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Abstract.

Symplectic Runge-Kutta schemes for integration of general Hamiltonian systems are

implicit. In practice the implicit equations are often approximately solved based on

the Contraction Mapping Principle, in which case the resulting integration scheme

is no longer symplectic. In this note we prove that, under suitable conditions, the

integration scheme based on an n-step successive approximation is O(δn+2) away from

a symplectic scheme with δ ∈ (0, 1). Therefore, this scheme is “almost” symplectic

when n is large.
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1 Introduction.

Geometric integration methods, numerical methods that preserve geometric

properties of the flow of a differential equation, outperform the off-the-shelf

schemes (e.g., fourth order explicit Runge-Kutta method) in predicting the long-

term qualitative behaviors of the original system [5]. An important class of geo-

metric integrators are symplectic integration methods for Hamiltonian systems

[9]. Consider a Hamiltonian system{
ṗ(t) = −∂H(p,q)

∂q

q̇(t) = ∂H(p,q)
∂p

,(1.1)

with the Hamiltonian H(p, q), where (p, q) ∈ R
d × Q for some integer d ≥ 1,

and Q, the configuration space, is some d-dimensional manifold. For ease of
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discussion, in this note we assume Q = R
d, but the results we present here

apply to the case of a general Q directly. Let z = (p, q), the system (1.1) can be

rewritten as:

ż(t) = f(z(t))
�
= J∇zH(z(t)),(1.2)

where

J =
[

0 −Id

Id 0

]
,

Id denotes the d-dimensional identity matrix, and ∇z stands for the gradient

with respect to z.

When the Hamiltonian has a seperable structure, i.e., H(q, p) = T (p) + V (q),

explicit Runge-Kutta type algorithms exist which preserve the symplectic struc-

ture [4, 11, 3, 7]. However, this is not the case for general Hamiltonian systems.

An s-stage Runge-Kutta method to integrate (1.2) is as follows [6]:{
yi = z0 + τ

∑s
j=1 aijf(yj), i = 1, · · · , s

z1 = z0 + τ
∑s

i=1 bif(yi)
,(1.3)

where τ is the time step, z0 is the initial value at time t0, z1 is the numerical

solution at time t0 + τ , aij , bi are appropriate coefficients satisfying the order

conditions of the Runge-Kutta method.

Let Ψτ be the one time-step flow associated with the algorithm (1.3), i.e.,

z1 = Ψτ (z0). From [8], the transformation Ψτ preserves the symplecticness of

the original system (1.2) if

biaij + bjaji − bibj = 0, i, j = 1, · · · , s.(1.4)

Thus if (1.4) is satisfied, we have:

(
∂Ψτ

∂z0
)T J(

∂Ψτ

∂z0
) − J = 0,(1.5)

where T denotes the transpose. The condition (1.4) forces the symplectic Runge-

Kutta method (1.3) to be implicit. In the interest of computation efficiency,

Aubry and Chartier investigated pseudo-symplectic Runge-Kutta methods, which

are explicit and conserve the symplectic structure to a certain order [1]. We also

note the closely related work in [2], where the error estimate for the Lie-Poisson

structure is established for integration of Lie-Poisson systems using the mid-

point rule.
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In this note, we take a different approach from [1]. Successive approximation

based upon the Contraction Mapping Principle is often used to obtain an ap-

proximate solution to yi in (1.3). The resulting integration scheme based on the

approximation is no longer symplectic. It’s of interest to investigate, to what

extent, the symplectic structure (1.5) is preserved by the approximation scheme.

The rest of this note is devoted to answering this question, and it turns out that

the scheme using an n-step approximation is O(δn+2) away from a symplectic

one with 0 < δ < 1. Therefore, when n is large enough, the approximation

scheme is “almost” symplectic.

2 A successive approximation method.

Denote

y
�
=




y1

...
ys


 , F(y)

�
=




f(y1)
...
f(ys)


 ,

b = (b1, · · · , bs), A0 = [aij ], and A = A0⊗I2d, where “⊗” denotes the Kronecker

(tensor) product. We recall for two matrices M = [mij ] and R = [rij ], the

Kronecker product

M ⊗ R =




m11R m12R · · ·
m21R m22R · · ·

...
...

...


 .

The algorithm (1.3) can now be written as{
y = G(z0,y)

�
= 1⊗ z0 + τAF(y)

z1 = z0 + τb ⊗ I2dF(y)
,(2.1)

where 1 is an s-dimensional column vector with 1 in every entry.

As noted in Section 1, when (1.4) is satisfied, the first equation in (2.1) is

implicit for each fixed z0. One algorithm often used to solve implicit equations,

is the successive approximation scheme based on the Contraction Mapping Prin-

ciple (see, e.g., [10]):

Lemma 2.1 (Contraction Mapping Principle). Let S be a closed subset

of a Banach space X and let ϕ be a mapping that maps S into S. If ∃ρ ∈ (0, 1),

such that

‖ϕ(x) − ϕ(y)‖ ≤ ρ‖x − y‖, ∀x, y ∈ S,
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then

1. there exists a unique x∗ ∈ S satisfying x∗ = ϕ(x∗);

2. x∗ can be obtained by the method of successive approximation

x[n+1] = ϕ(x[n]),

starting from an arbitrary x[0] in S; and

3. the approximation error satisfies ‖x[n] − x∗‖ ≤ ρn‖x[0] − x∗‖.

In this note we will use ‖ · ‖ to denote the norm (or the induced norm) of a

vector, matrix, or high order tensors, and the precise meaning should be clear

from the context. The following proposition shows that when the step size τ is

small enough, for each fixed z0, the first equation in (2.1) has a unique solution

y∗:

Proposition 2.2. Let Ω ⊂ R
2d be a bounded open set. Let f be locally

Lipschitz continuous. Then for any δ ∈ (0, 1), ε > 0, there exists τ(Ω, ε, δ) > 0

dependent on Ω, ε and δ, such that, ∀τ ≤ τ(Ω, ε, δ), ∀z0 ∈ Ω,

1. there exists a unique solution y∗ = y∗(z0) for the first equation in (2.1);

2. y∗ can be approximated by successive approximation{
y[n] = G(z0,y[n−1])
y[0] = 1⊗ z0

;(2.2)

and

3. ‖y[n] − y∗‖ ≤ δn‖y[0] − y∗‖.

Proof. Denote N(Ω, ε) the ε−neighbourhood of Ω, defined as

N(Ω, ε)
�
= {z ∈ R

2d : min
z0∈Ω̄

‖z − z0‖ ≤ ε},

where Ω̄ denotes the closure of Ω. Denote Ns(Ω, ε) the product of s copies of

N(Ω, ε), i.e.,

Ns(Ω, ε) = N(Ω, ε) × · · · × N(Ω, ε).

Since N(Ω, ε) is compact, f is bounded and Lipschitz continuous with some

Lipschitz constant Lf on N(Ω, ε). Thus there exists τ1 > 0, such that when

τ ≤ τ1, for each fixed z0 ∈ Ω, G(z0, ·) maps Ns(Ω, ε) into itself.
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For any z0 ∈ Ω, for y,y′ ∈ Ns(Ω, ε), by the definition of G,

‖G(z0,y) − G(z0,y′)‖ = ‖τA




f(y1) − f(y′
1)

...
f(ys) − f(y′

s)


 ‖

≤ τLf‖A‖ ‖y − y′‖.

For δ ∈ (0, 1), let τ2 = δ
Lf‖A‖ . Now for τ ≤ τ(Ω, ε, δ)

�
= min{τ1, τ2}, G(z0, ·) is

a contraction mapping for each fixed z0 ∈ Ω. All the claims then follow from

Lemma 2.1. Note that τ(Ω, ε, δ) depends on Ω, ε and δ.

Similarly we can prove:

Proposition 2.3. Let f be globally bounded and Lipschitz continuous. Then

for any δ ∈ (0, 1), there exists τ(δ) > 0 dependent on δ only, such that, ∀τ ≤
τ(δ), for each fixed z0 ∈ R

2d, G(z0, ·) is a contraction mapping and the claims

in Proposition 2.2 hold.

Remark 2.1. Traditionally implicit Runge-Kutta methods have been used

mostly for stiff problems, where the Lipschitz constant for f is relatively large and

the convergence of successive approximation based on the Contraction Mapping

Principle is slow. However, in the new context of symplectic integration, we are

dealing with implicit methods even for nonstiff problems. Hence the successive

approximation plays an important role in solving the implicit equations.

As we see from Proposition 2.2, when τ is sufficiently small, the solution y∗

to the first equation in (2.1) is a function of z0, and we can write it as y∗(z0).

If f is differentiable, we have from the Implicit Function Theorem that

∂y∗

∂z0
(z0) = [I2sd − τA

∂F
∂y

(y∗(z0))]−1(1⊗ I2d).(2.3)

3 Main result.

An explicit but approximate algorithm to solve (2.1) is as follows: for some

n ≥ 0, 


y[k] = G(z0,y[k−1]), k = 1, · · · , n
y[0] = 1⊗ z0

z
[n]
1 = z0 + τb ⊗ I2dF(y[n])

.(3.1)

Remark 3.1. The scheme (3.1) based on n−step successive approximation (to

y∗) is essentially an s(n+1)-stage explicit Runge-Kutta scheme with coefficients
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Ã and b̃, where

Ã =




0
1 0

. . . . . .
1 0


 ⊗ A0, b̃ = (0, · · · , 0, b1, · · · , bs).

Note that in (2.1) and (3.1), y∗, {y[k]}n
k=0, z1 and z

[n]
1 (and smooth functions

of them) are all continuously differentiable functions of z0 if f is differentiable

and τ is sufficiently small. In the sequel when we write, e.g., ∂y∗

∂z0
or ∂

∂z0
F(y[n]),

we think of y∗ or F(y[n]) as a function of z0 although it is not explicitly written

out.

Denote by Ψ[n]
τ the one time-step flow associated with the algorithm (3.1), i.e.,

z
[n]
1 = Ψ[n]

τ (z0). We now want to study how far Ψ[n]
τ is away from a symplectic

transformation. The following lemma will be essential in the proof of our main

result Theorem 3.3:

Lemma 3.1. Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0, let

N(Ω, ε) be the ε-neighbourhood of Ω, as defined in the proof of Proposition 2.2.

Assume that f is twice continuously differentiable on N(Ω, ε). Then for any

δ ∈ (0, 1), there exists τ(Ω, ε, δ) > 0 dependent on Ω, ε and δ, such that when

τ ≤ τ(Ω, ε, δ), for each fixed z0 ∈ Ω, the first equations in (2.1) and (3.1) have

(unique) solutions y∗ ∈ Ns(Ω, ε) and y[n] ∈ Ns(Ω, ε), respectively; and

‖∂y[n]

∂z0
− ∂y∗

∂z0
‖ ≤ C(Ω, ε)δn+1,(3.2)

‖ ∂

∂z0
(F(y[n]) − F(y∗))‖ ≤ C′(Ω, ε)δn+1,(3.3)

where C(Ω, ε), C′(Ω, ε) > 0 are constants dependent only on Ω and ε.

Proof. Since f is differentiable, it is Lipschitz continuous on the convex set

N(Ω, ε). By Proposition 2.2, there exists τ1(Ω, ε, δ) > 0, such that when τ ≤
τ1(Ω, ε, δ), for any z0 ∈ Ω, G(z0, ·) is a contraction mapping, y∗,y[k] ∈ Ns(Ω, ε),

∀k ≥ 0, and (recall (2.3))

‖∂y∗

∂z0
‖ ≤ C1(Ω, ε),(3.4)

‖∂y[0]

∂z0
− ∂y∗

∂z0
‖ = ‖τA

∂F
∂y

(y∗)
∂y∗

∂z0
‖ ≤ τC2(Ω, ε),(3.5)
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where Ci(Ω, ε) > 0, i = 1, 2, are constants dependent on Ω, ε.

From (2.1) and (3.1),

y[n] − y∗ = τA(F(y[n−1]) − F(y∗)).(3.6)

Taking derivative of both sides of (3.6) with respect to z0 and re-arranging terms,

we get

∂y[n]

∂z0
− ∂y∗

∂z0
(3.7)

= τA[
∂F
∂y

(y[n−1])(
∂y[n−1]

∂z0
− ∂y∗

∂z0
) + (

∂F
∂y

(y[n−1]) − ∂F
∂y

(y∗))
∂y∗

∂z0
].

Denoting

Θ[k] �
= τA

∂F
∂y

(y[k]), Γ[k] �
= τA(

∂F
∂y

(y[k]) − ∂F
∂y

(y∗))
∂y∗

∂z0
,

we derive from (3.7)

∂y[n]

∂z0
− ∂y∗

∂z0
= (

n−1∏
k=0

Θ[k])(
∂y[0]

∂z0
− ∂y∗

∂z0
) +

n−1∑
k=0

(
n−1∏

i=k+1

Θ[i])Γ[k],

which implies

‖∂y[n]

∂z0
− ∂y∗

∂z0
‖ ≤ (

n−1∏
k=0

‖Θ[k]‖)‖∂y[0]

∂z0
− ∂y∗

∂z0
‖ +

n−1∑
k=0

(
n−1∏

i=k+1

‖Θ[i]‖)‖Γ[k]‖.(3.8)

The following two observations are in order:

1.

‖Θ[k]‖ ≤ τ‖A‖ max
y∈Ns(Ω,ε)

‖∂F
∂y

(y)‖ ≤ τC3(Ω, ε),(3.9)

where C3(Ω, ε) > 0 is a constant dependent only on Ω and ε.

2. When τ ≤ τ1(Ω, ε, δ),

‖∂F
∂y

(y[k]) − ∂F
∂y

(y∗)‖ ≤ max
y∈Ns(Ω,ε)

‖∂2F
∂y2

(y)‖ ‖y[k] − y∗‖(3.10)

≤ C4(Ω, ε)δk‖y[0] − y∗‖,

where C4(Ω, ε) > 0 is a constant dependent only on Ω and ε. Combining

(3.4) and (3.10), and using

‖y[0] − y∗‖ ≤ τ‖A‖ max
y∈Ns(Ω,ε)

‖F(y)‖,(3.11)
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we have

‖Γ[k]‖ ≤ τ2δkC5(Ω, ε),(3.12)

for some constant C5(Ω, ε) > 0.

Pluggin (3.5), (3.9) and (3.12) into (3.8), we obtain after some manipulations

‖∂y[n]

∂z0
− ∂y∗

∂z0
‖ ≤ τC2(Ω, ε)(τC3(Ω, ε))n +

τ2δn−1C5(Ω, ε)

1 − τC3(Ω,ε)
δ

.

We now let τ2(Ω, ε, δ)
�
= δ

2C3(Ω,ε) , and let

τ(Ω, ε, δ) = min{τ1(Ω, ε, δ), τ2(Ω, ε, δ)}.

It’s easy to verify that, ∀τ ≤ τ(Ω, ε, δ),

‖∂y[n]

∂z0
− ∂y∗

∂z0
‖ ≤ C(Ω, ε)δn+1,

where C(Ω, ε)
�
= C2(Ω,ε)

2C3(Ω,ε) + C5(Ω,ε)
2C2

3(Ω,ε)
. This proves (3.2).

To show (3.3), we note that

∂

∂z0
(F(y[n]) − F(y∗)) =

∂F
∂y

(y[n])(
∂y[n]

∂z0
− ∂y∗

∂z0
) + (

∂F
∂y

(y[n]) − ∂F
∂y

(y∗))
∂y∗

∂z0
,

and then use (3.2), (3.4), (3.10) and (3.11).

Similarly we can prove:

Lemma 3.2. Let f be globally bounded and twice continuously differentiable,

with bounded first order and second order derivatives. Then for any δ ∈ (0, 1),

there exists τ(δ) > 0 dependent on δ only, such that when τ ≤ τ(δ), for each

fixed z0 ∈ R
2d, the first equations in (2.1) and (3.1) have (unique) solutions y∗

and y[n], respectively; and

‖∂y[n]

∂z0
− ∂y∗

∂z0
‖ ≤ Cδn+1,(3.13)

‖ ∂

∂z0
(F(y[n]) − F(y∗))‖ ≤ C′δn+1,(3.14)

for some constants C, C′ > 0.

We are now ready to present the main result of this note:

Theorem 3.3. Let Ω ⊂ R
2d be bounded, convex and open. For ε > 0,

let N(Ω, ε) be the ε-neighbourhood of Ω. Assume that f is twice continuously
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differentiable on N(Ω, ε). Consider the algorithm (3.1) and let Ψ[n]
τ be the one

time-step flow associated with (3.1). Let (1.4) be satisfied. Then for any δ ∈
(0, 1), there exists τ(Ω, ε, δ) > 0 dependent on Ω, ε and δ, such that when τ ≤
τ(Ω, ε, δ),

‖(∂Ψ[n]
τ (z0)
∂z0

)T J(
∂Ψ[n]

τ (z0)
∂z0

) − J‖ ≤ C(Ω, ε)δn+2, ∀z0 ∈ Ω,(3.15)

where C(Ω, ε) is a constant dependent on Ω and ε.

Proof. By Lemma 3.1, we can find τ(Ω, ε, δ) > 0, such that when τ ≤
τ(Ω, ε, δ),

‖ ∂

∂z0
(F(y[n]) − F(y∗))‖ ≤ C1(Ω, ε)δn+1,(3.16)

for some constant C1(Ω, ε), where y∗ and y[n] are solutions to the first equations

in (2.1) and (3.1), respectively. Let Ψτ be the one time-step flow associated with

(2.1). From (2.1) and (3.1), we have

Λ[n](z0)
�
= Ψ[n]

τ (z0) − Ψτ (z0) = τb ⊗ I2d(F(y[n]) − F(y∗)),

which, by (3.16) and the definition of τ(Ω, ε, δ) in the proof of Lemma 3.1, implies

‖∂Λ[n](z0)
∂z0

‖ ≤ C2(Ω, ε)δn+2, ∀z0 ∈ Ω,(3.17)

where the constant C2(Ω, ε) depends only on Ω and ε. We now write

‖(∂Ψ[n]
τ (z0)
∂z0

)T J(
∂Ψ[n]

τ (z0)
∂z0

) − J‖(3.18)

= ‖(∂Λ[n](z0)
∂z0

+
∂Ψτ(z0)

∂z0
)T J(

∂Λ[n](z0)
∂z0

+
∂Ψτ (z0)

∂z0
) − J‖

≤ ‖(∂Λ[n](z0)
∂z0

)T J(
∂Λ[n](z0)

∂z0
)‖ + ‖(∂Λ[n](z0)

∂z0
)T J(

∂Ψτ (z0)
∂z0

)‖

+‖(∂Ψτ(z0)
∂z0

)T J(
∂Λ[n](z0)

∂z0
)‖ + ‖(∂Ψτ(z0)

∂z0
)T J(

∂Ψτ (z0)
∂z0

) − J‖,

where the last term vanishes when (1.4) is satisfied.

Finally, we note that

‖∂Ψτ(z0)
∂z0

‖ = ‖I2d + τb ⊗ I2d
∂F
∂y

(y∗)
∂y∗

∂z0
‖ ≤ C3(Ω, ε)(3.19)

for some constant C3(Ω, ε) > 0, where (3.4) is used. Combining (3.17), (3.18),

and (3.19) yields (3.15).
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A global version of Theorem 3.3 can be proved analogously:

Theorem 3.4. Let f be bounded and twice continuously differentiable, with

bounded first order and second order derivatives. Consider the algorithm (3.1)

and let Ψ[n]
τ be the one time-step flow associated with (3.1). Let (1.4) be satisfied.

Then for any δ ∈ (0, 1), there exists τ(δ) > 0 dependent only on δ, such that

when τ ≤ τ(δ),

‖(∂Ψ[n]
τ (z0)
∂z0

)T J(
∂Ψ[n]

τ (z0)
∂z0

) − J‖ ≤ Cδn+2, ∀z0 ∈ R
2d,(3.20)

for some constant C > 0.
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