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Abstract

This paper presents the results of a study conducted at the University of Maryland in which we

experimentally investigated the suite of Object-Oriented (OO) design metrics introduced by

[Chidamber&Kemerer, 1994]. In order to do this, we assessed these metrics as predictors of

fault-prone classes. This study is complementary to [Li&Henry, 1993] where the same suite of

metrics had been used to assess frequencies of maintenance changes to classes. To perform our

validation accurately, we collected data on the development of eight medium-sized information

management systems based on identical requirements. All eight projects were developed using a

sequential life cycle model, a well-known OO analysis/design method and the C++ programming

language. Based on experimental results, the advantages and drawbacks of these OO metrics are

discussed. Several of Chidamber&Kemerer’s OO metrics appear to be useful to predict class

fault-proneness during the early phases of the life-cycle. We also showed that they are, on our

data set, better predictors than “traditional” code metrics, which can only be collected at a later

phase of the software development processes.
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1 . Introduction

1 . 1 Motivation

The development of a large software system is a time- and resource-consuming activity. Even with

the increasing automation of software development activities, resources are still scarce. Therefore,

we need to be able to provide accurate information and guidelines to managers to help them make

decisions, plan and schedule activities, and allocate resources for the different software activities

that take place during software evolution. Software metrics are thus necessary to identify where the

resource issues are needed; they are a crucial source of information for decision-making [Harrison,

1994].

Testing of large systems is an example of a resource- and time-consuming activity. Applying equal

testing and verification effort to all parts of a software system has become cost-prohibitive.

Therefore, one needs to be able to identify fault-prone modules so that testing/verification effort

can be concentrated on these classes [Harrison, 1988]. The availability of adequate product design

metrics for characterizing error-prone modules  is thus vital.

Many of product metrics have been proposed [Fenton, 1991; Conte et al, 1986], used, and,

sometimes, experimentally validated [Basili&Hutchens, 1982; Basili et al, 1983; Li&Henry,

1993], e.g., number of lines of code, MacCabe complexity metric, etc. In fact, many companies

have built their own cost, quality and resource prediction models based on product metrics. TRW

[Boehm, 1981], the Software Engineering Laboratory (SEL) [McGarry et al, 1994] and Hewlett

Packard [Grady, 1994] are examples of software organizations that have been using product

metrics to build their cost, resource, defect, and productivity models.

1 . 2 Issues

In the last decade, many companies have started to introduce Object-Oriented (OO) technology into

their software development environments. OO analysis/design methods, OO languages, and OO
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development environments are currently popular worldwide in both small and large software

organizations. The insertion of OO technology in the software industry, however, has created new

challenges for companies which use product metrics as a tool for monitoring, controlling and

improving the way they develop and maintain software. Therefore, metrics which reflect the

specificities of the OO paradigm must be defined and validated in order to be used in industry.

Some studies have concluded that “traditional” product metrics are not sufficient for characterizing,

assessing and predicting the quality of OO software systems. For example, based on a study at

Texas Instruments, [Brooks, 1993] has reported that McCabe cyclomatic complexity appeared to

be an inadequate metric for use in software development based on OO technology.

To address this issue, OO metrics have recently been proposed in the literature [Abreu&Carapuça,

1994; Bieman&Kang, 1995; Chidamber&Kemerer, 1994]. However, with a few exceptions

[Briand et.al., 1994]  and [Li&Henry, 1993], most of them have not undergone an experimental

validation. The work described in this paper is an additional step toward an experimental validation

of the OO metric suite defined in [Chidamber&Kemerer, 1994]. This paper presents the results of a

study conducted at the University of Maryland in which we performed an experimental validation

of that suite of OO metrics with regard to their ability to identify fault-prone classes. Data were

collected during the development of eight medium-sized management information systems based

on identical requirements. All eight projects were developed using a sequential life cycle model, a

well-known Object-Oriented analysis/design method [Rumbaugh et al, 1991], and the C++

programming language [Stroustrup, 1991]. In fact, we used an experiment framework that should

be representative of currently used technology in industrial settings. This study discusses the

strengths and weaknesses of the validated OO metrics with respect to predicting faults across

classes.

1 . 3 . Outline

This paper is organized as follows. Section 2 first presents the suite of OO metrics proposed by

Chidamber&Kemerer (1994), and, then, shows a case study from which process and product data
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were collected allowing an experimental validation of this suite of metrics.  Section 3 presents the

actual data collected together with the statistical analysis of the data. Section 4 compares our study

with other works on the subject. Finally, section 5 concludes the paper by presenting lessons

learned and future work.

2 . Description of the Study

2 . 1 . Experiment goal

The goal of this study was to analyze experimentally the OO design metrics proposed in

[Chidamber&Kemerer, 1994] for the purpose of evaluating whether or not these metrics are useful

for predicting the probability of detecting faulty classes. From [Chidamber&Kemerer, 1994],

[Chidamber&Kemerer, 1995]  and  [Churcher&Shepperd, 1995], it is clear that the definitions of

these metrics are not language independent. As a consequence, we had to slightly adjust some of

Chidamber&Kemerer’s metrics in order to reflect the specificities of C++. These metrics are as

follows:

• Weighted Methods per Class (WMC). WMC measures the complexity of an individual class.

Based on [Chidamber&Kemerer, 1994], if we consider all methods of a class to be equally

complex, then WMC is simply the number of methods defined in each class. In this study, we

adopted this approach for the sake of simplicity and because the choice of a complexity metric

would be somewhat arbitrary since it is not fully specified in the metric suite. Thus, WMC is

defined as being the number of all member functions and operators defined in each class.

However, "friend" operators (C++ specific construct) are not counted. Member functions and

operators inherited from the ancestors of a class are also not counted. This definition is

identical the one described in [Chidamber&Kemerer, 1995]. The assumption behind this metric

is that a class with significantly more member functions than its peers is more complex, and by

consequence tends to be more fault-prone.
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Churcher&Shepperd (1995) have argued that WMC can be measured in different ways

depending on how member functions and operations defined in a C++ class are counted. We

believe that the different counting rules proposed by [Churcher&Shepperd, 1995] correspond

to different metrics, similar to the WMC metric, and which must be experimentally validated as

well. A validation of Churcher&Shepperd’s WMC-like metrics is, however, beyond the scope

of this paper.

• Depth of Inheritance Tree of a class (DIT) – DIT is defined as the maximum depth of the

inheritance graph of each class. C++ allows multiple inheritance and therefore classes can be

organized into a directed acyclic graph instead of trees. DIT, in our case, measures the number

of ancestors of a class. The assumption behind this metric is that well-designed OO systems are

those structured as forests of classes, rather than as one very large inheritance lattice. In other

words, a class located deeper in a class inheritance lattice is supposed to be more fault-prone

because the class inherits a large number of definitions from its ancestors.

• Number Of Children of a Class (NOC) – This is the number of direct descendants for each

class. Classes with large number of children are difficult to modify and usually require more

testing because the class potentially affects all of its children. Thus, a class with numerous

children has to provide services in a larger number of contexts and must be more flexible. We

expect this to introduce more complexity into the class design.

• Coupling Between Object classes (CBO) – A class is coupled to another one if it uses its

member functions and/or instance variables. CBO provides the number of classes to which a

given class is coupled. The assumption behind this metric is that highly coupled classes are

more fault-prone than weakly coupled classes. So coupling between classes should be

identified in order to concentrate testing and/or inspections on such classes.

• Response For a Class (RFC) – This is the number of methods that can potentially be executed

in response to a message received by an object of that class. In our study, RFC is the number
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of functions directly invoked by member functions or operators of a class. The assumption

here is that the larger the response set of a class, the higher the complexity of the class, and the

more fault-prone and difficult to modify.

• Lack of Cohesion on Methods (LCOM) – This is the number of pairs of member functions

without shared instance variables, minus the number of pairs of member functions with shared

instance variables. However, the metric is set to 0 whenever the above subtraction is negative.

A class with low cohesion among its methods suggests an inappropriate design, (i.e., the

encapsulation of unrelated program objects and member functions that should not be together),

which is likely to be fault-prone.

Readers acquainted with C++ can see that some particularities of C++ are not taken into account by

Chidamber&Kemerer’s metrics, e.g., C++ templates, friend classes, etc. In fact, additional work

is necessary in order to extend the proposed OO metric set with metrics specifically tailored to

C++.

2 . 2 Experimental framework

In order to experimentally validate the OO metrics proposed in [Chidamber&Kemerer, 1994] with

regard to their capabilities to predict fault probability, we ran a controlled study over four months

(from September to December, 1994). The population under study was a graduate level class

offered by the Department of Computer Science at the University of Maryland. The students were

not required to have previous experience or training in the application domain or OO methods. All

students had some experience with C or C++ programming and relational databases and therefore

had the basic skills necessary for such an experiment.

The students were randomly grouped into 8 teams. Each team developed a medium-sized

management information system that supports the rental/return process of a hypothetical video

rental business, and maintains customer and video databases.
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The development process was performed according to a sequential software engineering life-cycle

model derived from the Waterfall model. This model includes the following phases: Analysis,

Design, Implementation, Testing, and Repair. At the end of each phase, a document was delivered:

Analysis document, design document, code, error report, and finally, modified code, respectively.

Requirement specifications and design documents were checked in order to verify that they

matched the system requirements. Errors found in these first two phases were reported to the

students. This maximized the chances that the implementation began with a correct OO

analysis/design. The testing phase was accomplished by an independent group composed of

experienced software professionals. This group tested all systems according to similar test plans

and using functional testing techniques. During the repair phase, the students were asked to correct

their system based on the errors found by the independent test group.

OMT, an OO Analysis/Design method, was used during the analysis and design phases

[Rumbaugh et al, 1991]. The C++ programming language, the GNU software development

environment, and OSF/MOTIF were used during the implementation. Sparc Sun stations were

used as the implementation platform. Therefore, the development environment and technology we

used are representative of what is currently used in industry and academia.

The following libraries were provided to the students:

a) MotifApp. This public domain library provides a set of C++ classes on top of OSF/MOTIF for

manipulation of windows, dialogs, menus, etc. [Young, 1992]. The MotifApp library provides

a way to use the OSF/Motif widgets in an OO programming/design style.

b) GNU library. This public domain library is provided in the GNU C++ programming

environment. It contains functions for manipulation of string, files, lists, etc.

c) C++ database library. This library provides a C++ implementation of multi-indexed B-Trees.

No special training was provided for the students in order to teach them how to use these libraries.

However, a tutorial describing how to implement OSF/Motif applications was given to the



Technical Report, Univ. of Maryland, Dep. of Computer Science, College Park, MD, 20742 USA. April 1995.

CS-TR-3443 8 UMIACS-TR-95-40

students. In addition, a C++ programmer, familiar with OSF/Motif applications, was available to

answer questions about the use of OSF/Motif widgets and the libraries. A hundred small programs

exemplifying how to use OSF/Motif widgets were also provided. Finally, the code sources and the

complete documentation of the libraries were made available. It is important to note that the

students were not required to use the libraries and, depending on the particular design they

adopted, different reuse choices were expected.

We also provided a specific domain application library in order to make our experiment more

representative of the "real world". This library implemented the graphical user interface for

insertion/removal of customers and was implemented in such a way that the main resources of the

OSF/Motif widgets and MotifApp library were used. Therefore, this library contained a small part

of the implementation required for the development of the rental system.

2.3. Data Collection

We collected: (1) the source code of the C++ programs delivered at the end of the implementation

phase, (2) data about these programs, (3) data about errors found during the testing phase and

fixes during the repair phase, and (4) the repaired source code of the C++ programs delivered at

the end of the life cycle. GEN++ [Devanbu, 1992] was used to extract Chidamber&Kemerer’s OO

design metrics directly from the source code of the programs delivered at the end of the

implementation phase. To collect items (2) and (3) , we used the following forms, which have

been tailored from those used by the Software Engineering Laboratory [Heller et. al, 1992]:

• Defect Report Form.

• Component Origination Form.

In the following sections, we comment on the purpose of the Component Origination and Defect

Report forms used in our experiment and the data they helped collect.
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2.3.1 Defect Report Form

This form was used to gather data about (1) the defects found during the testing phase, (2) classes

changed to correct such defects, and (3) the effort in correcting them. The latter includes:

 • how long it took to determine precisely what change was needed. This includes the effort

required for understanding the change or finding the cause of the error, locating where the

change was to be made, and determining that all effects of the change were accounted for.

• how much time it took to implement the correction.  This includes design changes, code

modification, regression testing, and updates to documentation.

2.3.2 Component Origination Form

This form is used to record information that characterizes each class under development in the

project at the time it goes into configuration management. First, this form is used to capture

whether the class has been developed from scratch or has been developed from a reused class. In

the latter case, we collected the amount of modification: none, slight (less than 25% of code

changed) or extensive (more than 25% of code change) that was needed to meet the system

requirements and design as well as the name of the reused class. Classes reused without

modification were labeled: verbatim reused.

In addition, the name of the sub-system to which the class belonged was also collected. In our

study, we had three types of sub-systems: graphical user interface (GUI), textual user interface

(TUI), and database processing (DB).

3 . Analysis of Experimental Results

In this section, we will attempt to assess experimentally whether the OO design metrics defined in

[Chidamber&Kemerer, 1994] are useful predictors of fault-prone classes. This will help us assess

these metrics as quality indicators and how they compare to common code metrics. We intend to

provide the type of empirical validation that we think is necessary before any attempt to use such
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metrics as objective and early indicators of quality. Section 3.1 shows the descriptive distributions

of the OO metrics in the studied sample whereas Section 3.2 provides the results of univariate and

multivariate analyses of the relationships between OO metrics and fault-proneness.

3 . 1 . Analysis of Distributions

Figure 1 shows the distributions of the analyzed OO metrics based on 180 classes present in the

studied systems. Table 1 provides common descriptive statistics of the metric distributions. These

results indicate that inheritance hierarchies are somewhat flat (DIT) and that classes have, in

general, few children (NOC) (this result is similar to what was found in [Chidamber&Kemerer,

1994]). In addition, most classes show a lack of cohesion (LCOM) near 0. This latter metric does

not seem to differentiate classes well and this may stem from its definition which prevents any

negative measure. This issue will be discussed further in Section 3.2.
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Figure 1: Distribution of the analyzed OO metrics



Technical Report, Univ. of Maryland, Dep. of Computer Science, College Park, MD, 20742 USA. April 1995.

CS-TR-3443 11 UMIACS-TR-95-40

WMC DIT RFC NOC LCOM CBO

Maximum 99.00 9.00 105.00 13.00 426.00 30.00

Minimum 1.00 0.00 0.00 0.00 0.00 0.00

Median 9.50 0.00 19.50 0.00 0.00 5.00

Mean 13.40 1.32 33.91 0.23 9.70 6.80

Std Dev 14.90 1.99 33.37 1.54 63.77 7.56

Table 1: Descriptive statistics of the analyzed OO metrics.

Descriptive statistics will be useful to help us interpret the results of the analysis in the remainder of

this section. In addition, they will facilitate comparisons of results from future similar studies.

3 . 2 The Relationships between Fault Probability and OO Metrics

3 . 2 . 1 Analysis Methodology

The response variable we use to validate the OO design metrics is binary, i.e., was a fault detected

in a class during testing phases? We used logistic regression to analyze the relationship between

metrics and the fault-proneness of classes. Logistic regression is a classification technique

[Hosmer&Lemeshow, 1989] used in many experimental sciences based on maximum likelihood

estimation. In this case, a careful outlier analysis must be performed in order to make sure that the

observed trend is not the result of a few observations [Dillon&Goldstein, 1984], even though

logistic regression is deemed to be more robust for outliers than least-squares regression.

In particular, we first used univariate logistic regression, to evaluate the relationship of each of the

metrics in isolation and fault-proneness. Then, we performed multivariate logistic regression, to

evaluate the predictive capability of those metrics that had been assessed sufficiently significant in

the univariate analysis (e.g., p < 0.25 is considered a reasonable heuristic). This modeling process

is further described in [Hosmer&Lemeshow, 1989].
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Metrics Coefficient ∆ψ p R2 Classes

WMC (1) -0.022 98% 0.0607 0.007 ALL
WMC (2) -0.086 92% 0.00035 0.024 New-Ext
WMC (3) -0.027 103% 0.0656 0.0154 DB
WMC (4) -0.0944 91% 0.0019 0.0467 UI
DIT (1) -0.485 62% 0.0000 0.0648 ALL
DIT (2) -0.868 42% 0.0000 0.1314 New-Ext
DIT (3) -0.475 62% 0.043 0.0187 DB
DIT (4) -0.29 75% 0.024 0.017 UI
RFC (1) -0.085 92% 0.0000 0.0648 ALL
RFC (2) -0.087 92% 0.0000 0.2477 New-Ext
RFC (3) -0.077 93% 0.0000 0.188 DB
RFC (4) -0.108 90% 0.0000 0.3624 UI
NOC (1) 3.3848 3000% 0.0000 0.1426 ALL
NOC (2) 3.62 3734% 0.0011 0.362 New-Ext
NOC (3) 2.05 777% 0.0000 0.0826 DB
CBO (1) -0.142 87% 0.0000 0.068 ALL
CBO (2) -0.079 92% 0.017 0.02 New-Ext
CBO (3) -0.086 92% 0.006 0.034 DB
CBO (4) -0.284 75% 0.0000 0.17 UI

Table 2: Univariate Analysis - Summary of experimental results.

In its simplest form, a multivariate logistic regression model is based on the following relationship

equation (the univariate logistic regression model is a special case of this, where only one variable

appears):

log(
π

1 - π
   ) = C0 + C1X1 + C2X2 + ··· + CnXn (1)

where π is the probability that a fault will be found in a class during the validation phase, and the

Xi 's are the OO metrics included as predictors in the model (called covariates of the logistic

regression equation). In the two extreme cases, i.e., when a variable is either non-significant or

entirely differentiates fault-prone classes, the curve (between π and any single Xi, i.e., assuming

that all other Xj 's are constant) approximates a horizontal line and a vertical line respectively. In

between, the curve takes a flexible S shape. However, since π is unknown, the coefficients Ci will

be estimated through a likelihood function optimization [Hosmer&Lemeshow, 1989]. This

procedure assumes that all observations are statistically independent. When building the regression



Technical Report, Univ. of Maryland, Dep. of Computer Science, College Park, MD, 20742 USA. April 1995.

CS-TR-3443 13 UMIACS-TR-95-40

equations, each observation was weighted according to the number of faults detected in each class.

The rationale is that each detection of a fault is considered as an independent event: Classes where

no faults were detected were weighted 1.

Coefficient p
Intercept 3.13 0.0000
DIT -0.50 0.0004
RFC -0.11 0.0000
NOC 2.01 0.0178
RFC -0.13 0.0072
CBO -0.238 0.0001
Origin -1.84 0.0000

Table 3: Multivariate Analysis with OO design metrics

Tables 2 and 3 contain the results we obtained through, respectively, univariate and multivariate

logistic regression on all of the 180 classes. We report those related to the metrics that turned out to

be the most significant across all eight development projects. For each metric, we provide the

following statistics:

• Coefficient (appearing in Tables 2 and 3), the estimated regression coefficient. The larger the

coefficient in absolute value, the stronger the impact of the explanatory variable on the

probability p of a fault to be detected in a class.

• ∆ ψ  (appearing in Table 2 only), which is based on the notion of odd ratio

[Hosmer&Lemeshow, 1989], and provides an evaluation of the impact of the metric on the

response variable. More specifically, the odds ratio ψ(X) represents the ratio between the

probability of having a fault and the probability of not having a fault when the value of the

metric is X. As an example, if, for a given value X, ψ(X) is 2, then it is twice as likely that the

class does contain a fault than that it does not contain a fault. The value of ∆ψ is computed by

means of the following formula:
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∆ψ= 
ψ(X+1)

ψ(X)
 (2)

Therefore, ∆ψ represents the reduction/increase in the odds ratio (expressed as a percentage in

Table 2) when the value X increases by 1 unit. This is designed to provide an intuitive insight

into the impact of explanatory variables.

• Τhe statistical significance (p, appearing in Tables 2 and 3) provides an insight into the

accuracy of the coefficient estimates. It tells the reader about the probability of the coefficient

being different from zero by chance. Historically, a significance threshold of α = 0.05 (i.e.,

5% probability) has often been used to determine whether an explanatory variable was a

significant predictor. However, the choice of a particular level of significance is ultimately a

subjective decision and other levels such as α = 0.01 or 0.1 are common. Also, the larger the

level of significance, the larger the standard deviation of the estimated coefficients, and the less

believable the calculated impact of the explanatory variables. The significance test is based on a

likelihood ratio test [Hosmer&Lemeshow, 1989] commonly used in the framework of logistic

regression.

Based on equation (1), the likelihood function of a data set of size D is:

L = ∏
i=1

D

π(xi) (3)

where:

π(xi) = 
e(Co +C1•X i1 + ... + Cn•X in)•Y i

 1+e(Co +C1•X i1 + ... + Cn•X in) (4)

where Yi  is assigned the value 1 if the class does not contain any fault, 0 otherwise. The n-

dimensional vectors Xi contain the OO design metrics characterizing each of the D observations.

Also, π(Xi) represents the estimated probability for a class to contain (or not, depending on which
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is the case) a fault. The coefficients that will maximize the likelihood function will be the regression

coefficient estimates. For mathematical convenience, l = Ln[L] , the log-likelihood, is usually

maximized.

• One of the global measure of goodness of fit we will use for logistic regression models is R2, a

statistic defined as:

R2= 
(l0 - ln)
(l0 - ls)

where

• l0 is the log-likelihood function without using any covariate (just the intercept),

• ln is the log-likelihood of the model including the n selected design metrics as covariates,

• ls is the log-likelihood of the saturated model, i.e., where Yi, (0 or 1) is substituted for each

probability π(Xi)   in l. The log-likelihood ls is the maximum value that can be assigned to l.

The higher the R2, the more accurate the model. R2 may be described as a measure of the

proportion of total uncertainty that is attributed to the model fit. However, as opposed to the R2 of

least-square regression, high R2's are rare for logistic regression because ln  rarely approaches the

value of ls  since the computed π(Xi)'s in ln rarely approach 1.

3 . 2 . 2 Univariate Analysis

In this section, we analyze the six OO metrics introduced in [Chidamber&Kemerer, 1994] (though

slightly adapted to our context) with regard to the probability of fault detection in a class during test

phases. In our case, it is equivalent for the logistic model to calculate the probability of a single

fault to be detected in a class.

• Weighted Methods per Class (WMC) was shown to be somewhat significant (p = 0.06)

overall. For new and extensively modified classes and for UI (Graphical and Textual User
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Interface) classes, the results are much better: p = 0.0003 and p = 0.001, respectively. As

expected, the larger the WMC, the larger the probability of fault detection. These results can be

explained by the fact that the internal complexity does not have a strong impact if the class is

reused verbatim or with very slight modifications. In that case, the class interface properties

will have the most significant impact.

• Depth of Inheritance Tree of a class (DIT) was shown to be very significant (p = 0.0000)

overall. As expected, the larger the DIT, the larger the probability of defect detection. Again,

results improve (Logistic R2 goes from 0.06 to 0.13) when only new and extensively modified

classes are considered.

• Response For a Class (RFC) was shown to be very significant overall (p = 0.0000).

Predictably, the larger the RFC, the larger the probability of defect detection. However, the

logistic R2 improved significantly for new and extensively modified classes and UI classes

(from 0.06 to 0.24 and 0.36, respectively). Reasons are believed to be the same as for WMC

for extensively modified classes. In addition, UI classes show a distribution which is

significantly different from that of DB classes: the mean and median are significantly higher.

This, as a result, may strengthen the impact of RFC when performing the analysis.

• Number Of Children of a Class (NOC) appeared to be very significant (except in the case of UI

classes) but the observed trend is contrary to what was expected. The larger the NOC, the

lower the probability of defect detection. This surprising trend can be explained by the

combined facts that most classes do not have more than one child and that verbatim reused

classes are somewhat associated with a large NOC. Since we have observed that reuse was a

significant factor in fault density [Basili et al, 1995], this explains why large NOC classes are

less fault-prone. Moreover, there is some instability across class subsets with respect to the

impact of NOC on the probability of detecting a fault in a class (see ∆ψ's in Table 2). This may

be explained in part by the lack of variability on this measurement scale (see distributions in

Figure 1).
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• Lack of Cohesion on Methods (LCOM) was shown to be insignificant in all cases (this is why

the results are not shown in Table 2) and this should be expected since the distribution of

LCOM shows a lack of variability and a few very large outliers. This stems in part from the

definition of LCOM where the metric is set to 0 when the number of class pairs sharing

variable instances is larger than that of the ones not sharing any instances. This definition is

definitely not appropriate in our case since it sets cohesion to 0 for classes with very different

cohesions and keeps us from analyzing the actual impact of cohesion based on our data sample.

• Coupling Between Object classes (CBO) is significant and more particularly so for UI classes

(p = 0.0000 and R2 = 0.17). No satisfactory explanation could be found for differences in

pattern between UI and DB classes.

It is important to remember, when looking at the results in Table 2, that the various metrics have

different units. Some of these units represent "big steps" on each respective measurement scale

while others represent "smaller steps". As a consequence, some coefficients show a very small

impact (i.e., ∆ψ's) when compared to others. This is not, however, a valid criterion to evaluate the

predictive usefulness of such metrics.

Most importantly, besides NOC, all metrics appear to have a very stable impact across various

categories of classes (i.e., DB, UI, New-Ext, etc.). This is somewhat encouraging since it tells us

that, in that respect, the various types of components are comparable. If we were considering

different types of faults separately, results might be different. Such a refinement is, however, part

of our future research plans.

3 . 2 . 3 Multivariate Analysis

The OO design metrics presented in the previous section can be used early in the life cycle to build

a predictive model of fault-prone classes. In order to obtain an optimal model, we included these

metrics into a multivariate logistic regression model. However, only the metrics that significantly

improve the predictive power of the multivariate model were included through a stepwise selection
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process. Another significant predictor of fault-proneness is the level of reuse of the class (called

“origin” in Table 3). This information is available at the end of the design phase when reuse

candidates have been identified in available libraries and the required amount of change can be

estimated. Table 3 describes the computed multivariate model. Using such a model for

classification, the results shown in Table 4 are obtained by using a classification threshold of

π(Fault detection) = 0.5 for the probability of detecting a single defect in a given class, i.e., when

π > 0.5, the class is classified as faulty and otherwise as non-faulty.  As expected, classes

predicted as faulty contain a large number of faults (250 faults on 48 classes) because those classes

tend to show a better classification accuracy.

We now assess the impact of using such a prediction model by assuming, in order to simplify

computations, that inspections of classes are 100% effective in finding faults. In that case, 80

classes (predicted as faulty) out of 180 would be inspected and 48 faulty classes out of 58 would

be identified before testing. If we now take into account individual faults, 250 faults out of 258

would be detected during inspection. As mentioned above, such a good result stems from the fact

that the prediction model is more accurate for multiple-faults classes. To summarize, results show

that the studied OO metrics are useful predictors of fault-proneness.

Predicted
Actual No Fault Fault

No Fault 9 0 3 2
Fault 10 (18) 48 (250)

Table 4: Classification Results with OO Design Metrics. The figures before parentheses in the right
column are the number of classes classified as faulty. The figures within the parentheses are the
faults contained in those classes.

In order to evaluate the predictive accuracy of these OO design metrics, it would be interesting to

compare their predictive capability with the one of the usual code metrics, that can only be obtained

later in the development life cycle. Three code metrics, among the ones provided by the Amadeus
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tool1 [Amadeus, 1994], were selected through a stepwise logistic regression procedure. Table 5

shows the resulting parameter estimations of the multivariate logistic regression model where:

MaxStatNext is the maximum level of statement nesting in a class, FunctDef is the number of

function declarations, and FunctCall is the number of function calls. However, based on the whole

set of metrics provided by Amadeus, other multivariate models yield results of similar accuracy.

This model happens to be, however, the model resulting from the use of a standard, stepwise

logistic regression analysis procedure.

Coefficient p
Intercept 0.39 0.0384
MaxStatNest -0.286 0.0252
FunctDef 0.166 0.0010
FunctCall -0.0277 0.0000

Table 5: Multivariate Analysis with Code Metrics

In addition to being collectable only later in the process, code metrics appear to be somewhat

poorer as predictors of class fault-proneness (see Table 6). In this case, 112 classes (predicted as

faulty) out of 180 would be inspected and 51 faulty classes out of 58 would be detected. If we now

take into account individual faults, 231 faults out of 268 would be detected during inspection.

Three more faulty classes would be corrected (51 versus 48) but 32 more classes would have to be

inspected (112 versus 80). Moreover, the OO design metrics are better predictors of classes

containing large numbers of faults since 19 more faults (250 versus 231) would be detected in that

case. Therefore, predictions based on code metrics appear to be poorer.

1 The Amadeus tool provides 35 code metrics, e.g., lines of code with and without blank, executable statements,

declaration statements, function declaration, function definitions, functions calls, cyclomatic complexity, loop

statements, maximum class depth and width in a file, number of method declarations, definitions and average number

of methods.
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Predicted
Actual

No fault Fault

No Fault 61 61
Fault 7 (37) 51 (231)

Table 6: Classification Results based on code
metrics shown in Table 5

Model
Accuracy

OO
metrics

Code
metrics

Completeness 88% (93%) 83% (86%)
Correctness 60% (92%) 45.5% (86%)

Table 7: Classification Accuracies based on
OO and code metrics shown in Table 3 and
Table 5

Table 7 confirms that result by showing the values of correctness (percentage of classes correctly

predicted as faulty) and completeness (percentage of faulty classes detected). Values between

parentheses present predictions' correctness and completeness values when classes are weighted

according to the number of faults they contain (classes with no fault are weighted 1).

4 . Related Work

[Li&Henry, 1993] and [Briand et al, 1994] have attempted to experimentally validate OO metrics

(see Table 8). In [Briand et al ,1994], metrics for measuring abstract data type (ADT) cohesion and

coupling are proposed and are experimentally validated as predictors of faulty ADT's. The main

differences and similarities between our work and [Briand et al, 1994] are as follows. They did not

experimentally validate their metrics on OO programs in a context of inheritance but they used a

similar validation approach. In both cases, statistical model were built to predict component (i.e.,

ADT's and classes, respectively) fault-proneness (i.e., likelihood of fault detection) by using

multiple logistic regression.

On the other hand, [Li&Henry, 1993]  performed a validation of Chidamber&Kemerer’s OO

metrics studying the number of changes performed in two commercial systems implemented with

an OO dialect of Ada. According to this work, Chidamber&Kemerer’s OO metrics appeared to be

adequate in predicting the frequency of changes across classes during the maintenance phase. They

provided a model to predict the number of modifications in a class, which they assume is

proportional to change effort and is representative of class maintainability.
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[Li&Henry, 1993]’s work is comparable to our work in the following ways. They used the same

suite of OO metrics we used. They also used data from products implemented in an OO language

which provides multiple inheritance, overloading and polymorphism. On the other hand, we used

the likelihood of fault detection as the dependent variable of our statistical model. Thus, our goal

was to assess whether Chidamber&Kemerer’s OO metrics were useful predictors of fault-prone

classes. In addition, [Li&Henry, 1993] used (multivariate) least-square linear regression to build

their predictive model whereas we used logistic regression (i.e., a classification technique for

binary dependent variables). The nature of our dependent variable (i.e., (non) occurrence of fault

detection) has led us to use logistic regression which is very popular in several other experimental

sciences [Hosmer & Lemeshow, 1989].

VALIDATION WORK

CRITERIA [Briand et al, 1994] [Li&Henry, 1993] Our work

Suite of Metrics ADT Cohesion and

Coupling

CK metrics CK metrics

Type of products Ada OO dialect of Ada C++

Dependent variable fault occurrence in

ADT’s

number of changes in

component’s

fault occurrence in

C++ classes

Statistical technique logistic regression least-square regression logistic regression

Table 8: Some differences and similarities between [Briand et al, 1994], [Li&Henry, 1993] and
our work

5 . Conclusions and further work

In this experiment, we collected data about defects found in Object-Oriented classes. Based on

these data we verified experimentally how much fault-proneness is influenced by internal (e.g.,

size, cohesion) and external (e.g., coupling) design characteristics of OO classes. From the results

presented above, five out of the six Chidamber&Kemerer’s OO metrics appear to be useful to

predict class fault-proneness during the early phases of the life-cycle. This empirical validation

provides the practitioner with some empirical evidence demonstrating that most of these metrics can

be useful quality indicators. In addition, most of these metrics appear to be complementary
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indicators which are relatively independent from each other. The results we obtained provide

motivation for further investigation and refinement of Chidamber&Kemerer’s OO metrics.

We also showed that Chidamber&Kemerer’s OO metrics seem to be better predictors than the best

set of  “traditional” code metrics provided on our data set, which, in addition, can only be collected

at a later phase of the software development processes.

Our future work includes:

• replicating this study in an industrial setting: a sample of large-scale projects developed in C++

and Ada95 in the framework of the NASA Goddard Flight Dynamics Division (Software

Engineering Laboratory). This work should help us better understand the prediction capabilities

of the suite of OO metrics described in this paper. By doing that, we intend to:

° build models and provide guidance to improve the allocation of resources with

respect to test and verification efforts,

° gain a better understanding of the impact of OO design strategies (e.g., simple

versus multiple inheritance) on defect density and rework. In this study, because of

an inadequate data collection process, we were unable to analyze the capability of

OO design metrics to predict rework. We believe that this drawback could be

overcome by refining our data collection process in order to capture how much

effort was spent on each class individually.

• studying the variations, in terms of metric definitions and experimental results, between

different OO programming languages. The fault-proneness prediction capabilities of the suite of

OO metrics discussed in this paper can be different depending on the used programming

language. Work must be undertaken to validate this suite of OO design metrics across different

OO languages, e.g., Ada95, Smalltalk, C++, etc.
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• extending the experimental investigation to other OO metrics proposed in the literature (e.g.,

[Abreu&Carapuça, 1994]) and develop new metrics, e.g., more language specific.
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