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Fluorescent quantum defect is an emerging synthetic structure that can be 

covalently attached to a semiconducting single-walled carbon nanotube. Incorporation 

of fluorescent quantum defect breaks the symmetry of carbon nanotubes at a defect 

center, creating new optically allowed, low-lying states in the electronic structure of 

carbon nanotube. Exciting electronic and optical properties arise from the defects, 

including the generation of new photoluminescence features, which can be used for 

applications, such as chemical sensing, bioimaging, and quantum light source. As 

excitons dominate the optical properties of carbon nanotubes, understanding the 

exciton photophysics in a defect-tailored carbon nanotube is essential to efficiently 

harness the emission properties of fluorescent quantum defects.  

In this dissertation, I aim to understand the exciton photophysics in fluorescent 

quantum defects in order to explain the origins and behavior of novel phenomena 

arising from them. First, the structure-property relationships of fluorescent quantum 



  

defects are discussed; these guide the systematic tuning of defect-induced emission and 

the binding energy of defect-trapped excitons. Then, the discussion moves to the 

exciton dynamics at fluorescent quantum defects. Particularly, I describe how the 

chemical nature of defects or the density of defects influences the thermal detrapping 

energy of excitons. The exciton-electron interaction at a fluorescent defect is also 

discussed. Our results suggest that a fluorescent quantum defect colocalizes an exciton 

and an electron as a tri-charge carrier and the brightening at the defect can be 

chemically tuned. Finally, I introduce super-resolved, hyperspectral 

photoluminescence spectroscopy, enabling both direct probing of a single fluorescent 

defect and the quantitative evaluation of the brightening of dark excitons. 
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1 Introduction 

Carbon is one of the most abundant and stable elements in the world. The 

bonding configuration and crystal structure of carbons produce various allotropes, 

including diamond, graphite, graphene, and carbon nanotube. Among these carbon 

allotropes, carbon nanotube has peculiar properties, which arise from its one-

dimensional (1D) structure and the hexagonal configuration of sp2 carbons. Since the 

discovery of hollow graphitic carbon fibers by Radushkevich and Lukyanovich in 

1952,1 researchers have been extensively investigating carbon nanotubes to understand 

the material properties. 39 years later, Iijima revealed the molecular structure of carbon 

nanotubes as multilayer graphitic tubular structures using electron microscopy.2 The 

multi-walled carbon nanotube is analogous to graphite in terms of the electrical and 

electronic properties due to the interactions between inner and outer walls in the 

nanotube. Thus, the early stage of carbon nanotube research was primarily related to 

the structural singularity, for example, high mechanical strength, combined with high 

electrical and thermal conductivity of carbon nanotubes.2-4 

In 1993, the NEC and IBM groups discovered the first synthesis processes for 

single-walled carbon nanotubes (SWCNTs), which can be described as a single layer 

of graphene, rolled up in a helical fashion.5-6 This discovery has greatly expanded the 

field of nanoscience by enabling investigation of the fundamental properties and 

applications of carbon nanotubes. The interest in this new material is primarily due to 

the unique potential of SWCNTs in exploring the intriguing properties of quasi-1D 

materials. For example, metallic SWCNTs exhibit high ballistic electronic conduction 
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and behave as Luttinger liquids due to their 1D nature.7 The large binding energy of 

excitons in semiconducting SWCNTs (two orders of magnitude larger than in 3D 

semiconductors)8-9 enables elucidation at excitonic properties in 1D system through 

near-infrared photoluminescence (NIR PL) spectroscopy at room temperature.10 

Furthermore, the optical properties of semiconducting SWCNTs are beneficial for 

many optoelectronic and biological applications, including their use as a single-photon 

source11 and in bioimaging.12 

Even though the unique electronic and optical properties of semiconducting 

SWCNTs have been intensively studied, two critical limitations have blocked the broad 

use of SWCNTs: (1) Low PL quantum yields and (2) Difficulty in chemically 

controlling their optical properties.  

Our group found that fluorescent quantum defects can help mitigate these 

challenges. Covalently bonding functional groups to semiconducting SWCNTs creates 

a whole new class of quantum emitters, called fluorescent quantum defects.13-15 

Fluorescent quantum defects introduce new optically allowed quantum states in the 

electronic structure of SWCNTs. As the defect-induced states reside lower in energy 

than the intrinsic excitonic states, an exciton can be trapped at a defect site and brightly 

fluoresce from there. As a result, the defect-incorporated SWCNTs can fluoresce an 

order of magnitude brighter than unfunctionalized SWCNTs. By varying the functional 

groups attached to SWCNTs, the defect-induced states are molecularly specific and 

chemically tunable.  

However, complete solutions for the challenges have not been found. For 

instance, the brightening mechanism of fluorescent quantum defects, the control of 



 

 

3 

 

exciton traffic in defect-tailored SWCNTs, and the origin of the defect-induced novel 

properties are issues requiring investigation. 

In my Ph.D., I address these questions by spectroscopic studies as well as 

quantum chemical modeling of defect tailored SWCNTs. Chapter 2 begins with the 

introduction of the basic physical and electronic properties of the host material 

(SWCNT), the definition and features of fluorescent quantum defects, and challenges 

to be addressed in this thesis.  

In this dissertation, I introduce some of my Ph.D. works particularly relevant to 

exciton photophysics in fluorescent quantum defects. In Chapter 3, I discuss the 

structure-property relationships of fluorescent quantum defects. This work explores the 

systematic tuning of defect-induced emission and the electronic coupling between 

fluorescent quantum defects and SWCNT host by chemically tailoring the functional 

groups and choice of the host structure. Chapter 4 describes how the exciton dynamics 

at fluorescent quantum defects can be probed by temperature dependent PL 

spectroscopy and quantum chemical modeling.  

Chapter 5 discusses how the defect system can trap a tri-charge carrier (trion) 

in a fluorescent quantum defect and how the brightening of the trion can be chemically 

tuned. Chapter 6 presents a direct measurement of quantum yield of a single fluorescent 

defect using super-resolved hyperspectral PL spectroscopy and investigates the origin 

of brightening and the contribution of dark excitons. 

Finally, in the conclusion and outlook, I summarize the work discussed in the 

dissertation and look into the potential underlying fluorescent quantum defects, 

experiments to be performed, and what novelty we should seek for.  
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2 Fluorescent Quantum Defects in Single-Walled Carbon 

Nanotubes 

Adapted from a manuscript by Brozena, A.; Kim, M.; Scammell, L.; Wang, Y. 

 

Fluorescent quantum defects are an emergent class of quantum emitters that can 

be incorporated by covalent attachment of a functional group onto a semiconducting 

SWCNT. As their name indicates, fluorescent quantum defects exhibit local quantized 

energy levels that deviate from the extended electronic structure of the SWCNT host. 

This system is fundamentally important to the study of optical properties in 0D-1D 

hybrid materials. Furthermore, these types of synthetic quantum defects feature 

molecularly tunable near-infrared PL emission, and thus hold vast potential for 

photonic, sensing and optoelectronic applications. In this chapter, I will provide 

information on our model system, carbon nanotubes, fluorescent quantum defects, and 

exciton dynamics in defect-tailored SWCNTs. 

 

2.1 Single-Walled Carbon Nanotubes 

Graphite is composed of multi-layered hexagonal sp2 carbons conjugated with 

π orbitals in a 3D manner (Figure 2-1a). Isolating a single layer of graphite produces 

graphene. As electrons can move freely on a graphene sheet in any direction, its 

physical structure and electronic properties represent those of a 2D material (Figure 

2-1b). Connecting two lattice points in a single graphene layer creates a SWCNT. A 

SWCNT is a hollow cylindrical structure with a sp2 hybridized hexagonal lattice of 

carbons (Figure 2-1c). Due to their 1D structure, SWCNTs have distinct optical and 
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electronic properties and can be differentiated from multi-walled carbon nanotubes 

(MWCNTs). MWCNTs are analogous to 3D graphite in terms of the dimensionality of 

charge carrier and the absence of strong quantum confinement. Even though the 

curvature of a SWCNT significantly influences its electronic structure and optical 

properties, the physical and chemical behavior of graphene can explain some properties 

of SWCNTs. Here I begin with the physical structure and symmetry of graphene, 

extend SWCNT properties from those of graphene, and explain how the 1D nature and 

curvature effects influence the unique properties of SWCNTs. 

 

 

 

 

 

Figure 2-1 Graphical illustration of a, graphite, b, graphene, and c, carbon 

nanotube.  

a b c
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2.1.1 Physical Structure of Carbon Nanotubes 

As graphene is rolled up to form a SWCNT, its diameter, roll-up angle, and 

enantiomerism can widely vary depending on which two graphene lattice points are 

connected. The typical diameter range of SWCNTs is 0.6–1.5 nm and the roll-up angle 

varies from 0 to π/6. This roll-up configuration can be described by the ‘chiral vector’ 

𝐶, a vector wrapped about the SWCNT circumference connecting two carbon atoms, 

(0,0) and (n,m) on the graphene sheet. The chiral vector is defined in terms of the 

primitive lattice vectors of a graphene unit cell, 𝑎1⃗⃗⃗⃗⃗ and 𝑎2⃗⃗⃗⃗⃗, shown in Figure 2-2: 𝐶 =

𝑛𝑎1⃗⃗⃗⃗⃗ + 𝑚𝑎2⃗⃗⃗⃗⃗. Here n and m are integers and the pair of integers (n,m) denotes the 

chirality of a particular SWCNT structure. One can derive the diameter and chiral angle 

from the following correlations with n and m: 

Diameter, 𝑑 =
√3𝑎𝑐𝑐

𝜋
√𝑛2 + 𝑛𝑚 +𝑚2   Eqn. 2-1 

Chiral angle, 𝜃 = tan−1
√3𝑚

2𝑛+𝑚
    Eqn. 2-2 

in which acc is the distance between two sp2 carbons in the lattice (1.44Å). To study 

structure dependence of SWCNTs, (n,m) chirality is categorized by mod and family. 

(n–m) mod categorizes SWCNTs with similar chiral angle but varying diameter. 

(2n+m) family groups SWCNTs with similar diameter but varying chiral angle. The 

structure variation is closely related to the electronic structure of SWCNTs, because 

this rolling of the graphene sheet imposes specific boundary conditions on the 

electronic wavefunction in the direction of rolling. 
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Figure 2-2 Carbon nanotube chiral indices, (n,m) mapped onto a graphene 

sheet. Filled lattice represents metallic SWCNTs. All other species are 

semiconducting SWCNTs. Depending on the chiral vector, 𝐶, the diameter (d) 

and chiral angle (θ) are determined. As a demonstration of chirality, the chiral 

vector of a (5,4)-SWCNT is shown in the left bottom.  
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θ
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2.1.2 Electronic Structure of Single-Walled Carbon Nanotubes 

Because the building block of SWCNTs is graphene, we start from the 

electronic structures of graphene. Figure 2-3 shows the band structure of graphene near 

the Fermi level. In the 2D Brillouin zone, the Fermi level lies at the crossing points 

between an occupied π band and an empty π* band, denoted by K and K’. The π and 

π* bands have a linear dispersion around the K and K’ points, and the valence and 

conduction bands meet at the Fermi level at the K and K’ points. Hence, graphene is a 

zero-gap semiconductor. 

 

 

Figure 2-3 Graphene Brillouin zone and electronic energy dispersion. 

 

In contrast, SWCNTs can be metallic or semiconducting with different energy 

gaps, depending on the diameter and chiral angle. The physics behind this variation of 

the electronic structures can be explained by trigonal wrapping effects.16 While the 
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electron wavevector of parallel direction is continuous, SWCNTs have quantization of 

the electron wavevector along the circumferential direction because of the periodic 

boundary conditions on the electron wavefunction. This leads to the formation of 

energy sub-bands associated with cutting lines of allowed wavevectors (k lines), 

separated from one another by a distance, 2/(diameter of SWCNT)-1 and quantized 

along the chiral vector, shown in Figure 2-4. As the k line crosses the K or K’ point, it 

is metallic with linear dispersion whre with a non-vanishing density of states at the 

Fermi level (Figure 2-5a). If the k line does not cut through the K point, the nanotube’s 

dispersion does not cross its apex, which describes a semiconducting SWCNT with a 

finite band gap (Figure 2-5b). Based on the correlation between the SWCNT chiral 

angle and the dispersion band structure, it is possible to deduce the electronic structure 

of SWCNTs. An (n,m)-SWCNT is metallic, (n – m) = 3p, where p is an integer. If (n – 

m) is 3p+1 or 3p+2, the SWCNT is semiconducting with non-zero bandgap at room 

temperature. 

 

 

Figure 2-4 Brillouin zone of SWCNTs. The solid cutting lines denote the k 

lines which create sub-bands in SWCNT. The k line crossing the K point (left 

two) results in zero band gap in the density of states therefore a metallic 

SWCNT. When the k lines do not cross the K point (right two), the SWCNT 
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dispersion band structure has a finite band gap, indicating a semiconducting 

SWCNT. 

 

 

 

 

 

Figure 2-5 Band structures (left) and density of states (right) of a, metallic 

and b, semiconducting SWCNTs. The vertical arrows in the density of states 

of semiconducting SWCNT denote E22 excitation (v2 → c2, the second sub-

band transition) and E11 relaxation (c1 → v1, the first sub-band transition). 
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In the electronic structure of SWCNTs, one can find singular points, called van 

Hove singularities (Figure 2-5). Each (n,m)-SWCNT has its unique set of transition 

energies between the conduction and the valence bands, which are closely related to 

van Hove singularities in the density of states. The optical properties of SWCNT 

mainly arise from a series of allowed Eii transitions, indicating the electronic transitions 

between ith van Hove singularities of conduction and valence bands (Note that the Eij 

(i – j≠0) excitation can occur but is optically forbidden due to strong depolarization). 

Eii optical excitation of semiconducting SWCNTs promotes an electron from the 

valence band (vi) to the conduction band (ci), leaving a hole in valence band (vi). The 

photo-excited electron and hole non-radiatively relax to c1 and v1 and then radiatively 

recombine, emitting E11 PL.17 

As the curvature increases, these structure-dependent properties lead to 

significant changes in the electronic behavior of the SWCNT. However, the simple 

band structure cannot precisely predict the optical transitions and structure-property 

relationships of a SWCNT. In particular, a discrepancy between the bandgap energy of 

a SWCNT and the E11 optical transition exists (several hundred meV). The energy 

discrepancy is due to the fact that the optical transitions in SWCNTs are excitonic in 

nature. In the next section, I will take into account excitons in order to describe a more 

accurate picture of the optical properties of SWCNTs. 

  



 

 

12 

 

2.1.3 Excitons in Carbon Nanotubes 

The strong quantum confinement in a SWCNT induces an electron in the 

conduction band and a hole in the valence band to be closely correlated by their 

Coulomb attraction. The tightly bound electron–hole pair is called an exciton. An 

exciton carries a quantum of energy and dominates the excited states in SWCNTs. The 

excitonic picture explains the discrepancy between the band structure model (Section 

2.1.2) and experimental measurements of two-photon excitation energies (Figure 2-6).  

Wang et al.9 found that the two-photon absorption occur only when the two-

photon excitation energies of SWCNTs were substantially greater than the one-photon 

PL emission energies. If the two-photon excitation energy was the same as the emission 

energy, none of the SWCNTs fluoresce (Figure 2-6a, red line). This behavior can not 

be explained by the simple band picture of the optical transitions (Figure 2-5b) and is 

an evidence of the existence of excitons at room temperature. The discrepancy between 

the PL emission energy and the excitation energy corresponds to the binding energy of 

excitons in SWCNTs. The binding energies of SWCNT excitons are unusually large 

(on the order of several hundred meV, accounting for a significant portion of the ~1 eV 

nanotube bandgap energy) compared to the exciton binding energies of bulk 

semiconductors (just a few meV). This enhanced binding energy results from the 

increased Coulomb interactions in reduced dimensions, as well as from the decreased 

dielectric screening effects typical of 1D materials.9 
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Figure 2-6 Optical resonances in SWCNTs arising from excitons. a, 2D 

contour plot of the two-photon excitation spectrum of SWCNTs. The PL 

intensity is shown in a false-color representation as a function of the two-

photon excitation energy and the one-photon PL emission energy. The two-

photon excitation peaks are in general 200–300 meV blue-shifted from the 

energy of the corresponding emission feature. The red line is to guide where 

the excitation and emission energies are identical. The circles indicate (7,5), 

(6,5), (8,3), and (9,1) SWCNTs from bottom to top. The figure is adapted from 

ref 9. b, Schematic of the first sub-band of a semiconducting SWCNT (left) 

and the corresponding density of states (right). The lowest exciton energy 

level is shown by the solid horizontal line. The exciton energy (E11) is smaller 

than the bandgap energy (Eg) due to the exciton binding energy (Eb). 
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In the excitonic picture, due to the spin multiplicity18 and intervalley short-

range Coulomb interactions of excitons (the presence of K and K’ points),19 SWCNTs 

impose selection rules on electronic transitions. Combinations of the spin of an electron 

and a hole of an exciton generate one singlet and three triplet states by spin multiplicity. 

Each spin state further divides into four states: KK, K’K’, K’K and KK’, each 

indicating the location of an electron in the conduction band and a hole in the valence 

band (Figure 2-7a). As a result, a total of 16 excitonic states exist, with 12 triplet and 4 

singlet states for each 1D sub-band of a SWCNT.  

Theoretical studies revealed that among these 16 states, only one singlet state 

is optically allowed.20-21 Figure 2-7b displays the exciton dispersion relation of the first 

and second lowest singlets (K’K’ and KK, direct excitons). The energy states split by 

an exchange energy of Δ ≈ 6 meV, and the higher energy exciton carries all of the 

oscillator strength and therefore is optically allowed (bright), whereas the lower energy 

exciton is dark. The remaining two singlet excitons are doubly degenerate K-

momentum excitons (KK’ and K’K, indirect excitons). These states have center-of-

mass momenta connecting the K and K’ points. Even though their large momenta 

prevent the excitons from directly coupling to photons (optically forbidden), exciton-

phonon coupling22 enables the observation of the K-momentum dark excitonic 

sideband in optical spectra.23-24 The energies of the K-momentum excitons are 30–40 

meV higher than the bright exciton states (Figure 2-7c). Triplet states are lower in 

energy than singlet states because no exchange interactions exist in triplet excitons due 

to the Pauli exclusion principle. 
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Figure 2-7 Optical selection rules of SWCNTs. a, The four possible electron-

hole configurations in the K and K’ valleys. The solid and dashed arrows 

indicate the direct and indirect excitons, respectively. b, Exciton dispersion 

relation for the direct (KK and K’K’) bright and dark excitons near the center-

of-mass wavenumber (Kex) = 0. c, Schematic of the exciton energy levels 

including indirect dark excitons (KK’ and K’K, dashed line). 

 

2.1.4 Spectroscopic Characterization of Carbon Nanotubes 

Spectroscopic characterization permits sensitive analysis of the 1D properties 

of SWCNTs. This is attributed to the fact that the unique optical properties of SWCNTs 

are associated with the 1D confinement of their electronic states, resulting in van Hove 

singularities in the density of states (Figure 2-5). The singularities in the electronic 

structure enable optical spectra to display sharp spectral features. However, I would 

like to note that for the spectroscopic characterization, SWCNTs should be individually 

isolated because bundled SWCNTs have energy interruption to the electronic states, 

making the spectrum broad or featureless. Bundled SWCNTs can be individually 

dispersed by tip sonication,10 spontaneous exfoliation,25-26 or surfactant-superacid 
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exchange27 methods, and stabilized in an aqueous solution with a surfactant or a 

polymer.  

2.1.4.1 Absorption spectroscopy 

The structure-dependent excitonic transitions of SWCNTs can be directly 

scanned through absorption spectroscopy. The series of optically allowed electronic 

transitions, Eii (i = 1,2,3,…), carries strong oscillator strength and thus can be observed 

in an absorption spectrum. For a SWCNT having a relatively small diameter (0.6–1.5 

nm), E11, E22, and E33 transitions appear in the NIR, visible, and UV regions, 

respectively (Figure 2-8a). The D-phonon sideband of each Eii transition appears 200–

300 meV lower than the primary Eii absorption band and originates from phonon-

assisted indirect transitions into dark excitonic states (K-momentum dark excitons in 

Figure 2-7).  

Because each SWCNT has characteristic values of electronic transition energies 

and molar extinction coefficients, it is possible to identify the composition and fraction 

of a SWCNT mixture by applying the Beer-Lambert law. Although absorption 

spectroscopy is useful for identifying the SWCNT chirality, quantitative analysis using 

absorption spectroscopy is difficult for a mixture of two or more SWCNTs with similar 

transition energies. In this regard, chirality sorting is important to resolve the well-

defined properties of SWCNTs. Gel chromatography28 or polymer aqueous two-phase 

separation29-30 can be adapted to obtain chirality-enriched SWCNT solutions (Figure 

2-8b).  
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Figure 2-8 Absorption and PL spectra of an unpurified SWCNT mixture (a,c) 

and a gel-purified, (6,5)-enriched SWCNT solution in 1% SDS-D2O (b,d). 

The ranges of each sub-band transition for semiconducting SWCNTs are 

marked in a. E11 (980 nm), E22 (568 nm), and E33 (350 nm) transitions of (6,5)-

SWCNTs are marked in b. 
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2.1.4.2 Photoluminescence spectroscopy 

The quantum yield of SWCNTs is influenced by the chirality, length, defect 

density, and environment, making PL spectroscopy a sensitive tool for studying the 

excitonic properties of SWCNTs. The excitation-emission PL maps shown in Figure 

2-8 provide a basis for identifying SWCNT PL as a function of excitation energy. A 

vertical slice of the PL map at E11 of (n,m)-SWCNTs is called the PL excitation (PLE) 

spectrum of the (n,m)-SWCNT. The PLE profile traces the absorption profile because 

the nonradiative relaxation from higher sub-bands (E22 or higher) to E11 is efficient.17 

The PLE spectrum is useful for investigating the electronic coupling between SWCNTs 

or identifying the origin of the PL emission. Conversely, a horizontal slice of the PL 

map is the PL emission spectrum at a specific excitation energy. In the PL spectrum of 

an (n,m)-SWCNT, the strong PL emission is associated with the radiative 

recombination of E11 excitons (the first sub-band of excitonic transition, E11). At ~140 

meV lower in energy than the E11 PL, there is a low intensity D-phonon sideband. The 

D-phonon band results from phonon-assisted excitonic recombination.22-24 As such, PL 

spectra provide rich information on the optical properties of SWCNTs.  
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2.1.4.3 Raman spectroscopy 

Raman spectroscopy is also a useful tool for nanotube structural analysis from 

several characteristic Raman peaks (Figure 2-9). First, the radial breathing mode 

(RBM) is unique to SWCNTs due to the curvature, and is not observed in other sp2 

carbon materials. It is a totally symmetric vibrational mode related to the vibration of 

carbon atoms in the directions radial to the nanotube axis. The energy of the RBM peak 

is inversely proportional to the diameter of the SWCNT and ranges from 50 to 500 cm-

1 for a diameter range of 5–0.5 nm.31 Due to its narrow full width at half maximum 

(FWHM) and diameter dependence, the RBM peak provides complementary 

information in SWCNT chirality analysis. Second, a Raman band around 1580 cm-1 is 

related to the G band in graphite. This peak represents an in-plane tangential optical 

phonon involving the stretching of the bond between the two atoms in the graphene 

unit cell.32 The curvature effects in SWCNTs split the G band into G+ (1590 cm-1) and 

G- (1572 cm-1). The G+ and G- bands are related to the circumferential and axial atomic 

vibrations. Even though the lineshape and Raman shifts of the G- and G+ bands are 

largely dependent on SWCNT type, i.e., metallic vs. semiconducting, the G band does 

not provide clear quantitative or qualitative analysis on nanotube electronic structure 

because the band depends on too many variables.33 The last key feature of SWCNT 

Raman spectra is the disorder-induced D band at 1350 cm-1. This is induced by 

symmetry breaking on the hexagonal sp2 carbon lattice of SWCNTs. The Raman D-

band-to-G-band ratio is used for characterizing the relative density of defects in 

SWCNTs. SWCNTs with a high density of structural defects have a relatively high 

Raman D-to-G ratio.32 
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Figure 2-9 Raman spectrum of chirality-enriched (6,5)-SWCNTs at an 

excitation wavelength of 532 nm. The RBM, D band, and G band are shown 

in blue, red, and green, respectively. A large peak at 2700 cm-1 is an overtone 

of the D band. The inset shows the enlarged RBM bands at 75–500 cm-1. 

Because the RBM frequency is inversely proportional to the nanotube 

diameter, it is possible to identify SWCNT chiralities in the sample. 

 

2.2 Fluorescent Quantum Defects 

As discussed in the previous section, dark states exist in the vicinity of the bright 

state. The low-lying dark states are mainly responsible for the low quantum yields of 

SWCNTs. The incorporation of fluorescent quantum defects creates new, optically 

allowed states in SWCNTs. The defect-induced states reside below the lowest dark 

excitonic state, leading to substantial brightening of SWCNT PL. In this section, I will 

discuss the definition, characteristics, synthetic protocols, spectroscopic 

characterization, and applications of fluorescent quantum defects.  
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2.2.1 Definition of Fluorescent Quantum Defects 

Fluorescent quantum defects are chemically created in the sp2 carbon lattice of 

semiconducting SWCNTs through covalent attachment of a low density of non-

emitting functional groups.14-15 Experimental results from our lab have shown that a 

covalently incorporated aryl or alkyl defect can produce a new, defect-induced peak 

(E11
-). The symmetry breaking of the sp2 lattice by an sp3 defect center creates new 

energy states that are spatially isolated. A deep potential well at a fluorescent quantum 

defect traps a mobile exciton and makes the exciton fluoresce via E11
- (Figure 2-10). 

As the quantum defects are strongly coupled to the SWCNT host, interesting effects 

may occur. The available functional groups range from aryl to alkyl, and differ by the 

synthetic methods.13-15,34-35 This new class of emitters opens opportunities to probe 

defects experimentally and to understand the fundamental effects of chemical 

functionalization in low-dimensional materials. 

 

Figure 2-10 Schematic of defect-modulated exciton diffusion and 

recombination. A free exciton diffuses along the SWCNT, is trapped at a 

fluorescent quantum defect, and radiatively recombines, emitting an E11
- 

photon. 
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2.2.2 Exciton Dynamics in Defect Tailored Carbon Nanotubes 

Exciton transport properties in defect-tailored SWCNTs are significantly 

different from those in unfunctionalized SWCNTs. In reduced dimensions, a single 

defect becomes important, so much so that its electronic and optical nature can 

dominate the properties of the SWCNT. In the case of fluorescence, exciton diffusion 

and trapping dynamics are characteristic parameters that largely determine the role of 

defects. In this section, I discuss how an exciton behaves in a defect-tailored SWCNT. 

2.2.2.1 Diffusion Limited Model 

Because an exciton diffuses along the SWCNT axis, the exciton dynamics and 

PL-related properties can be modeled by the diffusion-limited 1D kinetic model.36 

Hertel et al. hypothesized that diffusion-limited contact quenching of excitons 

determines the PL quantum yield in unfunctionalized SWCNTs. This exciton kinetics 

is analogous to the generic bimolecular reaction mechanism,  

𝐴∗ + 𝑄 → 𝐴 + 𝑄,      Eqn. 2-3 

where A* is a mobile exciton, Q is a stationary quenching site (which includes the 

SWCNT ends), and A is the quenched exciton state. The change of mobile exciton 

population can be expressed as 

𝑑[𝐴∗]

𝑑𝑡
= −𝑘𝑟𝑎𝑑[𝐴

∗] − 𝑘𝑛𝑟[𝐴
∗][𝑄],    Eqn. 2-4 

in which [A*] is the density of mobile excitons per unit length, [Q] is the density of 

quenchers per unit length, and krad and knr are the rate constants of radiative and non-

radiative decays, respectively. The rate constant of diffusion-limited contact 
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quenching, knr is time-dependent and scales with the exciton diffusion coefficient (D) 

and time (t). 

𝑘𝑛𝑟(𝑡) = √
𝐷

𝜋𝑡
       Eqn. 2-5 

Solving Eqn. 2-4 with Eqn. 2-5 gives the concentration of mobile excitons at time t: 

[𝐴∗](𝑡) = [𝐴∗]0exp [−𝑒𝑥𝑝(𝑡/𝜏0)
1/2]   Eqn. 2-6 

in which [A*]0 is the concentration of mobile excitons at time 0 and τ0 is a characteristic 

time scale, π/(4D[Q]2). The integration of Eqn. 2-6 over time gives the number of 

photons (N0) emitted from the E11 state: 

𝑁0 =
𝐿[𝐴∗]0𝜋

2𝐷[𝑄]2𝜏𝑟𝑎𝑑
 .      Eqn. 2-7 

The quantum yield of unfunctionalized SWCNT (η0) is  

𝜂0 =
𝑁0

𝑁𝑎𝑏𝑠
=

𝜋

2𝐷[𝑄]2𝜏𝑟𝑎𝑑
 ,     Eqn. 2-8 

in which Nabs is the number of E11 excitons generated after photoabsorption. Because 

the number of photons emitted at the E11 energy is proportional to the PL intensity of 

E11 (I11) by N11 = aI11, where a is a constant, we can estimate the relative density of 

effective quenching sites from the PL intensity of E11. 

Incorporation of fluorescent quantum defects adds effective quenching sites for 

E11 excitons in a SWCNT. Thereby, for the defect-tailored SWCNT, we can obtain the 

following correlation 

𝑁11 ∝
1

𝐷𝜏𝑟𝑎𝑑

1

(𝑛𝑞+𝑛11
− )

2 ,     Eqn. 2-9 

in which nq and n11
- are the number of defects on the SWCNT induced by intrinsic 

quenching sites and fluorescent quantum defects, respectively. 
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2.2.2.1 Exciton Trapping at a Fluorescent Quantum Defect 

The exciton diffusion and trapping model has been applied to study the 

brightening mechanism and quantum yield of defect trapped excitons37 and the rate of 

covalent functionalization.35 

Considering the diffusion of photogenerated 1D excitons and successive 

trapping by the local defect state (E11
-), the number of photons emitted from the E11

- 

state (N11
-) can be expressed as: 

𝑁11
− = 𝑁𝑎𝑏𝑠𝜂11

−  
𝑘dif

𝑘𝑖+𝑘dif 
 

𝑛11
−

𝑛𝑞+𝑛11
−     Eqn. 2-10 

in which η11
- is the PL quantum yield of a single fluorescent defect site and kdif is the 

effective decay rate of the E11 excitons due to exciton diffusion and successive trapping 

at the local quenching sites (including intrinsic quenching sites and aryl defects). The 

factor ki is the effective decay rate for all possible mechanisms of exciton 

recombination other than the diffusion-limited mechanism. I note that the contribution 

of ki is negligible (ki << kdif) and therefore kdif/(ki + kdif) ~ 1.37-38 

The exciton diffusion-trapping model suggests the necessity of controlling the 

density and spatial tunability of defects in SWCNT. On the one hand, it is important to 

retain enough conjugated sp2 crystal structure to produce the number of E11 excitons 

and to maintain the excitonic transport properties in the SWCNT. On the other hand, 

the higher number of fluorescent defects present, the brighter the defect PL would be. 

Therefore, either fluorescent quantum defects must be spatially isolated within the 

exciton diffusion length, or they must be clustered together in a functional band to 

promote efficient E11
- emission. The experimental observations reflect these 

correlations. As the degree of functionalization increases (controlled by the initial 
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reactant ratio14-15 or the reaction time34-35), brighter E11
- PL can be observed. However, 

if the defect pitch approaches ~5 nm along the SWCNT length (≪ E11 exciton diffusion 

length, 100–500 nm), the excess number of defects irreversibly quenches both E11 and 

E11
- PL.  

 

2.2.3 Chemical Synthesis of Fluorescent Defects 

The use of a chemical reaction to implant fluorescent quantum defects provides 

the opportunity to control the defect density on the nanotube, and also implies that the 

molecular structure and inductive nature of the defects have been carefully selected. 

An enormous number of organic synthetic methods can be explored to generate 

covalent bonds to nanotubes and other carbon nanomaterials.39 As organic synthesis is 

used to generate these quantum defects, their molecular nature can be readily 

controlled, which impacts the localized electronic structure. Here, I will introduce 

several chemical reactions that produce fluorescent quantum defects in SWCNTs. 

2.2.3.1 Billups Birch Reductive Alkylation 

The Billups-Birch reduction is one of the first covalent functionalization 

chemistries to lead to the observation of fluorescent quantum defects.13 The reaction, 

involving the solvation of electrons using sodium or lithium in liquid ammonia (–30 

oC), is highly effective at disrupting the van der Waals attractions between nanotubes 

to generate individually dispersed materials, which is necessary to react scalably with 

the SWCNT sidewalls. Alkyl halide reactants can then be added to this solution to form 

radical intermediates upon electron transfer from the reduced SWCNTs, which then 
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react with the nanotube sidewalls to form covalently attached alkyl groups.40 A new PL 

feature appears in the emission spectrum of the functionalized SWCNTs.13 DFT results 

reveals that the SWCNT bandgap in the density of states decreases by 70 meV by 

adding the propagative alkyl groups to a modeled SWCNT. 

Deng et al. revealed that the Billups Birch alkylation is propagative. The 

functional bands were clearly resolved in scanning electron microscopy images for 

highly functionalized SWCNTs over repeated alkylation cycles. DFT calculation 

suggested that Mulliken charges localize around existing or added defects, driving 

subsequent functionalization to occur near these sites for a propagating reaction that 

results in the formation of bands of alkyl functional groups along the nanotube length.41 

Using this chemistry, one can introduce alkyl defects and achieve 10 meV 

tunability in the E11
- energy for (6,5)-SWCNTs. The narrow range of tunability is due 

to the limitations of the chemistry that only worked for a few alkyl defects including 

perhydrogenated, carboxylic group terminated, and amine terminated hexyl defects (–

C6H13, –C6H12COOH, and –C6H12NH2). 

2.2.3.2 Diazonium chemistry 

Diazonium salts, such as 4-chlorobenzenediazonium tetrafluoroborate, have 

been used as a means to react selectively with metallic SWCNTs42 to diminish 

conductivity and improve on/off ratios of SWCNT transistors. The mechanism behind 

this metallic selectivity is thought to be a result of the relatively rapid non-covalent 

adsorption of the diazonium molecule to metallic nanotubes due to the higher density 

of states at the Fermi level compared to their semiconducting counterparts, followed 

by a slower covalent reaction initiated by electron transfer from the nanotube to the 
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reactant to form a radical that readily initiates a C–C bond with the graphitic surface. 

The physisorption of diazonium salts on semiconducting SWCNTs induces stepwise 

quenching of E11 PL because the adsorbed diazonium molecules act as effective 

quenching sites for excitons.36,43 However, following the physisorption of diazonium 

salts to the SWCNT, electron transfer from the SWCNT to the diazonium creates an 

aryl radical that can initiate covalent functionalization of aryl groups to the SWCNT.44 

Even though diazonium chemistry has been extensively studied for SWCNT 

functionalization, the synthesis of fluorescent quantum defects via the diazonium 

reaction has only been recently discovered. Piao et al. explored the regime of low defect 

density (0.33 mol% diazonium reagent relative to carbon), where the average defect 

spacing is comparable or slightly shorter than the exciton diffusion length surface 

(approximately < 1 defect/20 nm length) Reacting SWCNTs dispersed in 1% wt/v 

sodium dodecyl sulfate in D2O or water with aryl diazonium salts at room temperature 

leads to the evolution of defect-induced PL (E11
-), redshifted by up to 254 meV from 

the native nanotube fluorescence.14  

Diazonium chemistry is the most widely used method for creating fluorescent 

quantum defects because of its simplicity and its potential for wide tunability with a 

variety of functional groups. Varying the terminating groups of aryl defects from 

electron-donating (–4-N(C2H5)2) to electron-withdrawing groups (–3,5-(NO2)2) can 

shift the E11
- PL emission from 1120 nm to 1158 nm (36 meV tunability) for (6,5)-

SWCNTs. Furthermore, the overall quantum yield of (6,5)-SWCNTs is in fact 

enhanced from ~1% to 16% due to the addition of the E11
- emission through aryl 

defects.14 
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2.2.3.3 Diazoether chemistry 

Diazoether chemistry uses the diazoether molecule (3-O-4-

nitrobenzenediazoascorbic acid; NO2Ar-DZE) for covalent functionalization with 4-

nitroaryl defects on SWCNTs in 1% wt/v SDS-D2O.34 DZE molecules comprise 

ascorbic and aryl groups that are coupled by an azo bond and can exist as E or Z 

isomers. The two stereoisomers have different stability due to the difference in structure 

and bond length. In contrast to the reactive Z isomer, the E isomer is inert to SWCNTs 

at room temperature. Without exposure to light, (6,5)-SWCNTs remain intact, 

evidenced by no E11
- PL evolution. However, under light excitation at a narrow pH 

window (centered around 3.8), the E isomer can react with SWCNTs and create a 

covalently bonded aryl defect on the SWCNT sidewall. Interestingly, the reactivity of 

the E isomer is switchable either by illumination or by pH change (Figure 2-11). The 

selectivity comes from a high barrier to isomerize the inert E form into the reactive Z 

form. This degree of reaction control using light suggests the potential for lithographic 

patterning of fluorescent quantum defects.35 DZE chemistry also offers a level of 

chirality selectivity that cannot be achieved by diazonium chemistry. 
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Figure 2-11 Switching of NO2Ar-DZE reactivity toward a SWCNT. a, A 

schematic showing the localized isomerization of the inert E-isomer to the 

reactive Z-isomer by tuning of the barrier to isomerization with pH and 

resonant optical excitation of the SWCNT. b, Reversible activation of 

reactivity of E-diazoether via illumination and pH to covalently attach aryl 

defects to SWCNTs. Step-wise reactivity of the E-isomer with (6,5)-SWCNTs 

was realized through 565 nm excitation (green) and pH switching (gray) 

compared to the dark control. 

 

2.2.3.4 X-bond chemistry 

Kwon et al. demonstrated the extent of molecular tunability possible for 

fluorescent quantum defects with the development of relatively simple alkyl halide 

chemistry.15 This reaction, involving SDS-dispersed SWCNTs in aqueous solution, an 

alkyl iodide reactant, acetonitrile, and the mild reducing agent sodium dithionite, has 

demonstrated the ability for covalent attachment of over 30 functional groups to 

SWCNTs at room temperature (remaining stable in aqueous solution for several 

months), including both mono- and divalent moieties, enabling the defect-induced E11
- 

peak of (6,5)-SWCNT to be redshifted by as much as 190 meV from the native E11 

emission and increasing the quantum yield compared to the parent nanotube by an order 

of magnitude (Figure 2-12). The molecular tunability of this reaction is made possible 
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by the chemistry’s flexible use of almost any iodide-containing (and a few bromide-

/chloride-containing) hydrocarbon-based compounds. DFT calculations also suggest 

that, like the Billups-Birch reaction, functionalization is favored near existing defects 

(specifically the para-position). Charges tend to accumulate in these regions according 

to Mulliken analysis, suggesting the likelihood of propagative functionalization for 

banding or clustered defect structures.  

Furthermore, Wu et al. have found that photoinduced functionalization of aryl 

halides can be achieved by exciting the host SWCNTs resonantly.35 The reaction is 

temperature independent, but is strongly dependent on photon energy. (6,5)-SWCNTs 

were excited with various wavelengths of light in the presence of 4-iodoaniline, which 

absorbs in the UV region. When the solutions were excited at the third and second sub-

band transitions of (6,5)-SWCNTs (E33 and E22), the rapid evolution of E11
- PL was 

observed. Meanwhile, the lack of functionalization under E11 excitation was posited to 

be a result of insufficient photon energy to overcome the reaction barrier. These 

experiments suggest a reaction mechanism in which the excitation of an electron from 

the SWCNT’s ground state to the conduction band of the E22 van Hove state results in 

subsequent electron transfer to the lowest unoccupied molecular orbital of the 

physisorbed aryl halide. As the reduced 4-iodoaniline readily dissociates into an aniline 

radical and iodine anion, the radical can then covalently bond with the nanotube. 

Similar to diazoether chemistry, a photo-switching experiment demonstrated the 

sensitivity of the reaction to light.  
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Figure 2-12 Tunable near-infrared PL from defect-tailored (6,5)-SWCNTs. a, 

PL spectra of (6,5)-SWCNTs functionalized with six-carbon alkyl chains with 

increasing numbers of fluorine substituents. b, Comparison of monovalent 

and divalent fluorescent quantum defects. The SWCNT solutions were excited 

at 565 nm. The E11 PL appears at 980 nm, whereas the E11
- PL is 

systematically tunable by changing the functional group. The spectra were 

fitted with Voigt functions. The figures are adapted from ref 15. 
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2.2.4 Spectroscopic Characterization of Fluorescent Defects  

Covalent functionalization of fluorescent quantum defects on SWCNTs 

changes the hybridization of a defect center from sp2 to sp3. Various spectroscopic and 

imaging techniques can distinguish these types of carbon on the ensemble level, and 

can be used to detect the presence of quantum defects in SWCNTs. 

As discussed above, Raman spectroscopy is one of the most commonly used 

tools for characterizing the density of defects in SWCNTs (Figure 2-13). Similarly, X-

ray photoelectron spectroscopy can be used to determine the presence of defects 

through the sp3 peak of C as a function of the applied chemistry. The disruption of the 

sp2 crystal with sp3 defects will also decrease the electrical conductivity of the 

nanotube. Using substrate-enhanced scanning electron microscopy, the location of 

clustered defects on SWCNTs can be resolved, as evidenced by the alternating regions 

of the nanotube that are insulating due to the prevalence of sp3 carbon thus creating a 

localized charging effect that appears brighter in contrast with the more conductive 

regions of the carbon structure.41  
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Figure 2-13 Raman spectra of unfunctionalized (green) and 4-aminoaryl 

defect tailored (6,5)-SWCNTs (red and black). The intensity is normalized to 

the G band. The excitation wavelength was 532 nm. The integrated intensity 

ratio of the D band to G band increased from 0.016 to 0.040 by the aryl defects. 

The figure is adapted from ref 35.  

 

However, the most salient optical feature of fluorescent quantum defects – the 

generation of a new optical transition redshifted from the native E11 emission – is the 

most direct way of monitoring the presence of these chemical changes. Increasing 

covalent functionalization is known to disturb the intrinsic electronic structure of 

SWCNTs and decrease the effective absorption cross section of SWCNTs due to the 

disruption of the sp2 symmetry. As such, the reaction progress and the degree of 

functionalization can be monitored through the decrease of E11 and E22 absorption 

bands. At low degrees of functionalization, at which a sufficient fraction of the 

graphitic crystal remains intact, both the optical absorptions and PL emissions 

originating from the van Hove transitions in individual SWCNTs can be retained.14 At 

a higher density of defects, for which the van Hove transitions almost disappear, the 

defect-induced states can be observed in the absorption spectrum. The energy of the 
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new absorption band is consistent with the emission energy of E11
- PL, suggesting that 

sp3 defects create new electronic states in the SWCNT (Figure 2-14). PL spectroscopy 

is the most sensitive method to monitor the fluorescent quantum defects. The covalent 

functionalization of SWCNTs evolves a new PL peak at 100–300 meV redshifted from 

E11 PL, whereas E11 PL continues to decrease.  

 

 

 

Figure 2-14 Emergence of a defect-induced, low-lying state in the absorption 

and PL spectra by the covalent functionalization of (6,5)-SWCNTs with 4-

nitroaryl defects. As the degree of functionalization increases (light gray to 

dark gray), the E11 absorption band continues to decrease and new absorption 

bands (E11
+ and E11

-) evolve. The PL spectra of the unfunctionalized (blue) 

and functionalized SWCNTs (red) unambiguously show that the evolution of 

redshifted absorption band (E11
-) is associated with the defect-induced state. 

The excitation wavelength was 565 nm. The figure is adapted from the work 

by Piao et al.14  
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2.2.5 Applications 

Enabled by the flexibility of functional groups and tunability of emission 

energy, fluorescent quantum defects hold a strong potential to be widely used as a 

quantum light source and in sensing and imaging applications. Here I introduce a few 

important applications. 

2.2.5.1 Sensing 

The intensity and emission wavelength of SWCNT PL are sensitive to 

environmental factors. Even though the optical properties have made SWCNTs 

obvious choices for sensing applications, unfunctionalized SWCNTs generally have 

poor selectivity and limited variation on the chemical response. These limitations may 

be addressed with fluorescent quantum defects that can be chemically tailored to create 

bioimaging probes and chemical sensors with high sensitivity and selectivity. As defect 

PL is extremely sensitive to the local environment, as demonstrated by the shifting 

emission wavelength as a function of the electron-withdrawing nature of the functional 

group.14-15 This sensitivity can be capitalized on for sensing small molecules or even 

ions by taking advantage of changes to the defect’s inductive effect upon molecular 

specific binding. 

Kwon et al. demonstrated the sensing potential of fluorescent quantum 

defects.45 SWCNTs with N,N-diethyl-4-aminoaryl defects were tested for optical pH 

and temperature sensing (Figure 2-15a). The covalent addition of N,N-diethyl-4-

aminoaryl defects to the nanotube surface induced the E11
- emission at 1120 nm at a 

pH of 7.40. Lower pH solutions resulted in protonation of the amino group and a 

significant redshift of the E11
- wavelength, whereas the wavelength of E11 remained 
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constant. In this manner, the position of E11
- shifts as the pH is changed from 4.5 to 8.5, 

which covers the physiological pH range (5.5–8.0), across which PL shifts can be 

resolved down to changes as small as 0.2 pH units. 

Furthermore, aminoaryl-functionalized SWCNTs can be used to monitor the 

temperature of the solution from PL intensity changes. At higher solution temperature, 

the increased thermal energy enables defect-trapped excitons to escape the potential 

well, diminishing the integrated intensity ratio I11
-/I11. The detailed description of the 

temperature dependence will be addressed in Chapter 4. These results demonstrate how 

the defect PL can be utilized to develop a nano-thermometer and pH-meter, which 

should have direct application for high-resolution sensing in complex, or in vivo.  

2.2.5.2 Bioimaging 

Compared to visible light, NIR light (750–1400 nm) exhibits low scattering and 

deep penetration depth in biological tissue.12 SWCNTs have always been considered 

promising candidates for bioimaging because of their remarkably narrow emission 

lines (FWHM ~23 meV at room temperature), but most importantly due to their ability 

to fluoresce in a range of the NIR (800–1600 nm) that effectively covers the NIR tissue 

transparency window. Additionally, unlike molecular fluorophores,46 SWCNTs are 

exceptionally photostable; they do not blink or photobleach under prolonged 

excitation.47  

SWCNTs with fluorescent quantum defects have brighter PL emission than 

unfunctionalized SWCNTs, and can exhibit new defect-induced emission in the NIR-

II region (1000–1500 nm),12 where light can penetrate biological tissue extremely well 

with minimal scattering and lower background fluorescence. The presence of defect-
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induced state may enable total NIR excitation and emission, which enables 

nondestructive and high-resolution bioimaging (Figure 2-15b).  

2.2.5.3 Single photon source 

Physical systems with 0D quantum confinement of carriers, such as nitrogen 

vacancy centers in diamond, exhibit photon antibunching. The optical anharmonicity 

in such quasi 0D systems arises from phase-space filling—a consequence of the Pauli 

exclusion principle that prevents carriers from occupying identical quantum states. The 

applications of single photon emission are numerous, including quantum information 

processing, cryptography, and telecommunications.  

Högele et al. found that a local trap of unfunctionalized SWCNT can emit 

photons one by one at cryogenic temperatures.11 However, at a higher temperature, the 

trapped exciton can readily escape from a shallow trap by thermal energy. These 

limitations make SWCNTs less efficient systems in single-photon emission.  

Fluorescent quantum defects create deep potential wells (several hundred meV 

≫ kT) that strongly localize excitons. The potential well is deep enough to suppress 

the thermal detrapping of a defect-trapped exciton and make the exciton radiatively 

decay from E11
- state. As a demonstration of this concept, He et al. have reported photon 

antibunching at room temperature from aryl defect tailored SWCNTs (Figure 2-15c).48-

49 The combination of the diverse functional groups and the structure-dependent optical 

tunability of SWCNTs enabled to generate room-temperature single-photon emission 

spanning the broad telecom band (up to 1550 nm).48 
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Figure 2-15 Applications of fluorescent quantum defects. a, Optical pH 

sensing in complex solutions. The left schematic shows protonation and 

deprotonation at a 4-N,N-diethylaminoaryl defect at (6,5)-SWCNT. The right 

plot shows the defect PL shifts observed by changing pH of (6,5)-SWCNT-

C6H4N(C2H5)2 solution, reported by Kwon et al.45 b, In vivo imaging of 

polymer-suspended (6,5)-SWCNT-C6H4N(C2H5)2. The left figure displays the 

intensity distribution of SWCNT PL in a mouse 3 hr after the SWCNT 

injection. The right plot shows the defect PL spectra of the functionalized 

(6,5)-SWCNTs. pH difference between tumor and liver can be probed by the 

wavelength of defect PL (unpublished results from our group) c, Single 

photon source. The left figure is a schematic of a fluorescent aryl defect as a 

single photon source. The right graphs show the PL spectrum and second-

order time correlation of defect PL in (7,5)-SWCNT-C6H4OCH3. These 

figures are adapted from ref 48.  
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2.3 Challenges to be addressed in this dissertation 

In my Ph.D., I explore how optically forbidden dark excitons can be brightened 

to improve the quantum yield of SWCNT PL. For instance, how does an exciton behave 

at a defect site? How can the defect trapped exciton be controlled? What is the limit of 

PL brightening through fluorescent quantum defects? 

There are two big challenges in answering these questions. First, the complexity 

of the system makes it difficult to synthesize fluorescent quantum defects with the 

desired photophysical response. To be specific, the chemical nature of defects, the 

density of defects, and the structure of SWCNTs strongly influence the energy of defect 

PL, electronic coupling with the SWCNT host, the interaction between excitons and 

electrons, and the trapping of excitons at fluorescent quantum defects. To resolve each 

factor and clarify the system, I studied the dependence of SWCNT structure on the 

defect PL and the binding energy of defect-trapped excitons (Chapter 3). The density 

of defects and the chemical nature of defects are systematically varied to control the 

exciton trapping depth at a defect site (Chapter 4). Also, I studied the brightening of 

trions by colocalization of an electron and an exciton at a defect site (Chapter 4). 

Another challenge is the lack of adequate analytical tools to probe the 

fluorescent quantum defects in a molecular-level precision. Although single tube PL 

spectroscopy is a sensitive tool to optically explore the functionalized SWCNTs, its 

precision is diffraction-limited. Because the defect PL typically occurs in the NIR, the 

spatial resolution of the defect PL is low (several hundred nm). Although 

superlocalzation techniques can be used to define the number of defects and their 

location below the diffraction limit, the spatial information does not provide the 
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complete picture of the emissive defect state. Correlating the spectral information into 

spatial information for a single functionalized SWCNT would be adequate to study the 

emissive defect state, but the scarcity of the ultra-sensitive NIR camera makes 

obtaining the PL spectrum of a single defect difficult. My colleagues and I address this 

challenge by building up a novel super-resolved hyperspectral PL imager, enabling us 

to probe a spatially and spectrally resolved fluorescent quantum defects in SWCNT at 

the single defect level (Chapter 6).   
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3 Mapping Structure-Property Relationships of Fluorescent 

Quantum Defects 

Adapted from a manuscript by Kim, M.; Wu, X.; Ao, G.; He, X.; Kwon, H.; Zheng, 

M.; Doorn, S.K.; Wang, Y. 

Y.W. and M.K. conceived and designed the experiments. M.K., H.K., and Wu, X. 

performed experiments. Ao, G., He, X. performed carbon nanotube sorting. M.K. and 

Y.W. wrote the manuscript with inputs from all co-authors. 

 

3.1 Introduction 

Fluorescent quantum defects are an emerging class of synthetic defect emitters 

that can be chemically incorporated into the sidewall of a single-walled carbon 

nanotube (SWCNT) through covalently bonding functional groups to the 

semiconductor host.14-15,35 An introduced chemical defect locally modulates the 

electronic structure of the SWCNT host to enable trapping of excitons, which can 

exhibit strong single photon emission. The defect-induced emission (E11
-), which is in 

the near IR, can be significantly brighter than the native photoluminescence (E11) of 

the nanotube, suggesting vast potential for applications in imaging,50 sensing,45 and 

creating single-photon sources in the telecom bands.48-49  

The electronic and optical properties of fluorescent quantum defects vary 

substantially with the structure of the SWCNT host, each of which is assigned a specific 

(n,m) chirality that describes its construction as a rolled-up graphene sheet. There are 

an increasingly larger numbers of functional groups that are being identified capable of 

creating fluorescent quantum defects, suggesting virtually unlimited opportunities in 

broadly applying organic chemistry in this emergent field.13-15,35,51-54 The 
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unfunctionalized SWCNT hosts are quasi-1D nanostructure with electronic structure 

and optical properties of highly predictable.55 Particularly, the excitonic transition 

energies of semiconducting SWCNTs show strong dependence on both diameter and 

chiral angle, as summarized in correlation plots known as the Kataura plots.21,56 In 

contrast, systematic analysis of the structure-dependence of fluorescent quantum 

defects has yet to be performed. It is important to understand how the defect state is 

related to the nanotube family pattern and chirality, and how the 1D SWCNT couples 

to the 0D quantum state of the organic colour centres, in order to provide a predicative 

understanding that will enable the design and synthesis of this family of quantum 

emitters for bioimaging, biosensing, quantum computing, and nanophotonics, as well 

as probing the rapidly unraveled fundamentally new phenomena of defect chemistry 

and physics. Even simply knowing the energies of these defect states for specific (n,m) 

structures and fluorescent quantum defects would be important not only for 

fundamental photophysics of defect-trapped excitons, but also for applications in 

infrared imaging, chemical sensing, and tailored design and synthesis of quantum 

materials.  

Herein, we stablish structure-property relationships for fluorescent quantum 

defects through controlled synthesis and comparative spectral studies of 30 chemically 

distinct fluorescent quantum defects and 14 purified nanotube hosts. We observed 

distinct defect-induced photoluminescence (PL) features for 14 semiconducting 

SWCNT species (ranging from 0.62 to 0.94 nm in diameter and from 0 to 27.5° in 

chiral angle) using 30 different functional groups. Based on the spectrofluorometric 

measurements of perfluorohexyl-defect-tailored (n,m)-SWCNTs, we analyzed the E11
- 
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as empirically fitted functions of nanotube diameter. Our results show that the 

measured E11
- PL energy is tunable by 400 meV in the near-infrared via SWCNT 

diameter. However, the emission energy of defect-trapped excitons is nearly free from 

chiral angle and family patterns, suggesting that an exciton at a fluorescent quantum 

defect to some degree behaves independently from the nanotube host but this quantum 

defect -host coupling is chemically tunable depending on the chemical nature of the 

defect in terms of the group’s electron withdrawing ability and bonding configuration. 

These findings provide a comprehensive picture of the structure-property relationships 

of fluorescent quantum defects that is required to guide controlled and tailored 

synthesis of this new family of quantum emitters.  

 

3.2 Experimental Section 

3.2.1 High Purity SWCNT Sorting.  

SWCNT powders (CoMoCAT SWCNTs from Southwest Nanotechnologies 

and HiPco SWCNTs from Rice University) were dispersed in an aqueous solution of 

surfactant or DNA by tip-sonication at 8 W for 1 h. Supernatants were collected after 

1.5 h centrifugation at 17,000 g for SWCNT purification. (6,4)+(7,3) and (5,4)-

SWCNTs were purified using polymer aqueous two-phase separation (ATP), as 

previously reported by Hartmann et al.57 After ATP, the purified SWCNT solutions 

were pressure-filtrated (Amicon, no. 5123, using 100 kDa ultracel regenerated 

cellulose filter membranes) using 1 wt/v% sodium deoxycholate (DOC) to dilute the 

polymer concentration by a factor of 103 and concentrate the solution volume. (11,1), 
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(10,3), (11,0), (7,5), (6,5), (9,1), and (6,4)-SWCNTs were sorted by DNA mediated 

ATP methods.29 The DNA sequences used for the DNA-ATP separation are listed in 

Table 3-1. In this work, we sorted 14 types of semiconducting SWCNT species into 

samples highly enriched in single chiralities in total (Figure 3-3). 

After ATP, purified SWCNTs were precipitated from the polymer solution 

using sodium thiocyanate (Sigma Aldrich, 98%), and the wrapping molecules for 

aqueous suspension of SWCNTs were substituted from DNA to 1 wt/v% DOC. 

Alternatively, HiPco SWCNTs (Rice University, batch #194.3) were sorted using 

Sephacryl S-200 high-resolution chromatography resin (GE Healthcare), as described 

previously by Liu et al.28 to produce (7,6)+(8,4), (8,3)+(8,4), (8,3)+(7,3), and (6,5)-

SWCNT enriched samples. For subsequent functionalization, the purified SWCNTs 

were stabilized as individual nanotubes in D2O (Cambridge Isotope Laboratories, Inc., 

99.8%) by 1 wt/v% sodium dodecyl sulfate (SDS, Sigma Aldrich, ≥ 99%). To prevent 

inner filter effects in spectroscopic characterization, the SWCNT concentration was 

kept low, with an optical density of 0.03–0.12 at E11. 

 

Table 3-1 DNA recognition sequences for the ATP-sorted SWCNTs 

SWCNT chirality DNA sequence 

(11,1)  T4C4T4 

(10,3) C5TC6 

(6,4) A3T6A3 

(11,0)  GC11, C12, TC6T, AC10A, AC11 

(9,1) (GTC)2GT, (TG)2T4(GT)2 

(6,5) TTA(TAT)2ATT 

(7,5) (ATT)4, TGG(GTG)2GGT 
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3.2.2 Covalent Functionalization of Fluorescent Quantum Defects 

Diazonium chemistry was the primary method used for covalent attachment of 

aryl functional groups to the SWCNTs.14,48,53 A series of diazobenzene 

tetrafluoroborate salts was synthesized from aniline derivatives, as reported 

previously.14 A small amount of diazonium salt was added to the chirality-enriched 

SWCNTs with a SWCNT-carbon-to-diazonium-salt molar ratio of 100–3000. To 

accelerate the reaction for low reactivity SWCNT species, such as (11,0), white light 

illumination was required.48,53 On the other hand, for some aryl defects that cannot be 

incorporated using diazonium reactions, such as divalent aryl or aminoaryl defects 

(e.g., >C6H3NH2), light activated arylation was used.35 For the reaction, a small aliquot 

of aryl halide (a molar ratio of 50) in acetonitrile (Acros organics, HPLC grade, 99.9%) 

and 7.6 mM of sodium bicarbonate (EMD chemicals, HPLC grade) was added to 1 mL 

of (6,5)-SWCNT (optical density at E11 ~0.1). Then the SWCNT solution was exposed 

to excitation light resonant to the SWCNT chirality to activate the arylation. The PL 

spectrum was in situ monitored. Once the defect PL intensity was sufficient to identify 

the peak position, the excitation-emission PL map was collected. 

We followed the experimental protocols reported in ref 15 to create alkyl 

defects. Briefly, a small aliquot of alkyl iodide (or bromide) dissolved in acetonitrile 

was added to the chirality-enriched SWCNTs with a SWCNT carbon to alkyl halide 

molar ratio of 10–300. The solution pH was adjusted to 8 by adding 7.6 mM sodium 

bicarbonate. Then, 3.6 mM of Na2S2O4 (Sigma Aldrich, 85%) was added to the 

mixture. After 2 h of reaction, the SWCNT solution was characterized by excitation-

emission PL mapping. To increase the density of the defects or drive reactions for low 
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reactivity SWCNTs, the concentration of the reactants can be increased proportionally 

to the concentration of the nanotubes. 

3.2.3 Spectroscopic Characterization.  

The SWCNT PL was characterized with a NanoLog spectrofluorometer (Horiba 

Jobin Yvon) using a liquid-N2 cooled InGaAs array. The SWCNTs were excited with 

monochromator-selected light (10 nm slit width) from a 450 W Xenon arc lamp. The 

excitation power was lower than 10 mW with an integration time of 1–10 s. The spectral 

resolution was 10 nm for the emission detection channel. UV-vis-NIR absorption 

spectra were obtained with a spectrophotometer equipped with a broadband InGaAs 

detector (Lambda 1050, PerkinElmer). The path length of absorption measurements 

was 10 mm. 

3.2.4 Temperature-Dependent Photoluminescence Spectroscopy 

3,5-dinitroaryl-functionalized (6,5)- and (8,4)-SWCNTs in 1% SDS-D2O with 

the intensity ratio I11
-/I11 of ~2.8 at 25 °C were used. The SWCNT solutions were heated 

from 25° to 60 °C using a circulating water bath, and the PL spectra were obtained in 

increments of 5–10 °C. The SWCNT PL was characterized with a NanoLog 

spectrometer. The temperature dependent PL spectra were obtained at E22 excitation of 

(6,5)- and (8,4)-SWCNTs (565 nm and 590 nm, respectively). The solution temperature 

was measured with a surface temperature sensor (LabQuest 2, Vernier). The PL peaks 

of E11 and E11
- were fitted with Voigt line shapes using Peakfit v4.12 (SeaSolve). The 

integrated peak areas were plotted as a function of temperature (Figure 3-1). 
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Figure 3-1 Temperature dependence of 3,5-dinitroaryl defect functionalized 

a-c, (6,5)- and d-f, (8,4)-SWCNTs. a,d, PL spectra of the functionalized (6,5)- 

and (8,4)-SWCNTs at E22 excitation. Asterisks (* and **) denotes the E11 and 

E11
- PL of (6,4)- and (8,3)-SWCNTs. b,e, Temperature-dependent PL 

evolution. c,f, PL intensity ratio I11/I11
- as a function of inverse temperature 

for 3,5-dinitroaryl functionalized The slope of each linear fit corresponds to 

the thermal detrapping barrier at the fluorescent defect (ΔEthermal). The 

reorganization energy is derived by subtracting ΔEthermal from the optical gap 

(E11 – E11
-) as is discussed more in the next chapter.  
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3.3 Results and Discussions 

3.3.1 Incorporation of Fluorescent Quantum Defects in SWCNTs  

We covalently attached functional groups into a series of (n,m)-SWCNTs to 

study the correlation of the photon energy emitted from the resulting fluorescent 

quantum defects with the structure of the SWCNT host (Figure 3-2). The chirality 

sorted SWCNTs were stabilized in 1 wt/v% SDS-D2O for subsequent functionalization 

(see Experimental Section for detailed protocols). The semiconducting SWCNT 

structures studied in this work ranged from 0.62 to 0.94 nm in diameter and from 0 to 

27.5° in chiral angle (Table 3-2). We used diazonium14 or alkyl15/aryl halide35 

chemistry for covalent attachment of 30 different functional groups to the selected 

SWCNT chiralities. The attached functional groups vary in electron withdrawing 

capability and bonding configurations, enabling us to modify the energy level of the 

defect state systematically relative to the native electronic structure of the nanotube. 

The functionalized SWCNTs were characterized by UV-vis-NIR absorption and PL 

spectroscopy. The E11 and E11
- wavelengths were determined by fitting the PL spectrum 

resulting from E22 excitation using Voigt profiles. 
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Figure 3-2 Fluorescent quantum defects in semiconducting SWCNT hosts. a, 

Schematic representation of fluorescent quantum defects incorporated as 

perfluorohexyl defects into a series of (n,m)-SWCNTs. An individual 

quantum defect creates a host-structure-dependent potential well where a 

mobile exciton can be trapped and fluoresce brightly. b, UV-vis-NIR 

absorption spectra of purified (5,4), (6,5), and (10,3) SWCNT solutions 

dispersed in 1 wt/v% SDS in D2O. c, Excitation-emission PL maps of 

perfluorohexyl functionalized (5,4), (6,5), and (10,3) SWCNTs, from top to 

bottom. 
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Figure 3-3 Spectral characterization of high purity SWCNT aqueous solution. a, 

UV-vis-NIR absorption spectra and b, excitation-emission PL maps of 

unfunctionalized (n,m)-SWCNTs in 1 wt/v% SDS in D2O. The purity and 

abundance of each chirality can differ depending on purification methods and 

batch. The black and blue dashed lines in the absorption spectra denote E11 

and E22 transitions, respectively.  



 

 

51 

 

Table 3-2 Chirality dependence of defect PL. Note that the PL spectra were 

obtained from SWCNTs in 1% SDS-D2O. Note that some Etrap values are 

derived from linear extrapolation of experimentally measured series 

(asterisked). 

(n,m)-SWCNT-C6H4NO2 

(n,m) mod Angle (deg) d (nm) E11 (nm) E11
- (nm) ΔE (meV) Etrap (meV) 

(5,4) 1 26.3 0.620 849 1052 282 211 

(6,4) 2 23.4 0.692 879 1066 247 185 

(7,3) 1 17 0.706 999 1160 172 129 

(9,1) 2 5.2 0.757 917 1115 240 180 

(6,5) 1 27 0.757 983 1145 178 133* 

(8,3) 2 15.3 0.782 955 1159 229 171 

(9,2) 1 9.8 0.806 1144 1310 137 123 

(7,5) 2 24.5 0.829 1025 1189 167 152 

(8,4) 1 19.1 0.840 1114 1276 141 127 

(7,6) 1 27.5 0.895 1124 1281 135 121 

(11,1) 1 4.31 0.916 1277 1486 137 123 

(10,3) 1 12.73 0.936 1266 1455 127 114 

(n,m)-SWCNT-C6F13 

(n,m) mod Angle (deg) d (nm) E11 (nm) E11
- (nm) ΔE (meV) Etrap (meV) 

(5,4) 1 26.3 0.620 842 1027 265 199 

(6,4) 2 23.4 0.692 879 1082 264 198 

(7,3) 1 17 0.706 999 1190 198 148 

(9,1) 2 5.2 0.757 925 1128 241 181 

(6,5) 1 27 0.757 979 1152 190 142* 

(8,3) 2 15.3 0.782 955 1169 238 178 

(7,5) 2 24.5 0.829 1032 1206 173 156 

(8,4) 1 19.1 0.840 1112 1284 149 134 

(7,6) 1 27.5 0.895 1133 1291 134 120 

(9,4) 2 17.48 0.916 1114 1270 137 123 

(11,1) 1 4.3 0.916 1277 1487 137 123 

(10,3) 1 12.73 0.936 1260 1445 126 113 

(n,m)-SWCNT>CF2 

(n,m) mod Angle (deg) d (nm) E11 (nm) E11
- (nm) ΔE (meV) Etrap (meV) 

(5,4) 1 26.3 0.620 835 1025 275 206 

(6,4) 2 23.4 0.692 881 1097 277 208 

(7,3) 1 17 0.706 1008 1211 206 154 

(6,5) 1 27 0.757 983 1168 200 150 

(n,m)-SWCNT-C6H13 

(n,m) mod Angle (deg) d (nm) E11 (nm) E11
- (nm) ΔE (meV) Etrap (meV) 

(6,4) 2 23.4 0.692 879 1049 228 171 

(7,3) 1 17 0.706 1005 1150 156 117 

(9,1) 2 5.2 0.757 923 1086 202 151 

(6,5) 1 27 0.757 985 1105 137 103* 

(8,3) 2 15.3 0.782 955 1124 195 146 

(7,5) 2 24.5 0.829 1032 1174 145 130 

(8,4) 1 19.1 0.840 1114 1228 102 92 

(7,6) 1 27.5 0.895 1124 1228 92 83 

(n,m)-SWCNT-C6H4N(C2H5)2 

(n,m) mod Angle (deg) d (nm) E11 (nm) E11
- (nm) ΔE (meV) Etrap (meV) 

(6,4) 2 23.4 0.692 880 1053 232 174 

(6,5) 1 27 0.757 987 1132 161 121* 

(8,3) 2 15.3 0.782 955 1127 200 150 

(7,5) 2 24.5 0.829 1032 1164 136 122 

(8,4) 1 19.1 0.840 1114 1242 114 103 

(7,6) 1 27.5 0.895 1124 1227 92 83 

(n,m)-SWCNT-C6H3(NO2)2 

(n,m) mod Angle (deg) d (nm) E11 (nm) E11
- (nm) ΔE (meV) Etrap (meV) 

(5,4) 1 26.3 0.620 839 1000 238 178 

(6,4) 2 23.4 0.692 876 1029 210 225* 

(7,3) 1 17 0.706 880 1084 265 138 

(9,1) 2 5.2 0.757 920 1169 287 215 

(6,5) 1 27 0.757 985 1160 190 143* 

(8,3) 2 15.3 0.782 957 1171 237 160* 

(7,5) 2 24.5 0.829 1031 1192 162 146 

(8,4) 1 19.1 0.840 1114 1282 146 132* 

(11,0) 2 0 0.873 1058 1225 160 144 

(7,6) 1 27.5 0.895 1136 1281 124 112 
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Figure 3-2 displays the absorption spectra and emission-excitation PL maps of 

three representative nanotube species: (5,4), (6,5), and (10,3). Incorporation of 

perfluorohexyl fluorescent quantum defects produce a new E11
- PL peak at a redshifted 

wavelength from the native E11 emission of the nanotube host. The E11
- peak originates 

from the radiative recombination of trapped excitons from fluorescent defect sites,14 as 

evidenced by the fact that both the E11 and E11
- PL peaks are correlated with the E22 

excitation of the SWCNT in excitation-emission maps of the functionalized samples 

(Figure 3-2). Although the attached functional groups (-C6F13) are the same, the 

emission wavelength of E11
- was found to vary dramatically with the nanotube species, 

which implies a correlation with the host structures.  

We tabulated the emission wavelengths of E11 and E11
- PL for the different 

nanotube chiralities studied and the energy difference between these two PL peaks 

(optical energy gap, ΔE = E11 – E11
-) in Table 3-1. The results provide a basis for an 

empirically determined energy plot of defect PL versus (n,m) chirality for 

semiconducting SWCNTs (Figure 3-5 and Figure 3-6). Among the species investigated 

here, the longest wavelength of defect PL appears at 1487 nm for perfluorohexyl 

functionalized (11,1) nanotubes, (11,1)-SWCNT-C6F13. The shortest wavelength of 

defect PL occurs at 1000 nm for (5,4)-SWCNT-3,5-C6H3(NO2)2. The largest ΔE value 

was 282 meV for (5,4)-SWCNT-C6H4NO2, whereas the smallest was 92 meV for (7,6)-

SWCNT-C6H13. This wide emission wavelength range covers the biological 

transparency window12 and most of the telecommunication range,48-49 and can be 

exploited for applications that require bright, high-quality light sources at near infrared 

wavelengths.45,48-49,58 
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Figure 3-4 Tunable defect PL as a function of host chirality. Experimentally 

determined E11
- wavelength of a, (n,m)-SWCNT-C6H4NO2, b, (n,m)-

SWCNT-C6F13, and c, (n,m)-SWCNT-C6H3(NO2)2 on a graphene sheet 

showing (n,m) lattice points. The color bar shows the emission wavelength of 

the defect PL. A lattice with diagonal stripes is non-emitting metallic 

SWCNT. A filled lattice is a semiconducting SWCNT studied in this work. 

The blue arrow and θ in a represent the chiral vector and chiral angle of (6,2)-

SWCNTs as a demonstration of SWCNT chirality. The molecular structure of 

the defects is specified in each part of the figure.  
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3.3.2 Structure-Property Relationships of the Defect PL Emission 

Each SWCNT structure can be uniquely indexed by a pair of (n,m) integers to 

indicate the chirality of the nanotube based on the roll-up vector of a graphene sheet 

(Figure 3-4). The direction of rolling determines not only the physical structure, such 

as diameter and chiral angle,59 but also the electronic band structure of the 

nanotube.16,55-56 Specifically, becasue a SWCNT imposes boundary conditions on the 

electron wave function in the direction of rolling, for semiconducting (n,m)-SWCNTs, 

dividing (n – m) by 3 leaves a remainder of 1 or 2, which are classified as mod (n – m, 

3) = 1 and mod (n – m, 3) = 2, respectively. If (n – m, 3) is evenly divisible by 3, the 

SWCNT is metallic and therefore does not emit. 

Covalent functionalization may break the intrinsic symmetry of the SWCNT by 

converting sp2 carbons to sp3, which modifies the energy level of the functionalized 

nanotube locally at the site of the defect.14-15 At this local defect state, the optical 

properties, including the emission energy and the size of exciton,37 are different from 

those of the intrinsic E11 excitons. Hence, we analyzed the structure-dependent 

properties of defect-trapped excitons in (n,m)-SWCNTs with perfluorohexyl, 4-

nitroaryl, and 3,5-dinitroaryl defects, and mapped out the structure-dependence of the 

E11
- emission wavelength onto the graphene lattice (Figure 3-4). The results show in 

general that the E11
- for larger SWCNT diameters emits at longer wavelength, but it 

also depends on the chiral angle of the nanotube.  

We observed a positive correlation between the E11 and E11
- emission energies 

for the studied chiralities with the same perfluorohexyl functional groups (Figure 3-5a), 

indicating that the defect state is closely related to the E11 excitonic state. The energy 
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difference between E11 and E11
- (ΔE) were examined for dependence on diameter (d), 

chiral angle (θ), and mod (n – m, 3). We explored the diameter dependence by fitting 

ΔE with the inverse second order equation of diameter (Eqn. 3-1): 

∆E/meV = 11.3 d−2 + 2 3d−1 − 1 8 ,   Eqn. 3-1 

in which d is the SWCNT diameter in nm. Figure 3-5b shows in general an inverse 

correlation between ΔE and diameter. However, we also observe 28% deviation of ΔE 

on average from eq. 1 for the range of diameters studied, suggesting diameter alone 

cannot account for ΔE variation, thus the chirality effect should be considered. 

Although the ΔE versus chirality plot displays no obvious pattern (Figure 3-5c), we 

found that the deviation of ΔE is mod dependent with higher ΔE values for structures 

of mod (n – m, 3) = 2 than for mod (n – m, 3) = 1. This mod dependent deviation of ΔE 

is reminiscent of what was reported for the E11 energy and diameter correlation.21,55 

The mod dependent deviation represents the degree of electronic decoupling and will 

be discussed in the next section. 

 

Figure 3-5 SWCNT structure relationship to perfluorohexyl defects. Closed 

and open circles indicate mod 1 and mod 2. a, Positive correlation between 

E11 and E11
- wavelengths. The solid line is a quadratic function drawn to guide 

the eye. b, Diameter dependence of ΔE. The solid line is an empirical fitting 

to Eqn. 3-1. c, Chirality effect on ΔE. The dashed line indicates metallic 

armchair SWCNTs with θ = 30o. Each point represents different (n,m) species 

that are covalently functionalized with perfluorohexyl defects. 
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3.3.3 Exciton Trapping Potential at Fluorescent Quantum Defects 

The exciton trapping potential (Etrap) is the minimum energy required to detrap 

the E11
- exciton from the defect trap to restore as a free E11 exciton. It is an important 

parameter to understand the structure-related properties of excitons as well as to predict 

the PL stability. As established in our previous work,60 the trapping potential of a defect 

state can be experimentally determined by monitoring the E11 and E11
- PL as a function 

of temperature or calculated from the difference between the optical energy gap (ΔE) 

and the reorganization energy (λ).  

Reorganization occurs due to deformation of the nanotube geometry upon 

exciton trapping at the defect site60 and is related to the exciton localization at the defect 

site,61-62 with greater localization presumably leading to a larger reorganization energy. 

When the density of defects increases, the exciton wavefunction may be delocalized 

across multiple defects, leading to weaker localization of excitons at the defect site and 

smaller reorganization energy. For the series of perfluorohexyl defect-tailored 

SWCNTs, we also experimentally derived a larger λ in smaller diameter SWCNTs (d 

< 0.84 nm, Figure 3-1). Such greater spatial localization of the wave function 

effectively increases the amount of exciton-phonon coupling and thus increases 

reorganization energy in small diameter SWCNTs. By linear extrapolation from the 

experimentally determined series (Table 3-2), we derived that the trapping potential of 

perfluorohexyl defect-trapped excitons ranges from 113–200 meV, as shown in Figure 

3-6. 

Our results suggest that the trapping potential is related to the size of the trapped 

exciton (electron-hole separation). For a larger trapping potential, the wavefunction of 
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the exciton, which can be computed using density functional theory,60 is more spatially 

localized at the defect site.37,60,63 This is congruent with our previous theoretical 

prediction that an E11 exciton of a (6,5)-SWCNT is squeezed by 17% in size when 

trapped at an aryl defect.60 The inverse correlation between Etrap and diameter 

(regardless of λ values) implies that in smaller diameter SWCNTs, a defect trap can 

effectively reduce the exciton size and increase the oscillator strength of the defect 

state.63 Strong localization at a deep trap may enhance the binding energy of the E11
- 

exciton, and improves the stability of the defect trapped excitons. This may be related 

to the diameter dependent quantum yield enhancement14 and PL stability of E11
- 

excitons in single photon emission.11,48 Although the photon conversion efficiency is 

an important parameter for many potential applications of fluorescent quantum defects, 

it remains a challenging and labor-intensive task,14 which warrants the development of 

more efficient techniques to quantify this value. Extrapolating beyond d > 0.94 nm (the 

largest diameter studied here), our empirical fitting of Etrap (solid line in Figure 3-6a) 

predicts that sp3 defects created by covalent functionalization create shallow traps in 

large diameter SWCNTs (e.g., few meV for d > 1.3 nm), making trapping and radiative 

recombination of E11
- excitons less efficient.  

Another interesting finding is that only a weak chirality dependence was 

observed for the E11
- fitting. Figure 3-6b shows the empirically fitted emission energy 

of the E11 and E11
- exciton as a function of diameter for 12 SWCNT chiralities that are 

tailored with perfluorohexyl fluorescent quantum defects. There is a clear inverse 

correlation between nanotube diameter and exciton emission energy. The deviation 

from the diameter fitting is due to the chiral angle dependence. This dependence 
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becomes more apparent if we group the same nanotube families (2n +m) with a solid 

line, indicating the set of SWCNTs with similar diameters but different chiral 

angles.15,16,21 It is also clear that the curvature effects in E11
- are less significant than 

those in E11. These two trends may be understood by examining the electronic structure 

of the nanotube host and the molecular nature of the defects. The E11 energy levels 

influence the energy levels of the defect states because the defect state originates from 

the splitting of the doubly degenerate frontier orbitals of the SWCNT host.1,22 and thus 

exhibits some degrees of chiral angle dependence that arises from the trigonal wrapping 

effect inherent in the host.16 Meanwhile, once a mobile exciton is trapped at an sp3 

defect, the trapped exciton manifests photophysics that is different from the E11 exciton, 

which is governed by the sp2 symmetry of the SWCNT lattice. Thus, our data suggest 

that as the defect trap becomes deeper, the exciton localization is stronger, and the 

optical and electronic properties of the trapped excitons become closer to an isolated 

zero-dimensional system with weaker dependence on the chiral angle of the nanotube 

host. 

Finally, Figure 3-7 demonstrates that the trapping potential and emission 

energies of defect-trapped excitons are highly tunable depending on the chemical 

nature of the defects. Here we specifically studied (6,5)-SWCNT because it is easier to 

prepare high purity samples compared to other chiralities. The spectral characterization 

of all defect-tailored (6,5)-SWCNTs studied in this work is available in Table 3-3 of 

the Supplemental Information. We note that this correlation between the chemical 

natures of the defect and ΔE is observed for other chiralities as well (Table 3-2). Due 

to the wide choice of defects (30 different functional groups), the defect PL of (6,5)-
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SWCNTs can be broadly tuned over the emission wavelength of 1094–1164 nm. We 

found that in general, Etrap, as well as the E11
- wavelength and ΔE, increased as the 

electron withdrawing ability of the defects became stronger. The electron withdrawing 

ability can be quantified using Hammett constants for aryl defects64 and Taft constants 

for alkyl defects.65 From the study presented here, we show that the chemical nature of 

defects has a significant impact on the fluorescent quantum defects, as manifested in 

Etrap which follows a linear correlation with both Hammett (σ) (Figure 3-7a) and Taft 

constants (σ*) (Figure 3-7b). Combining the results of Figure 3-6 and Figure 3-7, we 

derived empirical prediction models of ΔE for monovalent aryl- and alkyl-defect 

tailored SWCNTs. For aryl-defect functionalized SWCNTs, 

∆E

meV
=

17.3

(d/nm)2
+

235.5

d/nm
− 1 6.3 + ∆σ(613.2 −

559

d/nm
) ,  Eqn. 3-2 

For alkyl-defect functionalized SWCNTs, 

∆E

meV
=

11.3

(d/nm)2
+

253

d/nm
− 1 8 + ∆σ∗(20 .1 −

248.6

d/nm
)  Eqn. 3-3 

in which Δσ is σ – 0.788 and Δσ* is σ*– 4.87. Due to the chiral angle dependence of 

the E11 and E11
- PL, the chiral angle dependence generates on average 9% deviation 

from the experimentally determined values from the diameter fitting. 

Lastly, we note that bonding configuration also influences Etrap and E11
- PL (Figure 

3-7c). Divalent defects, including >CF2, >CH2, >C6H4, and >C6H3NH2, tend to create 

deeper defect potentials and increase the exciton trapping potentials compared to their 

monovalent counterparts (-CF3, -CH3, -C6H5, and -C6H4NH2).  
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Figure 3-6 Trapping potential of E11
- exciton at organic colour centres. a, 

Diameter dependence of the trapping potential of E11
- excitons in (n,m)-

SWCNT-C6F13. b, Diameter dependence of E11 (gray) and E11
- (blue) emission 

energies. The labels categorize the (2n + m) families. Filled and open circles 

mark mod 1 and 2 SWCNT structures, respectively. 
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Figure 3-7 Trapping potential of E11
- excitons at fluorescent quantum defects 

in (6,5)-SWCNT host. a, The inductive and resonance effects of terminating 

aryl moieties on Etrap. b, Inductive effects of alkyl chains on Etrap. The solid 

lines in a and b are linear fitting of the correlations. c, Divalent methyl 

(square), aminoaryl (circle), aryl (triangle), and perfluoromethyl (diamond) 

defects have larger Etrap compared to their monovalent counterparts. The 

dashed line is Etrap(monovalent) = Etrap(divalent) drawn to guide the eye. The 

correlations are also observed for other chiralities, as shown in Table 3-2. 
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Table 3-3 Chemical tunability of defect PL in (6,5)-SWCNTs. The position 

of the substituent in aryl defects is para if not specified. 

(6,5)-SWCNT-aryl  (6,5)-SWCNT-alkyl 

R E11 (nm) E11
- (nm) ΔE (meV)  R E11 (nm) E11

- (nm) ΔE (meV) 

-C
6
H

4
-N(CH

3
)
2
 990 1130 155  -CH

3
 980 1094 132 

-C
6
H

4
-N(C

2
H

5
)
2
 987 1132 161  -CH

2
(CH

2
)
2
CH

3
 984 1099 132 

-C
6
H

4
-NH

2
 990 1132 157  -CH

2
(CH

2
)
3
CH

3
 981 1096 133 

-C
6
H

3
-3,5-(NH

2
)
2
 990 1141 166  -CH

2
(CH

2
)
4
CH

3
 980 1097 135 

-C
6
H

4
-OCH3 983 1125 159  -CH

2
(CH

2
)
4
CF

3
 980 1099 137 

-C
6
H

4
-C(CH

3
)
3
 983 1131 165  -CH

2
(CH

2
)
4
COOH 980 1102 140 

-C
6
H

4
-CH

3
 983 1127 161  -CH

2
(CH

2
)
2
CF

3
 981 1101 140 

-C
6
H

4
-NHC

2
H

4
CONH

2
 985 1128 160  -CH

2
(CH

2
)
3
CF

3
 979 1104 143 

-C
6
H

5
 984 1134 167  -CH

2
CH

2
CF

3
 981 1110 147 

-C
6
H

4
-CO

2
 985 1134 165  -CH

2
(CH

2
)
3
CF

2
CF

3
 980 1107 146 

-C
6
H

4
-I 980 1131 169  -CH

2
(CF

2
) 

2
CF

3
  980 1114 152 

-C
6
H

4
-Cl 980 1130 169  >CH

2 
(
12

C) 979 1125 164 

-C
6
H

4
-Br 982 1135 170  >CH

2 
(
13

C) 980 1125 163 

-C
6
H

4
-NO2 985 1147 178  -CH

2
CH

2
(CF

2
)
3
CF

3
 983 1137 170 

-C
6
F

5
 983 1150 183  -CH

2
CH

2
(CF

2
)
5
CF

3
  983 1139 173 

-C
6
H

3
-3,5-(NO

2
)
2
 985 1160 190  -CF

2
(CF

2
)
6
CF

3
 979 1152 190 

-C
6
H

3
-2,4-(NO

2
)
2
 985 1157 187  -CF

2
(CF

2
)
4
CF

3
 981 1155 190 

>C
6
H

3
-o-NH

2
 986 1141 171  -CF

2
(CF

2
)
2
CF

3
 979 1155 193 

>C
5
H

3
N 980 1145 182  -CF

3
 980 1158 194 

>C
6
H

4
 986 1162 190  >CF

2
 980 1164 200 
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3.4 Conclusion 

In conclusion, we have synthesized a series of fluorescent quantum defects in 

semiconducting SWCNTs and determined the diameter and chirality dependence of PL 

emission wavelengths and the thermal trapping potential for defect-trapped excitons. 

Similar to the native exciton (E11) in unfunctionalized SWCNTs, the E11
- PL is strongly 

correlated with nanotube diameter. The emission energy of defect-trapped excitons, 

however, is largely free from chiral angle and family patterns of the semiconductor 

host, suggesting that an exciton at an fluorescent quantum defect to some degrees 

decouples from the one-dimensional nanotube host. Our work establishes the structure-

property relationships for fluorescent quantum defects that may help guide the 

controlled and tailored synthesis of this new family of quantum emitters for 

applications in bioimaging, quantum information, and optoelectronics in general.   
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4 Exciton Trapping and Detrapping at a Fluorescent Quantum 

Defect 

Adapted from Kim, M.; Adamska, L.; Hartmann, N.; Kwon, H.; Liu, J.; Velizhanin, 

K.; Piao, Y.; Powell, L.; Meany, B.; Doorn, S.; Tretiak, S.; Wang, Y. J. Phys. Chem. 

C 2016, 120, 11268–11276 

Y.W. and M.K. conceived and designed the experiments. M.K., N.H., H.K., Y.P., and 

L.P. performed experiments. B.M. purified carbon nanotube solution. L.A., J.L., and 

S.T. performed DFT calculations. K.V. constructed theoretical models. Y.W., S.K.D., 

and M.K. wrote the manuscript with inputs from all authors. 

 

4.1 Introduction 

A fluorescent quantum defects can trap a mobile exciton (Figure 2-10), 

allowing the exciton to decay radiatively via E11
- PL. The defect PL occurs at red-

shifted energies from the native PL (E11).
14-15 The unique optical properties of these 

fluorescent defects have spurred intensive investigations on exciton trapping and 

brightening at defect sites.37,62,66-70 Beyond a desire to understand the origins and 

behavior of this novel emission, studies are motivated by the promise defect emission 

holds for photonic, optoelectronic, sensing, and imaging applications, afforded by 

potential for enhanced quantum yields,14,37,69,71 new functionality,45 and as photon 

upconversion72 and quantum light sources.48-49 

An important aspect of defect-induced photophysics that remains to be 

understood is determining the factors underlying exciton trapping. In particular, we 

seek to understand the depth of the trapping potential and how it impacts the observed 

emission behavior. Trap depth is a determining factor in such fundamental behavior as 
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the degree of exciton localization and for relaxation processes or impact on band 

positions (of relevance to dopant-site redox behavior and potential impact on energy 

harvesting ability).68 Trap depth can also impact the quality and stability of defect PL 

emission.48,62 Furthermore, thermal detrapping is an important step in recently observed 

photon upconversion from similarly defect-engineered SWCNTs.72 Studies of 

thermally-induced exciton detrapping in oxygen-doped and alkylated nanotubes 

indicate the trap depth is significantly lower, with detrapping energies (ΔEthermal) being 

less than 50% of ΔEoptical (energy difference between E11 and E11
-, marked in Figure 

4-1b).69,71 Combined experimental and theoretical studies of the defect-site redox 

behaviors also indicate a reduction in bandgap that is significantly smaller than the 

associated optical energy shift.68 While a simplistic picture of ground-state perturbation 

of exciton energies at the oxygen dopant site provides an initial understanding of the 

difference in observed energies,71 the origin of the large discrepancy between ΔEoptical 

and ΔEthermal is not yet established.  

Herein, we quantitatively probe the thermal activation of defect-trapped 

excitons as a function of the chemical nature and density of defects and generalize the 

behavior to a new class of defects. A series of fluorescent aryl defects were chemically 

created in (6,5)-SWCNTs through controlled diazonium chemistry.14 Detrapping 

energies for each defect type are derived from van ‘t Hoff plots constructed based on 

the intensity ratio of E11 and E11
- PL as a function of temperature. The measured 

detrapping energies are directly correlated with the optical gaps ΔEoptical determined 

from defect PL. We found that both ΔEoptical and ΔEthermal are linearly dependent on the 

electron-withdrawing nature of specific functional groups, as measured by the 
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Hammett substituent constant. At relatively high defect densities, ΔEthermal is more than 

half of ΔEoptical. However, we found a strong dependence of the energy mismatch on 

defect density, with differences between ΔEthermal and ΔEoptical on the order of 100 meV 

found in the low-density limit. Based on these observations, we propose a theory that 

highlights as the origin of the ΔEthermal and ΔEoptical energy difference a substantial 

vibrational reorganization energy between the excited and ground state of SWCNTs in 

the presence of a fluorescent defect. This proposed origin is supported by density 

functional theory (DFT) calculations of reorganization energies that agree with the 

experimental trends and magnitude of measured trapping energies. 
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Figure 4-1 Temperature dependence of defect PL in functionalized SWCNTs. 

a, Energy diagram of a SWCNT with a fluorescent quantum defect: An 

exciton trapped at the defect level (E11
-) can thermally escape the quantum 

defect well and recombine via the bright singlet exciton channel (E11). b, UV-

vis-NIR absorption (black) and vis-NIR photoluminescence spectra of (6,5)-

SWCNT-C6H4NO2. c, Peak fitted PL spectra of (6,5)-SWCNT-C6H4NO2 

(synthesized from [Dz]:[C] = 1:500) at increasing temperatures with 5oC 

increments. d, The van ‘t Hoff plot as derived from the PL spectra in Figure 

c. Open circles where surfactant reorganization effects are dominant are 

excluded for calculating the potential well depth. 
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4.2 Experimental Section 

4.2.1 Chirality-Enriched Carbon Nanotubes  

HiPco SWCNTs (Rice University, batch #194.3) were sorted using SephacrylTM 

S-200 high-resolution chromatography resin (GE Healthcare), as described 

previously,28 to produce (6,5)-SWCNTs enriched samples. The purified SWCNTs were 

stabilized as individual nanotubes in D2O (Cambridge Isotope Laboratories, Inc., 

99.8%) by 1 wt.% sodium dodecyl sulfate (SDS) for subsequent studies. Alternatively, 

a polymer aqueous two-phase (ATP) separation process25,30 was used also to generate 

(6,5)-SWCNTs enriched material used for doping with ozone and covalent 

functionalization with 3,5-dichlorobenzenediazonium tetrafluoroborate. After chirality 

isolation the SWCNTs were exchanged into 1 wt.% SDS in Millipore H2O or 1 wt.% 

sodium dodecylbenzenesulfonate (SDBS) in Millipore H2O surfactant environment via 

pressure filtration (100 kDa regenerated cellulose membrane). 

4.2.2 Chemical Creation of Fluorescent Aryl Defects in SWCNTs 

Aryl defects were created through controlled functionalization of SWCNTs 

with aryl diazonium salts as we previously described.14 We note that a modified 

functionalization protocol62
 was used for (6,5)-SWCNT-C6H3Cl2, which was 

suspended by 1 wt/v% sodium deoxycholate (DOC) while in all other cases the 

functionalized nanotubes were stabilized by 1 wt.% SDS. Briefly, the concentration of 

(6,5)-SWCNTs was adjusted to give an optical density of 0.1 at the 𝐸11 absorption. A 

4-nitrobenzenediazonium tetrafluoroborate (4-C6H4NO2N2
+∙BF4

-) solution was then 

added to this nanotube solution for a starting molar ratios of reactants, [Dz, 
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diazonium]/[C, nanotube carbon], at 1:4,000, 1:2,500, 1:1,500, 1:1,000, 1:750, 1:500 

and 1:250. These reactant ratios were slightly adjusted for the other diazonium salts to 

accommodate the difference in reactivity. The reaction occurs at room temperature with 

a pH of 5.5 and was monitored by following the defect photoluminescence with a 

NanoLog spectrofluorometer (Horiba Jobin Yvon) and UV-vis-NIR absorption with a 

Lambda 1050 UV-vis-NIR spectrophotometer (PerkinElmer). The corresponding 

Raman D/G ratio was calculated from Raman spectra collected under both 532 nm and 

633 nm excitation (LabRAM ARAMIS Raman microscope, Horiba Jobin Yvon). 

4.2.3 Introduction of Oxygen Defects in SWCNTs 

Oxygen dopants were introduced by following a doping protocol described 

previously.71 (6,5)-SWCNTs in 1 wt.% SDBS (OD of 0.04 at E11) were diluted with 

nanopure H2O to a concentration of 0.2 wt.% SDBS. Ozonated nanopure H2O was then 

added with a volume ratio of 1:1. The reaction mixture was illuminated for 4 h by a 

quartz-tungsten halogen lamp and subsequently quenched by pressure filtration 

through a 100 kDa cellulose membrane using 1.04 wt.% DOC solution as eluate. 

4.2.4 Temperature-Dependent Photoluminescence Spectroscopy 

To probe the energy levels of fluorescent aryl defects, both the defect (E11
-) and 

original (E11) PL were collected as a function of solution temperature. The temperature 

of the nanotube solution was controlled using a circulating water bath stage (FL-1027, 

Horiba Jobin Yvon). The temperature was measured with an immersion Surface 

Temperature Sensor and LabQuest 2 (Vernier). At each 5 oC increment from 15 oC to 

85 oC, a photoluminescence spectrum was collected. The 𝐸11 and 𝐸11
−  were fitted with 
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Voigt profiles using Peakfit v4.12 (SeaSolve), and the integrated intensity ratios were 

plotted against temperature. 

4.2.5 Quantum Chemical Modeling 

The computations were performed using Gaussian 09 software suite.73 A 10 nm 

long (6,5)-SWCNT segment, with open ends terminated by hydrogen atoms, was used. 

The system contained about 1000 carbon atoms. Density functional theory (DFT) 

calculations were done using Coulomb-attenuated B3LYP functional74 and STO-3G 

basis set. The optical transitions were computed using time-dependent DFT (TD-DFT). 

If not mentioned otherwise, the calculations were done in vacuum. Some test cases 

have utilized solvents effects in the framework of conductor-like polarizable continuum 

medium model75 using experimentally relevant water solvent. The functional group 

was added in the middle of the nanotube. In the case of oxygen doping, only the lowest 

energy structure (named ether-d in ref.71) was studied. In the case of aryl defects, we 

show the results for a special defect configuration consisting of 4-bromoaryl ring and 

hydrogen atom added to the nearest neighbor carbon along the tube axis. 

4.2.6 Characterization of Defect Density through Raman Spectroscopy 

Raman spectra were collected from solid SWCNT samples using a Raman 

microscope (Horiba Jobin Yvon, LabRAM, ARAMIS) in duo scan mode, which 

averages spectra from a 30×30 µm2 area. Each data was sampled from at least 5 

different regions and averaged to ensure data is statistically meaningful. The excitation 

wavelengths were 531 nm and 632.8 nm.  
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4.3 Results and Discussions 

4.3.1 Defect Detrapping Energy Derived from Temperature Dependence of 

PL evolution 

To determine the defect detrapping energy, we measured the PL spectra at 5 °C 

increments (over a temperature range from 15 to 85 °C) and constructed van ’t Hoff 

plots based on the intensity ratio of the E11 and E11
- PL as a function of temperature 

(Figure 4-1). We note that the PL intensities discussed here are integrated PL 

intensities. The van ’t Hoff analysis is routinely applicable to an effective two-level 

system at thermal equilibrium where at finite temperature the ratio of populations of 

two states is given by a Boltzmann exponent, exp(−ΔE/kT), where ΔE is the energy 

between the two states. For the case of SWCNTs that involve trapped (E11
-) and free 

(E11) excitons the situation is more complicated since the “upper state”, i.e., the free 

exciton, is not a single state, or a discrete number of states, but a continuum of freely 

moving excitons with a thermal distribution of kinetic energies. The partition function 

for such a system is given by76 

𝑍 = 𝑍𝑡 + 𝑍𝑓 = 𝐿𝑛𝑑 +
𝐿

𝜋ℏ
𝑒−∆𝐸/𝑘𝑇[∫ 𝑑𝑝

∞

0
𝑒−𝑝

2/2𝑀𝑘𝑇]
𝑁

  Eqn. 4-1 

where the first right-hand side term is the number of defect sites (nd is the concentration 

of defect sites and L is the SWCNT length). The dimensionality of the system is 

denoted by N (1 in the case of SWCNT). The second right-hand-side term represents 

the summation over the thermally excited free exciton states, where M is the exciton 

total mass, k is the Boltzmann constant, and T is temperature. The integral here can be 

evaluated exactly, leading to the ratio of trapped and free exciton populations as 
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𝑝𝑓

𝑝𝑡
=

𝑍𝑓

𝑍𝑡
∝ 𝑇𝑁/2𝑒−∆𝐸/𝑘𝑇   Eqn. 4-2 

with the result being similar to the classical result for a thermally excited population of 

electrons in an extrinsic n-type semiconductor.76 The ratio of populations in Eqn. 4-2 

is not exactly of the van ’t Hoff type. However, the population of excitons is not what 

is directly accessed experimentally. Instead, what is analyzed is the ratio of 

photoluminescence intensities, which is essentially different from the ratio of 

populations if the oscillator strengths are temperature-dependent. The oscillator 

strength of the zero-dimensional trapped exciton is constant. However, thermally 

excited free excitons are decoupled from photons, so the average oscillator strength of 

free excitons in a 1D system (e.g., SWCNT) is proportional to 1/√T.77-79 The result is 

that the square roots of temperature, originating from the ratio of populations, and from 

the oscillator strength considerations, cancel each other, resulting in the ratio of PL 

intensities being the Boltzmann factor:  

I11/I11
- ∝ exp(-ΔE/kT)     Eqn. 4-3 

in which I11 and I11
- are the integrated PL intensities of E11 and E11

-. Therefore, the 

energy between the trapped and free excitonic states can be effectively derived by the 

van ’t Hoff method. This energy difference is denoted as ΔEthermal to differentiate it 

from the optical gap ΔEoptical, which is determined from the emission energies. We note 

that this analysis neglects the possibility of dark exciton and trap states, which will 

introduce additional temperature dependences to observed PL intensities at low 

temperatures.37,80-81 In the temperature range of our experiments, however, such an 

approximation is suitable. We further note that this van ’t Hoff analysis can be skewed 

toward smaller ΔEthermal if there exists an inhomogeneous distribution of trap depths. 
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This effect is minimized here by integrating over the entire line width of the emission 

to better account for the contribution from the entire population of both native excitons 

and defect-trapped excitons. Quantification of this effect may be possible by applying 

similar techniques as developed by Graham et al. and Schilling et al. to determine the 

inhomogeneous broadening of the native exciton (E11) band due to a distribution of 

energy barriers.82-83 Experimentally, we found that the PL of aryl-tailored nanotubes 

systematically responds to changes in the solution temperature. Above 25 °C, the PL 

intensity of both E11 and E11
- gradually decrease with temperature (Figure 4-1c), but 

the relative decrease is more rapid for E11
-. The behavior of E11 is due to the 1/√T 

intensity dependence, as discussed above, while the intensity loss in E11
- arises from 

thermally induced exciton detrapping from the defect site. As shown in Figure 4-1d, 

the integrated intensities of E11 and E11
- PL are correlated with temperature by the 

following van ’t Hoff relation:  

𝑙𝑛
𝐼11

𝐼11
− = −

∆𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝑘𝑇
+ 𝐴′     Eqn. 4-4 

in which A’ is a correction factor. The slope of the van ‘t Hoff plot thus provides the 

thermal detrapping energy equal to 131 meV for (6,5)-SWCNT-C6H4NO2. 

 

4.3.2 Defect Detrapping Energy as a Function of the Chemical Nature of 

Defects 

The ability to synthetically tune the aryl dopants to alter optical properties 

provides a route to probe the generality and structural dependences of the ΔEthermal 

behavior. We constructed van ’t Hoff plots for a series of seven fluorescent aryl defects 

with different substitutional moieties (Figure 4-2). In all cases, a good linear fit to Eqn. 
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4-3 is found, allowing ΔEthermal to be extracted for each dopant (see Table 4-1). We 

found that ΔEthermal is linearly correlated with the electron-withdrawing capabilities of 

the terminating groups, as measured by the Hammett constant (σ).84 As σp increases 

from −0.83 for 4-N,N-diethylamine to 1.42 for 3,5-dinitro, ΔEthermal increases by 41 

meV (Figure 4-3, red data, and also Table 4-1). This trend in ΔEthermal closely traces 

what was observed with ΔEoptical (Figure 4-3, black data). As σp increases, the 

magnitude of ΔEoptical also increases (see also Table 4-1) and directly parallels the 

change observed in ΔEthermal. In our previous experiments it was concluded that a larger 

σp could effectively lower the E11
- state, creating a deeper trap for excitons.14 The linear 

correlation between ΔEthermal and ΔEoptical thus consistently suggests that greater energy 

will be required for an exciton to thermally escape a deeper trap, as expected. Of 

significant interest, However, is the observation of a large energy offset of ∼45 meV 

between ΔEthermal and ΔEoptical that remains nearly constant for each type of aryl defect. 

Notably, in all cases, the magnitude of the observed ΔEthermal values are significantly 

lower (on the order of 70%) than the corresponding ΔEoptical values (Figure 4-3). This 

energy mismatch across the aryl defect series is also larger than that reported by the 

Weisman group for oxygen-doped nanotubes.71 We note that in Figure 4-1d and Figure 

4-2, for temperatures below 25 °C, the intensity ratio of E11 to E11
- begins to rise again 

as the temperature is lowered further. This behavior is likely due to surfactant 

reorganization at low temperatures.85-88  

Here, we conclude that the energy mismatch between ΔEthermal and ΔEoptical is 

now seen as a general phenomenon over a wide range of defect tailored SWCNTs. 
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Figure 4-2 van ‘t Hoff plots for fluorescent quantum defect-labeled (6,5)-

SWCNTs. The chemical nature of the defect is given in each plot. The defect 

density is maintained at a similar level for the aryl functional groups (a-g). 

The defect density for the O-doped sample (h) is at a lower level 

 

 

Figure 4-3 Correlations of optical gaps (ΔEoptical, black open circles) and 

thermal detrapping energies (ΔEthermal, red closed circles) as functions of the 

chemical nature (as measured by σp) of fluorescent aryl defects. The defect 

density of each (6,5)-SWCNT sample was adjusted to produce I11
-/I11 > 2.  
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Table 4-1 Tabulation of trap site optical emission energies (E11
-), optical band 

gaps (ΔEoptical), thermally-determined trapping energies (ΔEthermal), and 

experimentally determined reorganization energies (λ) for various fluorescent 

defects (X).  

 

X** E11 (nm) E11
- (nm) 

ΔEoptical 
(meV) 

ΔEthermal 

(meV) 
λ (meV) 

O-doped (low)* 994 1125 146 24 122 

-NEt2 989 1127 154 102 52 

3,5-Cl2 (low)* 992 1133 155 35 120 

3,5-Cl2 (high)* 992 1133 155 134 21 

-OCH3 988 1130 158 117 41 

-CO2- 992 1143 165 123 42 

-Br 988 1143 170 149 21 

-NO2 (low)* 982 1139 174 76 98 

-NO2 (high)* 981 1141 177 131 46 

-HNEt2+ 989 1146 172 130 42 

3,5-(NO2)2 988 1163 189 143 46 

*Values for ΔEthermal and λ for these fluorescent defects are given for high 

and/or low defect density cases. The low density limit is most directly 

comparable to the DFT results of Table 2. All other values were obtained at 

relatively high defect densities, where I11
-/I11 > 2 at 25oC  

**X represents the terminating moieties of an aryl defect except for an oxygen 

dopant (ether-d). 
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4.3.3 Potential Energy Surface Model for Excitons 

Figure 4-4 depicts the energy diagram of defect tailored SWCNTs in terms of 

overlapping molecular-like potential surfaces for free and trapped excitons. Such a 

molecular view has been demonstrated as useful for understanding certain aspects of 

free exciton behavior in carbon nanotubes89 and is particularly appropriate for an 

exciton localized at a trap site. Within this view, the energy mismatch may be 

interpreted to arise from major contributions from reorganization energy at the defect 

site. Consider the electronic terms of our system. These may include the potential 

energy surfaces for the ground state (G), defect-trapped (X−) exciton, and free exciton 

(X), as schematically presented in Figure 4-4. The “configuration coordinate” (r) has 

been arbitrarily chosen as zero at the optimal ground state geometry, so that the energy 

minimum of the ground state parabola is located at r = 0. Thus, coordinate r represents 

the distortion of the SWCNT geometry relative to the ground state geometry.  
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Figure 4-4 Potential energy surfaces for ground (G), trapped exciton (X-), and 

free exciton (X). “Configuration coordinate” r (horizontal axis) denotes the 

deformation (reorganization) of the SWCNT geometry. Here the 

reorganization energy is dominated by displacement of nuclear coordinates 

since changes in vibration frequency, or curvature of potentials, are negligible 

in rigid systems such as SWCNTs. Note that the energy separations between 

the states are not to scale. 

 

Following initial optical excitation to X, diffusional transport to a defect site 

results in exciton trapping and relaxation to state X-.37,62,70 We focus on energies 

associated with thermal activation out of X− to X or relaxation from X− to G via 

emission of a photon. Because of exciton−phonon coupling, the minima of the excited 

state parabolas are in general located at finite r. Trap state PL originates from the 

optimal geometry of the X− state (point c in Figure 4-4). Because of the Franck−Condon 

principle, the optical transitions are “vertical.” The defect state emission process, 

therefore, occurs between point “c” of the X− curve and point “d” of the ground state 

surface, with energy Ecd = Ec − Ed. Point “d” represents an excited state geometric 

configuration of the ground state surface. Its energy difference with the ground state 
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equilibrium configuration at point “a” (Eda) represents the reorganization energy λ for 

the transition between X− and G electronic terms. Our defined ΔEoptical is therefore 

equivalent to Eba − Ecd. Thermal activation out of the trap state, on the other hand, is a 

slow process relative to optical excitation, and the Franck−Condon principle is thus 

invalid for thermal detrapping. The required thermal activation energy is therefore 

equivalent to the energy difference between the minima of the X and X− curves: Ebc = 

ΔEthermal. Referring to Figure 4-4, the difference between the optical and thermal 

activation energies is  

ΔEoptical – ΔEthermal = (Eba – Ecd) – Ebc = Eda = λ >0  Eqn. 4-5 

We note that in arriving at Eqn. 4-5, we have neglected for simplicity any independent 

reorganization energy associated with optical excitation of the initial E11 excited state 

at point “b” of the X curve. This is a reasonable approximation, as the relatively 

delocalized nature of the E11 exciton (in contrast to that of the trap state) naturally leads 

to a reduced reorganization energy. Such a simplification is supported by experimental 

observations of small Stokes shifts (∼8 meV) in E11 emission90 and by Raman studies 

showing weak exciton− phonon coupling.91  

Inspection of Figure 4-4 thus suggests that the origin of the mismatch in ΔEoptical 

vs ΔEthermal is due to a reorganization energy component associated with the optical 

transition. Such an energy cost is expected from the associated large coordinate changes 

that should arise from significant localization of the exciton wave function imposed by 

trapping.62,70 We note that while we have discussed changes in the reaction coordinate 

r (Figure 4-4) as arising from a distortion of the SWCNT geometry, other contributions 

can exist, including solvent polarization and surfactant reorganization as examples. 
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Any such contribution can only increase the total observable reorganization energy, so 

the final expression for the difference between the optical gap and the detrapping 

energy would be  

ΔEoptical − ∆Ethermal = ∑ λi > 0𝑖    Eqn. 4-6 

where each contribution λi is positive. 

 

4.3.4 Quantum Chemical Modeling of the Functionalized SWCNTs 

From the measured ΔEthermal and ΔEoptical, we can further derive that the 

reorganization energy can be on the order of 50 meV (Table 4-1) and, in the limit of 

low defect density, can be as large as 100 meV. While ΔEoptical and ΔEthermal have similar 

origins in the trap state, they are nevertheless physically distinct, as they describe 

vertical and nonvertical transitions, respectively. In particular, Eqn 4-5 and 4-6 imply 

that ΔEoptical is always larger than ΔEthermal, which is consistent with our experimental 

observations and those of Ghosh et al.71 Furthermore, it is important to recognize that 

our proposed model based on Figure 4-4 indicates that the experimentally determined 

thermal barrier most closely equates to the actual depth of the trapping potential. As 

described below, our DFT results further support this interpretation. Our previous 

computational studies of oxygen-doped or defect-tailored carbon nanotubes have 

provided a detailed view on the structure and properties of SWCNT excited states and 

electronic levels at defect sites.13-14,62,70,92-93 Here we focus on the vibrational relaxation 

of ground and excited electronic states in representative examples. The reorganization 

energy (λ) is computed as the difference of total energies of the system in the ground 

state, at the ground state optimal geometry (r = 0 in Figure 4-4) and in the ground state, 
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but at the configuration coordinate (r) corresponding to the optimal geometry of the 

excited state X− (point d in Figure 4-4), which directly corresponds to the definition 

given by Eqn 4-5. Ground and excited state optimal geometries were obtained using 

DFT and time-dependent DFT (TD-DFT) formalisms, respectively. The relevant 

computational details are provided in Experimental Section. In addition to the pristine 

10 nm long (6,5) tube, we have considered oxygen-doped (ether-d) and 4-bromoaryl 

(−C6H4Br) defect-tailored species. In the pristine SWCNT, we consider the lowest 

electronic states. Here the calculated λ of the E11 exciton is 13 meV. This supports our 

earlier approximation where this quantity was neglected. When defects are introduced, 

we observe lower energy electronic states in our calculations. Specifically, the lowest 

state (E11
-) in the aryl defect tailored tube has substantial oscillator strength and thus is 

emissive. In stark contrast to the E11 exciton of a pristine tube, λ for E11
− is substantially 

larger, being 101 meV (see Table 4-2). 

Miyauchi et al. suggests the occurrence of bright and optically forbidden (dark) 

defect states for oxygen-doped tubes.37 Our DFT results also indicate this. Interestingly, 

for oxygen-doped nanotubes the dark defect state is energetically below the emissive 

state while for aryl defects, the bright defect state is the lowest. At the optimal geometry 

of the dark state, we find the lowest electronic transition in oxygen-doped tubes in the 

ether-d geometry is this dark state, whereas the optically allowed E11
- transition is state 

number 2. The calculated splitting between these bright and dark states at this geometry 

is 13 meV. These results are in agreement with ref 37, which suggested the existence of 

a dark state at 16 meV below the E11
- transition for oxygen-doped tubes. We calculate 

a small λ of 18 meV in the ether-d geometry for the dark state. In contrast, at the optimal 
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geometry for the bright state, the ordering of the states is reversed, with the bright state 

found to cross the dark state and become the lowest energy dopant state. The bright 

state optimized geometry is found to occur at a larger configuration coordinate (r, 

Figure 4-4). Consequently, the reorganization energy of the bright E11
- transition (70 

meV) is larger than that of the lowest energy dopant state for oxygen-doped SWCNTs. 

To rationalize the observed trends in λ and to link them to the underlying 

wavefunction properties, we further analyze calculated transition density matrices 

corresponding to the excitonic wavefunctions of the excited states. These quantities for 

native E11, ether-d E11
- and 4-bromoaryl (-C6H4Br) defect E11

- excitons are depicted in 

Figure 4-5a thru c, respectively. In these plots, the horizontal and vertical axes 

correspond to electron and hole coordinates, respectively. The diagonal size of the 

matrix corresponds to the delocalization of exciton wave function along the SWCNT 

axis, and the width of the matrix reflects electron-hole separation, which is about 1-2 

nm in all cases. We observe that the native E11 exciton is delocalized over about 6 nm 

(Figure 4-5a). For the dark E11
- excitons in the oxygen-doped tube (state 1) we find a 

localization to about 3 nm in size (Figure 4-5b). Moreover, both the bright E11
- excitons 

in the oxygen-doped tube (state 2) and for the aryl defect tailored tube are localized 

even more, on about a 1 nm length scale (see Figure 4-5c). Such spatial localization of 

the wavefunction effectively increases the amount of exciton-phonon coupling and thus 

increases reorganization energy across these cases. 
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Table 4-2 Calculated reorganization energies for pristine and functionalized 

(6,5)-SWCNTs. 

Dopant System λ (meV) 

Pristine 13 

Ether-d (state 1, dark) 18 

Ether-d (state 2, bright) 70 

2×(C6H4Br+H) (1 nm spacing) 28 

2×(C6H4Br+H) (2 nm spacing) 78 

2×(C6H4Br+H) (3 nm spacing) 92 

Single isolated -C6H4Br+H 101 

Isolated -C6H4Br+H with solvent 125 

 

 

Figure 4-5 Exciton plots of optically active states in a pristine (6,5)-SWCNT 

(a), and the lowest electronic transitions for oxygen-doped (b) and 4-

bromoaryl defect (denoted as –C6H4Br) tailored (c-f) 10 nm long (6,5)-

SWCNTs. Horizontal (vertical) axis corresponds to the distribution of electron 

(hole) density along nanotube axis. White dashed lines mark the positions of 

dopants. The size of one pixel is 0.4 nm. 
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Finally, we investigated computationally the effect of defect density in aryl 

defect tailored SWCNTs on the value of λ. We have used two C6H4Br+H defects on a 

single (6,5)-SWCNT separated by 1, 2, and 3 nm distance. The computational results 

are summarized in Table 4-2. Our analysis shows that if the two defect sites are situated 

closely to each other, at distances comparable to the exciton size at the defect site, their 

electronic states overlap and strongly interact. Subsequently, the lowest optical 

transition with E11
- character becomes delocalized between the two sp3 defects as 

shown in Figure 4-5d, suggesting a reduced exciton-phonon coupling. As a result, the 

reorganization energy is strongly reduced from 101 meV to 28 meV. When the distance 

between defects increases, λ gradually increases and approaches the value found for 

isolated sp3 defects (~100 meV). For example, λ is equal to 78 meV for defects 

separated by 2 nm distance. Here, the exciton wave function is contained to about 2 nm 

length (Figure 4-5e). For larger separation distances, the defect sites become 

uncorrelated and the vibrational dynamics is contained to a single site. For example, 

Figure 4-5f shows that the exciton is localized on one of the sp3 defects, and its wave 

function resembles the isolated defect site case (Figure 4-5c). The reorganization 

energy for a system with two sp3 defects, separated by 3 nm, is 92 meV, approaching 

that of an isolated defect of 101 meV. The computed trend for λ suggests that observed 

reorganization energy (the difference between ΔEoptical and ΔEthermal) should depend on 

the defect density. This predicted trend, in fact, agrees with our experimental results. 
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4.3.5 Defect Detrapping Energy as a Function of the Density of Defects 

As a route to a more in-depth understanding on the origins of this energy 

mismatch, we employ density functional theory to model the energies of the relevant 

states and transformations between them within a molecular picture of the defect site. 

We confirmed this theoretical prediction experimentally by measuring ΔEthermal in 

(6,5)-SWCNT-C6H4NO2 as a function of the defect density (Figure 4-6). The defect 

density is chemically controlled simply by changing the [Dz]:[C] reactant ratio and 

quantified by Raman spectroscopy (Figure 4-7). The Raman D/G ratio is directly 

correlated with the defect density because the D phonon mode (at ~1350 cm-1) is due 

to symmetry breaking by the covalently attached aryl groups while the G band (~1580 

cm-1) is an in-plane stretching mode of the sp2 bonded carbon lattice.32 As SWCNTs 

react with increasing amounts of 4-nitrobenzenediazonium salts, the D/G ratio 

proportionally increases, consistent with previously reported trends in the reaction of 

(6,5)-SWCNTs with 4-bromobenzenediazonium salts.14 From the constructed van ‘t 

Hoff plots, we found that the slopes (ΔEthermal) are linearly correlated with the defect 

density (Figure 4-8). The ΔEoptical is only weakly dependent on the defect density, with 

a change of only 5 meV across the range of densities explored. In contrast, ΔEthermal is 

strongly affected by the density of defects, varying from 76 meV at the lowest density 

(synthesized at [Dz]:[C]=1:2500) to 134 meV at the highest (synthesized at 

[Dz]:[C]=1:250). At the lowest defect density that can be experimentally measured in 

(6,5)-SWCNT-C6H4NO2, the mismatch (λ) between ΔEthermal and ΔEoptical is as large as 

98 meV, in close agreement with the DFT results for the isolated defect case (see Table 

4-2). Similar results were obtained with a defect density series based on the 3,5-
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dichloroaryl defects as well, for which a λ value of 120 meV was determined in the low 

defect density limit, again in agreement with the DFT results. We also note that the 

oxygen dopant result of Figure 4-2h was obtained in this low defect density limit, thus 

providing an explanation for the difference in our result for ΔEthermal (24 meV) 

compared to that initially reported in the work of Ghosh et al (61 meV).71  

 

 

 

 

Figure 4-6 van ‘t Hoff plots of (6,5)-SWCNT-C6H4NO2 at increasing defect 

density due to the increased [Dz]/[C] reactant ratios as labeled on each plot. 

The noted energy is derived from the slope of the fitted line through the black 

dots. 
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Figure 4-7 Correlated PL and Raman scattering of (6,5)-SWCNT-C6H4NO2 

with increasing density of fluorescent quantum defects. a, Raman spectra of 

non-functionalized (blue) and covalently modified SWCNTs by reacting at 

increasing [Dz]/[C] reactant ratios. The spectra were collected under 633 nm 

excitation and the intensities are normalized by the G-band. b, The Raman D 

peak intensity increases as a function of the [Dz]/[C] reactant ratio. Both 633 

nm excitation (green dots) and 532 nm excitation (orange dots) show a similar 

trend. c, PL spectra of non-functionalized (blue) and (6,5)-SWCNT-

C6H4NO2 at increasing [Dz]/[C] reactant ratios. (d) The van ‘t Hoff plot 

characteristics (slope and intercept) as a function of Raman D/G ratio at 633 

nm excitation. 
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Figure 4-8 Correlations of optical gaps (ΔEoptical, black open circles) and 

thermal detrapping energies (ΔEthermal, red closed circles) as functions of the 

density of 4-nitroaryl defects in (6,5)-SWCNTs. Both the emission energy 

difference (ΔEoptical, from PL at room temperature) and the potential well 

depth (ΔEthermal, from thermodynamic probing experiments) are linearly 

correlated with the Raman D/G ratio.  

 

At high defect densities, there is a finite probability that a single trapped exciton 

can be delocalized over two (or more) defect sites. This probability is small if the 

position of defects is completely random along the SWCNT. However, the probability 

can increase if the functional groups do effectively interact with each other; for 

instance, during a propagative reaction, a second functional group has a high 

probability to attach to a SWCNT near the first defect.41 Evidence of defect coupling 

is suggested by the gradual, nevertheless persistent redshift (by 5 meV in Figure 4-8) 

and peak broadening (from 44.7 meV to 73.2 ± 7.9 meV at 30oC) of the 𝐸11
−  PL at 

increasing defect densities. 

As indicated by our DFT results, there are two consequences of a trapped 
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result, the corresponding X- parabola in Figure 4-4 would shift downward in energy by 

an amount Δ. Second, due to the decrease of the electron-phonon interaction upon the 

delocalization, the minimum of the resulting parabola shifts towards r = 0. The resulting 

potential energy surface is shown by a red dashed parabola in Figure 4-4. The 

corresponding reorganization energy, λ’ = Ed’a is smaller than the original λ. These two 

results have consequences for the observed behavior of both E11
- and ΔEthermal. 

For a trapped exciton that is delocalized over two (or more) defect sites, E11
- 

and ΔEthermal energies become 

𝐸11
− ′ = 𝐸𝑐′𝑑′ = 𝐸11

− − Δ + (λ − λ′)    Eqn. 4-7 

ΔEthermal
′ = 𝐸𝑏𝑐′ = ΔEthermal + Δ    Eqn. 4-8 

and E11 remains the same if the concentration of defects is not large enough to 

significantly alter the ground and excited states of the entire SWCNT (this is observed 

experimentally). Eqn. 4-7 shows that the trap state emission energy, while red-shifted 

by the coupling between interacting sites, may be offset in the opposite direction by the 

reorganizational change accompanying the expected exciton delocalization at higher 

dopant densities. Our experimental observation of only minor changes in E11
- as defect 

density is increased indicates these two effects nearly balance each other. As seen in 

Eqn. 4-8 on the other hand, ΔEthermal is affected only by changes in Δ. Thus, the 

detrapping energy extracted from the van ‘t Hoff plots is expected to steadily increase 

with the defect density.  
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4.4 Conclusions 

We observed a substantial mismatch between optical energy gap and detrapping 

energy in a series of fluorescent aryl defects in SWCNTs. Both the optical gap and the 

detrapping energy reveal a linear correlation with the electron withdrawing/donating 

capability of the aryl substituents. However, depending on the chemical nature and 

density of the defect, the detrapping energy is 14–77% smaller than the optical gap.  

The observed energy mismatches can be understood in terms of vibrational 

reorganization due to significant deformation of the nanotube geometry upon exciton 

trapping at the defect site. The reorganization energy is experimentally determined to 

be as large as 100 meV for (6,5)-SWCNT-C6H4NO2 and 120 meV for (6,5)-SWCNT-

C6H3(NO2)2, and is strongly dependent on the defect density. These experimental 

findings are analyzed with our electronic structure simulations, which map the 

observed trends into defect-dependent vibrational reorganization energy in the 

molecular picture. Our findings are consistent with spectroelectrochemical 

measurements from oxygen-doped SWCNTs that show smaller redox potential than 

the optical energy gap68 and provide new insights on the origin of the large discrepancy 

between the optical gap and the detrapping energy in fluorescent quantum defects. 

These insights establish a comprehensive picture of the energetics of fluorescent 

defects in SWCNTs, of direct relevance for the mechanistics of recently reported 

photon upconversion processes in defect-tailored SWCNTs,72 and may help guide their 

design and synthesis of molecularly tunable quantum defects15 for applications in near-

infrared bioimaging, sensing,45 energy harvesting,72 and single photon sources.48-49,94-

95  
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5 Generation of ultra-bright trions at fluorescent quantum 

defects 

Adapted from a manuscript by Kwon, H.†; Kim, M. †; Hartmann, N. F.; Meany, B.; 

Clark, C.; Doorn, S. K.; Höegele, A.; Wang, Y. 

† These authors equally contributed to this work. 

Y.W., H.K., and M.K. conceived and designed the experiments. M.K. and H.K., 

performed the synthesis and spectroscopic experiments. N.F.H. performed lifetime 

measurements. B.M. performed nanotube sorting. Y.W., M.K. and H.K. wrote the 

manuscript with inputs from all co-authors. 

 

5.1 Introduction 

A negative trion is an electron-hole-electron (e-h-e) tri-carrier quasiparticle 

similar to the anions of hydrogen and positronium.96 In contrast to electron-hole pairs 

that are known as excitons, a trion features a net charge and half-integer spin, which 

allow for the manipulation of electron spin97 and optically probing local electrostatic 

fluctuations.98 Governed by optical selection rules different from those of excitons,99 

trions can also significantly impact the dynamics of optically forbidden dark 

excitons.100 Because of their unique properties, trions have been intensively explored 

for a broad range of potential applications, including quantum information,97 sensing,98 

energy harvesting,99 lasing,101 and light-emitting devices.102  

However, trions have been observed only as a minority species at room 

temperature. In fact, although this quasiparticle was theoretically predicted by 

Lampert103 as early as 1958, trions escaped experimental observation for decades until 

their recent identification by photoluminescence (PL) spectroscopy in low dimensional 

semiconductors at cryogenic temperatures.98,100-101,104 One of the key factors that 



 

 

92 

 

fundamentally limits trions to rise as a dominant species is their low binding energy (2 

– 45 meV).100,104 In low-dimensional semiconductors, such as single-walled carbon 

nanotubes (SWCNTs) and atomically thin 2D transition metal dichalcogenides, the 

binding energy of trions increases due to the stronger Coulomb interactions at reduced 

dimensionality, allowing trions to be detected at room temperature.102,105 In SWCNTs, 

trions have been generated by high power laser excitation106-107 and doping108-111 of the 

host material, or by chemically charging covalently functionalized SWCNTs.69 

However, in all previous reports, including the one from us,69 trion PL was typically 

rather weak and in the case of SWCNTs, weaker than the PL of native excitonsature. 

As it will become clear through this study, the challenges there are due, in part, to (1) 

the chemistry used69 that does not allow for trions to be probed and tuned in situ, (2) 

lack of high purity nanotube semiconductor hosts, and (3) lack of tools that allow for 

directly imaging and probing of trions at the single molecule level. 

Here we report the first direct experimental evidence of ultra-bright trions, 

enabled by trapping at chemical defects that are synthetically created in semiconducting 

SWCNT hosts through the incorporation of sp3 alkyl defects into the sp2 carbon lattice 

using a highly tunable trion chemistry. These chemical defects are quantum organic 

color centers,14-15,48-49 allowing excitons to be channeled and radiatively recombined 

emitting nearly 100% pure single photons. By co-localizing a charge with the exciton 

at these organic color centers we now show that it is even possible to produce bright 

trions at these chemically tailored light emitting centers. Through single molecule 

fluorescence imaging, we experimentally resolved strong localization of trions around 

defects along the nanotube host. The trap-localized trions fluoresce brightly at room 
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temperature, even with weak excitation (< 1 kW/cm2), which is otherwise impossible 

in the absence of strong localization due to trapping. We experimentally determined 

the binding energy of the defect-localized trions to be as large as 119 meV in (6,5)-

SWCNT, which are significantly larger than that of mobile trions in the same host (54 

meV),109,111 0D quantum dots (2–25 meV),100,104 and also 2D materials (15–45 meV),112 

and can even be compared to the 327 meV binding energy of positronium anions.96 The 

trapped trions have an emitting probability that is significantly larger than that of the 

native exciton, by a surprising 8-times, as well as a photoluminescence lifetime that is 

more than two-order of magnitude larger than “free” trions in the same host material. 

Our defect dependence studies and magnetoluminescence spectroscopy provide the 

first experimental evidence that unlike native excitons and free trions, these trapped 

trions are intrinsically bright (their lowest energy state is optically allowed). 
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5.2 Experimental Section 

5.2.1 High Purity SWCNT Hosts.  

CoMoCAT SG65i (Southwest Nanotechnologies, lot no. SG65i-L39) were 

stabilized in water as individual particles wrapped with DNA (TTA(TAT)2ATT, 

Integrated DNA Technologies) using tip-sonication (Misonix, model S-4000) at 8 W 

and 10 oC for 2 h. Chirality pure (6,5)-SWCNTs were then isolated by polymer aqueous 

two-phase separation.29 Long (6,5)-SWCNTs were isolated from raw SG65i using the 

superacid-surfactant exchange.27 Other chirality-enriched SWCNT solutions were 

isolated from HiPco materials (Rice University, batch no. 194.3) by gel 

chromatography28 using SephacrylTM S-200 high-resolution chromatography resin (GE 

Healthcare). The sorted SWCNTs were stabilized in D2O (Cambridge Isotope 

Laboratories, Inc., 99.8%) with 1% wt/v sodium dodecyl sulfate (Sigma Aldrich, > 

98.5%) for subsequent functionalization. The concentration of the chirality-enriched 

solutions was determined from absorption spectra based on the extinction coefficient 

of (6,5)-SWCNTs.113 

5.2.2 Chemical Creation of Quantum Defects in SWCNT Hosts.  

7.6 mM of NaHCO3 (EMD chemicals, HPLC grade), 0.16% v/v CH3CN (Acros 

organics, HPLC grade, 99.9%) and various alkyl halides (see Table 5-1) were added 

sequentially to each SWCNT solution, which was kept in a capped glass vial covered 

by aluminum foil to block out light. 3.6 mM of Na2S2O4 (Sigma Aldrich, 85%) was 

then added to the mixture and stirred with a magnetic stir bar at room temperature. 

After 2 h of reaction, the SWCNT solution was characterized in situ by PL spectroscopy 
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at 565 nm excitation or excitation-emission mapping. To increase the density of 

defects, the concentration of the alkyl halide was increased proportionally to the 

concentration of the SWCNTs.  

 

Table 5-1 Alkyl halide precursors used for the synthetic creation of quantum 

defects in SWCNT hosts. 

 

5.2.3 Spectroscopic Characterization of Trion PL 

The reactions were monitored in situ using a NanoLog spectrofluorometer 

(HORIBA Jobin Yvon). The samples were excited with a 450 W Xenon source 

dispersed by a double-grating monochromator. The slit width of the excitation and 

emission beams was 10 nm. Excitation-emission maps and single excitation PL spectra 

were collected using a liquid-N2 cooled linear InGaAs array detector. Absorption 

spectra were also measured, using a Lambda 1050 UV-vis-NIR spectrophotometer 

(Perkin Elmer) equipped with both a photomultiplier tube and an extended InGaAs 

detector. For single tube PL imaging, a small aliquot of (6,5)-SWCNT-C6H13 solution 

in 1 % wt/v sodium deoxycholate (Sigma Aldrich, >99%) was deposited on poly D-

lysine coated glass slides (Part No. P35GC-0-10-C, MatTek Corporation). The imaging 

Chemical Manufacturer Purity Batch No. 

I(CF2)5CF3 Sigma Aldrich 99 % MKBJ8925V 

I(CH2)2(CF2)3CF3 Fluka Analytical 95 % BCBH7887V 

I(CH2)2CF2CF3 TCI 98 % - 

I(CH2)4CF2CF3 Matrix Scientific 97 % V05H 

I(CH2)2CF3 Sigma Aldrich 97 % MKBF3292V 

I(CH2)3CF3 Santa Cruz Biotechnology 99 % C3114 

I(CH2)5CF3 Oakwood Chemical 97 % F17N 

I(CH2)5CH3 Sigma Aldrich 98 % MKBW2847V 



 

 

96 

 

was performed using a custom-built system that integrates an inverted microscope 

(Eclipse Ti-U, Nikon), a volume Bragg grating system (Photon etc), and an oil 

immersion objective (UAPON 150XOTIRF, NA = 1.45, Olympus). The nanotubes 

were excited by a 730 nm diode laser at a power density of 0.5 kW/cm2, and the PL 

emission was collected using a liquid-N2 cooled 2D InGaAs detector (Cougar 640, 

Xenics) with an integration time of 16 s. 

5.2.4 Brightness of Trion PL on the Ensemble Level 

The relative PL brightness of ET and E11
- was calculated using the following 

equations:  

   Φ𝑇 =
𝐼𝑇

𝐼0

𝑂𝐷565𝑛𝑚

𝑂𝐷565𝑛𝑚
∗      Eqn. 5-1 

  Φ11
− =

𝐼11
−

𝐼0

𝑂𝐷565𝑛𝑚

𝑂𝐷565𝑛𝑚
∗      Eqn. 5-2 

in which Ф is the relative PL brightness, IT and I11
- are the integrated PL intensities of 

ET and E11
- of the functionalized SWCNTs, respectively, I0 is the integrated PL intensity 

of the unfunctionalized SWCNTs, OD*
565nm is the optical density of the functionalized 

(6,5)-SWCNTs at the E22 excitation, and OD565nm is the optical density of the 

unfunctionalized (6,5)-SWCNTs at the E22 excitation. The PL peaks were fitted with 

Voigt functions using PeakFit software v4.12. No baseline correction was applied. 

5.2.5 The Probability for a Trapped Trion to Radiatively Decay 

The number of E11 photons (N11) is proportional to the PL quantum yield of E11 

exciton (𝜂11) and the number of absorbed photons to a SWCNT (𝑁𝑎𝑏𝑠): 

𝑁11 = 𝑁𝑎𝑏𝑠𝜂11    Eqn. 5-3 
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Considering the diffusion and trapping of E11 excitons at defect states36-37, here E11
- (or 

ET), the number of photons emitted from the E11
- (or ET) state, N11

- (or NT) is: 

𝑁11
− = 𝑁𝑎𝑏𝑠

𝑘𝑑𝑖𝑓

𝑘𝑟+𝑘𝑖+𝑘𝑑𝑖𝑓

𝑛11
−

𝑛𝑞+𝑛11
− +𝑛𝑇

𝜂11
−   Eqn. 5-4 

𝑁𝑇 = 𝑁𝑎𝑏𝑠
𝑘𝑑𝑖𝑓

𝑘𝑟+𝑘𝑖+𝑘𝑑𝑖𝑓

𝑛𝑇

𝑛𝑞+𝑛11
− +𝑛𝑇

𝜂𝑇  Eqn. 5-5 

in which kr is the radiative decay rate for E11 excitons, 𝑘𝑑𝑖𝑓 is the decay rate of the E11 

excitons due to exciton diffusion and trapping at defect sites (quenching defects, E11
- 

and ET defect sites), and 𝑘𝑖 is the effective decay rate for all possible non-radiative 

recombination other than exciton trapping and the radiative decay before trapping. nq 

is the number of the quenching defects, and n11
- and nT are the numbers of neutral and 

charged quantum defect sites on a SWCNT, respectively. η11
- and ηT are the 

probabilities for a trapped exciton and trion, respectively, to radiatively decay and emit 

a photon.  

Note that in this kinetic model we assume once trapped an exciton cannot 

escape the defect site (indeed, thermal detrapping has a relatively low efficiency as 

previously demonstrated for E11
- excitons60). We also assume that the defect sites are 

evenly distributed along the nanotube; more rigorous treatment may need to take into 

account the effect of spatial distribution of defects.114 

The quantum yields of E11 excitons in unfunctionalized (𝜂0) and quantum 

defect-tailored SWCNTs (𝜂11) are given by:  

𝜂0 =
𝜋𝑘𝑟

2𝐷(𝑛𝑞)2𝑙−2
    Eqn. 5-6 

𝜂11 =
𝜋𝑘𝑟

2𝐷(𝑛𝑞+𝑛11
− +𝑛𝑇)

2
𝑙−2

   Eqn. 5-7 

in which l is the average nanotube length and 𝐷 is the exciton diffusion constant. 
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From Eqns. 5-1, 5-6, and 5-7, the changes in the number of E11 photons by covalent 

functionalization, ∆𝑁11 can be calculated as: 

 ∆𝑁11 = 𝑁𝑎𝑏𝑠𝜂0 (1 −
𝜂11

𝜂0
) = 𝑁𝑎𝑏𝑠𝜂0 [1 −

𝑛𝑞
2

(𝑛𝑞+𝑛11
− +𝑛𝑇)

2]   

 = 𝑁𝑎𝑏𝑠𝜂0 [1 +
𝑛𝑞

𝑛𝑞+𝑛11
− +𝑛𝑇

] [1 −
𝑛𝑞

𝑛𝑞+𝑛11
− +𝑛𝑇

]  Eqn. 5-8 

Using Eqns. 5-4 and 5-8, we obtained 

𝑁11
−

∆𝑁11
=

𝜂11
−

𝜂0

𝑘𝑑𝑖𝑓

𝑘𝑟+𝑘𝑖+𝑘𝑑𝑖𝑓

𝑛𝑞+𝑛11
− +𝑛𝑇

2𝑛𝑞+𝑛11
− +𝑛𝑇

(1 +
𝑛𝑇

𝑛11
− )

−1

    Eqn. 5-9 

At the low defect density limit (nq≫ n11
-+nT), 

𝑛𝑞+𝑛11
− +𝑛𝑇

2𝑛𝑞+𝑛11
− +𝑛𝑇

~
1

2
. We further assume 𝑘𝑟 +

𝑘𝑖 ≪ 𝑘𝑑𝑖𝑓, as supported by previous studies on E11 exciton PL,36,38 and therefore 

𝑘𝑑𝑖𝑓

𝑘𝑟+𝑘𝑖+𝑘𝑑𝑖𝑓
~1. The number of emitted photons (N) is proportional to the integrated PL 

intensity (I). So Eqn. 5-9 is simplified to  

𝐼11
−

ΔI11
=

𝜂11
−

2𝜂0
(1 +

𝑛𝑇

𝑛11
− )

−1

   Eqn. 5-10 

Similarly, from Eqns. 5-5 and 5-8, we obtained Eqn. 5-11 (an equivalent form cited as 

Eqn. 5-17 in Section 5.3.2) 

I𝑇

ΔI11
=

𝜂𝑇

2𝜂0
(1 +

𝑛11
−

𝑛𝑇
)
−1

   Eqn. 5-11 

From single nanotube PL imaging experiments, we confirmed that n11
- > nT and 𝑛𝑇 ≥

0 for our experimental conditions, and obtained η11
- and ηT for 

ΔI11

I0
= 0.22 as follows 

(see also Table 5-2) 

16.3 𝜂0 < 𝜂11
− < 32.7𝜂0   Eqn. 5-12 

7.88𝜂0 ≤ 𝜂𝑇    Eqn. 5-13 
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Table 5-2 Lower-bound probability for a trapped trion in (6,5)-SWCNT-

C6H13 to radiatively recombine and emit a photon. The probabilities were 

calculated using Eqns. 5-10 and 5-11 where 𝜂0 is determined from lifetime 

measurement to be 1%. 

[C6H13I]/[C] ΔI11/I0  𝜂11
−  (%) Minimum 𝜂𝑇 (%) 

3 0.22 16 – 33 7.88 

4 0.31 15 – 30 7.63 

6 0.42 15 – 24 6.29 

8 0.45 14 – 28 7.62 

 

5.2.6 Brightening Effects by E11 Excitation 

Nabs,λ, the number of excitons generated upon excitation at λ, is related to the 

molar extinction coefficient of SWCNTs at a given wavelength (σλnm) and the E22 to 

E11 branching ratio (γ). Specifically, the number of E11 excitons by E11 and E22 

excitations can be expressed as: 

𝑁𝑎𝑏𝑠(𝐸11) = 𝑏𝜎980𝑛𝑚    Eqn. 5-14 

𝑁𝑎𝑏𝑠(𝐸22) = 𝛾𝑏𝜎565𝑛𝑚   Eqn. 5-15 

respectively. Here b is a correction factor to account for the nonradiative recombination 

of E11 excitons. Using Eqns. 5-14 and 5-15, the collective PL intensity 𝐼𝑡𝑜𝑡𝑎𝑙 ∝ 𝑁11 +

𝑁11
− + 𝑁𝑇 at different excitation wavelengths can be compared. This brightening factor 

by excitation at E11 (versus E22) can then be expressed as: 

𝐼𝑡𝑜𝑡𝑎𝑙(𝐸11)

𝐼𝑡𝑜𝑡𝑎𝑙(𝐸22)
=

1

𝛾

𝑂𝐷980𝑛𝑚

𝑂𝐷565𝑛𝑚
    Eqn. 5-16 

in which Itotal is the integrated PL intensity, and OD is the optical density at the 

excitation wavelength.  
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Experimentally, we used a 450 W Xenon arc source dispersed by a double 

monochromator system within the Nanolog spectrometer to excite the (6,5)-SWCNTs 

at E22 and E11, with a slit width of 3 nm. The photon fluence at each wavelength was 

measured using an optical power meter (Newport 1916-C) equipped with a silicon 

detector (Newport 918-SL-OD3). The PL intensity was corrected based on the 

excitation fluence. To simultaneously excite SWCNTs at E11 and detect the E11 PL, a 

980 nm notch filter with a full width at half maximum (FWHM) of 41 nm (Thorlabs, 

NF980-41) was placed between the sample and detector. The spectral resolution for the 

emission detection channel was 1 nm. The E11 peak was reconstructed based on the 

lower energy trace of the E11 PL. To avoid potential errors in peak fitting, ultrapure 

(6,5)-SWCNT samples were used for the experiments.  

5.2.7 Hole Doping Experiments 

The (6,5)-SWCNT-C6H13 solutions were ultrafiltrated using a 100 kDa ultrafiltration 

centrifugal tube (Amicon, EMD Millipore) to remove the reaction byproducts and 

unreacted reagents. The quantum defect-tailored SWCNTs were then hole-doped by 

hydrochloric acid. The solution pH was adjusted from 2.98 to 8.72 by adding small 

aliquots of 20 mM HCl (Sigma Aldrich) or NaHCO3 solutions. The pH was determined 

using a pH meter (AccumetTM AB15+ Basic and BioBasic pH meters, Fisher 

Scientific). Hole doping by 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane 

(F4TCNQ) was performed by sequentially increasing the concentration of F4TCNQ 

(Sigma Aldrich, 97 %, lot no. MKBR1477V) from 0 to 1 mM in the SWCNT solution.  
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5.2.8 PL Lifetime Measurement through Time-Correlated Single Photon 

Counting 

The surfactant environment of the (6,5)-SWCNT-C6H13 sample was exchanged with 

1% wt/v sodium deoxycholate by ultrafiltration (Amicon, no. 5123, using 100 kDa 

ultracel regenerated cellulose filter membranes). 100 μl of the SWCNT solutions were 

transferred into NMR tubes for the measurements. The PL lifetimes were measured 

using 568 nm excitation (4 ps pulsewidth, 40 MHz repetition rate) and a single quantum 

nanowire detector. Spectral filtering to resolve each PL peak was achieved with 

appropriate band-pass (BP)/long-pass (LP) filters in front of the detector, including BP 

1000/50 for E11, BP 1100/10 for E11
-, and LP1200 for ET. The collected decay curves 

were reconvolution fitted with the corresponding instrument response function for each 

detector in FluoFit (Picoquant). 

5.2.9 Magnetoluminescence Measurements 

The unfunctionalized (6,5)-SWCNT control and (6,5)-SWCNT-C6H13 in 1 % wt/v 

DOC were drop-casted onto SiO2 substrates and subjected to magnetic fields of up to 

8 T in a home-built confocal microscope immersed in a helium bath cryostat with a 

base temperature of 4.2 K. Individual nanotubes were selected for collinear orientation 

with the magnetic field axis using the well-known antenna effect. 



 

 

102 

 

5.3 Results and Discussions 

5.3.1 Spatial Localization of Trions at Quantum Defect Sites 

We chemically created quantum defects in individual (6,5)-SWCNTs by 

covalently attaching hexyl groups to the semiconducting SWCNTs,15 producing a 0D-

1D hybrid quantum system hereafter labeled as (6,5)-SWCNT-C6H13 (Figure 5-1a). 

The defect creates a discrete state (E11
-, emitting at 1095 nm) that lies below the native 

E11 excitonic state of the nanotube (emitting at 980 nm; Figure 5-1b). Na2S2O4, which 

is used as a radical initiator, also acts as a reducing agent that introduces electrons to 

the nanotube enabling production of negatively charged trions (ET, emitting at 1226 

nm). In stark contrast to free trions in unfunctionalized SWCNTs that are mobile or 

weakly bound at shallow potential wells,106,111 in the presence of quantum defects, we 

found that trions are localized in a deep potential well, with a depth of ΔET (the energy 

difference between E11 and ET in the PL spectra; Figure 5-1a). By controlling the 

density of defects, we show it is possible to finely tune the defect and trion PL 

intensities (Figure 5-2). We found that the E11 emission decreased over the course of 

the reaction while the intensity of E11
- and ET PL peaked after around 30 min of reaction 

and stabilized within 1 h. This correlated PL evolution pattern of E11
- and ET indicates 

that trion formation is directly related to the fluorescent quantum defects.  

Single defect-resolved hyperspectral PL imaging provides direct evidence that 

trions are spatially localized at the quantum defects (Figure 5-1c-f). Note that this 

observation is made at low excitation power (0.5 kW/cm2 at off-reasonant wavelength, 

730 nm) to avoid possible optical generation of trions.106 While E11 PL is distributed 



 

 

103 

 

along the whole length of the imaged nanotube (7 µm), the E11
- and trion PL are 

spatially confined within the diffraction limit of our PL microscope (430 nm). The PL 

emission of ET is also spatially correlated to the intensity profile of E11
-, which similarly 

shows localization as previously observed for ether and aryl defects,62 and low PL 

intensity of E11. This complementary nature of intensity distribution suggests that trion 

PL originates from the hexyl defects and spatially correlates with E11
- states.  

In the absence of the hexyl defects, Na2S2O4 does not induce ET. Hole doping 

experiments further confirm that the observed ET PL originates from negative trions in 

(6,5)-SWCNT-C6H13. Our results showed that the PL intensity of all three peaks (E11, 

E11
-, and ET) decreased upon addition of hydrochloric acid as a hole dopant, due to the 

known quenching effect of hole-doping for E11 excitons,115 but the ET peak responded 

even more sensitively to the doping compared to E11
- (Figure 5-3d, e). When the proton 

concentration is higher than 1 mM, the trion PL becomes completely quenched. This 

doping effect is also consistently observed for another hole doping agent, 2,3,5,6-

tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (Figure 5-3b,c). This doping effect is 

attributed to the hole dopants that can readily neutralize the negatively charged trions.  
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Figure 5-1 Spatial localization of trions at fluorescent quantum defects. a, 

Schematic of a trion trapped in a defect-induced quantum well with a depth of 

ΔET. b, Excitation-emission PL maps showing the rise of bright trions as (6,5)-

SWCNT (top) is chemically tailored with alkyl quantum defects (middle and 

bottom). c, Localized trion PL in a 4.4 µm long (6,5)-SWCNT-C6H13 resolved 

by hyperspectral imaging. Scale bar is 2 μm. The trion PL (red) is 

superimposed on the E11 PL (blue) of the nanotube host, with the PL intensity 

of ET scaled by a factor of 4 for clarity. Hyperspectral PL images of d, E11 

(992 nm), e, E11
- (1108 nm), and f, ET (1224 nm) emission, resolved using a 

volumetric Bragg grating with a spectral resolution of 4 nm. 
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Figure 5-2 Creation of quantum defects by covalently attaching hexyl 

functional groups to the semiconductor host. a, UV-vis-NIR absorption 

spectra of (6,5)-SWCNT-C6H13 at increasing concentrations of the C6H13I 

reactant. At the highest reactant molar ratio of [C6H13I]/[C] = 16 (purple 

trace), the defect-induced E11
- state can be identified as an absorption band 

centered at 1100 nm. b, Raman spectra of unfunctionalized (6,5)-SWCNTs 

(black) and (6,5)-SWCNT-C6H13. The inset is the integrated intensity ratio of 

Raman D band (1200–1400 cm-1) to G band (1500–1650 cm-1) as a function 

of the molar ratio of reactants. The excitation wavelength is 633 nm. c, The 

PL spectra, from bottom to top, are of (6,5)-SWCNT-C6H13 for [C6H13I]/[C] 

molar ratios of 0 (unfunctionalized), 3, 4, 6, 8, 12, and 16, respectively. d, The 

PL evolution profiles of E11 (blue), E11
- (black), and ET (red) as a function of 

reaction time. The PL intensity is the integrated PL intensity of the Gaussian-

fitted PL peaks.  
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Figure 5-3 Hole doping of (6,5)-SWCNT-C6H13 by F4TCNQ and HCl. a, 

Schematic of hole doping in SWCNT-C6H13. The hole dopants neutralize the 

extra negative charge of the trion, resulting in reduced ET PL intensity. b, The 

defect PL changes as a function of F4TCNQ concentration. Note that the 

integrated intensity of trion PL (IT/I11) at a specific pH was normalized by the 

PL intensity (IT/I11) at the starting pH 8.72. c, Normalized PL spectra of (6,5)-

SWCNT-C6H13 hole-doped with 0 mM (red), 0.36 mM (gray), and 1 mM 

(blue) of F4TCNQ. The trion PL is completely quenched at 1 mM of F4TCNQ. 

d, The defect PL changes as a function of solution pH. e, Normalized PL 

spectra of pH 8.72 (red), 5.25 (grey), and 2.98 (blue). The trion PL completely 

quenched at pH 2.98. 
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5.3.2 Bright PL from Trapped Trions.  

In stark contrast to free trions in unfunctionalized SWCNTs,111 our alkyl-

functionalized SWCNTs exhibit surprisingly bright PL. In the absence of intentionally 

implanted quantum defects, the PL brightness of trions is far below that of E11 and can 

only be resolved at high doping (> 0.7 nm-1, ref 110) or power densities (> 1 kW/cm2, 

ref 106). In our system, the observed trion PL intensity is 3.1-times the native E11 PL 

intensity of unfunctionalized SWCNTs, even though the quantum defect sites are 

outnumbered by the lattice atoms of SWCNTs by more than 100 times, and 

approximately 7.3-times as high as the brightest trion ever reported69 based on 

ensemble measurements (Figure 5-4a). By exciting the nanotube at the E11 transition 

instead of the typical E22, we further demonstrate that the trion PL intensity can be 

further increased, by another factor of 2.7, to a total of more than 8 times (Figure 5-5).  

Consistently, PL lifetime measurements (Figure 5-4 and Table 5-3) show that 

the PL decay of E11 in (6,5)-SWCNT-C6H13 is dominated by the bright state (τ ~24 ps) 

and a small, long-lived component (103 ps; amplitude less than 5%). These time scales 

are similar to those observed in unfunctionalized control samples (25 ps and 147 ps) 

where the long component originates from dark E11 excitons.57 In the presence of 

quantum defects, the PL decays of E11
- and ET are also biexponential. However, the ET 

PL lifetimes (154 ± 12 ps for τs and 374 ± 8 ps for τl) are considerably longer than the 

E11 PL and “free” trions (less than 2 ps).110,116 The amplitude of τl for ET was 53.7 ± 

1.6%, which is also significantly higher than those of E11 and E11
- (4.8 ± 0.3% and 18.6 

± 0.4%, respectively). 
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Figure 5-4 Ultra-bright PL from trapped trions. a, PL spectra of (top) 

unfunctionalized (6,5)-SWCNT, the semiconductor host, and (bottom) (6,5)-

SWCNT-C6H13. The excitation wavelength is 565 nm. b, The PL decays of 

E11 from (top) (6,5)-SWCNT and (bottom) ET, E11, and E11
- of (6,5)-SWCNT-

C6H13. Note that the instrument response function (IRF) is also plotted. 

 

 

Table 5-3 PL lifetime of (6,5)-SWCNT-C6H13 in comparison with the 

unfunctionalized control. 

PL peak τs (ps)  A(τs) % τs (ps)  A(τl) %  

 Unfunctionalized (6,5)-SWCNT  

E11 24 ± 1 98.1 ± 1.9 103 ± 6 1.9 ± 0.2 

 Functionalized (6,5)-SWCNT-C6H13  

E11 25 ± 1 95.2 ± 2.1 147 ± 5 4.8 ± 0.3 

E11
- 68 ± 1 81.4 ± 1.3 206 ± 3 18.6 ± 0.4 

ET 154 ± 12 46.3 ± 3.5 374 ± 8 53.7 ± 1.6 
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Figure 5-5 Brightening of SWCNT PL by E11 excitation. a, Experimental 

setup of E11 excitation experiments. A notch filter (NF), centered at 980 nm 

with 41 nm FWHM, was placed to reject E11 excitation light from detection. 

b, PL spectra of (6,5)-SWCNT-C6H13, measured with this experimental setup 

at E11 (975 nm, red) and E22 (565 nm, green) excitations. The 980 nm notch 

filter blocks the PL emission from 960–1000 nm. c, Excitation-emission PL 

map and PL excitation spectra of (6,5)-SWCNT-C6H13. All PL peaks, 

including E11 (blue), E11
- (black), and ET (red), resonate to the electronic 

transitions of (6,5)-SWCNTs. We note that the shapes for all three excitation 

spectra are identical. d, PL intensity ratio of E11 vs. E22 excitation as a function 

of the molar ratio of reactants, [C6H13I]/[C]. 
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Based on fluorescent lifetime measurements, the QY of the E11 exciton is 

estimated at 1%, consistent with reports for unfunctionalized SWCNTs in aqueous 

dispersion.36 To determine the emitting probability of quantum defect-trapped trions, 

we considered exciton diffusion, trapping at local defects,36-37,57 and the formation of 

trions at the defect site in the low defect density limit, and derived that 

𝜂𝑇

𝜂0
=

2I𝑇

ΔI11
(1 +

𝑛𝑇

𝑛11
− )     Eqn. 5-17 

in which ηT and η0 are the emitting probabilities of ET and E11 excitons, respectively, 

IT is the PL intensity of the trions, ΔI11 is the change in E11 PL intensity due to the 

incorporation of quantum defects, and nT and n11
- are the number of E11

- and ET defects 

on a SWCNT (see Section 5.2.5 for the derivation). Based on this calculation, we found 

that the PL QY of a trapped exciton in (6,5)-SWCNT-C6H13 is approximately 16.4 – 

32.7%, which is consistent with Piao et al.,14 while a trapped trion has a lower-bound 

probability of at least 7.9% to emit a photon, nearly 8 times as bright as the E11 exciton 

in unfunctionalized SWCNTs. 

Surprisingly, E11
- and ET are both brighter than the statistical upper-bound limit 

of bright E11 excitons in SWCNTs based on spin and symmetry selection rules alone.117 

These observations suggest that dark excitons must contribute to the observed ultra-

bright PL from trapped excitons and trions. Furthermore, ΔET shows a strong 

dependence on both the nanotube chirality and diameter (Figure 5-6 and Table 5-4). 

The (2n + m) family pattern of ΔET matches that of free trions in unfunctionalized 

SWCNTs108 while the diameter dependence follows the inverse second order equation, 

which is another evidence of dark exciton brightening.14,21 It is important to note that 

our experiments do not reveal the detailed mechanisms by which the dark excitons may 
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contribute, but we suspect that dark exciton brightening occurs due to the trion’s extra 

charge, which makes trions follow a different selection rule from that of excitons.  
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Figure 5-6 Diameter dependence of ET in (n,m)-SWCNT-C6H13. Trion 

emission energy is correlated with SWCNT diameter (d) by ΔET = E11 – ET = 

A/d + B/d2 +C. Deviations from the fitted line are related to the chiral angle 

dependence. 

 

 

Table 5-4 Chirality dependence of trion PL. Each chirality was clearly 

resolved due to the use of high purity samples. 

(n,m)  d (nm) E11 (nm) E11
- (nm) ET (nm) ΔE11

- (meV) ΔET (meV) 

(6,4) 0.683 879 1044 1138 223 321 

(6,5) 0.747 982 1102 1229 138 254 

(8,3) 0.772 960 1126 1231 190 284 

(7,5) 0.818 1027 1174 1270 151 231 

(8,4) 0.829 1117 1228 1316 100 168 

(7,6) 0.883 1128 1228 1332 90 168 

(11,3) 1.000 1207 1326 1386 92 133 
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5.3.3 Magnetoluminescence Spectroscopy Suggests Absence of Dark States in 

the Energetic Vicinity of Trapped Trions 

In order to probe the presence of potential dark states in the energetic vicinity 

of E11
- and ET states, we performed magnetoluminescence spectroscopy on individual 

SWCNTs. The upper and lower panels of Figure 5-7a show the evolution of the E11 

peak for an unfunctionalized (6,5)-SWCNT in response to an increasing magnetic field. 

The nanotube PL exhibits both characteristic features expected for an unfunctionalized 

SWCNT subjected to a coaxial magnetic field19: with increasing magnetic field, the 

lower-lying singlet dark state brightens progressively by acquiring oscillator strength 

at the expense of the bright state (as evident from the peak fits of the bright and dark 

PL emissions in the upper panel as well as in the color-coded PL representation in the 

lower panel of Figure 5-7a); additionally, the bright-dark splitting of the singlet (Δ0) 

evolves from its zero-field value of 4.5 meV according to the hyperbolic relation Δ2 = 

Δ0
2 + ΔAB

2 (solid line in the inset of the lower panel of Figure 5-7a).118 The field-

induced energy splitting ΔAB = µφ is a consequence of the Aharonov-Bohm flux 

φ=πd2B||/4 due to the fraction of the magnetic field B|| = B cos θ that is parallel to the 

SWCNT with diameter (d) and magnetic coupling constant (µ). Based on the fit to the 

data with θ = 45° for this specific nanotube, we extracted µ = 1.8 meVT-1 nm-2, which 

is consistent with a (6,5) tube diameter of 0.76 nm and values found in previous 

experiments.119  

In stark contrast to the E11 PL of the unfunctionalized SWCNT in Figure 5-7a, 

neither the E11
- nor the ET peaks of the covalently functionalized nanotube showed 

sizeable effects in magnetic fields of up to 8 T (upper and lower panels of Figure 5-7b 
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and c, respectively). Both E11
- and ET remained solitary peaks throughout the magnetic 

field sweep, without displaying any significant shifts or splitting within the energy 

boundaries given by characteristic spectral fluctuations (~2 meV) and the resolution 

limit of our spectrometer (~0.1 meV), respectively. These observations provide the first 

experimental evidence suggesting that E11
- and ET are the lowest energy states for these 

defect-trapped quasi-particles. This further explains why the trapped excitons and 

trions are much brighter than their “free” counterparts, whose photophysics is 

dominated by non-radiative decay mechanisms due to the lower-lying dark states, and 

thus may present a new quasi-particle state that is intrinsically bright.  
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Figure 5-7 Spectroscopy of unfunctionalized and quantum defect-tailored 

SWCNTs in a magnetic field. a, PL spectra (upper panel) of the E11 emission 

for a single, unfunctionalized (6,5)-SWCNT without a magnetic field (grey) 

and in magnetic fields of 4 T and 8 T (brown and orange, respectively). Grey 

solid lines show Lorentzian fits to the bright and dark exciton peaks with their 

total contribution to the PL spectrum, shown as a solid blue line. The lower 

panel shows the color-coded PL energy dispersion of the same nanotube in 

magnetic fields ramped up in steps of 1 T, highlighting the transfer of the 

oscillator strength from the bright to dark exciton. The inset shows the 

evolution of the bright-dark splitting of the singlet E11 excitons with the 

Aharonov-Bohm effect induced by the magnetic field (plotted as Δ2 vs. B2, 

with the fit to the data according to Δ2= Δ0
2+ ΔAB

2 shown as the solid blue 

line). b, c, PL spectra for the E11
- and ET peaks of an individual (6,5)-SWCNT-

C6H13. No brightening of dark satellites was observed within the energy range 

of 100 meV around the E11
- and ET peaks, suggesting that lower-lying dark 

exciton states are absent in the quantum defect-tailored nanotubes. 

 

1.05 1.001.10 1.05
PL energy (eV)

0

1

2

3
 T8

 T4

 T0

N
o
rm

a
liz

e
d
 i
n
te

n
s
it
y

1.30 1.25
0

2

4

6

8

 B
 (

T
)

8T
4T

0T

E11 E11
- ET

0 30 60
0

20

40


2
 (

m
e
V

2
)

B
2
 (T

2
)

a b c



 

 

115 

 

5.3.4 Extraordinarily Large Binding Energies of Trions in Deep Trapping 

Wells 

To better understand the origin of the unexpectedly bright trions, we further 

determined the binding energies, Eb, of these quantum defect-trapped species. Caught 

in a deep trap, a trion is expected to have a larger binding energy due to enhanced 

Coulomb interactions between the exciton and electron.120  

The binding energy of a negative trion is the minimum energy required to bind 

an exciton and an electron. For mobile trions in unfunctionalized SWCNTs,106,111 this 

binding energy can be determined by subtracting from ΔET the energy splitting between 

the triplet dark E11 exciton, which is the lowest energy state, and the singlet bright E11. 

By subtracting from ΔET (253 meV) the dark-triplet bright-singlet splitting (69.7 

meV),20 we obtained a binding energy of 183 meV for (6,5)-SWCNT-C6H13, compared 

to 54 meV for mobile trions in unfunctionalized (6,5)-SWCNT.109,111  

Intriguingly, for a trapped trion, as it dissociates, either the exciton or the 

electron may remain trapped. Since it takes more energy for an exciton than an electron 

to escape the trap, the binding energy of a trapped trion would be the minimum energy 

required to dissociate into an exciton, which remains trapped at the quantum defect, 

and an electron. On the energy ladder, both the trapped trion and trapped exciton are 

located deeply and well below that of the low-lying dark states of E11 excitons (Figure 

5-8; Table 5-5). Furthermore, since dark states are not observed in the energy vicinity 

of the trapped trion or trapped exciton, the lowest energy state is optically allowed for 

both excitons and trions when they are trapped at a quantum defect. Therefore, the 

binding energy of a quantum defect-trapped trion is simply the energy difference 
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between the trapped trion and trapped exciton, which can be experimentally determined 

directly from ET and E11
- to be 119 meV. This binding energy is lower than that is 

derived from the conventional picture (183 meV), but even with this conservative 

lower-bound value (119 meV) the binding energy of a trapped trion is still significantly 

larger than that of mobile trions in unfunctionalized (6,5)-SWCNT (54 meV),109,111 0D 

quantum dots (2–25 meV),100,104 and also 2D materials (15–45 meV).112  

This extraordinarily large binding energy explains the unexpected brightness 

observed for trapped trions. By systematically varying the chemical nature of the 

quantum defects, ranging from nonfluorinated (-C6H13), partially fluorinated, and 

perfluorinated (-C6F13), we found it is possible to tune the well depth and the binding 

energy of the trapped trion (Figure 5-8; see also Table 5-5). We also observed that as 

the potential well became deeper (as indicated by E11
-), ET PL is weaker (Figure 5-9). 

This observation was initially unexpected, but can be understood as a result of the 

electronic inductive effects of fluorine on the alkyl defects and can be quantitatively 

correlated to the Taft constant, σ* (ref. ). On the one hand, the fluorine pushes down 

the well allowing the exciton to be trapped more deeply. On the other hand, with its 

electron withdrawing capability the fluorine may pull electron density away from the 

trapped trion and as a consequence, Eb of the trapped trion decreased by 38 meV for 

(6,5)-SWCNT-C6F13 compared to the -C6H13 defects. Extrapolating the E11
- and ET 

curves in Figure 5-8, we suspect that the trion may lose its brightness when σ* becomes 

significantly more negative, since it would cross the dark states, while on the other side 

the binding energy may decrease to a level inadequate to bind the electron-hole-

electron as a quasiparticle. This inductive effect suggests the possibility of electrically 
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gating the generation of excitons and trions at chemically incorporated defect sites, 

which will be verified in future experiments.  

 

 

 

Figure 5-8 Binding energies of quantum defect-trapped trions. The emission 

energies of E11
- (black dots and line) and ET (red dots and line) decrease 

linearly with the Taft constants of the functional groups that create the 

quantum defects in (6,5)-SWCNTs. The bright-dark splitting of E11 excitons 

is plotted as theoretically predicted20 energies of dark states (shaded), bound 

by the low-lying singlet dark state and the lowest, triplet state which is dark. 

The energy level of the mobile trion111 is also plotted for comparison. 
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Table 5-5 The binding energy of trions in (6,5)-SWCNT-R as a function of 

the chemical nature of the quantum defect. Note that σcalc is the Taft constant 

for each alkyl functional group calculated based on an empirical formula121. 

 

 

 

 

Figure 5-9 Optimized trion brightening in (6,5)-SWCNT-C6F13 and -C6H13 

from ensemble measurement. Absorption and PL spectra of a, (6,5)-SWCNT-

C6F13 and b, (6,5)-SWCNT-C6H13. Based on Eqn. 5-1, the relative PL 

brightness for trions are calculated to be 0.6 and 5.4 for (6,5)-SWCNT-C6F13 

and (6,5)-SWCNT-C6H13, respectively. 
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-(CF2)2(CF2)3CF3 4.48 986 1168 1265 277 81 

-(CH2)2(CF2)3CF3 1.09 984 1133 1248 267 101 

-(CF2)2CF2CF3 0.69 978 1112 1239 267 114 

-(CF2)4CF2CF3 -0.13 980 1112 1232 259 109 

-(CH2)2CF3 0.31 980 1108 1240 265 119 

-(CH2)2CH2CF3 -0.03 980 1104 1231 258 116 

-(CH2)2(CH2)3CF3 -0.46 980 1100 1229 256 118 

-(CH2)2(CH2)3CH3 -0.77 981 1098 1227 253 119 
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5.4 Conclusions 

We observed ultra-bright PL from trions trapped at quantum defects that were 

synthetically created in semiconducting SWCNT hosts by covalent bonding of alkyl 

groups to the sp2 carbon lattice. The trapped trion is nearly 8-times as bright as the 

native nanotube excitons, with a photoluminescence lifetime that is more than 100 

times larger than “free” trions in the same host material. This unexpected brightness 

arises from strong localization of the trion in the deep potential well of the quantum 

defect, giving rise to an extraordinarily large binding energy for this tri-carrier 

quasiparticle (119 meV in (6,5)-SWCNT-C6H13). Magnetoluminescence spectroscopy 

suggests that the lowest energy states for these quantum defect-trapped quasi-particles 

are optically allowed. With ultra-bright trions, it is now possible to manipulate charged 

excitons with non-zero spin, which provides an ideal platform for studying fundamental 

photophysics, including dark exciton states in low-dimensional carbon materials and 

many-body physics. Many promising applications derived from these materials can 

also be expected, including infrared bioimaging,12 carrier-doped field effect 

transistors,108-109 and quantum information science.97  
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6 Dark Exciton Brightening at a Fluorescent Quantum Defect 

Adapted from a manuscript by Kim, M.; Wu. X.; Qu, H.; Huang, Z; Xu,B; Wang, Y. 

Y.W. and M.K. conceived and designed the experiments. M.K., X.W., and H.Q. 

performed the experiments. Z.H. and B.X. prepared substrates for imaging. M.K. 

wrote the manuscript. 

 

6.1 Introduction 

Because of the unique electronic structure and optical properties, 

semiconducting SWCNTs can be used for single-photon sources,11 imaging,12 

sensing,122 and other important optoelectronic applications.123 However, the quantum 

yields of SWCNTs are surprisingly low (3% ± 1% in water,124 and even worse for 

aggregated nanotubes10), limiting their practical applications. These low quantum 

yields have been attributed to the trapping of E11 exciton at quenching sites, including 

hole-dopants (e.g., protons43 and oxygen115), impurities,43,115,125 and structural defects, 

which increase the probability of nonradiative recombination.36,114 Various strategies 

have been implemented to minimize the nonradiative decay of E11 excitons at these 

quenching sites.27,87,124,126-127 For instance, one can avoid the creation of structural 

defects by the nondestructive SWCNT processing,27 hole passivation via oxygen-

excluding surfactant organization,126 and removal of quenching defects using reducing 

agents.87 

Even though these methods can brighten the SWCNT PL, the brightening 

effects may not be permanent124 and more importantly, will be limited by the 

probability distribution of bright exciton population (< 10%) due to the low-lying dark 

states in the electronic structure of SWCNTs.38 The intrinsic electronic structure of 
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SWCNTs is composed of 12 triplet and 4 singlet excitonic states due to the spin 

degeneracy18 and intervalley short-range Coulomb interactions.19 Within the manifold 

of excitonic states, only one singlet state is optically allowed.18-19 There are 13 dark 

states below the bright state, making excitons sink into lower lying ‘dark’ singlet or 

triplet states,20-21 from which energy is typically lost as heat.128  

Miyauchi et al.37 have reported that the PL quantum yield in oxygen-doped 

SWCNTs can exceed the limit of intrinsic E11 excitons38,127 by the dimensionality 

modification of excitons (18% for 0D exciton vs. 1% for 1D exciton). Exciton 

localization at an oxygen doped site in a SWCNT71 not only reduce the probability of 

non-radiative decay of 1D excitons at quenching sites but also confine the exciton in 

the 0D state, increasing its radiative decay rate. However, the quantum yield 

enhancement through the dimensionality modification is still limited by the population 

of bright E11 excitons. Because the bright excitons only account for 10% of a total E11 

exciton population in unfunctionalized (6,5)-SWCNTs,38 a way to harness the optically 

inaccessible dark excitons is the key to achieve significant enhancement of the quantum 

yield of SWCNTs.  

Fluorescent quantum defects are sp3 defect centers that can be synthetically 

incorporated in SWCNTs by controlled chemical reactions.13-15 The synthetic quantum 

emitters trap mobile excitons57 and allow the trapped excitons to fluoresce as E11
-. Even 

though the fluorescent quantum defects are analogous to the oxygen-doped state in 

terms of dimensionality modification, various electronic properties make them 

distinguishable from other defect systems. For example, the fluorescence quantum 

defects feature deep trapping potential and the reversed ordering of bright and dark 
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states in E11
- excitons,60 which may improve the stability of defect PL emission. 

However, how these properties benefit the optical properties of SWCNTs and how dark 

excitons behave at the fluorescent quantum defects have not been unambiguously 

explained.  

In this contribution, we report the evidence for dark exciton brightening from 

fluorescent quantum defects. To access the brightening factor by defect trapped dark 

excitons, we employed super-resolved hyperspectral PL imaging, which enables direct 

measurement of spatially localized defect PL spectra of SWCNTs at the single defect 

level. Remarkably, the quantum yield of defect-trapped excitons is 51.5% in (6,5)-

SWCNT-C6H4OCH3, which is at least 5 times greater than the fundamental limit of 

bright excitons in unfunctionalized SWCNTs. To explain the origin of brightening, 

both extrinsic and intrinsic factors of PL enhancement are analyzed. The unexpected 

brightening results from the characteristics of fluorescent quantum defects; deep 

trapping of excitons at the lowest-lying bright defect state. Our findings reveal the 

contribution of dark exciton brightening in E11
- PL (at least by a factor of 1.5) and 

suggest significant potential for chemically engineered fluorescent quantum defects as 

an effective system to harness dark excitons. 
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6.2 Experimental Section 

6.2.1 Sample Preparation of Chirality Enriched Long (6,5)-SWCNTs 

CoMoCAT SG65i SWCNTs(Southwest Nanotechnologies, lot no. SG65i-L39) 

were stabilized in ozonated nanopure water as individual particles wrapped with 1 

%wt/v sodium deoxycholate (DOC, Sigma Aldrich, > 97%) using gentle stirring at 25 

oC for several months.25 Chirality pure (6,5)-SWCNTs were then isolated by polymer 

aqueous two-phase separation.30 The sorted SWCNTs were stabilized in 1%wt/v DOC-

D2O (Cambridge Isotope Laboratories, Inc., 99.8%) to retain the stability in the 

aqueous solution. 

6.2.2 Covalent Functionalization of Long (6,5)-SWCNTs by 4-Methoxyaryl 

Defects 

For the subsequent functionalization and spectroscopic characterization, the 

optical density of (6,5)-SWCNT solutions was adjusted 0.06–0.12 at 988 nm by 

diluting the concentrated (6,5)-SWCNT into 1% SDS-D2O (Sigma Aldrich, > 98.5%). 

UV-Vis-NIR absorption spectra were measured with a spectrophotometer equipped 

with a broadband InGaAs detector (Lambda 1050, PerkinElmer). 

The covalent functionalization of aryl defects follows the steps established in 

ref 53. An adequate amount of aqueous 4-methoxybenzenediazonium tetrafluoroborate 

(Sigma Aldrich, 98%) was added to the SWCNT solution. The illumination of 565 nm 

light (resonating with E22 transition of (6,5)-SWCNT) accelerates the covalent 

functionalization and enables monitoring the reaction progress by in situ PL 

spectroscopy. When the desired defect PL intensity was reached, the functionalization 
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was quenched by diluting the solution using 4 %wt/v DOC. Adding 2 mL of 4 %wt/v 

DOC-D2O to 0.5 mL SWCNT solution is sufficient to stabilize the SWCNT dispersion 

as well as to stop the further reaction. Also, DOC coating protects SWCNTs from 

photobleaching by laser excitation during PL imaging. The PL of the SWCNT 

solutions, (6,5)-SWCNT-C6H4OCH3 was characterized with a Horiba Jobin Yvon 

NanoLog spectrofluorometer equipped with a liquid-N2 cooled InGaAs array.  

6.2.3 Sample Preparation for PL Imaging 

For PL imaging using a 100x objective, the substrates were prepared by thermal 

deposition of 60 nm thick Au and 5 nm thick Ti layers on a silicon wafer. The Au and 

Ti layers improve the photon collection efficiency by reflecting the NIR light. For 

imaging with the oil-immersion 150x objective, a cover glass (Ted Pella, Inc., 

Goldseal® Cover Glass, 0.08–0.13mm thick) was used as a substrate. On the top of the 

Au/Ti/Si substrate or cover glass, 3% polystyrene (PS) in toluene was spin-coated to 

form a 50 nm thick layer and then, the substrates were baked at 80 oC under vacuum 

for several hours to remove charge trap states and suppress blinking of SWCNTs.129-

130 We note that the potential variation in the thickness of polystyrene layer is almost 

independent of the reflectivity in the 850–1550 nm range, where SWCNTs fluoresce 

(Figure 6-1). To achieve the sparse coverage of SWCNTs on a substrate (1–2 SWCNTs 

in 100 μm2), 5 uL of the SWCNTs in 3.4 wt/v% DOC was added on the substrate and 

immediately blown dry with air. 
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Figure 6-1 Reflectance of PS/Au/Ti/Si substrates in the visible and NIR 

region. The NIR reflectivity of the substrates is nearly 100% regardless of the 

thickness of polystyrene layer.  

 

6.2.4 Super-Resolved Hyperspectral PL Imaging 

Single tube PL imaging was performed on a custom-built hyperspectral PL 

imager as shown in Figure 6-2. The instrument comprises an inverted microscope 

(Nikon, Eclipse Ti-U) equipped with a 100x objective (LCPLN100XIR, NA = 0.85, 

Olympus) and a 150x objective (UAPON150XOTIRF, NA=1.45, Olympus). SWCNTs 

were excited with continuous-wave diode lasers at 730 nm (Shanghai Dream Lasers 

Technology) and 561 nm (Cobolt) at <100 W/cm2 power density. The power density 

of excitation sources was modulated by controlling the input current (only for 730 nm 

laser) and placing a neutral density filter (Edmund Optics) in the excitation light path 

(NDF in Figure 6-2). The excitation power density at the sample stage was measured 

with an optical power meter (Newport 1916-C) and silicon detector (Newport 918-
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SLOD3). The emission wavelengths were selected by a volume Bragg grating, which 

allows broad-field imaging at 4 nm spectral resolution in the NIR (850–1550nm), 

providing a high-throughput tool for studying a large number of SWCNTs in the field 

of view. Because the angular selectivity of the grating results in a gradient in 

wavelength (50 nm) across the field of view in the vertical axis in each PL image, a 

stack of PL images was rectified to obtain a hyperspectral cube with monochromatic 

images. The PL emission was collected using a liquid-N2 cooled 2D InGaAs detector 

with 648×520 pixels (Cougar 640, Xenics, Inc.) using Read While Integrate mode 

(RWI). The RWI mode reads the accumulated photoelectrons non-destructively during 

the integration period without resetting the buffering capacitors, enabling ultra-low 

noise levels (few electrons per second). The nonlinear responses to wavelength and 

intensity of each pixel were calibrated using a calibrated light source (Ocean Optics, 

HL-3P-INT-CAL-EXT) and integrating sphere (Thorlabs, IS200). Because the detector 

displays the accumulated charge as the counts in analog-to-digital converter units 

(ADU), we generated a correction cube for wavelength calibration that converts the 

ADU to the absolute photon counts, emitting from a sample at each wavelength. A 

series of Matlab algorithms was implemented for post-processing of the data. 

To collect the blinking profiles of E11 and E11
- PL in a field of view, appropriate 

longpass or bandpass filter, denoted by LP or BP in Figure 6-2 (Thorlabs, FB980-10 

and FELH1100) were used instead of the volume Bragg grating system. The videos of 

SWCNT blinking were recorded for 10 min with a frame rate of 2–6 frames-per-

second. After the video recording, the blinking profiles were obtained from the linear 

regression of the raw data. Differential images of the blinking profiles were analyzed 
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to find the on/off blinking from particular defect sites. Each spot in a differential image 

was then fitted by a 2D Gaussian profile with the plug-in GDSC SMLM (ImageJ), as 

used in single molecule localization microscopy,131-133 to retrieve the emitter 

localization with sub-diffraction precision.  

 

 

 

 

Figure 6-2 Schematic of the super-resolved hyperspectral imaging system.  
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6.3 Results and Discussions 

6.3.1 Incorporation of Spatially Isolated Fluorescent Quantum Defects  

Figure 6-3 shows the PL spectra of the unfunctionalized and functionalized 

(6,5)-SWCNT-C6H4OCH3 in 1% SDS-D2O. To resolve individual fluorescent quantum 

defects from single tube imaging, we functionalized SWCNTs with a low density of 4-

methoxyaryl defects. The density of defects was adjusted to few defects in a SWCNT, 

where the E11 PL (centered at 988 nm) decreases to less than 10% of its initial intensity 

and the E11
- (centered at 1128 nm) is observed as a small peak in the ensemble PL 

spectrum. The new PL is distinguishable from a low intensity shoulder peak at 1110 

nm, which arises from K-momentum dark excitons.23-24 The E11
- emission wavelength 

is a signature of 4-methoxyaryl defects in (6,5)-SWCNTs,14 confirming the covalent 

attachment of aryl defects to SWCNTs. 

 

Figure 6-3 PL spectra of the unfunctionalized starting (6,5)-SWCNT (black) 

and 4-methoxyaryl functionalized (6,5)-SWCNT in 1% SDS-D2O (red). The 

peak at 878 nm corresponds to E11 of (6,4)-SWCNT. The molecular structure 

of the fluorescent quantum defect is given in the plot. The excitation 

wavelength was 565 nm. 
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6.3.2 Defect PL Blinking Control by Excitation 

SWCNT PL should be stable during the acquisition of a reliable hyperspectral 

cube (~10 min). Conversely, to super-localize defects, blinking profiles of E11
- PL are 

required. To obtain both the spectral profile and sub-diffraction limit localization 

information on the same tube, we first determine conditions, that can reversibly control 

the blinking behavior of SWCNT PL. Thus, we studied the E11 and E11
- PL blinking at 

varying the power and wavelength of the excitation sources. The E11 and E11
- PL were 

recorded by placing 980 nm bandpass and 1100 nm longpass filters to the emission 

light path, respectively, so that the entire field of view selectively displays the E11 and 

E11
- of (6,5)-SWCNT. The frame time was 0.5 s, and the PL profiles were monitored 

for 10 min.  

For 730 nm excitation, we varied the excitation power densities from 5 W/cm2 

to 60 W/cm2. Within the power density regime, both E11 and E11
- PL intensities are 

proportional to the excitation power density (r2 = 0.995 for Figure 6-4a and r2 = 0.960 

for Figure 6-4b) and the noise levels of E11 and E11
- emission are comparable to that of 

background signal (Figure 6-4b,d). These indicate that blinking was completely 

suppressed over the video recording and the excitation condition is suitable to collect 

hyperspectral cubes.  

For 561 nm excitation, E11 PL was stable and linear to varying the power density 

from 10 W/cm2 to 80 W/cm2, consistent with previous observation on blinking of 

unfunctionalized SWCNTs.134 Conversely, we have observed the nonlinear E11
- PL 

response for at the power density higher than 19.7 W/cm2 since strong 561 nm 

excitation induces the blinking of E11
- PL (Figure 6-5).  
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Figure 6-4 Power dependence of a, E11 and c, E11
- PL intensities of (6,5)-

SWCNT-C6H4OCH3 on a PS/glass substrate under 730 nm excitation. The 

solid lines in the plots are linear fitting of the correlations. The b, E11 (green) 

and d, E11
- (pink) intensity traces over time and the histogram of the time 

traces. The gray traces are background signal. The time correlated PL traces 

were collected under the power density of 60 W/cm2. The frame rate was 2 

frames per second. 

 

 

Figure 6-5 Power dependence of E11
- PL intensities of (6,5)-SWCNT-

C6H4OCH3 on a PS/glass substrate under 561 nm excitation. The plots are the 

E11
- intensity traces over time at the excitation power densities of 9.9, 19.7, 

39.4, and 78.6 W/cm2. At the power density higher than 39.4 W/cm2, the 

blinking dominates the E11
- PL intensity. Red lines guide three-step blinking 

in the E11
- emitting area. 
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Although the blinking mechanism is still unclear, we have confirmed that the 

power dependence of blinking is reproducible. In addition, the blinking frequency is 

related to the power density. When the power density is increased to 78.6 W/cm2 at 561 

nm excitation, we no longer observe the clear on-off blinking at the given frame time 

(0.5 s) but the intensity profile appears to be flickering due to the frequent blinking. 

Given by the slow exciton generation rate at the excitation condition (few excitons per 

nanosecond) and long lifetime of off state, the blinking is not caused by exciton-exciton 

interactions at a fluorescent quantum defect,135 e.g. exciton-exciton annihilation66,106-

107 and phonon-assisted up-conversion at defects.72 We suspect that the PL blinking is 

attributed to optical generation of transient quenching states in SWCNTs.134 Strong 

electrostatic potential in the vicinity of quantum defects makes the defects as an antenna 

to generate optical quenchers.[cite Hartmann Nanoscale]  

In contrast to 730 nm excitation, which is weakly resonant with (6,5)-SWCNT, 

561 nm excitation is slightly off-resonant (~5 nm) from the E22 of (6,5)-SWCNTs. 

Based on the PL excitation spectrum of (6,5)-SWCNT at E11 and the literature value of 

absorption cross section of (6,5) E22 (0.61×10-17cm2/C),136 we derive absorption cross 

sections for 730 nm and 561 nm as 0.07×10-17cm2/C and 0.41×10-17cm2/C, respectively. 

The difference in the absorption cross sections suggests that the number of 

photogenerated excitons in (6,5)-SWCNT can be approximately 4 times higher with 

561 nm excitation than with 730 nm excitation at the same power density. Therefore, 

we used 730 nm excitation at <60 W/cm2 to collect the hyperspectral PL cubes that 

records the stable PL signal for a relatively long time (~10 min) and at 561 nm 

excitation at 39.4 W/cm2 to induce blinking of E11
-. 
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6.3.3 Super-Resolved Hyperspectral PL Imaging 

Figure 6-6 shows the hyperspectral PL imaging of unfunctionalized (6,5)-

SWCNT on a PS-coated glass substrate under 730 nm excitation (30 W/cm2). For the 

unfunctionalized SWCNT, the PL image at 988 nm displays homogeneous E11 intensity 

profile along SWCNT length. Because the SWCNT ends are effective quenching sites 

for E11 excitons, fitting the E11 PL profile using the diffusion equations gives the 

exciton diffusion length (lD) in the SWCNT.38 The calculated exciton diffusion length 

ranges from 150 to 350 nm (median lD = 200 nm). The intensity profile perpendicular 

to the SWCNT axis closely follows the Gaussian fitting with 143 nm standard deviation 

which approximates a slice of Airy disk for the objective NA of 1.45 and the 988 nm 

emission wavelength, confirming that the PL is a diffraction-limited image.  

 

Figure 6-6 Hyperspectral PL imaging of unfunctionalized (6,5)-SWCNT. a, 

E11 PL image of a (6,5)-SWCNT on a PS coated cover glass. The white and 

orange lines guide the intensity cross sections parallel and perpendicular to 

the SWCNT axis. b, Intensity cross section along the SWCNT axis. The red 

and blue lines indicate the solution of the 1D diffusion equation for different 

boundary conditions described in the text convolved with the Airy disk. c, 

Intensity cross section perpendicular to the SWCNT axis. Black and red lines 

indicate the Airy disk and Gaussian fitting for λ = 988 nm and NA = 1.45. The 

standard deviation of the fitted Gaussian is 143 nm. The excitation wavelength 

was 730 nm at 60 W/cm2. 
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In the hyperspectral cube of a functionalized (6,5)-SWCNT with 4-methoxyaryl 

defects, an E11
- emitting site is spectrally distinct and spatially resolved along the 

nanotube while E11 emission is continuous in the SWCNT (Figure 6-7). We assigned 

the E11
- emitting site to the region of interest 2 (ROI 2) and the unfunctionalized region 

near ROI 2 to ROI 1, as shown in Figure 6-7. The intensity cross section of ROI 2 in 

any direction can be fitted by a Gaussian function, whose standard deviation is 164 nm, 

suggesting that ROI 2 is a diffraction-limited image of a single E11
- emitting point. 

Interestingly, as the PL images of E11 and E11
- PL are combined to spatially correlated 

defect PL to a SWCNT, the E11
- profile is complementary to E11 profile, suggesting that 

the E11
- PL originates from the same (6,5)-SWCNT (Figure 6-7b). The integrated E11 

PL intensity at ROI 2 is 20% of the integrated E11 PL at ROI 1 in the PL spectra (Figure 

6-7c). We note that the considerable E11 intensity difference between two ROIs is 

related not only to exciton trapping at the fluorescent aryl defect but also to the position 

of the defect in the SWCNT. ROI 2 is close to the SWCNT end, which is an effective 

quenching site for E11 excitons. As the E11 intensity decays at the SWCNT ends, we 

should deconvolute the E11 intensity reduction into the effects of end quenching and 

exciton trapping at the fluorescent quantum defect for the quantitative analysis on E11 

excitons. 
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Figure 6-7 Hyperspectral PL imaging of (6,5)-SWCNT-C6H4OCH3. a, E11 

(green) and E11
- (pink) PL image of a (6,5)-SWCNT on a PS coated glass 

substrate. b, The E11 (green) and E11
- (pink) intensity cross section along the 

SWCNT axis. A black line is the Gaussian fitting of E11
- PL profile with σ 

=164 nm, which corresponds to a diffraction-limited profile for 1.45 NA and 

1124 nm emission wavelength. c, PL spectra of unfunctionalized (ROI 1 in a 

and green arrow in b) and functionalized (ROI 2 in a and pink arrow in b) 

region in the same (6,5)-SWCNT. 

 

To confirm the number of fluorescent defects at the E11
- emitting site, the E11

- 

PL intensity traces were recorded for 10 min under 561 nm excitation at 39.4 W/cm2. 

By taking the difference of single step blinking, we were able to superlocalize defects 

in SWCNT. As is well established in super-resolution microscopy,131-133 the location 

of each defect site was extracted by fitting the diffraction-limited pattern with a 2D 

Gaussian function, which approximates the Airy disk for the objective NA of 1.45 and 

the emission wavelength of 1128 nm:  

CNT length (um)

0 1 2 3 4 5 6

P
L

 i
n

te
n

s
it
y
 (

n
o

rm
.)

0.0

0.5

1.0

Wavelength (nm)

900 950 1000 1050 1100 1150 1200

P
L

 i
n

te
n

s
it
y
 (

c
o

u
n

ts
)

0

1000

2000

3000

ROI 1

ROI 2

a

c

b

E11
-

E11

1 um

ROI 2

ROI 1



 

 

135 

 

𝑓(𝑥, 𝑦) = 𝐴𝑒𝑥𝑝 (−
1

2
(
(𝑥−𝑥0)

2

𝜎2
+

(𝑦−𝑦0)
2

𝜎2
))   Eqn. 6-1 

in which A is the peak intensity, x0 and y0 are the center position of the peak, and σ is 

the standard deviation for the emission wavelength and the numerical aperture of 

objective. 

We found one-step blinking in ROI 2 and multi-step blinking in another (6,5)-

SWCNT-C6H4OCH3 with a constant blinking amplitude (Figure 6-8). Based on the 

blinking profile, we can super-resolve the center position of light emitting sites with a 

spatial resolution better than 20 nm. The results show the superlocalization of a single 

defect in ROI 2 and three adjacent defects closer than the diffraction limit (660 nm) in 

another example. The superlocalization of defects confirms that the integrated E11
- PL 

in the hyperspectral cube is related to the number of photons emitted from a single 

fluorescent quantum defect.  

 

 

Figure 6-8 Super-resolved fluorescent quantum defects. a, E11
- PL profile of 

ROI 2 (pink) and another defect site of (6,5)-SWCNT-C6H4OCH3 (black). The 

step size of blinking is identical to the same defect type. b, Diffraction-limited 

PL images where the blinking occurs. c, Superlocalization of a single defect 

(top) and three defects (bottom).  
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6.3.4 Calculating the Brightening Factor of a Defect-Trapped Exciton 

The probability of radiative recombination of defect trapped excitons (η11
-) can 

be defined as the ratio of the number of E11
- photons emitted from a single fluorescent 

quantum defect (N11
-) and the number of trapped excitons (Ntrapped).  

Considering the diffusion of photogenerated 1D excitons and successive 

trapping by a local defect state (E11
-), the number of trapped excitons (Ntrapped) at 

fluorescent aryl defects can be expressed as: 

𝑁trapped = 𝑁abs
𝑘𝑑𝑖𝑓

𝑘𝑖+𝑘𝑑𝑖𝑓
𝑃trapped    Eqn. 6-2 

in which Nabs is the number of E11 excitons generated after photoabsorption; kdif is the 

effective decay rate of the E11 excitons due to exciton diffusion and successive trapping 

at the local quenching sites (including intrinsic quenching sites, physisorbed 

aryldiazonium molecules, and aryl defects); and ki is the effective decay rate for all 

possible mechanisms of exciton recombination other than the diffusion-limited 

processes. In our calculation, we ignored the contribution of ki (ki ≪ kdif) and thereby 

𝑘𝑑𝑖𝑓

𝑘𝑖+𝑘𝑑𝑖𝑓
 ~ 1. The last component of Eqn. 6-2, Ptrapped refers the probability of diffusing 

excitons to be trapped at fluorescent quantum defects within SWCNT length and can 

be expressed as 

𝑃trapped =
𝑛11
−

𝑛𝑞+𝑛11
− =

𝑛11
−

[𝑄]∙𝑙+𝑛11
− =

𝑛11
−

(𝑑𝑞
−1+𝑙−1)∙𝑙+𝑛11

−    Eqn. 6-3 

in which nq is the number of defects on the SWCNT, induced by intrinsic quenching 

sites and physisorption of aryldiazonium molecules; and n11
- is the number of 

fluorescent quantum defects; [Q] is the concentration of effective quenching sites; l is 
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the SWCNT length; dq is the sum of the average bulk quenching site distance in the 

absence of end quenching (dq=π-1/2lD). We note that the conversion factor from a mobile 

E11 exciton to a trapped E11
- exciton is 1 to avoid the overestimation of the quantum 

yield calculation. 

If we consider the trapping probability for a single fluorescent defect, which is 

isolated from other fluorescent defects at least by 2lD on each side (Figure 6-6b): 

𝑃trapped =
𝑛11
−

(𝑑𝑞
−1+𝑙−1)∙𝑙+𝑛11

− =
1

(𝑑𝑞
−1+𝑙−1)∙𝑙+1

=
1

4√π+2
= 0.11 . Eqn. 6-4 

Thereby, we can simplify the number of trapped excitons at a single fluorescent defect 

of (6,5)-SWCNTs within the range of 4lD as 

𝑁trapped = 0.11Nabs.       Eqn. 6-5 

Based on Eqn. 6-5, we derived the number of trapped excitons at the single fluorescent 

4-methoxyaryl defect of the (6,5)-SWCNT under 730 nm excitation at 30 W/cm2 as 

6.62×105 photons/s in 4lD (1.2 μm). Nabs is calculated by multiplying the excitation 

photon flux per unit area, the absorption cross section of (6,5)-SWCNT at 730 nm, and 

the number of carbon atoms in 4lD long (6,5)-SWCNT (~1.4×105 atoms). 

The number of photons emitted from a fluorescent quantum defect (N11
-) can 

be directly measured by integrating the PL intensity fitted by 2D Gaussian function 

over the E11
- emission wavelength (1100–1200 nm in the hyperspectral cube). The 

calculation gives 3.40×105 photons emitted from the single 4-methoxyaryl defect per 

second under the 730 nm excitation at 30 W/cm2. Consequently, the quantum yield of 

defect trapped excitons (η11
-) is as high as 51.3% for (6,5)-SWCNT-C6H4OCH3 at room 

temperature. As a comparison, the quantum yield of E11 excitons in the 

unfunctionalized (6,5)-SWCNT was 5%. Thus, defect-trapped E11
- excitons at 4-
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methoxyaryl defects are at least 10-times brighter than free E11 excitons and 2.86 times 

brighter than excitons trapped at oxygen defects in (6,5)-SWCNTs.37 

 

6.3.5 Origin of PL Brightening 

We attribute the PL brightening to the combined effects of exciton localization37 

and dark exciton harvesting.  

Fluorescent quantum defects trap E11 excitons before they reach at quenching 

sites. This exciton trapping reduces the non-radiative decay rate of the trapped excitons 

by 2 times if the defect-induced E11
- state collects all of the bright E11 exciton 

population (~10%).38 Once an exciton localizes at a defect site, it has different 

temperature dependence compared to that of 1D exciton. Although E11 PL has a 1/√T 

dependence on the radiative decay rate of E11 excitons, arising from the 1D density of 

states and their thermalization within the exciton band, E11
- PL intensity is independent 

to temperature because of δ-function like (0D) density of states.78,137 The different 

temperature dependence between 1D and 0D excitons leads to the PL enhancement by 

a factor of 1.6.  

In addition, the 0D localization of E11
- excitons introduces additional 

brightening factor due to the giant-oscillator-strength effect. The defect-induced states 

carry the large oscillator strength due to the exciton squeezing at the defect center.63 

The radiative decay rate of E11
- exciton is proportional to the square of exciton energy 

and inversely proportional to the exciton size. Quantum chemical modeling in my 

previous publication60 also revealed that the bright E11
- exciton in aryl defect tailored 

or oxygen-doped SWCNTs is strongly localized on ~ 1 nm length scale, whereas the 
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E11 exciton is delocalized over 5–6 nm in size (see Figure 4-5). As we account for the 

different energies and the exciton sizes of E11 and E11
- excitons, we can expect the 

additional PL brightening by a factor of 2.2 at 4-methoxy aryl defects.  

The PL enhancement factors described above (×7 in total) can be applied to any 

defect-induced PL and is almost constant over the various chemical nature of defects 

since either aryl/alkyl defects and oxygen dopant site can trap mobile E11 exciton. 

However, these factors cannot completely cover the brightening (×10 at room 

temperature) observed in our experiment.  

We attribute the rest of brightening (×1.5) to the contribution of dark excitons. 

Although the energy states of E11
- excitons are analogous to those of E11 excitons in 

terms of the existence of dark states,37,57,60 the relative spacing and order can be 

different depending on the types of defects. The time-dependent density functional 

theory calculations revealed that the lowest excited state is optically allowed for aryl 

defects.60 To analyze the effects of energy spacing, the population distributions 

between dark and bright states in E11 and E11
- excitons are modeled as the Boltzmann 

distribution between the two states. The fraction of bright E11 excitons (Pb) is 

𝑃𝑏 ≈ 𝑒𝑥𝑝(∆/𝑘𝐵𝑇)     Eqn. 6-6 

and the fraction of bright E11
- excitons (Pb

-) is 

𝑃𝑏
− ≈ 𝑒𝑥𝑝(∆−/𝑘𝐵𝑇)     Eqn. 6-7 

in which Δ and Δ- are the energy spacing between bright and dark states (Ebright – Edark) 

for E11 and E11
- excitons, respectively; kB is the Boltzmann constant; and T is 

temperature. Δ is known to be –6 meV for chiral SWCNTs38,138-139 and Δ- varies as a 

function of SWCNT chirality and the chemical nature of defects. We modeled the ratio 
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of Pb
- and Pb as a function of temperature at different Δ- values, which corresponds to 

the PL enhancement factor related to the dark excitons (Figure 6-9). The results show 

that the fraction of excitons staying at the bright E11
- state can be higher in aryl defects 

compared to excitons in oxygen dopants or native excitonic states, leading to the PL 

enhancement by a factor of 1.2–2 at room temperature. Based on the fitting, we 

obtained the dark-bright splitting in aryl defect state (Δ-) of 4 meV. 

Lastly, we note that the deep trapping potential of aryl defects suppresses an 

Arrhenius type quenching which is associated with thermal detrapping (Eqn. 6-8).60 

 
𝐼11

𝐼11
− ∝ 𝑒−∆𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙/𝑘𝐵𝑇 ,     Eqn. 6-8 

where I11 is the integrated PL intensity of E11 PL; I11
- is the integrated PL intensity of 

E11
- PL; ΔEthermal is the detrapping energy of E11

- excitons; kB is the Boltzmann constant; 

and T is temperature. The temperature dependent PL studies revealed that the 

detrapping energy of oxygen dopant is only 20 meV (Table 4-1), making 30% of E11
- 

excitons escape the defect state at room temperature (Figure 6-10). In contrast, the 

thermal detrapping is inefficient at 4-methoxy aryl defect due to its large trapping 

potential (as large as 117 meV), and thus the quantum yield of E11
- excitons at aryl 

defects is higher than other defect systems (e.g., 30% brighter than oxygen-doped 

SWCNT). Note that the phonon-assisted detrapping of E11
- excitons is also inefficient 

because ΔEthermal does not match to the optical phonon modes with the energies of 

~170–200 meV.  



 

 

141 

 

 

Figure 6-9 Temperature dependence of brightening from dark excitons. As 

the bright E11
- state is higher than the dark E11

- state (Δ- > 0), the fraction of 

bright excitons in E11
- (Pb

-) is similar or lower than that in E11 (Pb). 

Conversely, if the bright E11
- state is same or lower in energy than the dark 

E11
- state (Δ- ≤ 0), the ratio, Pb

-/Pb is 1.2–2 at room temperature, indicating the 

dark exciton brightening. The gray dashed line is Pb
-/Pb = 0. 

 

 

Figure 6-10 Temperature-dependent PL at varying detrapping energy at E11
- 

state. The detrapping energies of oxygen-doped and 4-methoxyl aryl defects 

(low and high density of defects) were experimentally derived from the 

temperature dependent PL spectroscopy.  
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6.4 Conclusions 

We studied the dark exciton brightening at a fluorescent quantum defect. The 

existence of low-lying dark states in the excitonic energy level is the main reason of 

low PL quantum yield in unfunctionalized SWCNTs (typically < 1%).124 Thus, dark 

exciton is a fundamental issue to the understanding of SWCNT photophysics as well 

as potential applications. Here we have demonstrated that fluorescent quantum defects 

offer an efficient channel to harvest dark excitons through deep trapping at the defect 

site. A super-resolved hyperspectral PL imaging system enables us to probe a single 

fluorescent aryl defect that is spectrally distinct in the PL spectrum and spatially 

resolved along the SWCNT in the PL image. From the single tube imaging, we 

measured the quantum yield of the defect-trapped excitons which is as high as 51.3%. 

Based on these results, we will further investigate what types of defects provide the 

highest brightening factor, how the defect PL is correlated to the stability of the 

SWCNT PL, and how to chemically modulate the local defect state. 
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7 Summary and Outlook 

Single-walled carbon nanotubes have intriguing electronic structure and optical 

properties, which arise from their 1D nature. The incorporation of fluorescent quantum 

defects to SWCNTs creates 0D local traps that localize excitons and let the trapped 

excitons radiatively decay through the defect-induced PL. Understanding the 0D-1D 

hybrid system is important to chemically control the exciton dynamics and optical 

properties of SWCNTs and to broaden the applications for quantum light sources, 

optoelectronics, biological imaging, and more. To enrich our knowledge in this 

emerging field, my research was directed to provide new insights on chemically-

tailored exciton photophysics in fluorescence quantum defects.  

7.1 Summary 

In this dissertation, I established the structure-property relationships for 

fluorescent quantum defects in semiconducting SWCNTs to guide the design and 

synthesis of fluorescent quantum defects. We revealed these relationships based on 

comparative spectral studies of 14 purified SWCNT chiralities and 30 different 

functional groups that vary in electron withdrawing capability and bonding 

configurations. Among the large library of fluorescent quantum defects that are 

investigated in our studies, the defect emission is tunable by as much as 400 meV in 

NIR, as a function of SWCNT structure and the chemical nature of the defects. The 

uncovered insights enable to predict the properties of these fluorescent quantum defects 

well beyond the set of studied SWCNTs and functional groups. Importantly, our results 

reveal that the coupling between fluorescent quantum defects and the SWCNT hosts 
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can be chemically tailored opening the possibility to integrate fluorescent quantum 

defects directly into electronic devices with desired chemical and quantum properties. 

Secondly, I reported the experimental measurement of the trapping depth of 

excitons at fluorescent quantum defects through temperature dependent PL 

spectroscopy. Surprisingly, the experimental measurements of the trap depths of the 

quantum defects show a large energy mismatch between PL spectroscopy and van ‘t 

Hoff plots. Through a joint experimental and theoretical effort, we have unambiguously 

determined that the energy mismatch arises from a substantial reorganization energy 

between the excited and ground state of carbon nanotubes in the presence of a 

fluorescent defect. This finding reveals a molecular picture for these quantum defects 

and suggests the unlimited possibility of chemical tailoring of the electronic properties 

of carbon nanostructures through chemical engineering. In addition to adding to our 

understanding of the electronic and optical behavior of these important new defect 

centers, accurate determination of the relative electronic levels and their relation to the 

thermal detrapping process are essential for understanding of redox properties of the 

defect sites, improving PL stability associated with newly revealed single photon 

emission behavior of the defect sites48-49, and its relevance to photon upconversion in 

functionalized SWCNTs72, which directly arises from thermal detrapping.  

Thirdly, I also investigated defect-trapped trions that fluoresce brightly at room 

temperature. A trion carries a quantum of excitation energy, just like an exciton, but it 

is electrically charged. Trions are intriguing due to the strong many-body effects and 

their rich photophysics and optoelectronic properties. However, trions have only ever 

been observed as a minority species. By the co-localization of an electron and an 
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exciton at the same quantum defect, we found that it is possible to generate ultra-bright 

trions in SWCNTs. Due to the deep trapping depth of the fluorescent quantum defects, 

a defect-trapped trion possesses an extraordinary large binding energy. PL from the 

defect trapped trions is extremely bright, significantly brighter even than the SWCNT 

host, and with a PL lifetime more than 100-times longer than the “free” trions. 

Magnetoluminescence measurements and single molecule imaging suggest that this 

unexpected brightness arises from the efficient conversion of dark excitons to trions 

whose lowest energy state is intrinsically bright at the quantum defect site. I anticipate 

that our findings have a fundamental impact on trion photophysics, dark exciton states, 

and many-body correlation in low-dimensional materials. 

Lastly, I studied how dark excitons behave at fluorescent quantum defects. The 

low-lying dark states in the excitonic energy level contribute to the low PL quantum 

yield in unfunctionalized38,124 and functionalized SWCNTs.37 To study the contribution 

of dark excitons at fluorescent quantum defects to PL brightening, we employed a 

super-resolved hyperspectral PL imaging system, which enables us to probe a single 

fluorescent aryl defect that is spectrally distinct and spatially resolved along the 

SWCNT. From the PL imaging, we derived that the quantum yield of a defect-trapped 

exciton is as high as 51.3% in 4-methoxyaryl defect tailored (6,5)-SWCNT. We have 

found that fluorescent quantum defects convert dark excitons to bright E11
- excitons, 

leading to at least 1.5 times brightening of E11
- PL. Our findings provide important 

implications to optically access the dark excitons in 0D-1D systems and to design and 

synthesis efficient NIR emitters for various applications in imaging,58 quantum light 

sources, 48-49 and optoelectronics.123   
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7.2 Outlook 

SWCNTs are the ideal model systems to study the optical properties of 1D 

system and to control the carrier mobility by fluorescent quantum defects. Even though 

it is clear that fluorescent quantum defects have a considerable impact on organic 

chemistry, solid state physics, and material science, the study of exciton photophysics, 

electronic structure, and optical properties of defect-tailored SWCNTs is still in its 

primitive stage. For example, fundamental properties such as fundamental linewidth of 

defect PL, the trapping efficiency, dark-to-bright conversion ratio at a fluorescent 

quantum defect have not been unambiguously demonstrated. This lack of information 

is partially attributed to the difficulty to systematically control the defects by atomic-

level precision. Thus, it is important to develop new synthetic methods that can 

selectively and effectively drive the covalent functionalization in SWCNTs. This work 

will help to better understand the electronic energy level changes and the degree of 

coupling and decoupling by the incorporation of fluorescent quantum defects. Another 

limitation comes from the absence of analytical techniques enabling sensitive detection 

of fluorescent defects in a single molecular level and simultaneously probe the exciton 

dynamics. If we can correlate the super-resolved hyperspectral PL imaging to the low 

temperature, time-resolved PL spectroscopy, this would realize the advance in room-

temperature quantum light source and the study of the fundamental linewidth of defect 

PL to demonstrate indistinguishability of defect PL.  

Furthermore, the enhanced optical properties and new functionality by 

fluorescent quantum defects benefit the numerous applications of SWCNTs such as 

molecular-scale optoelectronic device,123 optical sensing,45 and bioimaging.12 For the 
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use of defect-tailored SWCNT in optoelectronics, one should test the electrical gating 

of defect-tailored SWCNT to induce electroluminescence at fluorescent defects. 

Preparation of long, defect-free SWCNTs and selective separation of by SWCNT 

structure27,30 would allow the fabrication of single tube device with greatly enhanced 

electroluminescence efficiency at the defect sites. For the biological sensing and 

imaging, the stability and biocompatibility of the functionalized SWCNTs are key 

factors to be optimized. Non-covalent wrapping of SWCNTs by biocompatible 

polymer or DNA resolves these issues for the unfunctionalized SWCNTs.12,58 

However, re-wrapping the functionalized SWCNTs to polymer or DNA is generally 

low-yield in our preliminary experiments. Thus, it is important to find the effective way 

to disperse the functionalized SWCNTs in biological media, retaining the desired 

functionality at high brightness. 
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