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Safety, mission and infrastructure critical systems have started adopting 

prognostics and health management, a discipline consisting of technologies and 

methods to assess the reliability of a product in its actual life-cycle conditions to 

determine the advent of failure and mitigate system risks. The output from a 

prognostic system is the remaining useful life of the host system; it gives the 

decision-maker lead-time and flexibility in maintenance. Examples of flexibility 

include delaying maintenance actions to use up the remaining useful life and halting 

the operation of the system to avoid critical failure. 

Quantifying the value of flexibility enables decision support at the system level, 

and provides a solution to the fundamental tradeoff in maintenance of systems with 

prognostics: minimize the remaining useful life thrown while concurrently 

minimizing the risk of failure. While there are cost-benefit models to quantify the 

value of implementing prognostics, they are applicable to the fleet level, they do not 



  

incorporate the value of decisions after prognostic indication (value of flexibility or 

contingency actions), and do not use PHM information for dynamic maintenance 

scheduling.  

This dissertation develops a decision support model based on ‘options’ theory- a 

financial derivative tool extended to real assets - to quantify maintenance decisions 

after a remaining useful life prediction. A hybrid methodology based on Monte Carlo 

simulations and decision trees is developed. The methodology incorporates the value 

of contingency actions when assessing the benefits of PHM. The model is extended 

and combined  with least squares Monte Carlo methods to quantify the option to wait 

to perform maintenance; it represents the value obtained from PHM at the system 

level. The methodology also allows quantifying the benefits of PHM for 

individualized maintenance policies for systems in real-time, and to set a dynamic 

maintenance threshold based on PHM information.  

This work is the first known to quantify the flexibility enabled by PHM and to 

address the cost-benefit-risk ramifications after prognostic indication at the system 

level.  The contributions of the dissertation are demonstrated on data for wind farms.  
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Preface 

Engineering systems are increasing in complexity. Servicing those systems has 

emerged as a key to competing globally. Prognostics and health management (PHM) 

has emerged as a promising discipline that allows maintenance contingent on the 

health state of the asset and to mitigate the system’s risks.  

PHM is an interdisciplinary field that merges together engineers, mathematicians, 

computer scientists, risk analysts and others to improve systems’ safety and reduce 

life-cycle cost. PHM techniques have been successfully demonstrated on a number of 

applications such as jet engines, wind turbines, gas turbines, and locomotives. 

I was fortunate to do an internship at CALCE in 2006, and work on the return of 

investment for the implementation of PHM in electronic systems. After all, new 

engineering technologies ought to be supported by business cases. In the years after, I 

got the opportunity to work on a number of PHM problems involving machine 

learning and decision support. While learning and working on those problems, I 

identified a gap that can potentially push the technology forward; maximizing the 

value of PHM by addressing the cost-benefit-risks ramifications after prognostic 

indication. My advisers, Professor Peter Sandborn and Professor Michael Pecht, 

supported this initiative and guided me through a research journey to address the 

problem of decision after prognostic indication and create methods to truly support 

what we envision a new maintenance paradigm. 

This dissertation displays the ideas that I shaped through my internship at 

CALCE, my years in graduate schools (University of Maryland), and my two 

internships at GE Global Research. Having said this, the work does not reflect the 
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ideas or thoughts of GE nor any industrial sponsor that I worked with during my 

years in graduate school.  
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Chapter 1: Introduction 

This chapter motivates the problem addressed in this dissertation and presents 

relevant background information for key topics. A summary of the research 

opportunities (gaps) is presented, the scope and objectives with the key questions 

addressed in this dissertation are presented, then an overview of the dissertation is 

provided. 

 

1.1 Motivation 
 
The value of safety, mission and infrastructure critical systems, such as aircraft, 

wind turbines, oil and gas drilling equipment, and airport monitoring systems, is 

associated with their availability.  Availability is the ability of a service or a system to 

be functional when it is requested for use or operation (Jazouli and Sandborn, 2010); 

it is a function of reliability and maintainability.  Commercial airlines go out of 

business if their planes are not available to fly; 911 systems are useless if they are not 

available when people need to call them; and wind farms cannot be depended on for 

energy generation if they are always down and waiting for maintenance. 

To avoid unanticipated failures and ensure high availability, many safety, 

mission, and infrastructure critical systems have begun to employ prognostics and 

health management (PHM) techniques that warn users (and/or maintainers) before 

systems fail. PHM is a discipline comprised of technologies and methods designed to 

assess the reliability of a product in its actual life-cycle conditions to determine the 

advent of failure and mitigate system risks (Pecht, 2008), (Cheng et al., 2010). The 

PHM system gives information on the remaining useful life (RUL), which allows the 
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decision-maker to take appropriate actions to manage the system’s health prior (or 

sometimes upon) failure. 

As an example of the actions that can be taken, consider an aircraft with 

prognostic capabilities flying between two locations: A and B, Figure 1. A prediction 

of the remaining useful life (RUL) of a critical system in the aircraft is obtained 

during a flight. In an ideal scenario, several contingency actions or options are 

available to the decision maker such as:  1) fly the aircraft to location B, but slow 

down so that less damage is accumulated, 2) return to location A, 3) land the plane at 

an alternative location, 4) continue operating the system until failure thus making use 

of the whole RUL. If the decision-maker chooses to continue to location B, new 

options arise: 1) maintenance can be performed at location B, 2) operation of the 

plane can continue as scheduled until a later time and/or alternative location for 

performing maintenance is reached, or 3) the flight schedule can be changed to route 

the plane to an alternative location for maintenance.   

Although the example in Figure 1 is hypothetical, it would be ideal to be able to 

operate under such conditions whereby the decision-maker can choose among a host 

of options to manage the health of the system and maximize the value obtained from 

PHM.  

 



 
  

Figure 1- Hypothetical example of o

 

Considering another example, 

the turbines (or subsystems in the turbines)

its respective uncertainty)

of performing maintenance on one or more turbines is significant? Figure 2 shows 

such scenario. A health index that measures the “risk” of failure for each turbine is 

shown along with a proposed threshold for maintenance. 
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Hypothetical example of options arising after a prognostic indication

Considering another example, an offshore wind farm has 40 turbines. If 

(or subsystems in the turbines) has a unique remaining useful life

its respective uncertainty), what is the best way to perform maintenance when the cost 

erforming maintenance on one or more turbines is significant? Figure 2 shows 

A health index that measures the “risk” of failure for each turbine is 

shown along with a proposed threshold for maintenance.  

 

prognostic indication 

0 turbines. If each of 

remaining useful life (with 

way to perform maintenance when the cost 

erforming maintenance on one or more turbines is significant? Figure 2 shows 

A health index that measures the “risk” of failure for each turbine is 



 
  

Figure 2- Illustration of 

 

If the wind turbines are off

the wind turbines is an expensive proposition and knowing 

fixed when the maintenance vessel is on site is important 

less expensive to throw away RUL in wind turbines than to risk having them non

operational or having to make special trips to 

B, and C in Figure 2. If a maintenance vessel is to be sent out, turbine A would be 

maintained given that is above the maintenance threshold. Turbine B would not be 

maintained since it is well below the threshold,

maintained now? Or should we 

The real issue is where should the threshold be?  The threshold is not a constant, it 

varies depending on the when the maintenance ve

4 

Illustration of the state of health of multiple wind turbines in a wind 
farm 

If the wind turbines are offshore, for example, sending a maintenance vessel to 

the wind turbines is an expensive proposition and knowing which turbines need to be 

he maintenance vessel is on site is important – it may be significantly 

less expensive to throw away RUL in wind turbines than to risk having them non

or having to make special trips to maintain them. Consider the turbines A, 

B, and C in Figure 2. If a maintenance vessel is to be sent out, turbine A would be 

maintained given that is above the maintenance threshold. Turbine B would not be 

maintained since it is well below the threshold, but how about turbine C? Should it be 

maintained now? Or should we wait for next time the vessel is out for maintenance?  

The real issue is where should the threshold be?  The threshold is not a constant, it 

varies depending on the when the maintenance vessel will return to the wind farm, the 

 

the state of health of multiple wind turbines in a wind 

maintenance vessel to 

turbines need to be 

it may be significantly 

less expensive to throw away RUL in wind turbines than to risk having them non-

Consider the turbines A, 

B, and C in Figure 2. If a maintenance vessel is to be sent out, turbine A would be 

maintained given that is above the maintenance threshold. Turbine B would not be 

but how about turbine C? Should it be 

for next time the vessel is out for maintenance?  

The real issue is where should the threshold be?  The threshold is not a constant, it 

ssel will return to the wind farm, the 
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expected weather conditions, the availability requirement for the wind farm, and the 

maintenance options you have.   

Waiting is one of the options that the decision-maker can take. Like any other 

option, it has a value associated with it; if the decision-maker waits until the gearbox 

of a turbine fails, then revenue is generated from producing power, but a high cost is 

incurred for replacing the gearbox.  

To illustrate this point further, consider an example of wind turbine with a power 

rating, '1��, of 600KW. Based on the research and data published in (Andrawus et 

al. 2006), the revenue from a turbine can be calculated with the following equation: 

  27879:7 ; #��<24?'1������  (1) 

 27879:7 corresponds to the revenue generated by a turbine (analogous to 

production loss, as identified by Andrawus et al. 2006) given a particular cost of 

energy ���. #�� is the number of days considered in the calculation of the revenue 

generated, and �  is the capacity factor; the ratio of how much power a turbine is 

generating over a period of time to the maximum theoretical power (it is considered 

representative of uncertainty in wind speed over a period of time). This factor is 

highly influenced by the properties of wind: if wind is blowing at a high speed 

constantly the turbine will generate more power.  However wind speed has an 

uncertainty associated with it and is dependent on a number of factors including 

month of the year. Assume the uncertainty in wind speed is reflected in an uncertainty 

in the capacity factor.  Consider two scenarios for maintenance: 1) scheduled 

maintenance is performed next month with a projected capacity factor of 33%;   2) 
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wait for an additional month, and perform condition-based maintenance (CBM) in 

two months where capacity factor for the first month is 33% and there are three 

possibilities for capacity factor for the second month; 70%, 33%, and 5%; each with 

its respective probability of occurrence as seen in Figure 3. 

 

Figure 3- Waiting to perform maintenance 

 
Assuming a cost of energy of $0.17/hour, the calculation using equation (1) for 

the two scenarios leads to revenue of $24,235 for scenario (1), and $54,896 for 

scenario (2). This implies that waiting for an additional month to perform 

maintenance will result in 13.2% additional value on the revenue. This is because of 

the uncertainties in the model, a high projected capacity factor in particular for 

scenario (2). In this hypothetical example, the decision-maker uses the RUL and 

harnesses the upside effect of the uncertainties by waiting to perform maintenance. 

 

1.2 Background 
 

This section introduces key-concepts used in this dissertation. The definitions 

provided in this section serve as background information for general understanding. 

Some concepts are explained more elaborately in subsequent chapters.       
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1.2.1 Prognostics and health management (PHM) 
 
Prognostics and health management (PHM) is a discipline consisting of 

technologies and methods to assess the reliability of a product in its actual life-cycle 

conditions to determine the advent of failure and mitigate system risks (Pecht, 2008) 

(Cheng et al., 2010). PHM is an enabling technology that allows the industry to 

transition from traditional time- or cycle-based maintenance to condition-based 

maintenance. It also enables performance-based contracts (contracts where the user 

pays for the outcome of the asset instead of buying the asset), and reduces life-cycle 

costs (Vichare and Pecht, 2006) and (Jazouli and Sandborn, 2011).  

A framework for PHM is shown in Figure 4. The health of the system is 

monitored continuously with sensor systems. Data is collected and analyzed. The first 

step in the analysis consists of preprocessing the collected data where outliers are 

removed, transformations are performed (if needed), gaps in the data are addressed, 

etc. The data is then used within a diagnostic algorithm; anomalies are reported when 

there is a change from a healthy state, then the root-cause of the anomaly is identified. 

A prognostic algorithm is then used to predict how much remaining life the 

component/system has. The remaining useful life (RUL) estimate can be used for on-

board tactical control or off-board strategic planning. The RUL provides the decision-

maker with the lead time to manage the health of the system and take the appropriate 

action prior to the failure.  

 



 
  

 
There are three main approaches to PHM: data

(PoF), and fusion approaches

assess the health of the system and estimate the remaining useful life of a product 

using machine learning and statistical learning model

knowledge of a product’s 

and failure mechanisms to estimate its remaining useful life

benefits from DD and PoF for better prediction

proposed in this dissertation does not differentiate between the PHM 

is applicable to any of them as long as the prognostic distance is obtained

Prognostic distance is the amount of time before the forecasted failure

RUL). 
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Figure 4- Framework for PHM 

main approaches to PHM: data-driven (DD), Physics of Failure 

(PoF), and fusion approaches. DD methods look at current and historical data to 

assess the health of the system and estimate the remaining useful life of a product 

using machine learning and statistical learning models. PoF approaches utilize the 

knowledge of a product’s life-cycle loading conditions, geometry, material properties, 

and failure mechanisms to estimate its remaining useful life. Fusion, combine

benefits from DD and PoF for better prediction (Cheng and Pecht, 2009). The 

proposed in this dissertation does not differentiate between the PHM methods

is applicable to any of them as long as the prognostic distance is obtained

Prognostic distance is the amount of time before the forecasted failure (end of the 

 

Physics of Failure 

at current and historical data to 

assess the health of the system and estimate the remaining useful life of a product 

utilize the 

ading conditions, geometry, material properties, 

, combines the 

. The work 

methods used; it 

is applicable to any of them as long as the prognostic distance is obtained from them. 

(end of the 
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For the remainder of the dissertation, we assume that there is an RUL that is 

output from the PHM system, and address the maintenance decision after the 

prediction is obtained.  

 

1.2.2 Availability  
 
Availability, the ability of a system to function when it is required (Jazouli and 

Sandborn, 2010), is a function of its reliability and how efficiently it can be 

maintained.  The interest of this dissertation is operational availability which is given 

by the following relationship: 

 �8A3BAC3B3DE ; :+D3F7:+D3F7 G HIJ9D3F7 
(2) 

 
where uptime is the total operational time during that the system is up and running 

and able to perform the tasks that are expected from it. Downtime is generated when 

the system is down and not operating when requested.  

 Performance-based contracting is a contracting mechanism that allows the 

customer to pay only when the Original Equipment Manufacturer (OEM) has 

delivered outcomes, rather than merely paying for activities and tasks (Ng et al., 

2009). PHM is an enabler of such contracts.  

This contracting method is becoming popular for engineering systems especially 

costly assets such as avionics systems. Figure 5 shows an example of the Product-

Service System (PSS) spectrum for a car. The spectrum extends from complete 

ownership of the car and its maintenance to simply purchasing a service that 

completely removes the customer from all maintenance activities.   For system such 



 
  

as avionics, conventional practices are that the customer owns the avionics and 

obtains maintenance via a separate maintenance contract (Conventional Model in 

Figure 5).  Outcome-based

paying for its use. 
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maintenance (PM) policy, failure limit policy, sequential preventive maintenance 

policy, repair cost limit policy, repair time limit policy, repair number counting 

policy, reference time policy, mixed age policy, preparedness maintenance policy, 

group maintenance policy, and opportunistic maintenance policy among others.  

When used in this dissertation, maintenance optimization means maximizing the 

value that can be obtained from maintenance by considering three alternatives: 

condition-based, scheduled, and unscheduled maintenance.  

 

1.2.4 Fleet-level versus system-level risk mitigation 
 
The information obtained from PHM can be used for system-level and fleet-level 

risk mitigation.  The output from PHM can be used for real-time tactical control at the 

system level (to manage an individual instance of a system, e.g., an airplane), or for 

strategic planning for the fleet such as logistic decision making for the entire fleet 

(e.g., a whole airline); hence the distinction between system level and enterprise (or 

fleet level). In this dissertation, the terms fleet and enterprise are used 

interchangeably. 

The distinction between the two levels is also based on availability.  A system 

may not be available at a time when the fleet is still able to meet the required 

availability. For example, consider a wind farm: it may be able to produce enough 

power to meet its availability requirement, even if one turbine is not available (this is 

only an example; wind turbines may not be operating under availability contracts at 

this time). 
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1.2.5 Real options  
 

A real option is an alternative or choice that becomes available as a result of a 

business investment opportunity; it is a right, but not an obligation, to take an action 

(e.g., defer, expand, contract, or abandon a project) at a predetermined cost called the 

exercise price, for a predetermined period of time- the life of the option (Copeland 

and Antikarov, 2001).   Real options analyses are decision tools for addressing the 

value of investments under uncertainty. 

Real options are the extension of financial options to real assets. Unlike financial 

options, real options are not securities and they can’t be traded. A real option has an 

underlying asset, for example a project or a growth opportunity.  For real options 

there’s no need for a contract to specify the payoff, and the payoff can be a future cost 

avoidance (Wallace, 2010).  

Adding PHM to a system enables flexibility in the decision-making process, and 

creates opportunities for the decision-maker to manage the health of the system. 

When a RUL is known, the decision-maker is faced with multiple options to choose 

from, each of which will lead to a different outcome and thereby a different value. 

These options are depicted in the example shown in Figure 1.  

 

1.2.6 Difference between real and financial options valuation 
 

There is a body of literature treating the valuation of real and financial options, 

which will be discussed in later chapters. It is however necessary to shed the light on 

the differences upfront. Valuate is the technical term used in the options literature as a 

synonym of quantify. 
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Cobb and Charnes (2007) state that a real option derives its value from the 

potential fluctuations of the cash flows generating the value of the investment project 

whereas financial options derive their values from potential price movements of the 

underlying financial asset.  

This dissertation capitalizes on the real options literature and introduces the term 

maintenance options whose quantification must be concerned with determining both a 

value and an optimal exercise decision rule. The maintenance options derive their 

value from the PHM system whereby the knowledge of the RUL gives the decision-

maker the flexibility to manage the system.    

 

1.3 Evolution of maintenance paradigms 
 

There are different approaches to maintenance, but, fundamentally, depending on 

if a system has failed, when we think it will fail, how it has failed, there are decisions 

that need to be made about how and when to maintain it.  The goal is to maximize the 

value of maintenance. Figure 6 shows different maintenance paradigms with their 

respective maintenance values. The top graph indicates the system health as a 

function of time, and the bottom diagram shows the maintenance value as a function 

of time. System health describes the ability of a system to perform its intended 

functionality. For example, if a system is failed, it cannot perform its intended 

functionality and is considered unhealthy. The dashed line in the top graph represents 

the maintenance threshold; it is the threshold upon which maintenance should be 

performed. 
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Figure 6- Evolution of maintenance paradigms 

 

Corrective (unscheduled) maintenance consists of maintaining a system upon 

failure. This allows for the entire life of the system or component to be used. For 

many systems, corrective maintenance is inefficient, as it can result in long 

downtimes, catastrophic failures, and unpredictability, which lead to a low 

maintenance value. Preventive maintenance can be time-based or usage-based. It has 

a low maintenance value if the time or usage to failure is not well characterized 

because that throws away substantial RUL. Reliability Centered Maintenance (RCM) 

accounts for the reliability of the system and is more efficient than the first two 

paradigms. However, it does not account for the actual usage conditions of the 

system. Condition-based maintenance (CBM), enabled by PHM, allows the reliability 
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of a system to be monitored in real-time, and is considered to be the paradigm with 

the highest value, since it minimizes the unused RUL, avoids failures, and presents a 

lead-time for logistics management, among other benefits.  

The maintenance threshold is an important characteristic in Figure 6 and 

highlights the flexibility enabled by PHM. For unscheduled maintenance, the 

threshold is fixed, i.e., maintenance is performed upon failure. For CBM, the 

threshold is not fixed; the decision-maker has the flexibility to define the threshold 

based on the current and forecasted states of the system, resource availability, usage 

conditions, etc. An example of exercising this flexibility is to wait, use all the RUL, 

and maintain just before failure, but due to uncertainties in the RUL prediction, the 

closer to the end of the RUL one waits, the greater the risk of encountering an 

unanticipated system failure. This observation is key when assessing the value of 

PHM. 

It is worthwhile to note that RCM, CBM, and PHM may have greater 

implementation and support costs than unscheduled maintenance – and each of these 

methods represents the best maintenance approach for particular types of systems.  In 

this dissertation, our focus is on safety, mission and infrastructure critical systems, 

where the cost of failure and/or downtime is substantial. In such systems, the 

threshold must be adjusted to harness the benefits of PHM by using the maximum 

possible RUL and still avoiding failure. 

 

1.4 Fundamental problem in maintenance of systems with prognostics 
 
The fundamental tradeoff in maintenance problems with prognostics is finding 

the best time to perform maintenance that minimizes the combination of remaining 



 
  

useful life that is thrown away and the risk of expensive

(which increases as you use up the RUL).  The cost avoidance

quantity, decreasing in value since the cost to maintain will increase as the system is 

used through the RUL. The cost to maintain will be equal to the 

maintenance if the system is run to failure. Figure 

of cost avoidance and revenue opportunities. 

between the cost of non-detected failure and cost of detected failure. 

the left in Figure 7 shows that when the prognostic indicati

avoidance is high under the assumption that the cost of 

than the cost of undetected failure

severity of the failure is constant b

eventually the system will fail and unscheduled maintenance has to be performed; 

hence the cost avoidance goes to zero. As for the revenue (shown in the diagram on 

the right in Figure 7), it is shown as an in

operating more and the RUL is used rather than thrown away.  

 

Figure 7- Trend of cost avoidance and revenue opportunities

 
                                                

1 Cost avoidance is a reduction in costs that have to be paid in the future to sustain 
avoidance is used rather than cost savings, is that if the value of an action is characterized as a cost savings, then someon
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useful life that is thrown away and the risk of expensive unscheduled maintenance 

as you use up the RUL).  The cost avoidance1 is an uncertain 

quantity, decreasing in value since the cost to maintain will increase as the system is 

used through the RUL. The cost to maintain will be equal to the cost of corrective

maintenance if the system is run to failure. Figure 7 shows an illustration of the paths 

of cost avoidance and revenue opportunities. The cost avoidance is difference 

detected failure and cost of detected failure. The diagram on 

shows that when the prognostic indication is obtained, the cost 

avoidance is high under the assumption that the cost of a detected failure 

undetected failure. As the system is used through the RUL, the 

severity of the failure is constant but the probability of failure will increase and 

eventually the system will fail and unscheduled maintenance has to be performed; 

hence the cost avoidance goes to zero. As for the revenue (shown in the diagram on 

), it is shown as an increasing function since the system is 

operating more and the RUL is used rather than thrown away.   

Trend of cost avoidance and revenue opportunities
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1.5 Research opportunities 
 
While there are cost-benefit models for PHM, there is a need for models that 

address the following gaps: 1) Cost-benefit-risk models for decision support after 

prognostic indication; life-cycle cost models make assumptions on the complete life 

cycle of a system, and do not incorporate the value of decisions from the time a 

prognostic indication is obtained to the end of the remaining useful life.  2) Cost-

benefit-risk ramifications of maintenance decisions at the system level; life-cycle cost 

models tend to focus on decision support at the enterprise level (fleet of systems) and 

are targeted at strategic decisions, such as logistics planning. Such models evaluate 

one ‘static’ maintenance policy by assuming one prognostic distance (that may be 

optimal over the life-cycle) and compare it to a reference maintenance paradigm 

(scheduled or unscheduled). There is a need for a cost-benefit model that addresses 

the value of PHM for individualized maintenance policies for every system in a fleet. 

3) A model accounting for all relevant uncertainties that can be updated in real-time 

for maintenance scheduling for system with prognostic capabilities. Such model can 

be used to set a dynamic maintenance threshold when requirements have to be met.  

Table 1 provides a summary of the gaps in the literature with representative 

references. The gaps and will be discussed in detail in Chapter 2. Although there may 

be some attempts to address the gaps, the intent of the table is to highlight the 

research major research gaps and opportunities.  
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Table 1- Characteristics of relevant optimization problems 

 
Life-cycle cost models 

Maintenance   
optimization models 

Real options for 
maintenance 
applications 

Cost/benefit/risk at 
system level 

 X X 

Cost/benefit/risk at 
enterprise level 

X X 
 

Technical uncertainty X X 
 

Non-technical 
uncertainty   

X 

Value of decisions after 
obtaining RUL 

prediction 
   

Options arising to the 
decision-maker   

X 

Outcome requirements X 
  

Use PHM information 
for dynamic 

maintenance threshold 
   

Representative 
references 

Feldman et al. (2009), 
Luna (2009), Saxena et 
al. (2010), Reimann et 
al. (2009), Grubic et al. 

(2009), Jazouli and 
Sandborn (2010 and 

2011) 

Dadhich and Roy 
(2010), Camci 

(2009), Keller et al. 
(2001), Naikan and 

Rao (2005) 

Koide et al. 
(2001), Miller 

and Park 
(2004), Jin et al. 

(2009) 

 
 

1.6 Scope and objectives of this dissertation 
 

This work addresses three major gaps in health management for systems with 

prognostic capabilities. The objectives of this dissertation are:  

1. Define a new class of maintenance options to frame the flexibility enabled by 

PHM. Quantifying the options allows the value of PHM to be established and 

use of PHM in systems to be improved.  
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2. Develop a methodology to represent the value of different options arising after 

a remaining useful life is obtained. 

3. Develop an algorithm to quantify the wait to maintain option. The value of 

this option will represent the additional value obtained from the PHM system, 

and will present a solution to the fundamental tradeoff in the maintenance of 

systems with prognostics. The algorithm can be updated in real-time as new 

information is obtained. 

4. Develop a methodology to define a dynamic maintenance threshold for 

systems with PHM in order to maximize maintenance value.  

5. Apply the methodologies to the maintenance of wind farms to demonstrate the 

contributions of the dissertation. 

 

1.7 Mathematical abstraction of the problem 
 

After a prognostic indication is obtained, the decision-maker wants to know what 

the expected value of waiting to maintain is, as opposed to maintaining when the first 

opportunity arises. Answering this question will establish a system-level cost-benefit-

risk model to show the value of PHM for individualized maintenance policies, and set 

a dynamic maintenance threshold based on PHM information. 

If we let (� be the value of the mission at the current time - a combination of cost 

avoidance opportunities and opportunities for revenue generated from running the 

system, it is desirable to know the expected value of (�  if the maintenance option of 

waiting is exercised (maintenance is delayed for a period of time). This relationship is 

expressed mathematically in equation (3):  
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KL%<(�)*?|(�N (3) 

 

Equation (3) represents the value obtained from running the system through the 

RUL; hence represents the additional value obtained from PHM. This will help 

maximizing the benefit from PHM, quantify the value of waiting, and set a dynamic 

maintenance threshold. Maximizing (3) and expressing it in abstract form:  

 maximize<DU7 8AB:7 IV JA3D39W ?   (4) 

X. D  

8AB:7 ; V<ZIXD A8I3HA9Z7, [7879:7?  

ZIXD A8I3HA9Z7 ;  V<[7B3AC3B3DE, FA39DA39AC3B3DE?  

 
There are several steps enabling the solution of this problem; they will be 

discussed in the following chapters.  

 

1.8 Dissertation overview 
 

This dissertation is structured as follows: Chapter 1 provides the background and 

key-concepts associated with the value of maintenance options problem. The 

objectives and a mathematical abstraction of the problem are presented. Chapter 2 

surveys relevant previous work on health management for systems with prognostic 

capabilities, and identifies research gaps. Chapter 3 presents maintenance options 

whose quantification represents the value of actions after prognostic indication, and a 

method to incorporate the value of flexibility when quantifying the benefits of PHM. 

Chapter 4 presents an algorithm based on  the least squares Monte Carlo (LSM) 

method to put a value for the waiting option (one type of maintenance options). The 
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contributions of the dissertation are demonstrated with a case study of wind turbines 

in Chapter 5. Chapter 6 concludes the dissertation, lists the contributions, the broader 

impact of the work, and suggests key topics for future work on the subject. 
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Chapter 2: Literature Review and Research Gaps 
 

This chapter reviews: the work on health management for system with prognostic 

capabilities, relevant maintenance optimization problems, and real options for 

engineering and maintenance applications. The gaps in the literature are highlighted 

and will be addressed in subsequent chapters.  

 

2.1 Potential benefits of PHM 
 
Systems include PHM for a number of reasons (Pecht, 2008), (Feldman et al., 

2009), and (Jazouli and Sandborn, 2010). The following is a list of the potential 

benefits of PHM:  

• Failures avoided 

o Minimizing the cost of unscheduled maintenance 

o Increasing availability 

o Reducing risk of loss of the system 

o Increased human safety 

• Minimizing loss of remaining life 

o Minimizing the amount of remaining life thrown away by 

scheduled maintenance actions 

• Logistics 

o Better spares management (quantity, refreshment, locations) 

o Lead time reduction 

o Better use of inventory 

o Optimization of resource usage 

• Repair 

o Better diagnosis and fault isolation  

o Reduction in collateral damage during repair 
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• Reduction in redundancy  

• Reduction in no-fault-founds 

 

2.2 Life-cycle cost models 
 
A number of papers present proposals for adopting PHM to articulate an 

economic justification through life-cycle cost models, which are part of a business 

case. Examples of such models include return on investment (ROI), total value, and 

technical value. The following sections present models supporting the implementation 

of PHM. While some models may fit in more one category, the intent is to provide the 

objectives of using particular approaches. 

 Return on Investment (ROI) is a useful means of gauging the economic merits of 

adopting PHM. The determination of the ROI allows managers to include 

quantitative, readily interpretable results in their decision-making. ROI analysis may 

be used to select between different types of PHM, to optimize the use of a particular 

PHM approach (optimize the prognostic distance in this case), or to determine 

whether to adopt PHM versus more traditional maintenance approaches (Feldman et 

al., 2009). ROI is typically defined by:  

 ROI ; <_`abcdefdg`hai`da?fdg`hai`da ; <jgklm`m nkha?fdg`hai`da o 1   (5) 

 
where the return in the case of PHM is generally a future cost avoidance.  

ROI calculations are application specific as the breakdown of cost avoidance and 

investments can differ from one application to another. Research that address ROI for 

PHM includes the ROI associated with PHM ground vehicles, power supplies, 

telecommunication and electronics (Vohnout et al., 2008) (Tuchband and Pecht, 
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2007) (Wood and Goodman, 2006) and (Feldman et al., 2009). NASA proposed the 

ROI of prognostics in aircraft structures (Kent and Murphy, 2000). Banks and 

Merenich, (2007) expressed that ROI was maximized when the time horizon was the 

greatest, and when the number of vehicles and the failure rates were the largest. 

Life-cycle cost models to support PHM implementation can be justified with 

metrics other than ROI. Banks and Mereneich (2007) provided a cost-benefit analysis 

of PHM for batteries within ground combat vehicles using the Trade Space Visualizer 

software tool. An analysis of PHM for JSF aircraft engines was developed using a 

methodology that employed Failure Modes, Effects, and Criticality Analysis 

(FMECA) to model hardware (Brotherton and Mackey, 2001).  

Gurbic et al. (2009) proposed a Product-Service System (PSS), which offered a 

bundle of products and services where emphasis shifts from selling a product to 

selling the use of a product. This work was a move towards performance-based 

contracting; a contracting mechanism that allows the customer to pay only when the 

Original Equipment Manufacturer (OEM) has delivered the outcomes, rather than 

merely paying for activities and tasks (Ng et al., 2009). Leao et al. (2008) described a 

set of metrics developed to evaluate the performance of PHM and a cost benefit 

analysis (CBA) was included in their review. Yang and Letourneau (2007) proposed a 

method to quantify the cost savings expected from a given prognostic model that 

takes realistic inputs from the user. Wang and Pecht (2011) presented a cost model to: 

1) show the economic merit for the implementation of canaries in electronic systems, 

and 2) the time to replace the line replaceable unit based on the information from the 

canary. A review of cost-benefit-risk metrics is also provided by Saxena et al. (2010). 
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2.3 Maximizing maintenance value   
 
Another approach for supporting the application of health management for 

systems with prognostic capabilities are models to maximize maintenance value. 

These models consist of availability maximization, optimization of some benefit 

function, logistics optimization and others.  

Jazouli and Sandborn (2010 and 2011) proposed a ‘design for availability 

method’ where they solve for system attributes that will result in a desired 

availability. The majority of previous work on subject tackled the problem from the 

opposite direction: given system attributes, generate the system’s availability. The 

design for availability model could be used to generate system reliability, operation, 

sparing, etc., for a specific availability, i.e., for a specific uptime and downtime.  

A popular approach is to optimize an objective function while honoring the 

constraints on requirements and resources to arrive at a beneficial maintenance 

policy. Although some of the methods may be cost-benefit metrics or accounted for in 

the business cases for PHM, they can be used for optimal maintenance policy. 

Kacprzynski et al. (2001) discussed a prognostic modeling approach based on 

cost/benefit to optimize time for on-line waterwashing or crank washing for the 

LM2500 and Allison 501-K17 gas turbine. Khalak and Tierno (2006) proposed a joint 

optimization problem that is shown to be equivalent to a shortest path problem. Their 

work intended to give the tradeoffs in using damage prediction technologies in the 

overall health management solution. Luna (2009) discussed the impact of PHM on 

the maintenance policy and the benefit from condition-based maintenance (CBM) that 

is enabled by PHM, and the maintenance attributes and metrics for maintenance for 
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systems with prognostic capabilities.  Reimann et al. (2009) proposed a scheduling 

algorithm that leverages CBM data to determine when maintenance should be 

performed. The objective of their work is to reduce the cost associated with 

performance based contracts to improve profit margins. An example consisting of 50 

aircraft was analyzed and the results indicated that significant cost savings can be 

achieved by utilizing a CBM scheduling algorithm. In addition, to the maintenance 

cost savings, the CBM scheduling algorithm is also able to identify potential resource 

limitations within the maintenance organization. Hoyle et al. (2007) proposed a cost-

benefit analysis as a multiobjective optimization problem. One of the problems is to 

address the inspection interval. Khalak and Tierno (2006) presented a methodology 

that can be applied for the estimation of the supply chain benefits of prognostics 

applications. This methodology yields an optimal stock level for each node in the 

supply chain. The stock level is a function of the lead time provided by the 

prognostics, taking into account some restrictions and some prognostics design 

constraints. Wang and Hussin (2009) discussed a scheduling problem of condition 

based maintenance based on oil analysis where both monitored external and internal 

variables were considered. 

MacConnell (2007) defined a set of scenarios made possible by the ideal 

integrated structural health monitoring (ISHM) system. These scenarios and the 

technologies associated with them were evaluated for their system impact, design 

impact, innovativeness and timeliness. Keller et al. (2001) proposed a method to 

estimate the benefits of prognostics in specific applications where the output is a life-

cycle payoff as well and include an assessment of the technical risk of the application. 
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Drummond and Yang (2008) proposed a method to ‘reverse engineer’ the effective 

range of algorithms and estimate its potential cost savings. Drummond and Holte 

(2006) and (Drummond, 2007) proposed cost curves as a means to evaluate the 

effectiveness of classifiers and to choose among maintenance policies.  

 

2.4 Other relevant optimization literature 
 

Availability maximization is an important problem for many industries such as 

avionics, manufacturing, production among others. The objective is typically to 

maximize the availability of a system throughout a finite or infinite horizon 

accounting for some downtime events such as maintenance and sometimes 

accounting for reliability or the degradation of the systems that is often times depicted 

in Markov models. The decision variables are typically elements of the maintenance 

problem such as number of spares or crews, etc. Dadhich and Roy (2010) is a good 

example of availability optimization for preventive maintenance. Their objective is to 

maximize availability and a benefit function.  

Other relevant optimization problems are real-time which optimization refers to 

evaluation and alteration of operating conditions of a process continually to maximize 

the economic productivity of the process. This optimization method is prevalent in 

the chemical engineering realm where the process is continuously monitored and 

optimized to generate maximum availability and profit. In an online decision 

problem, one makes a sequence of decisions without knowledge of the future. Each 

period, one pays a cost based on the decision and observed state (Groethschel et al. 

2001).  
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Scheduling maintenance is a problem that has been studied for decades and was 

applied for different maintenance paradigms: scheduled, condition-based, 

opportunistic maintenance, and others. The most relevant scheduling problems are for 

condition-based and the opportunistic maintenance. In opportunistic maintenance, the 

problem is to choose the optimal number of subsystems to maintain when system is 

down for maintenance. In the scheduling problem, the decision is on the optimal time 

to perform maintenance give a set of constraint (degradation of system, logistics, 

etc.). Camci (2009) presented a model to use PHM information for scheduling 

condition-based maintenance.  

Maintenance scheduling models are proposed in the reliability and operations 

research literature: Wang et al. (2010) used the delay time concept for scheduling 

inspection. Li et al. (2009) develop a reliability based dynamic maintenance 

threshold. Bouvard et al. (2011) presented a method for the maintenance optimization 

of vehicles. The model in Bouvard et al. (2011) addresses maintenance scheduling 

and grouping based on condition of system. Aissani et al. (2009) presented a 

reinforcement approach for the dynamic scheduling of maintenance tasks in the 

petroleum industry. Aissani et al. (2009) also provide a review of the state of the art 

in dynamic scheduling.  

  The inventory problem has been long studied and sometimes referred to as a the 

newsvendor problem. Generally speaking, a policy is to be derived to satisfy a 

demand that may be stochastic and constraints on the inventory and sometimes 

penalties. Inventory levels drops until a point where a reorder is executed. This is 
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analogous to the availability being considered where availability has to always be 

maintained above a certain level. In such problems demand is considered stochastic.  

Table 2 gives examples of some of the optimization problems listed in this 

section along with the objective function. 

 
Table 2- Examples of relevant optimization problems 

Problem Objective function Author(s), year 
Availability 
optimization FAq<XEXD7F A8A3BAC3B3DE? 

Dadhich and Roy, 
(2010) 

Scheduling and 
maintenance 
optimization 

F39 r VA3B:[7 A9H FA39D79A9Z7 [3XsXt Camci, (2009) 

Maximize benefit 
function max uC797V3D V:9ZD3I9 VI[ 39H383H:AB XEXD7FX v 

Kacprzynski  et al. 
(2001) 

Demand-based 
optimization 

minx q<39879DI[E? Naikan and Rao, 
(2005) 

 

2.5 Real options  
 

Options are tools that originated in the financial world and then extended to real 

assets to solve capital budgeting problems where the decision-maker has the 

flexibility to invest in a project or growth opportunity. Formally, an option is defined 

as the right but not the obligation to take some action now, or in the future for a pre-

determined price (Copeland and Antikarov, 2001).  Since the dissertation extends to 

real options theory to maintenance problems, it is necessary to summarize the work 

done on real option. 

Real options have been used for engineering applications. There is a body of 

literature that addresses the application of real options to engineering projects, Table 
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3 below summarizes some of the most common types of options, their description, 

and the industry where they are commonly used (Trigeorgis, 1993).   

 
 

Table 3- Common real options (Trigeorgis, 1993) 

Category  Description Examples 
Defer  Wait for a number of years 

before developing 
Natural resources 

Time to build  Abandon if new information is 
unfavorable 

R&D industries 
(pharmaceuticals) 

Alter: expand, 
contract  

Expand if conditions are 
favorable 

Mine operations 

Abandon  Abandon actions permanently Airlines 
Switch option  Use different inputs Consumer electronics 

 

Real options are increasingly being used in decision support systems. Kim and 

Sanders (2002) develop a real options framework for strategic decisions in investment 

in information technology; the work emphasizes on competitor reaction and considers 

three options: growth, postponement and abandonment. Zhang and Babovic (2011) 

propose a real options framework that consists of real options methods, Monte Carlo 

simulations, decision analysis techniques and evolutionary algorithms to design and 

manage projects in the face of uncertainty. Zhang et al. (2008) study the dynamics of 

grid computing using a real options framework. The uncertainties in price and 

demand are the main motives for using this framework. Schober and Gebauer (2011) 

compare the value of flexibility using decision trees, real options, and an explicit 

assessment of uncertainties; real options is recommended as an attractive tool for such 

problems. 

Real options analysis has also been used extensively in engineering technology 

applications such as RFID (Wu et al., 2009) (Lio and Lu, 2009). Past research has 
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focused on cost benefit ratios, discounted cash flows, or net present values to support 

the decision. The motivation for using ROA in engineering decision making focuses 

on its ability to account for the uncertainties and the flexibility in the 

management/investment.  

Real options have also been used for maintenance applications. For example, 

existing work includes the comparison of different maintenance strategies and their 

effects on the total costs for the maintenance and management of an existing bridge 

for thirty years (Koide et al. 2001). Real options have also been applied in the 

maintenance, repair, and overhaul (MRO) industry (Miller and Park, 2004). Miller 

and Park compare present value (PV) and RO. The PV analysis resulted in a no-go 

decision; however using the real options framework justified an investment. Jin et al. 

(2009) used an option-based cost model for scheduling joint production and 

preventive maintenance for a manufacturing industry when demand was uncertain. 

The option-based mathematical model in (Jin et al., 2009) provides recommendations 

for maintenance decision in the environment of uncertain demand. 

 

2.6 Research gaps 
 

While there is a body of literature on health management for systems with 

prognostic capabilities, a number of gaps have been identified.  

Existing cost-benefit models do not incorporate the value of contingency actions 

(options) that are enabled by PHM.  Furthermore, existing cost-benefit models do not 

present uncertainty management methods and quantify risks for contingency-

management based on post-prognostics reasoning; this gap was also highlighted in 

(Saxena et al., 2010). 
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Existing cost-benefit models for showing the value of PHM are not applicable to 

individual systems. State-of the art models such as Sandborn and Wilkinson (2007) 

and Feldman et al. (2008) are implemented as discrete event simulators and are only 

applicable at the enterprise-level (to a fleet of systems). The models assume a 

population of systems and derive the economic merit of implementing PHM by 

finding the prognostic distance that minimizes the expected life-cycle cost of a 

maintenance policy, and compare the result to a reference maintenance paradigm 

(e.g., unscheduled).  The single prognostics distance assumption (which may be 

optimal for the fleet over the support life of the fleet), represents a single maintenance 

policy. There is a need for a model to address the value of PHM at the system-level 

for all values of prognostic distance since systems in a fleet may have individualized 

maintenance policies.   

There is a need for models that use PHM information to schedule maintenance. 

Such models should have the capability to be updated as new information is obtained. 

Very limited models in the literature address this point.  

PHM is believed to be an enabler of outcome-based contracts, but quantification 

of this claim and its application within outcome-based contracts is in its infancy. 

Existing models supporting PHM as an enabler of outcome based contracts include 

Jazouli and Sandborn (2011) and Grubic et al. (2009). 

 

2.7 Summary 
 

This chapter surveyed the literature for the health management of systems with 

prognostic capabilities along with some publications that are relevant to the problems 
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solved in this dissertation. The gaps in the literature are identified and will be 

addressed in the subsequent chapters.  
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Chapter 3: Maintenance Options to Manage Flexibility Enabled 

by PHM 

This chapter starts by discussing risks and uncertainties in decision making. 

Maintenance options are then presented as means to manage the flexibility in 

systems, and a mapping from real options to maintenance options is then presented 

with the appropriate assumptions. Valuation methods and the limitations for their use 

in the PHM problem are discussed. A new hybrid methodology is presented. The 

methodology incorporates the value of the options when quantifying the benefits of 

PHM. 

 

3.1 Risks and uncertainties in decision support  

Uncertainty has long been identified as an important factor in the decision-making 

process for health management of systems. It is at the core of making realistic 

business cases or health management decisions. Uncertainty captions prediction error, 

customer demand, resources prices, environmental factors and others. For example, 

the speed of wind blowing through a particular location cannot be known before it is 

realized, and thus probabilistic models are needed. There are multiple classifications 

of uncertainties in capital and infrastructure intensive systems. One particular 

classification is proposed by (Miller and Lessard, 2001) who defined layers of 

uncertainty, a simplification of which is shown in Figure 8. The decision-maker’s 

ability to influence uncertainty decreases as we move away from the smaller rings to 

the larger rings. The smallest ring is the technical risk. Those are the risks with the 

operation, technology, management. The second ring is less influenced by the 
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decision-maker and corresponds to the uncertainties in the industry and the 

competition. If a competitor in the wind energy business introduced more reliable 

turbines, this will affect other companies’ business and have less influence when 

reacting to it.  The two outer rings’ uncertainty (i.e., market, and natural) corresponds 

to exogenous uncertainty, which decision-makers can’t directly influence, or control. 

 

 

Figure 8- Classification of uncertainty, (Miller and Lessard, 2001) 

 
The choice of uncertainties pertains to the problem under consideration. In some 

problems for instance, natural uncertainty may have a much bigger impact than other 

types of uncertainty. In the case of wind energy for instance; the outcomes of the 

project are highly dependent on wind speed and conditions at a particular site. 

Assessing the natural conditions and accounting for the uncertainties associated with 

weather at the site under consideration is of prime importance and are reflected in the 

decision-making analysis results. 

    

Natural, e.g., weather 

Market, e.g., price of energy 

Industry, e.g., competition 

Technical, e.g., prediction 
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Technical uncertainty is at the core of the maintenance management problem as it 

significantly influences the outcome of the decision. Any prediction has uncertainties 

associated with it, which can influence the maintenance costs.  Technical uncertainty 

can be broken down to aleatory and epistemic. Aleatory uncertainty is inherently 

random, new experiments and more data cannot eliminate this type of uncertainty, 

and it is usually modeled by distributions. Epistemic uncertainty is due to the lack of 

knowledge and can be reduced by further data collection and experimentation (Ayyub 

and Klir, 2006). Figure 9 shows how the uncertainty relates to levels of knowledge. 

 

 
Figure 9- Uncertainty and levels of knowledge, (Aughenbaugh and Paerdis, 

2005) 

 
Various modeling techniques have been presented for management uncertainty 

such as simulations while assuming some stochastic process, decision trees, binomial 

lattices (BL), tree analysis, etc.  

Generally speaking, depending on the characteristics that can be associated with 

the problem at hand, the choice of method to account for uncertainty is dictated. If 
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uncertainties can be represented by a set of probabilities, then decision tree or similar 

methods can be appropriate. Rule and fuzzy logic can also represent some types of 

uncertainties associated with domain knowledge and experts’ opinion (Ayyub and 

Klir, 2006). When distributions can be associated with uncertainties, then simulations 

may be a preferred way of assessing the effect of uncertainty. 

 

3.2 The flexibility enabled by PHM: maintenance options 

A number of the benefits (cost-avoidance opportunities) inherent to PHM are 

derived from the knowledge of the RUL. After a prognostic indication, the decision-

maker is faced with several actions that can be taken to manage the health of the 

system. Examples of the actions that can be taken are fault accommodation, changing 

loads, and tactical control. Bonissone (2006) proposes a temporal segmentation for 

decisions for systems with PHM, where the tactical and operational decisions at the 

object level are examples of options after prognostic indication. Hence the decision-

maker has a set of options among which they can choose. The term options will be 

used in the remainder of the dissertation to denote a choice or action the decision 

maker can take after a prognostic indication.   

Figure 10 shows an example of general categories of options. Note that the 

options post-prognostic indication can be system specific, but the intent here is to 

provide a general framework for understanding the options. The decision-maker can 

choose among a host of options. For instance, maintenance can be carried out 

immediately after the prognostic indication, or it can be delayed in order to use up the 

RUL. Alternatively, the mission can be abandoned completely if it is judicious to do 

so. 
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Figure 10- Options arising after a prognostic indication 

 
For a fleet of systems, it is desirable to know the maximum value from PHM that 

can be generated. Choosing the options with highest values for individual systems 

will result in a choice of maintenance threshold based on maximum revenue. This 

concept is illustrated graphically in Figure 11. 

 

 

Figure 11- Options acting on a fleet of systems 

The key property of an option is the asymmetry of the payoff, an option holder 

can avoid downside risks and limit the loss to the price of getting the option, while 



 
 

39 
 

being able to take advantage of the upside opportunities (Adner and Levinthal, 2004). 

The components that make up real options problems are the following (Copeland and 

Antikarov, 2001) (Dixit and Pindyck, 1994) (Adner and Levinthal, 2004) and 

(Greden, 2005): 1) Management flexibility; 2) Uncertainties affecting the decision; 3) 

Time and resource restrictions on making and implementing a decision; and 4) Cost 

of acquiring (and sustaining) flexibility. 

PHM installed on a system enables condition-based maintenance where the option 

holder can perform maintenance contingent on the condition of the asset. If the option 

is not exercised, the option can expire without being used and unscheduled 

maintenance has to be performed. In the latter case, the option-holder would have 

invested in PHM but did not use it, hence the asymmetry of the payoff.  

Risks and uncertainties are part of any engineering problem. PHM assess the 

reliability of a system in real-time and enables risk mitigation. This makes real 

options an attractive tool for assessing the return from a PHM system or algorithm 

and its effect on the overall management of the system. 

For options the action can be taken only within a specific period of time. In 

systems with PHM capabilities, maintenance can be performed at any time up to the 

end of RUL where the system fails.  

Finally, options have a cost associated with them. In maintenance problems, the 

investment in implementing and sustaining PHM gives rise to maintenance options. It 

is worthwhile noting that one investment in PHM gives the decision-maker an infinite 

number of options. Waiting is one option but can be exercised at many points in time. 

This is analogous to American option in the finance or real options space. 
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3.3 Mapping from real to maintenance options  

Kodukula and Papudesu (2006) propose a mapping from financial to real options. 

This dissertation extends the mapping to maintenance option which will lay the 

ground for methods enabling building cost-benefit-risk models.  Table 4 shows the 

mapping between real and maintenance options.  

 

Table 4- Mapping from real to maintenance options 

Real Options   Maintenance Options  

Asset/project System (asset/project) 

“Value” of underlying 
uncertainties 

“Value” of underlying uncertainties, cost avoidance 
opportunities, and revenue from operation of the 
system 

Premium to buy the option Sunk cost to implement and sustain the PHM system 

Cost to carry out the real 
option 

Cost to support maintenance action 

Time by which the real 
option has to be carried out 

Prognostic distance  

 
 
The value of waiting (and related options such as abandoning) are the key to 

applying options theory to the PHM problem. Hence, we consider the option to wait 

and the option to abandon and analyze further in the dissertation.  

 

3.4 Methods for quantifying flexibility in projects  

Different methods for quantifying flexibility (real options) have been presented in 

the literature. Some of them have their roots in finance and are the application of 
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financial options pricing methods to real options. Others are specific to real options. 

Borison (2005) presents a review of the most common methods used for quantifying 

flexibility with the assumptions made in each method. The paper provides a great 

comparison of different valuation methods for the same example. The major take-

away from the paper is that one ought to be careful about the assumptions made for 

the valuation of options in order for the analysis to culminate in realistic and 

meaningful results. 

Quantifying flexibility with models borrowed from financial options is the most 

commonly used approach in the literature. Models include the Black-Scholes (B-S) 

formula, and binomial lattices. When the problem is dominated with market risk 

(such as the valuation of an oil company’s decision to acquire land and drill for oil, 

with oil price being the only uncertainty considered) the methods used for financial 

option analysis can be appropriate. For projects dominated with technical risk, project 

management methods such as decision trees represent the value of the flexibility 

better (Borison, 2005). For projects including both market and technical risks, a 

combination of methods from the financial realm and decision sciences represent the 

value of the project better (Smith and Nau, 1995) and (Borison, 2005). Stochastic 

dynamic programming has also been used to deal with flexibility in projects involving 

technical risks Eckhaus et al. (2009) and Wallace (2010). 

Besides the types of risks in the problem, path dependence is a strong influential 

factor for the choice of method to value flexibility in engineering projects. 

Engineering projects are typical path dependent in that the value of the project 

depends on the actions taken by project managers that will change the value of the 
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project. This is not problematic in financial options or projects where there’s an asset 

that can be traded and the price is dictated by the market.  

Monte Carlo simulations is the preferred method for valuating flexibility (de 

Neufville and Scholtes, 2011) because of its versatility in modeling the value of the 

project with and without flexibility. This dissertation presents a hybrid method 

consisting of Monte Carlo simulations and decision trees to encompass the path 

dependence of engineering projects, and the lack of traded assets that diverts the 

choice of methods inherited from finance.  

 

3.5 Hybrid simulations and decision trees  

We introduce a hybrid methodology that combines simulations and decision trees 

to incorporate the flexibility enabled by PHM in the valuation process. In a traditional 

cost-benefit analysis, the timeline is first identified. Then the costs, cost avoidance, 

and uncertainties are identified and represented on the timeline. A cost-benefit 

analysis is performed by using some metric such as net present value (to discount all 

cash flows to time 0), and then sensitivity analysis. The hybrid methodology is added 

to such cost-benefit analysis and aims at including the options arising over the 

timeline. For example, in the case of a wind turbine; if the cost of downtime is 

smaller than the cost of failure, then the decision-maker may be better off exercising 

the abandon option and lose avoid an increase in the cost of failure on the expense of 

losing power production. Figure 12 is a flowchart for the methodology. Once an RUL 

is predicted, the options are identified and selected to be included in the model. 
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Figure 12- Procedure for quantifying flexibility 

 
Uncertainties are first identified and then split between Monte Carlo simulations 

and decision trees. Uncertainties that have probability distributions associated with 

them can be represented in Monte Carlo simulations. Uncertainties that can be 

described with discrete probabilities are best represented in decision trees.  
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3.6.1 Uncertainties in Monte Carlo simulations 
 

Monte Carlo (MC) simulations are suitable for analyzing the range of possible 

outcomes for maintenance policy alternatives. They calculate the performance of each 

alternative mathematically, considering the joint distribution of the uncertainties. 

First, they sample from the distributions of possible circumstances, and then the MC 

process repeats the sampling process many times, giving each possible future 

circumstance an appropriate chance of being sampled. It thus creates a distribution of 

the performance of the policy that is consistent with the joint distribution of possible 

circumstances de Neufville and Scholtes (2011). The CBM policy takes options as 

input, which differentiates it from the traditional cost-benefit analyses. This accounts 

for the cash flows generated from exercising the option. For instance, waiting to 

perform maintenance will generate more revenue from the system (although 

maintenance cost may increase).    

In a valuation methodology, quantities may be associated with uncertainties. A 

number of those uncertainties can be represented with probability distributions. Some 

of the distributions are obtained from fitting distributions to historical data, or by 

assuming some distributions. Distributions are generally represented by a probability 

density functions.  

An example of a probability density function of an uncertain quantity with a 

triangular distribution is defined by three parameters: minimum (a), maximum (b), 

and mode (c). The distribution has the following probability density function: 
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(6) 

Dependencies can be assumed through relationships between the different 

variables in the equations considered. For a number of methods to introduce 

dependencies between uncertain quantities the readers are referred to (Vose, 2000). 

Time-dependent uncertain quantities can be modeled with a stochastic differential 

equation (de Neufville and Scholtes, 2011, and Oskendal 2000); an equation where 

one or more term is a stochastic process. Such equations are used to model 

uncertainties and their propagation with time. An example of a differential equation 

to propagate uncertainty with time is: 

 H(� ; 5(�HD G 6(�H'� (7) 

 
where (� is the value of the quantity being simulated at time t, 5 is a drift component, 

6 is a variance component, and '� is a Brownian motion (also known as a Weiner 

process). An example of propagating uncertainty with such a method is presented 

later in this dissertation.  

 

3.6.2 Uncertainties in decision trees 
 
To solve a decision tree, let A be an event and X a random variable. Denote {A|S} 

the probability assigned to the event A on the basis of a state of information S, and 

{x|S} the probability that the random variable assumes the value X, i.e. the probability 
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mass function given a state of information S. We use mass function here since there is 

a discrete set of probabilities. We shall assume the random variable takes on some 

value, so the probabilities sum to 1: 

 ��q|�� ; 1x  
(8) 

 
The expected value of the random variable over its probability distribution is: 

 ~ q|� �; � q�q|��x  
(9) 

 
An example of a decision tree is shown in Figure 13. The expected value of the 

cost of maintenance is calculated as following: 

 ~ q|� �  ; �IXD*+* G �IXD�+�+ �IXD�+�  

~ q|� �  ;1,000(0.65)+15,000(0.1)+2,000(0.25)  

~ q|� �  ;2,650  

 

 
Figure 13- Example of a decision tree 
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3.6.3 Combination of decision trees and simulations 
 
After accounting for both types of uncertainties, simulations and decision trees are 

combined. The simulations and decision tree will result in one distribution: let Ai be 

the area of the probability density function for a scenario i; let Ai =1. Let pi be the 

objective probability of scenario i:  

 

� +���
�

��* ; � +�<1?�
��* ; � +� ; 1�

��*  
(10) 

� +� ; 1�
��*  

(11) 

 

3.6.4 Value at risk and gain  
 
The net present value (NPV) takes into consideration the time value of money and 

discounts all future cash flows to the current time using a discount rate. NPV can be 

calculated using the following equation: 

 

#�% ;  � ��<1 G 3?�
�

��/  

(12) 

 
where t is the time of the cash flow, N is the total time, i is the discount rate and Ct is 

the cash flow at the point in time. 

Incorporating the flexibility in the valuation process will enable the determination 

of the value provided by PHM when using the system through the RUL. In the 

valuation of the maintenance of wind farms (treated in Chapter 5), the decision-maker 

has options to delay maintenance when high wind speeds are forecasted or to stop 
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operation when the cost of failure is high; the value of delaying the maintenance and 

stopping the operation is incorporated within this methodology. 

The distribution for the outcomes is represented by the target curve (de Neufville 

and Scholtes, 2011), which is also known as the Value at Risk and Gain (VARG) 

diagram. The VARG diagram shows the probability that a realized outcome will be 

lower than any specified level or target. The VARG diagram graphs the cumulative 

value associated with any possible policy. It builds upon the Value at Risk (VAR) 

concept from finance that identifies the risk of losses that may be incurred.  

Figure 14 shows a hypothetical VARG diagram. The horizontal axis is the net 

present value (in terms of monetary units (MU)), and the vertical axis is the 

cumulative probability. The diagram shows a number of useful quantities: 1) The 

range of results, reflecting the dispersion in outcomes. 2) The risk of the downside of 

any specified level (referred to as the Value at Risk). For example, there is a 20% 

chance of losing more than 2 MU. This is the value at risk and is read by reading 0.2 

on the vertical axis and checking the corresponding point on the curve. There is an 

80% chance that the results will be less than a gain of 4.5 MU. This is the 80% value 

at risk (complement of the 20% value at gain) and is read by taking a horizontal line 

intersecting the curve from 80% on the vertical axis. 3) The difference between the 

median value at a cumulative probability of 50% and the average value caused by the 

asymmetry (which can reflect the asymmetry in penalties). The expected net present 

value (ENPV) is found by taking the reading on the curve corresponding to the 0.5 

probability on the vertical axis.  



 
  

 
Under traditional decision analysis, at the chance nodes one multiplies the 

expected NPVs by the corresponding probabilities to obtain an expected value for the 

chance node. In this hybrid method, instead of multiplying one single value (i.e., the 
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Figure 14- VARG diagram 

Under traditional decision analysis, at the chance nodes one multiplies the 

expected NPVs by the corresponding probabilities to obtain an expected value for the 

chance node. In this hybrid method, instead of multiplying one single value (i.e., the 

NPV for each scenario), one multiplies the entire VARG distributions of 

NPVs by the corresponding objective probability and combines the distributions into 

one VARG that describes the chance node.  

  

Volatility is a measure of the total value of the underlying asset or mission 

its lifetime. It signifies the uncertainty associated with the cash flows that comprise 

the underlying asset value (Kodukula and Papudesu, 2006). The volatility of a project 

can be observed from the cone of uncertainty (Figure 15): it consists of several paths 

 

Under traditional decision analysis, at the chance nodes one multiplies the 

expected NPVs by the corresponding probabilities to obtain an expected value for the 

chance node. In this hybrid method, instead of multiplying one single value (i.e., the 

NPV for each scenario), one multiplies the entire VARG distributions of 

NPVs by the corresponding objective probability and combines the distributions into 

or mission over 

its lifetime. It signifies the uncertainty associated with the cash flows that comprise 

the underlying asset value (Kodukula and Papudesu, 2006). The volatility of a project 

: it consists of several paths 
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within the boundaries of the cone. Each path corresponds to a particular project 

payoff.   

 

Figure 15- Cone of uncertainty (Kodukula and Papudesu, 2006) 

 
Copeland and Antikarov (2001) propose a method for estimating the volatility 

that is based on a discrete event simulator. The method consists of using simulation to 

develop a hypothetical distribution of one-period returns in lieu of the unavailable 

historical distribution of returns. Then on each simulation trial, the value of the asset 

is estimated at two different points in time. The ratio of these two estimated values 

produces an estimate of the rate of return. Compiling the rate of return estimates from 

all simulation trials creates a rate of return distribution.  

Although volatility is not used directly in the valuation methodology proposed in 

this dissertation, but it provides the intuition about the change of value in a project 

with time and uncertainty. It can also be useful for modeling uncertainties for some 

projects. 
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3.7 Summary 

This chapter discussed the uncertainties and their importance in decision support 

problems. Maintenance options are introduced as means to quantify the flexibility 

enabled by PHM. A mapping from real to maintenance options is presented and a 

review of the quantification methodologies is presented. Finally, a hybrid valuation 

methodology is presented and is used for the quantification of the flexibility enabled 

by PHM.  
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Chapter 4: The Value of the Waiting to Maintain Option 

Chapter 3 proposed maintenance options as a means to define and quantify the 

flexibility enabled by PHM. In the time frame from the prognostic indication to the 

end of the RUL, the decision maker is concerned with the best waiting time to 

maintain in order to maximize the use of RUL and minimize the risk of failure. In this 

chapter the wait to maintain option is proposed as a solution to this fundamental 

problem. We quantify the waiting time using least squares Monte Carlo methods. The 

value of the option indicates if the decision-maker is better off maintaining 

immediately or waiting to perform maintenance. It is also the value obtained from 

PHM at the system level. This capability analyzes individualized maintenance 

policies for system as opposed to one maintenance policy (based on one optimal 

prognostic distance over the life-cycle). The value of the wait to maintain option is 

extended to set a dynamic maintenance threshold based on PHM information. 

 

4.1 The value of waiting 
 
With the knowledge of the RUL, it is desirable when is the best time to maintain 

while maximizing the benefits from PHM. In the case of wind turbines, it is desirable 

to know when to maintain, or exercise maintenance options to allow when the 

decision-maker to realize the largest cost-avoidance opportunities while harnessing 

the most from wind power generation. Figure 16 shows a schematic of the 

degradation of three hypothetical systems (the schematic is not specific to a particular 

system; it is intended to represent the degradation).  
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Figure 16- Stochastic degradation of a system 

 
The health index is a measure of the health of the system and is plotted versus 

time. If the performance measure reaches 100%- the failure threshold, then 

unscheduled maintenance has to be performed. The decision-maker has the right to 

exercise maintenance options any time before the end of life of the system. Waiting 

options are depicted by the dashed lines labeled dynamic threshold.  

The fundamental objective of system maintenance with prognostics is to 

maximize the use of the remaining useful life while concurrently minimizing the risk 

of failure. This tradeoff was discussed in Chapter 1 and represented in Figure 7. The 

cost avoidance is an uncertain quantity, decreasing in value since the cost to maintain 

will increase as the system is used through the RUL. The cost to maintain will be 

equal to the corrective cost of maintenance if the system is run to failure.  

Decision-makers are concerned with the value of delaying an investment in 

maintenance given the flexibility enabled by PHM. This is essentially the knowledge 

of the time when waiting is no longer beneficial. We start by defining the 

maintenance value (%
) as the value of the summation of cost avoidance 
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opportunities (CA) and revenue generated from operating the system (R) up to the end 

of the RUL.  It can be expressed as: 

 %
 ; �� G 2 (13) 

  
The cost avoidance opportunities are expressed as the difference of the cost of 

non-detected failure (����? and the cost of detected failure (���?: 

 �� ; ���� o ��� (14) 

 
The maintenance value (%
) consists of a summation of uncertain quantities, hence 

it is stochastic. It is worthwhile noting that the cost avoidance is obtained from 

historical data. However the uncertainty in this quantity may be time-dependent as the 

confidence in the prediction may increase as we get closer to the end of the remaining 

life.  

Consider the following example: a system indicates an RUL of 3 time units, and 

%
  has an initial value of 1. A Monte Carlo simulation that follows 8 possible time 

histories for this example system is shown in Figure 17. When uncertainty in the 

value is propagated, the result will be stochastic paths; some paths have a value 

greater than 1 (1 is the initial value) and some have a smaller value when uncertainty 

is propagated. If we consider all the possible values at any particular time step, the 

result will be a distribution (cross-sectional information at a time step). 
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Figure 17- Simulated value (cost avoidance and revenue opportunities), where 0 
is the time of the prognostic indication 

 

At every time step, the value is compared with the cost of maintenance, �
, which 

accounts of cost of failure, ��������, and cost of downtime ���
�����: 

 �
 ; �������� G  ���
����� (15) 

 
Comparing  �
 to %
 at every time step provides means to assess the benefit from 

running the system through the RUL. For example if C� is larger than V�, then the 

cost of failure, downtime, and penalty is larger than the benefit of running the system.  

We assume that the decision-maker can maintain at discrete times 1, 2, or 3. At 

every time, we need to examine the value of continuation of system operation (no 
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maintenance) and compare it to the value of maintaining at the time step. We start by 

defining some terms for the analysis: 

 (�: the value obtained from operating the system at the current time. 

(�)*: the value obtained from running the system until the next instance when 

maintenance can be performed.  

!<(�)*?: the value of waiting for an additional time step to maintain the system. In 

other words, this is the value of the cost avoidance opportunities and the 

revenue generated from the system, and is derived from waiting to perform 

(invest in) maintenance. While (� represents %
at a point in time, !<(�)*? 

represents the gain obtained from waiting till time (i+1) to maintain. This 

gain derives its value from the change in %
and the ability to wait to 

maintain. 

 
In order to find the best time for maintenance, we define the stopping rule as a 

rule to exercise the option if the value of continuation without maintenance is smaller 

than the value of exercising the option at the current time. The stopping rule is based 

on finding the expectation of the option’s value at time D�)*conditional on the value 

of revenue at time D� given by the following equation:  

 KL!<(�)*?|(�N (16) 

 
The function gives the expectation of the value of waiting conditioned on the 

value at the current state. If the expectation function becomes 0 or negative, then 
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waiting is not beneficial. If the expectation function is positive, then PHM is 

providing additional value, and waiting is beneficial. 

 

4.2 Decision rule using the least squares Monte Carlo approach  
 

At each exercise date (the time when maintenance can be performed) the 

decision-maker has the choice to maintain or to wait until the next exercise date (the 

next time maintenance resources are available). The most notable work on optimal 

stopping time for simulation of options can be seen on Longstaff and Schwartz (2001) 

where the authors propose an algorithm based on least squares method that uses 

cross-sectional data and approximates the conditional expectation function in (16). 

The algorithm is known as the LSM algorithm and has been used by numerous 

authors. Longstaff and Schwartz (2001) briefly outline a convergence proof for the 

algorithm. 

Since at the current time step, the decision-maker does not have knowledge of the 

future value of opportunities, the LSM algorithm approximates the conditional 

expectation at each time step using a set of basis functions ./, … , .�  

 KL!<(�)*?|(�N �  ∑ ,�,�.�<(�?���/    (17) 

 
Function approximation consists of approximating complex functions with 

simpler ones. In the current work, we approximate the expectation function in (16) 

with defined polynomials. For a review of mathematical functions that can be used 

for approximation, the readers are referred to (Abramowitx and Stegun, 1964). 

 The approximation with basis functions allows the problem of exercising to be 

reduced to comparing the immediate exercise value with the conditional expectation 
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function in (16). When the value of immediate exercise is positive and greater than or 

equal to the conditional expectation, the option is exercised. We chose the set of the 

weighted Laguerre polynomials, from Longstaff and Schwartz (2001), for function 

approximation, defined as:  

 ./<q? ; 7rex�t
 

(18) 

.*<q? ; 7rex�t<1 o q? 
(19) 

.�<q? ; 7rex�t �1 o 2q G q�2 � 
(20) 

.�<q? ; 7rex�t7x[! <H�/Hq�?<q�7ex?   (21) 

 
In the LSM algorithm, the objective is to minimize the expected squares error in 

the approximation, with respect to the coefficients βl,c in (17). From (Glasserman, 

2004) and (Thom, 2001): 

 

K ��KL!<(�)*?|(�N o � ,�,�
�

��/ .�<(�?��� (22) 

 
Differentiating equation (22) with respect to ,�,� and setting the result equal to 

zero, leading to: 

KLKL!<(�)*?|(�N.�<(�?N ; � ,�KL�
��/ .�<(�?.�<(�?N (23) 

KLKL!<(�)*?|(�N.�<(�?N ; � ,�KL�
��/ .�<(�?.�<(�?N (24) 
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Using matrix notation for the terms in (23) and (24): 

 ������,� ;E[.�<(�?.�<(�?N (25) 

������,� ; KLKL!<(�)*?|(�N.�<(�?N (26) 

 .�<(�? can be expressed as: 

 ������ ; KLKL!<(�)*.�<(�?|(�NN (27) 

 
using the Tower rule2 will result: 

 ������ ; KL!<(�)*.�<(�?N   (28) 

 
and then inverting: 

 , ; ���e* ��� (29) 

 
In order to find the coefficients, we perform Monte Carlo simulations with N 

paths: 

�� ���� ; 1# � %<(�)*<�? ?.�<(�<�??�
��/  

(30) 

�� ����,� ; 1# � .�<(�)*<�??.�<(�<�??�
��/  

(31) 

 
The coefficients are used in the decision rule of stopping or continuation and are 

discussed in the algorithm. With this representation, the problem reduces to 

comparing the immediate exercise value with this conditional expectation, and then 

                                                 
2 For two random variable X and Y, the tower rule states that the expected value of the conditional expected value 

of X given Y is the same as the expected value of X. 



 
 

60 
 

exercising as soon as the immediate exercise value is positive and greater than or 

equal to the conditional expectation. 

 

4.3 Choice of basis functions  
 

Basis functions are used in the LSM algorithm for function approximation. 

Function approximation uses a number of functions to approximate an unknown 

function. For the LSM algorithm, the Laguerre polynomials are used and Longstaff 

and Schwartz (2001) provide the convergence proof for the method. Other types of 

basis functions include: Chebychev, Hermite, Gegenbauer, and Jacobi polynomials. 

For detailed discussion on function approximation using polynomials, the readers are 

directed to Abramowitx and Stegun (1964). 

Longstaff and Schwartz (2001) discuss in their paper (2001) that the least squares 

Monte Carlo algorithm is robust against the choice of basis functions, and that the 

Laguerre polynomials work quite well. It should be kept in mind that the functions 

include an exponential term so normalization may be necessary.  

 
 

4.4 Algorithm 
 
The algorithm for obtaining the value of the option to wait to maintain is shown in 

Figure 18. The end of the remaining useful life is denoted by tk. 



 
  

 

Figure 18- Algorithm 

The cost avoidance and revenue from operating the system are simulated 

paths (following N independent time lines for the system) 

distributions or random process

time steps, where maintenance can be carried out at 

terminal nodes are considered first; i

path is called “in the money” and considered for further analysis. If the value at the 

terminal node is not in the money

money signifies that waiting does n
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Algorithm to quantify the value of wait to maintain 

 
 

The cost avoidance and revenue from operating the system are simulated 

independent time lines for the system) with the appropriate 

or random processes. The decision timeline is divided into 

where maintenance can be carried out at . The paths at the 

terminal nodes are considered first; if the value is higher than the baseline, then the 

path is called “in the money” and considered for further analysis. If the value at the 

terminal node is not in the money, then it is discarded. A value that is not in the 

money signifies that waiting does not have value. 

 

 option 

The cost avoidance and revenue from operating the system are simulated using N 

with the appropriate 

different 

The paths at the 

f the value is higher than the baseline, then the 

path is called “in the money” and considered for further analysis. If the value at the 

not in the 
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The LSM approach uses least squares to approximate the conditional expectation 

function at D¡e*, D¡e�, … , D* . The index i is used to iterate in the time steps in the 

algorithm. It then works backward, since the path of the cash flows produced by cost 

avoidance and revenue generation is defined recursively. For all the paths that are in 

the money, we generate the expectation function using least squares and use three 

basis functions (although the number of basis functions can be considered in a 

sensitivity analysis). At every time step, a new expectation function is generated and 

then used for comparing the value of immediate exercise to the value of waiting. 

After iterating recursively to the first time step, we have the best decision for each 

path. The value at the best exercise time of each path is discounted to time 0 and 

averaged, resulting in the value of the option to wait to perform maintenance. If the 

value is larger than 0, the waiting option has a value and represents the additional 

benefit obtained enabled by PHM.  

 

4.5 Example 
 
We consider a hypothetical example to illustrate the steps for obtaining the 

decision rule and quantify the maintenance option. We go through the process step by 

step and explain the assumptions when necessary. 

We consider a system with prognostic capabilities that indicates a RUL of 3 time 

units and the decision-maker can maintain at times 0, 1, 2, or 3.  The problem here is 

to find the value of the waiting to perform maintenance given that the decision-maker 

can decide to maintain anytime from time 0 to time 2. The other option is to let the 

option expire and perform unscheduled maintenance at time 3 thus not using the 
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information from the PHM system. The value of maintenance, %
 (equation (13)) is 

shown in Figure 19.  

 

 
Figure 19- Simulation of option value 

 
Following are the assumptions for the example: 

 (/ ; 1: 8AB:7 IV %
 AD D3F7 0 
�
 ; 1.1: AXX:F7H ZIXD IV :9XZU7H:B7H FA39D79A9Z7 
D*, D�, D�: D3F7X AD JU3ZU H7Z3X3I9 o FAs7[ ZA9 FA39DA39 

 
In this example, the term �
 consists of the cost of unscheduled maintenance for 

the purpose of illustration. 10 time histories (paths) for the value of maintenance are 

simulated in the example. Some paths have values higher than the initial starting point 

1, and some are lower; this is an effect of accounting for uncertainty in the model. 

Cost avoidance opportunities will decrease with time as there is a higher risk of 

failure on the system, but the system will generate more revenue as it is used through 
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the end of the RUL. The idea would be to wait to perform maintenance even if the 

cost if slightly higher to maintain at the end. We define an option to be in the money 

if its value at a particular time step is higher than the cost of unscheduled 

maintenance.  

At the final exercise date, the best exercise strategy is to exercise the option if it 

in the money. Prior to the final date, the best strategy is to compare the immediate 

exercise value with the expected cash flows from continuing, and then exercise if 

immediate exercise is more valuable. Hence the key here is to identify the conditional 

expected value of continuation. 

The value of %
 from the simulation can be obtained from Table 5.  

 

Table 5- Value of �� over time 

Path t=0 t=1 t=2 t=3 

1 1 1.05 1.85 1.73 
2 1 1.97 3.15 1.78 
3 1 0.61 0.52 0.50 
4 1 1.02 1.33 1.09 
5 1 0.82 0.78 0.79 
6 1 1.10 1.54 1.88 
7 1 0.60 0.75 0.97 
8 1 1.23 1.85 2.07 
9 1 0.83 0.81 0.39 
10 1 1.17 1.23 1.05 

 
 
The objective is to determine the stopping rule that maximizes the value of the 

wait to maintain option at each point along each path. Several intermediate steps need 

to be considered before quantifying the option. 
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Conditional on not exercising the option before the final expiration date at t=3, 

the cash flows realized by the option holder from following the best strategy are given 

in Table 6. 

 
Table 6- Cash flow at t=3 if the option is not exercised 

Path t=0 t=1 t=2 t=3 

1 - - - 0.63 
2 - - - 0.68 
3 - - - 0 
4 - - - 0 
5 - - - 0 
6 - - - 0.78 
7 - - - 0 
8 - - - 0.97 
9 - - - 0 
10 - - - 0 

 
 

The values for t=3 in Table 6 are obtained by subtracting 1.1 from the value a t=3 

if the option is in the money. 

If the option is in the money at t=2, the option holder must then decide whether to 

exercise the option immediately or continue until next time maintenance can be 

supported. From Table 5, there are 6 paths where the option is in the money at t=2 

(where the value is more than 1.1). Note that only the paths that are in the money at 

t=3 are considered for the analysis at previous times. We denote by X the value of %
 

at t=2, for those paths, and Y, the corresponding discounted cash flow received at t=3 

if the option is not exercised at t=2.  

 
Table 7- X and Y at t=2 

Path X Y 
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1 1.85 0.59 
2 3.15 0.64 
3 - - 
4 1.33 0 
5 - - 
6 1.54 0.73 
7 - - 
8 1.85 0.91 
9 - - 
10 1.23 0 

 
 
The Y values are obtained by discounting the cash flow at t=3 if the option is not 

exercise at t=2. For instance; if the option is not exercised at t=2 for path 1, then Y is 

calculated using: 

Y ; <1.73 o 1.1?0.9418 ; 0.59  where 0.9418 is used to discount for one time 

period with a discount rate of 6%. 

To estimate the expected cash flow from waiting (continuing the option’s life) 

conditional on the value at t=2, we regress Y on the basis functions. For the purpose 

of the example we choose a constant, X, and X2 (this choice is for the ease of 

representation. In the algorithm we use Laguerre polynomials). This will result in the 

expectation function that approximates the value of continuation: 

 KL©|(N ; o0.7679 (� G 3.7020( o 3.4082 (32) 

 
With the conditional expectation function we can now compare the value of 

immediate exercise at t=2 with the value from continuation which can be seen in the 

table below: 

 
Table 8- Value of exercise and continuation at t=2 
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Path Exercise Continuation 

1 0.75 2.01 
2 2.05 5.83 
3 - - 
4 0.23 0.49 
5 - - 
6 0.44 1.11 
7 - - 
8 0.75 2.01 
9 - - 
10 0.13 0.2 

 

The exercise value is obtained by (X-1.1) and the continuation value is obtained 

by substituting X in the conditional expectation function. This comparison implies 

that it is better to continue as the value of continuation is higher than the exercise 

value at t=2; the conditional expectation function evaluated is higher than the current 

exercise value.  

The next step is to generate the cash flow matrix in Table 9, which depicts the 

cash flows received by the option holder conditional on not exercising prior to t=2. 

 

 

 

 

 
Table 9- Cash flow at t=2 

Path t=1 t=2 t=3 

1 - 0 0.63 
2 - 0 0.68 
3 - - - 
4 - 0 - 
5 - - - 
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6 - 0 0.78 
7 - - - 
8 - 0 0.97 
9 - - - 
10 - 0 0 

 

Continue recursively until we get to t=1. We note that in defining Y, we use the 

actual realized cash flows along each path and not the conditional expected value of Y 

estimated at the next time step because this will introduce bias. For a discussion on 

the topic, the reader is referred to Longstaff and Schwartz (2001). 

The vectors X and Y for time 1 are given in Table 10. Where cash flows obtained 

at t=3 are discounted for 2 time periods (multiplying by 0.8869) and cash flows 

obtained at t=2 are discounted for one period.  

Table 10- X and Y at t=1 

Path X Y 

1 - - 
2 1.97 0.6 
3 - - 
4 - - 
5 - - 
6 - - 
7 - - 
8 1.23 0.86 
9 - - 
10 1.17 0 

 

We regress again and obtain: 

KL©|(N ; o18.35(� G 58.38( o 43.18 (33) 

Then we compare the value of the option at t=1 to the value of continuation by 

using the regressed function and obtain the results in Table 11.  
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Table 11- Value of exercise and continuation at t=1 

Path Exercise Continuation 

1 - - 
2 0.87 0.61 
3 - - 
4 - - 
5 - - 
6 - - 
7 - - 
8 0.13 0 
9 - - 
10 0.07 0 

 

From Table 11, we see that it is better to and maintain at t=1 for paths 2, 8, and 

10. Having identified the strategies at t= 1, 2, and 3 the stopping rule can be 

represented using the following matrix: 

Table 12- Stopping rule matrix 

Path t=1 t=2 t=3 

1 0 0 1 
2 1 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 1 
7 0 0 0 
8 1 0 0 
9 0 0 0 
10 1 0 0 

With the stopping rule obtained, we then determine the cash flows realized by 

following the rule and exercising at the dates where there’s a one in the above matrix. 

This will lead to the following cash flow matrix: 

 
Table 13- Wait to maintain option cash flow matrix 
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Path t=1 t=2 t=3 

1 0 0 0.63 
2 0.87 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0.78 
7 0 0 0 
8 0.13 0 0 
9 0 0 0 
10 0.07 0 0 

 

To calculate the value of the option, we discount each cash flow in the option to 

time 0 and average all the paths to obtain: 

%AB:7 ; <0.63<0.8353? G 0.87<0.9418? G 0.78<0.8353? G 0.13<0.9418?
G 0.07<0.9418??/10 ; 0.2185 

Where, 0.8353 is used to discount 3 periods and 0.9416 is sued to discount for 1 

period. 

In this example, if the decision-maker waits to maintain, an expected additional 

0.2853 MU is obtained. If the decision-maker decides not to wait and maintain 

immediately after obtaining the prognostic indication, a value of 0.2185 may be 

missed.  Although this example uses fictional data, it demonstrates the use of the 

LSM algorithm for obtaining the value of maintenance options. Without accounting 

for the option to wait for three time steps to maintain, one would compare the value at 

t=3 with 1.1 and discount to time 0. This would result in a value of 0.18. Hence, when 

accounting for flexibility in the decision-making (wait when it is favorable), the result 

show that the value of waiting is 58% higher than the value obtained without 

accounting for flexibility. The result from this example represents the additional value 
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obtained from PHM. Waiting, an option that is enabled by PHM is a representation of 

the benefit obtained from using the system through the RUL. 

 

4.6 Dynamic maintenance threshold and penalty impacts 
 

The algorithm for quantifying the value of the wait to maintain options provides 

the value obtained from PHM at the system-level. This methodology can be extended 

to the fleet level where it is desirable to know when the best time to maintain is based 

on maximum value obtained from the PHM system. This will lead to a dynamic 

maintenance threshold and a methodology to support outcome-based contracts.  

When extended the models to the fleet it is necessary to account for availability 

impacts especially when supporting outcome-based contracts. A system in a fleet may 

not be operational but the fleet may still be able to deliver a required availability. But 

when the required availability is not met, then penalty has to be imposed on the cost 

of maintenance term in equation (15) by adding a penalty term. 

For example, consider a hypothetical wind farm consisting of 40 turbines shown 

in Figure 21. It is desirable to know where to place the dynamic maintenance 

threshold given that systems may have different performance measure (analogous to 

health state). The figure shows that some systems will have a performance measure 

above the threshold and some below. 
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For a fleet of n systems, the maintenance threshold can be defined based on the 

time that maximizes the value of waiting:  

 

arg max� <� Z�­(/
�
* ?  (34) 

where t is the time argument (time when maintenance can be supported), n is the 

number of systems, ct is the value of the wait to maintain option, and X0 is the 

maintenance decision (X0 =0: wait, X0 =1: maintain).  

Equation (34) maximizes the value of waiting for all the turbines that indicate a 

prognostic distance and solves for the time that maximizes this function. This 

contribution will be highlighted in the case study. Note that the dynamic maintenance 

threshold is not dictated by the summation of values of the waiting option on different 

Turbine 

Performance measure 

Figure 20- Hypothetical wind farm with prognostic capabilities 
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subsystem. The reason is that the value of waiting for each system is compared to a 

cost of unscheduled maintenance, cost of downtime, and cost of penalty. When two or 

more systems are considered together, these costs should be carefully considered. 

Furthermore, when the systems indicate prognostic distance at different times, it is 

important discretize the time and apply the costs avoidance, the revenue, and the costs 

for comparison appropriately. This point will be elaborated in the case study.  

 

4.7 Summary 
 

This chapter presented a system-level cost model that quantifies the value of the 

option to wait to maintain (one kind of contingency actions). The value of waiting 

represents the benefits obtained from PHM which cannot be accounted for in life-

cycle cost models. Quantifying the value of the option to wait to maintain, is means to 

quantify the benefit of PHM for individualized maintenance policies. An algorithm to 

quantify the option is presented and demonstrated on a simple example. The model is 

then extended to a fleet of system to set a dynamic maintenance threshold based on 

PHM information. Such model can be used to schedule maintenance and support 

outcome-based contracts.  
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Chapter 5:  Case Study: Decision Support for Maintaining Wind 

Farms 

 
This chapter demonstrates the methodologies developed in this dissertation using 

a case study on wind farms. The choice of wind farms for case study is motivated by: 

the large number of turbines that are going out of warranty, the importance of PHM 

for wind turbines, and the potential for cost avoidance in the maintenance of turbines.  

The case study is based on data that is obtained from the General Electric 

Company, a leading North American manufacturer of turbines.  

The Chapter starts by discussing the sustainment problem for wind farms then 

presents the data used for the case study. An analysis of the service data is presented, 

and then a life-cycle cost model is established. The hybrid methodology is then 

presented and compared to the life-cycle cost model. The wait to maintain option and 

dynamic maintenance threshold are then analyzed for different failures in the farm. 

 

5.1 Sustainment of wind farms 
 

Alternative energy sources have increasingly gained the interest of governments, 

research institutes, academia, and industry in order to reduce the dependency on 

traditional energy sources such as coal and oil. Wind energy stands at the forefront of 

these energy sources; the United States Department of Energy (DoE) and the National 

Renewable Energy Lab (NREL) for instance, under the ‘20% Wind Energy by 2030’ 

plan, announced that the US could feasibly increase the wind energy’s contribution to 



 
  

20% of the total electricity consumption in the United States by 2030 (U.S. DoE, 

2008).  

Wind energy sources face numerous challenges that 

competitiveness with traditional sources. Wind energy has not been 

sufficient amount of time to assess 

of wind turbines has turned out to be different from what was originally predicted. 

Another major challenge with wind energy is intermittency, i.e., their energy 

generation is dependent on intermittent sources, as can be seen in Figure 

shows the wind capacity factor for Kansas wind farms from 

1 on the plot) to June 2008

Figure 21- Capacity factor in a Kansas wind farm 

 
The Wind Energy Operations & Maintenance Report was recently published 

(Asmus and Seitzler, 2010) and included a discussion highlighting the challenges 

with wind energy systems.  Some of the most notable conclusions are that the 
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20% of the total electricity consumption in the United States by 2030 (U.S. DoE, 

Wind energy sources face numerous challenges that could hinder their 

th traditional sources. Wind energy has not been operational

sufficient amount of time to assess its long term viability. Furthermore, the reliability 

turned out to be different from what was originally predicted. 

challenge with wind energy is intermittency, i.e., their energy 

generation is dependent on intermittent sources, as can be seen in Figure 

shows the wind capacity factor for Kansas wind farms from July 2007 (labeled month 

08 (KCC, 2011)).  

Capacity factor in a Kansas wind farm July 2007 to June 2008 

The Wind Energy Operations & Maintenance Report was recently published 

, 2010) and included a discussion highlighting the challenges 

with wind energy systems.  Some of the most notable conclusions are that the 

20% of the total electricity consumption in the United States by 2030 (U.S. DoE, 

could hinder their 

operational over a 

long term viability. Furthermore, the reliability 

turned out to be different from what was originally predicted. 

challenge with wind energy is intermittency, i.e., their energy 

generation is dependent on intermittent sources, as can be seen in Figure 21, which 

(labeled month 

 

2007 to June 2008  

The Wind Energy Operations & Maintenance Report was recently published 

, 2010) and included a discussion highlighting the challenges 

with wind energy systems.  Some of the most notable conclusions are that the 
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operation and maintenance (O&M) costs for wind power are double or triple the 

figures originally projected, they are particularly high in the United States. Another 

interesting fact is that many gearboxes, designed for a 20-year life, are failing after 6 

to 8 years of operation.  

These challenges indicate that reliability, maintainability, and availability stand 

among the key challenges to the economic viability of wind turbines and their ability 

to compete with traditional energy sources. The remainder of this section summarizes 

these challenges.  

 

5.1.1 Reliability  
 

Ideally, the turbines would behave in the field just as they perform under testing 

of stated conditions. However, most fielded turbines are relatively new and have not 

been subject to sufficient testing and qualification. This resulted in a dramatic 

difference in the actual life of the system in the field from what is stated on the 

specification sheet. 

Simulating the actual conditions where the system will be implemented is 

challenging and may not be properly accounted for in the testing phase for wind 

turbines. However, reproducing the actual conditions may be challenging - 

reproducing harsh weather conditions and the interaction with other environmental 

factors may be impossible to account for in a lab testing environment.  

Figure 22 adopts the data from Arabian-Hoseynabadi et al. (2010) to show the 

failure rate of different sub-assemblies in wind turbines. The plot shows that multiple 

subassemblies have a significant yearly failure rate. 



 
  

Figure 

 

5.1.2 Maintainability  
 
The maintainability of wind turbines emerged as a major challenge 

economic viability. For an offshore wind turbine for instance, the

and maintenance cost accounts for the second largest share of the turbine’s life

cost as seen in Figure 23 
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Figure 22- Reliability of wind turbines 

 

The maintainability of wind turbines emerged as a major challenge to

economic viability. For an offshore wind turbine for instance, the projected

accounts for the second largest share of the turbine’s life

 (Musial and Ram, 2010). 

 

to their 

projected operation 

accounts for the second largest share of the turbine’s life-cycle 
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Figure 23- Projected life-cycle cost breakdown for offshore wind turbines 
(Musial and Ram, 2010) 

 

Figure 23 shows the projected cost for offshore wind turbines in the United States. 

With the operations maintenance cost being 20% of the total cost, if the turbine is not 

maintained as it is originally intended to be then the cost is going to rise even more 

and pose more challenges on the economic viability.  

Furthermore, wind turbines require special workforce that is trained to maintain 

the particular system, and require non-traditional resources such as vessels and 

cranes.  

 

5.1.3 Availability  
 
Availability of turbines will actually determine their energy impact. In other 

words, if the system is unreliable and always unavailable because it is subject to 



 
  

maintenance and repairs, 

from the source will drop drastically

Another aspect of availability is the n

maintenance. Offshore wind farms require vessels with cranes that 

to perform maintenance a couple times a year. If one turbine broke right after a 

maintenance action has been performed on it, then it wil

time the vessel is on-site 

Kuhn (2007) studied the failure rates of 235 small wind turbines and assessed the 

annual frequency rate and the corresponding downtime for different subassemblies. 

The results can be seen in 

 

Figure 24-
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 or if the cost of maintenance is high, then the potential profit 

from the source will drop drastically. 

Another aspect of availability is the need of nontraditional resources for 

maintenance. Offshore wind farms require vessels with cranes that may only be able 

a couple times a year. If one turbine broke right after a 

maintenance action has been performed on it, then it wil l not be available until next 

 for maintenance. 

Kuhn (2007) studied the failure rates of 235 small wind turbines and assessed the 

annual frequency rate and the corresponding downtime for different subassemblies. 

The results can be seen in Figure 24.  

- Downtime for wind turbines (Kuhn, 2007) 

then the potential profit 

eed of nontraditional resources for 

may only be able 

a couple times a year. If one turbine broke right after a 

l not be available until next 

Kuhn (2007) studied the failure rates of 235 small wind turbines and assessed the 

annual frequency rate and the corresponding downtime for different subassemblies. 
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The availability of wind turbines (and wind farms) will determine the energy 

impact they are able to have. In other words, if the system is unreliable and always 

unavailable because it is subjected to maintenance and repairs, then the potential 

profit from the wind farm will drop because the system is not able to produce the 

required energy. This can be even worse if the costs of the energy that has to be 

produced using alternative means (e.g., burning coal or oil) to make up for turbine 

downtime due to maintenance of the system outweigh the profit obtained if the 

system is in operation.  

 

5.2 Description of the wind farm for the case study 
 

Data for the case study is from General Electric and consists of a wind farm in the 

United States that has more than 100 land-based turbines. The farm was completed in 

the early 2000’s. Power and maintenance data was obtained from this farm, and cost 

data was obtained from the literature. Note that the costs appear in different 

currencies due to the source of the data. 

Power data consists of the performance of the individual turbines, and consists of 

parameters such as wind speed, power output from the turbine, the rotor rpm, the 

generator rpm, the blade angle and other performance parameters. The data was 

recorded every 10 minutes: it is the average of the measured quantity over 10 

minutes. Service data pertains to maintenance actions and consists of a database of all 

maintenance actions reported for the turbines since they were installed.  

Power data is obtained for the year 2009, and service data is obtained for all years 

since turbines were installed (approximately 10 years). Scheduled maintenance 

occurred in February and July in 2009. Seven turbines were chosen from the farm. 
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The choice is based on the failure modes they exhibit; the seven turbines had the most 

common failure modes for wind turbines presented in Figure 22. The faults or failure 

that occurred include: pitch mechanism, hub, generator bearing, IGBT, rotor faults, 

and gearbox. The turbines are assumed to be representative of the whole population. 

Power versus wind data is obtained for the seven turbines and used to generate the 

power curves. Data is split into subsets corresponding to increments of 2 m/s and 

marginal and joint distributions are fitted to the data. The original wind indices are 

used to reconstruct a new time series with the exact order of the original time series. 

Data is then scaled to 600KW. This transformation does not affect the power-wind 

relationship. The following steps were used to generate the simulated data set: 

- Generate the power curve (power versus wind speed) for different turbines  

- Fit distributions to the data using the function copulafit in Matlab 

- Sample from the fitted distributions 

- Reconstruct the power time series.3 

Figure 25 is an actual power curve of a wind turbine and shows the power 

produced as a function of wind speed for 50,000 data points. Figure 26 shows the 

reconstructed power curve (with 2,000 data points corresponding to one subset). It 

can be seen that the marginal distributions in the two cases are similar. 

                                                 
3 General Electric only allowed their data to be used within this dissertation under the conditions of reconstructing the data as 

described in this section. 
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Figure 25- Actual power curve (50,000 points) 

 

  
Figure 26- Reconstructed power curve (2,000 points) 
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In the remainder of the dissertation, the 7 turbines chosen for the case study

represent the farm unless otherwise stated

during the year 2009, and 2 turbines 

routine scheduled maintenance. The failures are represented on the timeline in Figure 

27.  

 

Figure 

 
Figure 27 illustrates the time where a failure or fault occurred and when it was 

maintained. In some cases, the failure lasted for more than a month (

Turbine 5 has the failure and the maintenance event represented 
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In the remainder of the dissertation, the 7 turbines chosen for the case study

unless otherwise stated. 5 turbines in the farm exhibited failures 

during the year 2009, and 2 turbines did not have maintenance events outside of the 

scheduled maintenance. The failures are represented on the timeline in Figure 

Figure 27- Illustration of the wind farm 

Figure 27 illustrates the time where a failure or fault occurred and when it was 

maintained. In some cases, the failure lasted for more than a month (Turbine 

Turbine 5 has the failure and the maintenance event represented at the same point in 

In the remainder of the dissertation, the 7 turbines chosen for the case study will 

exhibited failures 

have maintenance events outside of the 

scheduled maintenance. The failures are represented on the timeline in Figure 

 

Figure 27 illustrates the time where a failure or fault occurred and when it was 

urbine 3). 

the same point in 
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the time line, it corresponds to a no-fault-found (NFF) 4. The actual failure modes are 

not indicated on Figure 27 because of confidentiality of the data.  

The cost of maintenance for the failure modes can be seen in Table 14. The order 

of the failures in the table is not representative of the failures Figure 27. Table 14 

shows the component where failure occurred, the cost of unscheduled maintenance, 

and the cost of condition-based maintenance (under the assumption that it is 40% of 

the cost of failure; an assumption made for gearboxes in (EPRI, 2006)). Note: the 

costs from Andrawus were converted to 2006 US dollars using a conversion factor of 

1.89785. 

 
Table 14- Cost of maintenance for different failure modes 

Failure Cost unscheduled Cost CBM Reference 
Pitch mechanism $11,640 $4,656 Kahrobaee and 

Asgarpoor (2011) 
Main bearing $42,462 $16,985 Andrwaus et al. 

(2006) 
Bad generator 
bearing 

$68,254 $27,302 Andrwaus et al. 
(2006) 

Control system $7035 $2,814 Kahrobaee and 
Asgarpoor (2011) 

Gearbox failure $148920 $59,568 Andrawus et al. 
(2006) and 

 
 

The costs in the table correspond to the cost of material, cost of labor to maintain 

the turbines, the cost of access (e.g., cranes), and cost of downtime.  

There are 6 failures that are represented on the timeline in Figure 27, and costs for 

5 failures in Table 14. The NFF is not included in the costs as the actual costs were 

                                                 
4 Note that NFFs do not always take very small time to get resolved. They may take longer to resolve than actual maintenance 

events.   
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not obtained in the data set. Note that NFFs can sometimes cost more than the actual 

failure of a system.  

 

5.3 Scheduled maintenance for the sustainment of wind farms 
 
The data in this section is reported as obtained (and not subject to any 

transformation: only power data used in following sections was transformed). The 

labels on the y-axis have been removed for confidentiality of the data.  

Figure 28 shows the cumulative maintenance cost for the farm under 

consideration for the years 2007 to 2010.  

 

 
Figure 28- Cumulative maintenance cost for 4 years for the real farm (more than 

100 turbines) 

 
Although this farm is operating with a scheduled maintenance, one would expect 

that the cumulative maintenance cost would be increasing steadily (corresponding to 

routine maintenance). However the jumps in the cumulative maintenance cost curve 
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indicate that there are components failing in some turbines and leading to an increase 

in cost. Gearboxes are examples of such components. Gearboxes are not supposed to 

fail during 10 years of operation. This infers that scheduled maintenance may not be 

the most efficient paradigm for such expensive assets. 

Figure 29 shows a plot of the power for a turbine that had more than one failure 

over the year 2009. The fluctuations are due to the intermittency of the wind source.  

 

 
Figure 29- Power over a year period for one turbine 

 
There are 3 unusual downtimes for the turbine shown in Figure 29. The first 

downtime is for an extended period of time and is caused by the failure of a gearbox. 

The cost of maintenance in this case is high due to the cost of failure and cost of 

downtime since the turbine is not generating any power. Figure 29 shows that there 

are 2 other downtimes for the turbine, which also increases the cumulative cost 

(cranes and labor have to be provided). 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4Data points

P
o

w
er

 [M
W

]

Extended downtime: failure of gearbox Downtime Downtime



 
 

87 
 

There are 4 types of service types: 1) non-functional turbine, 2) operating with 

problem, 3) preventive maintenance, and 4) scheduled preventive maintenance. 

Service type indicates the state of the turbine when maintenance was requested. A 

‘non-functional turbine’ indicates that a service was requested for a turbine that was 

not operational. Preventive maintenance is the request for all maintenance actions 

happening during preventive maintenance, and scheduled preventive maintenance 

occurs twice a year. Preventive maintenance is performed for some components such 

as gearbox. It is performed at a different time than preventive maintenance.  

Figure 30 shows the frequency of request service types for all the turbines. A non-

functional turbine can be either down before the scheduled maintenance, during or 

after. If the turbine is down right after the maintenance cycle, then the turbine will 

either be down for an extended period of time until the next scheduled maintenance 

cycle or a crew is called for maintenance.  
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Figure 30- Frequency of service requests by type 

 
Figure 30 shows that the frequency of ‘non-functional turbine’ request types is 

larger than all other types. ‘Operating with problem’ ranks second in the service 

request type. If the turbine is non-operational or operating with problem, the turbine 

may not produce as much power as it should, and the life-cycle cost will increase. 

For service request ‘non-functional turbine’, the number of days elapsed between 

the service request and the repair date of the turbine can be seen in Figure 31. The 

histogram shows a high frequency for days between 0 and 20; this is due to the fact 

that a number of faults are resolved by resetting the turbine or some other subsystem 
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in the turbine or occurring during scheduled maintenance. There is a substantial 

amount of service requests however that took more than 20 days to resolve; 300 of 

those cases took between 40 and 60 days.  

 

 
Figure 31- Time between service request and repair for non-functional turbine 

service requests 

  
Some turbines in Figure 31 have more than 100 days elapsed between the service 

request and the time when the turbine is repaired. If a downtime lasts for 100 days, 

the turbine is down for almost a third of the year and not generating power. This has a 

negative effect on the economics of the wind farm. 

Since scheduled maintenance is performed twice per year, it is worthwhile 

looking at the times when failures are occurring and check whether they coincide 
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with the scheduled maintenance or not. Figure 32 shows the days elapsed between 

repairing the problem and the closest maintenance cycle for type ‘non-functional 

turbine’.  

 
Figure 32- Time elapsed from fixing problem to maintenance cycle for non-

operational turbine service requests 

 
The first bin in the histogram in Figure 32 exhibits the largest count since it may 

be associated to the proximity to the start or end of scheduled maintenance cycles. 

However, there is a high frequency of events happening more than 40 days outside 

the maintenance cycle. Some events happen more than 100 days outside maintenance 

cycle. Figure 32 is fundamentally different than Figure 31 in that it represents the 

proximity of the failure to the maintenance cycle. A failure can occur 30 days after 

the closest maintenance cycle; and the turbine has to wait non-operational. Figure 31 
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on the other had represents the time elapsed between the failure and the maintenance 

action to fix it.  

The wind farm also exhibits a number of no-fault-found (NFF). This is an 

indicated fault that is resolved by actions such as reset; functionality is then restored 

to normal. Figure 33 shows the count of no fault found as a function of the number of 

days it took to repair them. The largest number of NFF can be seen closer to 0, which 

indicates that NFF can be resolved quickly with a reset or similar actions. There are 

however NFFs that took more than 30 days to resolve. Some turbines were down for 

almost a month for a NFF. 

 

 
Figure 33- Days to resolve the no-fault-founds (NFFS) 
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Scheduled maintenance for this wind farm is resulting in a number of scenarios 

that can decrease the value obtained from the wind farm. Prognostics can increase the 

maintenance value of such systems, avoid failures and increase the impact of such 

renewable energy source. 

 

5.4 Life-cycle cost model for wind turbines: ROI 
 

Haddad et al. (2011) established a life-cycle cost model (based on Feldman et al. 

(2009)) for the implementation of PHM on blades of wind turbines. Although blades 

are not among the failure in Table 14, the intent is to highlight the differences 

between the life-cycle cost models and the methodologies presented in this 

dissertation (demonstrated in the following sections). For data and the details of the 

analysis, the readers are referred to Haddad et al. (2011) (note the results in the paper 

and in this section are presented in Euros). 

To enable the calculation of ROI, the analysis first determines the optimal 

prognostic distance when using a data-driven PHM approach (see Figure 34).  

Prognostic distance is the amount of time before the forecasted failure (end of the 

RUL) that maintenance action should be taken.  Small prognostics distances cause 

PHM to miss failures, while large distances are overly conservative and throw away 

lots of remaining life. For the combination of PHM approach, implementation costs, 

reliability information, and operational profile assumed in this example, a prognostic 

distance of 470 hours yielded the minimum life-cycle cost over the support life of the 

turbine. Similar analysis was conducted to determine the optimum fixed-interval 

scheduled maintenance interval. A fixed maintenance interval of 8,000 hours yielded 
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the minimum life-cycle cost over the support life. Again, small fixed maintenance 

intervals miss failures, while large intervals are overly conservative. 

 

Figure 34- Variation of mean life-cycle cost with a fixed maintenance interval 
(1000-socket population) 

 
The accumulation of the life-cycle cost per socket for both data-driven PHM and 

fixed-interval scheduled maintenance case are shown in Figure 35 and Figure 36. A 

socket is a location in a system (in the wind turbine) where a single instance of the 

item being maintained (a blade) is installed.  The socket may be occupied by one or 

more items during the lifetime of the system. The time history of costs for each of 

1000 sockets is shown in Figure 35 and 36. The data-driven PHM case resulted in an 

overall lower life-cycle cost (mean = €173,213) compared to the best fixed-interval 

scheduled maintenance case (mean = €356,999). The data-driven PHM case requires 

fewer spares throughout the support life of the system. This is primarily due to 

maximizing the useful life of the blades, i.e., early warning of failures in the data-

driven PHM case provided an opportunity to schedule and perform maintenance 

events closer to the actual failures, thus, avoid failures while maximizing the useful 
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life. Alternatively, the fixed

throwing-away more useful

unscheduled maintenance events (intervention that is too late) occurred. 

Figure 35- Life-cycle cost accumulation for scheduled 

Figure 

 
The mean total life-cycle

€173,213 (mean), with an effective investment cost per blade of €25,408 (mean), 

94 

life. Alternatively, the fixed-interval scheduled maintenance case resulted in either 

away more useful-life (early intervention).  In both cases, some 

unscheduled maintenance events (intervention that is too late) occurred.  

cycle cost accumulation for scheduled maintenance

Figure 36- Life-cycle cost for PHM 

cycle cost per blade, for a data-driven PHM approach, was 

€173,213 (mean), with an effective investment cost per blade of €25,408 (mean), 

e resulted in either 

life (early intervention).  In both cases, some 

 

 
maintenance 

 

driven PHM approach, was 

€173,213 (mean), with an effective investment cost per blade of €25,408 (mean), 
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representing the cost of developing, supporting, and installing PHM in the blade. This 

cost was compared to the fixed-interval scheduled maintenance approach, where the 

total life-cycle cost per blade was €356,999 (mean). Note that the investment cost for 

the fixed-interval scheduled maintenance policy is by definition zero; since the ROI is 

computed to support an economic justification in investing in PHM, as opposed to the 

fixed-interval scheduled maintenance case where there is no investment (i.e., zero 

investment) in PHM.  

Figure 37 shows the histogram of the computed ROIs for 1000-socket population 

(due to uncertainties in all quantities, each socket in a population will have a unique 

ROI). In this example, the computed mean ROI of investing in a data-driven PHM 

approach for the population of blades was 7.43. Notice that some of the ROI values in 

Figure 37 are negative.  This means that there is a risk that implementing a data-

driven PHM approach for the blades could result in an economic loss, i.e., you could 

end up being worse off than fixed-interval scheduled maintenance.  Based on Figure 

37, this example predicts that a data-driven PHM approach would result in a positive 

ROI (cost benefit) with a 94.4% confidence. 

 



 
  

Figure 

 
In Figure 34, an optimal prognostic distance is obtained and is used over the 

support life to obtain the economic merit of using PHM when compared to other 

maintenance paradigms. Although t

account for the value of options that the decision

predicting a failure. The other drawback of such models is that they assume one 

prognostic distance, hence one maintenance policy

drawbacks will be addressed in the following sections for the failure modes observed 

in the wind farm of the case study. 

 

5.5 Hybrid methodology to value 
 

The previous section considered a 

merit of implementing PHM on wind turbine

analysis for implementing PHM on gearbox 
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Figure 37- Distribution of return on investment 

In Figure 34, an optimal prognostic distance is obtained and is used over the 

support life to obtain the economic merit of using PHM when compared to other 

maintenance paradigms. Although this approach shows the value of PHM, it does not 

account for the value of options that the decision-maker could have made when 

predicting a failure. The other drawback of such models is that they assume one 

prognostic distance, hence one maintenance policy over the support life. These 

drawbacks will be addressed in the following sections for the failure modes observed 

in the wind farm of the case study.  

Hybrid methodology to value the flexibility enabled by PHM 

The previous section considered a life-cycle cost model to show the economic 

merit of implementing PHM on wind turbines. This section shows a net present value 

analysis for implementing PHM on gearbox and generators and then incorporate

 

In Figure 34, an optimal prognostic distance is obtained and is used over the 

support life to obtain the economic merit of using PHM when compared to other 

his approach shows the value of PHM, it does not 

maker could have made when 

predicting a failure. The other drawback of such models is that they assume one 

over the support life. These 

drawbacks will be addressed in the following sections for the failure modes observed 

cycle cost model to show the economic 

. This section shows a net present value 

and then incorporates 
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uncertainties and flexibility enabled by PHM to show that the value of PHM increases 

when flexibility is accounted for. The choice of gearbox in this section is driven by 

the availability of the data. The contributions however are applicable to any failure 

mode. The cost data is based on Andrawus et al. (2006). The uncertainties are 

obtained from the farm discussed in Section 5.2. 

The data considers a wind farm with 7 600KW land-based turbines, and compares 

the net present value (NPV) of scheduled maintenance (called inspection) and CBM. 

We reproduce the NPV analysis for  the 7 turbines by using the costs from Andrawus 

et al. (2006), rescaling the farm to 7 turbines, and discounting over a period of 18 

years (support life of the turbines after they go out of warranty) with a discount rate 

of 8.2%. This analysis results in a NPV of 32,869£ for inspection, and 64,374£ for 

CBM. This result indicates that inspection is more beneficial than CBM.  

Andrawus et al. (2006) consider that the PHM system avoids failures of the 

following subsystems: blade, bearing, main shaft, gearbox, and generator. The 

frequency of failure 4, indicates the probability of failure. When the PHM system 

avoids this failure, cost avoidance, called failure consequence (!�) will result. 

Andrawus et al. (2006) identify these cost avoidance opportunities by annual cost 

reservation, ���, which is the product of the frequency of failure 4, the failure 

consequence (!�), and the number of turbines in the farm #1: 

��� ; 4!�#1  (35) 

Where the failure consequence (!�? consists of total production lost when turbine 

is not operating (1���?, the total cost of material to maintain the turbines (1�
�?, the 

total cost of labor to maintain the turbines (1��	?, and total cost of accessing the 
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turbines <1�&�? (the variables in the equations are defined in the Symbols section at 

the beginning of the dissertation):  

!� ; 1��� G 1�
� G 1��	 G 1�&� (36) 

1��� ; 24#��'1������  (37) 

1�
� ; <�
� G ��� G ��� G �¯��? u1 G %&�100v 
(38) 

1��	 ; <#��?�#���<'��?<"��? (39) 

1�&� ; <���#��? G <���#�� %&�100? 
(40) 

 

Consider the case of the generator with a frequency of failure 4 of 0.00641, a cost 

of lost production 1��� , of 1663.2£, a cost of material 1�
�, of 23,441.25£, a cost of 

labor 1��	, of 2,400£, and a cost of access 1�&�, of 8,460£. These numbers are 

obtained from the last row of Table 15. This will result in a failure consequence !� , of 

35,964£. And an annual cost reservation ��� , of 1,613£ when multiplied by the 

failure frequency. This result can be seen in the fifth row of Table 16.  

 
 

Table 15- Failure consequence (Andrawus et al. (2006))   

 Failure consequence °± (£) 
Failure modes 1�
� 1��	 1�&� 1��� Total 

Blade failure 34,545 2,400 8,460 1,663.20 47,068 

Main bearings failure 9,851.49 2,400 8,460 1,663.20 22,375 

Main shaft failure 11,133.36 4,800 11,280 1,900.80 29,114 

Gearbox failure 61,687.50 3,600 11,280 1,900.80 78,468 

Generator failure 23,441.25 2,400 8,460 1,663.20 35,964 
 
 
 

 

Table 16- Calculation of annual cost reservation (Andrawus et al. (2006))  

 
Number of events ² °± ³±´ 
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Bearing failure 0 0 25,993 
 

Main shaft failure 0 0 32,234 
 

Gearbox failure 2 0.01282 78,468 6,682 
Generator failure 1 0.00641 35,964 1,613 

  

 
Similar results are obtained for the gearbox. The other systems are not included in 

the analysis as they are assumed to have a frequency of failure of 0. The annual cost 

reservation is realized over the 18 years of support life. This cost is discounted to year 

0 and results in a net present value of 80,091£. This value is added to the net present 

value of inspection (or time based maintenance (TBM), and results in a total of 

112,960£ which is the real cost of inspection. To assess the value of PHM, the 

difference in NPV of inspection and CBM is calculated and results in 48,585£. This 

value compares the net present value accounting for the cost and cost avoidance 

derived from inspection and CBM over the life-cycle.   

This standard method to quantify the benefits of PHM does not account for the 

value of options that the decision-maker can take after prognostic indication. 

Furthermore, it is necessary to account for uncertainties. If there are forecasts for 

wind speed, then the decision-maker may decide to run the system while there is 

probability of high wind speeds and harness the upside effect of uncertainty. Another 

uncertainty that needs to be accounted for is the uncertainty within the PHM system 

(i.e., its RUL predictive capability is not perfect).  

Figure 38 shows the capacity factor for Turbine 6 on a monthly basis over the 

year 2009. Power data for Turbine 6 is averaged for every month and divided by 

600KW to obtained the ratio of the actual power produced in a given time to the 

theoretical maximum power. The capacity factor turns out to vary drastically over the 
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months of the year, and basing the results on an average may affect the valuation of 

the problem under consideration. The capacity factor result affects the maintenance 

planning for the turbines whereby decision-maker is better off having the turbine 

down for maintenance. 

  

 
Figure 38- Monthly capacity factor 

 

To estimate the uncertainty in capacity factor, we consider the power from 

Turbine 6, a healthy turbine (a turbine that did not have failures over the course of the 

year). The power output is averaged every day, and divided by 600KW, which is the 

maximum theoretical power the turbine can produce. The data is imported to @RISK 

and a distribution is fit according to the Chi-square test. A Beta distribution (Figure 
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39) with the following density function and parameters 4 of 0.734 and , of 2 fits the 

data the best: 

V<q;  4, ,? ; q¶e*<1 o q?·e*
¸ :¶e*<1 o :?·e*H:*/  

(41) 

 
Figure 39- Distribution fitting for the capacity factor over a year 

 
 

The uncertainty in the capacity factor is an integral part of the production lost. 

Production lost (1���), is expressed as the product of number of days the turbine is 

down (#��?, the number of hours in a day (24), the power rating of the turbine 

('1��?, the cost of energy (���?, and the capacity factor (� ?: 

 1��� ; <#��?<24?<'1��?<���?<� ? (42) 
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To incorporate flexibility in the model, we assume that the decision-maker can 

turn the turbine off when there is a prognostic indication for the gearbox.  The cost of 

CBM for the gearbox is assumed to be 40% of the cost of failure and the cost of 

scheduled maintenance is 70% of the cost of failure (EPRI, 2006). The cost of loss 

production from Table 17 for a gearbox is 1900.8£, and 1663.2 for generator. Using 

(42) (with a power rating of 600KW, cost of energy of 0.05 £/KW, and a capacity 

factor of 0.33) we can calculate the number of days the turbine is down for each 

system: 7 for gearbox and 8 for generator. Now we use this number and calculate an 

updated production loss when accounting for the uncertainty in the capacity factor. 

The net present value of the difference in the two maintenance paradigms 

demonstrating the value of PHM can be now represented as a distribution. We scale 

the cost data for time-based maintenance and condition-based maintenance from 

Andrawus et al. (2006) from 26 to 7 turbines (this is an assumption on the total cost 

of TBM and CBM). 

Now we consider the second uncertainty associated with the PHM system. We 

assume a misclassification rate of 0.05 associated with the PHM system. This implies 

that the PHM system will not predict a failure 5% of the time. Figure 40 shows a 

decision tree for uncertainty associated with PHM. 

 

Figure 40- Decision tree for uncertainty within the PHM system 
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Furthermore, we assume that there is the same number of events (same 4) that is 

predicted by CBM and by inspection. However, when predicted by CBM, the 

decision-maker has the option to abandon and halt the operation. This will result in a 

30% cost saving in supporting maintenance (under the assumptions listed earlier: cost 

of CBM is 40% of the cost of failure and cost of scheduled maintenance is 70% of the 

cost of failure). 

The expected value is obtained by multiplying the probability of occurrence by 

the outcome of each branch in the decision tree. In the case of correct prediction, the 

PHM system will predict all the failures and result in a cost avoidance of 73,842£, 

which was shown earlier. When the PHM system fails to predict the failures, we 

replace the failure frequency with 0 and calculate the NPV of annual cost reservation 

using (35)-(40).  

So far we consider two types of uncertainties, and included the flexibility (option 

to abandon) when addressing the value of implementing PHM. Now we complete the 

steps of the hybrid methodology and represent them in a VARG diagram. 500 Monte 

Carlo simulations were run, combined with the decision trees are represented in 

Figure 41. We assume that the decision-maker can exercises the abandon option 50 

days prior to the failure.  
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Figure 41- VARG diagram for model accounting for real capacity factor and 
option to turn turbine off 50 days before failure 

 
Figure 41 shows the results from the analysis with flexibility and the one that does 

not account for flexibility or the uncertainties. Figure 41 shows that the 18% value at 

risk is $48,850. This result indicates that there is a 18% chance that the value of PHM 

on the gearbox and generator is smaller than the value obtained from the analysis that 

does not account for flexibility and uncertainties. The 50% value at gain is $56,096. 

This result means that there is a 50% chance that the value of PHM will be greater 

than $56,096. The additional value in Figure 41 is a result of accounting for the 

uncertainty in the capacity factor, and the cost-avoidance of turning the turbine off to 

avoid failure (leading to a lower maintenance cost). 

Figure 42 shows the sensitivity analysis on the expected net present value of PHM 

when changing the number of days the turbine is turned off before failure, ranging 
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between 20 and 100, the misclassification rate (error in PHM system) ranging 

between 0.95 and 0.5, and the discount rate ranging between 0.05 and 0.11. 

 

 

Figure 42- Sensitivity analysis for the value of PHM 

 

Figure 42 shows that the value of PHM is highly affected by the performance of 

the PHM system. If the misclassification rate of the PHM system decreases to less 

than 90.5% , the value of implementing PHM is no longer justified even if the 

decision-maker has the option to turn the system off and avoid failure. The reason is 

that although the decision-maker has the option to turn the turbine off, the failure is 

happening before an indication of  RUL by the PHM system is obtained. Figure 42 

also shows the effect of exercising the option up to 100 days before the indicated 

Change in base value [%] 

ENPV of PHM [$] Days off 

Discount rate 

Misclassification rate 

  0.905 
65 
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predicted failure. Turning the turbine off to avoid failure comes on the expense of a 

cost of downtime. However that turning the turbine off for up to 65 days before the 

failure is beneficial. The last part of Figure 42 is the discount rate: since the analysis 

is performed over 18 years, it is important to analyze the effect of discount rate.  

This section included uncertainties and flexibility in the quantification of the 

benefit of PHM using the hybrid methodology. We consider the support life and show 

that exercising flexibility can result in a higher value from PHM. The next section 

considers the time frame from the prognostic indication to the end of the RUL and 

uses the hybrid methodology to represent uncertainties to show the value of PHM at 

the system level. 

 

5.6 Quantifying the wait to maintain option 
 

This section highlights the value of waiting after prognostic indication for the 

different failure modes in the case study. Quantification of the value of waiting is a 

representation of the additional benefit that the user of the PHM system obtains. It 

provides means for analyzing the benefits at the system-level and compares a large 

number of maintenance policies. The method can be done in real-time and updated 

whenever new information about uncertainties is obtained.  

5.6.1 Model description 
 
The value of maintenance is a summation of two uncertain quantities; the cost 

avoidance (difference in cost of performing condition based maintenance and cost of 

failure), and the production loss (which is influence by the capacity factor).  The 

value is described in Equations (16)-(18).  
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Production loss is affected by the capacity factor, and we model it with a 

geometric Brownian motion that is represented with the following stochastic 

differential equation: 

 H1��� ; 51���HD G 61���H'� (43) 

 
where 1��� is the production loss being simulated at time t, 5 is a drift component, 6 

is a variance component, and '� is a Brownian motion. This is a stochastic 

differential equation that represents production loss as a dynamically changing 

uncertain quantity. For a capacity factor of 0.33, the production loss per day is  

236.7£. This number is the production lost in 1 day with a turbine rating of 600 KW 

and a cost of energy of 0.05 £/KWh. Simulating the production loss using with a drift 

of 0.5, a variance of 0.1, and a starting value of 236.7£, we get the result in Figure 43. 

Figure 43 also shows a histogram for the cross-sectional data at time 50; i.e., it 

represents the distribution of the production loss on the 50th day. 



 
 

108 
 

 

Figure 43- Evolution of production loss 

 

In a recent report by the Electric Power Research Institute (EPRI, 2006), the cost 

of performing CBM on the gearbox of a wind turbine was assumed to be 40% of the 

cost of failure, the cost of performing scheduled maintenance on the gearbox was 

70% of the cost of failure, and the cost of failure was 100% of the cost of failure. The 

uncertainty in the cost of maintenance  is modeled by a stochastic random process 

with a geometric Brownian motion using (actual numbers can be estimated from 

historical data): 

 H�
 ; 5�
HD G 6�
H'� (44) 

 
To represent the value of maintenance graphically, we model the production loss 

with geometric Brownian motion with a drift rate of 0.5, and a variance of 0.1. The 
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cost avoidance is simulated with a starting value of 47,080£ (60% of the cost of 

failure of a gearbox (EPRI, 2006)), a drift of -0.8, and a variance of 0.25. These two 

quantities along with the value of maintenance (summation of cost avoidance 

opportunities and cumulative revenue generated from running the system) are 

represented in three plots in Figure 44.  The first plot is the simulated cost avoidance. 

The value of cost avoidance starts at 60% of the cost of failure and decreases with 

time. The second plot is the cumulative revenue obtained from running the system to 

the end of the RUL. The right most plot in Figure 44 is the value of waiting, which is 

the summation of the quantities in the left two plots. The simulations consist if 20 

paths. Figure 44 shows that the value of waiting decreases initially then increases 

(right most plot). As the system is used through the remaining useful life, the system 

will degrade and the cost of maintenance will increase according to our assumption. 

The turbine will however generate power. If  there is a high probability of high wind 

speeds, then the cumulative revenue will be even higher than considering the case of 

average capacity factor.  
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Figure 44- Value of maintenance after prognostic indication 

 

The cost avoidance opportunities are obtained from historical data and follow the 

trend of the degradation of the system. They can be obtained from historical data and 

the maintainer of the system. Cost avoidance is not necessarily a function decreasing 

with a constant drift. Subsystems in turbines (and other systems as well) may be 

interrelated; a failure in one system can cause a failure in another system and cause an 

increase in the maintenance cost; or a decrease in the cost avoidance. 

 

5.6.2 Modeling uncertainties 
 

In order to quantify the value of waiting, the uncertainties are first estimated. The 

uncertainty in the capacity factor is estimated from historical data, and the uncertainty 

in the cost avoidance is assumed to follow a degradation model. The starting point is 
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known (difference between the cost of unscheduled maintenance and the cost of 

condition-based maintenance).  

The uncertainty in the capacity factor is considered over multiple time horizons: 

one year for the healthy turbine, one month for Turbines 1 and 3 (the failure occurred 

in February and no prior data), 2 months prior to failure for all other turbines, and 

monthly capacity factor for the healthy turbines. The power is averaged every day 

(since it is 10 minutes data), and divided by 600KW to obtain the capacity factor. A 

time series for Turbine 6 averaged every day is show in Figure 45. 

 
Figure 45- Power time series for Turbine 6 

 

The parameters for the stochastic differential equation of the time series are 

estimated using the SDE toolbox in Matlab (Picchini, 2007), which uses simulated 

maximum likelihood estimation (Durham and Gallant, 2002). The estimates of the 

parameters in stochastic differential equation for Turbines 1 to 5 can be seen in Table 
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17. The table shows the mean value and the confidence interval (lower bound (LB 

95% CI) and upper bound (UB 95% CI)). Confidence in estimation increases with 

more data. 

 
Table 17- Estimates of uncertainty parameters before failures with 95% 

confidence intervals  

Turbine   Start time End time Mean LB 95% CI UB 95% CI 

1 Mean 1/1/2009 2/7/2009 1.80E-01 3.28E-02 3.27E-01 

  Shock     5.00E-01 4.21E-01 5.80E-01 
2 Mean 9/1/2009 11/1/2009 1.98E-01 7.51E-02 3.20E-01 
  Shock     5.98E-01 5.24E-01 6.72E-01 
3 Mean 1/1/2009 2/23/2009 1.32E-01 4.14E-02 2.22E-01 
  Shock     6.37E-01 5.82E-01 6.92E-01 
4 Mean 3/7/2009 5/7/2009 7.21E-03 -1.63E-02 3.07E-02 
  Shock     2.07E-01 1.94E-01 2.19E-01 
  Mean 8/2/2009 10/2/2009 7.11E-03 -2.10E-02 3.52E-02 
  Shock     1.99E-01 1.85E-01 2.13E-01 
5 Mean 6/14/2009 8/14/2009 3.09E-02 -1.56E-02 7.73E-02 
  Shock     3.46E-01 3.22E-01 3.70E-01 

 

Tables 18 and 19 summarize the parameters for modeling uncertainty obtained 

from data with the 95% confidence interval (LB for lower bound and UB for upper 

bound) for the healthy Turbines 6 and 7 respectively. 
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Table 18- Uncertain parameters in healthy Turbine 6 

Month Mean LB 95 CI UB 95 CI Shock LB 95 CI UB 95 CI 

1 9.12E-02 9.01E-03 1.73E-01 4.69E-01 4.28E-01 5.11E-01 

2 7.24E-02 1.29E-02 1.32E-01 4.41E-01 4.04E-01 4.77E-01 
3 1.19E-01 5.44E-02 1.84E-01 4.62E-01 4.23E-01 5.02E-01 
4 9.22E-02 6.55E-03 1.78E-01 5.06E-01 4.63E-01 5.49E-01 
5 6.52E-02 2.48E-02 1.06E-01 3.45E-01 3.11E-01 3.79E-01 
6 -4.90E-03 -4.04E-02 3.06E-02 2.62E-01 2.43E-01 2.81E-01 
7 2.80E-02 -1.71E-02 7.30E-02 3.36E-01 3.03E-01 3.70E-01 
8 8.24E-02 4.58E-02 1.19E-01 3.14E-01 2.86E-01 3.42E-01 
9 6.23E-02 5.00E-03 1.20E-01 4.15E-01 3.76E-01 4.54E-01 
10 1.60E-01 8.24E-02 2.38E-01 5.92E-01 5.41E-01 6.43E-01 
11 -2.31E-01 -2.99E-01 -1.63E-01 4.89E-01 4.46E-01 5.31E-01 
12 1.83E-01 1.17E-01 2.50E-01 4.78E-01 4.41E-01 5.15E-01 

 

Table 19- Uncertain parameters in healthy Turbine 7 

Month Mean LB 95 CI UB 95 CI Shock LB 95 CI UB 95 CI 

1 1.43E-01 5.01E-02 2.36E-01 5.23E-01 4.84E-01 5.61E-01 

2 2.14E-01 1.39E-01 2.89E-01 5.80E-01 5.36E-01 6.25E-01 
3 -9.50E-03 -8.32E-02 6.42E-02 5.52E-01 5.10E-01 5.94E-01 
4 5.08E-02 -3.36E-02 1.35E-01 5.01E-01 4.41E-01 5.62E-01 
5 1.79E-01 1.14E-01 2.44E-01 4.86E-01 4.33E-01 5.40E-01 
6 -2.69E-03 -7.53E-02 6.99E-02 4.81E-01 4.47E-01 5.16E-01 
7 5.22E-02 1.46E-02 8.99E-02 3.72E-01 3.53E-01 3.91E-01 
8 4.72E-02 -6.71E-03 1.01E-01 3.56E-01 3.22E-01 3.90E-01 
9 1.38E-01 7.23E-02 2.03E-01 4.39E-01 4.11E-01 4.66E-01 
10 4.61E-01 3.14E-01 6.08E-01 7.72E-01 6.94E-01 8.49E-01 
11 2.06E-01 9.96E-02 3.12E-01 5.87E-01 5.32E-01 6.41E-01 
12 2.03E-01 1.07E-01 3.00E-01 5.97E-01 5.23E-01 6.71E-01 

 

When the information from the PHM system or sensors on the wind turbine are 

obtained, the uncertainty can be updated and new drift and shock can be generated on 

the updated time series. In the case study, the uncertainty parameters are estimated 

after the failure happened, but all these parameters can be updated in real-time. 
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5.6.3 Value of waiting  
 
The uncertainties in the capacity factor are summarized in the previous section. 

The least squares Monte Carlo algorithm is applied to quantify the value of waiting 

for different components. The prognostic distance considered is not the same for all 

turbines in the case study (because data is obtained for 1 year only). The assumed 

prognostic distance can be seen in Table 20. 

 
Table 20- Assumed prognostic distance 

Turbine  1 2 3 4 5 

Prognostic 
distance 

37 60 53 60 60 

 

Figure 46 shows the value of waiting for Turbine 1 for 37 days. It is observed that 

the value is initially 0, and starts increasing on day 8. On day 25 the value of waiting 

starts decreasing because of the risk of failure which may also induce failure in other 

components as well. Figure 47 and Figure 48 show the value of waiting for Turbines 

2 and 4 respectively. The uncertain capacity factor is sued in equation (37) to 

generate the production of the turbine. The cumulative production is obtained by 

summing the power every day. The cost avoidance is obtained from the costs of 

failure from Table (14) and assumes a drift component of -0.6 and shock of 0.25. At 

80% of the RUL, we model an increase in the risk of failure by inducing a jump in the 

cost avoidance that is simulated by a sharp drop in mean of cost avoidance. In other 

words, when calculating the value of waiting towards the end of the remaining useful 

life, the cost avoidance is small or negative (because of risk of collateral damage). 

The choice can be obtained from historical and degradation models along with expert 
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opinion. It is however assumed in this dissertation. 

 

Figure 46- Value of waiting for 37 days for Turbine 1 

 

 

Figure 47- Value of waiting for 60 days for Turbine 2 
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Figure 48- Value of waiting for 60 days for Turbine 4 

 
Figure 47 shows that the value is 0 until day 35 where it starts increasing but then 

drops again. It is worthwhile noting that the value only increases slightly and then the 

risk of failure overcomes the value and takes it back to 0. Figure 48 shows the value 

of waiting for Turbine 4, and shows the waiting has a value and starts decreasing on 

day 54. The best time to maintain in this case is day 54; which is the time with the 

highest waiting value. Turbines 3 and 5 have a value of $0 throughout the RUL and 

are not plotted. A value of 0$ indicates that the decision-maker is better off 

maintaining immediately. This is fundamentally different than the value of PHM in 

cost-benefit models. Such models prove the economic merit of PHM when 

accounting for all the costs and cost avoidance over the life cycle and summarizing 

with some metric such as ROI. The options cost model indicates how much additional 

value, the user/decision-maker can obtain from running the system through the RUL; 

a capability enabled by PHM.  
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Now we assume that all the turbines have a RUL of 100 days, and estimate the 

uncertainty in the capacity factor from the healthy Turbine 7 for the whole year. 

Results show a drift component of 0.0983 and a variance component of 0.46. The 

value of the option to wait up to 100 days can be seen in Figure 49 (labels are failure 

modes and not turbines to in this figure: one turbine exhibited multiple failure 

modes). 

 
Figure 49- Value of waiting for 100 days 

 

The value of waiting for the 5 observed failure modes in the turbines is shown in 

Figure 49. The value of waiting indicated the benefit that the user of the PHM system 

obtains from running the system through the RUL. The curves show that the value 

starts at 0, for all failure modes and increases at some point except for failure mode 5. 

This failure mode corresponds to a gearbox failure. When a failure for a gearbox is 

predicted, the decision maker is better off maintaining at the earliest convenience as 

the revenue obtained from running the system will not compensate for the risk of 
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failure. This is of course for the uncertainties assumed in this case study. These 

numbers can vary depending on the uncertainties assumed.  

Consider the thyrestor for example, the value of waiting starts increasing on day 8 

and peaks on day 74 before it starts decreasing again. The decrease is associated with 

an increase in the risk of failure. The value of $820 on day 74 is the benefit obtained 

from the PHM system that allows the decision-maker to wait and maintain at any 

point until the end of the RUL. The values are dependent on the assumptions of costs 

made and can be much higher if the turbines had a higher power rating. For the hub 

(or main bearing), the value starts increasing on day 28 and peaks on day 76 before it 

starts decreasing again. The decision-maker is better off waiting until day 76 to 

maintain to obtain the largest value from PHM.  

The $0 waiting value for the gearbox does not mean that PHM has no value; it 

means that waiting does not generate any additional benefit. In the Section 5.5, we 

demonstrated the economic merit of implementing PHM on a gearbox. In this part of 

the case study, we derive the additional benefit (value of contingency action: waiting 

to perform maintenance). A value of $0 is a recommendation for the decision-maker 

to maintain when the first opportunity arises. 

Another point worthwhile highlighting in this section is that the least squares 

Monte Carlo algorithm quantifies the benefit of PHM at all points up to the end of the 

RUL. This is in contract to the life-cycle cost model in Section 5.4 that assumes one 

optimal prognostic distance throughout the life-cycle. The methodology demonstrated 

in this section is applicable to individual system (individual turbines exhibiting 

different failure modes), and quantifies the additional benefit that the PHM system 
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provides. The analysis in this section considers individualized maintenance policies; 

condition-based maintenance at any point until the end of the RUL.  

Finally, we note that the model is based on uncertain quantities that can be 

updated in real-time as new information is obtained regarding the uncertain 

quantities; a capability that did not exist for cost-benefit models for quantification of 

the benefits of PHM. 

 

5.7 Placing the dynamic maintenance threshold 
 
Finally we demonstrate the value of waiting by considering two turbines 

exhibiting prognostic indications for different components at different times. 

Considering a timeline from 0 to 53, the first turbine has a failure on day 37, and the 

second one on day 53. The prognostic indication is assumed to be obtained 37 days 

prior to failure for both turbines. When the prognostic indication of the first turbine is 

obtained, the decision-maker does not have any information about the time when the 

second turbine will fail. The value of waiting is first obtained from the least squares 

Monte Carlo algorithm for the data of Turbine 1. The uncertainty parameters are 

estimated for 37 days prior to for turbine 1 (drift of 0.198 and shock of 0.58). The 

value of waiting starts increasing on day 9.  On day 16 (37 days before the end of life 

of turbine 2), a prognostic indication for Turbine 2 is obtained. After the failure of 

Turbine 1, a penalty equivalent to the cost of production lost by 1 turbine is imposed. 

The decision-maker is interested in knowing when to maintain given the prognostic 

information and the uncertainties associated with the operation of the system. The 

value of waiting with the annotation of different events can be seen on Figure 50.  



 
  

Figure 50- Dynamic threshold

 
 

The value of waiting exhibits two local maxima in Figure 5

influenced by the maximum waiting value for 

Turbine indicates an RUL
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The methodology is applicable to multiple 

based on the uncertainties and prognostic information. As new information about the 

degradation or the uncertainties associated with the operation, the model can be 

updated and the threshold can be set dynamically to 

from the PHM system. 
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ynamic threshold based on the value of the option to wait

The value of waiting exhibits two local maxima in Figure 50, the first one is 

influenced by the maximum waiting value for Turbine 1. But when the second

RUL, the result show that dynamic threshold that maximizes the 

value of waiting correspond to day 30. This is 7 days before the failure of 

where penalty starts to accrue.  

The methodology is applicable to multiple systems and is able to set a threshold 

based on the uncertainties and prognostic information. As new information about the 

degradation or the uncertainties associated with the operation, the model can be 

updated and the threshold can be set dynamically to maximize the value obtained 

 
based on the value of the option to wait 

, the first one is 

urbine 1. But when the second 

he result show that dynamic threshold that maximizes the 

days before the failure of Turbine 1 

systems and is able to set a threshold 

based on the uncertainties and prognostic information. As new information about the 

degradation or the uncertainties associated with the operation, the model can be 

maximize the value obtained 
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5.8 Summary 
 

This chapter demonstrates the methodologies presented in this dissertation on a 

wind farm case study. The chapter first highlights the importance of sustainment of 

wind farms, then explains the data used for the case study. A life-cycle cost model is 

proposed to show the value of PHM on blades of turbines, then a net present value 

analysis is presented to show the value of PHM on gearboxes and generators. The 

hybrid methodology is demonstrated and includes the option to abandon which 

increases the value of PHM. The value of the waiting option is demonstrated on the 7 

turbines obtained from the wind farm, and a dynamic maintenance threshold is 

presented. The value of waiting is a representation of the benefit that is obtained from 

PHM at the system when running the system through the RUL. 
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Chapter 6:  Summary, Contributions and Future Work 
 

This chapter summarizes the research performed in this dissertation, discusses the 

contributions and proposes directions for future work.   

 

6.1 Summary 
 

This dissertation adds to the body of knowledge on health management for 

systems with prognostic capabilities contributions supporting the advancement and 

penetration of PHM technologies. Maintenance options are presented to define the 

flexibility enabled by PHM, and valuation methods based on a least squares Monte 

Carlo methods are presented. The wait to maintain option is presented with an 

algorithm to quantify it. This provides a new system-level cost model that quantifies 

the value of PHM for individualized maintenance policies and enable maintenance 

planning in real-time based on PHM information.  

Chapter 1 motivated the problem, presented a mathematical abstraction of the 

problem, and presented the outline of the dissertation. Chapter 2 provided a literature 

review on health management for systems with prognostic capabilities, relevant 

optimization problems, and real options work relevant to the problem solved in this 

dissertation. Chapter 3 introduced maintenance options and tools to frame the 

flexibility enabled by the PHM system. The proposed methodology integrates 

multiple sources of uncertainty in order to present the distribution of the net present 

value of the option in a diagram called value at risk and gain diagram (VARG). The 

VARG diagram is a cost-benefit-risk representation of the value of implementing 

PHM on a system that can account for flexibility. Chapter 4 presented a least squares 
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Monte Carlo algorithm to quantify the value of waiting options. An example is 

provided to showcase the detailed step-by-step process of the algorithm and the 

methodology used to get a price for the options. Chapter 5 demonstrates the 

methodology on a case study of wind farms in the United States from the General 

Electric Company.   

 

6.2 Contributions 
 

The research work in this dissertation presents the following contributions that are 

applicable to systems with prognostic capabilities: 

 
1) Formalizing maintenance options within the real options framework and the 

development of the first cost-benefit model that incorporates the value of 

flexibility  (contingency actions or options). Maintenance options are 

introduced as means to represent the flexibility enabled by PHM, and a hybrid 

methodology based on Monte Carlo simulations and decision trees was 

established to incorporate the value of flexibility.    

2) The development of the first system-level cost-benefit model to quantify the 

benefits of PHM from a user’s perspective. The benefits of PHM are 

measured by quantifying a new kind of options, the option to wait to perform 

maintenance. The model evaluates individualized maintenance policies for 

different system instances, and quantifies the value of PHM at all points from 

prognostic indication to the end of the remaining useful life.  

a. The model can be updated in real-time and can generate a value of the 

waiting to maintain option at any time.  
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b. The model provides a solution to the fundamental maintenance 

problem of systems with prognostics.  

c. The methodology allows the value of PHM to be established and the 

use of PHM in systems to be improved when an availability 

requirement has to be met. 

3) The development of a maintenance threshold methodology that uses the 

information from PHM to set a dynamic maintenance threshold. The model is 

applicable to multiple systems that may not have the same prognostic distance 

or the same failure mode. The maintenance threshold is based on maximizing 

the value of waiting across a fleet of systems. The methodology can also be 

used to support outcome-based contracts. 

 

6.3 Potential broader impacts of this work 
 

The maintenance options methodology applied to PHM systems is the first 

reported work that puts the flexibility enabled by PHM in a quantifiable framework. It 

provides significant new capabilities to: a) perform real-time pro-active cost-benefit-

risk decision support; b) determine the optimal maintenance strategy for a fleet of 

systems; and c) maximize the value of maintenance. The methodology can be 

extended to incorporate availability requirements as constraint, and support 

availability contacts. 

The methodologies of this dissertation are versatile and applicable to many types 

of systems. Although the focus of the dissertation is on a limited number of 

maintenance options, there is theoretically a much larger (maybe infinite number of 

maintenance options) that may be application dependent.  
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6.4 Future work 
 

Future work can extend the maintenance options approach to include the 

valuation of multiple options arising in engineering systems. This dissertation 

addressed two types of options, waiting and abandoning. However there may be a 

larger number (maybe infinite) number of options. The decision-maker can prioritize 

among the options. A global optimization method such as genetic algorithms can be 

used to choose the best option for each system in a fleet of systems.  

Another extension of the current work is to incorporate logistics parameters and 

models in the options valuation in order to estimate the uncertainties in logistics and 

how they affect the value of the options.  

The least squares Monte Carlo algorithm considered one type of polynomial for 

function approximation; the Laguerre polynomials. This class for polynomials has 

been proven to enable convergence in the literature. There are however other choices 

for polynomials for function approximation (discussed in Chapter 4). A study to 

compare different polynomials and the number of paths can be conducted to show the 

effect on the value of waiting.  

The cost avoidance considered in the wait-to-maintain option are obtained from 

historical data. The goal was to find a balance between risk and additional revenue. A 

loss function can be added to the model to visualize this balance. An example of a 

loss function is the Taguchi loss function that measures the financial impact when a 

process deviates from its target.  

Although it is not addressed in this dissertation, valuation of staging options can 

give the true value that should be invested in the PHM system or in improving its 
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performance. Staging options in real options theory are options that arise after the 

execution of a first option.  For example, a PHM system for monitoring a gearbox for 

a wind turbine would ideally predict the advent warning of failure for failures 

throughout the life cycle of the gearbox. Exercising one maintenance option in one 

maintenance cycle gives rise to maintenance options in the next cycle. Valuation of 

the staging options gives the true value that should be charged for the PHM system.  
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Glossary 
 

This glossary presents the definition for key terms that are used throughout the 

dissertation. The terms may have been used in different contexts in the scientific 

community; the definition presented here is the key one for the work. 

• Availability : the ability of a system to be operational when it is required for 

operation.  

• Brownian motion: a continuous time stochastic processes.  

• CBM : condition-based maintenance is the maintenance of an asset contingent 

on its health condition or use. 

• Contingency actions: actions taken after prognostic indication.  

• Discount rate: the interest rate that an eligible depository institution is 

charged to borrow short-term funds directly from a Federal Reserve Bank.  

• Enterprise: fleet of system. Availability at the enterprise level is usually 

different than availability at the system level.  

• Flexibility : RUL is the remaining useful life that a system has and it effectively 

represents the lead time (subject to appropriate uncertainties) for the decision-

maker or other maintenance entities to take preventive actions prior to a failure. 

This can be described as a flexibility phenomenon whereby entities involved with 

the operation, management, and maintenance of a system have the flexibility to 

take actions at any time up to the end of the RUL. 

• Health index: The system-state at time can be summarized by a random aging 

variable. In the absence of repair or replacement actions, is an increasing 
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stochastic process. The system fails when the aging variable is greater than a 

fixed threshold.  

• Net present value: The difference between the present value of cash inflows 

and the present value of cash outflows. NPV is used in capital budgeting to 

analyze the profitability of an investment or project. NPV analysis is sensitive 

to the reliability of future cash inflows that an investment or project will 

yield.   

• Option: the term option is used in the context of a choice arising to the 

decision maker. An option or choice is a strategy that can be carried out to 

manage the health of the system in order to meet some requirement. 

• Post-prognostic indication: After a prognostic indication. Typically the 

decision making is addressed after a prognostic indication. 

• Prognostic distance: it is the amount of time before the forecasted failure 

(end of the RUL).  

• Prognostic indication: Indication of an anomaly by a prognostic system. It is 

typically a prediction that a fault or failure will happen after a certain time. 

• Real option: is the right but not the obligation to take an action within a 

period. Real options analysis is a capital budgeting tool that quantifies 

flexibility in systems.  

• Remaining useful life (RUL): the remaining life the system has before 

failure.  

• Requirement: performance measurement or outcome required by an entity 

involved in the use, management, operation or maintenance of a system. 



 
 

129 
 

• Stochastic process: it is a statistical process involving a number of random 

variables depending on a variable parameter (which is usually time). 

Stochastic processes are used to model uncertainties. 

• Sustainment: The capacity of a system to endure. The key elements of 

sustainment are: reliability, maintainability, availability, upgradability, 

affordability. 

• System level: an individual instance of a system. This can be one aircraft, one 

engine, one turbine, etc. 
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