threshold( emg_array , emg_thresh 

) 

  
import slp.*; 

  
emg_size = size(emg_array); 
emg_threshed = zeros(emg_size); 

  
for( i = 1:emg_size(1) ) 
    for( j = 1:emg_size(2) ) 
        if( emg_array(i,j) > emg_thresh(i) ) 
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            emg_threshed(i,j) = 1; 
        end 
    end 
end 

 

 

+dtw/dpfast.m 
function [p,q,D,sc] = dpfast(M,C,T,G) 
% [p,q,D,sc] = dpfast(M,C,T,G)  
%    Use dynamic programming to find a min-cost path through matrix 

M. 
%    Return state sequence in p,q; full min cost matrix as D and  
%    local costs along best path in sc. 
%    This version gives the same results as dp.m, but uses 

dpcore.mex 
%    to run ~200x faster. 
%    C is a step matrix, with rows (i step, j step, cost factor) 
%    Default is [1 1 1.0;0 1 1.0;1 0 1.0]; 
%    Another good one is [1 1 1;1 0 1;0 1 1;1 2 2;2 1 2] 
%    T selects traceback origin: 0 is to any edge; 1 is top right 

(default); 
%    T > 1 finds path to min of anti-diagonal T points away from 

top-right. 
%    Optional G defines length of 'gulleys' for T=0 mode; default 

0.5 
%    (i.e. accept path to only 50% of edge nearest top-right) 
% 2003-04-04,2005-04-04 dpwe@ee.columbia.edu $Header: 

/Users/dpwe/projects/dtw/RCS/dpfast.m,v 1.6 2008/03/14 14:40:50 dpwe 

Exp $ 

  
% Copyright (c) 2003 Dan Ellis <dpwe@ee.columbia.edu> 
% released under GPL - see file COPYRIGHT 

  
import dtw.*; 

  
if nargin < 2 
  % Default step / cost matrix 
  C = [1 1 1.0;0 1 1.0;1 0 1.0]; 
end 

  
if nargin < 3 
  % Default: path to top-right 
  T = 1; 
end 

  
if nargin < 4 
  % how big are gulleys? 
  G = 0.5;  % half the extent 
end 

  
if sum(isnan(M(:)))>0 
  error('dpwe:dpfast:NAN','Error: Cost matrix includes NaNs'); 
end 
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if min(M(:)) < 0 
  disp('Warning: cost matrix includes negative values; results may 

not be what you expect'); 
end 

  
[r,c] = size(M); 

  
% Core cumulative cost calculation coded as mex 
[D,phi] = dpcore(M,C); 

  
p = []; 
q = []; 

  
%% Traceback from top left? 
%i = r;  
%j = c; 

  
if T == 0 
  % Traceback from lowest cost "to edge" (gulleys) 
  TE = D(r,:); 
  RE = D(:,c); 
  % eliminate points not in gulleys 
  TE(1:round((1-G)*c)) = max(max(D)); 
  RE(1:round((1-G)*r)) = max(max(D)); 
  if (min(TE) < min(RE)) 
    i = r; 
    j = max(find(TE==min(TE))); 
  else 
    i = max(find(RE==min(RE))); 
    j = c; 
  end 
else 
  % Traceback from min of antidiagonal 
  %stepback = floor(0.1*c); 
  stepback = T; 
  slice = diag(fliplr(D),-(r-stepback)); 
  [mm,ii] = min(slice); 
  i = r - stepback + ii; 
  j = c + 1 - ii; 
end 

  
p=i; 
q=j; 

  
sc = M(p,q); 

  
while i > 1 & j > 1 
%  disp(['i=',num2str(i),' j=',num2str(j)]); 
  tb = phi(i,j); 
  i = i - C(tb,1); 
  j = j - C(tb,2); 
  p = [i,p]; 
  q = [j,q]; 
  sc = [M(i,j),sc]; 
end 
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+dtw/dpcore.c 
/* 
 *  dpcore.c 
 *  Core of dynamic programming/DTW calculation 
 * 2003-04-02 dpwe@ee.columbia.edu 
 * $Header: /Users/dpwe/projects/dtw/RCS/dpcore.c,v 1.4 2009/07/27 

22:54:53 dpwe Exp $ 
% Copyright (c) 2003-05 Dan Ellis <dpwe@ee.columbia.edu> 
% released under GPL - see file COPYRIGHT 
 */ 

  
#include    <stdio.h> 
#include    <math.h> 
#include    <ctype.h> 
#include    "mex.h" 

  
/* #define DEBUG */ 

  
/* #define INF HUGE_VAL */ 
#define INF DBL_MAX 

  
void 
mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray 

*prhs[]) 
{ 
    int     i,j; 
    long    pvl, pvb[16]; 

  
#ifdef DEBUG 
    mexPrintf("dpcore: Got %d lhs args and %d rhs args.\n",  
          nlhs, nrhs);  
    for (i=0;i<nrhs;i++) { 
    mexPrintf("RHArg #%d is size %d x %d\n",  
          (long)i, mxGetM(prhs[i]), mxGetN(prhs[i])); 
    } 
    for (i=0;i<nlhs;i++) 
    if (plhs[i]) { 
        mexPrintf("LHArg #%d is size %d x %d\n",  
              (long)i, mxGetM(plhs[i]), mxGetN(plhs[i])); 
    } 
#endif /* DEBUG */ 

  
    if (nrhs < 1){ 
    mexPrintf("dpcore  [D,P] = dpcore(S[,C])  dynamic programming 

core\n"); 
    mexPrintf("           Calculate the best cost to every point in 

score\n"); 
    mexPrintf("           cost matrix S; return it in D along with 

traceback\n"); 
    mexPrintf("           indices in P. Optional C defines allowable 

steps\n"); 
    mexPrintf("           and costs; default [1 1 1.0;1 0 1.0;0 1 

1.0]\n"); 
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    return; 
    } 

  
    if (nlhs > 0){ 
    mxArray  *DMatrix, *PMatrix; 
    int rows, cols, i, j, k, tb; 
    double *pM, *pD, *pP, *pC; 
    double d1, d2, d3, v; 
    double *costs; 
    int *steps; 
    int ncosts; 

  
    rows = mxGetM(prhs[0]); 
    cols = mxGetN(prhs[0]); 
    pM = mxGetPr(prhs[0]); 

  
    DMatrix = mxCreateDoubleMatrix(rows, cols, mxREAL); 
    pD = mxGetPr(DMatrix); 
    PMatrix = mxCreateDoubleMatrix(rows, cols, mxREAL); 
    pP = mxGetPr(PMatrix); 
    plhs[0] = DMatrix; 
    if (nlhs > 1) { 
        plhs[1] = PMatrix; 
    } 

  
    /* setup costs */ 
    if (nrhs == 1) { 
        /* default C matrix */ 
        int ii; 

  
        ncosts = 3; 
        costs = (double *)malloc(ncosts*sizeof(double)); 
        for (ii = 0; ii<ncosts; ++ii) costs[ii] = 1.0; 
        steps = (int *)malloc(ncosts*2*sizeof(int)); 
        steps[0] = 1;   steps[1] = 1; 
        steps[2] = 1;   steps[3] = 0; 
        steps[4] = 0;   steps[5] = 1; 
    } else { 
        int ii, crows, ccols; 
        crows = mxGetM(prhs[1]); 
        ccols = mxGetN(prhs[1]); 
        pC = mxGetPr(prhs[1]); 
        /* mexPrintf("C has %d rows and %d cols\n", crows, ccols); 

*/ 
        if (ccols != 3) { 
        mexPrintf("Cost matrix must have 3 cols (i step, j step, 

cost factor)\n"); 
        return; 
        } 
        ncosts = crows; 
        costs = (double *)malloc(ncosts*sizeof(double)); 
        steps = (int *)malloc(ncosts*2*sizeof(int)); 
        for (ii = 0; ii < ncosts; ++ii) { 
        steps[2*ii] = (int)(pC[ii]); 
        steps[2*ii+1] = (int)(pC[ii+crows]); 
        costs[ii] = pC[ii+2*crows]; 
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        /* mexPrintf("step=%d,%d cost=%f\n", 

steps[2*ii],steps[2*ii+1],costs[ii]); */ 
        } 
    } 

  

  
    /* do dp */ 
    v = 0;   
    tb = 1; /* value to use for 0,0 */ 
    for (j = 0; j < cols; ++j) { 
        for (i = 0; i < rows; ++i) { 
        d1 = pM[i + j*rows]; 
        for (k = 0; k < ncosts; ++k) { 
            if ( i >= steps[2*k] && j >= steps[2*k+1] ) { 
            d2 = costs[k]*d1 + pD[(i-steps[2*k]) + (j-

steps[2*k+1])*rows]; 
            if (d2 < v) { 
                v = d2; 
                tb = k+1; 
            } 
            } 
        } 

  
        pD[i + j*rows] = v; 
        pP[i + j*rows] = (double)tb; 
        v = INF; 
        } 
    } 
    free((void *)costs); 
    free((void *)steps); 
    } 

  
#ifdef DEBUG 
    mexPrintf("dpcore: returning...\n"); 
#endif /* DEBUG */ 
} 

  

 

temporary_viewer.m 
function temporary_viewer( ex , exnum , ch , ch2, moviefile ) 

  
figure; 
pause(0.5); 
hsv_val = 0; 

  
arghasmovie = 0; 
arghasch2 = 0; 

  
if( nargin > 3 && ~isempty(ch2)) 
    arghasch2 = 1; 
end 
if( nargin > 4 && ~isempty(moviefile) ) 
    arghasmovie = 1; 
end 
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pause_length = 1.0; 
if( arghasch2 ) 
    pause_length = 2.0; 
end 
if( arghasmovie ) 
    pause_length = 0; 
    pos = get(gcf,'Position'); 
    pos(1:2) = [0,0]; 
    numframes = 0; 
    for(i=1:size(ex,1)) 
        persex=ex{i,exnum}; 
        numframes = numframes+size(persex,1); 
    end 
    moviearray = moviein(numframes,gcf,pos); 
    framenum = 0; 
end 
widthadd = 0; 

  

  
for(i=1:size(ex,1)) 
    persex = ex{i,exnum}; 
    hsv_val = mod(hsv_val + 0.19,1); 
    col = hsv2rgb( [hsv_val , 0.8 , 0.9] ); 
    for(j = 1:size(persex,1));  
        pause(pause_length); 
        a=persex{j};  
    if( arghasmovie )  
        %add width as another distinguising factor between people, 

because the color isn't as vibrant 
        if(mod(i,2)==1) 
            widthadd = 2; 
        else 
            widthadd = 0; 
        end 
    end 
        plot(a(ch,:),'Color',col ,'LineWidth',2+widthadd); 
    if( arghasch2 ) 
        hold on; 
        scale_factor = mean(a(ch,:))/mean(a(ch2,:)); 
        plot( 

a(ch2,:)*scale_factor,'Color',hsv2rgb([mod(hsv_val+0.05,1) , 0.8 , 

0.6]),'LineWidth',3+widthadd ,'LineStyle','--'); 
        hold off; 
    end 
        set(gca,'Color','black'); 
    if( arghasmovie ) 
    framenum = framenum+1; 
        moviearray(:,framenum)=getframe(gcf,pos);  
    end 
    end 
end 

  
pause(pause_length); 
for(i=1:size(ex,1)) 
    persex = ex{i,exnum}; 
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    hsv_val = i/size(ex,1); 
    col = hsv2rgb( [hsv_val , 0.8 , 0.8] ); 
    for(j = 1:size(persex,1));  
        a=persex{j}(ch,:); 
        plot((1:size(a,2))*1000/size(a,2),a/mean(a),'Color',col ); 
        set(gca,'Color','black'); 
        hold on; 
    end 
end 

  
if( arghasmovie ) 
    movie2avi(moviearray,moviefile,'fps',1,'colormap',hsv); 
end 

 

 

resample_arr.m 
function r = resample_arr( arr , p , q ) 

  
for( i = 1:size(arr,1) ) 
    r(i,:) = resample(arr(i,:)/mean(arr(i,:)), p , q ); 
end 

 

emg_marking_facilitator.m 
function varargout = emg_marking_facilitator(varargin) 
% EMG_MARKING_FACILITATOR M-file for emg_marking_facilitator.fig 
%      EMG_MARKING_FACILITATOR, by itself, creates a new 

EMG_MARKING_FACILITATOR or raises the existing 
%      singleton*. 
% 
%      H = EMG_MARKING_FACILITATOR returns the handle to a new 

EMG_MARKING_FACILITATOR or the handle to 
%      the existing singleton*. 
% 
%      

EMG_MARKING_FACILITATOR('CALLBACK',hObject,eventData,handles,...) 

calls the local 
%      function named CALLBACK in EMG_MARKING_FACILITATOR.M with the 

given input arguments. 
% 
%      EMG_MARKING_FACILITATOR('Property','Value',...) creates a new 

EMG_MARKING_FACILITATOR or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before emg_marking_facilitator_OpeningFcn 

gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to 

emg_marking_facilitator_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 



 

 190 

 

  
% Edit the above text to modify the response to help 

emg_marking_facilitator 

  
% Last Modified by GUIDE v2.5 08-Sep-2009 02:39:46 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', 

@emg_marking_facilitator_OpeningFcn, ... 
                   'gui_OutputFcn',  

@emg_marking_facilitator_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  

  
% --- Executes just before emg_marking_facilitator is made visible. 
function emg_marking_facilitator_OpeningFcn(hObject, eventdata, 

handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to emg_marking_facilitator (see 

VARARGIN) 

  
% Choose default command line output for emg_marking_facilitator 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes emg_marking_facilitator wait for user response (see 

UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = emg_marking_facilitator_OutputFcn(hObject, 

eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 



 

 191 

 

% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in pushbutton_mark. 
function pushbutton_mark_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton_mark (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global data; 
start_sample = 

round(str2num(get(handles.edit_start,'String'))*data.SS); 
stop_sample = 

round(str2num(get(handles.edit_stop,'String'))*data.SS); 
switch( get(handles.bg_mark,'SelectedObject' ) ) 
    case handles.radio_valid 
        data.valid_regions(start_sample:stop_sample) = 

ones(1,stop_sample-start_sample+1); 
    case handles.radio_invalid 
        data.valid_regions(start_sample:stop_sample) = 

zeros(1,stop_sample-start_sample+1); 
end 

  
bg_channel_SelectionChangeFcn(get(handles.bg_channel,'SelectedObject

'),[], handles) 

  

  

  

  
function edit_start_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_start as 

text 
%        str2double(get(hObject,'String')) returns contents of 

edit_start as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit_start_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
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get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_stop_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_stop as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_stop as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function edit_stop_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes when selected object is changed in bg_channel. 
function bg_channel_SelectionChangeFcn(hObject, eventdata, handles) 
% hObject    handle to the selected object in bg_channel  
% eventdata  structure with the following fields (see UIBUTTONGROUP) 
%   EventName: string 'SelectionChanged' (read only) 
%   OldValue: handle of the previously selected object or empty if 

none was selected 
%   NewValue: handle of the currently selected object 
% handles    structure with handles and user data (see GUIDATA) 
import slp.*; 
global data; 
global threshold_regions; 
axes_data = handles.axes_data; 
axes_valid = handles.axes_valid; 
data_to_plot = []; 
switch( hObject ) 
    case handles.radio_all 
        data_to_plot = data.voltage; 
    case handles.radio_combined 
        data_to_plot = data.voltage; 
    case handles.radio_tibant 
        data_to_plot = data.voltage(1,:); 
    case handles.radio_vastmed 
        data_to_plot = data.voltage(2,:); 
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    case handles.radio_bicfem 
        data_to_plot = data.voltage(3,:); 
    case handles.radio_gastmed 
        data_to_plot = data.voltage(4,:); 
    case handles.radio_tfl 
        data_to_plot = data.voltage(5,:); 
    case handles.radio_glutmed 
        data_to_plot = data.voltage(6,:); 
end 
data_to_plot = emg_filter(data_to_plot); 
if( hObject == handles.radio_combined ) 
    voltage_mean = mean(data_to_plot,2) 
    voltage_scale = 1./voltage_mean; 
    data_to_plot = diag(voltage_scale)*data_to_plot; 
    data_to_plot = max(data_to_plot); 
end 
threshold_regions = 

emg_threshold_stutter_eliminate(emg_apply_threshold(data_to_plot,emg

_find_threshold(data_to_plot))); 
if( size(threshold_regions,1) > 1 ) 
    for( i = 2:size(threshold_regions,1) ) 
        threshold_regions(1,:) = threshold_regions(1,:) | 

threshold_regions(i,:); 
    end 
end 
threshold_regions = threshold_regions(1,:); 
data_to_plot = [data_to_plot; 

1.5*max(max(data_to_plot))*threshold_regions ]; 
bar( axes_valid , (1:size(data.valid_regions,2))/data.SS , 

data.valid_regions , 'hist' ); 
plot( axes_data , (1:size(data.voltage,2))/data.SS , data_to_plot ); 
%reset clicky clicky callback for the axes_data 
b_down_callback = 

@(hObj,eData)emg_marking_facilitator('axes_data_ButtonDownFcn',hObj,

eData,guidata(hObj)); 
set( axes_data , 'ButtonDownFcn' , b_down_callback ); 
%make valid regions plot line up with the other plot 
axis_data = axis(axes_data); 
axis_data(3:4) = [0 1]; 
axis(axes_valid,axis_data); 

  

  

  
% --- Executes on selection change in popupmenu_filelist. 
function popupmenu_filelist_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu_filelist (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = get(hObject,'String') returns popupmenu_filelist 

contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

popupmenu_filelist 
global prefix; 
contents = get(hObject,'String'); 
selected = strtrim(contents(get(hObject,'Value'),:)); 
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if(isdir([prefix selected])) 
    prefix = [prefix selected]; 
    set(hObject,'Value',1); 
    set(hObject,'String',format_directory_string(ls(prefix))) 
end 

  
% --- Process Directory Strings to add trailing slash 
function slashed_list = format_directory_string(list) 
global prefix; 
slashed_list = []; 
listsize = size(list); 
for i = 1:listsize(1) 
    if( isdir([prefix strtrim(list(i,:))]) ) 
       slashed_str = [strtrim(list(i,:)) '/']; 
       slashed_list = strvcat(slashed_list,slashed_str); 
    else 
        slashed_list = strvcat(slashed_list,list(i,:)); 
    end 
end 

  

  

  

  
% --- Executes during object creation, after setting all properties. 
function popupmenu_filelist_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu_filelist (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: popupmenu controls usually have a white background on 

Windows. 
%       See ISPC and COMPUTER. 
global prefix; 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
set(hObject,'String',format_directory_string(ls)) 
prefix = './'; 

  

  

  
% --- Executes on button press in pushbutton_save. 
function pushbutton_save_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton_save (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global data; 
global prefix; 

  
contents = get(handles.popupmenu_filelist,'String'); 
selected = 

strtrim(contents(get(handles.popupmenu_filelist,'Value'),:)); 
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save( [prefix selected] , 'data' ); 
set_status( 'Saved File' , handles ); 

  

  
% --- Executes on button press in pushbutton_load. 
function pushbutton_load_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton_load (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global data; 
global prefix; 
filelist = handles.popupmenu_filelist; 

  
filelist_contents = get(filelist,'String'); 
filelist_selected = 

strtrim(filelist_contents(get(filelist,'Value'),:)); 

  
load( [prefix filelist_selected] ); 
if( ~isfield(data,'valid_regions') ) 
    %data.valid_regions does not exist 
    data.valid_regions = zeros( 1 , size(data.voltage,2) ); 
end 

  
bg_channel_SelectionChangeFcn(get(handles.bg_channel,'SelectedObject

'),[], handles) 
set_status( 'Loaded File' , handles ); 

  

  
% --- Executes on mouse press over axes background. 
function axes_data_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to axes_data (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global data; 
global threshold_regions; 

  
current_point = get(hObject,'CurrentPoint'); 
current_sample = round( current_point(1,1)*data.SS ); 
if(current_sample <= size(threshold_regions,2) && current_sample >= 

0 ) 
    selected_region = zeros(size(threshold_regions)); 
    if( threshold_regions(1,current_sample) == 1 ) 
        i = current_sample; 
        while( i > 0 && threshold_regions(1,i) == 1 ) 
            selected_region(1,i) = 1; 
            i = i - 1; 
        end 
        i = current_sample; 
        while( i <= size(threshold_regions,2) && 

threshold_regions(1,i) == 1 ) 
            selected_region(1,i) = 1; 
            i = i + 1; 
        end 
    end 
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    s_object = get(handles.bg_mark,'SelectedObject'); 

     
    switch( s_object ) 
        case handles.radio_valid 
           data.valid_regions = data.valid_regions | 

selected_region; 
        case handles.radio_invalid 
            data.valid_regions = data.valid_regions & 

~selected_region; 
    end 
    

bg_channel_SelectionChangeFcn(get(handles.bg_channel,'SelectedObject

'),[], handles) 
end 

  
function set_status( status , handles ) 
set(handles.text_status,'String',status); 
% return_func = @(source,event) 

set(handles.text_status,'String','Status'); 
% t = timer( 'TimerFcn' , return_func , 'StartDelay' , 5 ); 
% start(t); 

  

  
% % --- Executes on key press with focus on figure1 or any of its 

controls. 
% function figure1_WindowKeyPressFcn(hObject, eventdata, handles) 
% % hObject    handle to figure1 (see GCBO) 
% % eventdata  structure with the following fields (see FIGURE) 
% % Key: name of the key that was pressed, in lower case 
% % Character: character interpretation of the key(s) that was 

pressed 
% % Modifier: name(s) of the modifier key(s) (i.e., control, shift) 

pressed 
% % handles    structure with handles and user data (see GUIDATA) 
% switch(eventdata.Character) 
%     case '0' 
%         

set(handles.bg_channel,'SelectedObject',handles.radio_all); 
%     case '1' 
%         

set(handles.bg_channel,'SelectedObject',handles.radio_tibant); 
%     case '2' 
%         

set(handles.bg_channel,'SelectedObject',handles.radio_vastmed); 
%     case '3' 
%         

set(handles.bg_channel,'SelectedObject',handles.radio_bicfem); 
%     case '4' 
%         

set(handles.bg_channel,'SelectedObject',handles.radio_gastmed); 
%     case '5' 
%         

set(handles.bg_channel,'SelectedObject',handles.radio_tfl); 
%     case '6' 
%         
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set(handles.bg_channel,'SelectedObject',handles.radio_glutmed); 
%     case 'v' 
%         set(handles.bg_mark,'SelectedObject',handles.radio_valid); 
%     case 'i' 
%         

set(handles.bg_mark,'SelectedObject',handles.radio_invalid); 
% end 
% 

bg_channel_SelectionChangeFcn(get(handles.bg_channel,'SelectedObject

'),[], handles) 

  

  
% --- Executes during object creation, after setting all properties. 
function figure1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
global data; 
data = []; 

 

 

dtw_viewer.m 
function temporary_viewer( target , ex , exnum , ch , moviefile ) 

  
resample_length = 500; 

  
disp( 'Setting fixed 2 bump target for now' ); 
target = zeros(4,1000); 
peak_width=50; 
target( 1,: ) = 20-cos( (0:999) * 2 * pi/peak_width ); 
peak_width = 400; 
target( 2,300:300+peak_width ) = 1-cos( (0:peak_width) * 2 * 

pi/peak_width ); 
peak_width = 200; 
target( 3,200:200+peak_width ) = 1-cos( (0:peak_width) * 2 * 

pi/peak_width ); 
target( 3,600:600+peak_width ) = 1-cos( (0:peak_width) * 2 * 

pi/peak_width ); 
target( 4,100:100+peak_width ) = 1-cos( (0:peak_width) * 2 * 

pi/peak_width ); 
target( 4,400:400+peak_width ) = 1-cos( (0:peak_width) * 2 * 

pi/peak_width ); 
target( 4,700:700+peak_width ) = 1-cos( (0:peak_width) * 2 * 

pi/peak_width ); 

  
target = resample_arr(target,resample_length,length(target)); 

  
hsv_val = 0; 
col = hsv2rgb( [hsv_val , 0.8 , 0.9] ); 

  
arghasmovie = 0; 

  
if( nargin > 5 && ~isempty(moviefile) ) 



 

 198 

 

    arghasmovie = 1; 
end 

  
pause_length = 1.0; 
if( arghasmovie ) 
    pause_length = 0; 
    pos = get(gcf,'Position'); 
    pos(1:2) = [0,0]; 
    numframes = 0; 
    for(i=1:size(ex,1)) 
        persex=ex{i,exnum}; 
        numframes = numframes+size(persex,1); 
    end 
    moviearray = moviein(numframes,gcf,pos); 
    framenum = 0; 
end 

  
disp( 'Squashing exercises' ); 
ex = dtw_squashex( ex , exnum ); 

  
for( i = 1:size(ex,1) ) 
    disp(['Resampling sample ' num2str(i) ' of ' num2str(size(ex,1)) 

]) 
    ex{i,1} = resample_arr(ex{i},resample_length,length(ex{i})); 
end 

  
fitted_target = {}; 
scores = []; 
for(i=1:size(ex,1)) 
    %score and fit! 
    disp(['Scoring sample ' num2str(i) ' of ' num2str(size(ex,1)) ]) 

  
    curr_ex = ex{i}(ch,:); 
    [fitted_target{end+1},p,q,D,sc] = dtw_transform( target(1,:) , 

curr_ex ); 
    ft = fitted_target{end}; 

  
    sc = (ft-curr_ex); 
    sc = sqrt(mean(sc.*sc)); 
    scores(end+1) = sc; 

  
    for(j = 2:size(target,1)) 
        [ft,p,q,D,sc] = dtw_transform( target(j,:) , curr_ex ); 
        sc = (ft-curr_ex); 
        sc = sqrt(mean(sc.*sc)); 
        if( sc < scores(end) ) 
            fitted_target{end} = ft; 
            scores(end) = sc; 
        end 
    end 
end 

  
[scores_sorted,scores_i] = sort( scores ); 

  
fitted_target = fitted_target(scores_i); 
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ex = ex(scores_i); 

  
figure; 
for(i=1:size(ex,1)) 
    pause(pause_length); 
    a=ex{i}; 
    plot(a(ch,:),'Color',col ); 
    hold on; 
    plot(fitted_target{i},'Color',[1,1,1]); 
    hold off; 
    set(gca,'Color','black'); 
    if( arghasmovie ) 
        framenum = framenum+1; 
        moviearray(:,framenum)=getframe(gcf,pos);  
    end 
end 

  
%pause(pause_length); 
%for(i=1:size(ex,1)) 
%    persex = ex{i,exnum}; 
%    hsv_val = i/size(ex,1); 
%    col = hsv2rgb( [hsv_val , 0.8 , 0.8] ); 
%    for(j = 1:size(persex,1));  
%        a=persex{j}(ch,:); 
%        plot((1:size(a,2))*1000/size(a,2),a/mean(a),'Color',col ); 
%    set(gca,'Color','black'); 
%        hold on; 
%    end 
%end 

  
if( arghasmovie ) 
    movie2avi(moviearray,moviefile,'fps',1,'colormap',hsv); 
end 

 

 

dtw_transform.m 
function [T,p,q,D,sc] = dtw_transform(A , B) 
%transforms A to look like B 

  
M = dtw_cost(A,B); 
C = [1 1 1.0;0 1 1.0;1 0 1.0];%default dpfast C 

  
[p,q,D,sc] = dtw.dpfast(M,C); 

  
T = zeros(size(B)); 

  
last_value = 0; 
for i = 1:size(T,2) 
    ind = p(find(q == i)); 
    if( isempty(ind) ) 
        T(:,i) = last_value; 
    else 
        last_value = mean( A(:,ind) , 2 ); 
        T(:,i) = last_value; 
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    end 
end 

 

 

dtw_squashex.m 
function ex = dtw_squashex( exercises , exnum ) 

  
if( nargin < 2 || isempty(exnum) ) 
    exnum = 1; 
end 

  
ex = exercises(:,exnum); 

  
while(size(ex,1) ~= 1) 
    ex{1} = [ex{1};ex{2}]; 
    ex(2) = []; 
end 

  
ex = ex{1}; 

 

dtw_fitex.m 
function ex_s = dtw_fitex(exercises,exnum,fitnum) 
%resamples to 1000 in addition to everything else 

  

  
ex = dtw_squashex(exercises,exnum); 

  
for( i = 1:size(ex,1) ) 
    ex_s{i,1} = resample_arr(ex{i},1000,length(ex{i})); 
end 

  
idx = 1:size(ex,1); 
idx(fitnum) = []; 

  
for(i = idx) 
    ex_s{i} = dtw_transform(ex_s{i},ex_s{fitnum}); 
end 

 

 

ditw_cost.m 
function D = dtw_cost(A,B) 

  
n = size(A,1); 
if( n ~= size(B,1) ) 
    disp('Error: A and B must have same number of rows'); 
    return; 
end 
rt_n = sqrt(n); 

  
D = zeros( size(A,2) , size(B,2) ); 

  
%dA = dtw_derivative( A ); 
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%dB = dtw_derivative( B ); 

  
dA = A; 
dB = B; 

  
for( i = 1:size(D,1) ) 
    for( j = 1:size(D,2) ) 
        diff = (dA(:,i) - dB(:,j)); 
        D(i,j) = norm(diff)/rt_n; 
    end 
end 

  
end 

  
function der = dtw_derivative( array2d ) 
% der = dtw_derivative( array2d ): returns the derivative of the 

rows of 
% data in array2d 

  
der = zeros(size(array2d)); 
for i = 2:size(array2d,2)-1 
    der(:,i) = (array2d(:,i)-array2d(:,i-1) + (array2d(:,i+1)-

array2d(:,i-1))/2)/2; % formula taken from Keogg and Pazzani 
end 
der(:,1) = der(:,2); 
der(:,end) = der(:,end-1); 

  
end 
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Glossary 

Amplifier:  A device that proportionately increases the voltage level of an entire 

signal, so that it is easier to process.  Raw EMG signals are normally in the range of 

millivolts at most. 

 

Biofeedback:  Real-time visual or auditory cue indicating one’s own muscle 

behavior. 

 

Classification:  Based on our expectation of the signal features for each muscle for 

each exercise, an algorithm will read the user’s six muscle signals and determine 

which exercise the user was attempting to perform. 

 

Electrode:  An adhesive gel pad with a metal contact, placed on the body to conduct 

EMG signals. 

 

Electromyography (EMG):  The study of the electric potential (or EMG signal) 

generated when a muscle contracts. 

 

Filtering:  A process that causes certain input frequency ranges to result in very low 

gain, while other frequency ranges result in higher gain.  This is used because we 

wish to only record EMG signals, which exist within a particular frequency range 

(~50 Hz – ~2 kHz).  Signals outside this range will not be EMG, and thus will only 

cause noise if not filtered out. 

 

Gain:  A number that indicates amplification in terms of output voltage level divided 

by input voltage level for a circuit.  This number differs based on signal frequency. 

 

Gait:  The muscular actions involved in a normal walking stride, including leg and 

hip muscles. 

 

Hemiparesis:  Impaired muscle control on only one side of the body. 

 

Rehabilitation:  Carefully directed, well-focused, repetitive exercises that train 

healthy neuromuscular pathways to replace damaged pathways. 

 

Signal feature:  Characteristics of the EMG voltage waveform such as amplitude, 

frequency, and timing. 

 

Stroke:  Blood clotting in the brain, leading to damaged brain tissue, and therefore 

impaired brain function. After a stroke, survivors must retrain the brain to redirect 

neural pathways to assume the functionality of previously destroyed pathways. 
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