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A simplified model for planetary chemical vapor deposition reactors is pro-

posed and used to compute deposition species mole fraction and deposition rate in

the reactor depletion zone. First, the modeling and optimization work performed

in the literature is reviewed and their representative deposition rate profiles are

extracted. Afterwards, several simplifying assumptions are applied to derive the re-

actor modeling equation, and the eigenfunction expansion solution is subsequently

computed using a previously developed MATLAB object-oriented computational

framework. The simulation result for the deposition profile is improved by modify-

ing the inlet boundary condition, and is then compared with the previously published

profiles. The MATLAB optimization toolbox is used to find the optimal deposition

profile giving the best match with the published, detailed simulator profiles. Finally,

an evaluation of the model consistency with the published results is given.
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Chapter 1

Introduction to Planetary Reactor Systems

Chemical vapor deposition (CVD) is an important technique for epitaxial

growth of a wide range of compound semiconductors. Among various types of CVD

processes, metalorganic vapor phase epitaxy (MOVPE) is the principal method used

to grow single-crystalline layers of semiconductor materials. A variety of reactor con-

figurations may be used in chemical vapor deposition for thin-film semiconductor

processing depending on the physical properties of the material system and the

nature of the gas-phase reactions taking place. The multi-wafer planetary reactor

is a well-known reactor system which consists of multiple wafers (substrate) that

undergo a planetary-like rotation around the center of the reactor. In this design,

reactant gas flows radially outward from a central inlet nozzle over the susceptor

containing the wafers, each of which rotates on its individual axis. A schematic

view of these reactors is shown in Fig. 1.1. The main characteristic of this design

is the elimination of reactor-induced angular non-uniformity through susceptor ro-

tation and reduction of the intrinsic effect of gas phase reactant decomposition and

precursor depletion in the gas phase through wafer rotation [12].

In the planetary reactor system, the precursors are usually fed through a split-

feed inlet nozzle near room temperature. The gas precursor is carried at a low

concentration level in a carrier gas that has no effect on the reactions taking place
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during the deposition process. One or more of the precursors undergoes gas-phase

thermal decomposition through a sequence of irreversible reactions which produce

gas phase species capable of deposition. The reactor is operated at such a high

temperature that the deposition is mass-transfer limited, and thus the reactant gas

concentration plays an important role in the deposition rate [13].

As an example, the common precursors for SiC growth are silane (SiH4) and

propane (C3H8), with hydrogen as the carrier gas. A reaction mechanism which de-

scribes gas-phase decomposition of these precursors is used for the reaction-kinetic

model [10]. The SiC formation can be represented by the following reaction se-

quence for silane: SiH4 → SiH2 → Si, which produces silicon atom responsible

for the film growth. Likewise in GaN deposition, for the commonly used precursors

trimethylgallium ((CH3)3Ga) and ammonia (NH3), the sequence of reactions that

TMG undergoes is: TMG → DMG → MMG → Ga, in which the two species

produced by thermal decomposition of TMG and DMG (dimethylgallium), i.e. Ga

and MMG (monomethylgallium), are capable of deposition onto the wafer surface

[9].

The planetary reactor can be split up into three distinct regions of reactor

operation along the radial direction. The first region is the central zone where the

reactants heat quickly to reach the high temperature required for the process. In

the second zone of the reactor a sequence of gas phase reactions commence which

produce the gas species capable of deposition, as diccussed above. In this region

there is an increasing deposition rate due to the ongoing gas phase reactions. The

third region begins after the peak deposition rate, where the species involved in
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Figure 1.1: Cross-sectional view of a planetary reactor

gas phase reactions have been depleted and only those responsible for film growth

remain. Therefore, in the third region often referred to as depletion zone, there is

a radial deposition profile that tapers off with increasing radius [12]. The reactor

operating parameters are usually set so that the wafer is located in the depletion

zone.

Multi-wafer planetary reactors are widely used growth systems and are es-

pecially suitable for large scale production due to the high degree of growth rate

uniformity and process reproducibility [1]. However, wafer rotation alone does not

guarantee acceptable film uniformity and further optimization of process operating

parameters is required.

1.1 Objective

Various simulation studies have described the use of physically based models

to identify operating conditions that result in uniform films under wafer rotation.

Generally, these studies include detailed, two-dimensional steady-state models of

reactor heat transfer, reactant gas flow and chemical species reaction and transport
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[12]. The results are often compared to experimental data to verify the validity of

the model.

The detailed models developed have a high level of comlexity that is often

more than required for the optimization studies of the system. The need for a

simplified model which is capable of determining the deposition rate profile with a

lower computational cost is strongly felt. The purpose of this study is to develop a

simple model which determines the operating parameters integral to the deposition

process, and enables us to achieve more uniform growth rates by adjusting the design

and operating parameters verified by the model.
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Chapter 2

Planetary Reactor Survey

There have been numerous detailed studies on the numerical modeling and

simulation of planetary reactors, and various approaches have been used to achieve

uniform films inside the reactors. Bergunde, et al. [1] developed a model for predict-

ing the temperature distribution in a multiwafer planetary reactor, and used it to

achieve higher growth rate uniformity. Jurgensen, et al. [2] used mathematical mod-

eling to study MOCVD reactors and predict growth rate distributions. Bergunde, et

al. [3] studied the dependence of the growth rate profiles on flow parameters, reactor

pressure and growth temperature both experimentally and theoretically. Beccard, et

al. [4] described the use of high temperature CVD reactors to grow SiC and nitrides,

and used extensive modeling to obtain uniformity optimization. Brien, et al. [5]

discussed modeling and simulation of MOVPE growth of thin films and the choice

of process parameters. Burk, et al. [6] presented the experimental results for SiC

epitaxial growth employing a unique planetary reactor. Karpov [7] reviewed the re-

cent advances in the modeling of MOVPE of various compounds. Dauelsberg, et al.

[8] presented the modeling and experimental studies of Ga1−xInxP and identified the

mechanisms governing growth rate uniformity. Parikh and Adomaitis [9] performed

an extensive study on the gallium nitride growth chemistry and the effect of reactor

geometry on deposition kinetics in a planetary CVD system. Moreover, Parikh and
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Adomaitis [9] and Parikh, et al. [10] developed a geometrically based uniformity

criterion for film uniformity control in a planetary reactor and studied the reactor

operating conditions that most influence uniformity. Martin, et al. [11] investigated

the modeling and subsequent experimental validation of GaN and InGaN growth

processes in both closed coupled showerhead reactor and planetary reactor. And

finally Lundin, et al. [19] carried out experimental and modeling study of GaN for

a single-wafer horizontal reactor and for a multiwafer planetary reactor.

2.1 Modeling

Bergunde, et al. [1] studied the temperature distribution in a multiwafer

Aix-2000 planetary reactor for (Al,Ga)As growth. The mathematical model used

was based on the two-dimensional solution of coupled partial differential equations

describing conservation of total mass and momentum, heat transfer and the chemical

species’ convective and diffusive mass transport in the gas mixture. To predict the

temperature distribution in the reactor, heat transfer calculations assuming non-

grey radiative transfer through a non-participating medium and partitioning of the

thermal radiation wavelength spectrum into a series of finite bands were employed.

The numerical scheme involved a finite volume method using block-structured non-

orthogonal collocated grids for two-dimensional model, while convergence speed-up

was achieved by employing a multigrid technique.

Jurgensen, et al. [2] used a planetary reactor for the MOCVD of GaN which

requires relatively high process temperatures. The flow, concentrations and the tem-
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peratures in the reactor were predicted using the numercial solution of the Navier-

Stokes equations coupled with heat transfer and mass transport of key chemical

species. The model also included homogeneous and heterogeneous chemical reac-

tions. In the modeling of radiative heat transfer, multi-band grey-diffusive radiation

exchange between solid boundaries in the reactor was employed. The wavelength

dependence of the optical properties also was included in the model. Moreover, it

was assumed that the mass transport of the decomposition products to the growing

layer controls the growth rate.

Bergunde, et al. [3] investigated the dependency of GaAs and AlGaAs growth

rate profile and composition on flow parameters, reactor pressure and growth tem-

perature in an Aix-2000 planetary reactor. The calculations were based on a two-

dimensional diffusion model using a coupled set of equations for simulation of flow,

heat transfer and mass transport of the species. The results showed that while the

assumption of diffusion limited growth is correct for the bulk of the reactor, kinetic

limitations may not be neglected in the inlet region.

Beccard, et al. [4] studied the epitaxial growth of SiC and GaN films in a

family of high temperature reactors. Their two-dimensional model showed that the

gas phase in the reactor is laminar and stable. The modeling approach of Brien,

et al. [5] was based on the solution of mixed convective laminar flow of multi-

component gas mixtures, coupled with heat and mass transfer. They implemented

a standard computational fluid dynamics (CFD) technology to solve the model and

also computed the heat transfer by thermal radiation by means of a Monte Carlo

ray tracing approach.
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Karpov [7] suggested a quasi-thermodynamic (QTD) approach in which the

atoms in the adsorption layer are in equilibrium with the crystal bulk. In this

approach the only growth limiting surface reaction is treated kinetically, and the

other are assumed to proceed under equilibrium conditions. The growth model

Dauelsberg, et al. [8] applied, assumed non-competing incorporation of In and Ga

into the growing epitaxial layer at mass transport limited growth conditions. The

kinetically limited deposition on the heated quartz walls was also taken into account.

In a study focused on defining uniformity modes and the nearest uniformity

producing profile, Parikh, et al. [10] developed a detailed two-dimensional transport

and reaction-kinetic model for a planetary SiC CVD reactor. The system of nonlin-

ear partial differential equations obtained from fundamental momentum, heat and

mass transfer equations, was discretized by collocation and solved by implementing

the Newton-Raphson method. Parikh and Adomaitis [9] developed a similar 2D

model as well as a simplified 1D model for epitaxial GaN growth and showed that

the two models match well.

The modeling approach Martin, et al. [11] performed was based on the so-

lution of a mixed convective laminar gas flow coupled with heat transfer using the

computational fluid dynamics (CFD) multi-physics software package CFD-ACE+,

together with an advanced reaction chemistry module. Lundin, et al. [19] performed

a simulation of GaN growth by means of the CVD-Module computational tool and

applied a surface chemistry model in addition to the modeling of the flow of the

reacting mixture, heat transfer and gas-phase chemical reaction mechanism.
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2.2 Uniformity Optimization

Bergunde, et al. [1] varied the temperature of the reactor ceiling by changing

the composition of a H2/Ar ceiling cooling gas mixture and the thermal coupling to

the water-cooled top of the reactor. Moreover, the temperature profile was locally

varied in the central area of the reactor by adjusting the heat flux density from

the IR-heater unit. It was found that changes in the reactor temperature field

directly affect the growth rate distribution on the susceptor. It was concluded

that an optimized temperature distribution minimizes the formation of reactor wall

deposits and results in high growth rate uniformity of the deposited films.

Jurgensen, et al. [2] observed that total pressure reduction does not change the

growth rate significantly. The total flow rate and the ratio of the two flows entering

the reactor through a two-flow inlet nozzle were used to optimize both growth rate

and uniformity. Uniformity was improved by replacing H2 with N2 with a lower flow

rate as the carrier gas. Higher growth rates were obtained by adjusting a higher

molar flow of the precursors in the reactor.

To obtain stable growth conditions, Bergunde, et al. [3] minimized the de-

position on the reactor ceiling by adjusting the ceiling temperature. It was shown

that the total flow rate and the ratio of the upper to the lower inlet flow affect the

growth rate profile. The position of the maximum and the downstream depletion

slope of the rate profile could be changed, and tuned to yield high growth rate ho-

mogeneity. A change in growth temperature necessitated again a fine-tuning of the

flow rates. Also, lower operating pressures were found more preferable for obtaining
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homogeneous growth. Furthermore, a change in the reactor inlet geometry enabled

the growth of highly homogeneous layers.

In the AIX 2000/2400 CVD planetary reactor of Beccard, et al. [4], the tem-

perature was controlled by adjusting the gas composition between the ceiling and

the water cooled reactor top. It was observed that higher TMGa flows yield higher

growth rates, while temperature affects the film uniformity. Simulation also showed

how to optimize the reactor geometry to guarantee high quality deposition.

Brien, et al. [5] carried out the uniformity tuning by the total flow rate of

process gases into the process volume. They found that the steepness of depletion

is reduced with increasing total flow. Therefore, they concluded that the value

of the total flow rate and the ratio of flow rates between upper and lower inlets

were the dominant factors in thickness uniformity. Burk, et al. [6] showed that

doping and thickness nonuniformity correlate with the total variation in susceptor

temperature. Dauelsberg, et al. [8] found that the growth rate at kinetically limited

conditions decreases at lower pressures, while diffusion limited growth is not affected

significantly by pressure.

Parikh, et al. [10] tested the growth rate results obtained from simulation

against experimental data and found good agreement between the two profiles. It

was found that an increase in flowrate improved SiC film uniformity, which is at-

tributed to the effect of higher total flowrate on reducing reactor residence times

and pushing the peak of the deposition rate profile closer to the nearest uniformity

producing profile. Parikh and Adomaitis [9] concluded that the extent to which

the competing reaction pathways occur is a function of reactor geometry, operat-
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ing conditions and the degree of precursor mixing. Uniformity optimization based

on the nearest uniformity producing profile approach showed that uniform films of

gallium nitride can be produced by decreasing the susceptor temperature and the

total fowrate.

To scale up from the more conventional 24×2” to the 42×2” planetary reactor

configuration, Martin, et al. [11] developed a new gas injector design for III-nitride

growth. A third inlet for the supply of group V species was introduced above the

NH3 and group III inlets, which pulled the depletion curve peak further upstream

due to the shortening of the gas entrance length. The ratio of the gas flows through

the upper and lower group V inlets was used as a tuning parameter for the layer

thickness uniformity by varying the position of the depletion curve peak.

The experiments Lundin, et al. [19] performed in the AIX2000HT planetary

reactor showed that at a constant residence time, the growth rate significantly in-

creases with pressure, which is attributed to longer diffusion times characteristic.

However, at a constant pressure, the growth rate strongly decreases with the resi-

dence time mainly due to the parasitic deposit formation on the reactor ceiling.

To summarize, both reactor design and operating conditions can affect film

growth rates and film thickness and composition spatial uniformity. In terms of

operating conditions, it was found that carrier gas flow rate, precursor concentration,

reactor temperature and total pressure all affect film growth rate and uniformity.
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2.3 Deposition Plots

A MATLAB script is written to extract data points from the deposition rate

profiles which were computed using detailed simulations in the cited papers. get-

plotdata.m uses MATLAB functions to read the plots in jpeg format into MATLAB

and to select points from the figure using the mouse, resulting in the coordinates

of data points as the output. This allows us to plot growth rate as a function of

radial distance for simulation results individually and accurately (Figs. 2.1-2.8).

The radial distance from the center of the reactor in which the peak deposition rate

is observed is indicated by R0. In other words, R0 can be described as the gas inlet

section radius and its value depends on the reactor geometry as well as the operating

parameters.

Figure 2.1: Calculated GaAs growth rate profile for 40% cooling gas composition;
Bergunde et al. [1], R0 = 0.0323 m
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Figure 2.2: Calculated growth rate distribution with N2 carrier gas and total flow
2.5 l/min; Jurgensen et al. [2], R0 = 0.0415 m

Figure 2.3: Calculated growth rate profile for total flow rate = 17.2 slm; Bergunde
et al. [3], R0 = 22.1795 mm
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Figure 2.4: Simulation of SiC growth, AIX 2000HT for 4.3 (nl/min) H2 carrier gas;
Beccard et al. [4], R0 = 0.0323 m

Figure 2.5: Predicted GaP growth rate profiles for flow rate = 35 slm; Brien et al.
[5], R0 = 0.1466 m
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Figure 2.6: Modeling of InGaP MOVPE in the AIX-2400 planetary reactor; Karpov
[7], R0 = 6.3764 mm

Figure 2.7: Calculated growth rate distribution of GaInP in AIX 2400G3 at total
flow rate Q=12 slm; Dauelsberg et al. [8], R0 = 0.0433 m
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Figure 2.8: GaN Growth rate as a function of susceptor radius in a planetary reactor
with triple gas injector; Martin et al. [11], R0 = 0.3069
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Chapter 3

Model Derivation

A common characteristic observed in all figures in the previous chapter is that

after R0, the deposition plots appear like depletion profiles. In the depletion zone of

the planetary CVD reactor, no gas-phase reactions take place and the only species

left are either those capable of deposition or the non-participating gases that exit

the reactor as the exhaust stream. Therefore, after the peak deposition rate, in this

region the deposition profile decreases with increasing the radial distance.

The reactor temperature is assumed constant throughout the depletion zone.

Moreover, we assume that pressure-induced density variations are negligible, and

viscosity, density and all other gas properties are constant with respect to spatial

position in this region.

The species conservation equation for the depletion zone in the planetary re-

actor is derived using a shell balance in the cylindrical coordinate. r is the direction

of the flow of the gas phase species, and z is the vertical direction from the wafer

surface to the ceiling. The total flux of a gas phase species is a combination of the

convective and diffusive fluxes:

flux in r direction = civr −Di
∂ci
∂r

flux in z direction = civz −Di
∂ci
∂z

Because no reaction takes place in the depletion zone, the mass balance equa-
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tion reduces to FluxIn - FluxOut (Accumulation equals zero for the steady state

condition). Therefore

Ar

[(
civr −Di

∂ci
∂r

)
r

−
(
civr −Di

∂ci
∂r

)
r+∆r

]

+Az

[(
civz −Di

∂ci
∂z

)
z

−
(
civz −Di

∂ci
∂z

)
z+∆z

]
= 0

where ∆r and ∆z represent the thickness of the cylindrical shell (differential ele-

ment). Substituting for the cross sectional areas Ar = 2πr∆z and Az = 2πr∆r,

dividing the equation by 1/r∆z∆r, and taking the limits results in

1

r

∂

∂r

(
cirvr −Dir

∂ci
∂r

)
+

∂

∂z

(
civz −Di

∂ci
∂z

)
= 0

where ci is the concentration of species i. The equation can be rewritten in terms

of xi, i.e. the mole fraction of species i

1

r

∂

∂r

(
xirvr −Dir

∂xi
∂r

)
+

∂

∂z

(
xivz −Di

∂xi
∂z

)
= 0. (3.1)

Assuming constant density and viscosity, the Navier-Stokes equation in radial

and vertical coordinates together with the continuity equation can be written as

ρ

(
vr
∂vr
∂r

+ vz
∂vr
∂z

)
= −∂p

∂r
+ µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]

ρ

(
vr
∂vz
∂r

+ vz
∂vz
∂z

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

]

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0.

To further simplify the model, we assume that the gas flow field is fully de-

veloped, the fluid inertial terms are negligible (ρ small), and vz = 0. At normal
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CVD conditions, the Reynolds number is usually small and the typical values are

< 200, which is compatible with the assumption of negligible inertial (i.e. momen-

tum caused by convection) terms [21]. The equations above reduce to:

−dp
dr

+ µ

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr
∂z2

]
= 0

1

r

∂

∂r
(rvr) = 0

which yield

µ
∂2vr
∂z2

=
dp

dr
. (3.2)

Given the boundary conditions vr(r, 0) = vr(r, h) = 0, in which h is the ceiling

height that is assumed constant, and noticing that the total volumetric flow rate of

reactant gas is

V = − 1

6µ
πh3r

dp

dr

the solution to equation (3.2) is:

vr(r, z) = −z(h− z)
1

2µ

dp

dr
= z(h− z)

3V

πh3r
. (3.3)

Assuming xirvr >> Dir∂xi/∂r (i.e. diffusion negligible relative to convection

in the radial dimension) and vz = 0, and using the velocity term obtained in (3.3),

equation (3.1) reduces to the Graetz problem [14]

z(h− z)
3V

πh3

1

r

∂xi
∂r

= Di
∂2xi
∂z2

subject to boundary conditions

xi(R0, z) = xoi z ∈ (0, h)

xi(r, 0) = xi(r, h) = 0 r ∈ [R0, RP ].
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Refer to Fig. 3.1 for the definitions of R0, RP and other notation. The

depletion zone is considered to extend from R0 to RS + RW , while RS + RW >> h

based on the typical values presented in [9]. Defining the dimensionless variables

η =
r −R0

RS +RW −R0

, ζ =
z

h
(3.4)

together with the Peclet number and dimensionless inlet position parameter for this

system

Pe =
3V h

πDi(RS +RW −R0)2
, η0 =

R0

RS +RW −R0

(3.5)

allows transforming the problem into dimensionless form. Note that the definition

of the Peclet number is based on the ratio of the convective and diffusive transport

terms. The problem becomes

ζ(1− ζ)
1

η + η0

∂xi
∂η

=
1

Pe

∂2xi
∂ζ2

(3.6)

subject to

xi(0, ζ) = xoi ζ ∈ (0, 1) (3.7)

xi(η, 0) = xi(η, 1) = 0 η ∈ [0, 1]. (3.8)

This model suggests that the deposition profile depends only on Pe and η0, which can

be adjusted by modifying the reactant gas flow rate and the feed gas (or susceptor)

temperature. We will discuss the shape of the inlet profile xoi later in this document.
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Figure 3.1: Side (upper) and top (lower) views of the geometry of the planetary
reactor system

21



Chapter 4

Eigenfunction Expansion Solution

Equation (3.6) subject to the boundary conditions (3.7-3.8), can be solved

using the eigenfunction expansion general solution [12]

x(η, ζ) =
∞∑
n=1

ane
λn(η+2η0)η/2Peψn(ζ) (4.1)

where the ψn(ζ) are orthonormal eigenfunctions computed as solutions to the non-

self-adjoint eigenvalue problem

d2ψ

dζ2
= λψζ(1− ζ) (4.2)

subject to ψ(0) = ψ(1) = 0

and the coefficients an are computed using the inlet condition (3.7). Refer to Ap-

pendix A for an example of the analytical solution and properties of a non-self-

adjoint problem.

4.1 A Simplified Model

Before proceeding to solve the eigenvalue problem (4.2), a simpler case is

studied. If in the original two-parameter model (3.6), ζ (1− ζ) is set equal to one,

the following equation is obtained:

1

η + η0

∂x

∂η
=

1

Pe

∂2x

∂ζ2
(4.3)

22



subject to boundary conditions

x(0, ζ) = xo = 1 ζ ∈ (0, 1) (4.4)

x(η, 0) = x(η, 1) = 0 η ∈ [0, 1] (4.5)

The inlet condition considered in (4.4) suggests a constant profile for the inlet mole

fraction. In this case the ψn(η) in the eigenfunction expansion general solution are

computed as solutions to the eigenvalue problem

d2ψ

dζ2
= λψ (4.6)

subject to ψ(0) = ψ(1) = 0.

The computed normalized eigenfunctions are ψn =
√

2 sin(nπζ) and the eigen-

values are λn = −n2π2 for n = 1, 2, ... The inlet boundary condition is used to find

the particular solution. If the inlet condition is

x(0, ζ) =
∞∑
n=1

anψn(ζ) = 1

then the particular solution is:

an =
∫ 1

0
ψn(ζ)dζ

an =
2
√

2

nπ
(for n odd)

an = 0 (for n even)

The results agree with the previously developed Sturm-Liouville problem solver de-

noted as sl.m function (refer to [15] for a description of the computational method).

The first five eigenfunctions are shown in Fig. 4.1.
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Figure 4.1: First five eigenfunctions for (4.6) computed using sl.m

In this case, the deposition rate is:

δ(η) = D
∂x

∂ζ
= D

∞∑
n=1

ane
λn(η+2η0)η/2Ped(ψn)

dζ
(4.7)

= D
∞∑
n=1

ane
λn(η+2η0)η/2Pe

√
2nπ cos(nπζ).

At ζ = 0 (wafer surface), the deposition rate can be written as:

δ(η) = D
∞∑
n=1

ane
λn(η+2η0)η/2Pe

√
2nπ

and so at the gas inlet section radius η = 0:

δ(η = 0) =
√

2D
∞∑
n=1

annπ

Subtituting for an yields:

δ(η = 0) = 4D
∑
n odd

1

which is a nonconvergent series. In order to overcome this physical inconsistency,

the inlet mole fraction is modified to take a parabolic profile similar to the gas flow
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field profile. Hence, the inlet condition is changed to:

x(0, ζ) = xo = 6ζ(1− ζ) ζ ∈ (0, 1) (4.8)

The coefficient was determined so that
∫ 1

0 x
odζ = 1 similar to the previous case.

Because

x(0, ζ) =
∞∑
n=1

anψn(ζ) = 6ζ(1− ζ)

then the particular solution is:

an = 6
∫ 1

0
ψn(ζ)ζ(1− ζ)dζ

an =
24
√

2

n3π3
(for n odd)

an = 0 (for n even)

The results agree with MATLAB sl.m function. In this case, the inlet deposition

rate at ζ = 0 is:

δ(η = 0) =
48

π2
D
∑
n odd

1

n2

which is a convergent series and converges to D, i.e. the diffusivity of a gas phase

species that contributes to the deposition process. Using the representative values

of Pe = 9 and η0 = 0.4993 (taken from [4]), the simulation result for the deposition

species mole fraction (Eq. (4.1)) inside the reactor for the inlet condition (4.4) is

shown in Fig. 4.2.

Modifying the inlet condition to (4.8), results in a more uniform profile for the

mole fraction shown in Fig. 4.3. Moreover, Fig. 4.4 shows the deposition profile as a

function of the reactor radial distance (Eq. (4.7)) on the susceptor, which indicates

that the deposition rate (over D) converges to 6 at the start of the depletion zone.
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Figure 4.2: Simulation results for the mole fraction obtained from problem (4.3)
and inlet condition (4.4)

Figure 4.3: Simulation results for the mole fraction obtained from problem (4.3)
and inlet condition (4.8)
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Figure 4.4: Deposition profile as a function of reactor radial distance obtained from
(4.3) for Pe = 9 and three different truncation numbers; left: inlet condition (4.4);
right: inlet condition (4.8)

4.2 Original Model

Now going back to our original problem, the eigenvalue problem (4.2) is nu-

merically solved using sl.m function. The first five eigenfunctions are shown in Fig.

4.5. The orthogonality of the eigenfunctions with respect to the weight function

v = ζ(1 − ζ) can be checked by computing the weighted inner product of the first

five eigenfunctions

〈ψi(ζ), ψj(ζ)〉v =
∫ 1

0
ψi(ζ)ψj(ζ)v(ζ)dζ

The computational procedure which uses wip.m is described in the next section and

the result is shown below:

w =

1.0000 0.0000 0.0000 0.0000 -0.0000
0.0000 1.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 1.0000 -0.0000 0.0000
0.0000 -0.0000 -0.0000 1.0000 -0.0000

-0.0000 -0.0000 0.0000 -0.0000 1.0000
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Figure 4.5: First five eigenfunctions for (4.2) computed using sl.m

All off-diagonal elements in the matrix above are zero and the diagonal ele-

ments are unity, indicating that the eigenfunctions are orthonormal with respect to

the weight function. The particular solution in this case with inlet condition (4.8)

is computed using the following relation:

an = 6
∫ 1

0
ψn(ζ)ζ2(1− ζ)2dζ

Fig. 4.6 shows the mole fraction using (3.6) with the initial inlet condition

(4.4). Similar to the simplified case, the inlet condition is changed to (4.8) to achieve

a uniform mole fraction distribution and convergent deposition rate, shown in Figs.

4.7 and 4.8 respectively.
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Figure 4.6: Simulation results for the mole fraction obtained from problem (3.6)
and inlet condition (4.4)

Figure 4.7: Simulation results for the mole fraction obtained from problem (3.6)
and inlet condition (4.8)
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Figure 4.8: Deposition profile as a function of reactor radial distance obtained from
(3.6) for Pe = 9 and three different truncation numbers; left: inlet condition (4.4);
right: inlet condition (4.8)

4.3 Sample Code

The MATLAB object classes and methods used in calculating the eigenfunc-

tions of problem (4.2) and their weigthed inner product are briefly introduced here.

Initially a physical domain is defined for our problem using a quadrature grid object

constructor.

>> Z = quadgrid(’slab’,40,’z’,[0 1]);

The next step is to transform the quadrature grid values to scalarfield object to

define the weight function specific to this problem.

>> s = qg2sf(Z);

>> v = s*(1-s);
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sl.m function is then called to compute the eigenvalues and discretized eigenfunctions

of the Sturm-Liouville-type problem (4.2) using the boundary conditions and the

weight array defined.

>> [eval efun] = sl(Z,0,1,0,1,v);

In the next step, the eigenfunctions are normalized and wip.m function is utilized

to compute the weighted inner product of the first five eigenfunctions. The indices

i and j are from 1 to 5.

>> enor(i) = efun(i) / sqrt(wip(efun(i),efun(i)*v));

>> w(i,j) = wip(enor(i),enor(j)*v);

The final command is used to obtain the matrix shown in the previous section.
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Chapter 5

Comparison of the Deposition Profiles

For each of the deposition profiles in Figs. 2.1-2.8, the data points are extracted

starting at R0 and ending with the data point at the largest value of r. Rs +Rw is

set to the largest r value which is also assumed to be equal to Rp. The y-axis for

each of the sets of data is scaled so that all deposition rates equal 1 at R0. All of

the scaled data are plotted as a function of η (defined in (3.4)), and put on a single

graph as shown in Fig. 5.1.

Figure 5.1: Scaled deposition rates as a function of dimensionless radial parameter
(numbers in the legend refer to Figs. 2.1-2.8 respectively)

In the next step, we try to find the best Pe number corresponding to each of

the obtained curves in Fig. 5.1 which yields the closest match between each set of

data and our proposed model. The deposition rate as a function of η was shown in
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the right plot in Fig. 4.8, which can be scaled so that the deposition starts from 1

at η = 0. The modeling equation used in obtaining this plot, Eq. (4.7), depends on

values of both Pe and η0. For each set of data points, η0 is calculated using (3.5),

and our goal is to adjust Pe so that our model (with the highest truncation number)

best describes the set of data in each case.

In order to do so, a function is written that takes Pe number as input, com-

putes the corresponding deposition profile based on the presented model, subtracts

the deposition profile obtained from the data set from the one predicted by the

model (both in scalarfield class), and returns the norm of the difference as the out-

put. The best Pe number for each data set , i.e. the one that yields the minimum

norm value, is then calculated using fminunc function from MATLAB optimization

toolbox. The optimal Pe can also be obtained by calculating the norm of the dif-

ference between the deposition profile extracted from data given in literature and

the profile obtained by our model with a range of Pe values, and plotting the norm

as a function of Pe number. An example is shown in Fig. 5.2 for curve 1 in Fig.

5.1 which indicates the Pe number that yields the minimum is the optimal Pe.

Fig. 5.3 compares the deposition plot corresponding to the data set from [1] with

the plot obtained using this optimal Pe number in the model. Figs. 5.4-5.10 show

other deposition profiles obtained using the optimal Pe from fminunc for each case

together with the deposition data previously extracted and gathered in Fig. 5.1.
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Figure 5.2: Plot of norm of difference between two deposition profiles vs. Pe for
curve 1 in Fig. 5.1

Figure 5.3: Comparison of the scaled deposition rates from curve 1 in Fig. 5.1 and
from modeling with the optimum Pe = 32.19
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Figure 5.4: Comparison of the scaled deposition rates from curve 2 in Fig. 5.1 and
from modeling with the optimum Pe = 30.92

Figure 5.5: Comparison of the scaled deposition rates from curve 3 in Fig. 5.1 and
from modeling with the optimum Pe = 39.40
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Figure 5.6: Comparison of the scaled deposition rates from curve 4 in Fig. 5.1 and
from modeling with the optimum Pe = 7.63

Figure 5.7: Comparison of the scaled deposition rates from curve 5 in Fig. 5.1 and
from modeling with the optimum Pe = 77.49
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Figure 5.8: Comparison of the scaled deposition rates from curve 6 in Fig. 5.1 and
from modeling with the optimum Pe = 46.47

Figure 5.9: Comparison of the scaled deposition rates from curve 7 in Fig. 5.1 and
from modeling with the optimum Pe = 24.10
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Figure 5.10: Comparison of the scaled deposition rates from curve 8 in Fig. 5.1 and
from modeling with the optimum Pe = 43.62

Table 5.1 summarizes η0 values calculated for each set of data in Fig. 5.1, and

optimal Pe values found for our model that yield the best deposition profile.

Comparison of the two deposition profiles for each case shows a general agree-

ment between the two plots obtained from the given data and the model with optimal

Pe. The common trend observed in almost all the plots is that our developed model

is more capable of describing the given deposition profile in the region further away

from the start of the depletion zone. In Fig. 5.6, there is a close match over the

entire region, which might be due to the extensive modeling used in [4] to find the

optimum reactor geometries. On the other hand, Fig. 5.4 shows a poor match be-

tween the profiles, which can be attributed to the operating conditions used in [2]

that might have delayed the start of the depletion zone in the reactor. Because the

data extracted from literature were the results of more detailed simulation studies,

the acceptable match between the two deposition rate profiles in each case indicates
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Table 5.1: Values of η0 and optimal Pe corresponding to each deposition plot

curve no. η0 Pe

1 0.3721 32.19

2 0.5623 30.92

3 0.2544 39.40

4 0.3569 7.63

5 1.2166 77.49

6 0.0684 46.47

7 0.3456 24.10

8 0.4512 43.62

how successful our simplified model is in replacing those models.
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Chapter 6

Conclusion and Future Work

In this work a simplified model for the depletion zone of the planetary chemical

vapor deposition reactors was presented. The species mole fraction and deposition

rate were computed using a MATLAB object-oriented framework, and the results

were compared with the published representative studies. The numerical technique

demonstrates a considerably lower computational cost and can be implemented on

an ordinary computer, compared to the detailed simulation studies which require

significantly higher computational cost.

Simulation results obtained for deposition rate profile suggested that a modi-

fication in the inlet boundary condition results in a convergent and physically con-

sistent profile. Therefore, the subsequent comparison of the deposition profiles was

performed using the improved model. The two parameters that influence our model,

i.e. Pe and η0, can be adjusted by the gas flow rate and temperature. If our model

is considered successful in replacing the more detailed models, these operating pa-

rameters critical to uniformity optimization and control can be readily adjusted.

The closer a profile is to the depletion profile, the more uniform film is achievable

through wafer rotation.

For each pair of the profiles compared, the optimal Pe computed corresponds

to a specific gas flow rate which might be different from the flow rate used in the
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profile taken from the published results. Besides, calculating an approxiamation to

η0 value in each comparison is based on the extracted data points which do not

necessarily yield the true value of radial distances. Furthermore, assigning R0 to be

the start of the depletion zone might not be always accurate, and depending on the

process temperature and reactor design parameters, the location of the depletion

zone might vary. On the other hand, some of the assumptions made during model

derivation might no longer be valid in the specific reactor conditions in some of the

previous works which leads to divergent profiles. These justifications might in part

prevent our model to match well with the existing profiles.

Despite the reasons above, the acceptable match between the profile pairs in

several cases, suggests the capability of our model in obtaining a reasonable depo-

sition profile. Further improvement in the model is still needed to account for the

larger error in the starting point of the depletion zone. In the next step of model en-

hancement, we should focus on model assumptions more compatible with the system

under study and try to achieve a balance between model simplification and the com-

plications in reaction kinetics and transport phenomena in the reactor. Particularly,

we may have to relax the assumption of no reaction and consider back diffusion for

a more reliable result. In terms of simulation performance, replacing slab geometry

with cylindrical geometry is under investigation for improving the match in small

radial values. Moreover, an attempt to analytically solve the eigenvalue problem

that arises in the model and comparison of the analytical and numerical results

gives us a better insight into the validity of the performed simulation.
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Appendix A

Solution to a Non Self-Adjoint Problem

A.1 Calculation of the Eigenfunctions and Eigenvalues

Consider the non self-adjoint problem [15]:

d2ψ

dx2
− qdψ

dx
− gψ = λψ (A.1)

subject to boundary conditions:

dψ(0)

dx
= 0 (A.2)

dψ(1)

dx
= 0 (A.3)

For this problem we assume that q = 10 and g = 20. The general form of a

Sturm-Liouville problem is [16]:

L(ψ) =
1

ρ(x)

d

dx

[
p(x)

dψ

dx

]
+ q(x)ψ

By comparing the two equations which are rewritten below

d2ψ

dx2
− qdψ

dx
− (g + λ)ψ = 0

p(x)

ρ(x)

d2ψ

dx2
+

1

ρ(x)

dp(x)

dx

dψ

dx
+ q(x)ψ = 0

we obtain the equalities:

p(x)

ρ(x)
= 1 (A.4)

1

ρ(x)

dp(x)

dx
= −q (A.5)

q(x) = −(g + λ).
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Solving (A.5) using (A.4) leads to:

p(x) = ρ(x) = e−qx

Therefore, the problem becomes:

eqx
d

dx

(
e−qx

dψ

dx

)
− (g + λ)ψ = 0 (A.6)

Sturm-Liouville theory [16] tells us that the orthogonality relation is:

∫ 1

0
e−qxψn(x)ψm(x)dx = 0 n 6= m (A.7)

Therefore, φn(x) = e−qxψn(x) are the eigenfunctions of the adjoint equation to Eq.

(A.6), because in general the system eigenfunctions and their adjoint eigenfunctions

are orthogonal

∫ 1

0
φn(x)ψm(x)dx = 0

In order to solve equation (A.6), the following substitution is used. This

ensures that the new eigenfunctions wn(x) are orthogonal with respect to a non-

weighted inner product.

ψn(x) = eqx/2wn(x)

This variable transformation reduces the problem into the familiar form of:

w
′′

n(x)− (g + λn +
1

4
q2)wn(x) = 0 (A.8)

dwn(0)

dx
= −q

2
wn(0) (A.9)

dwn(1)

dx
= −q

2
wn(1) (A.10)
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Assuming a solution of the form

wn = c1e
αnx + c2e

−αnx

α2
n = (g + λn +

1

4
q2)

and using boundary conditions (A.9-A.10), two equations are obtained:

αn(c1 − c2) = −q
2

(c1 + c2)

αn(c1e
αn − c2e

−αn) = −q
2

(c1e
αn + c2e

−αn)

The ratio of the left-hand side terms is set equal to the ratio of the right-hand

side terms, which after simplification leads to

c1c2e
−αn = c1c2e

αn

Because αn can not be zero, the equality holds only if either c1 or c2 is zero, which

using the boundary conditions leads to αn = q/2 or αn = −q/2 respectively. Using

the numerical value of q, this means αn = ±5. For both cases we obtain wn(x) =

ce−5x, and therefore, ψn(x) = c. The eigenfunctions are normalized with respect to

the inner product (A.7):

∫ 1

0
e−10xψ2

n(x)dx = 1

which yields the first eigenfunction:

ψ0(x) = ±
√

10

1− e−10

and from αn, the first eigenvalue is:

λ0 = −g = −20
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After considering this special case, the general form of the solution to (A.8)

can be written in the form of:

wn = Ansinαnx+Bncosαnx

where

α2
n = −(g + λn +

1

4
q2) (A.11)

Applying boundary conditions (A.9-A.10) yields:

An
Bn

=
−q
2αn

αn(Ancosαn −Bnsinαn) = −q
2

(Ansinαn +Bncosαn)

When the above equations are combined, we obtain:

(
q2

4αn
+ αn

)
sinαn = 0

which yields:

αn = nπ n = 1, 2, ...

Note that n can not be zero, because αn = 0 results in wn = 0, which is not a

nontrivial eigenfunction. The eigenfunctions take the form:

wn = Bn

( −q
2αn

sinαnx+ cosαnx
)

ψn(x) = Bne
qx/2

( −q
2αn

sinαnx+ cosαnx
)

Substituting αn results:

ψn(x) = Bne
qx/2

( −q
2nπ

sinnπx+ cosnπx
)
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Bn is calculated to make the eigenfunctions orthonormal to the adjoint eigen-

functions (based on (A.7)):

∫ 1

0
e−qxψ2

n(x)dx = 1

B2
n

∫ 1

0

( −q
2nπ

sinnπx+ cosnπx
)2

dx = 1

Bn = ± 2
√

2nπ√
q2 + 4n2π2

The final form of the eigenfunctions after substituting the numerical values of q and

g, is:

ψn(x) = ± 2
√

2nπ√
100 + 4n2π2

e5x
(−5

nπ
sinnπx+ cosnπx

)
(A.12)

and the eigenvalues obtained from (A.11) are:

λn = −(n2π2 + 45) n = 1, 2, ... (A.13)

A.2 Behavior of the Eigenvalues

A theorem on the Sturm-Liouville eigenvalues [17] states that for the SL prob-

lem below

d

dx

[
p(x)

dy

dx

]
− q(x)y + λr(x)y = 0 (A.14)

α1y(a) + α2y
′
(a) = 0

β1y(b) + β2y
′
(b) = 0

if the functions p(x), p
′
(x), q(x) and r(x) are continuous on the interval [a, b] and

that p(x) > 0 and r(x) > 0 at each point of [a, b], then the eigenvalues, repeated
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according to their multiplicity, constitute an infinite sequence of real numbers

λ1 ≤ λ2 ≤ λ3 ≤ ...

with

lim
n→∞

λn = +∞

This SL problem is called regular or nonsingular. Moreover, if q(x) ≥ 0 on [a,b] and

the coefficients α1, α2, β1 and β2 are all nonnegative, then the eigenvalues are all

nonnegative.

Now suppose that one of the boundary conditions for a nonsingular SL problem

is unmixed, i.e. is in the form of α1y(a) + α2y
′
(a) = 0. Then every eigenvalue has

multiplicity 1 [18]. Under this hypothesis, the eigenvalues satisfy

λ1 < λ2 < λ3 < ...

instead of the less restrictive inequalities in the theorem.

Now, for our non self-adjoint problem (A.1):

d2ψ

dx2
− qdψ

dx
− gψ = λψ

dψ(0)

dx
= 0

dψ(1)

dx
= 0

which can be written as:

d

dx

(
e−qx

dψ

dx

)
− ge−qxψ − λe−qxψ = 0

assuming λ
′
= −λ, by comparison with the general SL problem (A.14), we have:
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p(x) = e−qx, p
′
(x) = −qe−qx, q(x) = ge−qx and r(x) = e−qx

Thus, because the above functions are all continuous, p(x) > 0, r(x) > 0,

q(x) ≥ 0, and the boundary conditions are unmixed, based on the theorem men-

tioned earlier, the eigenvalues λ
′

form a nonnegative, infinite sequence of real num-

bers:

λ
′

1 < λ
′

2 < λ
′

3 < ...

and therefore the original eigenvalues λ constitute a nonpositive, infinite sequence

of real numbers:

λ1 > λ2 > λ3 > ...

It can be concluded that the eigenvalues of our problem are distinct.

A.3 Orthogonality of the Eigenfunctions

Consider our previous problem (A.6):

d

dx

(
e−qx

dψ

dx

)
− ge−qxψ − λe−qxψ = 0

dψ(0)

dx
= 0

dψ(1)

dx
= 0

The two solutions ψi and ψj correspond to distinct values of the eigenvalues λi and

λj, i.e.,

d

dx

(
e−qx

dψi
dx

)
− ge−qxψi − e−qxλiψi = 0

d

dx

(
e−qx

dψj
dx

)
− ge−qxψj − e−qxλjψj = 0
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Based on the method used in [20], multiplying the first equation by ψj and

the second by ψi and subtracting the two gives

(λi − λj)e−qxψiψj = ψj
d

dx

(
e−qx

dψi
dx

)
− ψi

d

dx

(
e−qx

dψj
dx

)

=
d

dx

[
e−qxψj

dψi
dx
− e−qxψi

dψj
dx

]

Integrating over the unit interval gives

(λi − λj)
∫ 1

0
e−qxψiψjdx =

[
e−qx

(
ψj
dψi
dx
− ψi

dψj
dx

)]1

0

Implementing the boundary conditions, the right-hand side of the integrated equa-

tion is equal to zero. Therefore

(λi − λj)
∫ 1

0
e−qxψiψjdx = 0

Because the eigenvalues are distinct, this proves that the eigenfunctions are orthog-

onal with respect to the weight function e−qx.
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