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Abstract

Autonomous policy domains often need to share resources
to accomplish a common task. To do this they must
negotiate a common access control policy to the shared
resources. We use mathematical techniques from game
theory to show that the outcome of such negotiations can
often be predicted from the distribution of power among
the participants, independent of the actual mechanics
of negotiation. We discuss the axiomatic derivation of
some game theoretic solution concepts, and illustrate our
techniques with examples.

1. Introduction

Online collaboration frequently requires two or more au-
tonomous policy domains to form a coalition in order to
share data or other resources to achieve a common goal.
Often, the collaboration itself may generate new data or
resources, and these must also be shared. Therefore the
domains involved must negotiate a common access control
policy for all shared resources. Traditionally, such negotia-
tions have been carried out by human beings meeting in per-
son, through a tedious process of discussion and bargaining
that can take weeks or months to conclude. In many situa-
tions, especially when the collaboration is for a short period
of time, these delays are unacceptable. It is then desirable
to speed up the process of negotiation by automating it.

Previous work on negotiation either assumes that
coalition policies are agreed upon by extra-technological
means [1], or treats the problem in the context of client-
server networks [2]. We look at networks with multiple
peer domains, all of whom share resources with each other
for mutual benefit. Our aim is to automate the process of
policy negotiation in such networks, so that it can be car-
ried out by software agents (perhaps residing on the domain
controllers) with limited human intervention.

Conceptually, when negotiating a common access con-
trol policy, the domains must agree on two things: a model
and a set of rules for the mechanisms by which resources

are shared (i.e. the policy model and the policy model inter-
pretation), and which resources are shared and with whom
(i.e. the access state of the coalition under the access con-
trol policy). These two parts are related: for instance, the
access state must be compatible with the properties of the
agreed-upon policy model.

Previous work [3] has explored policy definition lan-
guages for security domains; such languages can also be
extended to describe coalition policies. For instance, con-
sider a coalition in which all domains use Role Based Ac-
cess Control as their policy model. Each domain can share
its resources with foreign domains by enrolling some users
from the foreign domain into local roles with access to the
relevant resources. Another approach is to create a new set
of roles for the coalition, then give these new roles access
to the shared resources and enroll local and foreign users
into these new roles. In either case, languages for describ-
ing role-based access control models can be used to express
coalition policies as well. Thus, domains in a negotiation
can communicate their security policies to each other, and
can automatically check if a proposed state is consistent
with the policy.

In this paper we look at the negotiation process itself.
We start by postulating some desirable properties we would
like the negotiated coalition policy to have. We then show
that these properties lead naturally to certain game theoretic
concepts, and to algorithms for computing them. As a result
we can characterize the likely outcomes of policy negotia-
tion and provide methods to compute these outcomes.

Our results show that the outcome of a negotiation is
often determined by the distribution of power among the
participants rather than by the details of how the negotia-
tion proceeds. The power of a domain in a negotiation is
its ability to help or hurt the other domains by cooperating
with them or refusing to do so. The language of game the-
ory allows us to frame these properties in a precise manner,
and gives us the mathematical tools to predict the eventual
results of such negotiations.

We assume an architecture in which each domain has
a central controller to administer its local policies and to
negotiate with other domains on its behalf (see Figure 1).
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Figure 1: Negotiation in multi-domain networks.

We will refer to such networks as coalitions, and to the re-
sources shared between the domains in the network as coali-
tion resources.

The rest of this paper is organized as follows: Section 2
introduces some basics of game theory, Section 3 introduces
the examples we will use to illustrate our techniques, and
Sections 4 and 5 show some tools to analyze the examples
and predict their outcomes. Section 6 concludes the paper.

2. Game Theory

Game theory [4, 5] is the mathematical study of con-
flict and cooperation between intelligent rational entities
(referred to as players). By modeling such situations math-
ematically, game theory can predict what kinds of cooper-
ation will arise in a group of players under a given set of
conditions. The same tools can also be applied to design
games that lead to desirable outcomes; we can decide what
kinds of cooperation we would like to see in a group of play-
ers, and devise rules for their interaction such that it will be
in the players’ best interests to cooperate with each other.

A game theoretic model consists of a set of players, a set
of possible actions for each player, and a payoff function,
which associates each combination of actions by the play-
ers to a vector of rewards to the players. A key assumption
is that all players are rational and intelligent. Rationality
means that each player behaves in his own best interest, i.e.
in a manner calculated to increase his own reward. Intelli-
gence implies that players are capable of making any infer-
ences about the structure and dynamics of the game that we
are. Thus players are capable of deducing what their opti-
mal strategies are in any given situation, as well as what the

optimal strategies of the other players are.
A solution concept is a rule that associates a game with

a set of outcomes. Many solution concepts have been pro-
posed in the literature. Each solution concept is based on
a set of axiomatic requirements that the solution must sat-
isfy, and allows us to make predictions about some aspect
of player behavior in a given game. Most useful solution
concepts also provide algorithms to compute solutions that
satisfy their axioms for any given game.

Noncooperative games are those in which every player
tries to increase her own reward independently of all the
other players. Cooperative games, on the other hand, are
those in which players can organize themselves into groups
to achieve a common goal that benefits them all. Often, co-
operative games include the concept of transferable utility
- there exists a commodity, such as money, which can be
freely transferred among the players and which serves as a
common standard of value.

Due to the large variety of possible cooperation struc-
tures, cooperative games are often richer in structure and
offer deeper insight into many real-life situations. In this
paper we use solution concepts from both noncooperative
game theory and cooperative game theory to reason about
the problem of automated policy negotiation.

As we will show in this paper, policy negotiations can
be cast as games, where the outcomes of the game are the
various policies that may be agreed on through negotiation.
The dynamics of the game depend on the rules of negotia-
tion, and we will disregard these, assuming only that they
are flexible enough to allow the participants sufficient op-
portunity to communicate with each other and arrive at a
result. We also assume that unanimous agreement of all
participants is required to terminate a negotiation. We will
seek solutions of these games, i.e. we will try to make pre-
dictions about how the negotiations will end, based on as-
sumptions about what kinds of negotiated outcomes are de-
sirable.

3. Two Examples

We now describe the two examples we will use in this pa-
per to illustrate the use of game theory in analyzing policy
negotiation. In both these examples we assume there are no
external rewards or costs associated with the problem; that
is, there is no compulsion on the negotiators to reach agree-
ment and nothing to be gained from an agreement except for
the benefits provided by the agreement itself. This assump-
tion does not always hold true in applications; in many sit-
uations, the decision to collaborate has already been made,
and negotiators are constrained by their need to reach agree-
ment. We assume an absence of exogenous rewards or costs
for simplicity; any quantifiable exogenous rewards or costs
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Figure 2: Network for bandwidth sharing example.

can be easily incorporated into our models and dealt with
using the same mathematical tools.

3.1. Bandwidth Sharing

Consider the network shown in Figure 2. There are two
cities X and Y, and three Internet providers (labeled D1, D2
and D3) who wish to send data between them. All three In-
ternet providers have many customers, with large amounts
of data to send, and so would like to obtain as much capacity
as possible. However, no provider owns a communication
link that goes all the way from X to Y. Instead they own
links that interconnect X and Y with other cities, labeled
A through F. If the providers pool their resources, they can
have a network capable of sending data from X to Y. They
wish to negotiate a policy for sharing the transmission ca-
pacity between X and Y created by such a collaboration.

A number of features of this problem are apparent from
the figure:
� None of the providers can send any data from X to Y

on its own.
� No data can be sent from X to Y without D1’s cooper-

ation.
� D1 and D2 together can achieve a total rate of 1 Mbps.
� D1 and D3 together can achieve a total rate of

0.5 Mbps.
� All the providers together can achieve a combined rate

of 3.5 Mbps.
We will denote byB1, B2 andB3 the share of the aggre-

gate data capacity assigned to D1, D2 and D3 respectively.
In later sections we discuss the values forB1, B2 and B3
that are likely to be produced by a negotiation between the
providers.

3.2. Intelligence Sharing

In this example, three intelligence agencies (labeled A1
through A3) wish to share intelligence on targets of their
interest. Each agency has a certain number of sources, and

Table 1: Parameters for intelligence sharing example.

Agency No. of sources Probability of compromise
A1 7 0.1
A2 4 0.5
A3 10 0.2

can give the other agencies access to as many of its sources
as it wants. However, sharing a source increases the proba-
bility that it will be compromised. Each agency has a prob-
ability of compromisepi , which represents the danger that a
source accessible to this agency will be compromised. This
danger applies equally to all sources a source knows about,
including those it owns. Intelligence from a compromised
source is useless, but intelligence from all uncompromised
sources is equally valuable. The probability of a source be-
ing compromised due to one of the agencies is assumed to
be independent of all other compromises. Table 1 shows the
initial distribution of sources and the compromise probabil-
ities. Assume that the compromise of a source cannot be
detected by the agencies.

Denote byni the number of sources owned by theith
agency, and letsi be the number of sources that theith
agency shares with the others (a source that is shared must
be shared with all the other agencies). Letvi , the reward to
the ith agency (also known as the value derived by theith
agency, or the worth of theith agency), be equal to the ex-
pected number of uncompromised sources that the agency
has access to. Then, if no sharing is in effect,

vi = ni(1� pi)

If sources are shared, thenvi depends on the additional
probability of compromise due to the other domains and the
number of sources available from the other domains. Thus

vi = (ni �si)(1� pi)+(∑
j

sj)∏
l

(1� pl)

= ni(1� pi)+(∑
j

sj)∏
l

(1� pl)�si(1� pi)

Therefore each agency derives a benefit, in the form of
an additional reward, from intelligence sharing. However,
this benefit may in fact be negative if the agency exposes
too many of its own objects to a threat of compromise. In
what follows we show how game theoretic techniques can
be used to predict which sharing arrangements are likely to
arise.

4. Noncooperative Game Analysis

A fundamental concept in game theory is that of individ-
ual rationality. This is the simple idea that no player will
voluntarily agree to an arrangement that makes him worse



off than he was before. It seems logical to suppose that no
domain in a negotiation would agree to a policy that was not
individually rational for that domain.

In practice, individual rationality allows us to reduce
the set of possible outcomes to consider in a negotiation,
by eliminating those outcomes that could never arise. A
sharing arangement is individually rational for a player if
the value derived by that player under the arrangement is
greater than the worth of the player without the arrange-
ment.

In our bandwidth sharing example, none of the providers
could send any data from X to Y on its own. The ability
to send any data at all would be regarded as an improve-
ment by each of the domains. Thus the individually rational
solutions would only have to satisfy

B1 � 0; B2 � 0; B3 � 0

However, in the intelligence sharing example, the con-
straints are not so trivial. Simple algebra shows that indi-
vidually rational solutions must satisfy

s1

s1+s2+s3
� 0:4

s2

s1+s2+s3
� 0:72

s3

s1+s2+s3
� 0:45

As expected, Agency A2 needs to share more than the
others, since its high probability of compromise makes its
sources less trustworthy. On the other hand, Agency A1,
which has the lowest probability of compromise, runs a sig-
nificant risk by sharing its sources, and so has less incentive
to share.

Individual rationality can help in the analysis of negoti-
ation by weeding out irrational alternatives. This can iden-
tify games in which no individually rational solution exists,
which would mean that no negotiation would succeed with-
out the introduction of some outside reward or compen-
sation. However, many games (like our examples above)
have large numbers of individually rational solutions, and
in these cases we need a rule to pick one out of these solu-
tions.

Nash [6] showed that under mild technical conditions
any game has a unique solution, known as the Nash bar-
gaining solution, which satisfies the following axioms.
� Individual rationality: The solution is individually ra-

tional for all players.
� Symmetry: If two players have identical resources and

identical reward functions, then they will receive equal
treatment.

� Scale Covariance: Scaling the reward functions of the
players by transformations of the formαx+β where

α > 0 (α andβ can be chosen differently for different
players) does not affect the solution except to scale it
by a similar transformation.

� Pareto optimality: No other solution exists which
makes all the players better off than under this solu-
tion.

� Independence from unfavorable alternatives: Intro-
ducing a number of inferior outcomes into the structure
of the game does not affect the solution.

Nash showed that the above axioms are satisfied by the
individually rational solution which maximizes the product
of the gains made by each player as a result of coalition
formation. That is, ifui was the worth of theith player be-
fore coalition formation andxi is his value after the coalition
forms, the Nash solution is given by

max
all possible outcomes

∏
i
(xi �vi)

subect to

xi � vi 8i

For the bandwidth sharing example, the Nash bargain-
ing solution is obtained by maximizing the productB1B2B3
subject toB1+B2+B3 = 3:5Mbps, which gives

B1 = B2 = B3 =
3:5
3

Mbps

The equal division reflects the fact that any provider
which unilaterally breaks away from the coalition will not
be able to send any data between X and Y, and so in a sense
all the providers need the coalition equally.

For the intelligence sharing example, the Nash bargain-
ing solution is obtained by maximizing

(s0�0:9s1)(s
0�0:5s2)(s

0�0:8s3)

where

s0 = 0:36(s1+s2+s3)

subject to

s1 � 7; s2 � 4; s3 � 10

which gives us

s1 = 4; s2 = 4; s3 = 5

Thus A2, which has the highest probability of compro-
mise, must share as many sources as it can, and the other
agencies will not share all their sources with A2.



5. Cooperative Games

The analysis in Section 4 has one shortcoming: it as-
sumes that if negotiations between the players fail, then no
coalition is formed at all. However, in real life, it is always
possible for some of the players to negotiate with each other
and form a smaller coalition, leaving out some players, if
they find that this is more favorable to them. Thus, instead
of choosing between forming the largest possible coalition
and no coalition at all, players can choose between all the
possible subsets of the set of players to form a coalition.
Cooperative game theory is the study of games where the
possibility for such coalition formation exists.

A cooperative game consists of a set of players, and a
characteristic function that assigns a value to each subset of
this set of players. The set of players is known as the grand
coalition, and its subsets are known as coalitions. The value
of a coalition is interpreted as the payoff, or total reward,
that the players in that coalition can achieve by cooperat-
ing with each other. The game is known as a TU game (or
game with Transferable Utility) if the players in a coalition
are free to distribute their payoff among themselves in any
way they choose; if players do not have such control over
the distribution of payoffs, we have a game with Nontrans-
ferable Utility (or NTU game).

The best-known solution concept for cooperative games
is the core. The core is the set of solutions that give to every
possible coalition at least as much payoff as that coalition
could get if it acted without the support of the other players.
Thus the core is a measure of stability; if the players in a
game agree to split their profits according to a core distri-
bution, then no player or set of players will find it in their
interest to secede from the grand coalition.

Before we define the cores for our examples, we must
define the characteristic function for each of our examples.
In other words, we must define what we mean by the worth
of a coalition (as opposed to the worth of a single player).
For the bandwidth sharing example, this is easy. We define
the worth of any coalition as the maximum transmission ca-
pacity the members of that coalition can obtain without help
from the remaining member(s).

For the intelligence sharing example, the value of a coali-
tion is harder to define. Defining the value as the expected
number of uncompromised sources available to the coali-
tion is not quite satisfactory, as it disregards any sharing of
sources that may take place. Therefore we define the value
of any coalition as the sum of the values in the Nash bar-
gaining solution for that coalition. For example, the value
of the coalitionfA1,A2g would be the sum of the values of
A1 and A2 when they implement the Nash bargaining so-
lution for the coalition consisting of A1 and A2 only. We
contend that this is a reasonable definition, because if a A1

and A2 are to share any of their sources with A3, they will
only do so if they can get a better deal for themselves than
they could without A3.

With these definitions, the core for the bandwidth shar-
ing example is the (fairly large) set of bandwidth allocations
that satisfy the inequalities

B1 � 0

B2 � 0

B3 � 0

B1+B2 � 1

B1+B3 � 0:5

B1+B2+B3 = 3:5

For the intelligence sharing example, the core is charac-
terized by

V1 � 6:3

V2 � 2

V3 � 8

V1+V2 � 9:9

V1+V3 � 24:48

V2+V3 � 11:2

It turns out that there is no intelligence sharing arrange-
ment (i.e. no values ofs1� 7,s2� 4 ands3� 10) for which
all the above inequalities hold. In other words the core of
the intelligence sharing example is empty.

As seen from our examples, the core of a game may ei-
ther be empty or so large as to be of little value in predict-
ing player behavior. In the latter case, it is reasonable to
expect that players will look for a core allocation that is the
most efficient in some sense. Two solution concepts which
emphasize fairness and efficiency are the nucleolus and the
Shapley value. They are both unique and defined for large
classes of cooperative games.

The nucleolus [7] is the solution that distributes payoffs
in such a way as to lexicographically minimize the dissat-
isfactions of all the coalitions in the grand coalition. The
dissatisfaction of a coalition is the reduction in its payoff as
a result of joining the grand coalition. Equivalently, the nu-
cleolus maximizes the benefit to the least rewarded member
of the coalition. Thus the nucleolus tries to be fair to all
the players, and is likely to be the outcome of a negotia-
tion where the participants consider fairness to be impor-
tant. The nucleolus can be shown to lie in the core if the
core is nonempty. The nucleolus is also the unique solution
having the following properties:
� Anonymity: The solution is independent of the labeling

of the players.
� Scale Covariance: Scaling the reward functions of the

players by transformations of the formαx+β where



α > 0 (α andβ can be chosen differently for different
players) does not affect the solution except to scale it
by a similar transformation.

� Imputation Saving Reduced Game Property: Loosely
speaking, this means that if a subset of the grand coali-
tion is prevented from participating in the negotiation
but is still given a choice of whether to cooperate or
not, the payoff to the remaining players is not affected.

The problem of finding the nucleolus for the bandwidth
sharing problem can be reduced to a linear programming
problem. Since it is a lexicographic minimization, in the
worst case we have to solve as many linear programs as
there are possible coalitions (i.e. 2N, whereN is the number
of players). In practice, however, the nucleolus is usually
reached after solving a small number (often one or two) of
these linear programs.

For the bandwidth sharing game, the nucleolus turns out
to be

B1 = B2 = B3 =
3:5
3

Mbps

So in this case the nucleolus is the same as the Nash
bargaining solution. It is surprising that even though D1
holds a “veto power”, the nucleolus gives an equal share of
the bandwidth to all the providers. This is only true for this
example because no two providers can obtain a significant
amount of bandwidth by excluding the third provider. For
example, if the link between D and E were owned by D2
instad of by D3, the Nash bargaining solution would not
change, but the nucleolus would be

B1 = 1:46Mbps

B2 = 1:29Mbps

B3 = 0:75Mbps

For the intelligence sharing example, the nucleolus turns
out to be

s1 = 2; s2 = 4; s3 = 0

One reason we get such pessimistic results in the intelli-
gence sharing example is that our game model is not super-
additive. That is, the union of two disjoint coalitions does
not necessarily produce a coalition with a value greater than
the sum of the values of the original coalitions.

The emptiness of the core in the intelligence sharing ex-
ample implies that the power structure of the game does
not clearly point to a single result. In this case the struc-
ture of the negotiation and the attitude of the negotiators
(i.e. factors such as risk-aversion) have a strong influence
on the outcome. Any detail in the negotiation mechanism
that tends to steer the players towards a certain outcome
could play a major role in determining the result.

The Shapley value [8] assigns payoffs to players de-
pending on their average marginal contribution to the grand
coalition. Therefore, it favors players who play a larger role
in the success of the grand coalition over smaller players,
and is indicative of each player’s power in the coalition. The
Shapley value is the unique solution satisfying the axioms
of
� Anonymity: The solution is independent of the labeling

of the players.
� Carrier (a.k.a. Dummy player property): A player

who contributes nothing to any coalition does not get
any payoff.

� Linearity: For any two games defined over the same
player set, the solution of the sum game is the sum of
the solutions of the individual games.

Computationally, the Shapley value of a playeri is given
by

φi = ∑
S�N

(s�1)!(n�s)!
n!

(v(S)�v(Sfig))

whereN is the grand coalition,n is the number of players
in N, s is the number of players inS, andv(S) is the value
of coalitionS.

The Shapley values for the bandwidth sharing example
reflect the imbalance of power among the providers. The
Shapley values are

B1 =
17
12

Mbps; B2 =
14
12

Mbps; B3 =
11
12

Mbps

Thus D1 receives the most bandwidth, because of its vi-
tal role, and D3 receives the least due to its small contribu-
tion. Also note that the Shapley value lies within the core.

For the intelligence sharing example, the Shapley values
are

V1 = 9:91; V2 = 0:55; V3 = 10:84

This bears out our intuition that in negotiations, A2 is in
a weak position because it has less sources than the others,
and of less reliability. However, due to the emptiness of the
core, the Shapley values are somewhat less informative than
in the bandwidth sharing example - they give us information
about the distribution of power, but the actual outcome of a
negotiation still depends on the details of negotiation.

6. Conclusion

The outcome of a policy negotiation between au-
tonomous domains is often predictable, given some knowl-
edge of the power structure and the criteria used by nego-
tiators to evaluate potential outcomes. The techniques used
in such predictions can also be used in automated negoti-
ation agents, reducing the time required to set up dynamic



coalitions for online collaboration. Even if total automation
is not desirable, these techniques can be useful as decision-
making aids for human administrators in finding a shared
access control policy. Game theory provides valuable math-
ematical tools for such applications.

However, it is clear from our intelligence sharing exam-
ple that building game theoretic models of negotiations is
not always straightforward. The resulting models may turn
out to have undesirable properties, such as empty cores. It is
not yet clear what models are appropriate for more realistic
applications.

All the models in this paper assumed perfect knowledge
- all players knew the resources and reward functions of all
other players. Modeling of negotiations where each nego-
tiator has only partial knowledge of other negotiators’ re-
sources and reward functions is an interesting area for fu-
ture research, as is the design of effective negotiating mech-
anisms and strategies in this case.
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