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Abstract

In this paper, we provide convergence results for an Ant-Based Routing (ARA) Algorithm

for wireline, packet-switched communication networks, that are acyclic. Such algorithms are

inspired by the foraging behavior of ants in nature. We consider an ARA algorithm proposed

by Bean and Costa [2]. The algorithm has the virtues of being adaptive and distributed, and can

provide a multipath routing solution. We consider a scenario where there are multiple incoming

data traffic streams that are to be routed to their respective destinations via the network. Ant

packets, which are nothing but probe packets, are introduced to estimate the path delays in the

network. The node routing tables, which consist of routing probabilities for the outgoing links,

are updated based on these delay estimates. In contrast to the available analytical studies in

the literature, the link delays in our model are stochastic, time-varying, and dependent on the

link traffic. The evolution of the delay estimates and the routing probabilities are described by

a set of stochastic iterative equations. In doing so, we take into account the distributed and

asynchronous nature of the algorithm operation. Using methods from the theory of stochastic

approximations, we show that the evolution of the delay estimates can be closely tracked by

a deterministic ODE (Ordinary Differential Equation) system, when the step-size of the delay

estimation scheme is small. We study the equilibrium behavior of the ODE system in order

to obtain the equilibrium behavior of the routing algorithm. We also explore properties of the

equilibrium routing probabilities, and provide illustrative simulation results.
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and learning algorithms, queuing networks
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1 Introduction

“Ant algorithms” constitute a class of algorithms that have been proposed to solve a variety of

problems arising in optimization and distributed control. They form a subset of the larger class

of “Swarm Intelligence” algorithms, a topic which has received widespread attention recently; see,

for example, the book of Bonabeau, Dorigo, and Theraulaz [7]. The central idea here is that a

“swarm” of relatively simple agents can interact through simple mechanisms and collectively solve

complex problems. Bonabeau, Dorigo, and Theraulaz [7] give examples of insect societies like those

of ants, honey bees, and wasps, which accomplish fairly complex tasks of building intricate nests,

finding food, responding to external threats etc., even though the individual insects themselves

have limited capabilities. The abilities of ant colonies to collectively accomplish complex tasks

have served as sources of inspiration for the design of “Ant algorithms”.

Examples of “Ant algorithms” are the set of Ant-Based Routing algorithms (henceforth referred

to simply as Ant Routing algorithms (ARA)) that have been proposed for communication networks.

It was observed in an experiment conducted by biologists Deneubourg et. al. [12], called the double

bridge experiment, that under certain conditions, a group of ants when presented with two paths

to a source of food, is able to collectively converge to the shorter path. It was found that every

ant lays a trail of a chemical substance called pheromone as it walks along a path. Subsequent

ants follow paths with stronger pheromone trails, and in their turn reinforce the trails. Because

ants take lesser time to traverse the shorter path, pheromone concentration increases more rapidly

along this path. These “positive reinforcement” effects culminate in all ants following, and thus

discovering, the shorter path. Various mathematical models have been proposed to describe the

evolution in time of pheromone levels on trails; for a discussion see Dorigo, Stutzle [13].

Most of the ARA algorithms proposed in the literature are inspired by variations on the basic

idea of creation and reinforcement of a pheromone trail on a path that serves as a measure of the

quality of the path. These algorithms employ probe packets called ant packets (analogues of ants)

that help create analogues of pheromone trails on paths. In the context of routing, these trails

are based on measurements of path delays made by the ant packets. Routing tables at the nodes

are updated based on the path pheromone trails. The update algorithms help direct data packets

along outgoing links that lie on paths with lower delays.

In this paper, we consider a wireline, packet-switched network, and provide convergence results

for an ARA algorithm proposed by Bean and Costa [2]. The algorithm retains some of the most
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attractive features of ARA algorithms. It is distributed, and the routing tables (for every node,

this consists of routing probabilities for the outgoing links) are updated based on delay information

collected by ant packets. This enables the algorithm to be adaptive. Furthermore, the scheme can

provide a multipath routing solution — that is, the incoming traffic at a source is split between the

multiple paths available to the destination. This enables efficient utilization of network resources.

We now briefly dwell on the literature on ARA algorithms.

Literature. ARA algorithms have been proposed for all kinds of networks — circuit- and

packet-switched wireline, as well as packet-switched wireless networks. We briefly discuss the

algorithms for packet-switched networks, because they are more relevant; for a more comprehensive

survey see Dorigo, Stutzle [13] and Bonabeau, Dorigo, and Theraulaz [7]. Most of the algorithms

proposed and studied for packet-switched networks — for example, Gabber, Smith [14], Di Caro,

Dorigo [10], Subramanian, Druschel, and Chen [23] (all the above are for wireline networks), and

Baras, Mehta [1] (for wireless networks) — are variants of the Linear Reinforcement (LR) scheme

considered in studies of stochastic learning automata (see Kaelbling, Littman, and Moore [17] and

Thathachar, Sastry [24] 2). In these works, variants of the LR scheme are used to adjust routing

probabilities at the nodes based on path pheromone trails. Yoo, La, and Makowski [26] consider

the scheme proposed by [23] for a network consisting of two nodes connected by L parallel links.

The link delays are deterministic. Ant packets are either routed uniformly at the nodes — called

‘uniform routing’ — or are routed based on the node routing tables — called ‘regular routing’. A

rigorous analysis then shows that the routing probabilities converge in distribution for the uniform

routing case, and almost surely to a shortest path solution for the regular routing case. The LR

scheme however, is not designed for applications where the delays are stochastic and time-varying,

which is the case of main interest to us. ARA algorithms different from the LR scheme, are

considered in [7], and in [2].

Though a large number of ARA algorithms (and in general, Ant algorithms) have been proposed,

fewer analytical studies are available in the literature. Algorithms similar to those that aim to

explain the observations in the double bridge experiment, have been rigorously studied in Makowski

[21] and Das and Borkar [11]. Makowski considers the case where there are two paths of equal length

to a food source, and a model where each ant chooses a path with a probability proportional to

a power ν ≥ 0, of the number of ants that have previously traversed the path. Using stochastic
2The LR scheme has been proposed for various adaptive learning and control applications.
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approximation and martingale techniques the paper provides convergence results, and shows that

the asymptotic behavior can be quite complex (in particular, only for ν > 1, is it true that all

ants eventually choose one path). Das and Borkar consider a scenario where there are multiple

disjoint paths between a source and a destination. There are three algorithms — a pheromone

update algorithm that builds a pheromone trail based on the number of ants that have previously

traversed the path and the path length, a utility estimate algorithm based on the pheromone trail

on a path, and finally a routing probability update algorithm that uses the utility estimates. Using

stochastic approximation methods, they show convergence to a shortest path solution if there is

an ‘initial bias’, i.e., if initially there is a higher probability of choosing the shortest path. The

paper also considers extensions to multi-stage problems. Gutjahr [15] considers a problem where

ant-like agents help solve the combinatorial optimization problem of finding an optimal cycle on

a graph, with no nodes being repeated except for the start node. The arc costs are deterministic.

The agents sample walks based on routing probabilities, and reinforce pheromone trail levels on

arcs, which in turn, influence the routing probabilities. The paper shows that asymptotically, with

probability arbitrarily close to one, an optimal cycle can be found. Another analytical study is the

paper [26] discussed above.

Contributions and Related Work. The above set of analytical studies have mostly con-

centrated on networks with deterministic link delays. We consider the Bean, Costa [2] scheme for

wireline, packet-switched networks, that are acyclic 3. In contrast to the studies above, we provide

convergence results when the link delays are stochastic and time-varying, and are dependent on the

link traffic. This is a more relevant and interesting case. In our work [22] we initiated study in this

direction, by considering the Bean, Costa scheme for a simple routing scenario where there are N

parallel links between a source and a destination.

Bean and Costa [2] study their scheme using a combination of simulation and analysis. They

employ a ‘time-scale separation approximation’ whereby average network delays are computed

‘before’ the routing probabilities are updated. Numerical iterations of an analytical model based

on this approximation and simulations are shown to agree well. However, the time-scale separation

is not justified, nor is any formal study of convergence provided.

We consider a stochastic model for the arrival processes and packet lengths of both the ant and

the incoming data packet streams. The ARA scheme consists of a delay estimation algorithm and
3For a definition of such networks see Section 3.
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a routing probability update algorithm, that utilizes the delay estimates. These algorithms run at

every node of the network. The delay estimates are formed based on measurements of path delays

(these delays are caused by queuing delays on the links) obtained by the ant packets. We describe

the evolution of these algorithms by a set of (intricately coupled) discrete stochastic iterations. We

consider constant step-size schemes, which can adapt to (track) long term changes in statistics of

the delay processes. This feature of constant step-size schemes is well known in the literature on

adaptive algorithms; see, for example, Benveniste, Metivier, Priouret [3]. Our formulation considers

the distributed and asynchronous nature of the algorithm operation. We show, using methods from

the theory of stochastic approximations, that the evolution of the delay estimates can be closely

tracked by a deterministic ODE (Ordinary Differential Equation) system, when the step size of the

delay estimation scheme is small. We then study the equilibrium behavior of the ODE system in

order to obtain the equilibrium behavior of the routing algorithm. We explore properties of the

equilibrium routing solution, and provide illustrative simulation results.

Our approach is most closely related to Borkar and Kumar [9], which studies an adaptive

algorithm that converges to a form of routing equilibrium, known as a Wardrop equilibrium [25].

Our framework is similar to theirs — there is a delay estimation algorithm and a routing probability

update algorithm which utilizes the delay estimates. Their routing probability update scheme

moves on a slower “time scale” than the delay estimation scheme. In our case however, the routing

probability update scheme is on the same “time scale” as the delay estimation scheme, and our

method of analysis is consequently different. This could also be desirable in practice, because the

algorithm convergence will be much faster.

The paper is organized as follows. In this paper we separately consider the two cases where ant

packets are routed according to uniform and regular routing. There is a parallel development of the

discussion related to these two forms of routing. In Section 2 we outline in detail the mechanism of

operation of ARA algorithms, and discuss the Bean, Costa algorithm. Section 3 provides a formal

discussion of our acyclic network model and assumptions, and a formulation of the routing problem.

We analyse the routing algorithm in Section 4, and discuss our ODE approximation results and

related computations. We also discuss the equilibrium behavior of the algorithm. In the next

couple of sections, Section 5 and Section 6, we study in some detail two illustrative examples —

an N parallel links network and an acyclic network. Related simulation results are provided and

discussed. The concluding section, Section 7, summarizes the paper and discusses a few directions
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for future research. In an appendix, Section 8, we outline a proof of convergence of the algorithm.

2 Ant Routing Algorithms: Mechanism of Operation

We provide in this section a brief description of the mechanism of operation of ant routing algorithms

for a wireline communication network. Such a network can be represented by a directed graph

G = (N ,L), with a set of nodes N , and a set of directed links L. Our formal description follows the

framework in Di Caro and Dorigo [10], [13], which is general enough and adequate for our purposes.

Alongside, we describe the Bean, Costa [2] scheme, that we analyse in this paper.

Every node i in the network maintains two key data structures — a matrix of routing prob-

abilities, the routing table R(i), and a matrix of various kinds of statistics used by the routing

algorithm, called the network information table I(i). For a particular node i, let N(i, k) denote the

set of neighbors of i (corresponding to the outgoing links (i, j) from i) through which node i routes

packets towards destination node k. For the communication network consisting of |N | nodes, the

matrix R(i) has |N | − 1 columns, corresponding to the |N | − 1 destinations towards which node

i could route data packets, and |N | − 1 rows, corresponding to the maximum number of neighbor

nodes of node i. The entries of R(i) are the probabilities φkij . φ
k
ij denotes the probability of routing

an incoming data packet at i and bound for destination k via the neighbor j ∈ N(i, k). The matrix

I(i) has the same dimensions as R(i), and its (j, k)-th entry contains various statistics pertaining

to the route from i to k that goes via j (denoted henceforth by i → j → · · · → k). Examples of

such statistics could be mean delay and delay variance estimates of the route i → j → · · · → k.

These statistics are updated based on the information the ant packets collect about the route. The

matrix I(i) thus represents the characteristics of the network that are learned by the nodes through

the ant packets. Based on the information collected in I(i), “local decision-making” — the update

of the routing table R(i) — is done. The iterative algorithms that are used to update I(i) and

R(i) will be referred to as the learning algorithms.

We now describe the mechanism of operation of ARA algorithms. For ease of exposition, we

restrict attention to a particular fixed destination node, and consider the problem of routing from

every other node to this node, which we label as D (see Figure 1). The network information tables

I(i) at the nodes contain only statistics related to estimates of mean delays.

Forward ant generation and routing. At certain intervals, forward ant (FA) packets are
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Figure 1: Forward Ant and Backward Ant packets

launched from a node i towards destination D to discover low delay paths to it. The FA packets

sample walks on the graph G based either on the current routing probabilities at the nodes as

in regular ant routing (regular ARA), or uniformly4 as in uniform ant routing (uniform ARA).

Uniform ant routing might be preferred in certain cases; for instance, when we want the ant

packets to explore the network in a completely “unbiased” manner. FA packets share the same

queues as data packets and so experience similar delay characteristics as data packets. Every FA

packet maintains a stack of data structures containing the IDs of nodes in its path and the per hop

delays encountered. The per hop delay measurements can be obtained through time stamping of

the FA packets as they pass through the various nodes.

Backward ant generation and routing. Upon arrival of an FA at the destination D, a

backward ant (BA) packet is generated. The FA packet transfers its stack to the BA. The BA

packet then retraces back to the source i the path traversed by the FA packet. BA packets travel

back in high priority queues, so as to quickly get back to the nodes and minimize the effects of

outdated or stale measurements. At each node that the BA packet traverses through, it transfers

the delay information that was gathered by the FA packet. This information is used to update

matrices I and R at the respective nodes. Thus the arrivals of BA packets at the nodes triggers

the iterative learning algorithms.

We now describe the Bean, Costa [2] learning algorithm. Suppose that an FA packet measures

the delay ∆D
ij associated with a walk from i to D via the outgoing link (i, j). This delay is more

precisely the following. Let J̃Dj denote a sample sum of the delays in the queues associated with

the links, experienced by an FA packet moving from node j to node D (it is thus a sample of the
4routed with equal probability on each outgoing link
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expected ‘cost-to-go’ from j to D). Let w̃ij denote a sample of the delay experienced by an FA

packet traversing the link (i, j). Then ∆D
ij = w̃ij + J̃Dj . When the corresponding BA packet comes

back at node i the delay information is used to update the estimate XD
ij of the mean delay using

the simple exponential estimator

XD
ij := XD

ij + ε(∆D
ij −XD

ij ), (1)

where ε ∈ (0, 1) is a small constant. We also refer to XD
ij as the mean delay estimate for the

route i → j → · · · → D. The mean delay estimates XD
ik , corresponding to the other neighbors

k ∈ N(i,D), are left unchanged.

Simultaneously, the routing probabilities at i are updated using the relation

φDij =
(XD

ij )−β∑
k∈N(i,D) (XD

ik)−β
, ∀j ∈ N(i,D), (2)

where β is a constant positive integer. φDij is thus inversely proportional to XD
ij . β influences the

extent to which outgoing links with lower delay estimates are favored compared to the ones with

higher delay estimates.

We can interpret the quantity (XD
ij )−1 as analogous to a “pheromone trail or deposit” on the

outgoing link (i, j). This trail gets dynamically updated by the ant packets. The pheromone

trail influences the routing tables through the relation (2). Equation (2) shows that the outgoing

link (i, j) is more desirable when XD
ij , the delay through j, is smaller; in other words, when the

pheromone deposit is higher, relative to the other routes.

3 Formulation of the Problem. The Acyclic Network Model

We consider the problem of routing from the various nodes i of the network to a single destination

node D. At every node i there exist queues (buffers) Qij associated with the outgoing links (i, j);

we assume these queues to be of infinite size. The service discipline in these queues is FIFO. The

network can be thought of equivalently as a system of inter-connected queues (a queuing network).

Every link (i, j) has capacity Cij . We assume that the queuing delays dominate the processing and

propagation delays in the links. The latter delays can be accounted for with minimal changes in

the discussion in the rest of the paper, but for simplicity, we assume that they are negligible.

We consider acyclic networks and define them following Bertsekas, Gallager [5]. A queue Qij

is said to be downstream with respect to a queue Qkl if some portion of the traffic through the
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latter queue flows through the former. An acyclic network is one for which it is not possible that

simultaneously Qij is downstream of Qkl and Qkl is downstream of Qij , for all (i, j), (k, l). The set

N(i) = {j : (i, j) ∈ L} denotes the set of downstream neighbors of i. An example of an acyclic

network is given in Figure 5, pp. 31. We shall denote the routing probability entries of R(i) by φij

(i.e., without explicitly mentioning the destination). The mean delay estimate entries of I(i) are

denoted by Xij .

The general algorithm, as described in the previous Section 2, is asynchronous (and distributed).

This is because the nodes launch the FA packets towards the destination in an unco-ordinated way.

Moreover, there is a random delay as each FA-BA pair travels through the network. The learning

algorithms at the nodes for updatingR and I are thus triggered at random points of time (when BA

packets come back). We consider a more simplified view of the algorithm operation, which is still

asynchronous and distributed, retains the main characteristics and the essence of the algorithm,

but is easier to analyze.

We assume that FA packets are generated according to a Poisson process of rate λai > 0 at node

i (λaD = 0). We consider a model with the following assumptions on the algorithm operation.

(M1) We assume that the BA packets take negligible time to travel back to the source nodes

(from which the corresponding FA packets were launched) from destination D. Because BA packets

are expected to travel back to the source through high priority queues, the delays might not be very

significant, except for very large-sized networks with significant propagation delays. On the other

hand, incorporating the effects of such delays into our model introduces additional complications

related to asynchrony.

(M2) Furthermore, we note that in the general algorithm operation, a BA packet updates the

delay estimates at every node that it traverses on its way back to the source, besides the source

itself. In what follows, we shall consider the more simplified algorithm operation, whereby only at

the source node the delay estimates and the routing probabilities are updated.

We assume that data packets are generated according to a Poisson process of rate λdi ≥ 0 at

node i; for some nodes it is possible that no data packets are generated, i.e., the rate is zero. For

the destination, λdD = 0.

Let {α(m)}∞m=1 denote the sequence of times at which FA packets are launched from the various

nodes of the network. Let {δ(n)}∞n=1 denote the sequence of times at which FA packets arrive at

the destination D (we set α(0) = 0, δ(0) = 0). Because we have assumed that BA packets take
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negligible time to travel back to the source nodes, these are also the sequence of times at which

BA packets come back to the source nodes. Consequently, these are the sequence of times at which

algorithm updates are triggered at the various nodes. At time δ(n), let X(n) and φ(n) denote,

respectively, the vector of mean delay estimates and the vector of outgoing routing probabilities at

the network nodes. The components of X(n) and φ(n) are Xij(n), (i, j) ∈ L, and φij(n), (i, j) ∈ L,

respectively.

Thus, by time δ(n), overall n BA packets will have come back to the network nodes. (At this

point, it is useful to recall Assumption (M2)). Let T (n) be the N -valued random variable that

indicates which node the n-th BA packet comes back to. Then ξi(n) =
∑n

k=1 I{T (k)=i} gives the

number of BA packets that have come back at node i by time δ(n)5. Let Ri(.) denote the routing

decision variable for FA packets originating from node i. We say that the event {Ri(k) = j} has

occurred if the k-th FA packet that arrives at D and that has been launched from i, has been

routed via the outgoing link (i, j). Let ψij(n) =
∑ξi(n)

k=1 I{Ri(k)=j}; ψij(n) gives the number of FA

packets that arrive at node D by time δ(n), having been launched from node i and routed via (i, j).

By the zero delay assumption on the travel time of the BA packets and the assumption (M2) on

algorithm operation, ψij(n) is also the number of BA packets that come back to i via j, by time

δ(n). Let {∆ij(m)} denote the sequence of delay measurements made by successive FA packets

arriving at D and that have been launched from node i, routed via the outgoing link (i, j). This is

also the sequence of delay measurements about the route i → j → · · · → D made available to the

source i by the BA packets.

Lets suppose that at time δ(n) a BA packet comes back to node i. Furthermore, suppose that

the corresponding FA packet was routed via the outgoing link (i, j). When this BA packet comes

back to node i, the delay estimate Xij is updated using an exponential estimator

Xij(n) = Xij(n− 1) + ε
(

∆ij(ψij(n))−Xij(n− 1)
)
, (3)

with ε ∈ (0, 1) being a small positive constant. The delay estimates Xik for the other routes

i→ k → · · · → D (k ∈ N(i), k 6= j) are left unchanged

Xik(n) = Xik(n− 1). (4)

Also, the delay estimates at the other network nodes do not change

Xlp(n) = Xlp(n− 1), ∀p ∈ N(l),∀l 6= i. (5)
5IA denotes the indicator random variable for the event A.

10



Also, as soon as the delay estimates are updated at node i, the outgoing routing probabilities

are also updated

φij(n) =
(Xij(n))−β∑

k∈N(i) (Xik(n))−β
, ∀j ∈ N(i). (6)

The routing probabilities at the other nodes do not change.

In general thus the evolution of the delay estimates at the various nodes of the network can be

described by the following set of stochastic iterative equations

Xε
ij(n) = Xε

ij(n− 1) + ε I{T ε(n)=i,Rεi (ξ
ε
i (n))=j}

(
∆ε
ij(ψ

ε
ij(n))−Xε

ij(n− 1)
)
,

∀(i, j) ∈ L, n ≥ 1, (7)

starting with the initial conditions Xε
ij(0) = xij ,∀(i, j) ∈ L.

The routing probabilities are updated in the usual way

φεij(n) =
(Xε

ij(n))−β∑
k∈N(i) (Xε

ik(n))−β
, ∀(i, j) ∈ L, n ≥ 1, (8)

starting with the initial conditions φεij(0) = (xij)
−βP

k∈N(i) (xik)−β
, ∀(i, j) ∈ L. Though not explicitly

mentioned, it is understood that there are no algorithm updates being made at D.

The ε’s in the superscript in the algorithm update equations (7) and (8) above, recognize the

dependence of the evolution of the quantities involved (for example, the delay estimates Xij) on

ε. However, for most of the paper6, we shall not use this notation; this enables the discussion to

be less cumbersome. Also, we note that equations (7) and (8) describe the evolution of the delay

estimates and the routing probabilities for the regular ARA as well as for the uniform ARA case.

We also introduce the following continuous time processes, {x(t), t ≥ 0} and {f(t), t ≥ 0},

defined by the equations

x(t) = X(n), for δ(n) ≤ t < δ(n+ 1), n = 0, 1, 2, . . . ,

f(t) = φ(n), for δ(n) ≤ t < δ(n+ 1), n = 0, 1, 2, . . . .

The components of x(t) and f(t) are denoted by xij(t) and fij(t), respectively.

In the case of regular ant routing, an ant (FA) packet as well as a data packet are routed at

an intermediate node based on the current routing probabilities at the node. Thus, in view of

the discussion in this section, a packet that arrives at node i at time t, is routed according to the
6except when we are required to be more clear and precise
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routing probabilities fij(t), j ∈ N(i), and joins the corresponding queues. In the case of uniform ant

routing, a data packet arriving at i at time t, is routed according to the probabilities fij(t), j ∈ N(i);

an ant packet arriving at t is routed uniformly (see Figure 2).

time 
δ δ δ δ(n)(n−1) (n+1) (n+2)

X(n)
φ(n)

t

Regular: Ant/data packet arriving
at node i is routed based on current
routing probabilities φ

is routed based on φ
Uniform: Data packet arriving at i

uniformly
Ant packet arriving at i routed 

ij
(n)

ij (n)

Figure 2: Routing of packet arrivals at a node at time t. Sequence {δ(n)} are the times at which

algorithm updates are taking place.

4 Analysis of the Routing Algorithm

We view the routing algorithm, consisting of equations (7) and (8), as a set of discrete stochastic

iterations of the type usually considered in the literature on stochastic approximation methods

[18]. We provide below the main convergence result which states that, when ε is small enough, the

evolution of the vector of delay estimates is closely tracked by a system of Ordinary Differential

Equations (ODEs).

4.1 The ODE approximation

The key observation, which simplifies the analysis of the algorithm, is that there is a time-scale

decomposition when ε > 0 is small enough — the delay estimates Xij then evolve much more

slowly compared to the delay processes ∆ij . The probabilities φij also evolve at the same “time-

scale” as the delay estimates (probabilities φij are continuous functions of the delay estimates

Xij). Consequently, when ε is small enough, with the vector of delay estimates X considered

fixed at z (equivalently the vector of routing probabilities fixed at φ, the components of φ being

φij = (zij)
−βP

k∈N(i) (zik)−β
), the delay processes {∆ij(.)} converge to a stationary distribution, which

is dependent on z. Given the routing probabilities φij , (i, j) ∈ L, and a knowledge of the rates

of incoming traffic streams into the queuing network, enable us to determine the total incoming
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arrival rates into each of the queues Qij . This can be done by simply solving the flow balance

equations; see Bertsekas, Gallager [5], Mitrani [20]. We assume that the total arrival rate into each

queue (assumed earlier to be of infinite size) is smaller than the service rate of packets in the queue.

This assumption (a queue stability assumption) then ensures that, with the delay estimate vector

X considered fixed at z, the delay processes {∆ij(.)} converge to a stationary distribution, which

depends on z. We denote the means under stationarity, for each (i, j) ∈ L, by Dij(z) (DU
ij(z) for

the uniform ant case), which is a finite quantity. We also make the following short note. {∆ij(m)}

was defined to be the sequence of delay measurements made by successive FA packets arriving at D,

that have been launched from i and routed via (i, j). When the delay estimate vector is considered

fixed at z, its average under stationarity is denoted by Dij(z). Also, with the delay estimate vector

considered fixed at z, the sequence, denoted by (say) {∆′ij(m)}, of delay measurements made by

successive FA packets launched from i and routed via (i, j), has the same stationary average Dij(z).

This is because the latter sequence is just a rearrangement of the former, and hence the average is

the same.

Also, when X is considered fixed at z, let ζi(z), i ∈ N , (ζUi (z) for the uniform ants case) denote,

under stationarity, the long-term fraction of FA packets arriving at D that have been launched

from i. ζi(z) assumes values from the set (0, 1) (ζD(z) = 0, ζUD(z) = 0).

Furthermore, when ε is small, the evolution of the vector of delay estimates can be tracked by an

ODE system (an ODE approximation result). This result is shown in Section 8.1 of the Appendix.

We now introduce some additional notation and state the assumptions under which this result

holds. For any fixed ε ∈ (0, 1), and for each (i, j), consider the piecewise constant interpolation of

Xε
ij(n) given by

zεij(t) = Xε
ij(n), nε ≤ t < (n+ 1)ε, n = 0, 1, 2, . . . , (9)

with the initial value zεij(0) = Xε
ij(0). Consider also the vector-valued piecewise constant process

zε(t), for all t ≥ 0, with components zεij(t), (i, j) ∈ L. Let us now consider the increasing sequence

of σ-fields {F ε(n)}, where F ε(n) encapsulates the entire history of the algorithm for the time

t ≤ δ(n). In particular, it contains the σ-field generated by the r.v.’s Xε(0), Xε(1), . . . , Xε(n). It

also contains information regarding the arrival and packet service times, as well as information

regarding the actual routing of packets. The ODE approximation result will be shown to hold

under the following assumptions.

Assumptions:
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(A1) For every (i, j) ∈ L, and for every ε ∈ (0, 1), the sequence {∆ε
ij(m)} is uniformly integrable;

that is, sup
m≥1

E[∆ε
ij(m)I{∆ε

ij(m)≥K}]→ 0, as K →∞.

Regular Ant case.

(A2) If X(n) is held fixed at a value z (φ(n) is then fixed at a value φ; φ has components

φij = (zij)
−βP

k∈N(i) (zik)−β
) then, for every l ≥ 0, and for every (i, j) ∈ L, we have

lim
r→∞

l+r∑
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}∆ij(ψij(m))/F(m− 1)]

r
= ζi(z)φijDij(z) a.s., (10)

lim
r→∞

l+r∑
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}/F(m− 1)]

r
= ζi(z)φij a.s. (11)

The quantities T (n), Ri(n),∆ij(n), as well as the sequence {F(n)} that appear in the equations

above are defined in a similar way as for the case when the delay estimate vector X is time-varying.

(A3) We assume that the quantities ζi(z)φijDij(z) and ζi(z)φij are continuous functions of z.

Uniform Ant case.

(A2′) If X(n) is held fixed at a value z then, for every l ≥ 0, and for every (i, j) ∈ L, we have

lim
r→∞

l+r∑
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}∆ij(ψij(m))/F(m− 1)]

r
=

ζUi (z)DU
ij(z)

|N(i)|
a.s., (12)

lim
r→∞

l+r∑
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}/F(m− 1)]

r
=

ζUi (z)
|N(i)|

a.s.. (13)

(A3′) We assume that the quantities ζUi (z)DU
ij(z) and ζUi (z) are continuous functions of z.

Under the above assumptions, in Section 8.1 it is shown that the process {zε(t), t ≥ 0} converges

weakly to a (deterministic) process {z(t), t ≥ 0} as ε ↓ 0. For the regular ARA case, z(t), whose

components are zij(t), (i, j) ∈ L, is a solution of the ODE system

dzij(t)
dt

=
ζi(z(t))(zij(t))

−β
(
Dij(z(t))− zij(t)

)
∑

k∈N(i) (zik(t))
−β , ∀(i, j) ∈ L, t > 0, (14)

with initial conditions given by zij(0) = xij , ∀(i, j) ∈ L. We denote the right hand side of ODE

(14) by the function Fij ; Fij(z(t)) =
ζi(z(t))(zij(t))

−β
(
Dij(z(t))−zij(t)

)
P
k∈N(i) (zik(t))−β

.
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For the uniform ant case, z(t), with components zij(t), (i, j) ∈ L, is a solution of the ODE

system

dzij(t)
dt

=
ζUi (z(t))

(
DU
ij(z(t))− zij(t)

)
|N(i)|

, ∀(i, j) ∈ L, t > 0, (15)

with initial conditions given by zij(0) = xij , ∀(i, j) ∈ L.

We now briefly discuss the assumptions. A sufficient condition under which (A1) holds is

sup
n≥1

E
[(

∆ε
ij(n)

)γ+1]
<∞, for some γ > 0. That is, some moment of the delay higher than the first

moment is finite, which we assume. Assumptions (A2) and (A3) can be expected to hold, because

they are forms of the strong law of large numbers (they are somewhat weaker because the terms

involve conditional expectations). Similar remarks apply for Assumptions (A2′) and (A3′).

The dynamic behavior of the routing algorithm can be studied via the ODE approximation.

Numerical solution of the ODE, starting from given initial conditions, requires computation of the

means Dij(z) and the fractions ζi(z) (respectively, DU
ij(z) and ζUi (z) for the uniform ants case), for

given z. These computations depend upon the particular network under consideration. In the next

subsection, we discuss how to compute these quantities under our assumptions on the statistics of

the packet arrival processes and service times of the ant and data streams.

4.2 Computations related to the ODE approximation

We assume that, in every queue Qij the successive service times of both ant (FA) and data packets

are i.i.d. exponentially distributed with the same mean 1
Cij

7. Furthermore, the service times at

each queue are also independendent of the service times at all other queues, and also independent

of the arrival processes at the nodes. (We had assumed earlier that the arrival processes to the

network are all Poisson.) These assumptions are the usual assumptions made for open Jackson

networks, and enable us to remain within the realm of solvable models; see, for example, Bertsekas

and Gallager [5] and Mitrani [20].

Regular Ant case. In this case, because ant and data packets are being routed in an identical

fashion, we have a single class open Jackson network. Given z, we can compute the routing

probabilities φij , (i, j) ∈ L. The routing probabilities combined with a knowledge of the rates of

the incoming streams (ant, data) into the network, enable us to determine the total arrival rate
7This amounts to assuming that the average length of a packet (ant or data) is one unit. This is not a restriction,

and we can consider the general case by simply multiplying by the average length. However, both ant and data

packets must have the same average length.
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Aij(z) into each queue Qij . This can be done by simply solving the flow balance equations in the

network. For each (i, j) ∈ L, we assume that Aij(z) < Cij , the arrival rate is smaller than the

service rate. Then, under our assumptions, there is a unique joint stationary distribution of the

random variables denoting the total number of packets in the queues Qij , (i, j) ∈ L. Moreover, this

stationary distribution is of a product form. Also, we can compute various quantities of interest to

us, like average stationary delays in the queues [5], [20]. Let wij(z) denote the average stationary

delay (sojourn time) in queue Qij , and let Jj(z) denote the average stationary delay (expected

‘cost-to-go’) from node j to the destination D, both experienced by an ant packet. wij(z) is given

by the formula, wij(z) = 1
Cij−Aij(z) . The quantities Ji(z), i ∈ N , satisfy the following equations

Ji(z) =
∑
j∈N(i)

φij

(
wij(z) + Jj(z)

)
, ∀i ∈ N , i 6= D,

JD(z) = 0. (16)

Once these equations are solved for Ji(z), i ∈ N , we can compute the quantities Dij(z), (i, j) ∈ L,

using the relations

Dij(z) = wij(z) + Jj(z). (17)

Because ants are generated as a Poisson process with rates λai at each node i, and because of

Assumption (M2), the fraction ζi(z) = λaiP
j∈N λaj

(see Section 8.2 for a detailed argument).

Uniform Ant case. In this case, the FA packets and the data packets are routed differently.

We thus have an open Jackson network with two classes of traffic, the first class consisting of the

ant traffic and the second class of data traffic. Separate flow balance equations are set up for the

two classes of traffic. These flow balance equations enable us to solve for the arrival rates Aaij(z)

and Adij(z) of ant and data packets into each queue Qij . The total arrival rate Aij(z) into Qij is

simply given by the sum Aaij(z)+Adij(z). The average stationary delay wUij(z) in Qij is then given by

wUij(z) = 1
Cij−Aij(z) . The rest of the computations which lead to the determination of the quantities

DU
ij(z), (i, j) ∈ L, can be done in a similar manner (with modifications that are straightforward)

as for the regular ants case. Again, because ant packets are generated as a Poisson process at all

nodes, and because of Assumption (M2), the fraction ζUi (z) = λaiP
j∈N λaj

.

With the knowledge of the quantities Dij(z), (i, j) ∈ L, and ζi(z), i ∈ N (respectively, DU
ij(z)

and ζUi (z) for the uniform ant case), we can numerically solve ODE (14) (respectively, (15) for the

uniform ant case), starting from an initial condition: zij(0), (i, j) ∈ L.
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4.3 Equilibrium Behavior of the Routing Algorithm

We now study the equilibrium behavior of the routing algorithm. We denote the equilibrium values

of the various quantities by attaching a ∗ to the superscript.

Regular Ant case. Consider the equilibrium points z∗ of the ODE system (14). Because the

ζi(z∗) are all positive, the points z∗ with components z∗ij satisfy the equations

(z∗ij)
−β∑

k∈N(i) (z∗ik)
−β .
(
Dij(z∗)− z∗ij

)
= 0, ∀(i, j) ∈ L. (18)

The interpolated delay estimate vector zε(t) approaches the set of equilibrium points z∗ asymp-

totically as ε → 0. More precisely, if E denotes the set of equilibrium points and Nδ(E) denotes

a small enough, δ-neighborhood of E, then asymptotically (as t → ∞), the fraction of time zε(t)

spends in Nδ(E) goes to one in probability, as ε→ 0 (see Kushner, Yin [18]). The vector of routing

probabilities φε(n), being a continuous function of the delay estimate, asymptotically approaches

the set of points φ∗ with components φ∗ij =
(z∗ij)

−βP
k∈N(i) (z∗ik)−β

, ∀(i, j) ∈ L (the meaning of the term

‘asymptotically approaches’ is the same as described above for the delay estimate vector). In the

discussion for the rest of this section, we shall refer to the quantity z∗ij as an equilibrium delay

estimate, and φ∗ij as an equilibrium routing probability, it being understood that the delay esti-

mate zεij(t) and the routing probability φεij(n) are asymptotically very close to these quantities with

probability close to one, when ε is chosen small enough.

Under our assumption that the total arrival rate into every queue is smaller than the packet

service rate, the equilibrium delay estimates are finite, and so the equilibrium routing probabilities

must be all positive. Consequently, the above equations (18) reduce to: Dij(z∗) = z∗ij ,∀(i, j) ∈ L.

Now, denoting the functional dependence of the mean stationary delays on the routing probabilities

also by Dij(φ) (a slight abuse of notation), and noting that φ∗ij =
(z∗ij)

−βP
k∈N(i) (z∗ik)−β

, ∀(i, j) ∈ L, we find

that the equilibrium routing probabilities must satisfy the following fixed-point system of equations

φ∗ij =
(Dij(φ∗))

−β∑
k∈N(i) (Dij(φ∗))

−β , ∀(i, j) ∈ L. (19)

We now check that, for a vector φ∗, there is a unique vector with components Dij(φ∗), (i, j) ∈ L.

To that end, we first notice that, for every (i, j) ∈ L,

Dij(φ∗) = wij(φ∗) + Jj(φ∗), (20)

where Jj(φ∗) is the expected delay (expected ‘cost-to-go’) from node j to destination D experienced

by an FA packet when the routing probability vector is φ∗; JD(φ∗) = 0. wij(φ∗) is the expected
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delay along link (i, j) experienced by an FA packet when the routing probability vector is φ∗; we

assume for a given φ∗, wij(φ∗) is unique 8. The quantities Ji(φ∗), i ∈ N , satisfy the following

equations

Ji(φ∗) =
∑
j∈N(i)

φ∗ij

(
wij(φ∗) + Jj(φ∗)

)
, ∀i ∈ N , i 6= D,

JD(φ∗) = 0. (21)

Because our equilibrium probabilities φ∗ij are all positive, there exists a path from every node

i to the destination D consisting of a sequence of links (i, k1), . . ., (kn, D) for which φ∗ik1 > 0, . . .,

φ∗knD > 0. Then, the above set of equations (21) have a unique solution (vector) J(φ∗), which has

components Ji(φ∗), i ∈ N (see Bertsekas and Tsitsiklis [6]). Taking note of this and relation (20),

we see that for every vector φ∗, there is a unique vector of delays Dij(φ∗), (i, j) ∈ L.

Also, for any (i, j) ∈ L, Dij(φ∗) is a continuous function of the probabilities. (Furthermore,

being at least equal to the average service time experienced by an FA packet in the queue Qij , it is

lower bounded by a positive quantity.) Then, by an application of Brouwer’s fixed-point theorem,

there exists a vector of equilibrium routing probabilities φ∗ satisfying the fixed-point system (19)

(the right hand side of the fixed-point system maps a compact, convex set — a Cartesian product

of probability simplices — to itself).

Uniform Ant case. For the uniform ant case, at equilibrium, the components z∗ij satisfy the

following equations (
DU
ij(z

∗)− z∗ij
)

|N(i)|
= 0, ∀(i, j) ∈ L. (22)

We can show in a manner similar to the regular ant case, that the equilibrium routing probabilities

must be all positive and satisfy the fixed-point system of equations

φ∗ij =
(DU

ij(φ
∗))−β∑

k∈N(i) (DU
ij(φ∗))

−β , ∀(i, j) ∈ L. (23)

Also, we can show that, for a vector of equilibrium routing probabilities φ∗ there is a unique

vector with components DU
ij(φ

∗), (i, j) ∈ L. Also there exists a solution to the set of fixed-point

equations (23), by an application of Brouwer’s fixed-point theorem.
8We have a similar abuse of notation for wij and Jj as we had for Dij . In the previous Section 4.2, we had

denoted by wij(z) and Jj(z) the average stationary delay in queue Qij , and the average stationary delay (expected

‘cost-to-go’) from node j to destination D, both experienced by an FA packet, with delay estimate vector considered

fixed at z.
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5 Example: The N Parallel Links Case

In this section we consider the special case involving a simple routing scenario where arriving

traffic at a single source node S has to be routed to the single destination D. There are N available

parallel links between the source and the destination through which traffic can be routed. The

network and its equivalent queuing theoretic model are shown in Figures 3 and 4 respectively. The

queues represent the output buffers at the source and are associated with the N outgoing links.

We have more detailed results for this example that explore properties of the routing algorithm.

In particular, we study the dependence of the equilibrium routing probabilities on capacities of the

N links and the effect of parameter β on the equilibrium routing behavior. In this special case,

packet service times are allowed to be generally distributed. In Section 5.1 we discuss in detail the

regular ARA case, and in Section 5.2 we focus on the uniform ARA case.

Ant  Stream

Data  Stream

Source  S Destination D

Capacity C

Capacity C N

1

.
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.

Figure 3: The network with N parallel links
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Figure 4: N parallel links: The queueing theoretic model
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5.1 The Regular Ant case

An ant and a data stream arrive at S as Poisson processes with rates λaS > 0 and λdS > 0. At node

S, every packet of the combined stream is routed according to the current routing probabilities

towards queues Q1, . . ., QN . Samples of delays in the N queues are collected by ant (FA) packets

as they traverse through the queues along with data packets. The packet lengths of the combined

stream constitute an i.i.d. sequence, which is also statistically independent of the arrival processes.

The capacity of link i is Ci bits/sec (i = 1, . . . , N). We assume that the lengths of an ant and a data

packet are generally distributed with means La and Ld bits, respectively. If we denote the service

times of an ant and a data packet in Qi by the generic random variables Sai and Sdi , then Sai and

Sdi are generally distributed (according to some c.d.f.’s, say Gai and Gdi ) with means E[Sai ] = La
Ci

and E[Sdi ] = Ld
Ci

, respectively.

The delay estimation and routing probability update algorithms are special cases of the general

update algorithms (7) and (8), and are hence not written down again here. The delay estimate vec-

tor X(n) has components X1(n), . . . , XN (n) (corresponding to the N links/queues), and similarly

the routing probability vector φ(n) has components φ1(n), . . . , φN (n).

5.1.1 The ODE approximation

The ODE approximation result (14) specialized to the N parallel links case reads as follows

dz1(t)
dt

=
(z1(t))−β

(
D1(z1(t), . . . , zN (t))− z1(t)

)
∑N

k=1 (zk(t))
−β ,

...
...

dzN (t)
dt

=
(zN (t))−β

(
DN (z1(t), . . . , zN (t))− zN (t)

)
∑N

k=1 (zk(t))
−β , (24)

with the initial conditions z1(0) = X1(0), . . ., zN (0) = XN (0) 9. Notice that clearly, ζS(z(t)) = 1,

and so this term is not explicitly mentioned in the ODE above. As usual, Di(z1, . . . , zN ), i =

1, . . . , N , are the mean delays (sojourn times) in the queues under stationarity as experienced by

ant packets, with the delay estimates considered fixed at z1, . . . , zN .

In order to numerically solve the ODE, we need to compute the quantities Di(z1, . . . , zN ) for our

queuing system. With the delay estimates considered fixed at z1, . . . , zN , the routing probabilities
9Instead of using the notation zjD(t), DjD(z(t)), we employ the simpler notation zj(t), Dj(z(t)).
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are given by φi = (zi)
−βPN

k=1 (zk)−β
, i = 1, . . . , N . We now discuss how to compute the Di(z1, . . . , zN )’s

given our assumptions on the statistics of the packet arrival processes and the packet lengths.

Every arrival at S from either of the Poisson streams (ant or data) is routed independent of

other arrivals with probability φi towards queue Qi. Thus the incoming arrival process in Qi is a

superposition of two independent Poisson processes with rates λaSφi and λdSφi. Consequently, every

incoming packet into Qi is, with probability λaS
λaS+λdS

an ant packet, and with probability λdS
λaS+λdS

a data packet. Also, under our assumptions, the queues evolve as independent M/G/1 queues.

The cumulative incoming stream into Qi is Poisson with rate (λaS + λdS)φi, and every incoming

packet’s service time is distributed according to the c.d.f. Gai w.p. λaS
λaS+λdS

and according to the

c.d.f. Gdi w.p. λdS
λaS+λdS

. We assume that the input arrival rate is smaller than the service rate:

(λaS + λdS)φiE[Si] < 1, i = 1, . . . , N (the queue stability condition). E[Si], the mean packet service

time in Qi, is given by E[Si] = λaSE[Sai ]+λdSE[Sdi ]

λaS+λdS
. We further note that the average sojourn time

experienced by an ant arrival to Qi is the same as the average sojourn time of packets in Qi by the

PASTA (Poisson Arrival See Time Averages) property. Thus, using the Pollaczek-Khinchin formula

for the average sojourn time, we obtain the following expression for Di(z1, . . . , zN ) (i = 1, . . . , N)

Di(z1, . . . , zN ) = E[Si] +
(λaS + λdS)φiE[S2

i ]

2
(

1− (λaS + λdS)φiE[Si]
) , (25)

where E[Si] and E[S2
i ] are given by E[Si] = λaSE[Sai ]+λdSE[Sdi ]

λaS+λdS
, E[S2

i ] = λaSE[(Sai )2]+λdSE[(Sdi )
2
]

λaS+λdS
, and

φi = (zi)
−βPN

k=1 (zk)−β
.

Once the expressions for Di(z1, . . . , zN ) are available, we can numerically solve the ODE system

(24), starting with initial conditions z1(0), . . ., zN (0). We observe in our simulations that if we

start the system with initial conditions such that the input arrival rate is smaller than the service

rate for each queue, this condition is satisfied thereafter during the evolution of the system.

5.1.2 Equilibrium Behavior of the Routing Algorithm

For our present case, the fixed-point system of equations (19) reduce to

φ∗i =
(Di(φ∗i ))

−β∑N
k=1 (Dk(φ∗k))

−β , i = 1, . . . , N. (26)

The equilibrium routing probabilities are positive and are given by the solutions to the above

equations (26). The equilibrium routing probabilities must also satisfy the conditions (λaS +
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λdS)φ∗iE[Si] < 1, i = 1, . . . , N . We now show that the equations (26) form the necessary and

sufficient optimality conditions for an optimization problem involving the minimization of a con-

vex objective function of (φ1, . . . , φN ) subject to the above mentioned constraints. A consequence

of this fact is that, if there exists a solution to equations (26) that also satisfies the mentioned

constraints, then such a solution is unique.

Consider the optimization problem

Minimize F (φ1, . . . , φN ) =
∑N

i=1

∫ φi
0 x[Di(x)]βdx,

subject to φ1 + · · ·+ φN = 1,

0 < φ1 < a1,
...

0 < φN < aN ,

where ai = 1
(λaS+λdS)E[Si]

, i = 1, . . . , N .

The cost function (a function of the delays) is a measure of congestion in the N links. The

feasible set C ⊂ RN of the above optimization problem is convex. It is possible that the set C is

empty (for a given set of values of λaS , λdS , and E[Sai ], E[Sdi ],i = 1, . . . , N), which means that there

are no feasible solutions to the optimization problem in such a case. We assume in what follows

that C is nonempty.

We assume that functionsDi(x) are positive, differentiable and monotonically increasing on their

domains of definition. This is true in most cases of interest, because when the routing probability

for an outgoing link increases, the amount of traffic flow into that link also increases, resulting in

an increase of the delay. We then have the following easy proposition

Proposition 1. Given the above assumption on delay functions Di(x), i = 1, . . . , N , a probability

vector φ∗ is a local minimum of F over C if and only if φ∗ satisfies the fixed-point system (26). φ∗

is then also the unique global minimum of F over C.

Proof: The Hessian of F is a diagonal matrix given by

∇2F (φ1, . . . , φN ) = diag
(

[Di(φi)]
β−1{Di(φi) + βφiD

′
i(φi)}

)
, (27)

where D′i(.) denotes the derivative of Di(.). Under above assumptions on Di(x)’s, ∇2F (φ1, . . . , φN )

is positive definite over C, and so F is a strictly convex function on C. Consequently, any local
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minimum of F is also a global minimum of F over C; furthermore, there is atmost one such global

minimum [4].

If φ∗ = (φ∗1, . . . , φ
∗
N ) is a local minimum of F over C, we must have (Proposition 2.1.2 of

Bertsekas [4])
N∑
i=1

∂F

∂φi
(φ∗)(φi − φ∗i ) ≥ 0, ∀φ ∈ C. (28)

Let us fix a pair of indices i, j, i 6= j. Then choose φi = φ∗i + δ and φj = φ∗j − δ, and let

φk = φ∗k, ∀k 6= i, j. Now, choosing δ > 0 small enough that the vector φ = (φ1, . . . , φN ) is also in

C, the above condition becomes( ∂F
∂φi

(φ∗)− ∂F

∂φj
(φ∗)

)
δ ≥ 0,

or φ∗i [Di(φ∗i )]
β ≥ φ∗j [Dj(φ∗j )]

β.

By a similar argument, we can show that φ∗j [Dj(φ∗j )]
β ≥ φ∗i [Di(φ∗i )]

β. Thus, the necessary conditions

for φ∗ to be a local minimum are

φ∗1[D1(φ∗1)]β = . . . = φ∗N [DN (φ∗N )]β.

Combining this with the normalization condition, φ∗1+· · ·+φ∗N = 1, gives us the system of equations

(26).

The necessary conditions above can also be written in the form

∂F

∂φ1
(φ∗) = . . . =

∂F

∂φN
(φ∗).

We check that these conditions are also sufficient for φ∗ to be a local minimum. Suppose φ∗ ∈ C

satisfies the above conditions. Then for every other vector φ ∈ C, we have
∑N

i=1(φi − φ∗i ) = 0. So,

the quantity
N∑
i=1

∂F

∂φi
(φ∗)(φi − φ∗i ) =

∂F

∂φ1
(φ∗)

N∑
i=1

(φi − φ∗i ) = 0.

Then, because F is convex over C, by Proposition 2.1.2 of Bertsekas [4], φ∗ is a local minimum.

�

In our case, it is easy to check that functions Di(x), are positive, differentiable, and monoton-

ically increasing. Thus, if there is an equilibrium routing probability vector satisfying fixed-point

system (26), then such a vector is unique.

We have carried out a discrete event simulation of the queuing system. We present here a result

with the number of parallel linksN = 3. The step size ε = 0.002 and β = 1. The ant and data arrival
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processes are Poisson with rates λaS = 1 and λdS = 1. For ant packets, service times in the queues are

exponential with means E[Sa1 ] = 1/3.0, E[Sa2 ] = 1/4.0 and E[Sa3 ] = 1/5.0. For data packets also,

queue service times are exponential with the same means. Initial values of the delay estimates are

set at X1(0) = 0.8, X2(0) = 2.8, and X3(0) = 5.6. With the initial delay estimates set as above, the

initial routing probabilities are φ1(0) = 0.7,φ2(0) = 0.2, and φ3(0) = 0.1. In general, we choose our

initial delay estimates in a way that we satisfy the inequalities: (λaS +λdS)φiE[Si] < 1, i = 1, . . . , N .

Let µi = 1
E[Si]

, be the service rate of packets in queue Qi, i = 1, 2, 3. Delays Di(φi), using

relation (25), are then given by

Di(φi) =
1

µi − λφi
, (29)

where λ = λaS + λdS . Consequently, the fixed point equations (26) reduce to

φ∗i =
µi − λφ∗i∑3

j=1

(
µj − λφ∗j

) , i = 1, 2, 3,

which on simplification gives us

φ∗i =
µi∑3
j=1 µj

, i = 1, 2, 3.

In this special case the equilibrium routing probabilities are directly proportional to the service rates

in the queues. Figures 6a, 6b, and 6c provide plots of the interpolated delay estimates zεi (t), i =

1, 2, 3, in the three queues versus the components zi(t), i = 1, 2, 3, of the ODE approximation

(obtained by numerically solving (24)). The components of the ODE approximation track the

delay estimates from the simulation well, for the mentioned value of ε. Figures 7a, 7b, and 7c

provide plots of the routing probabilities φε1(n), φε2(n), and φε3(n), respectively. The equilibrium

routing probabilities are φ∗1 = 3/12, φ∗2 = 4/12, φ∗3 = 5/12 (note that µ1 = 3, µ2 = 4, µ3 = 5).

5.1.3 Effect of the parameter β

We observed in Section 5.1.2 that, for a given β, the equilibrium routing probabilities satisfy

the fixed point system (26). Lets denote the equilibrium routing probability vector by φ∗(β) =

(φ∗1(β), . . . , φ∗N (β)) (a function of β). The delay function for the i-th queue is written as Di(φi) =

D(φi, Ci), emphasizing its dependence on φi and on capacity Ci. We keep λaS , λ
d
S fixed throughout

the discussion in this section. We assume that the delay function has the following properties: it

is positive, is a strictly increasing function of φi when Ci is held fixed, and a strictly decreasing

function of Ci when φi is held fixed. Also, let β be a nonnegative real number (instead of being a

positive integer).
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Suppose C1 > C2 = · · · = CN . Then using the relations

φ∗1(β)
[
D(φ∗1(β), C1)

]β = · · · = φ∗N (β)
[
D(φ∗N (β), CN )

]β
,

it can be checked that 10

φ∗1(β) > φ∗2(β) = · · · = φ∗N (β),

and consequently that

D(φ∗1(β), C1) < D(φ∗2(β), C2) = · · · = D(φ∗N (β), CN ). (30)

We show that, as β increases, the routing probability on the highest capacity path also increases.

To arrive at a contradiction, lets suppose, for some small positive δβ that φ∗1(β+ δβ) < φ∗1(β); then

we also have φ∗2(β + δβ) > φ∗2(β). This implies that

φ∗1(β + δβ)
φ∗2(β + δβ)

<
φ∗1(β)
φ∗2(β)

. (31)

Using the relationships with the delays, we then have[D(φ∗2(β + δβ), C2)
D(φ∗1(β + δβ), C1)

]β+δβ

<
[D(φ∗2(β), C2)
D(φ∗1(β), C1)

]β
,

or,
[D(φ∗2(β + δβ), C2)

D(φ∗2(β), C2)
.

D(φ∗1(β), C1)
D(φ∗1(β + δβ), C1)

]β+δβ

<
[D(φ∗1(β), C1)
D(φ∗2(β), C2)

]δβ
.

Using the hypothesis and the monotonicity property of the delay function with respect to the

routing probability, it is easy to see that the left hand side of the above inequality is greater than

one, which implies that

D(φ∗1(β), C1) > D(φ∗2(β), C2),

contradicting the relation (30). Thus, we must have φ∗1(β + δβ) > φ∗1(β) and φ∗2(β + δβ) < φ∗2(β).

We now consider an example studying what happens when β ↑ ∞. The service times of ant

and data packets are exponentially distributed and the means in a particular queue are the same

(E[Sai ] = E[Sdi ]). Then E[Si] = E[Sai ]; we let µi = 1
E[Si]

. The delays are then given by Di(φ∗i ) =
1

µi−λφ∗i
. Let the number of parallel links N = 3. The traffic parameters are λaS = 1, λdS = 1, µ1 =

4, µ2 = 3, µ3 = 3 11. The fixed point equations for the equilibrium routing probabilities then become
10More generally, if C1 > C2 > · · · > CN , it can be checked that φ∗1(β) > φ∗2(β) > · · · > φ∗N (β), so that the paths

“are ranked” according to the capacities. Then, D(φ∗1(β), C1) < D(φ∗2(β), C2) < · · · < D(φ∗N (β), CN ).
11The service rates are proportional to the link capacities. We work with them instead of the capacities for

convenience.
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(with φ∗2 = φ∗3)

φ∗1 =

(
4− 2φ∗1

)β(
4− 2φ∗1

)β + 2
(
3− 2φ∗2

)β ,
φ∗2 =

1− φ∗1
2

.

We solve the above fixed point system in Mathematica for increasing values of β. The equilibrium

routing probabilities are close to φ∗1 = 2
3 , φ
∗
2 = 1

6 , φ
∗
3 = 1

6 for high values of β. It is not possible that

φ∗1 ≥ 2
3 , because then D1(φ∗1) = 1

4−2φ∗1
≥ D2(φ∗2) = 1

3−2φ∗2
, which is impossible by (30). Thus it may

be surmised in this case that when β ↑ ∞, φ∗1 increases to 2/3 but never attains that value.

If we now increase the service rate in queue Q1 to µ1 = 6, the equilibrium routing probabilities

are close to φ∗1 = 1, φ∗2 = 0, φ∗3 = 0 for high values of β; then all the incoming traffic is routed

through Q1 in steady state. It may be noted in this case, that for no φ∗1 ∈ [0, 1], is it possible that

D1(φ∗1) ≥ D2(φ∗2).

Thus β acts like a tuning parameter that can be used to modulate the fraction of flow on the

outgoing links under equilibrium. Higher values of β make the flows more concentrated on the

outgoing links with more capacity — in the limiting case of β ↑ ∞, as the example above shows

we can even have all the incoming flow routed to the highest capacity path. Lower values of β

make the flows more evenly distributed on the outgoing links — in the limiting case of β = 0, the

incoming flow is perfectly split: φ∗i = 1
N , i = 1, 2, . . . , N .

5.2 The Uniform ARA Case

We now turn our attention to the case when ant packets are routed uniformly. The discussion

is brief because the same methods, as for the regular ant case, can be used to analyze this case.

Specializing to the N parallel links case the ODE approximation result (15), we have the following

ODE system

dz1(t)
dt

=
DU

1

(
z1(t), . . . , zN (t)

)
− z1(t)

N
,

...
...

dzN (t)
dt

=
DU
N

(
z1(t), . . . , zN (t)

)
− zN (t)

N
, (32)

with appropriate initial conditions. As for the regular ants case, ζUS (t) = 1 12.
12Also, instead of using the notation zjD(t), DU

jD(z(t)), j = 1, . . . , N , we employ the simpler notation

zj(t), D
U
j (z(t)), j = 1, . . . , N .
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The ODE above (32) can be numerically solved once the quantities DU
i (z1, . . . , zN ), i = 1, . . . , N ,

are available for a fixed z = (z1, . . . , zN ). For our queuing system, with identical assumptions on

the statistics of the arrival processes and the packet lengths of the ant and data streams as for the

regular ant case, we can compute the quantities DU
i (z1, . . . , zN ) in an identical manner. The details

are omitted. For each i = 1, . . . , N , DU
i (z1, . . . , zN ) is given by the Pollaczek-Khinchin formula

DU
i (z1, . . . , zN ) = E[Si] +

(
λaS
N + λdSφi

)
E[S2

i ]

2
(

1− (λ
a
S
N + λdSφi)E[Si]

) ,
where E[Si] =

λaS
N
E[Sai ]+λdSφiE[Sdi ]

λa
S
N

+λdSφi
, E[S2

i ] =
λaS
N
E[(Sai )2]+λdSφiE[(Sdi )

2
]

λa
S
N

+λdSφi
, and φi = (zi)

−βPN
j=1 (zj)

−β . We again

require that the input arrival rate is smaller than the service rate for each queue: (λ
a
S
N +λdSφi)E[Si] <

1, i = 1, . . . , N .

The equilibrium routing probabilities must satisfy the fixed-point system of equations

φ∗i =
(DU

i (φ∗i ))
−β∑N

k=1 (DU
k (φ∗k))

−β , (33)

and must be all positive. It can be shown, using methods similar to those in Section 5.1.2 that if

there exists a solution to the equations (33) that also satisfies the conditions (λ
a
S
N + λdSφi)E[Si] <

1, i = 1, . . . , N , then such a solution is unique.

We also make the following observation comparing the equilibrium routing probabilities for the

regular and the uniform ARA case for the N parallel links network. We consider the two cases

with β = 1, and with identical statistics on the arrival processes and service times of the packet

streams. Service times in queue Qi of ant and data packets are exponential, with identical means

E[Sai ] = E[Sdi ]. The service rate in Qi is then µi = 1
E[Si]

= 1
E[Sai ] . For the regular ARA case, the

equilibrium routing probabilities are given in Section 5.1.2 (they are directly proportional to the

queue service rates). For the uniform ARA case, φ∗i , i = 1, . . . , N , satisfy the equations

φ∗i =
µi −

(λaS
N + λdSφ

∗
i

)∑N
j=1

[
µj −

(λaS
N + λdSφ

∗
j

] , i = 1, . . . , N. (34)

These equations can be solved for the equilibrium routing probabilities

φ∗i =
µi −

λaS
N∑N

j=1

[
µj −

λaS
N

] , i = 1, . . . , N. (35)

For purposes of comparison, without much loss of generality, lets assume that µ1 > µ2 > · · · >

µN . We denote the vectors of equilibrium routing probabilities in the uniform and in the regular
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case by (φ∗)U and (φ∗)R, respectively. We can then check, by simply applying the definition, that

(φ∗)R is majorised by (φ∗)U , denoted by (φ∗)R ≺ (φ∗)U (Marshall and Olkin [19] is a reference on

majorization theory). That is, the routing probabilities in the regular ARA case are “less spread

out”. This can be understood by observing that, when ant packets are routed uniformly, their

contribution to the average delays in the N queues are the same, and hence more uniform, than

when they are routed as in the regular case. Thus, delays in queues with higher service rates are

lower for the uniform than for the regular ARA case. The result can then be expected, because the

routing probabilities are inversely proportional to the delays. Results in a similar spirit might be

expected to hold when β > 1, but we haven’t been able to show this.

Stability of the ODE system. We now show for the ODE system (32) that for almost all

initial conditions, z(t) converges to the set of equilibria of the ODE, which are solutions of the

system of equations zi = DU
i (z1, . . . , zN ), i = 1, . . . , N . We consider the special case when the

lengths of an ant and a data packet are both exponentially distributed with the same mean. Then

E[Sai ] = E[Sdi ] for each i = 1, . . . , N , and we have the following expression for DU
i (z1, . . . , zN )

DU
i (z1, . . . , zN ) =

1
1

E[Sai ] −
(
λaS
N + λdS(zi)

−βPN
j=1 (zj)

−β

) , i = 1, . . . , N. (36)

Lets denote the right hand sides of the ODE system (32) by FUi (z1(t), . . . , zN (t)), i = 1, . . . , N .

A straightforward computation shows that, for j 6= i,

∂FUi (z)
∂zj

=
βλdS(zi)

β

NT 2P 2(zj)
β+1

,

where T = 1
E[Sai ] −

(
λaS
N + λdS(zi)

−βPN
j=1 (zj)

−β

)
and P = (zi)

β∑N
j=1 (zj)

−β (note that T > 0, because the

input rate is smaller than the service rate, for each i). Thus, for j 6= i,

∂FUi (z)
∂zj

≥ 0.

We thus have a cooperative ODE system. Such ODEs have been proposed and studied as models

describing the behavior of a set of interacting agents (in our case a set of interacting queues).

Hirsch, in a series of papers, extensively studied such ODEs 13. We shall make use of results in one

of the papers in the series [16].

We first note that, if the ODE starts in the convex open set C = {(z1, . . . , zN ) : z1 > 0, . . . , zN >

0}, it remains in that set for all time t > 0. We can check this by noting that, from (36),

DU
i (z1, . . . , zN ) ≥ E[Sai ] = ni (say).

13In Borkar [8] it is shown to arise in other application contexts involving ODE approximations.
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Then a trajectory z(t) = (z1(t), . . . , zN (t)) of the ODE system (32) must satisfy the following

relations

dz1(t)
dt

≥ n1 − z1(t)
N

,

...
...

dzN (t)
dt

≥ nN − zN (t)
N

,

and so all components shall remain away from zero, once the ODE starts in C.

Also, the trajectories of our ODE system remain bounded. To see this, we note from (36) that

DU
i (z1, . . . , zN ) ≤ 1

1
E[Sai ] −

(
λaS
N + λdS

) = mi (say).

Then a trajectory z(t) of the ODE system satisfies

dz1(t)
dt

≤ m1 − z1(t)
N

,

...
...

dzN (t)
dt

≤ mN − zN (t)
N

,

and so must be bounded.

Consider a general ODE system ẋ(t) = F (x(t)), with initial condition x(0) = x, evolving on an

open subset W ⊂ Rn. The flow {φt} associated with the ODE is said to be strongly monotone [16],

if for initial conditions x, y, with x < y, φt(x) < φt(y), for all t > 0. (For vectors p, q, p < q here

means that componentwise pi < qi, i = 1, . . . , n.)

Our vector field FU being cooperative and irreducible on the set C, by Theorem 1.5 of Hirsch

[16] the flow {φt} is strongly monotone. Also, because the trajectories of our ODE system remain

bounded, by Theorem 4.1 of [16], the forward trajectory starting from almost any initial condition

in C approaches the set of equilibria of the ODE system. Also, by Theorem 2.4 of Hirsch, the flow

cannot have an attracting closed orbit (same as a periodic solution, since our ODE is autonomous).

6 Example: An Acyclic Network

In this section, we consider the acyclic network of Figure 5. The numbers beside the links indicate

the link capacities (Cij units for link (i, j)). There are data packets coming in at nodes 1, 2 and
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Figure 5: An Acyclic Network

3, as Poisson processes with rates λd1, λd2, and λd3. Ant (FA) packets are coming in as a Poisson

process at node i with rate λai (i = 1, . . . , 7).

We carry out a discrete event simulation of the network and present results for the regular ARA

case. The arrival rates of the streams are as follows: λai = 2, i = 1, . . . , 7, and λd1 = 6, λd2 = 8,

and λd3 = 6. The parameter β = 1, and the step size ε = 0.002. The ODE is numerically solved

following the procedure described in Sections 4.1 and 4.2. Figures 8a, 8b, and 8c provide plots of

the interpolated delay estimates zε14(t), zε46(t), and zε68(t), and alongside plots of the corresponding

components of the ODE system. The ODE approximation again tracks the interpolated delay

estimates well. Figures 9a, 9b, and 9c provide plots of the routing probabilities φε14(n), φε24(n), and

φε46(n), respectively. We note that though we initially start with a routing probability φε14(0) < 0.5,

the routing probability φε14(n) converges to a value which is greater than 0.5. This is to be expected

of a routing algorithm; the (equilibrium) routing probability on outgoing links that lie on paths

with higher capacity links should be higher. In our case, this is a consequence of the fact that

the equilibrium outgoing routing probability on an outgoing link is proportional to a decreasing

function of the estimated delay to the destination along the link.

7 Concluding Remarks

Extensions. We can extend our results to the case when we have an acyclic network, with multiple

30



destinations for the incoming data traffic into the network. As usual, at every node, ant (FA)

packets would be sent out to explore delays in the paths towards each destination. The ant packets

can be routed using either the regular or the uniform ARA algorithm. Suppose that there are M

destinations overall. With assumptions (M1) and (M2) regarding the algorithm operation in force,

we can write down the stochastic iterative equations, describing the evolution of delay estimates

and the routing probabilities, in a form similar to equations (7) and (8). We will have a set of

equations corresponding to each of the M destinations. Let us consider first the case when the

queue Qij associated with (i, j), is shared by all ant and data packets that are bound for various

destinations. The scheduling discipline is FIFO. In this case it can be checked that, we would again

have an ODE approximation of the form (14) for the regular ARA case ((15) for the uniform ARA

case). There is a set of equations for each of the M destinations, and the equations considered

together constitute a system of coupled ODEs. In order to compute the stationary means of delays

— Dij(z), for a given z — related to the ODE approximation, we can employ the same procedure

as in Section 4.2, with appropriate modifications. In this regard we note that we have an open

Jackson network, with M classes for the regular ARA case, and with M + 1 classes for the uniform

ARA case (data packets are routed according to routing probabilities at the nodes and ant packets

are routed uniformly). Also, the equilibrium behavior of the routing algorithm can be described in

a similar way as in Section 4.3.

The second, more general case is a per-destination queuing arrangement, which can be more

appropriate in a routing context. In this case, for a link (i, j), M separate outgoing queues Qkij , k =

1, . . . ,M , are maintained, each corresponding to a particular destination. Qkij holds ant and data

packets that are bound for destination k. The transmission capacity of link (i, j) is then shared

between the queues; the manner in which the sharing takes place is known as the link-scheduling

discipline. In this case, the form of the update algorithms does not change, and we can arrive at an

ODE approximation for the system as described above for the first case. However, in this case, it

might not be always possible to compute analytically the stationary mean delays. Only for certain

symmetric link scheduling disciplines like Processor-Sharing, which are analytically tractable (that

is, have joint stationary product form distributions for the number of packets in the queues; see

[20]), can we compute the stationary mean delays.

We also point out that the ODE approximation results hold whenever assumptions (A1), (A2),

and (A3) ((A1), (A2′), and (A3′) for the uniform ARA case) hold. (A2) and (A3) are essentially law
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of large number-like conditions, which require that when the delay estimate vector X is considered

fixed at z, the queuing system converges to a stationary distribution. This might hold under more

general conditions on the statistics of arrival processes and packet lengths of the packet streams,

than we have considered. Under our assumptions though, we are explicitly able to compute the

quantities Dij(z) and ζi(z) using results from the theory of queuing networks, and hence solve

the ODE numerically. This then enables us to compare the theoretical ODE with the piecewise

constant interpolation of the delay estimates, obtained through a discrete event simulation. In our

framework, we can also consider a slightly more general dependence of outgoing routing probabilities

on the delay estimates: φij = g(Xij)P
k∈N(i) g(Xik) , where g is a continuous function, that is positive real-

valued, and nonincreasing. The analysis remains the same. An example of g is g(x) = e−βx, x ≥ 0,

where β is a positive integer.

Conclusions and Future Directions. In summary, in this paper we have studied the con-

vergence and the equilibrium behavior of an Ant Routing Algorithm for wireline packet-switched

networks. We have considered acyclic network models, where there are multiple sources of incoming

traffic whose packets are bound for specified destinations. We have considered stochastic models

for the arrival processes and packet lengths for the ant and incoming data streams. The link delays

are stochastic and time varying. We have shown that the evolution of the vector of delay estimates

can be tracked by an ODE when the step-size of the estimation scheme is small. We then study the

equilibrium routing behavior and properties of the equilibrium routing probabilities. We observe

that, at equilibrium, the routing probabilities are higher for outgoing links that lie on paths with

higher capacity links.

There are certain advantages of ARA algorithms, which are worth pointing out. ARA algorithms

do not require explicit knowledge of the incoming traffic rates into the network, or a knowledge

of the link capacities. Instead, ARA algorithms rely directly on online estimates of path delays

in the network, which are collected by the ant packets. This enables the algorithm to adapt to

changes in the incoming traffic rates, and/or changes in the network topology. On the other hand,

because there is a learning process to ascertain the delays (based on which the routing probabilities

are updated), the convergence of the algorithm can be slow. Further experimentation with the

step-size ε is necessary, in order to enable the algorithm to be fast enough that it can react and

adapt to changes.

In our work, we have considered models where are no cycles in the network. It remains to
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study convergence and equilibrium behavior of the algorithm when there are cycles. There are two

issues that arise. First, cycles in the network affect adversely the process of estimation of the path

delays by the ant packets. This is because the estimates can grow unbounded if there is a positive

probability of an ant packet being routed in a cycle. Second, it might happen that we converge to

an equilibrium routing solution which has loops. That is, for a given destination k, the equilibrium

routing probabilities might be such that, for a sequence of links (i1, i2), . . . , (in−1, in), (in, i1) that

forms a cycle, φki1i2 > 0, . . . , φkin−1in
> 0, φkini1 > 0. There is no reason to believe that the scheme

that we analyse in this paper can lead to a loop-free equilibrium solution. For the case when the

network has cycles, we might need to modify the scheme so that it can converge to a loop-free

routing solution which is always desirable.

8 Appendix

8.1 Proof of Convergence of the Ant Routing Algorithm

As discussed in Section 3, the evolution of the delay estimates and the routing probabilities is given

by the equations ((7) and (8))

Xε
ij(n) = Xε

ij(n− 1) + ε I{T ε(n)=i,Rεi (ξ
ε
i (n))=j}

(
∆ε
ij(ψ

ε
ij(n))−Xε

ij(n− 1)
)
,

∀(i, j) ∈ L, n ≥ 1,

φεij(n) =
(Xε

ij(n))−β∑
k∈N(i) (Xε

ik(n))−β
, ∀(i, j) ∈ L, n ≥ 1,

respectively, with the appropriate initial conditions.

We now consider the piecewise constant interpolation of {Xε
ij(n)}, which is the process {zεij(t), t ≥

0}, defined by equation (9), Section 4.1. We also consider the vector-valued piecewise constant pro-

cess {zε(t), t ≥ 0}. This process evolves on the path space D|L|[0,∞), consisting of right-continuous

R|L|-valued functions possessing left hand limits.

The stochastic iterations (7) (considered along with (8)) are an example of constant step-size

stochastic approximation algorithms. For the proof of the ODE approximation for the algorithm,

we follow the approach as given in the textbook of Kushner and Yin [18]. We provide the proof for

the regular ant case; the proof for the uniform ant case can be similarly done. The main theorem

is the following
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Theorem 1. Under assumptions (A1), (A2), and (A3), we have the following: there exists a

subsequence {ε(k)}, with ε(k) ↓ 0 as k → ∞, such that the process {zε(k)(t)} converges weakly (as

k →∞) to a solution {z(t)} of the ODE approximation (14).

Proof: A brief outline of the proof is as follows:

• We first show that the family of processes {zε(t)}, ε ∈ (0, 1), is tight. Then there exists a

subsequence ε(k) ↓ 0 as k → ∞, and a process {z(t)} such that {zε(k)(t)} converges weakly

to {z(t)}. The process {z(t)} has Lipschitz continuous paths.

• The limit process {z(t)} will be then shown to have the following property (z(t) has compo-

nents zij(t), (i, j) ∈ L). Let t, τ > 0 be arbitrary numbers, and let 0 ≤ s1, s2, . . . , sp ≤ t also

be a set of arbitrary numbers. Then, for a bounded continuous function h, we show that

E
[
h(z(s1), z(s2), . . . , z(sp))

(
zij(t+ τ)− zij(t)−

∫ t+τ

t
Fij(z(u))du

)]
= 0, (37)

for each (i, j) ∈ L. This fact then implies that {zij(t) − zij(0) −
∫ t

0 Fij(z(u))du, t ≥ 0}, is

a martingale with respect to the filtration generated by the process {z(t)}. This martingale

process, because it has Lipschitz continuous paths, can be shown to have zero quadratic

variation [18]. It is hence a constant. Because the martingale is zero at t = 0, it is identically

zero with probability one. We shall thus have the result.

The fact that (37) holds will be shown by showing that

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
zεij(t+ τ)− zεij(t)−

∫ t+τ

t
Fij(zε(u))du

)]
= 0, (38)

and using the fact that {zε(t)} converges weakly to {z(t)} (we are actually going through the

subsequence ε(k)).

We now embark on the proof. We first show the tightness of the family {zε(t)}, ε ∈ (0, 1), using

the uniform integrability assumption.

From equation (7) we can write

Xε
ij(n+ 1) =

(
1− ε I{T ε(n+1)=i,Rεi (ξ

ε
i (n+1))=j}

)
Xε
ij(n) + ε I{T ε(n+1)=i,Rεi (ξ

ε
i (n+1))=j}∆

ε
ij(ψ

ε
ij(n+ 1)),

Xε
ij(n+ 1) ≤ Xε

ij(n) + ε I{T ε(n+1)=i,Rεi (ξ
ε
i (n+1))=j}∆

ε
ij(ψ

ε
ij(n+ 1)).

Iterating we can see that for every positive integer m,

Xε
ij(n+m) ≤ Xε

ij(n) + ε
( n+m∑
k=n+1

I{T ε(k)=i,Rεi (ξ
ε
i (k))=j}∆

ε
ij(ψ

ε
ij(k))

)
.
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Consequently, for any L > 0, we have

E
[
|Xε

ij(n+m)−Xε
ij(n)|

]
≤ ε

n+m∑
k=n+1

E
[
∆ε
ij(ψ

ε
ij(k))

]
,

≤ ε
n+m∑
k=n+1

E
[
∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))≥L}

+ ∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))<L}

]
.

Thus, for any n, n+m ∈ {0, 1, 2, . . . , bTε c} (for some fixed 0 < T <∞), we have

E
[
|Xε

ij(n+m)−Xε
ij(n)|

]
≤ mε

(
L+ sup

k≥1
E
[
∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))≥L}

])
.

If we now let t = nε and τ = mε, and noting that zεij(t) = Xε
ij(b tεc), we have

sup
0≤t,t+τ≤T

E
[
|zεij(t+ τ)− zεij(t)|

]
≤ Lτ + τ sup

k≥1
E
[
∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))≥L}

]
.

The uniform integrability of the sequence {∆ε
ij(m)} allows us to choose L large enough that the

second term on the right hand side can be made as small as we like. Once L is so chosen, we can

choose τ small enough that the first term on the right can be made as small as we like. We then

have the following result. For any 0 < T <∞,

lim
τ↓0

lim
ε↓0

sup
0≤t,t+τ≤T

E
[
|zεij(t+ τ)− zεij(t)|

]
= 0.

Now, because

E
[
‖ zε(t+ τ)− zε(t) ‖

]
≤
∑

(i,j)∈L

E
[
|zεij(t+ τ)− zεij(t)|

]
,

we have

lim
τ↓0

lim
ε↓0

sup
0≤t,t+τ≤T

E
[
‖ zε(t+ τ)− zε(t) ‖

]
= 0.

The fact that this holds for every 0 ≤ T < ∞ is sufficient for the family {zε(t)}, ε ∈ (0, 1), to be

tight.
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We now show the validity of (38). We have the following expression for Xε
ij(n)

Xε
ij(n) = Xε

ij(0) + ε
n∑

m=1

(
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}∆

ε
ij(ψ

ε
ij(m))

−E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}∆

ε
ij(ψ

ε
ij(m))/F ε(m− 1)

])
+ε

n∑
m=1

(
E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}∆

ε
ij(ψ

ε
ij(m))/F ε(m− 1)

]
−ζi(Xε(m− 1))φεij(m− 1)Dij(Xε(m− 1))

)
+ ε

n∑
m=1

ζi(Xε(m− 1))φεij(m− 1)Dij(Xε(m− 1))

−ε
n∑

m=1

(
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}X

ε
ij(m− 1)

−E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}X

ε
ij(m− 1)/F ε(m− 1)

])
−ε

n∑
m=1

(
E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}X

ε
ij(m− 1)/F ε(m− 1)

]
−ζi(Xε(m− 1))φεij(m− 1)Xε

ij(m− 1)
)
− ε

n∑
m=1

ζi(Xε(m− 1))φεij(m− 1)Xε
ij(m− 1). (39)

We can then write, using the fact that zεij(t) = Xε
ij(b tεc) for all t ≥ 0,

zεij(t) = zεij(0) + ε

b t
ε
c∑

m=1

M ε
ij(m) + ε

b t
ε
c∑

m=1

N ε
ij(m) + ε

b t
ε
c∑

m=1

ζi(Xε(m− 1))φεij(m− 1)Dij(Xε(m− 1))

−ε
b t
ε
c∑

m=1

P εij(m)− ε
b t
ε
c∑

m=1

Qεij(m)− ε
b t
ε
c∑

m=1

ζi(Xε(m− 1))φεij(m− 1)Xε
ij(m− 1),

where M ε
ij(m), N ε

ij(m), P εij(m), and Qεij(m) refer to the corresponding quantities in the equation

(39) above.

We now introduce the quantities: Gε1(t) = ε

b t
ε
c∑

m=1

M ε
ij(m), Gε2(t) = ε

∑b t
ε
c

m=1N
ε
ij(m), Gε3(t) =

ε

b t
ε
c∑

m=1

P εij(m), and Gε4(t) = ε

b t
ε
c∑

m=1

Qεij(m). Now the term

ε

b t
ε
c∑

m=1

ζi(Xε(m− 1))φεij(m− 1)
(
Dij(Xε(m− 1))−Xε

ij(m− 1)
)

=
∫ t

0
Fij(zε(u))du,

when t is an integral multiple nε of ε, and is an approximation otherwise, the approximation error

vanishing when ε→ 0.

Hence, in order to show (38), from equation (39) and the developments above, we can see that
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all that we need to show is that

lim
ε→0

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
Gε1(t+ τ)−Gε1(t)

+Gε2(t+ τ)−Gε2(t)−
[
Gε3(t+ τ)−Gε3(t) +Gε4(t+ τ)−Gε4(t)

])]
= 0.

We show that each of the summands in the expectation above tend to zero as ε → 0, i.e., for

i = 1, 2, 3, 4,

lim
ε→0

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
Gεi(t+ τ)−Gεi(t)

)]
= 0.

We start by showing that lim
ε→0

E
[
h(zε(s1), . . . , zε(sp))

(
Gε1(t+ τ)−Gε1(t)

)]
= 0. Now,

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
Gε1(t+ τ)−Gε1(t)

)]
=

E
[
h(zε(s1), zε(s2), . . . , zε(sp))

(
ε

b t+τ
ε
c∑

m=b t
ε
c+1

M ε
ij(m)

)]
.

It can be checked that the sequence {M ε
ij(n)} is a martingale difference sequence with respect

to {F ε(n)} (that is, the sequence T εij(n) =
∑n

m=1M
ε
ij(m) is a martingale with respect to the same

filtration). It then follows that

E[h(zε(s1), zε(s2), . . . , zε(sp))
(
Gε1(t+ τ)−Gε1(t)

)
] = 0;

the result then also holds true when ε→ 0.

Similarly, we can show that lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε3(t+ τ)−Gε3(t)

)
] = 0.

The arguments for showing that lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε2(t + τ) − Gε2(t)

)
] = 0 and

lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε4(t + τ) − Gε4(t)

)
] = 0, hold, are similar in nature. Consequently,

we shall discuss in detail the steps for only one of them.

Lets show that lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε2(t+ τ)−Gε2(t)

)
] = 0. We recall that

Gε2(t+ τ)−Gε2(t) = ε

b t+τ
ε
c∑

m=b t
ε
c+1

(
E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)

]
− ζi(Xε(m− 1))φεij(m− 1)Dij(Xε(m− 1))

)
. (40)

Now, for a scalar η > ε > 0 (with η < τ), the expression on the right hand side of (40) can be
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written as

b τ
η
c∑

j=0

η

[
ε

η

b t+(j+1)η
ε

c∑
m=b t+jη

ε
c+1

(
E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)

]

− ζi(Xε(m− 1))φεij(m− 1)Dij(Xε(m− 1))
)]
.

In the interval {b t+jηε c + 1, . . . , b t+(j+1)η
ε c}, each of the summands above can be written as a

sum of the terms

E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m−1)

]
−ζi(Xε(b t+ jη

ε
c))φεij(b

t+ jη

ε
c)Dij(Xε(b t+ jη

ε
c))

and

ζi(Xε(b t+ jη

ε
c))φεij(b

t+ jη

ε
c)Dij(Xε(b t+ jη

ε
c)) − ζi(Xε(m − 1))φεij(m − 1)Dij(Xε(m − 1)).

Choosing an η small enough, noting that ζi(x)φijDij(x) is assumed to be a continuous function

of x (Assumption (A3)), and the fact that {zε(t)} is tight, shows that the latter terms tend to zero

in the mean as ε→ 0. For the former terms, we note that for any small η > 0, the expression

ε

η

b t+(j+1)η
ε

c∑
m=b t+jη

ε
c+1

(
E
[
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)

]
− ζi(Xε(b t+ jη

ε
c))φεij(b

t+ jη

ε
c)Dij(Xε(b t+ jη

ε
c))
)
,

tends to zero as ε tends to zero, by Assumption (A2). We will then have lim
ε→0

E[h(zε(s1), . . . , zε(sp))(
Gε2(t+ τ)−Gε2(t)

)
] = 0. �

8.2 Expression for ζi(z)

We show here that ζi(z) = λaiP
j∈N λaj

, for each i ∈ N , for the regular ARA case. The same argument

holds for the uniform ARA case. As discussed in Section 4.2, with the delay estimate vector X

considered fixed at z, we have a single class open Jackson network. For each queue Qij with the

arrival rate of packets Aij(z) < Cij , the queuing network converges to stationarity. Let Tij , (i, j) ∈

L, denote the total number of packets in the queues Qij under stationarity. Let {Rn} denote

the sequence of times when Tij , (i, j) ∈ L, returns to the state consisting of all zeros. Thus, {Bn},

where Bn = Rn−Rn−1, constitutes the sequence of successive busy periods for the queuing network.
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Under our assumptions on the statistics of the arrival processes and packet lengths of the various

streams, {Bn} is an i.i.d. sequence, with the mean E[B1] < ∞. {Rn} is a sequence of stopping

times for the ant Poisson arrival processes at the nodes.

For each i ∈ N , let Di(t) = Number of FA packets that arrive at destination D by time t. Then

ζi(z) = lim
t→∞

Di(t)∑
j∈N Dj(t)

. (41)

Furthermore, we have

ζi(z) =
E[Di(B1)]∑
j∈N E[Dj(B1)]

. (42)

This is intuitive, and can be established by using the Renewal Reward Theorem, with the inter-

renewal times being the sequence {Bn}.

Now, because Di(B1) = Number of ant Poisson arrivals at node i in the interval B1, the mean

E[Di(B1)] = λaiE[B1], and so

ζi(z) =
λai∑
j∈N λ

a
j

. (43)
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Figure 6: N parallel links: The ODE approximations. Parameters: λaS = 1, λdS = 1, E[Sa1 ] = E[Sd1 ] = 1/3.0, E[Sa2 ] =

E[Sd2 ] = 1/4.0, E[Sa3 ] = E[Sd3 ] = 1/5.0, β = 1, ε = 0.002.
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Figure 7: N parallel links: Plots for routing probabilities. Parameters: λaS = 1, λdS = 1, E[Sa1 ] = E[Sd1 ] =

1/3.0, E[Sa2 ] = E[Sd2 ] = 1/4.0, E[Sa3 ] = E[Sd3 ] = 1/5.0, β = 1, ε = 0.002.
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Figure 8: Acyclic network: The ODE approximations. Parameters: λai = 2, i = 1, . . . , 7, λd1 = 6, λd2 = 8, λd3 = 6, β =

1, ε = 0.002.
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Figure 9: Acyclic network: Plots for routing probabilities. Parameters: λai = 2, i = 1, . . . , 7, λd1 = 6, λd2 = 8, λd3 =

6, β = 1, ε = 0.002.
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