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ABSTRACT

This paper considers a flow control model for discrete M|M|1 queues. The problem of
implementing a given threshold policy via an adaptive policy is discussed in terms of an adap-
tive algorithm of the Stochastic Approximations type. Such an implementation problem for
threshold policies typically arises when some of the model parameters are not exactly known.
The proposed algorithm is extremely simple, easy to implement on-line, and requires no a
priori knowledge of the actual values of the model parameters. Convergence of the algorithm
and convergence of the long-run average cost under the adaptive policy are investigated. The

obtained results apply easily to the optimal flow control studied in a companion paper [5].
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1. Introduction

Consider the following flow control model for discrete M|M]|1 queues with infinite buffer
capacity: Time is slotted so that the duration of a time slot coincides with the service re-
quirement of any given customer. At the beginning of each time slot, the controller decides
either to admit or to reject customers that arrive during that slot. This is done according to
some prespecified mechanism on the basis of available (feedback) information. An admitted
customer joins the queue while a rejected customer is immediately lost. During each time
slot, a serviced customer (if any) may fail to complete service in that slot with a fixed positive
probability, in which case it remains at the head of the line to await service in the next slot.
The service failures are assumed independent from slot to slot, and independent of the arrival

process. New customers arrive at the system one at a time according to a Bernoulli sequence.

This model was introduced in [5] and naturally arises in a variety of data communication
systems. As congestion is experienced in such systems, it is natural to restrict access in order to
guarantee certain levels of performance determined according to various design considerations
[1]. In the companion paper [5], the selection of a flow control strategy was discussed with
the objective of maximizing the throughput under the constraint that the long-run average
number of customers in the system does not exceed a prespecified value, say V. By casting
the problem as a constrained Markov decision process, a solution was shown to be of threshold
type and to saturate the constraint. A threshold policy (L,7), with L in IV and 7 in [0,1],
has a simple structure in that at the beginning of each time slot, a new customer is accepted
(resp. rejected) if the buffer content is strictly below L (resp. strictly above L), while if there
are ezactly L customers in the buffer, this new customer is accepted (resp. rejected) with

probability # (resp. 1 — 7).

In spite of its simple structure, a threshold policy (L,n) may not be implementable, as
knowlege of L and/or n may not be readily available. To be more specific, as in [5], the

threshold value L is often identified through the property that
J((L,0)) <V < J((L,1)) (1.1)

where J(7) denotes some long-run average cost functional associated with an admissible control
policy 7 (see Section 2 for a precise definition) and V represents the constraint level. The

desired threshold policy (L,7) is then obtained by appropriately choosing the bias value 7
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such that the constraint is met, i.e.,

I(L,m)) = V. (1.2)

The cost functional J((L, 7)) is a function of the model parameters, i.e, the arrival and service
rates, and in the event of no exact knowledge of the model parameters, the exact values of L

and/or n may not be known.

Motivated by this concern, implementation of a given threshold policy (L, 7) is studied in
this paper under the assumption that the threshold value L is readily available while the bias
vlaue 7 has to be determined. This situation may arise, for instance, when only approzimate
values of the model parameters are available. To see this, if the cost functional J(r) is rewritten
as J(0; ) to reflect this dependence on the model parameters 0, then it is possible for a wide

range of values for 4 to have
J(0;(L,0)) <V < J(6;(L,1)) (1.3)

for the cost functional J(#,7) is often continuous in . Those values § satisfying (1.3), when

used as if they were true model parameters, would naturally yield the same threshold value L.

In [7,9], various methods were proposed to overcome the implementation difficulties. In
this paper, an alternative policy is generated through the Certainty Equivalence principle
coupled with a specific estimation scheme for the bias value 7. The proposed scheme is based on
ideas from the theory of Stochastic Approzimations. It is extremely simple, recursive and easy
to implement on-line. It requires no a priori knowledge of the exact values of model parameters,
as it avoids direct calculation of the control parameter # by solving the equation (1.2) even in
the event of full knowledge of the model parameters. Convergence of the estimation scheme
to the bias value n as well as convergence of the long-run average cost for a broad class of
cost functionals under this adaptive policy are investigated. These results apply easily to the
optimal flow control studied in [5]. The case where the model parameters are not known, is

discussed in a companion paper [6], in which case both L and # are not available.

Although the implementation study of threshold polices given here applies only to this
specific flow control model, the method of analysis and several ideas of the proof should prove

useful in studying other related situations [8].



The paper is organized as follows: The model is described in Section 2. The Stochastic
Approximations implementation policy is given in Section 3 where the main convergence results
are summarized. Application of these results to the optimal flow control discussed in [5] is
provided in Section 4, while various properties of threshold policies are outlined in Section
5 for future use. Section 6 is devoted to a general convergence result for the cost, and the
convergence of the Stochastic Approximation algorithm is discussed in Sections 7-8. Finally,
Section 9 gives some remarks on whether knowledge of the threshold value L can be relaxed

and whether similar on-line estimation schemes can be used for the threshold value L.

A word on the notation: The set of real numbers is denoted by IR, with IR denoting the
set of non-negative real numbers. The set of all non-negative integers is denoted by IN, and
for any z in IR, it is convenient to pose Z = 1 — z. The Kronecker delta §(e,e) is defined as
usual by 6(a,b) =1 if @ = b and é(a,b) = O otherwise. The characteristic function of any set

E is denoed simply by 1[E).

2. Model

The model adopted here is the one given in the companion paper [5|, and is briefly
summarized for sake of convenience. The sample space {1 is taken to be the canonical space
0:= IV x ({0, 1}3)°°. The information spaces {IH,}$° are recursively generated by [Hq:= IN
and HH,41:= H, x {0,1}2 for all n in IN, and with a slight abuse of notation, (2 is naturally
identified with IH ..

An element w of {1 is viewed as a sequence (z,wo,wy,--) with z in IN and w, in {0,1}®
for all n in IN. Each block component w,, is written in the form (up, @n,b,), with u,, a, and
b, being all elements in {0,1}. An element h,, in IH,, is uniquely associated with the sample
w by hp:= (z,wo,+ "+ ,wn—1) With ho: = z.

Let the sample w = (z,wo, w1, --) be realized. The initial queue size is set at z. During
each time slot [n,n + 1), a, = 1 (resp. a,=0) indicates that a customer (resp. no customer)
has arrived into the queue, b, = 1 (resp. b,=0) encodes a successful (resp. unsuccessful)
completion of service in that slot, whereas control action u, is selected at the beginning of
the time slot [n,n+1), with u,=1 (resp. u,=0) for admitting (resp. rejecting) the incoming
customer during that slot. If z,, denotes the queue size at the beginning of the slot [n,n+1),

its successive values are determined through the recursion zp41 = Zp + tnan — 1z, # 0}b,
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with zg: = .

The coordinate mappings E, {U(n)}&, {A(n)}$° and {B(n)}§° are defined on the sample
space {} by posing E(w):= z, U(n,w):= u,, A(n,w):= a, and B(n,w):= b,, while the
information mappings {H(n)}° are given by H(n,w):= (z,wo, w1, ,Wn—1): = hy for every
win ) and n in IN.

For each n in IN, let IF, be the o-field generated by the mapping H(n) on the sam-
ple space Q. Clearly, IF',, C IF,4;, and with standard notation, IF:= V{2 IF,, is sim-
ply the natural o-field on the infinite cartesian product IH ., generated by the mappings E
and {U(n), A(n), B(n)}$°. Thus, on the space (£, IF), the mappings E, {U(n)}3, {A(n)},
{B(n)}& and {H(n)}$ are all random variables (RV) taking values in IV, {0,1}, {0,1},
{0,1} and IH,, respectively. The queue sizes {X(n)}§® are IN-valued RV’s which are defined

recursively by
X(n+1)=X(n) +U(n)A(n) — 1[X(n) # 0]B(n) n=0,1,---(2.1)

with X(0):=E. Each RV X(n) is clearly IF,-measurable.

An admissible policy = is defined as any collection {7, }§° of mappings m,: IH,, — [0,1],
with the interpretation that the potential arrival during the slot [n,n + 1) is admitted (resp.
rejected) with probability 7, (h,) (resp. 1 — m,(hy)) whenever the information ky, is available

to the decision-maker. In the sequel, denote the collection of all such admissible policies by P.

Let g(®) be a probability distribution on IV, and let A and p be fixed constants in (0, 1).
Given any policy 7 in P, there exists an unique probability measure P™ on IF, with corre-
sponding expectation operator E™, satisfying the requirements (R1)-(R3), where

(R1): For all z in IN,
P78 = z}: = ¢(=z),

(R2): For all @ and b in {0,1},
P"[A(n) = a, B(n) = b|IF, V o{U(n)}]:= P"[A(n) = a|P™[B(n) = b]
1= (aX +aX)(by + bi)
(R3):
PT[U(n) = 1|IF,): = P"[U(n) = 1|H(n)]: = mn(H(n)). n=0,1,---
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This notation is specialized to PF and ET, respectively, when g(®) is the point mass distribution
at z in IN; it is plain that P™[A|X(0) = z] = PJ[A] for every A in IF.
It readily follows from (R1)-(R3) that under each probability measure P™,
(P1): The IN-valued RV E is independent of the sequences of RV’s {A(n)}§° and {B(n)}&;
(P2): The sequences {A(n)}& and {B(n)}§® of {0,1}-valued RV’s are mutually indepen-
dent Bernoulli sequences with parameters A and u, respectively;

(P3): The transition probabilities take the form

P X(n+1) = y|IF,] = p[X(n),y; mn(H(n))] n=0,1,--+(2.2)
where
plz,y;n): = 1Q*(2,y) + 7Q°(z,v) (2.3)
with
Q*(z,y):= P"[z +1A(n) — 1(z # 0)B(n) =y], i=0,1 (2.4)

for all z and y in IN, and all » in [0,1].
The right-hand sides of (2.4) depend neither on n nor on the policy m owing to the assumptions

(R1)-(R3) made earlier. Throughout this paper, the finite moment condition

E"[E] =) =zq(z) < o0 (2.5)

z=0

is assumed to hold for every = in P.

A policy 7 in P is said to be a Markov policy if there exists a family {g,}§ of mappings
gni IN — [0, 1] such that m,(H(n)) = gn(X(n)) P"-almost surely for all n in IN. In the event
gn=g for all n in IN, the Markov policy = is called stationary and can be identified with the
mapping ¢ itself.

A policy 7 in P is said to be a pure (or non-randomized) policy if there exists a family
{fn}$ of mappings fn:IH, — {0,1} such that m,(H(n)) = é(1, fo(H(n))) P"-a.s. for all
nin IN. A pure Markov stationary policy = is thus fully characterized by a single mapping
f:IN — {0,1}.



A stationary policy g is said to be of threshold type if there exists a pair (L,7), with L
an integer in IN and 7 in [0, 1], such that

1 if z< L
g(z)=<¢n if z=1L; (2.6)
0 if z> L.

Such a threshold policy is denoted by (L,7), and remark that (L,1) = (L + 1,0). For conve-
nience, the Markov stationary policy that admits every single customer, i.e., g(z) = 1 for all
z in IN, is simply denoted by (oo, 1).

For any mapping ¢: IN — IR, it is notationally convenient to pose

n

! BT Y e(X() (2.7)

n=0

J¢(r):=liminf

nfoo N

for every admissible policy w in P (whenever meaningful). Of interest in this paper are the

mappings for which (2.7) is well-defined.

3. Problem statement and Stochastic Approximations

Let g denote a given threshold policy (L,#) with L in IN and # in [0,1] held fixed through-
out the discussion and assume the threshold value L to be available. The implementation
problem of interest in this paper is to find a policy & in P which incurs the same cost as the
policy g, i.e., J°(a) = J°(g), and which does not require ezplicit knowledge of the randomizing
factor n. Such a policy « is called an implementation of g in the terminology of [9].

As discussed in [9], there are many possible implementations of g. The implementation
scheme proposed in this paper is motivated by ideas of the theory of Stochastic Approzimations
and is of applicability in constrained flow control problems [Section 4]. With the notation
f%:= (L,q), 0 < ¢ < 1, observe that the threshold policy g can be interpreted as a simple

randomization with bias n between the pure policies f°:= (L,0) and fl:= (L, 1), i.e.,
g(2) = f"(z) = nf*(z) +7f°(=) (3.1)

for all zin IN. Let V be a given constant and let r be a fixed mapping IN — IR such that the
following assumptions (A1)-(A2) hold, where

(A1): The mapping r: IN — IR is monotone, say increasing for sake of definiteness,
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(A2): The mapping ¢ — J7(f?) is continuous and strictly monotone increasing on the
interval [0,1], with V = J"(f") = J"(g).

The cost functional J" associated with the mapping r can be interpreted as the cost to be

constrained according to some optimality criterion, or the quantity V = J"(g) can be viewed

as one of particular interest toward which it is desirable to steer the system performance [7].

In the notation (3.1), the implementation policy & has the form

an(H(n)) = n(n)f1(X(n)) +n(n)f°(X(n)), n=0,1,---(3.2)
where the bias estimates {n(n)}g are produced via the following Stochastic Approximation

algorithm

n(n+1) = [n(n) + an(V — r(X(n + 1))];. n=0,1,---(3.3)

Here, 1(0) is chosen arbitrary in [0,1], and the convention [z]§: =0V (z A1) is enforced for all

z in IR, while the step sizes {a,, }° form an IR -valued sequence which satisfies the conditions

o0 (o ¢]
0<ay,lDO, Za,-:oo and Za? < oo. (3.4)
=0

+=0

To show that J¢(a) = J°(g) for a large class of mappings ¢ under broad conditions, it is
necessary to investigate the convergence of the estimates {#(n)}$° to the bias value n under
the adaptive policy @. The discussion of this convergence, which is available in Sections 7-8,

is now summarized.

Theorem 3.1 Assume the mapping r: IN — IR to be non-negative and to salisfy the assump-
tions (A1)-(A2). Whenever

E™[E+Er(E) +r2(B)] < o0 (3.5)
for all policy m in P, the sequence of biases {n(n)}$ converges P*- almost surely to the bias

value 1.

By making use of Theorem 3.1, it is now possible to show that J°(a) = J¢(g) by direct

application of a general convergence result contained in Theorem 6.1.

Theorem 3.2 Assume the conditions of Theorem 3.1 to hold. For any mapping e: IN — IR,

whenever the IR-valued RV’s {¢(X(n))}& form a uniformly integrable sequence under both
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probability measures P* and PY, the convergence

7*(0) = lim — > e(x() = I°(0) (3.6)

takes place in L1(Q, IF, P®), and consequently,

B ) o(X(1) = 7°(0)- (3.7)

In particular, J"(a) = J"(g) = V.

4. Application to optimal flow control

The results obtained in Theorems 3.1 and 3.2 can be readily applied to the optimal flow
control problem considered in [5], where a policy that maximizes the throughput was sought
under the constraint that the long-run average queue size does not exceed a certain value

V > 0. For any admissible policy 7 in P, the throughput T'(7) and the long-run average queue
size N () are naturally defined to be

L pm SO X (r) £0) (4.1)

t=0

T(m): = liminf

ntoo n+1

and

1
N(m):=1i
() hTTi:,lpn+1

E" zn: X(t), (4.2)

respectively. With Py:= {r € P: N(w) <V}, the constrained optimal control problem (Py)

is formally defined as

(Pv): maximize T'(r) over Py.

The problem (Py) always admits an optimal stationary policy for every V > 0; the
optimality results, which were discussed at length in [5], are now sumarized.
Theorem 4.1 If N((o0,1)) <V, the policy (00, 1) solves the problem (Py). If N((c0,1)) >V
then there exists a threshold policy g = (L,n) which solves the problem (Py) with N(g) = V.

’
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Only the situation N((oc0,1)) > V is of interest here, in which case the Stochastic Ap-
proximation implementation « of g is defined by (3.3)-(3.4) with r(z) = z for all z in IN, i.e.,

the bias estimates {n(n)}g are generated by

n(n+1) = [n(n) + an(V - X(n +1))]; n=0,1---(4.3)

with 7(0) arbitrary in [0,1]. It is now a simple exercise via Lemmas 5.1 and 5.4 to check
that the assumptions of Theorems 3.1 and 3.2 hold for the costs (4.1)-(4.2), under the square-
integrability of the RV E. The optimality of the adaptive policy a for the problem (Py) now

follows easily.

Theorem 4.2 Under a second moment assumption on the initial queue size, the adaptive

policy o solves the problem (Py) with T'(a) = T(g) and N(a) = N(g) =V.

5. Properties of threshold policies

Various properties of threshold policies will be needed in the forthcoming discussion;
they were obtained in the companion paper [5], and are summarized in this section for easy

reference.

For each threshold policy f%:= (L,q), 0 < ¢ < 1, the sequence {X(n)}& is a time-
homogeneous Markov chain with state space IN under the probability measure Pf*. For ease
of notation, rewrite P/*, Ef* P/* and Ef* as P9, E4, P2 and EY, respectively. This chain has
a single ergodic set, namely {0,1,---,L+1}, and admits under P? a unique invariant measure,

which is denoted by IP? with corresponding expectation operator IE9.

If X denotes a generic IN-valued RV, then the quantity IE9¢(X) is always finite for any

mapping ¢ : IN — IR. The following characterization combines Lemmas 5.1 and 5.2 of [5].

Lemma 5.1 For any mapping ¢ : IN — IR, the convergence

f: (X (1)) = Ee(X) P? — a.5.(5.1)

t=0

lim —L
nl»n;o n 1

takes place, independently of the initial distribution. The convergence (5.1) also holds in
L1(Q, IF, P?), provided the sequence {c(X(n))}3° is uniformly integrable under P9. This is the

case when the mapping ¢ is monotone and the RV ¢(E) 1s integrable.
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The solution to the Poisson equation associated with the cost function ¢ and the threshold
policy f? will be particularly useful in what follows. As in [5], for each ¢ = 0,1, define
A*(z) = z+ tA— 1[z # 0| B for all z in IN, where A and B are generic elements in {A(n)}$

and {B(n)}&, respectively. The following lemma is a simple rephrasing of Lemma 5.4 of [5].

Lemma 5.2 For any mapping c: IN — IR and any threshold policy f9,0 < ¢ < 1, there always
ezxist a scalar J(q) and a mapping h?: IN — IR such that

k() + J (g) = c(z) + f*(2) E[h? (A (2))] + f7(2) E[h? (A%(=))] (5:2)

for all z in IN. The quantity J(q) is given by

B[S e(X(2))] = (), (53)

whereas the mapping h%: IN — IR s unique up to an additive constant and is given by

h(z) = Ei[Z:: (X ()] - EZ[r)J(9) (54)

for all z # L in IN with h?(L) = 0, where the IF,-stopping time 7 is defined as

ri=inf{n >0: X(n)=L}. (5.5)

The invariant measure IP? was explicitly computed in Section 5 of [5], and exhibits the

following property.

Lemma 5.3 For 1 < k < L + 1, each one of the mappings ¢ — IPT* [X > k| is continuously

differentiable and strictly monotone increasing on the interval [0, 1].

The following characterization is obtained from Lemma 5.3 by arguments similar to the

ones leading to Lemma 5.5 of [5].

Lemma 5.4 If the mapping c:IN — IR is monotone increasing and if the RV ¢(E) is inte-
grable, then the mapping ¢ — J°(f?) = IE%¢(X) ts continuously differentiable and monotone
increasing on the interval [0,1]. Furthermore, if the mapping c is not identically constant over

{0,1,--+,L + 1}, then the mapping ¢ — J°(f?) = IE%(X) is strictly monotone.
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6. A general convergence result for the costs

In this section, a general convergence result is obtained under the condition that an

implementation « in P of the threshold policy g satisfies the following convergence condition

(C) (with respect to g), where
(C): The convergence
lim |oa (H () - g(X(n))] =0

ntoo

takes place in probability under P2.

To facilitate the discussion, it is convenient to introduce the conditions (H1)-(H3), where

(H1): The sequence {c(X(n))}8® of IR-valued RV’s forms a uniformly integrable sequence

under P9.

(H2): The sequence {c(X(n))}3° of IR-valued RV’s forms a uniformly integrable sequence

under P,

(H3): The sequence {X(n)}§° of IR-valued RV’s forms a uniformly integrable sequence under

pe,

Note that under (H1)-(H2), J¢(g9) and J°(a) are both well-defined and finite.

The main convergence result is now stated; although it is more general than is needed in

this paper, the result has application in a companion paper [6] where various implementation

policies are discussed.

Theorem 6.1 Under the conditions (H1)-(H3), whenever the convergence condition (C) holds

for the policy o with respect to the threshold policy g, the convergence

1

7a) = & > ex() = 7°0)

m
ntcon+1

takes place in L(Q, IF, P®), and consequently,

A proof of Theorem 3.2 is now presented that makes use of Theorem 6.1.

A proof of Theorem 3.2

12
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Theroem 3.1 readily implies that the convergence condition (C) holds for the policy «
given by (3.3)-(3.4) with respect to g. On the other hand, Lemma 8.2 readily gives the
condition (H3) of Theorem 6.1, i.e., the uniform integrability of the RV’s {X(n)}$ under P?,
and Theorem 6.1 thus applies to yield (3.6)-(3.7). That (3.6) also applies to the mapping r is
an immediate consequence of Lemmas 8.2 and 5.1. M

The proof of Theorem 6.1 extends an argument due to Mandl [10] to the case of unbounded
costs over countable state space and randomized policies. It is based on Theorem 6.3, where the
convergence (6.1) is established for all bounded mappings. For the general case, the argument
proceeds by considering the bounded mappings ¢?: IN — IR defined by c¢?(z) = (¢(z) A B) V
(=B), zin IN, for all B > 0, and Theorem 6.3 thus applies to each mapping ¢B. The conditions
(H1)-(H2) allow the convergence result for ¢B to be carried over to the mapping ¢; its proof is
similar to the one given by Shwartz and Makowski [12]| for a competing queue problem, and
is thus omitted here for sake of brevity. The interested reader is invited to consult the proof
of Theorm 7.1 of [12, pp. 34] for a typical argument.

The discussion below is thus devoted to the case when the mapping ¢ is bounded. Let
the pair (h,J):= (h",J(n)) be the solution to the Poisson equation associated with the cost
function ¢ and the threshold policy ¢ = f"” as given in Lemma 5.2, the subscript n being

omitted here for ease of notation.

As in [10], let the sequence {®(n)}5° and {Y (n)}& be defined by
®(n):= E°h(X(n+ 1))|F,] — E[R(X(n + 1))|IF,) n=0,1,---(6.3)

and

Y(n+1):=h(X(n+1)) - E“R(X(n+ 1))|IF,] n=0,1,---(6.4)

with Y (0): = h(E) — E*[h(E)], respectively. By virtue of (2.2)-(2.4), (6.3) can be expressed as

®(n) = Aan(H(n)) - 9(X(n))][R(A°(X(n)) + 1) — R(A°(X(n)))] n=0,1,---(6.5)
whereas (5.2) can be written in the form

d(n) =c(X(n))—J +h(X(n+1)) - h(X(n)) =Y (n+1). n=20,1,---(6.6)

For z > L, the RV 7 defined in (5.5) is distributed according to a negative Binomial under

Pg, whence E¢[r| = "’—;ﬁ [2, pp- 16], while by ergodicity E¢[r] < oo for 0 < z < L. This fact,
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when used on (5.4), shows that the mapping A exhibits linear growth, i.e., there exists some
constant K > 0 such that
|h(z)| < K(1+ z) (6.7)

for all z in IN. This estimate (6.7) implies by (H3) and Lemma 5.1 that the RV’s {h(X(n))}
are uniformly integrable under both P* and P?, whence the RV’s {®(n)}&° and {Y (n)} are
well-defined. In the following lemma, useful bounds on {®(n)}3 and {Y(n)}3° are further
obtained by exploiting the Poisson equation (5.2) from which the relations

plh(z+1) = h(z)) =c(z+1) = J (6.8)

readily follow for all z > L.

Lemma 6.2 There exist positive constants K; and K2 such that

|8(n)| < Kilan(H(n)) - g(X(n))| (1 +|e(A°(X (n)) + 1)|) (6.9)

and
Y (n+1)| < Ko (1 + [e(A%(X (n)) + 1)| + |e(X(n))] + (X (n) + 1)|> (6.10)
for alln in IN.
Proof: The estimate
plh(A%(X(n)) + 1) — h(A%(X(n)))| = 1(A%(X(n)) > L)|e(A%(X (n)) + 1) — J|

+1(4°(X(n)) < L)2 max |h(z)|n

readily follows from (6.8), and (6.9) is now immediate from (6.5) for some constant Ky > 0.

Since transitions can only take place into neighboring states, the relation (6.8) also implies

that

plh(X(n+ 1)) — R(X(n))| < 1(X(n)) > L){1(X(n + 1) = X(n) — 1)[¢(X(n)) - J|

+1(X(n + 1) = X(n) + 1)|e(X(n) + 1) — J[} (6.11)
<
+1(X(n) < L)2 | max  |h(z)|p
and (6.10) thus follows from (6.6) and (6.9) for some constant Kz > 0. |
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Since the mapping ¢ is bounded, the sequences {®(n)}$° and {Y (n)}3° are both bounded
by (6.9)-(6.10), and thus well-defined. By using this fact coupled with condition (H3), it is

now possible to show the convergence (6.1) for all the bounded costs.

Theorem 8.3 Assume c to be bounded. Under the condition (H3), whenever the convergence

condition (C) holds for the policy o with respect to g, the convergence

I*(@) = lim =3 e(xX(t)) = I°(0) (6.12)

takes place in L'(Q, IF, P%).

Proof: Iteration of (6.6) readily implies

(6.13)

for all n in IN. From (6.9), it is plain that
|8(n)| < K1(1+ B)|an(H(r)) - ¢(X(n))| n=0,1,---(6.14)

with B:= sup, |¢(z)|. By the convergence condition (C), the RV’s {|a,(H(n)) — ¢(X(n))|}$°
converge to zero in probability under P%, hence the RV’s {®(n)}$° thus also converge to zero
in probability under P* owing to (6.14). The RV’s {®(n)}$ being bounded, convergence
in probability implies convergence in L'((, IF, P®) and lim,teo E*|®(n)| = 0. Elementary
results on Cesaro convergence immediately yield

lim

nfco N

2: |8 (t)| = 0. (6.15)

From (6.4), the RV’s {Y (n)}$° are seen to form a (P%, IF,,)-martingale difference sequence,

and the estimate

o0

] < sup E*[|Y (n Z (6.16)

E"[Z
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holds owing to (6.10). By a martingale version of the Law of Large Numbers [10, Thm. 3],

the convergence

1
lim

n
nToon—{-lZY(t+ 1)=0 (6.17)
t=0

takes place P®-almost surely and thus also in L(, IF, P®) by the Bounded Convergence

Theorem.

Uniform integrability of the RV’s {h(X(n)}$® under P* impies that sup,, E*|h(X(n))| <

00, whence

1
lim

1
ah E = i 1 * = . .
Jim = Eh(E)| = lim ———= E¥[A(X(n+1))| =0 (6.18)

Since J = J°(g) as a combined result of (5.3) and Lemma 5.1 since the RV’s {¢(X(n))}§° are
bounded. The result now follows upon letting n go to infinity in (6.13) and collecting (6.15),

(6.17)-(6.18). 1

7. Discussion of the convergence for the estimates

The convergence of the estimates {#(n)}5° to the bias value 7 is now investigated. A
proof of Theorem 3.1 is now provided which uses a standard ODE argument based on the
deterministic lemma of Kushner and Clark [3]. The presentation follows closely that of Metivier

and Priouret [11].

For each 0 < q < 1, pose
8(q):=V = J"(f9), (7.1)

and define the RV’s {£(n)}& and {d(n)}& by
E(n):=J7(f7™) — #(X(n + 1)) n=0,1,---(7.2)

and

dn) = - |n(n+1) = [1(n) + ad(1(2)) + an€(n)]. n=0,1,--(7.3)

n

With this notation, the recursion (3.3) becomes

n(n+ 1) = n(n) + anb(n(n)) + ané(n) + ard(n). n=0,1,---(7.4)
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It is plain that

=0, if 0<9y(n)+a,lé(n(n n)| < 1;
{20 s 1)), o) o) €] (79

By the very definition of the policy « defined by (3.3), the estimate

X(k) < (L+1)VX(n) P® — 4.5.(7.6)

holds for all £ > n, implying
X(n)<(L+1)VE P® — a.5.(7.7)

for all » in IN, and therefore
sup |d(n)] <V +7(L+ 1) + r(E) P — q.5.(7.8)

since the mapping r is non-negative and monotone increasing.

For every T > 0, pose

k—1
m(n,T)::max{k>n:Zai§T}. n=0,1,---(7.9)

i=n
The next result is key in making the Lemma of Kushner and Clark useful for questions of
almost sure convergence of Stochastic Approximation algorithms.

Theorem 7.1 Under the assumptions of Theorem 3.1, the convergence

k
li :&(2)]) =0 P® — a.s.(7.10

takes place for every T > 0.

The proof of Theorem 7.1 requires several technical lemmas and is delayed till the next

section. The proof of Theorem 3.1 is now given below with the help of Theorem 7.1.

A proof of Theorem 3.1

The main idea consists in interpolating {#(n)}$° and then defining a sequence of left shifts

which bring the ”asymptotic part” of {#(n)}3° back to a neighborhood of the time origin. To
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that end, define the increasing sequence {t,}$ by t, = Z;S ay, for all n > 1 with ¢t = 0.
For any sequence {z(n)}$°, the linear interpolation and the right continuous step interpolation
of the functions taking value z(n) at t, are denoted by 1..[(tn, z(n)), ] and s.i.[(t,, z(n)), o]

respectively, and are defined on [0, 00) by

20(t): = Li[(tn, z(n)),t]: = (t—tn)z(n :;i)ltit:+1 — t)z(n)

3 tnstétn-{-l

and

Z(t): = s.4.[(tn, z(n), t: = z(n), t, <t <tpys.
With this notation, the functions 7°(e), M°(e), D°(e) and 7(e) are defined on [0, c0) by

n~1

n°(t): = La.[(tn, 0 (1)), 8], MO(E):= 1 [(tn, D ai(s)), 2],

D°(t):=l.i.[(tn,iaid(i)),t] and  i(t): = 5.0.[(tn, n(n)), .

For each n > 1, the functions n™(e), M™(e) and D"(e) are the “left shifts” of 1°(e), MP°(e)
and D°(e), respectively, and are now defined on IR by

0
nipy. ) nP(E+tn), if t> —ty;
”(t)'—{nw), if £ < —t,,

MO(t+t,) — MO(t,), if t> —tyn;
0, if ¢ < —tp,

<
S
=
|
—N

and

nepy. | DO(t+t,) — DO(t,), if t> —ty;
DR (e):= {o, ift < —tp.

From the relation (7.4), it follows that for all ¢ > 0,

¢
n°(t) = n(0) + / 6(7(s))ds + MO(t) + D(t), (7.11)
0
and the function 5™ (e) thus satisfies the relation

7" / 6(n™(s))ds + M™(t) + D™(t) + €*(¢), (7.12)
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for all ¢ > 0, with
() = /0 §(7(tn + 5))ds — fo §(n™(s))ds. (7.13)

Let N be a P*-null set on which (7.6) or (7.10) fails, and fix an w not in N. The sequence
{n™(e,w)}§ is bounded and equicontinuous; the boundness is obvious from (3.3), while the

equicontinuity follows from the fact that #°(e,w) is (globally) Lipschitz owing to (7.8).

The relation (7.10) implies that for every T' > 0,

lim sup |[M"(t,w)| =0, (7.14)
nfoo 4<T

and M™(e,w) thus converges to zero uniformly on finite intervals as n T co. Also, €"(e,w)
converges to zero as n T oo uniformly on finite intervals due to the continuity of the mapping
6, the boundness of {n(n)}§ and the fact that the step sizes a,, | 0. Since {d(n,w)} is a
bounded sequence owing to (7.8), the reader will check that the function D°(e,w) is (globally)
Lipschitz, whence the sequence {D™(e,w)}& is equicontinuous.

By the Arzela-Ascoli Theorem, a convergent subsequence {(7n™(e,w), D™ (o,w))}$° can
be selected. Owing to (7.12), the corresponding limit point (7(e,w), D(e,w)) must satisfy the

equation
20 =10+ [ b(n(s))ds + D(? (7.15)

with 7(t) in [0,1] for all ¢ > 0.

If n(t,w) lies in (0,1) on some interval [t;,%;], then D(t,w) = 0 on that interval because
of the relation (7.5) and uniform convergence. On the other hand, if #(¢,w) lies in {0,1} on
some interval [t3,t4], say n(¢t,w) = 1, then, for 0 < t3 <tz+ h <ty < 00, h >0,

ta+h
n(ts + h,w) = n(ts,w) + /t 6(n(s,w))ds+ D(ts + h,w) — D(t3,w), (7.16)

which implies

D(t3 + h,w) - D(ts,(A)) = —h&(l). (717)

By assumption (A2), the mapping ¢ — 8(¢) =V — J7(f?) is continuous and strictly monotone
decreasing, thus with a single zero 7 in the interval [0,1]. If n = 1, then §(1) = O and the
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right-hand side of (7.17) is equal to zero. If < 1, then 6(¢) < 0 for n < ¢ < 1, and this
implies by virtue of (7.17) that D(e,w) will increase linearly on the interval [t3,¢4). But this
is impossible, since for all m sufficiently large, n™(»,w) is close to 1 on the interval [t3,t4] and
this implies that D™ (t3 + h,w) — D™(ts,w) < 0 by the very definition of the RV’s {d(n)}s°.
The situation 7 (¢,w) = 0 on the interval [ts,t4] can be similarly discussed. It now follows from

(7.15) that the limit n(e,w) satisfies the ODE

() =8(n(t)) =V —J" ("), (7.18)

for all ¢ > 0, with #(0) in [0,1]. The ODE (7.18) is asymptotically stable and any one of
its solutions n(e) converges monotonically to n, which is the unique solution of the equation
J(f)=V,0<q¢<1.

A simple shifting argument can now be used to show that lim, e 7(n,w) = 5. For every

T > 0, define the process n%(e,w) by n%(t,w):=n"(t — T,w) for all ¢ in IR. Assume that the

subsequence {n™(e,w)}$° converges, say to n(e,w), in which case

lim (1™ (o, ), 1 (,)) = (n(s,w), 7(e,)) (7.19)

mtoo

also takes place. The limit 9z (e,w) satisfies the same ODE (7.18) with stable point 7, and
initial condition n7(0,w) in [0,1]. By stability, it is possible to choose T large enough so
that 5 (T,w) is arbitrarily close to %, i.e., |97 (T,w) — 9| < ér with limgye 67 = 0, and
the choice of T' can be made independently of the subsequence. From the obvious equality
n1(T,w) = n(0,w), since the solution converges monotonically, it follows that |n(t,w)—7| < ér
for all £ > 0. Since the choice of T' was arbitrary, therefore n(¢,w) = 7, which implies that
n(n,w) — n along the convergent subsequence. Any convergent subsequence of {n(n,w)}s

thus converges to the same limit n, whence

liTm n(n,w)=n (7.20)
for all w not in the P*-null set N, and this establishes the theorem. ]

8. A proof of Theorem 7.1

The proof uses ideas proposed by Metivier and Priouret [11] and is developed in a series

of auxiliary lemmas. As in Section 6, the argument starts with a use of Lemma 5.2, with
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(h?,J(q)) denoting the solution to the Poisson equation associated with the cost r and the
threshold policy f? for each 0 < ¢ < 1.

Lemma 8.1 There exists a positive constant K such that for all 0 < q,§ < 1, the relations

|h9(X (n+ 1)) — B[R X (n + 1))|F,)| < K(1+7(X(n))), (8.1)
|E R (X (n+ 1))|IF,]| < K(1+ X(n))(1+r(X(n))) (8.2)

and
|E[h9(X (n + 1) |IFy] — EURI(X (n + 1))|IF,]| < K(1+ X (n))]q - d| (8.3)

take place P*-almost surely for all n in IN.

Proof: Key to the proof is the relation
E7[R (X (n + 1)) |IFn] = R (X(n)) + I (g) — r(X(n)) (84)
which follows from (5.2). The reader will check that

A (X (n + 1)) = B[R (X (n + 1)) | 1]

(8.5)
= [R1(X(n + 1)) = R1(X(n)) — I () + r(X(n))].

Since X(n+ 1) < X(n) P*-a.s. on the set [X(n) > L], an argument similar to the one leading
to (6.11), yields the estimate

|4 (X (n+ 1)) — h¥(X(n))| < M(1 +r(X(n))) (8.6)
for some constant M > 0, and (8.1) is now established by combining (8.5)-(8.6) and the fact

J(0) < J(g) < J(1).

From (7.7), it is plain that X(n) < zV (L + 1) under PJ for all n in IN whereas (5.4)

implies
4 ()| < (J(q) o 1)))E:m-

The mapping r being non-negative and monotone increasing, the relation (8.2) follows readily

from (8.4) since the mapping z — EJ[r] is at most linear.
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Using (8.4) again, the reader will check that

| E?[A(X (n + 1)) |IF] — E¥[AY (X (n + 1)) | IFa] |

~ (8.7)
= [h*(X () - h(X(n)) + I (g) — I (@)

Since the quantities Eg[zg_"l r(X(t))] and EY[7] are independent of the value ¢ for z # L in
IN and h?(L) =0 for all 0 < ¢ < 1, it is now plain from (5.4) that the relation

|h?(z) — h¥(z)| = E2[7)|J (g) — J(@)] (88)

holds for 0 < ¢,§ < 1 and z in IN. The mapping ¢ — J(q) = IE?r(X) given by (5.3) is
monotone increasing and continuously differentiable owing to Lemma 5.4. The relation (8.3)

readily follows from (8.7)-(8.8) and from the linear growth of z — E4[7]. |

Lemma 8.2 Whenever (8.5) holds, the sequences {X(n)}&, {r(X(n))}&, {X(n)r(X(n))}
and {r?(X(n))}$° are all uniformly integrable under P*.

Proof: Since the mapping 7 is non-negative, it is plain from the assumptions that the
RV’s B, r(E), Er(E) and r?(E) must also be integrable. The results easily follows from (7.7)

by virtue of the monotonicity of the mapping r. |

A proof of Theorem 7.1 is now presented with the help of Lemmas 8.1-8.2.
A proof of Theorem 7.1

Since J(q) = IE9r(X) = J"(f?) as a combined result of (5.3), Lemma 5.1 and Lemma
8.2, the relation (8.4) allows a rewritting of £(n) as

—¢(n) =r(X(n+1)) — J(n(n))

= W) (X(n-+ 1)) = B"O (R (X (2 + 2)) ]

=& (n) + &2 (n) + 53(77«)
where
€1(n):= A" (X (n + 1)) — E"M R (X (n 4 1))|IF,),
&2(n):= E"MRT) (X (n + 1)) |IF,) — BT R (X (5 4 2)) | g
and

a(n):= BRI (X (1 4 2))| Frga] — B"ORI) (X (1 + 2)) | P
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for all n in IN. It now suffices to show that the relation (7.10) holds for each one of the
sequences {&;(n)}8°, 1 < ¢ < 3. Pose A(n):= Z::Ol a;€1(?) and B(n):= Z;:ol a;€2(2) for

n=1,2,---.

To show (7.10) for {£1(n)}&°, first observe that
E"M R (X (n + 1)) |IFy] = E*[R"™) (X (n+ 1)) | I, n=0,1,--(8.9)
whence
E*[&1(n)|IF,) = 0. n=0,1,---(8.10)

and the RV’s {A(n)}{° form an (P%,IF,)-martingale. It thus suffices to show the P%-a.s.
convergence of the martingale {A(n)}$°, in which case the sequence {A(n)}{* would form a

P<-a.s. Cauchy sequence, a fact which readily implies (7.10). Note that for 0 <7 < 7,

E*[a;§1(¢)a;61(5)] = E*[ai€1 (4) E%(a;&1(5) | Frva]]
= E®a:i&i (1) E*[A(5 + 1) — AQ() | Figa]] (8.11)
= E%a; &1 ()[A(z+ 1) — Az + 1)]] = 0,

and routine calculations easily give

n—1
E*[|A(n)|) = B2[)_ a2€1 (). n=12,.(812)
1=0
By virtue of (8.1),
n—1 n—1 o
B> af&i()] < K* ) a?E*(1+7(X(5))* < K®B1 ) af <o (8.13)
=0 =0 +=0

with Bj:= sup, E%(1+ r(X(n)))? < o as a result of Lemma 8.2. Thus sup,, E*|A(n)|? < oo
by (8.12) and the sequence {A(n)}$° is thus uniformly integrable under P*. By the Martingale
Convergence Theorem [2, Thm. 5.1, pp. 278], the martingale {A(n)}{° is therefore closable in
that the convergence

ilTI& A(n) = A(o0) P< — g.5.(8.14)

takes place, with the RV A(oo) being P*-integrable. This proves (7.10) for {¢;(n)}5°.
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To prove (7.10) for {£2(n)}S°, note that for all n < k, the relation

B(k) — B(n) = — " (aiu1 — as) E"O 10 (X + 1)) I

i=n

+ a1 ETM R (X (n 4 1)) | Fo] — ag— 1 BT [R1E) (X (k + 1)) |1F)

holds, and implies

|B(k) — B(n)| < K i:(ai—l —a;)(1+ X(5)) (1 + (X (7))

i=n

+ Kan_1(1+ X(n))(1+ r(X(n)))
+ Kag1(1+ X(k))(1+ r(X(k)))

P® — a.5.(8.15)

by a direct use of (8.2). By making use of (7.6), it is easy to see that the relation (8.15) implies

|B(k) — B(n)| < Ki(ai—l - a;)(1+ X (1)) (1 +r(X(2)))

4 Kanoy (14 X(m)) (14 r(X()))
for some positive constant K. For each n > 1 in IN , pose
A(n):= K ) (aim1 — @) (1+ X(3)) (1+ r(X()))

=n

and

e(n):= Kan_1(1+ X(n))(1+ r(X(n))).

With this notation, (8.16) becomes for all k& > n,
|B(k) — B(n)| < A(n) + e(n).
The estimate (7.7) again yields the bound

(1+ X(n))(1+r(X(n))) < Br +E+r(E) + Er(E),

24

P® — ¢.5.(8.16)
(8.17)
(8.18)
P* — 0.5.(8.19)
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with Bp:=1+ (L+ 1)+ (L +1) + (L + 1)r(L + 1), and this implies the convergence

lim e(n) = 71&1TI<£1° tn-1(1+ X(n))(1+r(X(n))) =0 (8.21)

ntoo

both P®-a.s. and in L!(f, IF, P*) (since the right-hand side of (8.20) is integrable by (3.5)).

An easy application of Lemma 8.2 again gives

E%A(n) = KE“[i(ai_l —a;))(1+ X()(1+r(X()))] < KB; i(ai_l —a;) < oo,

with Bg:=sup,, E“(1+ X(n))(1+ r(X(n))) < oo, and the convergence

lim A(n) =0 (8.22)

ntoo

takes place in L!(Q, IF, P®), thus in probability. The sequence {A(n)}$ being positive and
monotone-decreasing, convergence in probability (to zero) of the sequence {A(n)}$° implies

the a.s. convergence (to zero) under P%. Since

k—1
sup | > aita()] = sup | B(k) = B(n)| < A(n) +¢(n)

owing to (8.19), the convergence

k
lim (sup | Z a:&2(7))) =0 P® — a.5.(8.23)

nfoo k2n i=

readily takes place, and this proves (7.10) for the sequence {£2(n)}&.

To prove (7.10) for {£3(n)}5°, note from (8.3) that for all n > 1,
[€3(n)] < K(1+ X(n + 1))|n(n+ 1) —n(n)], (8-24)
whereas the recursion (3.3) implies
[n(n+1) = n(n)| < eV - r(X(n + 1))].
Consequently, the relation

[€3(n)| < K(V +1)an(l+ X(n+ 1)) (1+7(X(n+ 1)) (8.25)
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holds, and (8.21) again implies
liTm |€s(n)| =0 P® — a.5.(8.26)

or equivalently,

lim sup  |&3(k)| =0 P® — a.5.(8.27)
nfoo n<k<m(n,T)

m(n T)

for every T > 0. From the fact Z a; < T, it now follows that

m(n,T)

sup |Za1§3 (¢)| < Z a;|é3(?)| < T( sup 1€3 (%))

n<k<m(n,T) ; ie=n n<k<m(n,T)
and the convergence
lim( sup | Z a;és(7) P% — ¢.5.(8.28)
nT°° n<k<m(n,T) ;
immediately obtains from (8.27). This completes the proof of Theorem 7.1. 1

9. Some remarks

At this point, the reader may wonder whether knowledge of the threshold value L can be
relaxed and whether a similar Stochastic Approximations algorithm can be used to generate
a sequence of estimates for the threshold value L? One possible approach would consist in
generating the estimates {L(n)}§° for the threshold value L via a scheme which parallels to

(3.3): First generate a sequence {A(n)}$° of IR, -valued RV’s through the recursion
Aln+1) = [A(n) + an(V = r(X(n+1)))] " n=0,1,-(9.1)

with A(0) > 0, where the notation [z]* = OV z is used for all z in IR. The estimate L(n)
is then given by L(n):= |A(n)], i.e., the so-called integer part of A(n). An adaptive policy
a can then be generated accordingly via the Certainty Equivalence principle. The threshold
control being integer-valued, whenever the RV A(n) moves across the boundary of an integer,
a certain amount of discontinuity incurs on the corresponding transition probabilities. In
constrast with the case studied in previous sections, this fact prevents from establishing some

Lipschitz properties associated with the RV’s {A(n)}&°, as the ones given in Lemma 8.1, and
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the argument presented in Sections 7-8 thus collapes in this case. This discontinuity also
precludes a direct use of weak convergence results [4].

This points out to a class of situations where on-line estimates for integer-valued quantities
need to be generated. New techniques seem required to handle such problems, and research
along these lines would be of interest from both theoretical and practical standpoints since

integer-valued controls often occur in the control of queues.
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