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ABSTRACT

In this paper, we analyze the computational complexity of the so-called Constrained

Via Minimization problem. Given an already routed circuit, the problem is to find a
minimum cardinality set of vias for which a valid layer assignment exists using only two
layers. We first prove that the corresponding decision problem is NP-complete . We then
show that it remains NP-complete even if one or more of the following restrictions are
imposed.

1) The input layout must conform to a rectangular grid.

2) Vias are restricted to lie at junctions which existed in the input layout.

3) The maximum junction degree is limited to six or more.






1. Introduction

During integrated circuit fabrication, interconnections between circuit modules are formed
by patterning conductive paths from one of two or more conductive layers. Because the
layers are separated by a thin insulator, it is necessary to etch holes, called vias, through
the insulator in order to electrically connect paths on different layers. Minimizing the
number of these vias increases the performance of the electrical circuit and the yield of
the manufacturing process and decreases the amount of area required for interconnections.
In the design of printed circuit boards, copper paths are patterned on two sides of an
insulating board. In order to electrically connect paths on opposite sides of the board,
contact holes must be drilled through the insulator and plated with solder. Minimizing the
number of contact holes, which we will henceforth refer to as vias, decreases manufacturing
cost and increases the reliability of the board.

We will refer to the region of the chip or board which is available for routing as
the routing area. We will call the interface points on the circuit modules terminals and
the line segments which make up the conducting paths routing segments. We will assume
that each roufing segment can be assigned to one of only two layers. A net is a group of
terminals which must be connected together electrically and a netlist is a set of nets. The
points other than terminals where two or more routing segments meet and are electrically
connected will be called junctions. A via is required at a junction if routing segments from
two different layers are to be joined. The number of routing segments which meet at a
particular junction will be referred to as the junction degree. A crossing is a point where
two routing segments which are not electrically connected intersect. A layer assignment
is valid if no two routing segments that cross are assigned to the same layer and no two
routing segments that form a junction without a via are assigned to different layers.

A routing problem consists of a routing area, a set of modules with terminals on them,
and a netlist. A complete routing solution consists of a set of routing segments, a set of

vias, and a valid layer assignment which correctly realizes the interconnection requirements



specified by the netlist. An example is shown in Figure 1. A partial routing solution is a set
of routing segments for which a complete routing solution exists. Throughout this paper,
we will use the term “layout” rather loosely to mean any collection of routing segments
and vias. We say that a layout is grid based if all of its routing segments are parallel to
one of two perpendicular axes.

The Unconstrained Via Minimization problem(UVM) is defined as follows:

(UVM) Given a routing problem P, find a complete routing solution for P which re-
quires the fewest number of vias.

Several authors [10,12] have obtained results for a very restricted version of this problem
which places all of the terminals on the boundary of the routing area and does not allow
any modules inside the routing area. Although Marek-Sadowska [12] claimed that this
problem is NP-hardt, she failed to show a convincing proof.

The Constrained Via Minimization problem(CVM) is defined as follows:

(CVM) Given a partial routing solution T for a particular routing problem P, find a
complete routing solution for P which includes T and a minimum cardinality
set of vias.

Unlike UVM, in CVM minimizing the number of vias is a secondary consideration since
the placement of the routing segments has already been determined by some other method.
This allows more important criteria such as area or path length to be given preference. It
should be noted that the true minimality of a CVM solution depends somewhat on what
are considered possible locations for vias. We will refer to the sites considered for vias as
via candidates.

Hashimoto and Stevens [9] first suggested the CVM problem in 1971. Their problem
was thought to be NP-hard for nearly a decade, leading other researchers to develop
heuristic algorithms [16] or use integer programming with branch and bound techniques
to obtain an optimum solution {4]. In 1980, Kajitani [11] showed that the problem can

be solved in polynomial time when the layout is restricted to be grid based and all nets

t See [8] for complete definitions of NP-completeness and NP-hardness.



contain exactly two terminals. This encouraged other researchers to look for a polynomial
time solution for the more general case. In 1982, Pinter [15] obtained optimum results for
the case when the maximum junction degree is limited to three, but his algorithm can not
be applied to layouts which contain junctions with higher degree.

It should be noted that in the general case, a layout may contain junctions of any
degree, but in the case of grid based layouts only eight wires can be joined at a single
point. However, in order to obtain a more globally optimum solution for a grid based
layout, it is desirable to merge adjacent junctions into a special type of junction, called a
via candidate zone, as explained in [2]. Since these via candidate zones can have arbitrarily
large degree, it is important to develop algorithms which do not place restrictions on the
maximum junction degree.

In 1983, Chen, Kajitani, and Chan [2] presented a polynomial time algorithm for
grid based layouts which gives optimum results when the maximum junction degree is
limited to three and approximate results otherwise. However, they restrict vias to lie at
junctions which existed in the original layout. This precludes the placement of a via on
any straight line segment where one did not exist before and thus limits the optimality
of their result. Recently, Chang and Du [1] developed a heuristic algorithm which can
handle junctions of any degree, but which does not guarantee optimum results for any
case. More recently, Naclerio, Masuda, and Nakajima [14] developed an algorithm which
has the same time complexity as Chen, et al. 2], but does not require that the layout
be grid based or restrict the location of vias. Their algorithm also yields optimum results
when the maximum junction degree is limited to three and good results for any other case.

In this paper, we will show for the first time that without restrictions on the maxi-
mum junction degree, the Constrained Via Minimization problem is NP-hard. For clarity,
we begin by showing a polynomial transformation from the NP-complete Planar Vertex
Cover problem (7] to the general CVM problem described in Naclerio, et al. [14]. We
then refine our method to show a transformation from a restricted version of the Planar

Vertex Cover problem [6] to the restricted version of CVM described in Chen, et al. [2].



In this manner we prove that CVM is NP-hard even when one or more of the following
restrictions are made.

1) The input layout must be grid based.

2) Only junctions in the input layout are considered via candidates.

3) The maximum junction degree is limited to six or more.
This leaves open only the cases when the maximum junction degree is limited to four or

five for the problems described in [14] and [2].

2. The General CVM Problem

Let us begin by considering the general CVM problem. In this case, the partial routing
solution for a given instance is not required to be grid based and may take any form.
There are no restrictions on the choice of via candidates, or on the maximum junction
degree. The decision problem to be considered is defined as follows:
(evm) Given a partial routing solution T and a positive integer k, does there exist a
complete routing solution which requires k or fewer vias?
Note that k may be bounded by |T|?, where |T| is the number of routing segments
in T, since more than one via along any conductive path between any two crossings
is never required. Thus, a solution with k or fewer vias could easily be guessed non-
deterministically in polynomial time. Since it is easy to test if that solution is valid,
we know that cvm € NP. In order to show that the problem is NP-complete , we will
show a polynomial transformation from the Planar Vertex Cover problem(PVC) {7] whose
decision problém is defined as follows:
(pve) Given a planar graph G = (N, E) and a positive integer k, does there exist a
vertex cover N’ for G satisfying IN’| < k?
A vertez cover for a graph G = (N,E) is a subset N' C N such that for each edge
(niyn;) € E, n; € N' or nj € N'. The pvc problem was shown to be NP-complete in
Theorem 2.7 of [7].



In order to construct the transformation, we will use the sublayout H shown in
Figure 2. Note that H requires at least one via if it is to be realized using only two layers.
If that via is placed at either the junction labeled v, or the junction labeled v;, then a

valid layer assignment will exist for H.

Lemma 1. If we create a layout L by joining one or more non-overlapping sublayouts
identical to H together at either v, or v, and replacing either v, or v: from each of the

H’s with a via, then L will have a valid layer assignment.

Proof: We will define an independent sublayout I as a portion of a layout whose routing
segments intersect routing segments not belonging to I only at vias. Because of this
property, routing segments within a particular independent sublayout I can be assigned to
layers without considering the layer assignment of any segments which do not belong to I.
Any layout L constructed in the manner described above can be partitioned into two types
of independent sublayouts which are shown in Figures 3 and 4. The independent sublayouts
of Type 1 consist of a single H and have a via at both v, and v;. The independent
sublayouts of Type 2 are made up of one or more H’s joined at a single junction j and
have a via at whichever of v, or v; is not coincident with 5. As shown in Figures 3 and 4,
valid layer assignments exist for both types of independent sublayouts. Since L is made
up of only two types of independent sublayouts and both types of independent sublayouts
have valid layer assignments, we know that the entire layout has a valid layer assignment.

We are now ready to construct a polynomial transformation from pve to cvm. Given
an instance of pvc consisting of a planar graph G = (N, E) and a positive integer k, we
will generate an instance of cum consisting of a partial routing solution T and the same
integer k. Let G be a planar embedding of the graph G such that every edge is a straight
line segment and no two edges intersect, except at their endpoints. We will call such an
embedding a straight line planar embedding. There are several well known algorithms for

obtaining a planar embedding of a graph in polynomial time (for example [3]). Fary [5]



showed that any such embedding can be converted to a straight line planar embedding in
polynomial time. We will form a small region around each edge (s,t) in G in such a manner
that no two regions overlap. This will always be possible since no two edges intersect in
the planar embedding. Next, we will replace each edge (s,t) with a sublayout H in such a
manner that H is completely within the region surrounding the edge (s,t) and that v, and
v coincide with s and t, respectively. We call the resulting partial routing solution Tg.
Figure 5 shows a straight line embedding for a graph G, and the partial routing solution
T, obtained from it.

Assume that G has a vertex cover N; such that | N;| < k. By definition, N; must
include at least one endpoint from each edge in E. Let V; be the set of vias which is made
up of exactly the junctions that correspond to the vertices in N;. V; will include either
v, or v; (or both) from every H and |V;| = | N;|. Thus, by Lemma 1, V; is a set of vias
of size k or less for which a valid layer assignment for Tq exists.

Now assume that there is a set of vias V3, of size k or less, for T for which a valid
layer assignment exists. From our discussion, we know that V2 must include at least one
via located in every H. Although there are no restrictions in cvm on the location of
vias, we will assume that all vias are placed at junctions which originally corresponded
to either v, or v; for some H. This does not affect the generality of the solution, since
a via placed elsewhere could easily be moved to either v, or v, in the same H without
increasing the total number of vias or affecting the existence of a valid layer assignment.
Since the sublayouts overlap only at v, and v;, there would be no reason to place a via
elsewhere. Thus, V; will include at least one via placed at either v, or v; (or both) for
each H. Let N5 be the set of vertices which correspond to the vias in V,. N, will include
at least one endpoint of every edge in E and thus constitutes a vertex cover for G with
INa|l = IVal L k.

Since the transformation from pvec on G and k to cvm on Tg and k described above
only requires replacing each edge in the straight line planar embedding of G with the
sublayout H, it can easily be accomplished in polynomial time with respect to the size of

the input. Thus, we have the following theorem:



Theorem 1. cvm is NP-complete . .

3. The Restricted CVM Problem

In this section, we show that the decision problem associated with the restricted version
of the CVM problem described by Chen, et al. [2] with the further restriction that the
maximum junction degree be limited to six is NP-complete. This result will then be
extended to show that for any combination of the restrictions ennumerated below, the
problem remains NP-complete.

1) The input layout must be grid based.

2) Only junctions in the input layout are considered via candidates.

3) The maximum junction degree is limited to six or more.

We will distinguish between the various decision problems by using a single subscript
to denote the maximum junction degree allowed for an instance and superscripts to denote
any other restrictions imposed. Thus, we will denote the most restricted decision problem
as cvrny'® which is defined as follows:

(cvm}?) Given a grid based partial routing solution T with no junction having degree
exceeding six and a positive integer k, does there exist a complete routing
solution such that k or fewer vias are required and they are all located at
junctions which existed in T'?

By the same reasoning that was used for cum, we know that cvmg? € NP. In order

to prove that it is also NP-complete, we will show a polynomial transformation from a

restricted version of the Planar Vertex Cover problem which is described below.

(pvesz) Given a planar graph G = (N, E) with no vertex having degree greater than
three and a positive integer k, does there exist a vertex cover N’ for G satisfying
IN'| <k?

pvca was shown to be NP-complete in Lemma 1 of [6].



Suppose we have a planar graph G = (N, E) and a positive integer k as an instance
of pvcz. We will generate an instance of cvmé'2 consisting of a partial routing solution T
and the same integer k. In order to accomplish this, we will first embed the graph G on a
planar rectangular grid. Tamassia [17] recently presented a polynomial time algorithm to
do this which generates O(IT|) straight line segments. We will denote such a planar grid
embedding of G by G. We then proceed in a manner similar to that used in the previous
section using a sublayout H* shown in Figure 6. H"* also requires at least one via if it
is to have a valid layer assignment. Because H* is topologically equivalent to H, Lemma
1 will hold for H*. We will replace each edge (s,t) in G with an H* in such a manner
that v and v} coincide with s and ¢, respectively, to obtain the partial routing solution
TZ. This is done by replacing the first vertical or horizontal segment of each edge with
the portion of H* nearest v; and then adapting the remaining portion to follow the rest
of the line segments which make up the edge. If the H*’s are sufficiently narrow, then no
two H*’s will intersect except at v, or v;. Figure 7 shows a planar grid embedding Ga
of G, and the corresponding partial routing solution T;_. Since no vertex in G can have
degree exceeding three and the junctions v; and v} in H* have degree two, no junction in
T will have degree exceeding six.

Assume that G has a vertex cover N; such that | N;| < k. Let V; be defined as the
set of junctions in T which correspond to the vertices in N;. We can show using Lemma
1 that if the junctions in V; are made vias, then a complete routing solution is obtained
for T which requires k or fewer vias.

Now assume that there is a set of k or fewer vias V, which are all located at previously
existing junctions in T and for which a valid layer assignment exists. We know that V>
must include at least one via located in every H*. Furthermore, we can assume that all
of the vias are placed at junctions corresponding to either v; or v} since a via placed at a
junction corresponding to v} in some H*, can be moved to either v, or v; in the same H".
Thus, V2 will include at least one via placed at either v} or v; (or both) for each H. Let
N, be the set of vertices which correspond to the vias in V,. Using the same argument as

in the proof of Theorem 1, N will be a vertex cover for G with k or fewer vertices.



As mentioned earlier, we can construct, in polynomial time, a planar grid embedding
G of G which has O(IT) straight line segments [17]. We then generate T¢ by replacing
each line segment with a portion of the sublayout H*. Thus, the entire transformation

can be accomplished in polynomial time and we have the following theorem:

Theorem 2. cvmm? is NP-complete . .

It should be noted that the proof of this theorem does not have to take advantage
of restriction 2 on via location. In fact, as stated in the proof of Theorem 1, vias placed
anywhere can always be moved to either v} or v; in any H* without affecting the results.

Thus, the NP-completeness result will hold without restriction 2 and we have:

Theorem 3. cvm] is NP-complete . n

Because restrictions 1 and 3 affect only the class of valid instances for the cvm
problem, relaxing either or both of these constraints does not affect our NP-completeness

2 1,2

results. Thus, it follows from Theorem 2 that cvmi, cvm* 2

; are all NP-complete

, and cum
for any j greater than six. From Theorem 3, we can also deduce that cvm}, cvmg, and

cum; are also NP-complete for all j greater than six. Thus, we have our strongest theorem.

Theorem 4. The cvm problem is NP-complete given one or more of the following restric-
tions:

1) The input layout must be grid based.

2) Only junctions in the input layout are considered via candidates.

3) The maximum junction degree is limited to six or more.

4. Conclusion

In this paper, we have shown that the general Constrained Via Minimization decision

problem is NP-complete. We have also shown that this result holds when the input layout



is constrained to lie on a rectangular grid and /or when vias are restricted to lie at junctions
which existed in the input layout. In addition, our result holds when the maximum junction
degree is limited to six or more with or without any of the other constraints listed earlier.

Recently, Naclerio, et al. [14] have obtained a polynomial time algorithm for the
general CVM problem when the maximum junction degree is limited to three. This leaves
open only the cases when the maximum junction degree is limited to four or five. It may
also be interesting to consider the case when junction degree is not bounded and all of
the terminals are constrained to lie on the closed curve which bounds the routing area.
In this case, the construction we used cannot be applied and it is not known whether a
polynomial time algorithm may exist. This case is of interest because it includes many of
the common classes of routing problems such as channel and switchbox routing.

A natural extension of the CVM problem is to consider layouts which use more
than two layers. Unfortunately, Molitor {13] has recently shown that the Constrained Via
Minimization problem for ! layer routing is NP-hard for all fixed | > 3 when the maximum
junction degree is limited to four or more. This leaves open exactly the same cases that

have known polynomial time algorithms for two layer routing.
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