
 

 

 

ABSTRACT 
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We report on the generation and characterization of submillimetric Argon gas jets 

with peak density higher than 1021 atoms/cm3 from capillary nozzles of varying throat 

diameter in the range of 50-450 µm. The use of gas jet targets to generate a suitably dense, 

reliable, and reproducible interaction medium is particularly important in the broad field of 

laser-plasma interactions, in areas such as high energy density physics (HEDP), plasma 

waveguides, electron/ion acceleration and x-ray generation.  



 

 

Here, it is essential to place those targets in the laser focus with subwavelength 

accuracy and have control over the gas flow using a sonic or supersonic nozzle to provide the 

desired interaction density. The use of a sonic or supersonic gas flow provides a Gaussian 

like or plateau neutral density profile. By changing the gas pressure and temperature, one 

can change the initial neutral density and by using a combination of gases, one can obtain 

plasmas with multiple ions species, which is needed to localize electrons injection for 

innovative laser-plasma accelerator schemes. In this thesis, we present a study of the 

specific characteristics of gas jets produced by micron-sized nozzles in the context of laser-

plasma physics. The study is based on experimental work on gas jets of varying sizes and 

parameters such as backing pressure and temperature.  

 The thesis is organized as follows: Chapter 1 examines the motivation for generating 

such high density gas jets in the context of laser wakefield acceleration and the flow physics 

of supersonic gas jets. Chapter 2 presents the work in manufacturing the nozzles and 

characterizing the gas jets produced from the straight capillary nozzles using interferometry 

methods to measure the density profiles and Rayleigh Scattering to identify clusters in the 

target. Chapter 3 explores the possible applications of the gas jets in terms of generating gas 

targets in atmospheric conditions, producing icy filament targets by cooling and 

demonstrating multi-nozzle arrays. 
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Chapter 1. Introduction  

1.1 Motivation and Outline 

We have developed and used various types of mass-limited targets suitable for 

studying laser-produced high-energy density plasmas. These targets include gases of 

nano-sized atomic/molecular clusters, micron-sized liquid droplets, and thin solid argon 

fibers continuously produced from a cryogenically cooled capillary tube. There are various 

applications for high density gas jets including x-ray generation, high-repetition-rate (>1 kHz) 

HEDP experiments, and ion/proton acceleration density ramp . [1] [2]  

 

Figure 1.1: Various mass-limited targets developed at UMD suitable for high-repetition-rate 

laser-driven HDEP experiments: (a) atomic cluster nanoparticles scattering off incident green 

laser light, (a’) cluster gas jets imaged by interferometry, (b) microdroplet source, (b’) two 

streams of micron-sized liquid droplets near their vertical turning point. The larger droplets 

are ~30 μm in diameter, (c) argon fiber with diameter of <90 μm produced from a 

cryogenically cooled capillary tube, (c’) imaging of Ar fiber continuously produced from the 

capillary orifice. 
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Supersonic gas jets are employed to provide the particular gas density profiles for the 

laser-plasma interaction experiments . A supersonic gas jet is a flow of gas, travelling at a [3]  

velocity greater than the speed of sound, emanating from an orifice, called the nozzle. The 

nozzle is shaped such that one is able to control the properties of the gas jet, most 

importantly the density. Because supersonic gas jets offer a large degree of control over the 

gas density, they are very suitable for use as targets in laser-plasma interaction experiments. 

In order to illustrate to what degree one can control the density distribution in a supersonic 

gas jet, it is important to understand the nature of the flow inside a supersonic nozzle. 

Different type of nozzles can be used to produce gas targets for laser plasma experiments, 

including the de Laval nozzles shown in Figure 1.2, which has a convergent-divergent shape 

throat diameter and exit diameter. For narrower targets, straight capillary nozzles provide a 

good density profile due to the smaller expansion of the gas jet. Cylindrical nozzles have 

advantages where high-density and short gas target are required, and the laser beam is 

focused close to the nozzle output area. The supersonic de Laval nozzles have advantages 

where more extended flat profiles with modest gas concentration and long focusing length 

of the laser beam are implemented . [4]   

 

Figure 1.2: Comparison of nozzle design between the converging-diverging de Laval nozzle 

and straight capillary nozzle. 
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The first step, in providing a brief overview of gas flow, is determining the 

thermodynamic properties and relations relevant to the flow of an ideal gas, after which a 

continuum approach is followed to construct a framework for determining the kinetic 

behaviour of the gas flow, neglecting viscous effects and conductive heat transfer. 

Because the gas is flowing at velocities equal to and above the speed of sound is it essential 

to take into account effects of compressibility of the gas. The development of this 

framework is covered in Section 1.2. Having introduced the various concepts regarding 

compressible gas flows an analysis of the flow in a supersonic nozzle is given. Analytical 

solutions are available to quasi one-dimensional flows and a connection is made between 

the flow inside the supersonic nozzle and the gas jet plume emanating from this nozzle. For 

the gas and vacuum pressures commonly encountered in laser-plasma experiments, the gas 

jet emanating from a supersonic nozzle will be in the underexpanded regime, resulting in the 

appearance of a structure of shocks in the jet plume. Due to the high pressures and low 

temperatures encountered in supersonic expansions, gas particles can aggregate and form 

clusters of atoms or molecules.  

The focus of this thesis is on designing and characterizing suitable plasma targets for 

density gradient injection in laser wakefield acceleration, which is outlined in Section 1.3. 

The critical electronic density  of a plasma irradiated by a Ti:Sapphire laser beam ofnc  

central wavelength nm is cm-3 and sets in the non-relativistic case the00 λ = 8 .68 01 × 1 21  

density limit above which the electromagnetic wave cannot propagate. Therefore, these 

targets need to provide densities high enough also with sharp density gradients, with widths 
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of either 100 to 300 µm for injection via wave breaking, or 1 to 10 µm for injection by 

rephasing.  

1.2 Supersonic Gas Jets - Flow Physics 

The physics of the flow and the gas behaviour as it passes through the nozzle is 

crucial in determining the density distribution in a supersonic gas jet. This section aims to 

provide an understanding of the thermodynamic properties and relations relevant to the 

flow of an ideal gas. In local thermodynamic equilibrium, all thermodynamic properties of a 

homogeneous and isotropic one-component medium are completely determined by the 

variables pressure , temperature  and volumetric mass density . The relation betweenp ,T ρ  

the pressure, temperature and density of a medium is given by the equation of state. Using 

the equation of state, two variables are always sufficient to determine the thermodynamic 

state of the system. For an ideal gas the equation of state is formed by the ideal gas law, 

with  the ideal gas constant and  the molar mass of the medium asR M  [5]  

.p = M
ρRT

(1.1) 

The density of the medium can also be expressed as the number of particles in a 

volume. The resulting particle density  is related to the volumetric mass density byn  

,n = ρ M
NA (1.2) 

where  is the Avogadro constant. The constant reflects that an ideal gas at standardNA  

temperature and pressure of 298 K, 1 atm has a particle density of cm-3. For.5 02 × 1 19  

laser-plasma interaction experiments, expressing the density in terms of number of particles 

per volume is more convenient than using the amount of mass enclosed in a volume. This is 
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because, after ionization of the gas, the resulting electron density in the plasma is directly 

related to the particle density of the neutral gas . [6]  

The gas density at the nozzle exit is primarily determined by the exhaust gas velocity, 

which is affected by the geometry of the nozzle that changes the expansion conditions inside 

it. This section will examine the flow parameters using the 1DIFF model to predict for an 

ideal gas through a system of equations linking the cross-sectional area  to the density A ρ  

and the Mach number parameter.  

The compressible flow equations used to calculate the behavior of the pressure P

and density  inside the nozzle are given byρ  

,1 M ]P
P o = [ + 2

γ−1 2 γ
γ−1 (1.3)  

          ,1 M ]ρ
ρo

= [ + 2
γ−1 2 γ

γ−1            (1.4)  

where  , are the critical values of pressure and density where gas flow turns fromP o ρo  

subsonic to supersonic flow, is the adiabatic exponent and is the Mach numberγ  M   

defined as the ratio of the speed of the flow to the speed of sound . [7]   

 

1.3 Laser Wakefield Acceleration 

Laser wakefield accelerators were first proposed in 1979 by Tajima and Dawson , [8]  

and with advances in laser technology since then, compact systems for generating laser 

intensities high enough to efficiently drive nonlinear plasma waves became readily available, 
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and laser based acceleration experiments were performed by research groups world-wide. 

For laser wakefield acceleration, an ultra-short high-intensity laser pulse is sent into a 

plasma. The force on the plasma due to the laser radiation pressure is often described as the 

ponderomotive force. As the laser pulse travels through the plasma, electrons are expelled 

from its path by the ponderomotive force, which is independent of the sign of the particle 

charge and always act to expel charges from regions of high intensity, while the ions remain 

at an almost fixed position due to their higher mass.  

After the laser pulse has passed, the electrons are pulled back to their original 

position by the Coulomb force resulting from the charge separation. The electrons, however, 

overshoot their initial position due to their momentum, thereby creating an oscillating 

electron density modulation travelling in the wake of the laser pulse. This oscillation creates 

a longitudinal charge separation wave, called a plasma wave, trailing the laser pulse. 

Associated with the charge separations in such a plasma wave are extremely large 

longitudinal electric fields, forming the wakefield trailing the laser pulse. The presence of 

these large longitudinal electric fields, thousands of times higher than encountered in 

conventional accelerators, is what makes laser wakefield acceleration a promising candidate 

for next-generation particle accelerators. When an electron bunch is properly injected into 

this wakefield it can be accelerated to ultra-relativistic energies over distances thousands of 

times shorter than in conventional accelerators.  
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Chapter 2. Gas Jet Characterization 

Manufacturing nozzles can be a challenge especially ones with thin diameters and in 

a manner that will minimize the number and size of imperfections on the nozzle wall and exit 

lip. The materials used and manufacturing process is explored in Section 2.1. The 

experimental setup is detailed in Section 2.2 including the characterization of the gas jets 

using a Mach-Zehnder interferometer (Section 2.2.1). The nozzles were mounted into a 

vacuum chamber that operated under conditions comparable to those in the laser-plasma 

experiments (Section 2.2.2) and in order to reach higher gas density levels, cooling to 133 K 

was achieved using liquid nitrogen and a copper cooling block (Section 2.2.3). Section 2.3 

covers the numerical methods used, including fast Fourier transforms, FFT (Section 2.3.1) 

and Abel Inversion (Section 2.3.2) used to determine the neutral densities produced from 

the gas jets. The results of the density profiles and trends with respect to temperature, 

backing pressure and nozzle sizes are explored in Section 2.4. And clusters were studied 

through scattering in Section 2.5 using Rayleigh scattering techniques (Section 2.5.1) to 

characterize the clusters in the target.  

2.1 Nozzles  

Even though the goal of this experiment is to generate thin and dense gas jets using 

straight capillary nozzles, de Laval nozzles are the most commonly used geometry for 

generating supersonic gas jets in laser-plasma experiments due to their flat-top density 

profiles and steep density gradients at the jet edges.  
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2.1.1 Manufacturing Straight Capillary Nozzle 

Gas jet nozzles for laser wakefield acceleration may be fabricated from various 

materials resistant to the harsh operational conditions using different subtractive and 

additive technologies. There are several ways of manufacturing nozzles such as hybrid 3D 

laser machining technique from fused silica using the nanosecond rear-side processing 

approach which have reported achieving output diameters of 100-500 μm . The [9]  

conventional method of CNC machining from metals is time-consuming and is not suitable 

for fabricating complex structures with a high aspect ratio (structure depth to width ratio). 

Laser based stereolithography methods allow rapid manufacturing from plastics of 

custom-shaped nozzles down to 100 µm exit diameter at a low cost . However, [10]  

additional post-processing is required to open the blocked nozzle, and the materials are of 

moderate resistance. Also, in the sub-millimeter scale, the printed holes fail in maintaining 

the circular shape, and the achievable aspect ratio is close to one.  

Glassy materials are an alternative due to the hardness of the material and 

manufacturing flexibility. However, conventional mechanical drilling of glass suffers from 

limitations in hole aspect ratio (typically up to 10:1), achievable minimum hole diameter (on 

the order of 100 µm), low machining quality and relatively slow processing speed . [11]  

Another effective method uses liquid-assisted femtosecond laser drilling of high aspect ratio 

holes (50:1) at the speed of several of µm/s from the rear side of the glass. When water is 

used, it removes debris continuously away from the holes and therefore the drilling process 

is equally efficient with following pulses. The drilling depth was mainly limited by the 

accumulation and redeposition of the processing debris.  
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The parameter study described in the following uses a commercial straight capillary 

nozzle of orifice diameter 50 µm, 100 µm, 150 µm, 250 µm, 350 µm and 450 µm, some of 

which were machined. The capillary tubes had to be mounted on a threaded high-pressure 

brass cap that was initially drilled to make a hole slightly bigger than the outer diameter of 

the capillary tubes to go through. It is an extremely precise process and for the smaller 

capillary tubes, cobalt micro drill bits (~200 µm) were mounted on a guided milling machine 

to slowly peck at the brass cap. The debris from the drilling had to be removed constantly to 

ensure the surface is smooth. The stainless steel capillary tubes were then cut to appropriate 

lengths and both sides were smoothened so that the gas can pass through without 

blockages. Once the capillary tube is held in place in the drilled hole, it is the soldered onto 

the brass cap and then checked for leakages while being able to obtain a supersonic outflow. 

The nozzles with inner diameter 150 μm (4406T33), 250 μm (4406T34), and 350 μm 

(4406T35) were commercially available from McMaster-Carr and are stainless steel 

high-pressure tube fittings that functioned well for our purposes. The brass caps in which all 

the nozzles were attached on had 1/8" NPT threads which allows it to be mounted on the 

copper cooling block.  
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Figure 2.1: (a) Image of how the capillary tubes are soldered onto the brass cap. (b) 

Microscopic view of nozzle tubes. (c) Image of the manufactured and commercial nozzles 

with exit diameter of 100 µm, 150 µm, 250 µm, 350 µm, and 450 µm from left to right. 
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2.2 Experimental Setup 

2.2.1 Mach-Zehnder Interferometer  

The neutral gas density profile in a gas jet is measured with a Mach-Zehnder type 

interferometer using a CW diode laser  (633 nm, 5mW)  as shown in Figure 2.2. The probe 

beam paths are shown by the red lines in the figure. The laser light traversing through the 

gas jet experiences a phase shift due to the refractive index variation imposed byn (x, , )Δ y z  

the gas density profile. First the CW diode laser beam is expanded to a diameter of 2 cm 

using a telescope. After picking up a phase shift in the gas jet, the laser beam is relay-imaged 

by two lenses (f1 =  25 cm, f2 = 50 cm) onto a charge-coupled device (CCD) camera in the 

Mach-Zehnder interferometer located outside the vacuum chamber. Inside the 

interferometer, the laser beam is split into two and then recombined to form interference 

fringes on the CCD camera (14 bit, Stingray F-125) providing resolution of 1292 x 964 pixels. 

The spatial resolution used for the different nozzle sizes ranges from 0.75 µm to 1.5 µm.  In 

our experiment, the interferometer stands outside the vacuum chamber, and the laser beam 

is split after picking up a phase in the gas jet, which is different from a conventional 

interferometric method .  The difference between conventional Mach Zehnder [12]  

interferometer and what was used here is that one beam passes through the gas jet before 

being split and recombined to produce the fringe patterns. Conventionally, the expanded 

beam is first split into two where one arm is sent through the gas target and then combined 

with the other which is used as a reference. The disadvantage of that setup is that both arms 

need to travel the same distance and becomes a challenge with all the optics that each beam 

have to travel.  
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During alignment for the interferometry, the interference fringes was adjusted to be 

horizontal as seen in Figure 2.3. The interferometer also sits on top of a rubber mat to 

reduce vibrations and produce more stable interferograms for measurements. Without the 

mat, the interference fringes are sensitive to any slight motion on the optical table which 

made phase extraction difficult. With stable fringes, long exposure of the CCD camera results 

in enhanced signal-to-noise ratios in the extracted phase profiles. Neutral density (ND) filters 

were used to decrease the laser intensity t avoid saturation and improve image contrast.  

 

Figure 2.2: Schematic of the experimental setup that depicts a vacuum chamber with three 

ports and the nozzle placed at the center. This allows both interferometry and Rayleigh 

scattering data to be collected conveniently. 
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Figure 2.3: The interference pattern produced from the two beams recombined from the 

two arms of the interferometer. The blue rectangle represents the area imaged by the CCD 

camera.  

 

In our Rayleigh scattering setup for cluster detection,  a 532 nm 166 mW laser beam 

is focused into the gas jet at a height of 50 μm above the nozzle exit. The focusing of the 

beam and careful alignment onto the gas target was done to prevent the green beam from 

reflecting off the tip of the stainless steel nozzle and collect only scattered light from the 

clusters in the target. The scattered light is collected by a lens with focal length 25 cm 

located 90° with respect to the probe beam direction because the linearly polarized green 

light allows for maximum scattering to occur at 90° angles and then imaged on a CCD 

camera. The scattering results and characterization of clusters are presented in Section 2.5 

in detail.  
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2.2.2 Vacuum Chamber  

Gas jets would ideally be pumped through the nozzle into a perfect vacuum, but 

realistic experimental conditions would encounter a certain background pressure. The main 

contributor to the development of the background pressure would certainly be the gas load 

of the gas jet itself, and even more so when the gas jets are operated continuously 

compared to pulsed gas jets.  

The gas reservoir body is mounted on a copper cooling cryostat with pipes that 

provides the necessary gas with liquid nitrogen and thermocouple for temperature control, 

which is further described in the next section. The copper block is then mounted on a 

3-dimensional (3D) stage for translational scans and placed in a vacuum chamber equipped 

with a dual stage rotary vane vacuum pump (Edwards E2M80) with a peak pumping speed of 

53 cfm and 60 Hz. There is also an additional mechanical booster pump (BOC Edwards 

EH250). The pressure inside the chamber is measured using a convection enhanced Pirani 

vacuum gauge (Kurt Lesker, KJL 300). As the gauge is calibrated for direct readout of 

nitrogen, accurate conversion data were applied to measure the background pressure for 

argon gas targets. 

A major concern using a high-density continuous flow gas jet is the background 

pressure buildup inside the target chamber, which can lead to ionization-induced defocusing 

of laser pulses prior to reaching the dense target. This effect was studied in a recent 

experiment on laser wakefield acceleration of electrons where the accelerated electron 

spectra was measured for increasing valve open times for pulsed gas jets. It is seen that 
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increasing the valve open time, even at ~20 Torr background pressure, lowers the charge per 

shot while keeping the normalized spectra similar . [13]  

The average pressure inside the vacuum chamber is maintained at 0.050 mTorr with 

full operation of the pumps. It rises during operation of the continuous gas jet depending on 

the nozzle size and backing pressure used, to a maximum of    ̴5 Torr with a 450 µm nozzle 

at 800 psi backing pressure. The vacuum chamber operates below 1 Torr for small nozzles 

(50 µm, 100 µm and 150 µm) which are ideal for high-intensity laser interaction with gas 

jets, including electron acceleration and X-ray generation. The size of the nozzle exit 

diameter is the main factor for the amount of background pressure the chamber settles at 

while running both the continuous gas jet and vacuum pumps simultaneously. The chamber 

background pressure for all nozzles sizes were measured and the effects are explored in 

Section 2.4. 

 

2.2.3 Cooling and Temperature Control 

The nozzle temperature is regulated by cooling and/or heating the copper mounting 

block. The cooling is done via a copper braid which is mounted with good thermal contact to 

a very thin walled liquid nitrogen (LN2) filled with stainless steel pipe, directly welded to the 

source mounting flange. The gas target also passes through the copper block on a separate 

copper braid line with good thermal contact to be cooled down. Figure 2.4 below shows an 

image of the copper block and a schematic of how the gas target and liquid nitrogen flow in 

the copper block. There is heating element and temperature controller which monitors the 

temperature via a K-type thermocouple mounted on the copper mounting block. For 
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thermal insulation, we note that a Teflon block is inserted between the 3D stage and the 

aluminum mount attached to the cooling block as shown in the figure. Note that the 

temperature of the block is the reservoir temperature for the gas jets in operation.  

 

 

    

Figure 2.4: Diagram and schematic of the copper block with one pipe carrying the gas (argon 

or nitrogen) into the copper block, circling and passing through it three times, and the other 

pipe carrying the liquid nitrogen to cool the copper block to the desired temperature. 
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2.3 Interferometry Analysis 

2.3.1 Phase Extraction 

Using the Mach-Zehnder setup described above, interferograms can be collected to 

extract the phase information by making use of Fast Fourier Transformation (FFT). The phase 

shift introduced to the interferometer can be given by 

,Φ ) (n ) dl Δ = ( λ
2π ∫

 

 
− 1 (2.1) 

where  is the probing laser wavelength,  is the index of refraction of the gas target, andλ n  

represents the measured phase shift. Using the Gladstone-Dale relationship to relate theΦ  Δ  

index of refraction of a neutral gas to its density results in the following equation 

,Φ M ( ) L Δ = k λ
2π (2.2) 

where  is the Gladstone-Dale constant,  is the atomic mass of the gas, and the k M  

line-integrated density , where N is the density of the gas and the integral isdlL = ∫
 

 
N  

performed along the path of the laser through the gas. This can be determined from the 

bending of the fringes in the presence of a gas target by measuring the shift with respect to 

reference fringes where no gas is present.  

 The Fourier transform method developed by Takeda  notates that the intensity [14]  

 of a general fringe pattern in the z-direction can be described using equationI (y, )z   

,os(2πf x )  I (x, )y = IA (x, )y + IB (x, )y c o + Φ (x, )y (2.3) 
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where  represents the background intensity and  the variations in theIA (x, )y IB (x, )y  

visibility of the fringes. These intensity fluctuations are assumed to vary slowly compared to 

the modulation introduced by the carrier frequency of the fringes , which is well satisfiedf o  

in the experiments due to the low gas index and thickness of the jet.  carries the Φ (x, )y  

phase information which is to be retrieved from the fringe pattern because it is related to 

the particle density of the gas. Rewriting Equation (2.3) using Euler’s formula and 

introducing givesI (x, ) eIC (x, )y = 2
1
B y iΦ(x,y)  

.(x, ) eI (x, )y = IA (x, )y + IC (x, )y ei2πf xo + IC* 
 y −i2πf xo (2.4) 

The fringe pattern given by Equation (2.4) is the Fourier transformed with respect to x, 

resulting in the spectrum of the fringe pattern intensity  

.(f , ) I
︿

(f , )x y = IA
︿

(f , )x y + IC
︿

(f , )x − f o y + IC
︿ *

x + f o y (2.5) 

Next to the background consists of two spectra separated from the zero frequencyIA
︿

(f , )x y  

spectrum by the carrier frequency . With the use of a filter function, only f o IC
︿

(f , )x − f o y

spectrum is extracted from Equation (2.5) and subsequently be unwrapped. By selecting this 

spectrum means filtering out all spatial frequency components that are not related to the 

phase shift resulting from the gas jet, but at the same time be careful to preserve all the 

information of the gas jet. Filtering to too narrow spectrum results in disappearance of 

valuable high frequency information.  

Finally the phase and the envelope intensity can be obtained as Φ (x, )y (x, ) IB y  

,an  Φ (x, )y = t −1 Im [ I (x,y) ]C
Re [ I (x,y) ] C

(2.6) 
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and      .(x, ) IB y = 2 I (x, )|
| C y |

| (2.7) 

In order to reduce shot-to-shot fluctuation in the measured interferograms, 30 phase 

profiles are extracted and averaged from the collected interferograms. 

Figure 2.5 shows sample interferograms obtained with our setup with corresponding 

phase profiles extracted by the FFT method. Figure 2.5 (a) shows a phase profile  Φ (x, )y

obtained with the 150 𝜇m inner diameter nozzle at backing pressure of 69 bar when 

operated at room temperature. It shows a maximum phase shift of 7.79 rad. Figure 2.5(b) 

clearly shows that the gas density enhances a lot with cooling evident from a larger phase 

shift of 13.61 rad. Also at low temperatures, a large amount of atomic clusters or even 

droplets can be produced along with monomers . Those large-sized particles greatly [15]  

attenuate the probe intensity by scattering, yielding darker background in the jet. This 

attenuation becomes severe  at very low temperatures, resulting in the interference 

patterns to not be visible and making it difficult to extract the phase profile. Figure 3(c) 

shows an interferogram of the argon gas jet at a temperature of 133 K obstructing the 

fringes from view. This is the reason there are missing values for the phase and density plots.  
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Figure 2.5: Characteristic gas density profiles showing the interferogram and corresponding 

phase profile of argon gas using nozzle of inner diameter 150 µm and backing pressures of 

69 bar at (a) room temperature operation, 293 K and (b) cooled at 173 K, producing clusters 

and  (c) cooled at 133 K, producing argon droplets. 
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2.3.2 Abel Inversion  

The resulting two-dimensional phase data was then Abel-inverted using a numerical 

Fourier-based algorithm published by G. Pretzler  and written by Carsten Killer in [16]  

MATLAB to extract the 2D radial gas density distribution from a one-dimensional phase 

projection measurement. Compared to earlier approaches towards Abel Inversion, this 

algorithm is relatively insensitive to noise and errors in determination of the object’s center. 

The phase images obtained by interferometry are mostly symmetric and as the Abel 

transform assumes an axisymmetric profile in density (cylindrical symmetry), where the 

phase images are symmetric with respect to the center of the gas jet . Determination of the 

center position of the jet was performed using the half-maximum points of the phase shift 

profile. 

With the gas jet illuminated from one side in the interferometric set-up, the obtained 

phase image of the gas jet is simply a two-dimensional projection of the three-dimensional 

gas jet. For the case of an axisymmetric gas jet, as we use here, reconstructing the structure 

of the gas jet is possible using only a single projection measurement. To deduct the relation 

between the measured phase-shift and the density of the gas jet, consider the geometry 

depicted in Figure 2.6, where a ray of light is propagating in the positive x-direction through 

an axisymmetric gas jet, positioned at the origin in the xy-plane. The relative refractive index 

of the gas is assumed to drop to zero at large distances from the origin. The amount of gas 

the light encounters results in a projection of the refractive index, , of the gas jet(r, )  η y − 1  

onto the yz-plane. Calculating the accumulated phase shift of the light results in Eq. (2.8), 

which is known as the Abel transform given by 
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.(x, )  2 drΦ y = λ
2π ∫

∞

x

(η−1)r

√r −x2 2
(2.8) 

Inverting Abel transform allows one to retrieve the index of refraction of the gas jet 

from a measured phase-shift as 

.(λ, , )  dxη r y − 1 = λ
2π π

−1 ∫
∞

r
dx

dΦ(x,y) 1
√y −r2 2

(2.9) 

The particle density profile of the gas jet is then obtained by making use of the 

Lorentz-Lorenz equation as 

.(r, )  dxn y = −ε λo
π α(λ)2 ∫

∞

r
dx

dΦ(x,y) 1
√y −r2 2

(2.10) 

 

Figure 2.6: Schematic representation of the measurement of an axisymmetric distribution of 

relative index of refraction,  and the accumulated phase shift of a light(r, )  η y − 1 (x, )  Φ y  

ray traversing the distribution, represented by the integral of the relative refractive index 

along the path travelled through it. 
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The fundamental idea for Pretzler’s numerical method is to fit the whole measured 

profile to a set of cosine-expansion-based integrals. In contrast, the traditional method 

obtains the radial distribution by starting at the edges and incrementally iterating towards 

the center, making it more prone to errors. In general, an axis-symmetric function f(r) can be 

expanded as 

,(r) f (r)f = ∑
Nu

n=N1
An n (2.11) 

with unknown amplitudes where is a set of cosine-functions, e.g.An (r)  f n  

.(r) , f (r) − ) cos(nπ )  f o = 1  n = 1 − ( 1 n r
R (2.12) 

Following Equation (2.8), the Abel-transform of Equation (2.11) has the form(y)H  

,(y) (r)  drH = 2 ∑
Nu

n=N1
An ∫

R

y
f n r

√r −y2 2
(2.13) 

with each integral  

,(y) (r)  drhn = ∫
R

y
f n r

√r −y2 2
(2.14) 

having been integrated numerically in advance and stored on a special file. Equation (2.13) 

is least squares fitted to the real data at each of the  measured points (y)  h N yk  

,(H(y ) (y ) ) in∑
N

k=1
k − h k  

2 → m (2.15) 

leading to 

.(h (y ) h (y )) (h (y ) h (y ))∑
Nu

n=N1
An ∑

N

k=1
n k  m k = ∑

N

k=1
 k  m k  (2.16) 
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2.4 Results and Analysis 

Using the Abel Inversion method and the phase profile measured from the 

interferometry, the density profiles were determined. Two of the smaller nozzles (i.e. 50 µm 

and 100 µm) produced interferograms with small phase shifts, making it difficult to calculate 

the density profiles numerically. In this case, the phase profiles were fitted to a Gaussian 

curve before being Abel Inverted to remove noise and achieve characteristic.  

Figure 2.7 shows extracted number density profiles  for argon using six(r, )  N y  

different nozzle diameters at backing pressure of 55 bar at 193 K. This is the best density 

profile at the nozzle exit while avoiding any possibilities of ablating or melting the nozzle 

caused by any intense laser contact or damage from laser accelerated particles. Here the 

same scale bar is applied for better comparison. Some oscillatory features are observed for 

large size nozzles and could be an artifact from the Abel Inversion process, which will be 

explored in more detail in the following section.  

 

Figure 2.7: Number density profiles for argon gas jets produced using 55 bar backing 

pressure at 193K with nozzle of inner diameter of (a) 50 µm, (b) 100 µm, (c) 150 µm, (d) 250 

µm, (e) 350 µm, and (f) 450 µm respectively right above the tip of the nozzle.  
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2.4.1 Pressure, Temperature and Nozzle Size Dependence 

Figure 2.8 shows a collection of peak density values for six different nozzle diameters 

(a) 50 µm, (b) 100 µm, (c) 150 µm, (d) 250 µm, (e) 350 µm, and (f) 450 µm respectively. The 

peak densities are determined by averaging over an area just above the nozzle orifice to 

obtain a gas density number that represent peak number density. It can be seen that the 

peak gas density increases with decreasing temperature and with increasing backing 

pressure. Some points are missing for the larger nozzles for low temperatures and higher 

backing pressures due to the target condensing to droplets near the nozzle orifice as seen in 

Figure 2.5 where the interferogram lines are difficult to distinguish and a phase profile was 

not able to be extracted. It can be assumed that the density value at those points would be 

higher and follows the trends observed.  

It can be seen from the density lineouts that there are oscillations but a quantitative 

analysis of the gas density profiles can be carried out by averaging the value in the flat-top 

part of the density. The highest density for Argon achieved with nozzles of inner diameter 

150 μm near the exit of the nozzle using backing pressure of 69 bar is  cm-3 at.99 0  4 × 1 20  

room temperature, which can be enhanced to cm-3 with cooling down to 153 K..12 08 × 1 20  

It can also be seen in Figure 2.9 that the density lineouts show a flat top profile with a sharp 

boundary that increases as temperature of the gas reservoir decreases. For lower pressure 

and/or smaller nozzle exit diameter, the gradient width at the jet edge gets wider and the 

profiles becomes more gaussian-like. 
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Figure 2.8: Maximum on-axis argon gas density produced with various nozzles of inner 

diameter (a) 450 μm, (b) 350 μm, (c) 250 μm, (d) 150 μm, (e) 100 μm, and (f) 50 μm at 

backing pressures of 13.7-69.0 bar and at 153-293 K temperatures. 

 

 

26 



 

 

Figure 2.9: Density lineouts of argon gas jet using 150 μm ID nozzle with backing pressure of 

69 bar at a height of 50 μm above the orifice for various block temperatures.  

 

 

Figure 2.10: Peak number density as a function of the gas jet backing pressure showing a 

linear relation.  
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Figure 2.11:  Peak on-axis gas density as a function of nozzle inner diameters at various 

backing pressures of 13.8-69.0 bar at room temperature in the gas reservoir. 

 

In Fig. 2.10, it can be seen that the peak gas density produced by the nozzle has a 

linear relationship with respect to backing pressure for all block temperature. However, if 

the temperature is halved the density-pressure slope doesn’t exactly double in magnitude.  

Figure 2.12 shows our measurements of the background pressure inside the vacuum 

chamber as a function of gas backing pressure for various inner diameters of nozzles. It 

clearly shows that the background pressure increases almost linearly with the backing 

pressure. Also, the background pressure increases  quadratically with the nozzle diameter as 

seen in Figure 2.12(b), and this is because the crossetional area of a nozzle is proportional to 

. We note that the thinnest nozzle provides background pressures of no greater than 0.5 r2
 

Torr even at 69 bar backing pressure.  
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Figure 2.12: Background pressure of the vacuum chamber as argon gas is continuously 

pumped through the capillary nozzles of various (a) backing pressures and (b) nozzle exit 

diameters operated at room temperature. 
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2.5 Characterization of Clusters  

Cluster formation occurs when a highly pressurized gas undergoes a rapid expansion 

through a nozzle into vacuum. At high valve backing pressure, atoms or molecules 

experience collisions in the initial expanding phase where the collisional mean free path is 

much smaller than the nozzle diameter. This occurs as the adiabatic expansion of the 

working gas in the nozzle flow result in its supercooling, and in this supercooled gas the 

enclosures of the condensed phase (clusters) are produced as a result of the spontaneous 

condensation . Here Van der Waals forces lead to the formation of dimers which seeds [17]  

the initial cluster nucleation and the collisions further the cluster growth . [18]   

Atomic or molecular clusters, van de Waals- bonded aggregates of up to ~107 atoms, 

make unique targets for laser matter interaction because it allows an intense laser pulse 

propagating through a gas of clusters microscopically to interact with nanoscale solids while 

macroscopically propagating through a gaseous environment for an extended interaction. 

For example, cluster containing jets can be efficient targets for attosecond extreme 

ultraviolet (XUV) pulses and high harmonics generation (HHG) . [19]  

The average number of atoms in a single cluster  is traditionally characterized by a 

semi-empirical formula proposed by Hagena . The Hagena parameter is given by [20]  

,Γ  * = k T  2.29
P do 

 0.85

(2.17) 

where  is the backing pressure,  is the pre-expansion temperature,  is a constant thatP T  k  

is gas specific ( ~ 1650 for Ar ) and  is the parameter for the nozzle geometry in μm. The k  d  
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geometry of the nozzles has an important role for the efficiency of cluster formation, and for 

supersonic conical nozzle with a jet expansion half angle of , an equivalent diameterα  

 can be used. However, for straight cylindrical nozzles, will just be the.74d/tan α  deq = 0  d  

inner diameter of the capillary tubes which the gas exits. The dimensionless is thenΓ  *  

related to the average number of atoms per cluster, given bync  [18]  

   ( for ) ,33( )< nc >  =  Γ*

1000
2.35

 000Γ  * > 1 (2.18) 

and the average cluster size in the frame of liquid drop model is 

 ,n  a = rWS c
1/3

(2.19) 

where the Wigner-Seitz radius is for a given mass, and atom bulk3m/4πρ)  rWS = ( 1/3  m  

density,  in the liquid state at the melting point. This shows that we can control the ρ  

average number of atoms in clusters by varying the nozzle geometry, gas species, and jet 

temperature and backing pressure . [21]   

2.5.1 Rayleigh Scattering  

Laser-induced Rayleigh scattering can be an effective diagnostic tool in investigating 

gas properties, especially verifying the presence of clusters in gas jets. Cluster size 

measurements are conducted on the principle that the intensity of light elastically scattered 

by a particle or an object is related to its size . Here the scattering regime is [12]  

characterized by the relative size of the scattering particle with radius with respect to ther    

laser wavelength , given byλ   

31 



 

 .x = λ
2πr (2.20) 

If , Rayleigh scattering dominates as the size of the scattering object is much<  x < 1  

less than the wavelength of the laser. For , Mie scattering occurs and the phasex ≈ 1  

variation from the object’s surface induces interference in the scattered light. When the 

object is relatively large ( ), scattered light is treated classically and is simply related to>  x > 1  

the projected area of the scatterer. In the Rayleigh regime, the scattering cross section for a 

spherical cluster with cluster radius , laser of wavelength  and index of refraction of r λ  

cluster medium,  is given by η   

 .∝ ( )σscatt. λ4
r6 

η +22
 η −1 2

(2.21) 

In our Rayleigh scattering setup for cluster detection,  a 532 nm 166 mW laser beam 

is focused into the gas jet at a height of 50 μm above the nozzle exit. The laser beam is 

carefully aligned so that it only interacts with the gas and does not hit the nozzle. The 

scattered light is collected by a lens with focal length 25 cm located 90° with respect to the 

probe beam direction and then imaged on a CCD camera. Figure 2.13 shows sample images 

of 90° Rayleigh scattering at several gas jet backing pressures.  

The relative scattered energy from the gas target is plotted in Figure 2.14 with 

respect to the gas jet backing pressure. Here each data point is obtained by integrating all 

scattered light from Figure 2.13. A polynomial least squares fit applied to each scan shows a 

strong nonlinear dependence with both pressure and temperature. This nonlinear trend 

indicates  the presence of clusters in the gas jet. If there is no clusters present in the gas jet, 

then the Rayleigh scattering signal would be linearly proportional to the gas backing 
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pressure. However, if clusters are present and their sizes increase with the backing pressure 

according to Hagena’s semi-empirical law in Eq. (2.17), then the scattering signal becomes 

proportional to  [20]  

.S ∝  N σ  ∝  (N /n )(n )  ∝  pRayleigh C scatt. o c c
2 3.35

 (2.21) 

Our measurements are not an in perfect agreement with Hagena’s scaling law, but their 

nonlinear scaling strongly suggest that clustering occurs in our gas jets. Furthermore, the 

scattering signal is also nonlinearly dependent of the nozzle temperature. This is also 

expected from Equation (2.17). This indicates that more clustering occurs with higher gas 

pressure and lower temperature. Note that Rayleigh scattering is useful in checking the 

presence of clusters but cannot alone determine the cluster size. In general, a combination 

of Rayleigh scattering and interferometric imaging can determine  the average cluster size 

and density assuming there is no monomers present . Recently, our group demonstrated [21]  

that a full combination of forward/backward Mie scattering detection, 90°scattering, and 

interferometry can determine all three parameters--the average cluster size a, density ,NC  

and cluster/monomer ratio .δ  [22]   
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Figure 2.13: CCD images of Rayleigh scattered light from argon gas produced with the 

150-μm (ID) capillary nozzle at 50 μm height above the orifice at room temperature for 

backing pressures of (a) 34.5 bar, (b) 37.9 bar, (c) 41.4 bar, (d) 44.8 bar, (e) 48.3 bar, (f) 51.7 

bar, (g) 55.2 bar, (h) 58.6 bar, (i) 62.1, (j) 65.5, and (k) 68.9 bar.  
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Figure 2.14: The relative scattered energy from the gas target with respect to the gas jet 

backing pressure for argon gas jet using 150 μm exit diameter capillary nozzle at various 

block temperatures. 

 

 

In order to visualize how cluster formation varies above the nozzle, the gas jet is 

raster scanned by a motorized actuator in the z-axis while the laser beam is fixed. Figure 2.15 

shows the 90 degree scattering profile along the beam axis at various heights above the 

nozzle tip. It can be seen that the highest amount of scattering occurs on-axis at 0.3 mm 

above the nozzle orifice. As clustering is a relatively slow process, some distance is needed 

for condensation. This is why for the capillary nozzle — in which case the expansion starts 

only at the orifice — the cluster size reaches the maximum value farther from the exit.  
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Figure 2.15: Height scan of the Rayleigh scattering profile of argon gas at 69 bar at room 

temperature using the 250 μm exit diameter capillary nozzle.  
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Chapter 3. Applications 

The gas jets generated from the straight capillary nozzles can be used in various 

applications. In Section 3.1 we discuss the operation of gas jets in atmosphere instead of a 

vacuum and study shock diamond structures formed in this case. As seen in the previous 

chapter, the gas jets condensates to form clusters and droplets in low temperatures. Section 

3.2 demonstrates that under certain circumstances, the gas jet can become icy filament 

targets with solid densities, which allows many potential applications. Having the capillary 

nozzles arranged a line can produce multi-jet arrays. This produces density modulations 

along laser propagation, which in principle can be used to satisfy phase matching in electron 

acceleration and high harmonic generation. Our method of multi-jet array generation and 

characterization is detailed in Section 3.3. 

3.1 Atmospheric Case - Shock Diamonds 

High-density gas jets formed in atmospheric air can be of great interest for many 

practical applications that require compact experimental conditions without any need for 

vacuum systems. One difference between gas jets in vacuum and atmospheric gas jets is the 

shapes and densities they manifest as seen in Figure 3.1. Unlike vacuum gas jets, 

atmospheric jets form shock diamonds very close to the jet orifice due to the large 

background pressure compared to vacuum . [23]   
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Figure 3.1: Difference in phase profiles of gas jets produced with the argon at backing 

pressure of 69 bar using a 150 μm exit diameter nozzle at room temperature for (a) 

atmospheric case of 750 Torr background pressure and (b) in vacuum of 70 mTorr. 

Shock diamond structures are a formation of standing wave patterns that appear in 

the supersonic exhaust plume from a nozzle that is slightly overexpanded or underexpanded. 

This occurs when the pressure of the gases exiting the nozzle is different from the ambient 

air pressure which will either expand or compress the flow. Overexpanded flow is 

compressed while underexpanded flow expands. As seen in Figure 3.1, the Prandtl-Meyer 

expansion fan expands the gas downstream of the lips of the device upto the jet boundary 

corresponding to the external surface of the mixing layer. These acoustic waves attain the 

constant pressure streamline, where the pressure equals the ambient pressure, and are 

reflected into compression waves. Then, they converge towards the inner jet and coalesce to 

form an oblique shock, usually called the intercepting shock. On the axis, this incident shock 

itself reflects in a new oblique shock, the reflected shock, facing the outer jet . [24]  
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Figure 3.2: Structure of a moderately underexpanded jet illustrating the parts of the shock 

diamond. 

  

Figure 3.3: Shock diamond structure produced by argon gas jet using the 150 μm exit 

diameter nozzle at 14 bars backing pressure to atmospheric pressure and room 

temperature. 
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The distance from the orifice to the first shock diamond can be approximated by  

.67 D ,  x = 0 o √P 1

P o (3.1) 

where is the distance, is the nozzle inner diameter, is flow pressure and isx Do P o P 1  

atmospheric pressure. Using the characteristic gas jet profile for both argon and nitrogen, it 

can be seen in Figure 3.4 that the measured distance of the first shock diamond above the 

nozzle orifice and the theoretical values are consistent.  

 

 

Figure 3.4: Comparison between the measured distance of the first shock diamond above 

the nozzle orifice and the theoretical values for both the argon and nitrogen gas jet 

generated with the 150 μm exit diameter nozzle at 14 bars backing pressure to atmospheric 

pressure and room temperature. 
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3.2 Argon Icy Filament Generation 

High-density solid targets are also promising candidates for novel studies including 

intense laser-driven plasma generation. In our experiment with manufactured straight 

cylindrical nozzles, cooling an argon gas to low temperature results in an interesting 

phenomenon. At 110 K with a 100 μm inner diameter nozzle, the argon appears to emerge 

from the orifice as an icy fiber instead of a gaseous or droplet phase.  

Based on the phase diagram of argon shown in Figure 3.5, the melting/freezing 

temperature is 83.8 K for the pressure being applied. This temperature is much lower than 

that in the reservoir where the argon gas passes through. However, due to the adiabatic 

expansion that occurs as the argon exits the nozzle orifice into the vacuum chamber, the 

target freezes and produces an icy filament.  

 

Figure 3.5: Pressure-temperature phase diagram of argon where the red circled region 

represent the regime where argon filaments were observed to form as reported by Peth  [25]

. 
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Figure 3.6 shows image frames at 1 second intervals of the argon target as the argon 

gas passes through the nozzle and undergoes adiabatic cooling at the orifice. The icy 

filament starts off with an irregular shape but quickly straightens out. However, after a 

certain period, the icy fiber appears to collapse on its own weight and resets itself. Although 

interferometric imaging is applied, there are no fringes observed inside the fiber structure 

due to its near solid density. The thickness of the icy fiber is close to that of the inner 

diameter of the capillary nozzle of 100 μm and such a thin high-density target would be of 

potential interest for relativistic laser-plasma interactions and applications.  

 

Figure 3.6: One second interval shadowgraph images of the icy fiber target produced with 

argon using 100 μm inner diameter nozzle cooled to 110 K and backing pressure of 5 bar.  
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One advantage of such a continuous icy filament target is that it can be used for 

high-repetition-rate laser experiments. This largely contrasts to other solid targets, for 

example, levitated spherical targets in a Pauli trap, where the employed target must be 

replaced after each laser shot.  Consequently, that process greatly precludes detailed 

parametric studies requiring the collection of large amount of data, and the use of 

laser-driven ion sources operating in the quasi-continuous mode that is mandatory for most 

potential applications. It can also be seen that the icy fibers maintained a smooth constant 

diameter while it remained upright, which allows for shot to shot variation experiments to 

take place.  

There are, however, several problems with the icy fiber targets and room for 

improvement. Firstly, the icy filament target is unstable and volatile in the sense that it 

requires delicate control and is often difficult  to maintain for long periods of time. One 

possible solution is to have a vacuum suction above the nozzle to direct the icy fiber straight 

up and also prevent it from bending as the length increases over time. The nozzle could also 

be inverted and have the icy fibers be produced in a downward direction to overcome this 

issue. Nozzle clogging is also a problem that arises when the temperature gets too low. In 

this case, the gas freezes inside the nozzle, resulting in no flow through the orifice. 
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3.3 Multi-nozzle Gas Jets  

Multi-jet gas puff targets are produced by pulsed injection of gas through a nozzle in 

a form of chain of small orifices. It has been shown that the use of an array of gas jets with 

periodic modulation of the gas density enhances the yield of high-order harmonics 

generation . This behavior may be attributed to a quasi-phase matching (QPM) effect [26]  

which increase the length of coherent harmonic buildup during propagation by partially 

counteracting the dephasing induced by free electrons . [27]  

There are different ways of producing axially modulated plasma waveguides such as 

flow obstruction by thin wires  and puffing gas through laser drilled holes in a gas-filled [28]  

metal tube . In the first method, the gas flow is modulated by a periodically spaced array [26]  

of wires near the nozzle exit. In our experiment, we have used an array of five identical 

stainless steel capillary tubes (ID = 100 μm, OD = 250 μm) soldered into a drilled brass plug 

cap as shown in Figure 3.7(b). This nozzle array is tested with argon at various backing 

pressures, and the interferometric imaging technique described in Section 2.3 is applied to 

characterize resulting gas profiles. Figure 3.7(a) shows a 2D phase profile extracted from an 

interferogram taken at room temperature with argon gas jet at 50 bar backing pressure. Five 

primary jets are clearly seen at the bottom of the phase profile. Interestingly, the primary 

jets are merged as they flow, forming secondary jets in between two primary jets. Even a 

tertiary jet is formed in between two secondary jets. Here the ratio of the inner diameter 

(100 μm) to the spacing between jets (150 μm) are important to form secondary and tertiary 

jets. According to our phase profile, the spacing between the third and fourth primary jets is 

a bit larger than others, which results in a weaker secondary jet in between them.  Also the 
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fourth and fifth tubes have bad orifice conditions and produce much weaker jets. This is why 

less pronounced secondary and tertiary jets are formed from the fourth and fifth nozzles. 

This could be due to inconsistencies during the machining process and the flow through 

those nozzles were impeded. 

 

 

Figure 3.7: (a) The phase shift profile of argon gas using 50 bar backing pressure at room 

temperature for five nozzles of inner diameter of 100 µm and wall thickness of 75 µm. 

(b) Photograph of the manufactured multi-nozzle array used. 
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Note that due to the non-axisymmetric nature of the multi-jet array, Abel Inversion 

cannot be applied to extract the overall density profiles here. We believe that the primary 

jets near the nozzles are cylindrically symmetric for each, but the secondary and tertiary jets 

may not have cylindrical symmetries as they arise from merging of two separately 

axisymmetric flows. In principle, a tomographic method utilizing multiple projections at 

many different angles can be applied to reconstruct the exact 3D density profile. 

One application of the straight capillary tubes is to arrange multiple tubes in a row to 

produce the modulated gas target which can achieve specific lengths in principle by 

connecting more nozzles . The gaps are limited by thickness of the nozzle walls and [29]  

modulation period dependent on size of the nozzle orifice. Figure 3.8 shows a schematic of 

the femtosecond pump and probe beams to image the shadowgram and interferogram of a 

corrugated plasma channel. The corrugated plasma channel was produced in the multi-jet 

array gas jet in continuous flow with ~30 fs, 800 nm, 10 mJ laser pulses at 1 kHz repetition 

rate. Detailed characterization of target density is essential to increase energy conversion 

efficiency for QPM in HHG. Other methods such as extreme ultraviolet tomography have 

been employed by combining shadowgraphy projection images into a 3-D reconstruction 

volume . [30]   

These extremely dense and thin gas jets fabricated in this thesis have applications in 

laser-plasma acceleration of high energy electron beams to the ~10MeV scale using 

ultrashort laser pulses with as little energy as 10mJ . As the laser pulse propagates in an [31]  

underdense plasma, the ponderomotive force pushes electrons away from regions with high 

electromagnetic field gradient driving longitudinal electron density waves (laser wakefield) 
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and electrons are accelerated due to the charge separation generated in the plasma. The 

various parameters to control specific gas densities for targets in laser plasma experiments 

and potential in developing clusters, icy filament and multijet arrays demonstrated the 

applications of straight capillary nozzles.  
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Figure 3.8: Schematic of the femtosecond pump and probe beams to image the shadowgram 

and interferogram of a corrugated plasma channel produced in the multi-jet array gas jet in 

continuous flow with ~30 fs, 800 nm, 10 mJ laser pulses at 1 kHz repetition rate. 
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