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1. Introduction

Optimization problems arising in engineering design often exhibit specific features which,
in the interest of computational efficiency, ought to be exploited. Such is the possible presence
of ‘functional’ specifications, i.e., specifications that are to be met over an interval of values
of an independent parameter such as time or frequency. Problems of this type pertain to
semi-infinite optimization. They are typical, among other places, in the context of circuit
design or control system design (see, e.g., [1,2] and references therein). While, at the expense
of repeatedly computing global solutions of univariate optimization subproblems, semi-infinite
optimization problems could be handled by general purpose nondifferentiable optimization
algorithms (see, e.g., [3-6]), their particular structure calls for specific techniques. Such tech-
niques have been investigated by many authors (see, e.g., [7—14]). While most approaches
make use, at each iteration, of a set of local maximizers over the range of the independent
parameter, the question of suitably approximating such maximizers is generally left aside.
Notable exceptions are found in [15] for linear problems and in the work of Polak et al. |7,
10] for the general nonlinear case. The proposed schemes are based on an adaptively refined
discretization of the interval of variation of the independent parameter. This is also the focus
of this paper.

For the sake of exposition, we consider the simple problem
(P)  minimize f(z) s.t. ¢(z,w) <OV w € 0,1]

where f : R™ — R is continuously differentiable and ¢ : R™ x [0,1] — IR is continuous and is
continuously differentiable with respect to its first argument.! Polak et al. [7,10] have proposed
two algorithms for solving problem (P), both using an adaptively refined discretization of the
interval [0,1]. In the first algorithm [7], a feasible direction scheme is used that yields an
approximate solution to a problem (P,) obtained by replacing (1 = [0, 1] by a finite subset €.
The search direction computation makes use of the gradients of ¢ at all e-active discretization
points (see below for a precise definition). The discretization is then progressively refined

and the corresponding problem is solved to a progressively better accuracy. Convergence

1 Extension of the ideas discussed in this paper to problems including multiple functional constraints over
different compact intervals, together with multiple ‘ordinary’ constraints, does not present any conceptual

difficulties.



of the overall algorithm to stationary points of (P) is proven. The second algorithm [10]
achieves substantial computational savings over the first one by better exploiting the regularity
properties of ¢ as a function of w. The key observation is that, when the discretization is fine
enough, the critical sensitivity information is essentially carried by the gradients of ¢ at the
e-active local mazimizers. The algorithm proposed in [10] makes use of the latter only.

In this paper it is shown that, while the algorithm of [10] usually performs quite well, there
are cases where convergence to stationary points is lost. The reason is that, for a given mesh
size, the gradients at the local maximizers for the current iterate do not always carry enough
information on the local behavior of the constraints. This is illustrated by two examples where
the discretization is never refined and the sequence of iterates converges to a nonstationary
point. It is then shown that convergence can be recovered via a simple modification of the
algorithm in [10].

The balance of the paper is organized as follows. In Section 2, the adaptive discretization
scheme proposed in [10] is outlined and examples are exhibited where the corresponding al-
gorithm fails to converge. In Section 3, a modified scheme is proposed. Numerical results are
presented in Section 4. Concluding remarks are given in Section 5. A proof of convergence for

the modified algorithm is sketched in the Appendix.

2. Preliminaries

In this section, after briefly outlining the algorithm of [10], we show by two examples that
difficulties can arise, preventing convergence to a stationary point. The notations, terminol-
ogy and assumptions to be used throughout this paper, essentially borrowed from [10], are
introduced first.

For ease of reference, we restate the regularity assumptions for Problem (P).

Assumption 1.2 f:IR™ — IR is continuously differentiable, ¢ : R" x [0, 1] — R is continuous

and is differentiable with respect to its first argument z, and V¢ is continuous.

Assumption 1 implies that the function ¢ : R™ — IR given by

¢¥(z) = max_¢(z,w)

welo,1]

2 The regularity assumption on ¢ can be weakened so as to allow functions that are merely piecewise

continuous in w (a frequent occurrence in engineering design problems.)
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is well defined, so that Problem (P) can be reformulated as
minimize f(z) s.t. ¢¥(z) < 0.

Note that 9 is not everywhere differentiable and that, due to the infinite cardinality of [0, 1],
its value at a given point = cannot in general be computed exactly in finitely many operations.
Below, we will make use of finite discretizations of [0, 1].

Given z € R"™, the set of indices of global maximizers at z is defined by
0(z) = {we Q| é(z,w) = ¢(z)}
and the set of corresponding gradients by
S(z) = {Vad(z,w) | w € Qz)}.

The convex hull of the latter is denoted by coS(z). The following standard assumption will
be made throughout.

Assumption 2. There exists no z € R" satisfying 4/(z) > 0 and 0 €coS(z).
A point z* € R" is called a Kuhn-Tucker point for (P) if 4/(z*) < 0 and there exist a finite
number ! of points w} € [0,1], J = 1,...,l and some coefficients AY > 0, j = 1,...,!

satisfying

{
Vi) + Y A Vae(z",w)) =0
j=1

and

Under Assumptions 1 and 2, every local minimizer of (P) is a Kuhn-Tucker point for (P).
Given any ¢ € IN\{0}, referred to below as discretization index, the set @ = [0, 1] is now

discretized into

The constraint function is approximated accordingly by

Yq(z) = max ¢(z,w)

weQ,
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and we define
@b;" (z) = max{0,v¥,(z)}.

The discretized problem is
(P,) minimize f(z) s.t. ¥4(z) <O0.
For any ¢ > 0, the set of e-active points of the discretization 1, is defined by
Qg,e(z) ={weQ, | ¢(z,w) > 'c,b;'(a:) — €}

A left local mazimizer of ¢ over {1, at z is a point w € £, satisfying one of the three following
properties.

1. 0 < w < 1 and the two inequalities
1

and

¢(z,w) > ¢(z,w — é) (2.2)

hold.
#. w =0 and (2.1)holds.
#1. w =1 and (2.2) holds.

The set of e-active left local mazimizers associated with the discretization is given by
,c(z) = {w € Qg e(z) | w is a left local maximizer of ¢ over 2, at z}

and we define
Qg,e(2) = ﬁ<1,e(-"") U Qq,0(2).
For a given discretization, an initial precision € and a current iterate z;, the algorithm in
[10] computes a search direction d; by solving the quadratic program in (d,v)
minimize }||d||% + v
st (Vf(2s),d) — vt (zs) <w i (2.3)
(Vid(zi,w),d) <v Vwe Qg (z)

where v > 0 is given. If the optimal value 7; of this problem satisfies 7; > —éd¢, § > 0 given,

¢ is halfed and the search direction is recomputed accordingly. This process is repeated until
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the condition 7; < —6e holds. If € is decreased below a given threshold, the discretization is
refined. The stepsize ¢; along d; is then determined by the following Armijo-like rule, which
makes use of two scalars «, 8 € (0,1). If ¢.F (x;) > 0 (Phase 1), ¢; is the first number ¢ in the
sequence {1, 8, 8%,...} satisfying

Vg (zi + td;) — Yg(z:) < —atée. (2.4)
If ¢} (z;) = 0 (Phase 2), t; is the first number ¢ in the sequence {1,4, 3%,...} satisfying
f(zi +td) — f(z:) < —atée

and

’l/)q (:l:',, -+ tdi) <0.

Notice that the computation of the search direction takes into account constraint infor-
mation only at local maximizers w at the current iterate z;. While this information often
provides a suitable local representation of ¢ around z;, such is not always the case. Below,
we 1llustrate this fact by means of two examples where Assumptions 1 and 2 hold but where
convergence fails to occur.® In both cases the constructed sequence cannot overtake a ‘corner’
in 9 (z), as this corner is never ‘seen’ at current local maximizers.

Problem 1. 4
Problem (P) with n =2 and f: R* —» R and ¢ : R? x [0,1] — IR respectively given by

flz)=¢
and
Hlz,w)=2w-1)p+w(l—w)(l-n)—¢

where £ and 7 are the components of z.

It can be checked that

¥(z) = ML £ otherwise

3 In fact, both examples violate an assumption implicitly used in [10] that there is no £ € R™ at which,
for some discretization mesh, ¢(:l:, ) takes identical values at two successive mesh points. This strong

assumption is made explicit by Polak in [16] (Assumption 7.2).
4 This problem is, in disguised form, the minimax problem min,, maxyeo,1] (2w — 1)77 +w (1 —w) (1 —

7).



and that the solution of Problem 1 is given by (\/3 -2,1—- 235@), the only Kuhn-Tucker point

for this problem. On the other hand, for ¢ = 1 (i.e., two points in the discretization),
pe(z) = In| - ¢

and the solution of the corresponding discretized problem is (0,0). Consider now attempting
to solve Problem 1 using the algorithm just outlined and suppose that ¢ = 1 initially. Since two
adjacent mesh points cannot both be left local maximizers, it is clear that for any iteration ¢,
irrespective of the value of €, {14,(z;) will be {0}, {1} or the empty set. It is then easily checked
that, if & > |no| (so that 94 (z0) < 0) for ¢ = 1, problem (2.3) will always be one of three fixed
problems with corresponding optimal values 7; of —1/10, —1/2 and —1/2 respectively. Thus,
if 6¢ < 1/10 initially, e will never be decreased and the discretization will never be refined. It
can be checked that convergence to (0,0), the solution of the discretized problem, will occur.
Note that the distinctive feature of Problem 1 is that the solution of the discretized problem
is located on a ‘corner’ corresponding to two adjacent mesh points. Since such occurrences
are fairly common, failures such as the above should be expected to frequently take place.
Difficulties of the type just discussed can easily be overcome by refining the discretization
whenever the step length ||z;41 — ;|| falls below a given threshold. However in many cases such
refinement may be wasteful as short steps can occur away from the solution of the discretized
problem when the step is truncated due to the presence of a constraint that was not taken
into account in the direction computation. A particularly acute such case is illustrated by the
next example, where arbitrarily small steps are taken, away from any stationary point of the
discretized problem. For this example the algorithm outlined above fails again.
Problem 2.
Problem (P) with n =2 and f : R? - R and ¢ : R? x [0,1] — IR respectively given by

and®

$a,w) = wlw— 1) + (1~ w)(~ 2+ 1) +w(E+n).

5 The first term in @¢(z,w) is introduced so as to satisfy assumption made in [10] that for all z €

R™, 2(2) is finite.



Here again, £ and n are the components of z.

Note that
9(e) = max(9(2,0), (e, 1)) = max(~ 2+ T, € +) = (<)

for any ¢ € IN\{0}, and thus that (P,) is equivalent to (P) for any ¢ € IN\{0}. Also note
that this problem is convex. Since (§,7) is feasible for ¢ > 7/3 with &€ + 7 < 0 and since
f(z) - —oco0 as €& — +o0, there is no Kuhn-Tucker point. However, it is easily checked that
if the algorithm just outlined is used on Problem 2 with parameter values a, 8, § and ¢
satisfying the relationships @ = 1/2, 8 = 1/4, e = 1/4 and ~ being any positive number,
then, if ¢ = 1 initially and z¢ = (0,0), € is never decreased (so that the discretization is never
refined) and the successive iterates are given by z; = (1—47%,0), ¢ = 1,2,--.. The limit point
(1,0) is not feasible for (P) (or (P;)). Thus convergence occurs to a point that is not even
a solution of the discretized problem. This failure can be explained as follows (see Fig. 2.1).
At z* = (1,0) the set of indices of active constraints is 2(z*) = {0,1}. However, along the
constructed sequence, w = 1 is never a local maximizer for ¢(z;,-) over (, (although it is one
over {1), so that ﬁq,s(zi) = {0} for all . Thus, although the step performed by the line search
is always truncated due to the presence of the constraint at w = 1, this constraint is never
taken into account in the search direction computation, and consequently the sequence {z;}
never leaves the subspace {z | n = 0}.

Obviously, in Problems 1 and 2, satisfactory performance will not be achieved unless
computation of the search direction takes into account simultaneously the gradients V ,¢(=z;, w)
at both w = 0 and w = 1. More generally, it should be clear that, in a large class of problems,
difficulties may arise unless one makes use in the search direction computation of gradient
information at values of w that maximize ¢(z,-) at suitably selected nearby points z, rather
than exclusively at values of w that are local maximizers at the iterate z;. Indeed, as in
Problems 1 and 2, the line search may be impeded by large values of ¢ at the former values
of w. In the context of the Armijo line search used in [10], a simple idea would be to use
as additional values of w the maximizers of ¢(2;,-) at the last unsuccessful trial point #; of
the previous line search (see Fig. 2.1; this would prevent the type of jamming observed in
Problem 2), as well as certain values of w used at recent iterations (to avoid the type of

jamming observed in Problem 1). These ideas are made precise in the next section. Other
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Fig. 2.1. y(z) for Problem 2 with n =0

schemes, possibly more efficient, are briefly discussed in Section 5.

3. An Algorithm
Based on the previous observations, we propose the following simple modification of the
algorithm in [10]. Here the iterate X} is updated every time the discretization is refined (outer
loop) while z; denotes subiterates, at a given discretization level (inner loop).
Algorithm A.
Parameters. § > 0; v> 0; a, B €(0,1); €0 > 0; No > 0; go € IN\{0}.
Data. Xo € R™.
Step 0. Instialization of the outer loop. Set k =0, € = €5, N = Np, ¢ = qo.
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Step 1. Instialization of the inner loop. Set 1 =0, z9 = Xy, ﬁo = (g,¢(z0).
Step 2. Search direction computation. Compute (d;,v;) solution of the quadratic program in

(d,v)

minimize %||d||? 4+ v

s.5. (Vf(2s),d) — v () < v (3.1)

<Vm¢(xz)w)ad> + ¢(ziaw) - ";b;_(xz) <v Vwell.

Let 7; be the optimal value of this quadratic program and let A\;{w), w € (1; be the multipliers
corresponding to the third line of (3.1). These multipliers, which are not necessarily unique,
are chosen in such a way that at most n + 1 multipliers of the second type are different from 0
(such a choice is always possible in view of Caratheodory’s Theorem).
Step 8. Optimality test. If ; > —6e or ||z;||] > N, go to Step 6. Otherwise, go to Step 4.
Step 4. Line search. If ¢} (z;) > 0 (Phase 1), let #; be the first number ¢ in the sequence

{1, B, B%, ...} satisfying either
g (zs + td;) — g (x,-) < —atbe
or
Yoz +td;) < 0.

If ¢+ (z;) = O (Phase 2), let ¢; be the first number ¢ in the sequence {1, 3, 8%, ...} satisfying
f(.’z:,; + tdi) — f(:l:.,) < —atde

and

bolzi + td;) < 0.
Step 5. Updates. Set z;11 = z; + t;d; and fli_H =

{ Qq,e(-’l?i-{—l) U{we ﬁi‘Ai(w) # 0} U Qq,o(ﬁi+1),with Zipr = x5+ B t;d;, ift; <1 and ’Q/J;'(ﬁ:i+1) >0
Qg.e(2iy1) U {w € Q| A (w) # 0} otherwise.
(3.2)

Set 7+ = ¢+ 1 and go to Step 2.
Step 6. Discretization refinement. If 7; > —8¢, set € = ¢/2; if ||z;]| > N, set N = 2||z;||. Set
q=2q, Xp+1=2;, k=k+1, and go back to Step 1.



The main difference between Algorithm A and the algorithm in [10] is the use of {); instead
of 1g,c(z;) in the search direction computation (compare (3.1) to (2.3)). As seen in (3.2), the
former includes, besides 14 ¢(z;), © all points from (1;_; that affected the previous search
direction (i.e., those with non zero multipliers A;_1(w)) as well as all global maximizers at
#;, the last unsuccessful trial point in the previous line search. The other differences between
Algorithm A and the algorithm in [10] are not essential: (i) A term @(z;,w) — ¥ () is
introduced in the last line of (3.1). The effect of this term is to de-emphasize the points
w € {); for which ¢(;,w) is far from being critical (i.e., is significantly less than v (2i)), as

is clear from the equivalent formulation
» . . 1 A
minimize —2-||d||2 + max{(V f(z:), d) — 1] (2:); (Veb(zs,w), d) + ¢(zi,w) — ¥ (z:) | w € Q).

While this makes it unnecessary to adaptively reduce €, € is nethertheless halfed in Step 6, thus
decreasing the number of gradients necessary in the quadratic program. (ii) The discretization
is refined not only when 7; is small” but also if ||2;|| becomes large. This ensures that k will
be eventually incremented (and the discretization refined), even if {z;} tends to diverge at the
current discretization level. (iii) In phase 1, the line search is terminated if ¥4(z; +td;) <0
(transition to phase 2).

We now state the main convergence theorem for Algorithm A. An outline of its proof is
given in the appendix.
Theorem T (Global Convergence).
Algorithm A constructs an infinite sequence {Xx} and every accumulation point of this se-
quence is a Kuhn-Tucker point for (P).

1

4. Numerical Considerations
To keep Algorithm A simple, we made no attempt at achieving high computational ef-
ficiency (but, see Section 5 below for some suggestions in that respect). Rather, our pur-

pose was merely to devise an algorithm that would avoid the jamming phenomena observed

6 Q. c(x;) is used instead of 0, (z;) to avoid the situation (occurring with probability 0 in exact
d, g, Y

arithmetic) where no positive step would satisfy the Armijo line search of Step 4.
7 Note that refining the discretization everytime 7; > —&€ is compatible with the algorithm in [10].
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in connection with Problems 1 and 2. This was achieved by making use of an iteratively
updated set {); instead of ﬁq,e(xi) in the search direction computation. To experimen-
tally assess the validity of this scheme, we first tested Algorithm A on Problems 1 and 2,
without including the nonessential modifications discussed above. Parameters values were
6 =009 v=2, a =05 f=025 ¢ =1, No = +00, qo = 1 for Problem 1 and
6§ =025 vy=2., a=0.5, §=0.25, ¢¢ = 1., Ny = +00, go = 1 for Problem 2. We also tried
the same algorithm with ﬁi-}-l = (Ug,e(%s+1) in Step 5, i.e., the algorithm of [10], with the same
parameter values. While the latter failed exactly as described in Section 2, at discretization
level ¢ = 1, the former behaved satisfactorily, converging fairly rapidly to (v5 — 2,1 — 2355)
on Problem 1 and diverging on Problem 2.

While our goal was to avoid possible jamming, it would be counter productive if this were
achieved at the expense of a significantly reduced efficiency on many “well behaved” problems
of interest. With this concern in mind we tested Algorithm A on the example problem used in
[10]. This problem consists in the design of a PID controller for a third order SISO system, for
which the integral of the square of the error in the output due to a step input is to be minimized,
subject to a (functional) constraint on the Nyquist plot to ensure robust stability. We use as
parameter values, § = 1073, y=2., a=0.2, 8 =0.3, ¢ = 0.2, Ny = +00, qo = 1. Most of
these values are identical to those used in [10]. The initial discretization level go = 1 (compared
to go = 128 in [10]) was selected, to test more intensively the discretization refinement scheme.
For this example the behavior of the algorithm was identical whether SAL was updated as
specified in Step 5 or whether it was set to {1, ¢(z;). In fact, for every 1, either this set was

empty on it consisted of a single point, the global maximizer at z;.

5. Discussion

The essential modification in Algorithm A with respect to the algorithm in [10] is that in
the former the search direction computation makes use of gradients V ,¢(z;,w) at some values
of w that are not e-active local maximizers at z; but have proved critical at nearby points z.
This technique has some similarity with that used in bundle algorithms, in nondifferentiable
optimization, where the search direction computation makes use of elements of generalized
gradients at other points than the current iterate z; (see, e.g., [17]). The idea of null step
used in that context could be adopted here as well: one would terminate the line search

after a few unsuccessful trial points, add to {1; the global maximizers w at the closest to

11



z; among these points and recompute a search direction at z;. Another popular tool in
nondifferentiable optimization is the Wolfe-type line search, which yields a new iterate z;; =
z; + t;d; that, besides achieving a sufficient decrease of the objective function, results in a
directional derivative ¥'(x;41, d;) of the potentially binding constraint sufficiently larger then
P/(zi, d;) (see, e.g., [3]). A similar idea can be used here, with 9 replaced by ¥, (see [18]
for details). It would be of interest to investigate the use in the present context of other
nondifferentiable optimization techniques (see, e.g., [5,6,19]).

The set 1,,c(z;), which includes all e-active local maximizers at z; could have been re-
placed in Steps 1 and 5 by the set of global maximizers Q4,(z;), without jeopardizing the
convergence properties. As another alternative, as suggested at the end of Section 3, € could
have been kept constant throughout. The option selected here tends to allow good initial
progress and carries relatively moderate computational overhead. Other refinements may be
appropriate in the interest of computational efficiency. First, in Step 1 of Algorithm A, ini-
tialization of the set {1y for a given discretization level & (inner loop) could take into account
information collected at the previous discretization level. Also, inside the inner loop, it may be
desirable to systematically drop from the set {); mesh points w that are far from being e-active
at the current iterate. Second, although we have assumed throughout that the discretization
was uniform, all our convergence results still hold if it is merely assumed that the partition
‘grows dense’ as k goes to infinity. Correspondingly, nonuniform discretization patterns could
be used to take advantage of a priori (or acquired) information on the ‘shape’ of ¢(z,-). Also,
it is clear that proper scaling should be introduced at various places in Algorithm A. Finally,
while conceptually simple, Algorithm A may be impeded by an excessive number of function
evaluations per iteration due to repeated violation of a constraint not taken into account in
the search direction. While feasible direction methods are of special interest in engineering
design, they may be very slow in our context. It may therefore be appropriate to allow, on
a given discretization, a slight violation of the constraints and to introduce a penalty term in
the objective function to force the iterate towards the feasible set.

Finally, it should be clear that, with minor modifications, Algorithm A could be used in
cases when @ C R?, for some p > 1. The computational overhead, however, would soon

become prohibitive.

Appendix.
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Proof of Theorem T.

Most of the convergence results in [10] are still valid here. The key point in the proof of
Theorem T is to show that the discretization mesh is refined infinitely many times. This is
sketched below. Suppose by contradiction that there exits a discretization mesh ¢ for which
an infinite sequence {z;} is constructed. For simplicity, we will assume that all the iterates in
the sequence are feasible, so that a phase 2 iteration is always performed by the line search.

If the discretization is never changed, then, for all 7, ||z;|| < N and
7; < —6e. (a.1)

Using standard arguments, it can be shown that under these conditions, the sequence of
iterates {:zh} converges to some vector, say z*; the sequence of steps {ti} converges to zero;
and the sequences {d;}, {v;}, {r;} are bounded. Let 7* = lim sup 7. In view of the above,
there exists an infinite subset of indices I C IN, a nonnegative integer | < n + 1, numbers
w}, -, w} in Qg, vectors d* and d'* and real numbers v*, v**, 7!* such that for all 7 € I,
t; < 1 and exactly / constraints corresponding to wj,- -+, w/, have nonzero multipliers in (3.1),
and such that {d;}ier — @*, {dit1}ier = d"*, {vi}ier = v*, {vir1}ier = v, {fi}ier — 7%,
{ri+1}ier — 7*. In view of (a.1), v* < —8e < 0. For all 7 € I, (d;, v;) solves
minimize %||d||? + v
(QFP) s.t. (Vf(zs),d) <wv
(Vad(zs,w3), d) + ¢z, w}) <v, 7=1,...,1
where only those constraints of nonzero multipliers appear, since clearly (d;,v;) satisfies the
optimality conditions associated with (QFP;) and it can be shown that the solution to those
optimality conditions is unique. Also, since a phase 2 iteration is performed and, on I, the

stepsize t; is strictly less than one then, for all 7 € I, either
f(#iv1) — f2:) > —aB ;8¢ (a.2)
or
P (£i41) > 0
with £;41 = z; + 87 1t;d;. Using standard arguments, one can show that (a.2) cannot occur

infinitely many times. Thus, without loss of generality, there exists a point w* € Qg o(2i41)

(w* independent of ¢) such that, for ¢ € I,
¢(Zi41,w™) > 0. (a.3)
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Next, (d;+1,vit1) solves the quadratic program

( minimize %||d||% + v

s.t. (Vf(zit1),d) < v

(QPi+1) A (Vxé(a;iﬂ,w;),d) + ¢(x¢+1,w;) <v, 7=1,...,1
(Ved(zig1,w*),d) + ¢(ziq1,w*) <wv

L + other inequalities

and we suppose, without loss of generality that, for 7 € I, the number of ‘other inequalities’ is
fixed. The limit pair (d*,v*) is solution of the limit problem

minimize 1||d||? + v

@PY) | st (V()d) <v
(Vad(z*,wi),d) + ¢(z*,wi) < v, 7=1,...,1

This is because, for all ¢ in I, (d;, v;) is solution of (QP;) and thus satisfies the optimality con-
ditions associated with (QF;). The limit (d*,v*) therefore satisfies the optimality conditions
associated with (QP*). It can be shown that the solution to these optimality conditions is
unique, so that (d*,v*) must solve (QP*). Similarly, (d'*,v'*) solves
minimize ||d||% + v
s.t. (Vf(z*),d) <wv
(@P™) (Vad(a*,w), d) + ¢(z*,w}) S v, J=1,...,1
(Vab(a,07),d) + Bla*,w7) < v

+ other limit inequalities

where the ‘other limit inequalities’ correspond to a suitable subsequence. In view of (@.3), and
since 9 (z;) = 0 for all 4, it follows that ¢(z*,w*) = 0 and that the unique solution (d*,v*)
of (QP*) satisfies

(Vid(z*,w*),d*) > 0> v".
Therefore, one constraint in (QP'*) is not satisfied by (d*,v*) and, since all constraints in
(QP*) are included in (QP*) and the solutions of these problems are unique, 71* = Z||d'*||%+
v1* satisfies 71* > 7%, in contradiction with the definition of 7*.

1

Acknowledgement

The authors wish to thank Tam Q. Nguyen for implementing and testing Algorithm A.

References

14



1]

2]

3]

[4]

(5]

l6]

8]

[9]

[10]

[11]

12

R.K. Brayton, G.D. Hachtel & A.L. Sangiovanni-Vincentelli, “A Survey of Optimization
Techniques for Integrated Circuit Design,” IEEE Proc.69 (1981), 1334-1362.

E. Polak, D.Q. Mayne & D.M. Stimler, “Control System Design via Semi-Infinite Opti-
mization: A Review,” IEEE Proc. 72 (1984), 1777-1794.

R. Mifflin, “An Algorithm for Constrained Optimization with Semismooth Functions,”
Math. Oper. Res. 2 (1977), 191-207.

E. Polak, D.Q. Mayne & Y. Wardi, “On the Extension of Constrained Optimization Al-
gorithms from Differentiable to Nondifferentiable Problems,” SIAM J. Control Optim. 21
(1983), 179-203.

K.C. Kiwiel, Methods of Descent in Nondifferentiable Optimization, Lecture Notes in Math-
ematics #1133, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 1985.

C. Lemaréchal, “Nondifferentiable Optimization,” in Handbook on Operations Research,

Nemhauser, Rinnooy Kan & Todd, eds., North Holland, 1989,t0 appear.

E. Polak & D.Q. Mayne, “An Algorithm for Optimization Problems with Functional In-
equality Constraints,” IEEE Trans. Automat. Control21 (1976), 184-193.

D.Q. Mayne, E. Polak & R. Trahan, “An Outer Approximations Algorithm for Computer-
Aided Design Problems,” J. Optim. Theory Appl. 28 (1979), 331-351.

R. Hettich & W. van Honstede, “On Quadratically Convergent Methods for Semi-Infinite

2

Programming,” in Semi-Infinite Programming, R. Hettich, ed., Lecture Notes in Control

and Information Sciences #15, Springer Verlag, 1979, 97-111.

C. Gonzaga, E. Polak & R. Trahan, “An Improved Algorithm for Optimization Problems
with Functional Inequality Constraints,” IEEE Trans. Automat. Control AC-25 (1980), 49~
54.

G.A. Watson, “Globally Convergent Methods for Semi-Infinite Programming,” BIT 21
(1981), 362-373.

S.A. Gustafson, “A Three-Phase Algorithm for Semi-Infinite Programs,” in Semi-Infinite

Programming and Applications, A.V. Fiacco & K.O. Kortanek, eds., Lecture Notes in
Economics and Mathematical Systems #215, Springer Verlag, 1983, 138-157.

15



[18]

[14]

[18]

[19]

E. Polak & A.L. Tits, “A Recursive Quadratic Programming Algorithm for Semi-Infinite
Optimization Problems,” Appl. Math. Optim. 8 (1982), 325-349.

LD. Coope & G.A. Watson, “A Projected Lagrangian Algorithm for Semi-Infinite Pro-
gramming,” Math. Programming 32 (1985), 337-356.

R. Hettich, “An Implementation of a Discretization Method for Semi-Infinite Program-
ming,” Math. Programming 34 (1986), 354-361.

E. Polak, “On the Mathematical Foundations of Nondifferentiable Optimization ,” SIAM
Rev. 29 (1987), 21-89.

C. Lemaréchal, J.J. Strodiot & A. Bihain, “On a Bundle Algorithm for Nonsmooth Opti-
mization,” in Nonlinear Programming 4, Academic Press, New York-London , 1981, 245—

282.

E.R. Panier & A.L. Tits, “Globally Convergent Algorithms for Semi-Infinite Optimization
Problems Arising in Engineering Design,” Systems Research Center, University of Mary-

land, Technical Report TR-87-28, College Park, MD 20742, 1987.

V.F. Dem’yanov & L.V. Vasil’ev, Nondifferentiable Optimization, Translations Series in

Mathematics and Engineering, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

16



