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Preface

Engineering systems are increasing in complexity. Servicing tlystenss has
emerged as a key to competing globally. Prognostics and health managdfiMnt (P
has emerged as a promising discipline that allows maintenance contingent on the
health state of the asset and to mitigate the system’s risks.

PHM is an interdisciplinary field that merges together engineethematicians,
computer scientists, risk analysts and others to improve systems’ safegdace
life-cycle cost. PHM techniques have been successfully demonstrated on a ntimber
applications such as jet engines, wind turbines, gas turbines, and locomotives.

| was fortunate to do an internship at CALCE in 2006, and work on the return of
investment for the implementation of PHM in electronic systems. Aftenal
engineering technologies ought to be supported by business cases. In thégredrs a
got the opportunity to work on a number of PHM problems involving machine
learning and decision support. While learning and working on those problems, |
identified a gap that can potentially push the technology forward; maximieng t
value of PHM by addressing the cost-benefit-risks ramifications aftgnpstic
indication. My advisers, Professor Peter Sandborn and Professor Michael Pecht
supported this initiative and guided me through a research journey to address the
problem of decision after prognostic indication and create methods to truly support
what we envision a new maintenance paradigm.

This dissertation displays the ideas that | shaped through my internship at
CALCE, my years in graduate schools (University of Maryland), and my two

internships at GE Global Research. Having said this, the work does not freflect t



ideas or thoughts of GE nor any industrial sponsor that | worked with during my

years in graduate school.
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Chapter 1: Introduction

This chapter motivates the problem addressed in this dissertation and presents
relevant background information for key topics. A summary of the research
opportunities (gaps) is presented, the scope and objectives with the key questions
addressed in this dissertation are presented, then an overview of the dssisrtati

provided.

1.1 Motivation

The value of safety, mission and infrastructure criticalesyst such as aircratft,
wind turbines, oil and gas drilling equipment, and airport monitoringesyst is
associated with their availability. Availability is the dtyilof a service or a system to
be functional when it is requested for use or operation (Jazouliamb&n, 2010);
it is a function of reliability and maintainability. Commeiciirlines go out of
business if their planes are not available to fly; 911 systeengseless if they are not
available when people need to call them; and wind farms cannot badigpon for
energy generation if they are always down and waiting for maintenance.

To avoid unanticipated failures and ensure high availability, many safety,
mission, and infrastructure critical systems have begun to employ priogrersd
health management (PHM) techniques that warn users (and/or maintainers) bef
systems fail. PHM is a discipline comprised of technologies and methodeeatksig
assess the reliability of a product in its actual life-cycle conditmualetermine the
advent of failure and mitigate system risks (Pecht, 2008), (Cheng et al., 2010). The
PHM system gives information on the remaining useful life (RUL), whildwalthe

1



decision-maker to take appropriate actions to manage the system’s healtbrprior (
sometimes upon) failure.

As an example of the actions that can be taken, consider an aircraft with
prognostic capabilities flying between two locations: A and B, Figure ledigiron
of the remaining useful life (RUL) of a critical system in the aitasebbtained
during a flight. In an ideal scenario, several contingency actions or optiens
available to the decision maker such as: 1) fly the aircraft to location B, but slow
down so that less damage is accumulated, 2) return to location A, 3) land the plane at
an alternative location, 4) continue operating the system until failurertaking use
of the whole RUL. If the decision-maker chooses to continue to location B, new
options arise: 1) maintenance can be performed at location B, 2) operation of the
plane can continue as scheduled until a later time and/or alternative location for
performing maintenance is reached, or 3) the flight schedule can beedharrgute
the plane to an alternative location for maintenance.

Although the example in Figure 1 is hypothetical, it would be ideal to be able to
operate under such conditions whereby the decision-maker can choose among a host
of options to manage the health of the system and maximize the value obtained from

PHM.



Predicted remaining
life of a system.
Enough for some more
flights.

Options:
» Alter mission Options:
* Fly slower * Wait till get close
* ... to the end of life
* Maintain now
* Alter schedule

Figure 1- Hypothetical example of (ptions arising after aprognostic indication

Considering another exampan offshore wind farm ha€4urbines. lleach of
the turbinegor subsystems in the turbin has a uniqueemaining useful lif (with
its respective uncertaini, what is the bestvay to perform maintenance when the ¢
of performing maintenance on one or more turbinesgisiicant? Figure 2 show
such scenaridA health index that measures the “risk” of failtioe each turbine i

shown along with a proposed threshold for mainteaz



Threshold tor mamtenance

N
[

]

=
&

-

Health Index

U

Turbine

Figure 2- lllustration of the state of health of multiple wind turbines in awind
farm

If the wind turbines are cshore, for example, sendingraintenance vessel
the wind turbines is an expensive proposition amaAkngwhichturbines need to k
fixed when he maintenance vessel is on site is impor it may be significantly
less expensive to throw away RUL in wind turbintgantto risk having them n-
operationabr having to make special tripsmaintain themConsider the turbines ¢
B, and C in Figure 2. If a maintenance vessel lsetgent out, turbine A would |
maintained given that is above the maintenancelhiotd. Turbine B would not k
maintained since it is well below the thresh but how about turbine C? Should it
maintained now? Or should wait for next time the vessel is out for maintenan:
The real issue is where should the threshold b€ tAreshold is not a constant

varies depending on the when the maintenanssel will return to the wind farm, tt
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expected weather conditions, the availability requirement for the wind farmhend t
maintenance options you have.

Waiting is one of the options that the decision-maker can take. Like any other
option, it has a value associated with it; if the decision-maker waits ungetr®ox
of a turbine fails, then revenue is generated from producing power, but a high cost
incurred for replacing the gearbox.

To illustrate this point further, consider an example of wind turbine with a power
rating, WTpg, of 600KW. Based on the research and data published in (Andrawus et

al. 2006), the revenue from a turbine can be calculated with the following equation:

Revenue = Ny, (24)WTprCeypCr (2)

Revenue corresponds to the revenue generated by a turbine (analogous to
production loss, as identified by Andrawus et al. 2006) given a particular cost of
energyCgy. Ngy, is the number of days considered in the calculation of the revenue
generated, and is the capacity factor; the ratio of how much power a turbine is
generating over a period of time to the maximum theoretical powerchsdered
representative of uncertainty in wind speed over a period of time). This factor i
highly influenced by the properties of wind: if wind is blowing at a high speed
constantly the turbine will generate more power. However wind speed has an
uncertainty associated with it and is dependent on a number of factors including
month of the year. Assume the uncertainty in wind speed is reflected in ataunmtger
in the capacity factor. Consider two scenarios for maintenance: 1) scheduled

maintenance is performed next month with a projected capacity factor of 33%; 2)



wait for an additional month, and perform condition-based maintenance (CBM) in
two months where capacity factor for the first month is 33% and there age thre
possibilities for capacity factor for the second month; 70%, 33%, and 5%; each with

its respective probability of occurrence as seen in Figure 3.

Scheduled maintenance next month Cf=33% }—‘

*{ Maintenance Decision

CBM after 2 months

Figure 3- Waiting to perform maintenance

Assuming a cost of energy of $0.17/hour, the calculation using equation (1) for
the two scenarios leads to revenue of $24,235 for scenario (1), and $54,896 for
scenario (2). This implies that waitifigr an additional month to perform
maintenance will result in 13.2% additional value on the revenue. This is because of
the uncertainties in the model, a high projected capacity factor in parficula
scenario (2). In this hypothetical example, the decision-maker uses thariklU

harnesses the upside effect of the uncertainties by waiting to perfornenaaioé.

1.2 Background

This section introduces key-concepts used in this dissertation. The definitions
provided in this section serve as background information for general understanding.

Some concepts are explained more elaborately in subsequent chapters.

6



1.2.1 Prognostics and health management (PHM)

Prognostics and health management (PHM) is a discipline consisting of
technologies and methods to assess the reliability of a product in its detasgtle
conditions to determine the advent of failure and mitigate system riskist(2608)
(Cheng et al., 2010). PHM is an enabling technology that allows the industry to
transition from traditional time- or cycle-based maintenance to conditiotbase
maintenance. It also enables performance-based contracts (conhraxshe user
pays for the outcome of the asset instead of buying the asset), and rddwmesd
costs (Vichare and Pecht, 2006) and (Jazouli and Sandborn, 2011).

A framework for PHM is shown in Figure 4. The health of the system is
monitored continuously with sensor systems. Data is collected and analyzenlsiThe f
step in the analysis consists of preprocessing the collected data whers atglie
removed, transformations are performed (if needed), gaps in the data areealjdress
etc. The data is then used within a diagnostic algorithm; anomaliegpareetewhen
there is a change from a healthy state, then the root-cause of the arsoihayified.

A prognostic algorithm is then used to predict how much remaining life the
component/system has. The remaining useful life (RUL) estimate cand®use-

board tactical control or off-board strategic planning. The RUL provides thaateci
maker with the lead time to manage the health of the system and take the agpropriat

action prior to the failure.



o jumy

Proguosiics
) r
Anomaly
. ‘ Diagnostics
Identification -

Figure 4- Framework for PHM

There are thremain approaches to PHM: d-driven (DD),Physics of Failur
(PoF), and fusion approacl. DD methods loolat current and historical data
assess the health of the system and estimatertteeniag useful life of a produ
using machine learning and statistical learning @els. PoF approachetilize the
knowledge of a productlife-cycle loading conditions, geometry, material propert
and failure mechanisms to estimate its remainimjulidife. Fusion combins the
benefits from DD and PoF for better predic (Cheng and Pecht, 2009)hework
proposed in this dissertation does not differeatitween the PHImethod used; it
is applicable to any of them as long as the progmdsstance is obtain  from them.
Prognostic distance is the amount of time befoeefdnecasted failu (end of the

RUL).



For the remainder of the dissertation, we assume that there is an RUL that is
output from the PHM system, and address the maintenance decision after the

prediction is obtained.

1.2.2 Availability

Avalilability, the ability of a system to function when it is required (Jazmdi
Sandborn, 2010), is a function of its reliability and how efficiently it can be
maintained. The interest of this dissertation is operational avayalhich is given
by the following relationship:

uptime 2
uptime + downtime

Availability =

where uptime is the total operational time during that the system is up and running
and able to perform the tasks that are expected from it. Downtime is gdnehaie
the system is down and not operating when requested.

Performance-based contracting is a contracting mechanism that deows t
customer to pay only when the Original Equipment Manufacturer (OEM) has
delivered outcomes, rather than merely paying for activities and tasket @llg
2009). PHM is an enabler of such contracts.

This contracting method is becoming popular for engineering systemsadigpeci
costly assets such as avionics systems. Figure 5 shows an example ofitlo-Pr
Service System (PSS) spectrum for a car. The spectrum extends fromteomple
ownership of the car and its maintenance to simply purchasing a service that

completely removes the customer from all maintenance activities. $tensguch



as avionics, conventional practices are that tiséocoer owns the avionics a
obtains maintenance via a separate maintenancecb(@onventional Model i
Figure 5). Outcoméase: contracting would be analogous to renting the oar

paying for its use.

o Convenlional Model
Ownership

Figure 5- Product service system spectrum for a car

Availability-based contracts are a subseperformance-basezbntracts. Suc
contracts camclude some form of cost penalty that could besssd for failing tc
fulfill a specified availability requirement withia defined time frame (or a contr:
payment schedule that is based on the achievethbb#y) (Ng et al., 2009 An
example of an outcomeased contract is f@ircraft engines where the customer p
for the availability of the engine instead of payifior the engine itse Performanc-
Based Logistic§PBL) is an examplor performance-based contraated by the

Department of Defense (DoD) for the sustainmertheir assets

1.2.3 Maintenance optimizatior

There are multiple interpretations of maintenanu#naization. Wang (2002
provides a survey of maintenance policies by brpclassifyingthe objective
functions that are optimized in a maintenance nolas age replacement polic

random age replacement pol block replacement policy, periodic prevent
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maintenance (PM) policy, failure limit policy, sequential preventive maartee

policy, repair cost limit policy, repair time limit policy, repair number g

policy, reference time policy, mixed age policy, preparedness maintepainge

group maintenance policy, and opportunistic maintenance policy among others.
When used in this dissertation, maintenance optimization means maximizing the

value that can be obtained from maintenance by considering three alternatives:

condition-based, scheduled, and unscheduled maintenance.

1.2.4 Fleet-level versus system-level risk mitigation

The information obtained from PHM can be used for system-level and fleet-level
risk mitigation. The output from PHM can be used for real-time tactical catttoé
system level (to manage an individual instance of a system, e.g., angirplaior
strategic planning for the fleet such as logistic decision making fontire #eet
(e.g., awhole airline); hence the distinction between system level amgreset€or
fleet level). In this dissertation, the terms fleet and enterprise ede us
interchangeably.

The distinction between the two levels is also based on availability. A system
may not be available at a time when the fleet is still able to meet theeckqui
availability. For example, consider a wind farm: it may be able to producelenoug
power to meet its availability requirement, even if one turbine is not avaftaides
only an example; wind turbines may not be operating under availability contracts at

this time).
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1.2.5 Real options

A real option is an alternative or choice that becomes available as aofesult
business investment opportunity; it is a right, but not an obligation, to take an action
(e.g., defer, expand, contract, or abandon a project) at a predetermined edgheall
exercise price, for a predetermined period of time- the life of the option @pel
and Antikarov, 2001). Real options analyses are decision tools for addressing the
value of investments under uncertainty.

Real options are the extension of financial options to real assets. Unlike financia
options, real options are not securities and they can’t be traded. A real option has an
underlying asset, for example a project or a growth opportunity. For real options
there’s no need for a contract to specify the payoff, and the payoff can besachgtr
avoidance (Wallace, 2010).

Adding PHM to a system enables flexibilitythe decision-making process, and
creates opportunities for the decision-maker to manage the health of the. system
When a RUL is known, the decision-maker is faced with multiple options to choose
from, each of which will lead to a different outcome and thereby a different value

These options are depicted in the example shown in Figure 1.

1.2.6 Difference between real and financial options valuation

There is a body of literature treating the valuation of real and finamafi@ns,
which will be discussed in later chapters. It is however necessary to shigghtlos |
the differences upfront. Valuate is the technical term used in the optionsititess a

synonym of quantify.
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Cobb and Charnes (2007) state that a real option derives its value from the
potential fluctuations of the cash flows generating the value of the investmeiat proje
whereas financial options derive their values from potential price movemehts of t
underlying financial asset.

This dissertation capitalizes on the real options literature and introducesithe te
maintenance options whose quantification must be concerned with determining both a
value and an optimal exercise decision rule. The maintenance options derive their
value from the PHM system whereby the knowledge of the RUL gives theotecis

maker the flexibility to manage the system.

1.3 Evolution of maintenance paradigms

There are different approaches to maintenance, but, fundamentally, depending on
if a system has failed, when we think it will fail, how it has failed, therelecesions
that need to be made about how and when to maintain it. The goal is to maximize the
value of maintenance. Figure 6 shows different maintenance paradigms with thei
respective maintenance values. The top graph indicates the system health as a
function of time, and the bottom diagram shows the maintenance value as a function
of time. System health describes the ability of a system to perform isl@ute
functionality. For example, if a system is failed, it cannot perform itadete
functionality and is considered unhealthy. The dashed line in the top graph represents
the maintenance threshold; it is the threshold upon which maintenance should be

performed.
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Figure 6- Evolution of maintenance paradigms

Corrective (unscheduled) maintenance consists of maintaining a system upon

failure. This allows for the entire life of the system or component to be used. For

many systems, corrective maintenance is inefficient, as it can iresuity

downtimes, catastrophic failures, and unpredictability, which lead to a low
maintenance value. Preventive maintenance can be time-based or usagk-ased.
a low maintenance value if the time or usage to failure is not well characteri
because that throws away substantial RUL. Reliability Centered Maimter{RCM)
accounts for the reliability of the system and is more efficient than Hteviio
paradigms. However, it does not account for the actual usage conditions of the

system. Condition-based maintenance (CBM), enabled by PHM, allowsitislitg!
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of a system to be monitored in real-time, and is considered to be the paradigm with
the highest value, since it minimizes the unused RUL, avoids failures, and p@esent
lead-time for logistics management, among other benefits.

The maintenance threshold is an important characteristic in Figure 6 and
highlights the flexibility enabled by PHM. For unscheduled maintenance, the
threshold is fixed, i.e., maintenance is performed upon failure. For CBM, the
threshold is not fixed; the decision-maker has the flexibility to define thghibiick
based on the current and forecasted states of the system, resource &yailsége
conditions, etc. An example of exercising this flexibility is to wait, uséhalRUL,
and maintain just before failure, but due to uncertainties in the RUL prediction, the
closer to the end of the RUL one waits, the greater the risk of encountering an
unanticipated system failure. This observation is key when assessing thefvalue
PHM.

It is worthwhile to note that RCM, CBM, and PHM may have greater
implementation and support costs than unscheduled maintenance — and each of these
methods represents the best maintenance approach for particular typesno$ syat
this dissertation, our focus is on safety, mission and infrastructure Isygtams,
where the cost of failure and/or downtime is substantial. In such systems, the
threshold must be adjusted to harness the benefits of PHM by using the maximum

possible RUL and still avoiding failure.

1.4 Fundamental problem in maintenance of systemswith prognostics

The fundamental tradeoff in maintenance problems with prognostics is finding

the best time to perform maintenance that minimizes the combination of negnaini
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useful life that is thrown away and the risk of expive unscheduled maintenan
(which increasess you use up the RUL). The cost avoid® is an uncertail
guantity, decreasing in value since the cost tontaai will increase as the systenr
used through the RUL. The cost to maintain willlg@ial to thecost ofcorrective
maintenance if the system is run to failure. Fic7 shavs an illustration of the patt
of cost avoidance and revenue opportuniThe cost avoidance is differen
between the cost of naetected failure and cost of detected failThe diagram ol
the left in Figure Bhows that when the prognostic indion is obtained, the co
avoidance is high under the assumption that theaf@ detected failuris smaller
than the cost aiindetected failul. As the system is used through the RUL,
severity of the failure is constarut the probability of failure will increase al
eventually the system will fail and unscheduledntenance has to be perform
hence the cost avoidance goes to zero. As foretrenue (shown in the diagram
the right in Figure ), it is shown as an creasing function since the systen

operating more and the RUL is used rather thamthrawvay.

Prognostic indication

Cost avoidance
Revenue

Time

Figure 7- Trend of cost avoidance and revenue opportunitie

! Cost avoidancés a reduction in costs that have to be paid inftitere to sustaira system. Note, the reason that c«
avoidance is used rather than cost savings, isfttie value of an action is characterized asst savings, then somee wants
the saved money back. In the case of sustainnetiviti@s there is no money to give be
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1.5 Research opportunities
While there are cost-benefit models for PHM, there is a need for models th
address the following gaps: 1) Cost-benefit-risk models for decision supieort af
prognostic indication; life-cycle cost models make assumptions on the conglete li
cycle of a system, and do not incorporate the value of decisions from the time a
prognostic indication is obtained to the end of the remaining useful life. 2) Cost-
benefit-risk ramifications of maintenance decisions at the system liégsycle cost
models tend to focus on decision support at the enterprise level (fleet of syamteims)
are targeted at strategic decisions, such as logistics planning. Sudk evadieate
one ‘static’ maintenance policy by assuming one prognostic distancenglydie
optimal over the life-cycle) and compare it to a reference maintenarestigrar
(scheduled or unscheduled). There is a need for a cost-benefit model that addresse
the value of PHM for individualized maintenance policies for every systemaeta fl
3) A model accounting for all relevant uncertainties that can be updated-irmeal
for maintenance scheduling for system with prognostic capabilitiek.i8adel can
be used to set a dynamic maintenance threshold when requirements have to be met.
Table 1 provides a summary of the gaps in the literature with representative
references. The gaps and will be discussed in detail in Chapter 2. Although tiiere ma
be some attempts to address the gaps, the intent of the table is to highlight the

research major research gaps and opportunities.

17



Table 1- Characteristics of relevant optimization problems

, Real options for
. Maintenance .
Life-cycle cost models L maintenance
optimization models o
applications
Cost/benefit/risk at
X X
system level
Cost/benefit/risk at
: X X
enterprise level
Technical uncertainty X X
Non-technical
. X
uncertainty
Value of decisions afte|
obtaining RUL
prediction
Options arising to the X
decision-maker
Outcome requirement$ X
Use PHM information
for dynamic
maintenance thresholq
Feldman et al. (2009),
Luna (2009), Saxena et Dadhich and Roy Koide et al.
Representative al. (2010), Reimann et (2010), Camci (2001), Miller
rgferences al. (2009), Grubic et al.| (2009), Keller et al. and Park
(2009), Jazouliand | (2001), Naikan and (2004), Jin et al
Sandborn (2010 and Rao (2005) (2009)
2011)

1.6 Scope and objectives of this dissertation

This work addresses three major gaps in health management for systems wit

prognostic capabilities. The objectivefsthis dissertation are:

1. Define a new class of maintenance options to frame the flexibility ehble

PHM. Quantifying the options allows the value of PHM to be established and

use of PHM in systems to be improved.
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2. Develop a methodology to represent the value of different options arising afte
a remaining useful life is obtained.

3. Develop an algorithm to quantify the wait to maintain option. The value of
this option will represent the additional value obtained from the PHM system,
and will present a solution to the fundamental tradeoff in the maintenance of
systems with prognostics. The algorithm can be updated in real-time as new
information is obtained.

4. Develop a methodology to define a dynamic maintenance threshold for
systems with PHM in order to maximize maintenance value.

5. Apply the methodologies to the maintenance of wind farms to demonstrate the

contributions of the dissertation.

1.7 Mathematical abstraction of the problem

After a prognostic indication is obtained, the decision-maker wants to know what
the expected value of waiting to maintain is, as opposed to maintaining whentthe firs
opportunity arises. Answering this question will establish a system-lesebenefit-
risk model to show the value of PHM for individualized maintenance policies, and set
a dynamic maintenance threshold based on PHM information.

If we let X; be the value of the mission at the current time - a combination of cost
avoidance opportunities and opportunities for revenue generated from running the
system, it is desirable to know the expected valug af the maintenance option of
waiting is exercised (maintenance is delayed for a period of time)r&latsonship is

expressed mathematically in equation (3):
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E[V(Xi+1)1Xi] (3)

Equation (3) represents the value obtained from running the system through the
RUL; hence represents the additional value obtained from PHM. This will help
maximizing the benefit from PHM, quantify the value of waiting, and set a dgnam

maintenance threshold. Maximizing (3) and expressing it in abstract form:

maximize(the value of waiting ) (4)
s.t
value = f(cost avoidance, revenue)

cost avoidance = f(reliability, maintainability)

There are several steps enabling the solution of this problem; they will be

discussed in the following chapters.

1.8 Dissertation overview

This dissertation is structured as follows: Chapter 1 provides the background and
key-concepts associated with the value of maintenance options problem. The
objectives and a mathematical abstraction of the problem are presempter
surveys relevant previous work on health management for systems with prognostic
capabilities, and identifies research gaps. Chapter 3 presents maintepizote
whose quantification represents the value of actions after prognostidimwli@ad a
method to incorporate the value of flexibility when quantifying the benefits M.PH
Chapter 4 presents an algorithm based on the least squares Monte Carlo (LSM)

method to put a value for the waiting option (one type of maintenance options). The
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contributions of the dissertation are demonstrated with a case study of viaime$ur
in Chapter 5. Chapter 6 concludes the dissertation, lists the contributions, the broader

impact of the work, and suggests key topics for future work on the subject.
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Chapter 2: Literature Review and Research Gaps

This chapter reviews: the work on health management for system with prognostic
capabilities, relevant maintenance optimization problems, and real options for
engineering and maintenance applications. The gaps in the literaturghdighited

and will be addressed in subsequent chapters.

2.1 Potential benefits of PHM

Systems include PHM for a number of reasons (Pecht, 2008), (Feldman et al.,
2009), and (Jazouli and Sandborn, 2010). The following is a list of the potential
benefits of PHM:

e Failures avoided
o Minimizing the cost of unscheduled maintenance
o Increasing availability
o Reducing risk of loss of the system
o Increased human safety
e Minimizing loss of remaining life
o Minimizing the amount of remaining life thrown away by
scheduled maintenance actions
e Logistics
o Better spares management (quantity, refreshment, locations)
o Lead time reduction
o Better use of inventory
o Optimization of resource usage
e Repair
o Better diagnosis and fault isolation

o Reduction in collateral damage during repair
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¢ Reduction in redundancy

e Reduction in no-fault-founds

2.2 Life-cycle cost models

A number of papers present proposals for adopting PHM to articulate an
economic justification through life-cycle cost models, which are part ofindsss
case. Examples of such models include return on investment (ROI), total value, and
technical value. The following sections present models supporting the impédiment
of PHM. While some models may fit in more one category, the intent is to proede t
objectives of using particular approaches.

Return on Investment (ROI) is a useful means of gauging the economicaherits
adopting PHM. The determination of the ROI allows managers to include
guantitative, readily interpretable results in their decision-making. R&ysis may
be used to select between different types of PHM, to optimize the use otalparti
PHM approach (optimize the prognostic distance in this case), or to determine
whether to adopt PHM versus more traditional maintenance approaches (Feldman et

al., 2009). ROl is typically defined by:

(Return—Investment) _ (Avoided Cost) 1 (5)
Investment ~  Investment

ROI =

where the return in the case of PHM is generally a future cost avoidance.

ROI calculations are application specific as the breakdown of cost avoidance and
investments can differ from one application to another. Research that addtdss R
PHM includes the ROI associated with PHM ground vehicles, power supplies,

telecommunication and electronics (Vohnout et al., 2008) (Tuchband and Pecht,
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2007) (Wood and Goodman, 2006) and (Feldman et al., 2009). NASA proposed the
ROI of prognostics in aircraft structures (Kent and Murphy, 2000). Banks and
Merenich, (2007) expressed that ROl was maximized when the time horizon was the
greatest, and when the number of vehicles and the failure rates were the larges

Life-cycle cost models to support PHM implementation can be justified with
metrics other than ROI. Banks and Mereneich (2007) provided a cost-benefsisnaly
of PHM for batteries within ground combat vehicles using the Trade Space \&sualiz
software tool. An analysis of PHM for JSF aircraft engines was developegaus
methodology that employed Failure Modes, Effects, and Criticality Argalysi
(FMECA) to model hardware (Brotherton and Mackey, 2001).

Gurbic et al. (2009) proposed a Product-Service System (PSS), which offered a
bundle of products and services where emphasis shifts from selling a product to
selling the use of a product. This work was a move towards performance-based
contracting; a contracting mechanism that allows the customer to pay onlyhghen t
Original Equipment Manufacturer (OEM) has delivered the outcomes, rather than
merely paying for activities and tasks (Ng et al., 2009). Leao et al. (2088)lokl a
set of metrics developed to evaluate the performance of PHM and a cost benefit
analysis (CBA) was included in their review. Yang and Letourneau (2007) proposed a
method to quantify the cost savings expected from a given prognostic model that
takes realistic inputs from the user. Wang and Pecht (2011) presented a cdsomode
1) show the economic merit for the implementation of canaries in electrorecsyst
and 2) the time to replace the line replaceable unit based on the information from the

canary. A review of cost-benefit-risk metrics is also provided by Saxehg2010).
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2.3Maximizing maintenance value

Another approach for supporting the application of health management for
systems with prognostic capabilities are models to maximize maimte value.
These models consist of availability maximization, optimization of somefibe
function, logistics optimization and others.

Jazouli and Sandborn (2010 and 2011) proposed a ‘design for availability
method’ where they solve for system attributes that will result in a desired
availability. The majority of previous work on subject tackled the problem from the
opposite direction: given system attributes, generate the systemabdirgi The
design for availability model could be used to generate system reliabpiyation,
sparing, etc., for a specific availability, i.e., for a specific uptime and dm&nti

A popular approach is to optimize an objective function while honoring the
constraints on requirements and resources to arrive at a beneficial maiatenanc
policy. Although some of the methods may be cost-benefit metrics or accounted for i
the business cases for PHM, they can be used for optimal maintenance policy.
Kacprzynski et al. (2001) discussed a prognostic modeling approach based on
cost/benefit to optimize time for on-line waterwashing or crank washingdor t
LM2500 and Allison 501-K17 gas turbine. Khalak and Tierno (2006) proposed a joint
optimization problem that is shown to be equivalent to a shortest path problem. Their
work intended to give the tradeoffs in using damage prediction technologies in the
overall health management solution. Luna (2009) discussed the impact of PHM on
the maintenance policy and the benefit from condition-based maintenance {K2M

is enabled by PHM, and the maintenance attributes and metrics for mainterance f
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systems with prognostic capabilities. Reimann et al. (2009) proposed a sahedul
algorithm that leverages CBM data to determine when maintenance should be
performed. The objective of their work is to reduce the cost associated with
performance based contracts to improve profit margins. An example coneisiitg
aircraft was analyzed and the results indicated that significantasosts can be
achieved by utilizing a CBM scheduling algorithm. In addition, to the maintenance
cost savings, the CBM scheduling algorithm is also able to identify potentialcesour
limitations within the maintenance organization. Hoyle et al. (2007) proposesi-a ¢
benefit analysis as a multiobjective optimization problem. One of the proiddms
address the inspection interval. Khalak and Tierno (2006) presented a methodology
that can be applied for the estimation of the supply chain benefits of prognostics
applications. This methodology yields an optimal stock level for each node in the
supply chain. The stock level is a function of the lead time provided by the
prognostics, taking into account some restrictions and some prognostics design
constraints. Wang and Hussin (2009) discussed a scheduling problem of condition
based maintenance based on oil analysis where both monitored external and internal
variables were considered.

MacConnell (2007) defined a set of scenarios made possible by the ideal
integrated structural health monitoring (ISHM) system. These scenaddbe
technologies associated with them were evaluated for their system ,ichgsigh
impact, innovativeness and timeliness. Keller et al. (2001) proposed a method to
estimate the benefits of prognostics in specific applications where the sugplife-

cycle payoff as well and include an assessment of the technical riskagphcation.
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Drummond and Yang (2008) proposed a method to ‘reverse engineer’ the effective
range of algorithms and estimate its potential cost savings. Drummond aad Hol
(2006) and (Drummond, 2007) proposed cost curves as a means to evaluate the

effectiveness of classifiers and to choose among maintenance policies.

2.4 Other relevant optimization literature

Availability maximization is an important problem for many industries such as
avionics, manufacturing, production among others. The objective is typically to
maximize the availability of a system throughout a finite or infinite horizon
accounting for some downtime events such as maintenance and sometimes
accounting for reliability or the degradation of the systems that is aftes tepicted
in Markov models. The decision variables are typically elements of the meance
problem such as number of spares or crews, etc. Dadhich and Roy (2010) is a good
example of availability optimization for preventive maintenance. Their obgeistto
maximize availability and a benefit function.

Other relevant optimization problems are real-time which optimizatiensr&b
evaluation and alteration of operating conditions of a process continually to maximi
the economic productivity of the process. This optimization method is prevalent in
the chemical engineering realm where the process is continuously monitdred a
optimized to generate maximum availability and profit. In an online decision
problem, one makes a sequence of decisions without knowledge of the future. Each
period, one pays a cost based on the decision and observed state (Groethschel et al.

2001).
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Scheduling maintenance is a problem that has been studied for decades and was
applied for different maintenance paradigms: scheduled, condition-based,
opportunistic maintenance, and others. The most relevant scheduling problems are for
condition-based and the opportunistic maintenance. In opportunistic maintenance, the
problem is to choose the optimal number of subsystems to maintain when system is
down for maintenance. In the scheduling problem, the decision is on the optimal time
to perform maintenance give a set of constraint (degradation of systertic$pgis
etc.). Camci (2009) presented a model to use PHM information for scheduling
condition-based maintenance.

Maintenance scheduling models are proposed in the reliability and operations
research literature: Wang et al. (2010) used the delay time concepdtddubng
inspection. Li et al. (2009) develop a reliability based dynamic maintenan
threshold. Bouvard et al. (2011) presented a method for the maintenance optimization
of vehicles. The model in Bouvard et al. (2011) addresses maintenance scheduling
and grouping based on condition of system. Aissani et al. (2009) presented a
reinforcement approach for the dynamic scheduling of maintenanceridbks i
petroleum industry. Aissani et al. (2009) also provide a review of the state of the ar
in dynamic scheduling.

The inventory problem has been long studied and sometimes referred to as a the
newsvendor problem. Generally speaking, a policy is to be derived to satisfy a
demand that may be stochastic and constraints on the inventory and sometimes

penalties. Inventory levels drops until a point where a reorder is executsds Thi
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analogous to the availability being considered where availability rew/&ys be
maintained above a certain level. In such problems demand is considered stochastic.
Table 2 gives examples of some of the optimization problems listed in this

section along with the objective function.

Table 2- Examples of relevant optimization problems

Problem Objective function Author(s), year
Avalilability o Dadhich and Roy,
optimization max(system availability) (2010)

Scheduling and failure and

maintenance min( ! sk ) Camci, (2009)
optimization maintenance risKks

Maximize benefit (benef it function for) Kacprzynski et al.
function m individual systems (2001)
Dema}nd-_based min x (inventory) Naikan and Rao,
optimization x (2005)

2.5 Real options

Options are tools that originated in the financial world and then extended to real
assets to solve capital budgeting problems where the decision-makeg has th
flexibility to invest in a project or growth opportunity. Formally, an option isneef
as the right but not the obligation to take some action now, or in the future for a pre-
determined price (Copeland and Antikarov, 2001). Since the dissertation extends to
real options theory to maintenance problems, it is necessary to summarizekhe wor
done on real option.

Real options have been used for engineering applications. There is a body of

literature that addresses the application of real options to engineeringqrogie
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3 below summarizes some of the most common types of options, their description,

and the industry where they are commonly used (Trigeorgis, 1993).

Table 3- Common real options (Trigeorgis, 1993)

Category Description Examples
Defer Wait for a number of years Natural resources
before developing
Time to build Abandon if new information is | R&D industries
unfavorable (pharmaceuticals)
Alter: expand, Expand if conditions are . .
Mine operations
contract favorable
Abandon Abandon actions permanently Airlines
Switch option Use different inputs Consumer electronics

Real options are increasingly being used in decision support systems. Kim and
Sanders (2002) develop a real options framework for strategic decisions in imtestme
in information technology; the work emphasizes on competitor reaction and considers
three options: growth, postponement and abandonment. Zhang and Babovic (2011)
propose a real options framework that consists of real options methods, Monte Carlo
simulations, decision analysis techniques and evolutionary algorithms to dedign a
manage projects in the face of uncertainty. Zhang et al. (2008) study the dgyoémic
grid computing using a real options framework. The uncertainties in price and
demand are the main motives for using this framework. Schober and Gebauer (2011)
compare the value of flexibility using decision trees, real options, and aniexplic
assessment of uncertainties; real options is recommended as an atiatfimesuch
problems.

Real options analysis has also been used extensively in engineering technology

applications such as RFID (Wu et al., 2009) (Lio and Lu, 2009). Past research has
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focused on cost benefit ratios, discounted cash flows, or net present values to support
the decision. The motivation for using ROA in engineering decision making focuses
on its ability to account for the uncertainties and the flexibility in the
management/investment.

Real options have also been used for maintenance applications. For example,
existing work includes the comparison of different maintenance strategidseand t
effects on the total costs for the maintenance and management of an é&xidgeg
for thirty years (Koide et al. 2001). Real options have also been applied in the
maintenance, repair, and overhaul (MRO) industry (Miller and Park, 2004). Miller
and Park compare present value (PV) and RO. The PV analysis resulted in a no-go
decision; however using the real options framework justified an investment.alin e
(2009) used an option-based cost model for scheduling joint production and
preventive maintenance for a manufacturing industry when demand was umcertai
The option-based mathematical model in (Jin et al., 2009) provides recommendations

for maintenance decision in the environment of uncertain demand.

2.6 Research gaps

While there is a body of literature on health management for systems with
prognostic capabilities, a number of gaps have been identified.

Existing cost-benefit models do not incorporate the value of contingency actions
(options) that are enabled by PHM. Furthermore, existing cost-benefitswtadeot
present uncertainty management methods and quantify risks for contingency-
management based on post-prognostics reasoning; this gap was also highlighted in

(Saxena et al., 2010).
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Existing cost-benefit models for showing the value of PHM are not applicable to
individual systems. State-of the art models such as Sandborn and Wilkinson (2007)
and Feldman et al. (2008) are implemented as discrete event simulatars anty
applicable at the enterprise-level (to a fleet of systems). The madeina a
population of systems and derive the economic merit of implementing PHM by
finding the prognostic distance that minimizes the expected life-cyd®tas
maintenance policy, and compare the result to a reference maintenaadigmar
(e.g., unscheduled). The single prognostics distance assumption (which may be
optimal for the fleet over the support life of the fleet), represents asmghtenance
policy. There is a need for a model to address the value of PHM at the system-leve
for all values of prognostic distance since systems in a fleet may havieliradized
maintenance policies.

There is a need for models that use PHM information to schedule maintenance.
Such models should have the capability to be updated as new information is obtained.
Very limited models in the literature address this point.

PHM is believed to be an enabler of outcome-based contracts, but quantification
of this claim and its application within outcome-based contracts is in its infancy
Existing models supporting PHM as an enabler of outcome based contracts include

Jazouli and Sandborn (2011) and Grubic et al. (2009).

2.7 Summary

This chapter surveyed the literature for the health management of systeams

prognostic capabilities along with some publications that are relevant toothiems
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solved in this dissertation. The gaps in the literature are identified and will be

addressed in the subsequent chapters.
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Chapter 3: Maintenance Options to Manage Flexybitihabled
by PHM

This chapter starts by discussing risks and uncertainties in decision making.
Maintenance options are then presented as means to manage the flaxibility
systems, and a mapping from real options to maintenance options is then presented
with the appropriate assumptions. Valuation methods and the limitations fangbeir
in the PHM problem are discussed. A new hybrid methodology is presented. The
methodology incorporates the value of the options when quantifying the benefits of

PHM.

3.1 Risks and uncertaintiesin decision support

Uncertainty has long been identified as an important factor in the decislongma
process for health management of systems. It is at the core of makisticreal
business cases or health management decisions. Uncertainty captionsprediat,
customer demand, resources prices, environmental factors and others. For example,
the speed of wind blowing through a particular location cannot be known before it is
realized, and thus probabilistic models are needed. There are multipltoziasas
of uncertainties in capital and infrastructure intensive systems. Oneuparti
classification is proposed by (Miller and Lessard, 2001) who definedslaye
uncertainty, a simplification of which is shown in Figure 8. The decisidkens
ability to influence uncertainty decreases as we move away from thesnraik to
the larger rings. The smallest ring is the technical risk. Those anskbewth the

operation, technology, management. The second ring is less influenced by the
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decision-maker and corresponds to the uncertainties in the industry and the
competition. If a competitor in the wind energy business introduced more reliable
turbines, this will affect other companies’ business and have less influbece w
reacting to it. The two outer rings’ uncertainty (i.e., market, and dpoaaesponds

to exogenous uncertainty, which decision-makers can'’t directly influencentrol.

Natural, e.g., weather

Market, e.g., price of energy

dustry, e.g., competition

ical, e.g., prediction

Figure 8- Classification of uncertainty, (Miller and Lessard, 2001)

The choice of uncertainties pertains to the problem under consideration. In some
problems for instance, natural uncertainty may have a much bigger impact than other
types of uncertainty. In the case of wind energy for instance; the outcomes of the
project are highly dependent on wind speed and conditions at a particular site.
Assessing the natural conditions and accounting for the uncertaintiesats$eagth
weather at the site under consideration is of prime importance and actecih the

decision-making analysis results.
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Technical uncertainty is at the core of the maintenance managementrpasbie
significantly influences the outcome of the decision. Any prediction hastamtees
associated with it, which can influence the maintenance costs. Techniadhuntge
can be broken down to aleatory and epistemic. Aleatory uncertainty is inherently
random, new experiments and more data cannot eliminate this type of uncertainty,
and it is usually modeled by distributions. Epistemic uncertainty is due tadkefl
knowledge and can be reduced by further data collection and experimentatiob (Ayyu

and Klir, 2006). Figure 9 shows how the uncertainty relates to levels of knowledge.

Maximum uncertainty

r Y
A\ J

Present uncertainty

[
,'lT "T
/r ’I
Complete Present state of Ceftainty
. 4 h ~
ignorance /" knowledge !

/’ !

II’ !

~~ Epistemic Aleatory ;
[ | |

Present state of Perfect Certainty
knowledge state of
knowledge
Figure 9- Uncertainty and levels of knowledge, (Aughenbaugh and Paesg
2005)

Various modeling techniques have been presented for management uncertainty
such as simulations while assuming some stochastic process, decision treeig) binom
lattices (BL), tree analysis, etc.

Generally speaking, depending on the characteristics that can be assodiat

the problem at hand, the choice of method to account for uncertainty is dictated. If
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uncertainties can be represented by a set of probabilities, then decision tneéaor si
methods can be appropriate. Rule and fuzzy logic can also represent some types of
uncertainties associated with domain knowledge and experts’ opinion (Ayyub and
Klir, 2006). When distributions can be associated with uncertainties, then simulations

may be a preferred way of assessing the effect of uncertainty.

3.2 Theflexibility enabled by PHM: maintenance options

A number of the benefits (cost-avoidance opportunities) inherent to PHM are
derived from the knowledge of the RUL. After a prognostic indication, the decision-
maker is faced with several actions that can be taken to manage the hewadth of
system. Examples of the actions that can be taken are fault accommodatiomgchang
loads, and tactical control. Bonissone (2006) proposes a temporal segmentation for
decisions for systems with PHM, where the tactical and operational decistbes at
object level are examples of options after prognostic indication. Hence thewtecis
maker has a set of options among which they can chdbederm options will be
used in the remainder of the dissertation to denote a choice or action the decision
maker can take after a prognostic indication

Figure 10 shows an example of general categories of options. Note that the
options post-prognostic indication can be system specific, but the intent here is to
provide a general framework for understanding the options. The decision-maker ca
choose among a host of options. For instance, maintenance can be carried out
immediately after the prognostic indication, or it can be delayed in order to use up the
RUL. Alternatively, the mission can be abandoned completely if it is judicious to do

SO.
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Maintain

Alter mission —>  M\aintain

Switch inputs Wait to

(redundancy) \\
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Increaseload maintenance
Prognostic ] S - RUL
indication Wait to /
perform Wait to
maintenance \l perform Maintain
Abandon maintenance
mission

Reduceload | 7 Maintain
on sy stem

Figure 10- Options arising after a prognostic indication

For a fleet of systems, it is desirable to know the maximum value from PHM tha
can be generated. Choosing the options with highest values for individual systems
will result in a choice of maintenance threshold based on maximum revenue. This

concept is illustrated graphically in Figure 11.

System 1 System 2 ceee System n
\ 4 Y
= =-=x, -, S,
] ) i )
! Maintenance Maintenance Maintenance ! ! Maintenance Maintenance Maintenance !
i option 1 option 2 optionn ! i option | option 2 optionn !
\ 4 \ ’

- —_—— —_——— - - - -

Y

[ Threshold based on ]

maximum value

Figure 11- Options acting on a fleet of systems

The key property of an option is the asymmetry of the payoff, an option holder
can avoid downside risks and limit the loss to the price of getting the option, while
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being able to take advantage of the upside opportunities (Adner and Levinthal, 2004).
The components that make up real options problems are the following (Copeland and
Antikarov, 2001) (Dixit and Pindyck, 1994) (Adner and Levinthal, 2004) and

(Greden, 2005): 1) Management flexibility; 2) Uncertainties affigcine decision; 3)

Time and resource restrictions on making and implementing a decision; and 4) Cost
of acquiring (and sustaining) flexibility.

PHM installed on a system enables condition-based maintenance where the option
holder can perform maintenance contingent on the condition of the asset. If the option
is not exercised, the option can expire without being used and unscheduled
maintenance has to be performed. In the latter case, the option-holder would have
invested in PHM but did not use it, hence the asymmetry of the payoff.

Risks and uncertainties are part of any engineering problem. PHM dssess t
reliability of a system in real-time and enables risk mitigation. ifakes real
options an attractive tool for assessing the return from a PHM system ortetgorit
and its effect on the overall management of the system.

For options the action can be taken only within a specific period of time. In
systems with PHM capabilities, maintenance can be performed at anyito the
end of RUL where the system fails.

Finally, options have a cost associated with them. In maintenance problems, the
investment in implementing and sustaining PHM gives rise to maintenance ofttions.
is worthwhile noting that one investment in PHM gives the decision-maker ananfinit
number of options. Waiting is one option but can be exercised at many points in time.

This is analogous to American option in the finance or real options space.
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3.3 Mapping from real to maintenance options

Kodukula and Papudesu (2006) propose a mapping from financial to real options.
This dissertation extends the mapping to maintenance option which will lay the
ground for methods enabling building cost-benefit-risk models. Table 4 shows the

mapping between real and maintenance options.

Table 4- Mapping from real to maintenance options

Real Options Maintenance Options
Asset/project System (asset/project)
“Value” of underlying “Value” of underlying uncertainties, cost avoidanceg
uncertainties opportunities, and revenue from operation of the
system

14

Premium to buy the option | Sunk cost to implement and sustain the PHM systém

Cost to carry out the real | Cost to support maintenance action
option

Time by which the real Prognostic distance
option has to be carried out

The value of waiting (and related options such as abandoning) are the key to
applying options theory to the PHM problem. Hence, we consider the option to wait

and the option to abandon and analyze further in the dissertation.

3.4 Methods for quantifying flexibility in projects
Different methods for quantifying flexibility (real options) have bees@néed in

the literature. Some of them have their roots in finance and are the application of
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financial options pricing methods to real options. Others are specific to reaipti
Borison (2005) presents a review of the most common methods used for quantifying
flexibility with the assumptions made in each method. The paper provides a great
comparison of different valuation methods for the same example. The major take-
away from the paper is that one ought to be careful about the assumptions made for
the valuation of options in order for the analysis to culminate in realistic and
meaningful results.

Quantifying flexibility with models borrowed from financial options is the mos
commonly used approach in the literature. Models include the Black-Scholes (B-S)
formula, and binomial lattices. When the problem is dominated with market risk
(such as the valuation of an oil company’s decision to acquire land and drill for oll,
with oil price being the only uncertainty considered) the methods used for financial
option analysis can be appropriate. For projects dominated with technical riskt proje
management methods such as decision trees represent the value of thigyflexibil
better (Borison, 2005). For projects including both market and technical risks, a
combination of methods from the financial realm and decision sciences rephesent
value of the project better (Smith and Nau, 1995) and (Borison, 2005). Stochastic
dynamic programming has also been used to deal with flexibility in psdjamlving
technical risks Eckhaus et al. (2009) and Wallace (2010).

Besides the types of risks in the problem, path dependence is a strong influential
factor for the choice of method to value flexibility in engineering projects.
Engineering projects are typical path dependent in that the value of the project

depends on the actions taken by project managers that will change the value of the
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project. This is not problematic in financial options or projects where there’'sein as
that can be traded and the price is dictated by the market.

Monte Carlo simulations is the preferred method for valuating flexibdigy (
Neufville and Scholtes, 2011) because of its versatility in modeling the obthe
project with and without flexibility. This dissertation presents a hybrichatet
consisting of Monte Carlo simulations and decision trees to encompass the path
dependence of engineering projects, and the lack of traded assets thattokverts t

choice of methods inherited from finance.

3.5 Hybrid ssimulations and decision trees

We introduce a hybrid methodology that combines simulations and decision trees
to incorporate the flexibility enabled by PHM in the valuation process. In adraadit
cost-benefit analysis, the timeline is first identified. Then the costsacogtance,
and uncertainties are identified and represented on the timeline. A cost-benef
analysis is performed by using some metric such as net present valueqtmdalc
cash flows to time 0), and then sensitivity analysis. The hybrid methodolodgled a
to such cost-benefit analysis and aims at including the options arising over the
timeline. For example, in the case of a wind turbine; if the cost of downtime is
smaller than the cost of failure, then the decision-maker may be betteendisaxg
the abandon option and lose avoid an increase in the cost of failure on the expense of
losing power production. Figure 12 is a flowchart for the methodology. Onc&lan R

is predicted, the options are identified and selected to be included in the model.
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Figure 12- Procedure for quantifying flexibility

Uncertainties are first identified and then split between Monte Carloatiors
and decision trees. Uncertainties that have probability distributions assoditted w
them can be represented in Monte Carlo simulations. Uncertainties that can be

described with discrete probabilities are best represented in decision trees
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3.6.1 Uncertainties in Monte Carlo simulations

Monte Carlo (MC) simulations are suitable for analyzing the range of p@ssibl
outcomes for maintenance policy alternatives. They calculate therparfoe of each
alternative mathematically, considering the joint distribution of the uainé&#s.

First, they sample from the distributions of possible circumstances, and then the MC
process repeats the sampling process many times, giving each possible futur
circumstance an appropriate chance of being sampled. It thus createibatidis of

the performance of the policy that is consistent with the joint distribution of p@ssibl
circumstances de Neufville and Scholtes (2011). The CBM policy takes options as
input, which differentiates it from the traditional cost-benefit analyses.atiesunts

for the cash flows generated from exercising the option. For instancengnaiti

perform maintenance will generate more revenue from the systérougtt

maintenance cost may increase).

In a valuation methodology, quantities may be associated with uncertainties. A
number of those uncertainties can be represented with probability distributions. Some
of the distributions are obtained from fitting distributions to historical datay or b
assuming some distributions. Distributions are generally represented diyadipty
density functions.

An example of a probability density function of an uncertain quantity with a
triangular distribution is defined by three parameters: minimum (a), maximuym

and mode (c). The distribution has the following probability density function:
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0, x<a (6)

2(x—a)
—(b_a)(c_a), a<x<c
2
fG)=3 = X=c
2(b—x)
b0 c<x<bh
\ 0, b<x

Dependencies can be assumed through relationships between the different
variables in the equations considered. For a number of methods to introduce
dependencies between uncertain quantities the readers are referred to (Vose, 2000)

Time-dependent uncertain quantities can be modeled with a stodtiffstiential
equation (de Neufville and Scholtes, 2011, and Oskendal 2000); an equati@n wher
one or more term is a stochastic process. Such equations are ouseddél
uncertainties and their propagation with time. An example offardiitial equation

to propagate uncertainty with time is:

dXt = .uXtdt + O-Xtth (7)

whereX; is the value of the quantity being simulated at timeis a drift component,
o IS a variance component, aid is a Brownian motion (also known as a Weiner
process). An example of propagating uncertainty with such a metha@sented

later in this dissertation.

3.6.2 Uncertainties in decision trees

To solve a decision tree, latbe an event ang a random variable. Denofa|S}
the probability assigned to the evénbn the basis of a state of informatisrand

{X|S} the probability that the random variable assumes the ¥alue. the probability
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mass function given a state of informatt®niVe use mass function here since there is
a discrete set of probabilities. We shall assume the random variable takes on some

value, so the probabilities sum to 1:

> sy =1 ®)

The expected value of the random variable over its probability distribution is:

< x|S >= z x{x|S) ©)

X

An example of a decision tree is shown in Figure 13. The expected value of the

cost of maintenance is calculated as following:

< x|S > = Costyp; + Costyp,+ Costsp;
< x|S > =1,000(0.65)+15,000(0.1)+2,000(0.25)

<x|S> =2,650

Cost 1= 1000 with probability 0.65

- Cost of maintenance

Cost 2= 15000 with probability 0.1

Cost 3= 2000 with probability 0.25

!

Figure 13- Example of a decision tree
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3.6.3 Combination of decision trees and simulations

After accounting for both types of uncertainties, simulations and decisiorateees
combined. The simulations and decision tree will result in one distributiof:bet
the area of the probability density function for a scenatet A =1. Letp; be the

objective probability of scenario

S

(10)

(11)

3.6.4 Value at risk and gain
The net present value (NPV) takes into consideration the time value of money and
discounts all future cash flows to the current time using a discount rate. NPV can be

calculated using the following equation:

N 12)
NJE’V_.Z;a—:—l_F

wheret is the time of the cash flow is the total timej is the discount rate ar@ is
the cash flow at the point in time.
Incorporating the flexibility in the valuation process will enable the detextion
of the value provided by PHM when using the system through the RUL. In the
valuation of the maintenance of wind farms (treated in Chapter 5), the decision-maker

has options to delay maintenance when high wind speeds are forecasted or to stop
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operation when the cost of failure is high; the value of delaying the maintermahce a
stopping the operation is incorporated within this methodology.

The distribution for the outcomes is represented by the target curve (delldeufvi
and Scholtes, 2011), which is also known as the Value at Risk and Gain (VARG)
diagram. The VARG diagram shows the probability that a realized outcome will be
lower than any specified level or target. The VARG diagram graphs the divaula
value associated with any possible policy. It builds upon the Value at Risk (VAR)
concept from finance that identifies the risk of losses that may be incurred.

Figure 14 shows a hypothetical VARG diagram. The horizontal axis is the net
present value (in terms of monetary units (MU)), and the vertical axis is the
cumulative probability. The diagram shows a number of useful quantities: 1) The
range of results, reflecting the dispersion in outcomes. 2) The risk of theidewhs
any specified level (referred to as the Value at Risk). For example jshe20%
chance of losing more than 2 MU. This is the value at risk and is read by reading 0.2
on the vertical axis and checking the corresponding point on the curve. There is an
80% chance that the results will be less than a gain of 4.5 MU. This is the 80% value
at risk (complement of the 20% value at gain) and is read by taking a horirostal |
intersecting the curve from 80% on the vertical axis. 3) The differenaeéethe
median value at a cumulative probability of 50% and the average value caused by the
asymmetry (which can reflect the asymmetry in penalties). The edpeet@resent
value (ENPV) is found by taking the reading on the curve corresponding to the 0.5

probability on the vertical axis.
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Figure 14- VARG diagram

Under traditional decision analysis, at the chamuges one multiplies tr
expected NPVs by the corresponding probabilitiesht@in an expected value for 1
chance node. In this hybrid method, instead of iplylhg one single value (i.e., tf
expected\NPV for each scenario), one multiplies the enti®RG distributions o
NPVs by the corresponding objective probability anchbines the distributions in

one VARG that describes the chance ni

3.6 Volatility estimation

Volatility is a measure of thotal value of the underlying assetmissionover
its lifetime. It signifies the uncertainty assoe@with the cash flows that compr
the underlying asset value (Kodukula and Papud6). The volatility of a projec

can be observed from the corf uncertainty (Figure 15)t consists of several pat
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within the boundaries of the cone. Each path corresponds to a particular project

payoff.

Cone of uncertainity

PR
——

e — Each path
Project | ="———=—— represents
Payoff === one simulation
$

Time, Years

Figure 15- Cone of uncertainty (Kodukula and Papudesu, 2006)

Copeland and Antikarov (2001) propose a method for estimating the volatility
that is based on a discrete event simulator. The method consists of using simulation to
develop a hypothetical distribution of one-period returns in lieu of the unavailable
historical distribution of returns. Then on each simulation trial, the value of the ass
is estimated at two different points in time. The ratio of these two estimalges
produces an estimate of the rate of return. Compiling the rate of returatestimom
all simulation trials creates a rate of return distribution.
Although volatility is not used directly in the valuation methodology proposed in
this dissertation, but it provides the intuition about the change of value in a project
with time and uncertainty. It can also be useful for modeling uncertaintissrive

projects.
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3.7 Summary

This chapter discussed the uncertainties and their importance in decision support
problems. Maintenance options are introduced as means to quantify the tiexibili
enabled by PHM. A mapping from real to maintenance options is presented and a
review of the quantification methodologies is presented. Finally, a hybridtiiealua
methodology is presented and is used for the quantification of the flexibility dnable

by PHM.
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Chapter 4: The Value of the Waiting to Maintain iOpt

Chapter 3 proposed maintenance options as a means to define and quantify the
flexibility enabled by PHM. In the time frame from the prognostic intbeeto the
end of the RUL, the decision maker is concerned with the best waiting time to
maintain in order to maximize the use of RUL and minimize the risk of failurthid
chapter the wait to maintain option is proposed as a solution to this fundamental
problem. We quantify the waiting time using least squares Monte Carlo methods. The
value of the option indicates if the decision-maker is better off maintaining
immediately or waiting to perform maintenance. It is also the value obtaorad fr
PHM at the system level. This capability analyzes individualizedteraance
policies for system as opposed to one maintenance policy (based on one optimal
prognostic distance over the life-cycle). The value of the wait to maintain option i

extended to set a dynamic maintenance threshold based on PHM information.

4.1 Thevalue of waiting

With the knowledge of the RUL, it is desirable when is the best time to maintain
while maximizing the benefits from PHM. In the case of wind turbines, it isathéss
to know when to maintain, or exercise maintenance options to allow when the
decision-maker to realize the largest cost-avoidance opportunities wimshiamg
the most from wind power generation. Figure 16 shows a schematic of the
degradation of three hypothetical systems (the schematic is not speeaif@tticular

system; it is intended to represent the degradation).
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Figure 16- Stochastic degradation of a system

The health index is a measure of the health of the system and is plotted versus
time. If the performance measure reaches 100%- the failure threshold, then
unscheduled maintenance has to be performed. The decision-maker has the right to
exercise maintenance options any time before the end of life of the systémgWa
options are depicted by the dashed lines labeled dynamic threshold.

The fundamental objective of system maintenance with prognostics is to
maximize the use of the remaining useful life while concurrently minimihiagisk
of failure. This tradeoff was discussed in Chapter 1 and represented in Figure 7. The
cost avoidance is an uncertain quantity, decreasing in value since the cost tonmainta
will increase as the system is used through the RUL. The cost to mairitdie wi
equal to the corrective cost of maintenance if the system is run to failure.

Decision-makers are concerned with the value of delaying an investment in
maintenance given the flexibility enabled by PHM. This is essentiallgribeledge
of the time when waiting is no longer beneficial. We start by defining the

maintenance valud/{;) as the value of the summation of cost avoidance
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opportunities CA) and revenue generated from operating the syd®mmp(to the end

of the RUL. It can be expressed as:

Vi = CA +R (13)

The cost avoidance opportunities are expressed as the difference of the cost of

non-detected failureCf;pr) and the cost of detected failug,£):

CA = Cypr — Cpp (14)

The maintenance valu&,f) consists of a summation of uncertain quantities, hence
it is stochastic. It is worthwhile noting that the cost avoidance is obtained from
historical data. However the uncertainty in this quantity may be time-depesite
confidence in the prediction may increase as we get closer to the end of thengmai
life.

Consider the following example: a system indicates an RUL of 3 time units, and
Vy has an initial value of 1. A Monte Carlo simulation that follows 8 possible time
histories for this example system is shown in Figure 17. When uncertainty in the
value is propagated, the result will be stochastic paths; some paths have a value
greater than 1 (1 is the initial value) and some have a smaller value wieetaunyg
is propagated. If we consider all the possible values at any particulastémehe

result will be a distribution (cross-sectional information at a time step).
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3.5

Time

Figure 17- Simulated value (cost avoidance and revenue opportunities), waeé
is the time of the prognostic indication

At every time step, the value is compared with the cost of mainter@po&hich

accounts of cost of failur€zg;,re, and cost of downtimép,niime-

Cy = Craiture + Cpowntime (15

Comparing C,, to V), at every time step provides means to assess the benefit from
running the system through the RUL. For examplg,ifis larger tharVy,, then the
cost of failure, downtime, and penalty is larger than the benefit of running theasyste
We assume that the decision-maker can maintain at discrete times 1, 2t or 3. A
every time, we need to examine the value of continuation of system operation (no
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maintenance) and compare it to the value of maintaining at the time step.ritfg sta

defining some terms for the analysis:

X;: the value obtained from operating the system at the current time.

X;+1: the value obtained from running the system until the next instance when

maintenance can be performed.

F(X;,+1): the value of waiting for an additional time step to maintain the system. In
other words, this is the value of the cost avoidance opportunities and the
revenue generated from the system, and is derived from waiting to perform
(invest in) maintenance. Whilg represent, at a point in timeF (X;,1)
represents the gain obtained from waiting till tifkel) to maintain. This
gain derives its value from the chang&jyand the ability to wait to

maintain.

In order to find the best time for maintenance, we define the stopping rule as a
rule to exercise the option if the value of continuation without maintenance igismal
than the value of exercising the option at the current time. The stopping ruleds base
on finding the expectation of the option’s value at ttmgconditional on the value

of revenue at time; given by the following equation:

E[F(Xi+1)|Xi] (16)

The function gives the expectation of the value of waiting conditioned on the

value at the current state. If the expectation function becomes 0 or negative, the
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waiting is not beneficial. If the expectation function is positive, then PHM is

providing additional value, and waiting is beneficial.

4.2 Decision rule using the least squares Monte Carlo approach

At each exercise date (the time when maintenance can be performed) the
decision-maker has the choice to maintain or to wait until the next exertesgioa
next time maintenance resources are available). The most notable work or optima
stopping time for simulation of options can be seen on Longstaff and Schwartz (2001)
where the authors propose an algorithm based on least squares method that uses
cross-sectional data and approximates the conditional expectation function in (16).
The algorithm is known as the LSM algorithm and has been used by numerous
authors. Longstaff and Schwartz (2001) briefly outline a convergence proof for the
algorithm.

Since at the current time step, the decision-maker does not have knowledge of the
future value of opportunities, the LSM algorithm approximates the conditional

expectation at each time step using a set of basis fungtipns, ¢

E[F(Xi+1)|Xi] = 2113:0 Bi,rd’r(Xi) (17)

Function approximation consists of approximating complex functions with
simpler ones. In the current work, we approximate the expectation function in (16)
with defined polynomials. For a review of mathematical functions that carelde us
for approximation, the readers are referred to (Abramowitx and Stegun, 1964).

The approximation with basis functions allows the problem of exercising to be

reduced to comparing the immediate exercise value with the conditionatatiqe
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function in (16). When the value of immediate exercise is positive and greatertha
equal to the conditional expectation, the option is exercised. We chose the set of the
weighted Laguerre polynomials, from Longstaff and Schwartz (2001), for doncti

approximation, defined as:

bo(x) = () (18)
b0 = e D1 = x) (19)
$,0) = (D) (1 C2x+ x;) (20)
¢ (x) = e (d" /dx™) (xTe ) e

r!

In the LSM algorithm, the objective is to minimize the expected squaresrerror

the approximation, with respect to the coefficiefits. in (17). From (Glasserman,

2004) and (Thom, 2001):

2 (22)

R
E <E[F(Xi+1>|xi] - Bir ¢T(Xi>)
r=0

Differentiating equation (22) with respectfp, and setting the result equal to
zero, leading to:

R (23
E[E[F(Xi+1)|Xi]dr(X)] = Z BrE[ &y (X)) s (Xi)]
r=0

u (24)
BIEIF (X DX b (X] = D BBl (X5 (X))
r=0
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Using matrix notation for the terms in (23) and (24):

(Mgg), , =Eld, (XD s (X] (25)

(Myg), , = EIEIF (XirD)IXid b, (X0] (26)
¢, (X;) can be expressed as:

(Myg) = E[E[F(Xi110r(X)1X]] 27)
using the Tower rufewill result:

(Myg).. = E[F (Xiz1¢,(X0)] (28)
and then inverting:

B = MysMyy (29)

In order to find the coefficients, we perform Monte Carlo simulations with N

paths:
Al (30)
(Fug), == Y VXEDB K™

n:

(31)
(Fpy), , = Z@(Xffi)wf"))

The coefficients are used in the decision rule of stopping or continuation and are
discussed in the algorithm. With this representation, the problem reduces to

comparing the immediate exercise value with this conditional expectation, and the

2 For two random variable X and Y, the tower rulates that the expected value of the conditionaleetgu value
of X given Y is the same as the expected value.of X
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exercising as soon as the immediate exercise value is positive and taater

equal to the conditional expectation.

4.3 Choice of basis functions

Basis functions are used in the LSM algorithm for function approximation.
Function approximation uses a number of functions to approximate an unknown
function. For the LSM algorithm, the Laguerre polynomials are used and Ldngstaf
and Schwartz (2001) provide the convergence proof for the method. Other types of
basis functions include: Chebychev, Hermite, Gegenbauer, and Jacobi polynomials.
For detailed discussion on function approximation using polynomials, the readers are
directed to Abramowitx and Stegun (1964).

Longstaff and Schwartz (2001) discuss in their paper (2001) that the least squares
Monte Carlo algorithm is robust against the choice of basis functions, and that the
Laguerre polynomials work quite well. It should be kept in mind that the functions

include an exponential term so normalization may be necessary.

4.4 Algorithm

The algorithm for obtaining the value of the option to wait to maintain is shown in

Figure 18. The end of the remaining useful life is denoteg by
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Estimate the revenue oblained

Estimate the change in
from onerating the svatem

mainfcnanee enst

¥ ¥

is not considered for further Select paths at (f-1) abave €, J€

(prognostic indication)

i

Generate the ¥ vector: value at time
{t,-1} if maintenance 1s not exercised

2t 4

£y

No _m Ves
has higher
value
Best dacision for path: continue

4
Best decision for path: perform T v
. . R and perform maintenanec at
maintenanec at time (£;-7)
- next node
7
Discount cash flows for value
at optimal stopping time |
| Value of waiting |

Figure 18- Algorithm to quantify the value of wait to maintainoption

The cost avoidance and revenue from operatingysters are simulateusingN
paths (followingN independent time lines for the systewith the appropriat
distributionsor random procees. The decision timeline is divided intaifferent
time stepswhere maintenance can be carried ol . The paths at th
terminal nodes are considered firf the value is higher than the baseline, ther
path is called “in the money” and considered fattfar analysis. If the value at t
terminal node is not in the mor, then it is discarded. A value thamnist in the

money signifies that waiting doeot have value.
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The LSM approach uses least squares to approximate the conditional espectati
function att, _4, tx_,, ..., t; . The index is used to iterate in the time steps in the
algorithm. It then works backward, since the path of the cash flows producedtby
avoidance and revenue generation is defined recursively. For all the pathe that ar
the money, we generate the expectation function using least squares andeuse thre
basis functions (although the number of basis functions can be considered in a
sensitivity analysis). At every time step, a new expectation functiomesged and
then used for comparing the value of immediate exercise to the value owaliti
After iterating recursively to the first time step, we have the dession for each
path. The value at the best exercise time of each path is discounted to time 0 and
averaged, resulting in the value of the option to wait to perform maintenance. If the
value is larger than 0, the waiting option has a value and represents the additional

benefit obtained enabled by PHM.

4.5 Example

We consider a hypothetical example to illustrate the steps for obtaining the
decision rule and quantify the maintenance option. We go through the process step by
step and explain the assumptions when necessary.

We consider a system with prognostic capabilities that indicates a RULnoé 3 ti
units and the decision-maker can maintain at times 0O, 1, 2, or 3. The problem here is
to find the value of the waiting to perform maintenance given that the decisiom-make
can decide to maintain anytime from time O to time 2. The other option is to let the

option expire and perform unscheduled maintenance at time 3 thus not using the
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information from the PHM system. The value of maintenagdgequation (13)) is

shown in Figure 19.

35

N
(63}
T
|

Time
Figure 19- Simulation of option value

Following are the assumptions for the example:

Xy = l:value of Vy; at time 0
Cy = 1.1: assumed cost of unscheduled maintenance

ty, ty, t3: times at which decision — maker can maintain

In this example, the terif}, consists of the cost of unscheduled maintenance for
the purpose of illustration. 10 time histories (paths) for the value of maintea@nce
simulated in the example. Some paths have values higher than the initial starttng poi
1, and some are lower; this is an effect of accounting for uncertainty in the model.
Cost avoidance opportunities will decrease with time as there is a higjhef r
failure on the system, but the system will generate more revenue aseatishrough
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the end of the RUL. The idea would be to wait to perform maintenance even if the
cost if slightly higher to maintain at the end. We define an option to be in the money
if its value at a particular time step is higher than the cost of unscheduled
maintenance.

At the final exercise date, the best exercise strategy is to extreigption if it
in the money. Prior to the final date, the best strategy is to compare the inemediat
exercise value with the expected cash flows from continuing, and then exercise i
immediate exercise is more valuable. Hence the key here is to identifynthiéanal
expected value of continuation.

The value of/,, from the simulation can be obtained from Table 5.

Table 5- Value ofV,, over time

Path |t=0 t=1 t=2 t=3
1 1 1.05 1.85 1.73
2 1 1.97 3.15 1.78
3 1 0.61 0.52 0.50
4 1 1.02 1.33 1.09
5 1 0.82 0.78 0.79
6 1 1.10 1.54 1.88
7 1 0.60 0.75 0.97
8 1 1.23 1.85 2.07
9 1 0.83 0.81 0.39
10 1 1.17 1.23 1.05

The objective is to determine the stopping rule that maximizes the value of the
wait to maintain option at each point along each path. Several intermediateestdps

to be considered before quantifying the option.
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Conditional on not exercising the option before the final expiration d&t8 at
the cash flows realized by the option holder from following the best strategyiven

in Table 6.

Table 6- Cash flow att=3 if the option is not exercised

'U
>
=

t=0 t=1 t=2 t=3
- - - 0.63
- - - 0.68
- - - 0

- - - 0

0

- - - 0.78

- - - 0.97

©o|lo|~N|o|a|s|w| |-
1
1
1

=
o

1

1

1
o

The values fot=3 in Table 6 are obtained by subtracting 1.1 from the vala8 a
if the option is in the money.

If the option is in the money &2, the option holder must then decide whether to
exercise the option immediately or continue until next time maintenance can be
supported. From Table 5, there are 6 paths where the option is in the mtrey at
(where the value is more than 1.1). Note that only the paths that are in the money at
t=3 are considered for the analysis at previous times. We dengtéhbyalue ol
att=2, for those paths, and the corresponding discounted cash flow receivéd3at

if the option is not exercised &12.

Table 7- X and Y att=2

Path X Y
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1 1.85 0.59
2 3.15 0.64
3 - ;

4 1.33 0

5 - ;

6 1.54 0.73
7 - i

8 1.85 0.91
9 - ;

10 1.23 0

TheY values are obtained by discounting the cash flowatf the option is not
exercise at=2. For instance; if the option is not exerciset:atfor path 1, theiyY is
calculated using:

Y = (1.73 — 1.1)0.9418 = 0.59 where 0.9418 is used to discount for one time
period with a discount rate of 6%.

To estimate the expected cash flow from waiting (continuing the option's life
conditional on the value &t2, we regres¥ on the basis functions. For the purpose
of the example we choose a constXn&ndX? (this choice is for the ease of
representation. In the algorithm we use Laguerre polynomials). This wilt neshe

expectation function that approximates the value of continuation:

E[Y|X] = —0.7679 X% + 3.7020X — 3.4082 (32

With the conditional expectation function we can now compare the value of
immediate exercise &t2 with the value from continuation which can be seen in the

table below:

Table 8- Value of exercise and continuation &t2
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Path Exercise| Continuation
1 0.75 2.01
2 2.05 5.83
3 ; i}

4 0.23 0.49
5 - )

6 0.44 1.11
7 - -

8 0.75 2.01
9 ; i}

10 0.13 0.2

The exercise value is obtained B§+1.1)and the continuation value is obtained
by substituting X in the conditional expectation function. This comparison implies
that it is better to continue as the value of continuation is higher than thesexerci
value att=2; the conditional expectation function evaluated is higher than the current
exercise value.

The next step is to generate the cash flow matrix in Table 9, which depicts the

cash flows received by the option holder conditional on not exercising pti.to

Table 9- Cash flow att=2

Path t=1 t=2 t=3
1 > 0 0.63
2 - 0 0.68
3 - - -

4 - 0 -

5 - - -
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6 - 0 0.78
7 - - -
8 - 0 0.97
9 - - -
10 - 0 0

Continue recursively until we get tel. We note that in defining, we use the
actual realized cash flows along each path and not the conditional expected Yalue of
estimated at the next time step because this will introduce bias. For sidisaus
the topic, the reader is referred to Longstaff and Schwartz (2001).

The vectorsK andY for time 1 are given in Table 10. Where cash flows obtained
att=3 are discounted for 2 time periods (multiplying by 0.8869) and cash flows
obtained at=2 are discounted for one period.

Table 10- X and Y att=1

Path X Y
1 - ;

2 1.97 0.6
3 - ;

4 . .

5 i i

6 - -

7 - ;

8 1.23 0.86
9 i i
10 1.17 0

We regress again and obtain:
E[Y|X] = —18.35X2 + 58.38X — 43.18 (33
Then we compare the value of the optiot=atto the value of continuation by

using the regressed function and obtain the results in Table 11.
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Table 11- Value of exercise and continuation dat1

Path Exercise| Continuation
1 ; i}

2 0.87 0.61
3 - -

4 - -

5 ; i}

6 - -

7 - )

8 0.13 0

9 - -

10 0.07 0

From Table 11, we see that it is better to and maintdiilaor paths 2, 8, and
10. Having identified the strategiestatl, 2, and 3 the stopping rule can be
represented using the following matrix:

Table 12- Stopping rule matrix

Path t=1 t=2 t=3
1 0 0 1
2 1 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 1
7 0 0 0
8 1 0 0
9 0 0 0
10 1 0 0

With the stopping rule obtained, we then determine the cash flows realized by
following the rule and exercising at the dates where there’s a one in therahive

This will lead to the following cash flow matrix:

Table 13- Wait to maintain option cash flow matrix
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Path t=1 t=2 t=3
1 0 0 0.63
2 0.87 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0.78
7 0 0 0

8 0.13 0 0

9 0 0 0
10 0.07 0 0

To calculate the value of the option, we discount each cash flow in the option to
time 0 and average all the paths to obtain:

Value = (0.63(0.8353) + 0.87(0.9418) + 0.78(0.8353) + 0.13(0.9418)
+0.07(0.9418))/10 = 0.2185

Where, 0.8353 is used to discount 3 periods and 0.9416 is sued to discount for 1
period.

In this example, if the decision-maker waits to maintain, an expected additional
0.2853 MU is obtained. If the decision-maker decides not to wait and maintain
immediately after obtaining the prognostic indication, a value of 0.2185 may be
missed. Although this example uses fictional data, it demonstrates the lise of t
LSM algorithm for obtaining the value of maintenance options. Without accounting
for the option to wait for three time steps to maintain, one would compare the value at
t=3 with 1.1 and discount to time 0. This would result in a value of 0.18. Hence, when
accounting for flexibility in the decision-making (wait when it is favoegbihe result
show that the value of waiting is 58% higher than the value obtained without

accounting for flexibility. The result from this example represents theiaodali value
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obtained from PHM. Waiting, an option that is enabled by PHM is a representation of

the benefit obtained from using the system through the RUL.

4.6 Dynamic maintenance threshold and penalty impacts

The algorithm for quantifying the value of the wait to maintain options provides
the value obtained from PHM at the system-level. This methodology can beexkte
to the fleet level where it is desirable to know when the best time to mastzased
on maximum value obtained from the PHM system. This will lead to a dynamic
maintenance threshold and a methodology to support outcome-based contracts.

When extended the models to the fleet it is necessary to account for availability
impacts especially when supporting outcome-based contracts. A systeleenhrady
not be operational but the fleet may still be able to deliver a required aveyjldhit
when the required availability is not met, then penalty has to be imposed on the cost
of maintenance term in equation (15) by adding a penalty term.

For example, consider a hypothetical wind farm consisting of 40 turbines shown
in Figure 21. It is desirable to know where to place the dynamic maintenance
threshold given that systems may have different performance measuog¢aisaio
health state). The figure shows that some systems will have a performeaasere

above the threshold and some below.
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Figure 20- Hypothetical wind farm with prognostic capabilities

For a fleet oh systems, the maintenance threshold can be defined based on the
time that maximizes the value of waiting:

= (34)
arg m?x(z ¢t Xo)
1

wheret is the time argument (time when maintenance can be supporisdie
number of systems; is the value of the wait to maintain option, afds the
maintenance decisioX{ =0: wait, X, =1: maintain).

Equation (34) maximizes the value of waiting for all the turbines that indicate a
prognostic distance and solves for the time that maximizes this function. This
contribution will be highlighted in the case study. Note that the dynamic maingeenanc

threshold is not dictated by the summation of values of the waiting option on different
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subsystem. The reason is that the value of waiting for each system is abtopare

cost of unscheduled maintenance, cost of downtime, and cost of penalty. When two or
more systems are considered together, these costs should be carefullgrednsi
Furthermore, when the systems indicate prognostic distance at ditierestit is

important discretize the time and apply the costs avoidance, the revenue, and the costs

for comparison appropriately. This point will be elaborated in the case study.

4.7 Summary

This chapter presented a system-level cost model that quantifies thefélae
option to wait to maintain (one kind of contingency actions). The value of waiting
represents the benefits obtained from PHM which cannot be accounted for in life-
cycle cost models. Quantifying the value of the option to wait to maintain, issnea
guantify the benefit of PHM for individualized maintenance policies. An algorithm to
guantify the option is presented and demonstrated on a simple example. The model is
then extended to a fleet of system to set a dynamic maintenance threskdldrbas
PHM information. Such model can be used to schedule maintenance and support

outcome-based contracts.
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Chapter 5. Case Study: Decision Support for Mairig Wind

Farms

This chapter demonstrates the methodologies developed in this dissertation using
a case study on wind farms. The choice of wind farms for case study is texbtya
the large number of turbines that are going out of warranty, the importance of PHM
for wind turbines, and the potential for cost avoidance in the maintenance of turbines

The case study is based on data that is obtained from the General Electric
Company, a leading North American manufacturer of turbines.

The Chapter starts by discussing the sustainment problem for wind farms then
presents the data used for the case study. An analysis of the service detansefy
and then a life-cycle cost model is established. The hybrid methodology is then
presented and compared to the life-cycle cost model. The wait to maintain aytion a

dynamic maintenance threshold are then analyzed for different failuresfarrthe

5.1 Sustainment of wind farms

Alternative energy sources have increasingly gained the intergsvefnments,
research institutes, academia, and industry in order to reduce the dependency on
traditional energy sources such as coal and oil. Wind energy stands at the fafefront
these energy sources; the United States Department of Energy (DoE) antidhalNa
Renewable Energy Lab (NREL) for instance, under the ‘20% Wind Energy by 2030’

plan, announced that the US could feasibly increase the wind energy’s contribution to
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20% of the total electricity consumption in the tédi States by 2030 (U.S. Dc
2008).

Wind energy sources face numerous challenges«could hinder thei
competitiveness wh traditional sources. Wind energy has not toperatione over a
sufficient amount of time to asseits long term viability. Furthermore, the reliabili
of wind turbines haturned out to be different from what was originghgdicted
Another majorchallenge with wind energy is intermittency, itbgir energy
generation is dependent on intermittent sourcesaade seen in Figu21, which
shows the wind capacity factor for Kansas wind fromJuly 2007(labeled montt

1 on the plot) to June P@ (KCC, 2011)).
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Figure 21-Capacity factor in a Kansas wind farmJuly 2007 to June 200

The Wind Energy Operations & Maintenance Report igasntly publishe:
(Asmus and Seitzle2010) and included a discussion highlightingdhallenge:

with wind energy systems. Some of the most notadfhelusions are that tl
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operation and maintenance (O&M) costs for wind power are double or triple the
figures originally projected, they are particularly high in the United Stéteother
interesting fact is that many gearboxes, designed for a 20-year lifajlarg after 6
to 8 years of operation.

These challenges indicate that reliability, maintainability, and awétly stand
among the key challenges to the economic viability of wind turbines and iigy a
to compete with traditional energy sources. The remainder of this section saesma

these challenges.

5.1.1 Reliability

Ideally, the turbines would behave in the field just as they perform under testing
of stated conditions. However, most fielded turbines are relatively new and have not
been subject to sufficient testing and qualification. This resulted in a dramatic
difference in the actual life of the system in the field from what iscstaighe
specification sheet.

Simulating the actual conditions where the system will be implemented is
challenging and may not be properly accounted for in the testing phase for wind
turbines. However, reproducing the actual conditions may be challenging -
reproducing harsh weather conditions and the interaction with other environmental
factors may be impossible to account for in a lab testing environment.

Figure 22 adopts the data from Arabian-Hoseynabadi et al. (2010) to show the
failure rate of different sub-assemblies in wind turbines. The plot shows thailenult

subassemblies have a significant yearly failure rate.
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Figure 22- Reliability of wind turbines

5.1.2 Maintainability

The maintainability of wind turbines emerged asaganchallengéo their
economic viability. For an offshore wind turbine fostance, tt projectec operation
and maintenance caatcounts for the second largest share of the te'sliie-cycle

cost as seen in Figure Pglusial and Ram, 2010).
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Figure 23- Projected life-cycle cost breakdown for offshore wind tioines
(Musial and Ram, 2010)

Figure 23 shows the projected cost for offshore wind turbines in the United. State
With the operations maintenance cost being 20% of the total cost, if the turbine is not
maintained as it is originally intended to be then the cost is going to riserare
and pose more challenges on the economic viability.

Furthermore, wind turbines require special workforce that is traineditdaima
the particular system, and require non-traditional resources such ds aeskse

cranes.

5.1.3 Availability

Availability of turbines will actually determine their energy impéatother

words, if the system is unreliable and always unavailable because it ig $objec
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maintenance and repainy, if the cost of maintenance is highen the potential prof
from the source will drop drastica.

Another aspect of availability is theed of nontraditional resources
maintenance. Offshore wind farms require vessels gvanes themay only be abls
to perform maintenance couple times a year. If one turbine broke ridtaraa
maintenance action has been performed on it, th&ill not be available until ne:
time the vessel is on-sifer maintenance.

Kuhn (2007) studied the failure rates of 235 smatld turbines and assessed
annual frequency rate and the corresponding doventomdifferent subassembilie

The results can be seenFigure 24.
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Figure 24- Downtime for wind turbines (Kuhn, 2007)

79



The availability of wind turbines (and wind farms) will determine the energy
impact they are able to have. In other words, if the system is unreliablenayd a
unavailable because it is subjected to maintenance and repairs, then the potential
profit from the wind farm will drop because the system is not able to produce the
required energy. This can be even worse if the costs of the energy that has to be
produced using alternative means (e.g., burning coal or oil) to make up for turbine
downtime due to maintenance of the system outweigh the profit obtained if the

system is in operation.

5.2 Description of thewind farm for the case study

Data for the case study is from General Electric and consists of a wimdhféghe
United States that has more than 100 land-based turbines. The farm waseammplet
the early 2000’s. Power and maintenance data was obtained from this farm, and cost
data was obtained from the literature. Note that the costs appear inndiffere
currencies due to the source of the data.

Power data consists of the performance of the individual turbines, and consists of
parameters such as wind speed, power output from the turbine, the rotor rpm, the
generator rpm, the blade angle and other performance parameters. Twasdata
recorded every 10 minutes: it is the average of the measured quantity over 10
minutes. Service data pertains to maintenance actions and consists of a datalbase of
maintenance actions reported for the turbines since they were installed.

Power data is obtained for the year 2009, and service data is obtained for all years
since turbines were installed (approximately 10 years). Scheduled maimenanc

occurred in February and July in 2009. Seven turbines were chosen from the farm.
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The choice is based on the failure modes they exhibit; the seven turbines had the most

common failure modes for wind turbines presented in Figure 22. The faults or failure

that occurred include: pitch mechanism, hub, generator bearing, IGBT, rotsr faul

and gearbox. The turbines are assumed to be representative of the whole population.
Power versus wind data is obtained for the seven turbines and used to generate the

power curves. Data is split into subsets corresponding to increments of 2 m/s and

marginal and joint distributions are fitted to the data. The original wind indrees

used to reconstruct a new time series with the exact order of the otigieaeries.

Data is then scaled to 600KW. This transformation does not affect the power-wind

relationship. The following steps were used to generate the simulatedtdata se

Generate the power curve (power versus wind speed) for different turbines

Fit distributions to the data using the function copulafit in Matlab

Sample from the fitted distributions

- Reconstruct the power time serfes.

Figure 25 is an actual power curve of a wind turbine and shows the power
produced as a function of wind speed for 50,000 data points. Figure 26 shows the
reconstructed power curve (with 2,000 data points corresponding to one subset). It

can be seen that the marginal distributions in the two cases are similar.

% General Electric only allowed their data to beduséthin this dissertation under the conditionsefonstructing the data as
described in this section.
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Figure 25- Actual power curve (50,000 points)

Power [MW]

20

Wind speed [m/s]

Figure 26- Reconstructed power curve (2,000 points)
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In the remainder of the dissertation, the 7 turbicieosen for the case sti will
represent the farmnless otherwise stal. 5 turbines in the farraxhibited failures
during the year 2009, and 2 turbirdid nothave maintenance events outside of

routinescheduled maintenance. The failures are representdte timeline in Figur

27.
Jan Feb | Mar | Apr | May | Jun Jul Aug | Sep Oct | Nov | Dec

Turbine 1 > | ‘ l >

Turbine 2 @ I >

Turbine 3 & >

Turbine 4 > 5

Turbine 5 s S

Turbine 6 L > Normal
>

Turbine 7 I > Normal
>

‘ Failure ‘ Turbine maintained

Figure 27- lllustration of the wind farm

Figure 27 illustrates the time where a failureaulf occurred and when it w
maintained. In some cases, the failure lasted fmerthan a montfTurbine3).

Turbine 5 has the failure and the maintenance eepnésenteatthe same point i

83



the time line, it corresponds to a no-fault-found (NfMJhe actual failure modes are
not indicated on Figure 27 because of confidentiality of the data.

The cost of maintenance for the failure modes can be seen in Table 14. The order
of the failures in the table is not representative of the failures Fguréable 14
shows the component where failure occurred, the cost of unscheduled maintenance,
and the cost of condition-based maintenance (under the assumption that it is 40% of
the cost of failure; an assumption made for gearboxes in (EPRI, 2006)). Note: the

costs from Andrawus were converted to 2006 US dollars using a conversion factor of

1.89785.
Table 14- Cost of maintenance for different failure modes
Failure Cost unscheduled Cost CBM Reference

Pitch mechanism $11,640 $4,656 Kahrobaee and
Asgarpoor (2011)

Main bearing $42,462 $16,985 Andrwaus et al.
(2006)

Bad generator $68,254 $27,302 Andrwaus et al.

bearing (2006)

Control system $7035 $2,814 Kahrobaee and
Asgarpoor (2011)

Gearbox failure $148920 $59,568 Andrawus et al.
(2006) and

The costs in the table correspond to the cost of material, cost of labor to maintain
the turbines, the cost of access (e.g., cranes), and cost of downtime.
There are 6 failures that are represented on the timeline in Figure 27, emftbicos

5 failures in Table 14. The NFF is not included in the costs as the actual costs were

4 Note that NFFs do not always take very small timget resolved. They may take longer to resola@ tictual maintenance
events.
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not obtained in the data set. Note that NFFs can sometimes cost more than the actual

failure of a system.

5.3 Scheduled maintenance for the sustainment of wind farms
The data in this section is reported as obtained (and not subject to any
transformation: only power data used in following sections was transfariiiesl)
labels on the y-axis have been removed for confidentiality of the data.
Figure 28 shows the cumulative maintenance cost for the farm under

consideration for the years 2007 to 2010.

Cumulative maintenance cost

2007 2008 2009 2010

Year
Figure 28- Cumulative maintenance cost for 4 years for the real farm (morthan
100 turbines)

Although this farm is operating with a scheduled maintenance, one would expect
that the cumulative maintenance cost would be increasing steadily (corresponding t
routine maintenance). However the jumps in the cumulative maintenance cost curve
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indicate that there are components failing in some turbines and leading toemsencr
in cost. Gearboxes are examples of such components. Gearboxes are not supposed to
fail during 10 years of operation. This infers that scheduled maintenanaceotniasy
the most efficient paradigm for such expensive assets.
Figure 29 shows a plot of the power for a turbine that had more than one failure

over the year 2009. The fluctuations are due to the intermittency of the wind source.

Power [MW]

Extended downtime: failure of gearbox Downtime Downtime -
' \‘

Figure 29- Power over a year period for one turbine

o
J>m

There are 3 unusual downtimes for the turbine shown in Figure 29. The first
downtime is for an extended period of time and is caused by the failure of a gearbox.
The cost of maintenance in this case is high due to the cost of failure and cost of
downtime since the turbine is not generating any power. Figure 29 shows that ther
are 2 other downtimes for the turbine, which also increases the cumulative cost

(cranes and labor have to be provided).
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There are 4 types of service types: 1) non-functional turbine, 2) operating with
problem, 3) preventive maintenance, and 4) scheduled preventive maintenance.
Service type indicates the state of the turbine when maintenance was ikqueste
‘non-functional turbine’ indicates that a service was requested for a turbineahat
not operational. Preventive maintenance is the request for all maintectinns a
happening during preventive maintenance, and scheduled preventive maintenance
occurs twice a year. Preventive maintenance is performed for some comsuaénts
as gearbox. It is performed at a different time than preventive maintenance

Figure 30 shows the frequency of request service types for all the sirAinen-
functional turbine can be either down before the scheduled maintenance, during or
after. If the turbine is down right after the maintenance cycle, then thadwill
either be down for an extended period of time until the next scheduled maintenance

cycle or a crew is called for maintenance.
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Frequency

Figure 30- Frequency of service requests by type

Figure 30 shows that the frequency of ‘non-functional turbine’ request types is
larger than all other types. ‘Operating with problem’ ranks second in the service
request type. If the turbine is non-operational or operating with problenurthiee
may not produce as much power as it should, and the life-cycle cost will increase.

For service request ‘non-functional turbine’, the number of days elapsed between
the service request and the repair date of the turbine can be seen irBEigtiie
histogram shows a high frequency for days between 0 and 20; this is due to the fact

that a number of faults are resolved by resetting the turbine or some otheresubsyst
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in the turbine or occurring during scheduled maintenance. There is a substantial
amount of service requests however that took more than 20 days to resolve; 300 of

those cases took between 40 and 60 days.

Frequency

1 |
0 20 40 B0 a0 100 120 140 160 180
Days between service reguest and repair

Figure 31- Time between service request and repair for non-functiah turbine
service requests

Some turbines in Figure 31 have more than 100 days elapsed between the service
request and the time when the turbine is repaired. If a downtime lasts for 100 days,
the turbine is down for almost a third of the year and not generating power. This has
negative effect on the economics of the wind farm.

Since scheduled maintenance is performed twice per year, it is worthwhile

looking at the times when failures are occurring and check whether thejdeoinc

89



with the scheduled maintenance or not. Figure 32 shows the days elapsed between
repairing the problem and the closest maintenance cycle for type ‘nomshaicti

turbine’.

Frequency

1 |
1] 20 40 B0 80 100 120 140 160 180
Days outisde scheduled maintenance

Figure 32- Time elapsed from fixing problem to maintenance cycle for non-
operational turbine service requests

The first bin in the histogram in Figure 32 exhibits the largest count since it may
be associated to the proximity to the start or end of scheduled maintenamese cycl
However, there is a high frequency of events happening more than 40 days outside
the maintenance cycle. Some events happen more than 100 days outside maintenance
cycle. Figure 32 is fundamentally different than Figure 31 in that it repsegeEnt
proximity of the failure to the maintenance cycle. A failure can occur 30afters

the closest maintenance cycle; and the turbine has to wait non-operatiguna. 3.

90



on the other had represents the time elapsed between the failure and the maintenance
action to fix it.

The wind farm also exhibits a number of no-fault-found (NFF). This is an
indicated fault that is resolved by actions such as reset; functionahignsestored
to normal. Figure 33 shows the count of no fault found as a function of the number of
days it took to repair them. The largest number of NFF can be seen closer ta0, whic
indicates that NFF can be resolved quickly with a reset or similar actions.drkere
however NFFs that took more than 30 days to resolve. Some turbines were down for

almost a month for a NFF.

Frequency

| |
a ] 10 14 20 25 30 34
Days to repair NFF

Figure 33- Days to resolve the no-fault-founds (NFFS)
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Scheduled maintenance for this wind farm is resulting in a number of scenarios
that can decrease the value obtained from the wind farm. Prognostics can ith@ease
maintenance value of such systems, avoid failures and increase the impatt of s

renewable energy source.

5.4 Life-cycle cost model for wind turbines: ROI

Haddad et al. (2011) established a life-cycle cost model (based on Feldman et al
(2009)) for the implementation of PHM on blades of wind turbines. Although blades
are not among the failure in Table 14, the intent is to highlight the differences
between the life-cycle cost models and the methodologies presented in this
dissertation (demonstrated in the following sections). For data and the dethéds
analysis, the readers are referred to Haddad et al. (2011) (note the nethdtpaper
and in this section are presented in Euros).

To enable the calculation of ROI, the analysis first determines the optimal
prognostic distance when using a data-driven PHM approach (see Figure 34).
Prognostic distance is the amount of time before the forecasted failuref (&ed
RUL) that maintenance action should be taken. Small prognostics distances cause
PHM to miss failures, while large distances are overly conservativdeowd away
lots of remaining life. For the combination of PHM approach, implementation costs,
reliability information, and operational profile assumed in this example, a pragnost
distance of 470 hours yielded the minimum life-cycle cost over the support life of the
turbine. Similar analysis was conducted to determine the optimum fixedahter

scheduled maintenance interval. A fixed maintenance interval of 8,000 hourslyielde
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the minimum life-cycle cost over the support life. Again, small fixed maint@enanc

intervals miss failures, while large intervals are overly consgezat

220,000 -

210,000 & . o
Optimum prognostic distance

200,000 - ; =470 operational hours

190,000

170,000

|
|
|
:
180,000 - :
|
|
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|
1

160,000 \ \ \ \
100 300 500 700 900

Life Cycle Cost per Socket (Euros)

Prognostic Distance (operational hours)

Figure 34- Variation of mean life-cycle cost with a fixed maintenance intgal
(1000-socket population)

The accumulation of the life-cycle cost per socket for both data-driven PHM and
fixed-interval scheduled maintenance case are shown in Figure 35 ane J6gé
socket is a location in a system (in the wind turbine) where a single instathee of
item being maintained (a blade) is installed. The socket may be occupied by one 0
more items during the lifetime of the system. The time history of costadbrad
1000 sockets is shown in Figure 35 and 36. The data-driven PHM case resulted in an
overall lower life-cycle cost (mean = €173,213) compared to the best fixed-Interva
scheduled maintenance case (mean = €356,999). The data-driven PHM case requires
fewer spares throughout the support life of the system. This is primarily due to
maximizing the useful life of the blades, i.e., early warning of failurdsarmlata-
driven PHM case provided an opportunity to schedule and perform maintenance

events closer to the actual failures, thus, avoid failures while maximizangs#ful
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life. Alternatively, the fixe-interval scheduled maintenanceeassulted in eithe
throwing-away more usef-life (early intervention). In both cases, so

unscheduled maintenance events (intervention shtabilate) occurrec

800000

640000

480000

320000

Life Cycle Cost per Socket (€)

1600001 i

10
Time (years)

20

Figure 35- Life-cycle cost accumulation for schedulemaintenance
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Figure 36- Life-cycle cost for PHM

The mean total lifeeycle cost per blade, for a datltiven PHM approach, we

€173,213 (mean), with an effective investment pestblade of €25,408 (mea
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representing the cost of developing, supporting, and installing PHM in the blase. T
cost was compared to the fixed-interval scheduled maintenance approach, where the
total life-cycle cost per blade was €356,999 (mean). Note that the invesiose fir

the fixed-interval scheduled maintenance policy is by definition zero; siné&Qhées
computed to support an economic justification in investing in PHM, as opposed to the
fixed-interval scheduled maintenance case where there is no investmene(o
investment) in PHM.

Figure 37 shows the histogram of the computed ROIs for 1000-socket population
(due to uncertainties in all quantities, each socket in a population will have a unique
ROI). In this example, the computed mean ROI of investing in a data-driven PHM
approach for the population of blades was 7.43. Notice that some of the ROI values in
Figure 37 are negative. This means that there is a risk that impleme wolatg-
driven PHM approach for the blades could result in an economic loss, i.e., you could
end up being worse off than fixed-interval scheduled maintenance. Based on Figure
37, this example predicts that a data-driven PHM approach would result in a positive

ROI (cost benefit) with a 94.4% confidence.
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Mean =7.43
Standard Deviation =5.11
Prob. of Megative ROls = 56%
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Figure 37- Distribution of return on investment

In Figure 34, an optimal prognostic distance isaoted and is used over t
support life to obtain the economic merit of usigM when compared to oth
maintenance paradigms. Althouchis approach shows the value of PHM, it does
account for the value of options that the deci-maker could have made wh
predicting a failure. The other drawback of suctdeis is that they assume ¢
prognostic distance, hence one maintenance | over the support life. The:
drawbacks will be addressed in the following sewitor the failure modes observ

in the wind farm of the case stuc

5.5 Hybrid methodol ogy to value the flexibility enabled by PHM

The previous section considerelife-cycle cost model to show the econot
merit of implementing PHM on wind turbis. This section shows a net present v:

analysis for implementing PHM on geartand generatorand then incorporas
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uncertainties and flexibility enabled by PHM to show that the value of PHMeaseEse
when flexibility is accounted for. The choice of gearbox in this section isrdbye
the availability of the data. The contributions however are applicable to &umgfai
mode. The cost data is based on Andrawus et al. (2006). The uncertainties are
obtained from the farm discussed in Section 5.2.

The data considers a wind farm with 7 600KW land-based turbines, and compares
the net present value (NPV) of scheduled maintenance (called inspection) and CBM
We reproduce the NPV analysis for the 7 turbines by using the costs fronwiisdra
et al. (2006), rescaling the farm to 7 turbines, and discounting over a period of 18
years (support life of the turbines after they go out of warranty) with autiscate
of 8.2%. This analysis results in a NPV of 32868 inspection, and 64,3E4or
CBM. This result indicates that inspection is more beneficial than CBM.

Andrawus et al. (2006) consider that the PHM system avoids failures of the
following subsystems: blade, bearing, main shaft, gearbox, and generator. The
frequency of failurex, indicates the probability of failure. When the PHM system
avoids this failure, cost avoidance, called failure consequépcei(l result.

Andrawus et al. (2006) identify these cost avoidance opportunities by annual cost
reservationA.g, which is the product of the frequency of failaufethe failure
consequencé,), and the number of turbines in the fakifi:

Acg = aF.NT (35)

Where the failure consequendg Y consists of total production lost when turbine
is not operatingZ(Cp,), the total cost of material to maintain the turbirés,f), the

total cost of labor to maintain the turbin&%’(;), and total cost of accessing the
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turbines(T C4s) (the variables in the equations are defined in the Symbols section at

the beginning of the dissertation):

FC - TCPL + TCMT + TCLB + TCAS (36)
TCPL = 24NdyWTPRCEHCf (37)
V 38

TCyr = (Cyur + Crp + Crq + Cora) (1 + %) (38)
TCp = (an)(Ndy)(Whr)(LRT) (39)
(40)

_ Var
TCys = (ChaNay) + (ChaNgy m)

Consider the case of the generator with a frequency of failofed.00641, a cost
of lost productiori'Cp,, of 1663.Z, a cost of materidl Cy,r of 23,441.2%, a cost of
laborTC, 5, of 2,40&, and a cost of acce¥€ s, of 8,46&. These numbers are
obtained from the last row of Table 15. This will result in a failure consequgnoé
35,964£. And an annual cost reservatidpg, of 1,61F when multiplied by the

failure frequency. This result can be seen in the fifth row of Table 16.

Table 15- Failure consequence (Andrawus et al. (2006))

Failure consequenced . (£)
Failure modes TCyr TCg | TCus TCp, | Total
Blade failure 34,545 2,4008,460 | 1,663.20 47,068
Main bearings failure 9,851.49 2,408,460 | 1,663.20 22,375
Main shaft failure 11,133.364,800| 11,280| 1,900.80| 29,114
Gearbox failure 61,687.503,600| 11,280| 1,900.80| 78,468
Generator failure 23,441.252,400| 8,460 | 1,663.20 35,964

Table 16- Calculation of annual cost reservation (Andrawus et al. (2006))

| Number of events | a | Fc | Acr |
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Bearing failure 0 25,993

Main shaft failure 0 32,234

Gearbox failure 0.01282 78,468 6,682

R IN|O|O

Generator failure 0.00641 35,964 1,613

Similar results are obtained for the gearbox. The other systems are ndethaoi
the analysis as they are assumed to have a frequency of failure of 0. The artnual cos
reservation is realized over the 18 years of support life. This cost is discoupézal to
0 and results in a net present value of 8C0%his value is added to the net present
value of inspection (or time based maintenance (TBM), and results in a total of
112,96& which is the real cost of inspection. To assess the value of PHM, the
difference in NPV of inspection and CBM is calculated and results in 48,585
value compares the net present value accounting for the cost and cost avoidance
derived from inspection and CBM over the life-cycle.

This standard method to quantify the benefits of PHM does not account for the
value of options that the decision-maker can take after prognostic indicati
Furthermore, it is necessary to account for uncertainties. If there acadtséor
wind speed, then the decision-maker may decide to run the system while there is
probability of high wind speeds and harness the upside effect of uncertainty. Another
uncertainty that needs to be accounted for is the uncertainty within the PHM system
(i.e., its RUL predictive capability is not perfect).

Figure 38 shows the capacity factor for Turbine 6 on a monthly basis over the
year 2009. Power data for Turbine 6 is averaged for every month and divided by
600KW to obtained the ratio of the actual power produced in a given time to the

theoretical maximum power. The capacity factor turns out to vary dithgtover the
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months of the year, and basing the results on an average may affect thervaluat
the problem under consideration. The capacity factor result affects thenassioe
planning for the turbines whereby decision-maker is better off havingrthiagu

down for maintenance.
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Figure 38- Monthly capacity factor

To estimate the uncertainty in capacity factor, we consider the power from
Turbine 6, a healthy turbine (a turbine that did not have failures over the course of the
year). The power output is averaged every day, and divided by 600KW, which is the
maximum theoretical power the turbine can produce. The data is imported 8K@RI

and a distribution is fit according to the Chi-square test. A Beta distribiigare
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39) with the following density function and parametersf 0.734 angs of 2 fits the
data the best:

s a,p) = A= (41)
n fol ut1(1 —w)f-1du

Probability density

1.0

=
<

o
<

0.0
0.2
0.8

Capacity factor

Figure 39- Distribution fitting for the capacity factor over a year

The uncertainty in the capacity factor is an integral part of the production lost
Production los{T Cp,), is expressed as the product of number of days the turbine is

down (V4,,), the number of hours in a day (24), the power rating of the turbine

(WTpr), the cost of energyCgy), and the capacity facto€/):

TCp, = (Ndy)(24) (WTPR)(CEH)(Cf) (42)
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To incorporate flexibility in the model, we assume that the decision-matker ca
turn the turbine off when there is a prognostic indication for the gearbox. The cost of
CBM for the gearbox is assumed to be 40% of the cost of failure and the cost of
scheduled maintenance is 70% of the cost of failure (EPRI, 2006). The cost of loss
production from Table 17 for a gearbox is 19@0a&nd 1663.2 for generator. Using
(42) (with a power rating of 600KW, cost of energy of CEOKW, and a capacity
factor of 0.33) we can calculate the number of days the turbine is down for each
system: 7 for gearbox and 8 for generator. Now we use this number and calculate an
updated production loss when accounting for the uncertainty in the capacity factor.
The net present value of the difference in the two maintenance paradigms
demonstrating the value of PHM can be now represented as a distribution. 8/e scal
the cost data for time-based maintenance and condition-based maintenance from
Andrawus et al. (2006) from 26 to 7 turbines (this is an assumption on the total cost
of TBM and CBM).

Now we consider the second uncertainty associated with the PHM system. We
assume a misclassification rate of 0.05 associated with the PHM syi$tesnimplies
that the PHM system will not predict a failure 5% of the time. Figure 40show

decision tree for uncertainty associated with PHM.

Obtaining accurate
»| prediction/classification
with probability (P;) 95%

Expected value=
(P;)(outcome;)+(P;)(outcome,)

Missing a prediction/
» classification with
probability (P;) 5%

Figure 40- Decision tree for uncertainty within the PHM system
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Furthermore, we assume that there is the same number of eventsjshatas
predicted by CBM and by inspection. However, when predicted by CBM, the
decision-maker has the option to abandon and halt the operation. This will result in a
30% cost saving in supporting maintenance (under the assumptions listed eatlier: ¢
of CBM is 40% of the cost of failure and cost of scheduled maintenance is 70% of the
cost of failure).

The expected value is obtained by multiplying the probability of occurrence by
the outcome of each branch in the decision tree. In the case of correct predtetion, t
PHM system will predict all the failures and result in a cost avoidance of 3,842
which was shown earlier. When the PHM system fails to predict the failuees, w
replace the failure frequency with 0 and calculate the NPV of annual casatese
using (35)-(40).

So far we consider two types of uncertainties, and included the flexibilitipiopt
to abandon) when addressing the value of implementing PHM. Now we complete the
steps of the hybrid methodology and represent them in a VARG diagram. 500 Monte
Carlo simulations were run, combined with the decision trees are represented
Figure 41. We assume that the decision-maker can exercises the abandon option 50

days prior to the failure.
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Figure 41- VARG diagram for model accounting for real capacity factor and
option to turn turbine off 50 days before failure

Figure 41 shows the results from the analysis with flexibility and thehateloes
not account for flexibility or the uncertainties. Figure 41 shows that8#evalue at
risk is $48,850. This result indicates that there is a 18% chance that the value of PHM
on the gearbox and generator is smaller than the value obtained from the dnalysis
does not account for flexibility and uncertainties. The 50% value at gain is $56,096.
This result means that there is a 50% chance that the value of PHM will ber grea
than $56,096. The additional value in Figure 41 is a result of accounting for the
uncertainty in the capacity factor, and the cost-avoidance of turning theetwfbito
avoid failure (leading to a lower maintenance cost).

Figure 42 shows the sensitivity analysis on the expected net present viatdisl of

when changing the number of days the turbine is turned off before failure, ranging
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between 20 and 100, the misclassification rate (error in PHM system) ranging

between 0.95 and 0.5, and the discount rate ranging between 0.05 and 0.11.
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Figure 42- Sensitivity analysis for the value of PHM

Figure 42 shows that the value of PHM is highly affected by the performance of
the PHM system. If the misclassification rate of the PHM systemedses to less
than 90.5% , the value of implementing PHM is no longer justified even if the
decision-maker has the option to turn the system off and avoid failure. The reason is
that although the decision-maker has the option to turn the turbine off, the failure is
happening before an indication of RUL by the PHM system is obtained. Figure 42

also shows the effect of exercising the option up to 100 days before the indicated
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predicted failure. Turning the turbine off to avoid failure comes on the expense of a
cost of downtime. However that turning the turbine off for up to 65 days before the
failure is beneficial. The last part of Figure 42 is the discount rate: sia@n#hysis
is performed over 18 years, it is important to analyze the effect of discoaint rat

This section included uncertainties and flexibility in the quantification of the
benefit of PHM using the hybrid methodology. We consider the support life and show
that exercising flexibility can result in a higher value from PHM. The segtion
considers the time frame from the prognostic indication to the end of the RUL and
uses the hybrid methodology to represent uncertainties to show the value of PHM at

the system level.

5.6 Quantifying the wait to maintain option

This section highlights the value of waiting after prognostic indication for the
different failure modes in the case study. Quantification of the value thwé a
representation of the additional benefit that the user of the PHM system obtains. It
provides means for analyzing the benefits at the system-level and compengps
number of maintenance policies. The method can be done in real-time and updated

whenever new information about uncertainties is obtained.

5.6.1 Model description

The value of maintenance is a summation of two uncertain quantities; the cost
avoidance (difference in cost of performing condition based maintenance and cost of
failure), and the production loss (which is influence by the capacity factor). The

value is described in Equations (16)-(18).
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Production loss is affected by the capacity factor, and we model it with a
geometric Brownian motion that is represented with the following stochastic

differential equation:
dTCPL = ﬂTCPLdt + O-TCPLth (43)

whereT Cp,, is the production loss being simulated at timeis a drift componenty

is a variance component, aid is a Brownian motion. This is a stochastic
differential equation that represents production loss as a dynamicatigica
uncertain quantity. For a capacity factor of 0.33, the production loss per day is
236.E. This number is the production lost in 1 day with a turbine rating of 600 KW
and a cost of energy of 0.8&KWh. Simulating the production loss using with a drift
of 0.5, a variance of 0.1, and a starting value of Z3Gvé get the result in Figure 43.
Figure 43 also shows a histogram for the cross-sectional data at time,%0; i.e

represents the distribution of the production loss on tHel5g.
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Figure 43- Evolution of production loss

In a recent report by the Electric Power Research Institute (EPRI, 200@p4t
of performing CBM on the gearbox of a wind turbine was assumed to be 40% of the
cost of failure, the cost of performing scheduled maintenance on the geaox wa
70% of the cost of failure, and the cost of failure was 100% of the cost of failure. The
uncertainty in the cost of maintenance is modeled by a stochastic random process
with a geometric Brownian motion using (actual numbers can be estimated from

historical data):

To represent the value of maintenance graphically, we model the production loss
with geometric Brownian motion with a drift rate of 0.5, and a variance of 0.1. The
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cost avoidance is simulated with a starting value of 4Z,080% of the cost of

failure of a gearbox (EPRI, 2006)), a drift of -0.8, and a variance of 0.25. These two
guantities along with the value of maintenance (summation of cost avoidance
opportunities and cumulative revenue generated from running the system) are
represented in three plots in Figure 44. The first plot is the simulated cost agoidanc
The value of cost avoidance starts at 60% of the cost of failure and decrehses wit
time. The second plot is the cumulative revenue obtained from running the system to
the end of the RUL. The right most plot in Figure 44 is the value of waiting, which is
the summation of the quantities in the left two plots. The simulations consist if 20
paths. Figure 44 shows that the value of waiting decreases initially thersggrea

(right most plot). As the system is used through the remaining usefuhéfeystem

will degrade and the cost of maintenance will increase according to our assumpt
The turbine will however generate power. If there is a high probability of higth wi
speeds, then the cumulative revenue will be even higher than considering thie case o

average capacity factor.
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Figure 44- Value of maintenance after prognostic indication

The cost avoidance opportunities are obtained from historical data and follow the
trend of the degradation of the system. They can be obtained from historical data and
the maintainer of the system. Cost avoidance is not necessarily a functieastegr
with a constant drift. Subsystems in turbines (and other systems as wellgmay b
interrelated; a failure in one system can cause a failure in anotbemsaisd cause an

increase in the maintenance cost; or a decrease in the cost avoidance.

5.6.2 Modeling uncertainties

In order to quantify the value of waiting, the uncertainties are firshastd. The
uncertainty in the capacity factor is estimated from historical datahanthtertainty

in the cost avoidance is assumed to follow a degradation model. The starting point is
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known (difference between the cost of unscheduled maintenance and the cost of
condition-based maintenance).

The uncertainty in the capacity factor is considered over multiple tintohsr
one year for the healthy turbine, one month for Turbines 1 and 3 (the failure occurred
in February and no prior data), 2 months prior to failure for all other turbines, and
monthly capacity factor for the healthy turbines. The power is averageddaery
(since it is 10 minutes data), and divided by 600KW to obtain the capacity factor. A

time series for Turbine 6 averaged every day is show in Figure 45.

Power [MW]

0 100 200 300 400
Time [Days]

Figure 45- Power time series for Turbine 6

The parameters for the stochastic differential equation of the time segie
estimated using the SDE toolbox in Matlab (Picchini, 2007), which uses simulated
maximum likelihood estimation (Durham and Gallant, 2002). The estimates of the

parameters in stochastic differential equation for Turbines 1 to 5 can be sedatein T
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17. The table shows the mean value and the confidence interval (lower bound (LB
95% CI) and upper bound (UB 95% CI)). Confidence in estimation increases with
more data.

Table 17- Estimates of uncertainty parameters before failures with 95%
confidence intervals

Turbine Starttime | End time Mean LB 95% CI | UB 95% CI
1 Mean 1/1/2009 2/7/2009 1.80E-01| 3.28E-02 3.27E-01
Shock 5.00E-01 4.21E-01 5.80E-01
2 Mean 9/1/2009 11/1/2009 1.98E-01| 7.51E-02 3.20E-01
Shock 5.98E-01 5.24E-01 6.72E-01
3 Mean 1/1/2009 2/23/2009 1.32E-01| 4.14E-02 2.22E-01
Shock 6.37E-01 5.82E-01 6.92E-01
4 Mean 3/7/2009 5/7/2009 7.21E-03| -1.63E-02 | 3.07E-02
Shock 2.07E-01 1.94E-01 2.19E-01
Mean 8/2/2009 10/2/2009 7.11E-03( -2.10E-02 | 3.52E-02
Shock 1.99E-01 1.85E-01 2.13E-01
5 Mean 6/14/2009 | 8/14/2009 3.09E-02( -1.56E-02 | 7.73E-02
Shock 3.46E-01 3.22E-01 3.70E-01

Tables 18 and 19 summarize the parameters for modeling uncertainty obtained

from data with the 95% confidence interval (LB for lower bound and UB for upper

bound) for the healthy Turbines 6 and 7 respectively.
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Table 18- Uncertain parameters in healthy Turbine 6

Month Mean LB 95 CI UB 95 CI Shock LB 95 CI UB 95 CI
1 9.12E-02 | 9.01E-03 1.73E-01 4.69E-01 | 4.28E-01 | 5.11E-01
2 7.24E-02 | 1.29E-02 1.32E-01 4.41E-01 4.04E-01 4. 77E-(
3 1.19E-01 | 5.44E-02 1.84E-01 4.62E-01 | 4.23E-01 | 5.02E-01
4 9.22E-02 | 6.55E-03 1.78E-01 5.06E-01 4.63E-01 5.49E-(
5 6.52E-02 | 2.48E-02 1.06E-01 3.45E-01 | 3.11E-01 | 3.79E-01
6 -490E-03 | -4.04E-02 3.06E-02 2.62E-01 2.43E-01 2.81E-(
7 2.80E-02 | -1.71E-02 | 7.30E-02 3.36E-01 | 3.03E-01 | 3.70E-01
8 8.24E-02 | 4.58E-02 1.19E-01 3.14E-01 2.86E-01 3.42E-(
9 6.23E-02 | 5.00E-03 1.20E-01 4.15E-01 | 3.76E-01 | 4.54E-01
10 1.60E-01 | 8.24E-02 2.38E-01 5.92E-01 5.41E-01 6.43E-(
11 -2.31E-01 | -2.99E-01 | -1.63E-01 | 4.89E-01 | 4.46E-01 | 5.31E-01
12 1.83E-01 | 1.17E-01 2.50E-01 4.78E-01 4 41E-01 5.15E-(
Table 19- Uncertain parameters in healthy Turbine 7
Month Mean LB 95 CI UB 95 CI Shock LB 95 CI UB 95 CI
1 1.43E-01 |[5.01E-02 |[2.36E-01 |5.23E-01 |4.84E-01 | 5.61E-01
2 2.14E-01 | 1.39E-01 2.89E-01 5.80E-01 5.36E-01 6.25E-(
3 -9.50E-03 | -8.32E-02 | 6.42E-02 5.52E-01 | 5.10E-01 | 5.94E-01
4 5.08E-02 | -3.36E-02 1.35E-01 5.01E-01 4 41E-01 5.62E-(
5 1.79E-01 | 1.14E-01 2.44E-01 4.86E-01 | 4.33E-01 | 5.40E-01
6 -2.69E-03 | -7.53E-02 6.99E-02 4.81E-01 4.47E-01 5.16E-(
7 5.22E-02 | 1.46E-02 8.99E-02 3.72E-01 | 3.53E-01 | 3.91E-01
8 4.72E-02 | -6.71E-03 1.01E-01 3.56E-01 3.22E-01 3.90E-(
9 1.38E-01 | 7.23E-02 2.03E-01 4.39E-01 | 4.11E-01 | 4.66E-01
10 4.61E-01 | 3.14E-01 6.08E-01 7.72E-01 6.94E-01 8.49E-(
11 2.06E-01 | 9.96E-02 3.12E-01 5.87E-01 | 5.32E-01 | 6.41E-01
12 2.03E-01 | 1.07E-01 3.00E-01 5.97E-01 5.23E-01 6.71E-(

When the information from the PHM system or sensors on the wind turbine are
obtained, the uncertainty can be updated and new drift and shock can be generated on
the updated time series. In the case study, the uncertainty parametstsratee

after the failure happened, but all these parameters can be updated in real-time
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5.6.3 Value of waiting

The uncertainties in the capacity factor are summarized in the previous section.
The least squares Monte Carlo algorithm is applied to quantify the value wigwait
for different components. The prognostic distance considered is not the sarhe for al
turbines in the case study (because data is obtained for 1 year only). The assumed

prognostic distance can be seen in Table 20.

Table 20- Assumed prognostic distance

Turbine 1 2 3 4 5
Prognostic 37 60 53 60 60
distance

Figure 46 shows the value of waiting for Turbine 1 for 37 days. It is observed that
the value is initially 0, and starts increasing on day 8. On day 25 the value of waiting
starts decreasing because of the risk of failure which may also induce faitther
components as well. Figure 47 and Figure 48 show the value of waiting for Turbines
2 and 4 respectively. The uncertain capacity factor is sued in equation (37) to
generate the production of the turbine. The cumulative production is obtained by
summing the power every day. The cost avoidance is obtained from the costs of
failure from Table (14) and assumes a drift component of -0.6 and shock of 0.25. At
80% of the RUL, we model an increase in the risk of failure by inducing a jump in the
cost avoidance that is simulated by a sharp drop in mean of cost avoidance. In other
words, when calculating the value of waiting towards the end of the remaining use
life, the cost avoidance is small or negative (because of risk of collaterabdam

The choice can be obtained from historical and degradation models along with expe
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opinion. It is however assumed in this dissertation.
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Figure 46- Value of waiting for 37 days for Turbine 1
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Figure 47- Value of waiting for 60 days for Turbine 2
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Figure 48- Value of waiting for 60 days for Turbine 4

Figure 47 shows that the value is O until day 35 where it starts increasimgiut t
drops again. It is worthwhile noting that the value only increases slighthhandre
risk of failure overcomes the value and takes it back to 0. Figure 48 shows the value
of waiting for Turbine 4, and shows the waiting has a value and starts decreasing on
day 54. The best time to maintain in this case is day 54; which is the time with the
highest waiting value. Turbines 3 and 5 have a value of $0 throughout the RUL and
are not plotted. A value of 0$ indicates that the decision-maker is better off
maintaining immediately. This is fundamentally different than the valiHdA in
cost-benefit models. Such models prove the economic merit of PHM when
accounting for all the costs and cost avoidance over the life cycle and sumgarizi
with some metric such as ROI. The options cost model indicates how much additional
value, the user/decision-maker can obtain from running the system throughlthe RU

a capability enabled by PHM.
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Now we assume that all the turbines have a RUL of 100 days, and estimate the
uncertainty in the capacity factor from the healthy Turbine 7 for the whate ye
Results show a drift component of 0.0983 and a variance component of 0.46. The
value of the option to wait up to 100 days can be seen in Figure 49 (labels are failure

modes and not turbines to in this figure: one turbine exhibited multiple failure

modes).
1200
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Figure 49- Value of waiting for 100 days

The value of waiting for the 5 observed failure modes in the turbines is shown in
Figure 49. The value of waiting indicated the benefit that the user of the P$idms
obtains from running the system through the RUL. The curves show that the value
starts at 0, for all failure modes and increases at some point except far fiailde 5.
This failure mode corresponds to a gearbox failure. When a failure for a gesrbox i
predicted, the decision maker is better off maintaining at the earliestraence as

the revenue obtained from running the system will not compensate for the risk of
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failure. This is of course for the uncertainties assumed in this case studg. The
numbers can vary depending on the uncertainties assumed.

Consider the thyrestor for example, the value of waiting starts incgeaisiday 8
and peaks on day 74 before it starts decreasing again. The decrease i®dssiliat
an increase in the risk of failure. The value of $820 on day 74 is the benefit obtained
from the PHM system that allows the decision-maker to wait and maintaiy at
point until the end of the RUL. The values are dependent on the assumptions of costs
made and can be much higher if the turbines had a higher power rating. For the hub
(or main bearing), the value starts increasing on day 28 and peaks on day 76 before it
starts decreasing again. The decision-maker is better off waitinglantr6 to
maintain to obtain the largest value from PHM.

The $0 waiting value for the gearbox does not mean that PHM has no value; it

means that waiting does not generate any additional hanetie Section 5.5, we

demonstrated the economic merit of implementing PHM on a gearbox. In this part of
the case study, we derive the additional benefit (value of contingency acaitingw

to perform maintenance). A value of $0 is a recommendation for the decision-maker
to maintain when the first opportunity arises.

Another point worthwhile highlighting in this section is that the least squares
Monte Carlo algorithm quantifies the benefit of PHM at all points up to the end of the
RUL. This is in contract to the life-cycle cost model in Section 5.4 that assumaes
optimal prognostic distance throughout the life-cycle. The methodology demedstrat
in this section is applicable to individual system (individual turbines exhibiting

different failure modes), and quantifies the additional benefit that the B/stieins
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provides. The analysis in this section considers individualized maintenancegolici
condition-based maintenance at any point until the end of the RUL.

Finally, we note that the model is based on uncertain quantities that can be
updated in real-time as new information is obtained regarding the uncertain
guantities; a capability that did not exist for cost-benefit models for gicativh of

the benefits of PHM.

5.7 Placing the dynamic maintenance threshold

Finally we demonstrate the value of waiting by considering two turbines
exhibiting prognostic indications for different components at different times.
Considering a timeline from 0 to 53, the first turbine has a failure on day 37, and the
second one on day 53. The prognostic indication is assumed to be obtained 37 days
prior to failure for both turbines. When the prognostic indication of the first turbine i
obtained, the decision-maker does not have any information about the time when the
second turbine will fail. The value of waiting is first obtained from the lep&ires
Monte Carlo algorithm for the data of Turbine 1. The uncertainty paranaeters
estimated for 37 days prior to for turbine 1 (drift of 0.198 and shock of 0.58). The
value of waiting starts increasing on day 9. On day 16 (37 days before the iéad of |
of turbine 2), a prognostic indication for Turbine 2 is obtained. After the failure of
Turbine 1, a penalty equivalent to the cost of production lost by 1 turbine is imposed.
The decision-maker is interested in knowing when to maintain given the prognostic
information and the uncertainties associated with the operation of the system. The

value of waiting with the annotation of different events can be seen on Figure 50.
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Figure 50- Dynamic threshold based on the value of the option to we

The value of waiting exhibits two local maxima iigére £0, the first one i
influenced by the maximum waiting value Turbine 1. But when the secc
Turbine indicates aRUL, the result show that dynamic threshold that maximthe
value of waiting correspond to d30. This is ays before the failure Turbine 1
where penalty starts to accri

The methodology is applicable to multiisystems and is able to set a thresl|
based on the uncertainties and prognostic infoomafs new information about ti
degradation or the uncertainties associated wéloferation, the model can
updated and the threshold can be set dynamicamaximize the value obtaine

from the PHM system.
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5.8 Summary

This chapter demonstrates the methodologies presented in this dissertation on a
wind farm case study. The chapter first highlights the importance of sustatiof
wind farms, then explains the data used for the case study. A life-cycle costisnode
proposed to show the value of PHM on blades of turbines, then a net present value
analysis is presented to show the value of PHM on gearboxes and generators. The
hybrid methodology is demonstrated and includes the option to abandon which
increases the value of PHM. The value of the waiting option is demonstrated on the 7
turbines obtained from the wind farm, and a dynamic maintenance threshold is
presented. The value of waiting is a representation of the benefit that rseedkftaim

PHM at the system when running the system through the RUL.
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Chapter 6: Summary, Contributions and Future Work

This chapter summarizes the research performed in this dissertiscusses the

contributions and proposes directions for future work.

6.1 Summary

This dissertation adds to the body of knowledge on health management for
systems with prognostic capabilities contributions supporting the advancament a
penetration of PHM technologies. Maintenance options are presented to define the
flexibility enabled by PHM, and valuation methods based on a least squares Monte
Carlo methods are presented. The wait to maintain option is presented with an
algorithm to quantify it. This provides a new system-level cost model that qaantifi
the value of PHM for individualized maintenance policies and enable maintenance
planning in real-time based on PHM information.

Chapter 1 motivated the problem, presented a mathematical abstraction of the
problem, and presented the outline of the dissertation. Chapter 2 provided a literature
review on health management for systems with prognostic capabilities nteleva
optimization problems, and real options work relevant to the problem solved in this
dissertation. Chapter 3 introduced maintenance options and tools to frame the
flexibility enabled by the PHM system. The proposed methodology integrates
multiple sources of uncertainty in order to present the distribution of the net present
value of the option in a diagram called value at risk and gain diagram (VARG). The
VARG diagram is a cost-benefit-risk representation of the value of implemge

PHM on a system that can account for flexibility. Chapter 4 presented adeases
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Monte Carlo algorithm to quantify the value of waiting options. An example is
provided to showcase the detailed step-by-step process of the algorithm and the
methodology used to get a price for the options. Chapter 5 demonstrates the
methodology on a case study of wind farms in the United States from the General

Electric Company.

6.2 Contributions

The research work in this dissertation presents the following contributionsehat ar

applicable to systems with prognostic capabilities:

1) Formalizing maintenance options within the real options framework and the

development of the first cost-benefit model that incorporates the value of

flexibility (contingency actions or options). Maintenance options are
introduced as means to represent the flexibility enabled by PHM, and a hybrid
methodology based on Monte Carlo simulations and decision trees was
established to incorporate the value of flexibility.

2) The development of the first system-level cost-benefit mmdgliantify the

benefits of PHM from a user’s perspective. The benefits of PHM are

measured by quantifying a new kind of options, the option to wait to perform

maintenanceThe model evaluates individualized maintenance policies for
different system instances, and quantifies the value of PHM at all points from
prognostic indication to the end of the remaining useful life.

a. The model can be updated in real-time and can generate a value of the

waiting to maintain option at any time.
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b. The model provides a solution to the fundamental maintenance
problem of systems with prognostics.

c. The methodology allows the value of PHM to be established and the
use of PHM in systems to be improved when an availability
requirement has to be met.

3) The development of a maintenance threshold methodology that uses the

information from PHM to set a dynamic maintenance thresfAdild model is

applicable to multiple systems that may not have the same prognostic distance
or the same failure mode. The maintenance threshold is based on maximizing
the value of waiting across a fleet of systems. The methodology can also be

used to support outcome-based contracts.

6.3 Potential broader impacts of thiswork

The maintenance options methodology applied to PHM systems is the first
reported work that puts the flexibility enabled by PHM in a quantifiable fnaorie It
provides significant new capabilities to: a) perform real-time pro-actgebenefit-
risk decision support; b) determine the optimal maintenance strategyldet aff
systems; and ¢) maximize the value of maintenance. The methodology can be
extended to incorporate availability requirements as constraint, and support
availability contacts.

The methodologies of this dissertation are versatile and applicable to masy ty
of systems. Although the focus of the dissertation is on a limited number of
maintenance options, there is theoretically a much larger (maybe infiniteenoi

maintenance options) that may be application dependent.
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6.4 Future work

Future work can extend the maintenance options approach to include the
valuation of multiple options arising in engineering systems. This dissertati
addressed two types of options, waiting and abandoning. However there may be a
larger number (maybe infinite) number of options. The decision-maker cartipeiori
among the options. A global optimization method such as genetic algorithms can be
used to choose the best option for each system in a fleet of systems.

Another extension of the current work is to incorporate logistics paranagiers
models in the options valuation in order to estimate the uncertainties in logistics and
how they affect the value of the options.

The least squares Monte Carlo algorithm considered one type of polynomial for
function approximation; the Laguerre polynomials. This class for polynomials has
been proven to enable convergence in the literature. There are however othesr choic
for polynomials for function approximation (discussed in Chapter 4). A study to
compare different polynomials and the number of paths can be conducted to show the
effect on the value of waiting.

The cost avoidance considered in the wait-to-maintain option are obtained from
historical data. The goal was to find a balance between risk and additiomaleere
loss function can be added to the model to visualize this balance. An example of a
loss function is the Taguchi loss function that measures the financial impacta
process deviates from its target.

Although it is not addressed in this dissertation, valuation of staging options can

give the true value that should be invested in the PHM system or in improving its
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performance. Staging options in real options theory are options that agisthaft
execution of a first option. For example, a PHM system for monitoring a@etor

a wind turbine would ideally predict the advent warning of failure for failures
throughout the life cycle of the gearbox. Exercising one maintenance option in one
maintenance cycle gives rise to maintenance options in the next cycalativialof

the staging options gives the true value that should be charged for the PHM system
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Glossary

This glossary presents the definition for key terms that are used throughout the
dissertation. The terms may have been used in different contexts in theiscientif
community; the definition presented here is the key one for the work.

e Availability : the ability of a system to be operational when it is required for

operation.

e Brownian motion: a continuous time stochastic processes.

e CBM: condition-based maintenance is the maintenance of an asset contingent

on its health condition or use.

e Contingency actions actions taken after prognostic indication.

e Discount rate the interest rate that an eligible depository institution is

charged to borrow short-term funds directly from a Federal Reserve Bank.

e Enterprise: fleet of system. Availability at the enterprise level is usually

different than availability at the system level.

e Flexibility : RUL is the remaining useful life that a system has and it effectively

represents the lead time (subject to appropriate uncertainties) fiediseon-
maker or other maintenance entities to take preventive actions priaitore.
This can be described as a flexibility phenomenon whereby entities involved with
the operation, management, and maintenance of a system have that§léaibil
take actions at any time up to the end of the RUL.
e Health index: The system-state at time can be summarized by a random aging

variable. In the absence of repair or replacement actions, is an ingreasi
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stochastic process. The system fails when the aging variable i gnaate
fixed threshold.

Net present value The difference between the present value of cash inflows
and the present value of cash outflows. NPV is used in capital budgeting to
analyze the profitability of an investment or project. NPV analysis istsens
to the reliability of future cash inflows that an investment or project will
yield.

Option: the term option is used in the context of a choice arising to the
decision maker. An option or choice is a strategy that can be carried out to
manage the health of the system in order to meet some requirement.
Post-prognostic indication After a prognostic indication. Typically the
decision making is addressed after a prognostic indication.

Prognostic distance it is the amount of time before the forecasted failure
(end of the RUL).

Prognostic indication: Indication of an anomaly by a prognostic system. It is
typically a prediction that a fault or failure will happen after a certee.ti

Real option: is the right but not the obligation to take an action within a
period. Real options analysis is a capital budgeting tool that quantifies
flexibility in systems.

Remaining useful life (RUL). the remaining life the system has before
failure.

Requirement performance measurement or outcome required by an entity

involved in the use, management, operation or maintenance of a system.
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e Stochastic processit is a statistical process involving a number of random
variables depending on a variable parameter (which is usually time).
Stochastic processes are used to model uncertainties.

e Sustainment The capacity of a system to endure. The key elements of
sustainment are: reliability, maintainability, availability, uptaiility,
affordability.

e System levelan individual instance of a system. This can be one aircraft, one

engine, one turbine, etc.
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