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Chapter 1: Introduction

1.1 Background

Moduli spaces arise naturally as one is trying to classify a class of mathematical

objects subject to an equivalence relation. Often, the set of equivalence classes

carries topological and geometric structures. The objective of the theory of moduli

spaces is the study of these structures from both local and global aspects.

Let us consider the problem of classifying holomorphic vector bundles over a

compact Riemann surface X. This problem was solved for P1(C) by Grothendieck

[59], and in the case of elliptic curves by Atiyah [4]. From now on, we will restrict

our attention to Riemann surfaces of genus greater or equal to 2.

Since C∞ complex vector bundles are determined by the rank and degree

(equals the first Chern number of E), we will consider the space C of holomorphic

structures on a fixed smooth vector bundle E with rank n and degree d. The complex

gauge group G C of complex automorphisms of E acts on C by pullback. The orbit

space C /G C clearly parametrizes isomorphism classes of holomorphic bundles over

X. However, in general it is not Hausdorff due to the jump phenomenon, see [91].

Moreover, the proper definition of such a moduli space and how to construct it

remain in question.
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To answer these questions, Mumford [91] introduced the notion of stable and

semi-stable holomorphic bundles.

Definition 1. Let the slope of E be given by

µ(E) = degE

rankE
.

We say that E is a stable (resp. semi-stable) holomorphic bundle if for every proper

holomorphic subbundle F of E, the following inequality

µ(F ) < µ(E) (resp.µ(F ) ≤ µ(E)),

holds.

Let C s (resp. C ss) denote the subspace of C consists of stable (resp. semi-

stable) holomorphic structures on E. Narasimhan and Seshadri [92] constructed the

moduli space C s/G C of stable holomorphic bundles algebraically, and proved their

famous theorem that C s/G C can be identified with the moduli space of irreducible

projective unitary representations of π1(X). The geometric invariant theory of

Mumford [91] provides a projective compactification of C s/G C, which is given by

C ss//G C. Donaldson [37] gave another proof of the Narasimhan-Seshadri theorem

from the gauge-theoretic point of view of Atiyah and Bott [5], and showed that every

stable holomorphic bundle has an essentially unique irreducible Hermitian-Einstein

(or Hermitian Yang-Mills) connection, i.e., the Chern connection dA associated to

a Hermitian holomorphic stable bundle (E,h) satisfies the Hermitian Yang–Mills
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equation:

F (A) = −iµωg IdE, (1.1)

where ωg is the Kähler form on X normalized to have volume 2π. Let A ∗
HE denote

the space of all irreducible unitary connections satisfying (1.1), and let G denote

the gauge group of unitary transformations of (E,h). Donaldson’s result states that

the following map

Φh ∶ A ∗
HE/G → C s/G C, (1.2)

[dA] ↦ [∂̄A ∶= d0,1
A ].

is a bijection.

To endow these moduli spaces with symplectic and Kähler structures, the

traditional approach is to apply the process called Kähler reduction, see [5]. More

precisely, let (E,h) be a fixed smooth complex Hermitian vector bundle over a

compact Riemann surface X. The set A of all unitary connections on (E,h) is an

affine space modeled on Ω1(u(E)), which is equipped with a symplectic structure

defined by

Ω(µ, ν) = ∫
X

tr(µ ∧ ν), (1.3)

for any dA ∈ A and µ, ν ∈ TAA . This form, referred to as the Atiyah-Bott-Goldman-

Narasimhan form, is closed since it is constant. The set C of holomorphic structures

on E is an affine space modeled on Ω0,1(EndE), and it has a complex structure,

given by multiplication by i. The symplectic structure of A and the complex struc-
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ture induced from C by the Chern connection construction, see Lemma 18, defines

a Kähler structure on A . Moreover, the gauge group G preserves this Kähler struc-

ture, and there is a moment map for this action [6] given by

µ ∶ A → Ω2(u(E)),

dA ↦ F (A).

Here we have used the fact that G is a Banach Lie group with Lie algebra Ω0(u(E))

and dual Lie algebra Ω2(u(E)). Take the central element −iµωg IdE as in the

right hand side of (1.1) and consider µ−1(−iµωg IdE), which equals to AHE. By

the work of Mumford, Kempf–Ness, Guillemin and Sternberg and others, (see the

appendix to [91], written by Kirwan), the quotient µ−1(−iµωg IdE)/G is a Kähler

manifold. In particular, as an open subspace, A ∗
HE/G is also Kähler. Moreover, the

correspondence (1.2) proved by Donaldson can be understood formally as an infinite

dimensional analogue of the isomorphism between the symplectic and the algebraic

quotients in finite dimensions as studied in the geometric invariant theory. More

precisely, (1.2) is the restriction of

µ−1(λ)/G = C ss//G C, (1.4)

to the stable loci C s ⊂ C ss.

With the above discussion of moduli spaces of vector bundles, we are ready to

introduce the main objects of interest in this thesis. In the proof of [92], Narasimhan
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and Seshadri were led to consider bundles on ramified covers of a Riemann surface,

where the fundamental group lifts to the bundles. In terms of the bundle on the

initial Riemann surface, one has extra structure at the branch points, a reduction

of the local automorphisms to a parabolic subgroup. This leads to the notion of

a parabolic bundle over a compact surface X with a finite set S of marked points.

More precisely, we define a parabolic bundle as a holomorphic bundle E over X

together with descending flags

Epk = E1,k ⊃ E2,k ⊃ ⋯ ⊃ Esk,k ⊃ 0, (1.5)

in the fiber of Epk and associated parabolic weights 0 ≤ α1,k ≤ α2,k ≤ ⋯ ≤ αn,k < 1 for

each pk ∈ S. Set mi,k = dimEi,k − dimEi+1,k, we will refer the following partitions

n =m1,k +⋯ +msk,k, k = 1,⋯,m,

as the multiplicity type of E. Let Pk denote the stabilizer of (1.5), which is a

parabolic subgroup in GL(Epk). Their quotient GL(Epk)/Pk ≅ Fk is the flag mani-

fold parametrizing decreasing flags on Epk of the given multiplicity type.

Let us consider the classification of all parabolic bundles over X with fixed

multiplicity type and parabolic weights at each marked point pk ∈ S. We say that two

parabolic bundles E and E′ are isomorphic if there is a bundle isomorphism E → E′

mapping the corresponding descending flags into each other for all pk ∈ S. Since

GL(Epk) acts on Fk transitively, the above classification problem can be rephrased
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as to study the orbit space of the space C of all holomorphic structures on E

with a fixed parabolic structure modulo the group G C of complex automorphisms

that preserves the descending flags at each marked points. Therefore, we are in

an analogous position as the classification of holomorphic bundles over a compact

Riemann surface.

Let us remark that parabolic weights are also important in the understanding

of moduli space of parabolic bundles. First, Mehta and Seshadri [85] used these

weights to introduce suitable notions of parabolic degree, and stable and semi-stable

parabolic bundles, and constructed the moduli space of stable parabolic bundles of

parabolic degree d with a fixed parabolic structure of rational weights at the marked

points. Moreover, they generalized Narasimhan-Seshadri theorem and showed that

the moduli space of stable parabolic bundles of parabolic degree 0 can be identified

with the moduli space of irreducible unitary representations of π1(X) with local

monodromies in a fixed conjugacy class about each puncture. Note that conjugacy

classes in U(n) are labeled by eigenvalues and multiplicities. By exponentiating the

eigenvalues in the unit interval, the conjugacy class of the local monodromy of a

representation is thus also encoded by parabolic weights and choices of a flag, and

this is the precise correspondence in the Mehta-Seshadri theorem. Later Biquard

[12], following the argument of Donaldson [37], improved the result of Mehta and

Seshadri [85] to allow real parabolic weights.

In the following, we will denote by M s
P the moduli space of parabolic bundles

on X with fixed parabolic structure of parabolic degree 0, and by M ∗
HE the moduli

space of irreducible flat unitary connections on X with fixed holonomy conjugacy
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classes. So far, most research concerning M s
P has been to understand its topology

and application in algebraic geometry, see [15], [55], [111], and [105], while leaving

the differential geometric properties of M s
P less documented. One objective of this

thesis is to partially fill this gap in current literature. That is, in the first part

this thesis, we will apply gauge-theoretic methods as those used in [5] and [73],

rather than the process of Kähler reduction, to understand the complex and Kähler

properties of these moduli spaces.

1.2 Main Results

In order to study these moduli spaces in a gauge theoretic setup, the first

question is how to encode the parabolic structure of a parabolic bundle E on X.

Our approach here is to equip E with the adapted Hermitian metric, which is

singular at the marked points with specific behavior, see Definition 14. It is therefore

more convenient to work with the punctured surface X instead. In this work, we

will equip X with a complete Riemannian metric of cusp type near the punctures,

see (2.3), and use the theory of weighted Sobolev spaces as discussed in [77] to

define the weighted complex gauge group G C
δ (resp. the weighted gauge group Gδ of

unitary transformations) acting on the space C s
δ of stable Dolbeault operators C s

δ

of parabolic degree 0 (resp. the space A ∗
F,δ of irreducible flat unitary connections),

both adapted to a fixed parabolic structure on E in suitable sense.

By a key result of Biquard, see Theorem 45, concerning the Fredholmness of

the Dolbeault Laplacians, we can apply an implicit function theorem argument to
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show the existence of local slices around any point in these moduli spaces, and these

slices are the key to our analysis of the local structures of these moduli spaces. Take

the action of Gδ on A ∗
F,δ as an example. We will show that, locally around any

dA ∈ A ∗
F,δ, there is a (non-linear) Hermitian-Einstein slice UA,ε ⊂ A ∗

F,δ such that it is

invariant under the stabilizer Stab(A) of dA, and the following natural map

UA,ε ×Stab(A) Gδ → A ∗
F,δ, (1.6)

is a local diffeomorphism. Moreover, we will define a Riemannian metric on UA,ε

that is invariant under different choices of local slice representation, hence the metric

patches to a global metric on M ∗
HE. Similarly, we will construct, around any ∂̄A ∈ C s

δ ,

a local (linear) Dolbeault slice VA,ε, see Definition 62, which provide a compatible

system of local holomorphic coordinate charts on M s
P. Then we will show that there

exists a local diffeomorphism between VA,ε and the image of UA,ε in M s
P under (3.6),

which will be denoted by U0,1
A,ε, hence enable us to define a Hermitian metric on M s

P.

In chapter 4, we prove that the Hermitian metric just defined are in fact Kähler and

compute the curvature of the canonical bundle of M s
P with the induced metric.

Theorem 2 (see Theorem 71 below). The curvature of the canonical line bundle

λ = detT ∗M s
P with respect to the induced L2-Hermitian metric is given by

Θ(µ, ν̄) = −Tr (ad fµ, ν̄ ○ PA − adµ ○∆−1
A ○ ∗adν ∗ ○PA),

for any µ, ν ∈ H0,1
A,δ ≅ T∂̄AVA,ε on VA,ε. Here Tr denotes the operator trace on
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L2(Ω0,1(EndE)) and adµ denotes the adjoint action [µ, ⋅].

Let us remark that the choice of the canonical line bundle in Theorem 2, besides

the fact that λ is geometrically interesting, is due to the following identification of

λ with the determinant of cohomology. That is, given any ∂̄γ = ∂̄A + γ in the

Hermitian-Einstein slice U0,1
A,ε, by Proposition 133, the following L2 complex

0→ L2(EndE) ∂̄γÐ→ L2(Λ0,1 ⊗EndE) → 0,

is Fredholm. We may define the following determinant line bundle on U0,1
A,ε,

det(ind ∂̄γ) = Λmaxker ∂̄γ ⊗ (Λmaxcoker ∂̄γ)−1,

= (Λmaxcoker ∂̄γ)−1.

where we have used the stability condition of the associated parabolic bundle (E, ∂̄γ).

As the dimension of coker ∂̄γ remains constant on U0,1
A,ε, the induced L2 metric is a

well-defined Hermitian metric. Moreover, by the local diffeomorphism between U01
A,ε

and VA,ε and Definition 3.19, we have the following identification

λ ∶= det(T ∗VA,ε) ≅ det(ind ∂̄γ). (1.7)

When X = H/Γ is a hyperbolic surface, Takhtajan and Zograf [113] defined

a Quillen metric on λ in terms of the Selberg zeta function, see [119]. More pre-

cisely, for any dA+a ∈ UA,ε with a0,1 = γ, let ργ denote the associated holonomy
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representation of dA+a. They define

Z(s,Γ; Adργ) = ∏
{P}

∏
n

det (I −Adργ(P )N(P )−n−s) , (1.8)

where P runs over the set of all primitive conjugacy classes of hyperbolic elements

of Γ, and N(P ) > 1 is the norm of the element P ∈ Γ. As Z(s,Γ; Adργ) has a simple

pole at s = 1, and they define the regularized determinant of ∆γ as

detTZ ∆γ =
∂

∂s
∣
s=1

Z(s,Γ; Adργ),

and the Quillen metric on λ by

∥ ⋅ ∥TZ ∶= ∥ ⋅ ∥L2(detTZ ∆γ)−1/2. (1.9)

They compute the curvature form of this Quillen metric, which consists of the usual

Atiyah-Singer term and a cuspidal defect. Such a definition of metric is justified

by the relation between the Selberg zeta function and the functional determinant of

the Laplacian of the following form,

det(∂̄∗γ ∂̄γ + s(1 + s)) = φ(s)Z(s,Γ; Adρ),

where φ(s) is some universal meromorphic function depending only on g, n and the

parabolic weights. In the case of compact Riemann surface, such a relation was

first discovered by D’Hoker and Phong [34], see also Sarnak [104] and Voros [121].
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Later, Efrat generalized this to the case of torsion-free hyperbolic surface of finite

volume. The method he use to construct the spectral zeta function is to use not

only discrete eigenvalues but also poles of the scattering determinant in the Selberg

trace formula.

This is another motivation of this thesis, that is, we wish to construct the

Quillen metric using the heat kernel techniques along the idea of Quillen [98], see

also [100], [101].

Let us recall the zeta function regularization of the determinant of an elliptic

operator on compact manifolds, which was first introduced by Ray and Singer [100].

Let E be a Hermitian vector bundle over a closed n-dimensional smooth manifoldM .

Let A ∶ C∞(M,E) → C∞(M,E) be a non-negative elliptic self-adjoint differential

operator of order m, whose action extends uniquely to L2(M,E). Then the spectral

zeta function of A is defined by

ζA(s) = ∑
λj>0

λ−sj ,

where λj runs over the nonzero eigenvalues of A, counted with multiplicity. By

Seeley [109], the above series converges absolutely in the half-plane Res > n/m and

admits a meromorphic continuation to the entire complex plane, regular at s = 0.

As it is well-known that the heat operator e−tA is of trace class for t > 0 on compact

manifolds, we can apply the Mellin transform

λ−s = 1

Γ(s) ∫
∞

0
ts−1e−λtdt

11



to express the zeta function of A as

ζA(s) =
1

Γ(s) ∫
∞

0
(Tr(e−tA) − dimkerA) ts−1 dt,

for Res > n/m, which admits a meromorphic continuation by the following

1. As t→ 0+, there exists an asymptotic expansion

Tr(e−tA) ∼ tn/m∑
j≥0

ajt
j,

2. As t→∞, we have

Tr(e−tA) = dimkerA +O(e−ct).

One then defines the regularized determinant of A as

detA = exp ( − d

ds
∣
s=0
ζA(s)).

Since X is noncompact, the elliptic operator ∆γ has continuous spectrum and

e−t∆γ is not of trace class, hence the zeta function regularization discussed above is

not applicable. In this thesis, we apply the the method of Müller [89] and define a

relative determinant

det ∆γ ∶= det(∆γ,∆A),

with respect to the "reference" Dolbeault Laplacian ∆A, as long as the relative heat

trace Tr(e−t∆γ − e−t∆A) is finite for any t > 0 and has similar asymptotic expansions
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as discussed above in the compact case. With the relative determinant, we may

define a Quillen metric on λ by

∥ ⋅ ∥Q ∶= ∥ ⋅ ∥L2(det ∆γ)−1/2. (1.10)

Moreover, using the method of [98], we prove that

Theorem 3 (see Theorem 119 below). The first Chern form Ω of the canonical

bundle λ equipped with the Quillen metric 1.10 is given by

Ω(µ, ν̄) = − i

4π2 ∫X adµ∧ad∗ν+ i

2π

m

∑
k=1

sk

∑
i≠j=1

sgn(αi,k−αj,k)(1−2∣αi,k−αj,k∣)mi,kΘj,k(µ, ν̄),

(1.11)

for any µ, ν ∈H0,1
A,δ ≅ T∂̄AVA,ε, and Ωi,k is the curvature form of the line bundles λi,k,

see Definition 4.12.

Lastly, we comment that this thesis is inspired by the work of Wolpert [125],

in which a similar question about cuspidal contribution to the index bundle over the

Teichmüller space of punctured Riemann surfaces with cusp ends was considered.

1.3 Outline

In Chapter 1, we introduce the necessary background of moduli space of holo-

morphic bundles over a compact Riemann surface and the notion of a parabolic

bundle. Then we describe our motivation and the main results of this thesis.

In Chapter 2, we will introduce basics of parabolic bundles, and the notion

of an adapted Hermitian metric on a parabolic bundle on a Riemann surface with
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cusp ends. Applying the theory of weighted Sobolev spaces as in [78] and [77], we

define various spaces of sections for EndE and u(E). Using a result of Biquard

[13], we will show the Fredholmness property of the Dolbeault operators acting on

the aforementioned weighted spaces. This provides us with the key analytic tool for

applying the implicit function theorem type argument used in the next chapter.

In Chapter 3, we present gauge theoretical constructions of the moduli space

of irreducible flat unitary connections, denoted by M ∗
HE, and of the moduli space of

stable parabolic bundles, denoted by M s
P. More importantly, we construct various

local slices and discuss the complex and Hermitian metric of the moduli space of

stable parabolic bundles over these slices.

In Chapter 4, we prove that the L2 Hermitian metric on the moduli space is

Kähler, moreover, the Dolbeault slices, see definition 62, provide an atlas of normal

coordinate charts on M s
P . Then we proceed to compute the L2-curvature of the

canonical bundle of M s
P over any Dolbeault slice.

In Chapter 5, we apply the relative zeta function regularization, first proposed

by Müller [89], to define a relative regularized determinant for Dolbeault Laplacians

associated with the Dolbeault operators in a given Dolbeault slice. This enable us

to define a Quillen metric, see Definition 1.10, on the canonical line bundle of the

moduli space of stable parabolic bundles.

In Chapter 6, we use the method as in Quillen [98] to compute the curvature

of the canonical line bundle of the moduli space of parabolic bundles with respect

to the Quillen metric.
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Chapter 2: Preliminaries

In this chapter, we will introduce basics of parabolic bundles, and the notion of

an adapted Hermitian metric on a parabolic bundle E →X, where X is a Riemann

surface with cusp ends. Later, we apply the theory of weighted Sobolev spaces as in

[78] and [77] to define various spaces of sections for EndE and u(E). Using results

of Lockhart and McOwen [78] and Biquard [13], we establish the Fredholmness

property of the Dolbeault operators acting on the aforementioned weighted spaces.

This provides us with the key analytic tool for the implicit function theorem type

argument used in the next chapter.

2.1 Parabolic Bundles

Let X be a closed Riemann surface of genus h. Let S = {p1,⋯, pm} be a finite

set of marked points in X. Let E be a smooth complex vector bundle over X of

rank n.

Definition 4. A parabolic structure on E consists of, at each pk ∈ S, a decreasing

flag

Epk = E1,k ⊃ E2,k ⊃ ⋯ ⊃ Esk,k ⊃ 0,
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with weights

0 ≤ α1,k ≤ α2,k ≤ ⋯ ≤ αn,k < 1.

We set mi,k ∶= dim(Ei,k/Ei+1,k) the multiplicity of the weight αi,k and sk the

number of distinct weights at pk.

Definition 5. We define the parabolic degree of E by

par-degE = degE +
m

∑
k=1

n

∑
j=1

αj,k,

and the parabolic slope of E by

µ(E) = par-degE
rankE

.

Given any subbundle F ⊂ E with the quotient Q = E/F , they inherit canonical

induced parabolic structures as follows: the flag structures at each pk are given by

F1,k = E1,k ∩ Fpk ⊃ F2,k = E2,k ∩ Fpk ⊃ ⋯ ⊃ Fn,k = En,k ∩ Fpk ⊃ 0,

and

Q1,k = E1,k/Fpk ⊃ Q2,k = E2,k/Fpk ⊃ ⋯ ⊃ Qn,k = En,k/Fpk ⊃ 0.

As to the induced parabolic weights, if different intersections (resp. quotients) would

coincide, it is the smallest (resp. largest) possible weights of the corresponding flag

containing the sub-flag (resp. quotient flag) that we choose.

By the Newlander-Nirenberg Theorem [94], we define a holomorphic structure
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on E by

Definition 6. A Dolbeault operator ∂̄E is a C-linear map

∂̄E ∶ Ω0(E) → Ω0,1(E),

satisfying the Leibniz rule

∂̄E(fs) = ∂̄f ⊗ s + f∂̄Es,

for all f ∈ C∞(X) and s ∈ Ω0(X,E).

Let C denote the space of all Dolbeault operators (or holomorphic structures)

on E. Since the difference of any two Dolbeault operators ∂̄E and ∂̄′E satisfies

(∂̄E − ∂̄′E)(fs) = f(∂̄E − ∂̄′E)s,

it is an EndE-valued (0,1)-form. Conversely, given a Dolbeault operator ∂̄E and

γ ∈ Ω0,1(X,EndE), ∂̄′E = ∂̄E + γ is another Dolbeault operator. Hence C is an

infinite-dimensional affine space modeled on Ω0,1(X,EndE).

Definition 7. A parabolic bundle E over X is a choice of a parabolic structure and

a Dolbeault operator ∂̄E ∈ C .

In the rest of this thesis, we will fix a parabolic structure on E and consider

different holomorphic structures on E.
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Definition 8. A parabolic bundle E is stable (resp. semi-stable) if, for every proper

holomorphic sub-bundle F with the induced parabolic structure,

µ(F ) < µ(E) (resp. µ(F ) ≤ µ(E)).

We denote by C s and C ss the spaces of stable and semi-stable bundles.

Let GL(E) denote the group of (smooth) complex gauge transformations of

the vector bundle E on X. Set

G C = {g ∈ GL(E) ∣ g(Ei,k) ⊂ Ei,k},

the group of complex gauge transformations of E which respect the fixed parabolic

structure on E. We say that two parabolic bundles (E, ∂̄) and (E, ∂̄′) are isomorphic

if there exists a g ∈ G C such that

∂̄′E = g(∂̄E) = g ○ ∂̄E ○ g−1 = ∂̄E − ∂̄Egg−1.

Due to the jumping phenomenon [91], the naive quotient C /G C is in general

not even Hausdorff. One way to circumvent this trouble is via the notion of S-

equivalence as introduced by Seshadri. More explicitly, Let E be a semi-stable

parabolic bundle, its Jordan-Hölder filtration

0 ⊂ E1 ⊂ ⋯ ⊂ Ed = E
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satisfies that the successive quotient Ei+1/Ei is stable with the induced parabolic

structure. Though such a sequence of filtration is not canonical in general, the

associated graded object

Gr(E) =
d−1

⊕
i=1

Ei+1/Ei

is canonical and we can therefore identify two semi-stable parabolic bundles to be

S-equivalent if their associated graded objects are isomorphic in the category of

parabolic bundles.

For a fixed parabolic structure on E, we can then construct the moduli space

of stable (resp. semi-stable) parabolic bundles, denoted by M s
P (resp. M ss

P ) as

the set of isomorphism classes of stable (resp. S-equivalent semi-stable) parabolic

bundles.

Theorem 9 (Mehta-Seshadri [85]). M ss
P is a nonsingular projective variety of di-

mension

dimCM ss
P = n2(h − 1) + 1 + ∑

pk∈S

dk (2.1)

where

dk ∶= dimC Fk =
1

2
(n2 −

sk

∑
i=1

m2
i,k), (2.2)

and Fk ≅ U(n)/U(m1,k) ×⋯ ×U(msk,k) the flag variety of the prescribed type.

Remark 10. When the choice of the parabolic weights is generic, see [15], the

parabolic bundle E with the given weights is stable if and only if it is semi-stable.
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2.2 Local Geometry

2.2.1 Cusp Ends

LetX =X/S be the punctured Riemann surface. We equipX with a conformal

Riemannian metric g such that it is a Riemann surface with cusp ends, i.e., there is

a decomposition of the form

X =M ∪Z1 ∪⋯ ∪Zm, (2.3)

where M is a compact surface with m copies of circles as its boundary and each Zk

is isometric to

S1(= R/2πZ) × [ak,∞), ds2
hyp =

dx2 + dy2

y2
, (2.4)

with ak > 0 referred as the level of the cusp end Zk and z = x + iy the conformal

coordinate on Zk.

If 2 − 2h −m < 0, by the uniformization theorem, X admits a complete hyper-

bolic metric with constant curvature −1, and, in particular, provides an example of

a Riemann surface with cusp ends.

Remark 11. We want to point out at the beginning that the choice of the complete

metric of cusp type as discussed above is not necessary for the gauge-theoretic

construction of the moduli space of stable parabolic bundles, and any metric that is

admissible along the ends (see [77] for more details) would suffice. However, such a

choice simplifies our discussion of the long time behavior of the heat kernels as the
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bottom of the continuous spectrum of the related Laplacians is strictly positive and

hence no scattering resonance at 0. Moreover, the explicit expression of the cusp

metric along each end simplifies our discussion of the related weighted cohomology

groups and the identification with their L2 counterpart. Lastly, we can obtain the

main results of this thesis in "almost" the same setup as in [113].

Lemma 12. (see [86, Lemma 1.3])X is a complete Riemannian manifold. Moreover,

1. Vol(X) < ∞;

2. For any z, z′ on each Zk,

∣ log( y
y′

)∣ ≤ d(z, z′) ≤ 2 arccosh
√
u(z, z′). (2.5)

where d(z, z′) denotes the Riemannian distance on X and

u(z, z′) = (y − y′)2 + d(x,x′)2

4yy′

is an important invariant of the pair of points z, z′ ∈ Zk

2.2.2 Adapted Hermitian Metrics

Identify each cusp end Zk with the punctured disk D∗(e−ak) via the biholo-

morphic map w = e−z.

Definition 13. A local trivialization {fi,k}ni=1 along each cusp end Zk is said to be

adapted to the fixed parabolic structure of E if, under the identification with the
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the trivial bundle D∗(e−ak) ×Cn, it generates the flag structure, that is

Ei,k = span{fn−dimEi,k+1,k,⋯, fn,k}

for i = 1,⋯, sk.

Definition 14. A Hermitian metric h on E is called adapted to the parabolic

structure if there exists a frame {fi,k}ni=1 adapted to the parabolic structure of E

such that

{ei,k(z) ∶= eαi,kyfi,k(z)}ni=1,

is an orthonormal frame with respect to h near the cusp end Zk.

Remark 15. In terms of the adapted frame {fi,k}ni=1, a local complex gauge trans-

formation g ∈ G C satisfies that

gij(z) = O(e−y), if αi,k < αj,k.

With respect to the temporal frame ei,k = eαi,kyfi,k, then g is given by

e−(αi,k−αj,k)ygij(z),

which suggests that sections of E whose norm under h are e−(αi,k−αj,k)y if αi,k ≥ αj,k

and e−(1+αi,k−αj,k)y if αi,k < αj,k should lie in the weighted Sobolev space completion

of gauge groups to be defined later.
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Example 16 (Local Model of the Non-abelian Correspondence). Suppose {fi,k}ni=1

is a local holomorphic basis adapted to the parabolic structure of E equipped with

the metric

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−2α1,ky

⋱

e−2αn,ky

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

then {ei,k = eαi,kyf (∗)

i,k }ni=1 is an orthonormal frame, with respect to which, the Dol-

beault operator is given by

∂̄αk = ∂̄ +
i

2
αk dz̄. (2.6)

Here αk denotes the diagonal matrix of parabolic weights along Zk. The Chern

connection of ∂̄αk is given by

dαk = d + iαk dx. (2.7)

which is flat with its holonomy representation of the following unique (up to per-

mutation) representative

exp(−2πiαk) = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2πiα1,k

⋱

−2πiαn,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

Recall that

Definition 17. A C-linear map dA ∶ Ω0(E) → Ω1(E) on E over X is called a unitary

connection if it satisfies
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1. dA(fs) = df ⊗ s + fdAs;

2. dh(s, s′) = h(dAs, s′) + h(s, dAs′).

for any f ∈ C∞(X) and s, s′ ∈ Ω0(E).

There exists a canonical extension of any Dolbeault operator on (E,h).

Lemma 18. (see [122, Theorem 2.1]), Let E be a Hermitian holomorphic vector

bundle, there exists a unique unitary connection dA such that it is compatible with

the holomorphic structure,

∂̄A ∶= d0,1
A = ∂̄E.

This canonical extension is usually referred as the Chern connection of (E,h).

Since π1(Zk) ≅ Z, extending the observation made in Example 16, we have the

following

Lemma 19. (see [32, Lemma 2.7]) For any smooth flat unitary connection dA on

E → X, if its holonomy along each of Zk is conjugate to (2.8). Then there exists a

global temporal gauge such that dA is of the form in (2.7) along each end Zk.

Remark 20. The temporal gauge, which should be identified with the orthonormal

frames in Definition 14, is equivalent to a local translation invariant trivialization

of E together with an translation equivalent Hermitian metric. To say that it is

adapted to the parabolic structure, it is a matter of the identification of the temporal

gauge with that D ×Cn.

Let A denote the space of unitary connections on (E,h) →X, which is mod-

eled on the infinite-dimensional space Ω1(X,u(E)). Let AF,α ⊂ A denote the space
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of all flat unitary connections dA on E with its holonomy representation along each

cusp end given by (2.8). Let G ⊂ G C denote the unitary gauge transformations of

(E,h) on X. We can thus form the moduli space of flat unitary connections as

MHE = AF,α/G .

In terms of the holonomy representation, ρ ∶ π1(X) → U(n)}/U(n) is admissi-

ble if its restriction to the generator of π1(Zk) is the conjugate of (2.8). Then the

holonomy representation gives us the following bijective map

MHE → {admissible representation ρ ∶ π1(X) → U(n)}/U(n),

which is known as the Riemann-Hilbert correspondence.

Let us discuss how to construct extensions of (E, ∂̄E) as holomorphic bundles

over X from an admissible flat unitary connection dA over X. Set ∂̄A ∶= d0,1
A . By

a result attributed to Hans Grauert and Helmut Röhrl (1956), (E, ∂̄A) is trivial as

a holomorphic bundle on X. There exist, a priori, many different extensions of E

to X. In the presence of the flat unitary connection dA, we can extend E in an

essentially unique way.

Because the extension problem is local, we will restrict our study to each cusp

end Zk with respect to the fixed temporal frames {e1,k,⋯, en,k}. Let fi,k(z) be a new

frame defined by e(−αi,ky)ei,k(z), for i = 1,⋯, n. By simple computation using (2.6),
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we have

∂̄Afi,k(z) = 0,

which implies that these define a local holomorphic trivialization of E over Zk.

Therefore we can extend E to X by identifying {fj,k, j = 1,⋯, n} with the standard

basis of D(e−ak)×Cn. We will denote the resulting holomorphic bundle over X by E

when there is no risk of confusion, and such an extension is called the the Deligne’s

extension or Mehta-Seshadri extension.

In terms of the punctured disk model D∗(e−ak),the norm of the holomorphic

section fj,k equals ∣w∣αj,k . In fact, let Eαj,k denote the span of the germs of any local

holomorphic sections around pk with norm less or equal to ∣w∣αj,k , these defines a

parabolic structure on the extension of E to X, see [111] for more detail.

2.3 Weighted Sobolev Spaces on Surfaces with Cusp Ends

In this part, we first discuss briefly some properties of the relevant weighted

Sobolev spaces and our treatment largely follows [77], [78], [13]. Later, we introduce

various Banach groups and their action on the related Banach manifolds over X.

2.3.1 Function Spaces

Let (E,h) be the bundle with fixed adapted Hermitian metric on the surface

with cusp ends X. We will denote by ΛkX (resp. Λp,qX) the smooth bundles of real

k-forms (resp. complex (p, q)-forms) on X.

Let P denote the associated U(n) principal bundle of E. We will denote by
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u(E) and EndE the adjoint bundles P ×ad u(n) and P ×ad End(n), where Ad and

ad denote the adjoint representation of U(n) and u(n).

Let ∇ be any unitary connection on E which is flat with respect to the fixed

orthonormal frames {ei,k}ni=1 adapted to the Hermitian metric h along the cusp ends

Zk. Let {τk ∶ X → [0,∞), k = 1,⋯,m} be an m-tuple of smooth positive functions

defined as

τk(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1, for z ∈M,

y, for z = (x, y) ∈ Zk,

Set ρ = − ln(τ), in particular, g = eρ(dx2 + dy2) along each cusp end.

Let δ ∈ Rm be m-tuples of real numbers. We denote by δτ their scalar product.

For δ1, δ2 ∈ Rm, we say that δ1 ≤ (resp. <) δ2 if δ1,k ≤ (resp. <) δ2,k for k = 1,⋯,m.

Definition 21. For 1 < p < ∞, δ ∈ Rm, s ∈ R, k ∈ N. The weighted Sobolev space

Lk,pδ,s (Λ0,∗X⊗EndE,g) is defined as the space of all sections u ∈ Lk,ploc(Λ0,∗X⊗EndE)

such that

∥u∥Lk,p
δ,s

= (
k

∑
i=0
∫
X
∥eδτ+(i+s)ρ∇iu∥pg dvg)

1
p ,

is finite.

Remark 22. The Sobolev spaces Lk,pδ,s (Λ∗X ⊗ u(E)) can be defined in similar way.

Remark 23. Even though in [77], the authors defined weighted Sobolev spaces

only for the bundle of exterior powers of the tangent and cotangent bundle of the

underlying manifold, since the bundle E in our case are equipped with a fixed
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translation invariant trivialization (the temporal gauge) and a translation invariant

Hermitian metric (the adapted Hermitian metric), therefore their definitions and

results in [77] can be generalized to our case.

Remark 24. The above definition involves the choice of trivialization of E along the

cusp ends, the function τ , and the connection ∇. Different choices of trivialization

define inequivalent norms.

Remark 25. The convention in the choice of δ and a is that, in terms of the variable

r = e−τ , we have ra ∈ L2
δ if a > δ and for any s ∈ R. As the flags in our definition of

parabolic structure are upper-semicontinuous, i.e., the germ of any local holomorphic

section σ whose norm ∥σ∥ ≲ e−αi,ky belongs to Ei,k, therefore we will always require

the choice of s to be non-positive.

It is easy to verify that

Lemma 26. The weighted Sobolev space Lk,pδ,s (Λ0,∗X⊗EndE,g) is a Banach space.

To better understand the factor esρ in our definition of weighted Sobolev

spaces, we need the following. Let g0 be another Riemannian metric on X that

is cylindrical along each end, that is

g0 = dx2 + dy2, and g = eρg0,

along each Zk. We define the following weighted Sobolev spaces on (X,go).

Definition 27. The weighted Sobolev spaces Lk,pδ (Λ0,∗X ⊗EndE,g0) is defined as

28



the space of all sections u ∈ Lk,ploc(EndE) such that

∥u∥Lk,p
δ

= (
k

∑
i=0
∫
X
∥eδτ∇iu∥pg0

dvg0)1/p

is finite.

We can then define the following maps between the related weighted spaces:

Lemma 28. [77, Proposition and Definition 4.4] For any k ∈ Z, the following map

K ∶ Lk,pδ,s (Λ0,rX ⊗EndE,g) → Lk,pδ (Λ0,rX ⊗EndE,g0)

u↦ e(s+r+
n
p
)ρ u. (2.9)

is an isomorphism between Banach spaces.

Proof (from [77, Proposition and Definition 4.4]). When k ≥ 0, we have

∥e(s+r+
n
p
)ρ u∥Lk,p

δ
≤ (

k

∑
i=0

i

∑
j=0

c(i, j)∫
X
∥eδτ+(s+r+

n
p
)ρ∇i−jρ∇ju∥pg0

dvg0
)

1
p ,

As limy→∞ ∥∇iρ∥g0 = limy→∞
1

yi+1 = 0, we therefore get

≤ c(
k

∑
i=0
∫
X
∥eδτ+(s+r+

n
p
)ρ∇iu∥pg0

dvg0
)

1
p ,

≤ c(
k

∑
i=0
∫
X
∥eδτ+(s+i)ρ∇iu∥pg dvg)

1
p ,

= c∥u∥Lk,p
δ,s
.
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Define K−1 by

K−1σ = e−(s+r+
n
p
)ρσ,

we can show in similar way that it is continuous and this completes the proof for

k ≥ 0. The case of k < 0 is similar.

Remark 29. In fact, in [77], the authors defined the weighted Sobolev spaces for

a more general class of admissible metrics on X, see [77, Definition 3.6] for more

details. It is easy to see that the metric g, which is of cusp type along the ends of

X, is admissible.

Though on an open manifold, from [44, pp. 14-15], the closure of smooth

functions with compact support, the closure of smooth function in the Sobolev

space, and the Sobolev space are all different in general. For the weighted Sobolev

spaces defined above, we have

Lemma 30. C∞
c (Λ0,∗X⊗EndE) is dense in Lk,pδ,s (Λ0,∗X⊗EndE,g) and Lk,pδ (Λ0,∗X⊗

EndE,g0).

Proof. In the case of Lk,pδ (Λ0,∗X ⊗EndE,g0), we can cover X with the union of an

atlas of finite open covers of the compact submanifold M and the ends Zk, then

as the geometry of the bundles involved are translation invariant and hence the

corresponding statement on density of compactly supported smooth functions on

Rn applies. Then use the above map K and we can therefore prove the statement

for Lk,pδ,s (Λ0,∗X ⊗EndE,g).

With the isomorphism K, the multiplication theorem and Sobolev embedding
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theorem on the space Lk,pδ , which is accounted in detail in Appendix A, have the

following form on the space Lk,pδ,s .

Lemma 31 (Multiplication Theorem). Let E,E′ be two bundles over X equipped

with adapted Hermtian metrics. The tensor product on smooth sections induces an

continuous map

Lk1,p1

δ1,s1
(E) ×Lk2,p2

δ2,s2
(E′) → Lk,pδ,s (E ⊗E′)

provided k ≤ min(k1, k2), δ1 + δ2 > δ, and k − 2/p < k1 − 2/p1 + k2 − 2/p2.

Lemma 32 (Weighted Sobolev Embedding). Let E be a bundle equipped with an

adapted Hermtian metric. Let k, l ∈ N, 1 < p, q < ∞, a ∈ R, δ, δ′ ∈ Rm,

Lk,pδ,s (E) → Ll,q
δ′,s+n(1/p−1/q)

(E)

is continuous when

1. k ≥ l, and k − 2/p ≥ l − 2/q,

2. Either 1 < p ≤ q and δ ≥ δ′ or 1 < q < p and δ > δ′;

Moreover, we have

1. If k > l ≥ 0, k − 2/p > l − 2/q and δ > δ′, then the above map is compact;

2. If k − 2/p > 0, and δ > 0, then Lk,pδ,s (E) ↪ e−sρC0
δ (E) is continuous, where the

weighted C0
δ -norm is given by

∥u∥C0
δ
= sup
z∈X

{ eδτ ∣u(z)∣}.
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Proof of Lemma 31 and Lemma 32. These follow directly from Lemma 28, and the

corresponding results of Lk,pδ as stated in Lemma 125 and Lemma 126.

As we are interested in operators that are close to the local model (2.7) and

(2.6), we need the following: with respect to the fixed orthonormal frames along the

cusp end Zk and considering the following diagonal matrix of the parabolic weights

αk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1,k

⋱

αn,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we get the decomposition

EndE = EndED ⊕EndEH

where EndED = ker(adαk) and EndEH = ker(adαk)⊥.

With respect to such a decomposition, the action of the model covariant deriva-

tive in (2.7) is given by

dαk u =
⎧⎪⎪⎨⎪⎪⎩

duD,

duH + i [αk, uH]dx.

Also, if the weight δ ∈ Rm > 0, then any u ∈ Lk,pδ,s (EndE) vanishes at infinity of

X. In order to define complex gauge transformations that preserve the flag structure,

we need uD, the block diagonal of u, to have limiting values. For that purpose, we

define
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Definition 33. For 1 < p < 1, L̂1,p
δ,s(EndE) is the space of u ∈ L1,p

loc(EndE) satisfying

uH ∈ L1,p
δ,s(EndE) and uD such that

(∥e−τu∥p
Lp
δ,s

+ ∥∇u∥p
Lp
δ,s+1

)1/p

is finite. Similarly, we define L̂2,2
δ,s(EndE) as the space of u ∈ L2,2

loc(EndE) satisfying

uH ∈ L2,2
δ,s(EndE) and uD such that

(∥e−τu∥2
L2
δ,s
+ ∥∇u∥2

L1,2
δ,s+1

)1/2

is finite.

Lemma 34. (cf. [13, p.10-11])

1. (Radial Poincare Inequality.) For any p > 1, if δ < 0 and a local section u of

EndE on the end Zk vanishes on the boundary of Zk, or if δ > 0 and u vanishes

near the infinity of Zk, then

∥du
dy

∥Lp
δ,s+1

≤ c∥u∥Lp
δ,s
.

In particular, if δ < 0, then

L1,p
δ−1,s = L̂

1,p
δ−1,s.

2. (Existence of Limiting Value.) For p > 2 and δ > 0 such that 1 − 2/p < δ, then
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any u ∈ L̂1,p
δ,s ⊂ C0(D(e−ak)) and

u(z) − u(∞) ∈ L1,p
δ,s .

Proof. This follows directly from Lemma 28 and Lemma 128.

Corollary 34.1. The space L̂2,2
δ,s(EndE) is a Banach space. Moreover, the subspace

L2,2
δ,s(EndE) is of finite codimension ∑i,km

2
i,k.

Proof. By definition and Lemma 32, any section u ∈ L̂2,2
δ,s(E) lies in Lpδ−1,s for any

p > 2 and ∇u ∈ Lpδ , hence by Lemma 34, u has a limiting values uk(∞) along each

cusp Zk. Let χk ∶ Z → [0,1] be smooth cutoff functions such that it equals 1 along

the cusp end Zk for y ≥ 2 and vanishes outside Zk for y ≤ 1. By Lemma 34,

u −∑
k

χkuk(∞)

belongs to L2,2
δ,s . Let P denote this fixed projection from L̂2,2

δ,s to L2,2
δ . We see that,

L̂2,2
δ contains L2,2

δ as a finite codimension subspace, which implies that L̂2,2
δ is a

Banach space and the codimension is determined by the size of the block diagonal

as prescribed by the parabolic structure.

Let us also define

Definition 35. The space of reduced sections of EndE is given by

S2,2
δ,s (EndE) ∶= {u ∈ L̂2,2

δ,s(EndE),∫
X
tr(u) dvg = 0},
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which is the L2-orthogonal complement of the space of constant sections C⊗ IdE in

L̂2,2
δ (EndE).

Remark 36. Note that S2,2
δ,s (EndE) is an ideal as [u,v] = 0 for all u, v ∈ S2,2

δ,s (EndE),

and can therefore be identified with the Lie algebra of G̃ C
δ .

We conclude this part of discussion by the following a priori estimate

Lemma 37. (cf. [77, Theorem 3.7])

For all 1 < p < ∞, k ∈ Z, and δ ∈ Rm, given any Dolbeault Laplacian ∆A on

EndE,

1. ∆A is continuous from Lk,pδ,s (EndE) to Lk−2,p
δ,s+2 (EndE),

2. For all u ∈ Lk,pδ,s (EndE), there exists a constant c > 0 independent of u such

that

∥u∥Lk,p
δ,s

≤ c(∥∆Au∥Lk−2,p
δ,s+2

+ ∥u∥Lk−2,p
δ,s

).

Remark 38. In the case of noncompact manifold, Fredholmness does not follow

directly from the a priori inequality.

2.3.2 Module Structure

Let d0 be any unitary connection on E that agrees with (2.7) with respect to

the fixed adapted orthonormal frames of E along each cusp end Zk. Let ∂̄0 denote

the (0,1)-part of d0.

Definition 39. We define the space of Dolbeault operators adapted to the parabolic
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structure of E as

Cδ = {∂̄0 + γ ∣γ ∈ L1,2
δ,s+1(Λ0,1X ⊗End(E)},

and the space of unitary connections adapted to the parabolic structure of E as

Aδ = {d0 + a ∣a ∈ L1,2
δ,s+1(Λ0,1X ⊗ u(E)}.

Also, we define the complex gauge group as

G C
δ = {g ∈ L̂2,2

δ,s(EndE) ∣ det g ≠ 0},

and the unitary gauge group as

Gδ = {g ∈ L̂2,2
δ,s(U(E)) ∣ g∗g = Id}.

Note that these definitions depend on the choice of adapted orthonormal

frames along each cusp end, for them to be independent of such a choice, we define

Definition 40. Any choice of weight δ ∈ Rm is called admissible with respect to the

fixed parabolic structure of E if

0 < δ < inf
k=1,⋯,m,αi>αj

(αi,k − αj,k,1 − αi,k + αj,k).

From Remark 15, it is clear that
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Lemma 41. For admissible choice of weights δ ∈ Rm, the complex gauge transfor-

mation (resp. unitary gauge transformation) between any two the adapted bases of

E (resp. To (E,h)) belongs to G C
δ (resp. Gδ).

The following lemma shows that smooth operators with the right type of sin-

gularity are included in the weighted Sobolev spaces of operators just defined.

Lemma 42. (cf. [12, Proposition 2.7]) Given any choice of admissible δ ∈ Rm, we

have the following inclusion

C ⊂ Cδ, and G C ⊂ G C
δ .

Similarly, we also have

A ⊂ Aδ, and G ⊂ Gδ.

Proof. Consider the holomorphic bundle E → X. Let {fi,k}ni=1 be a local smooth

frame adapted to the corresponding flag structure around the marked points. Any

smooth Dolbeault operator ∂̄E can be written locally with respect to such a frame

as

∂̄E = ∂̄ + γk dz̄,

where γij,k are smooth functions on the closed disk D(0, e−ak). Now in terms of the

orthonormal frames ei,k = ∣z∣αi,kfi,k of the adapted Hermitian metric h, we obtain

component-wise

∂̄E = ∂̄ − αk
2

dz̄

z̄
+ ∣z∣αi,k−αj,kγij,k dz̄,
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which belongs to L1,2
δ provided δ is admissible. The other claims can be proved

similarly.

The following lemma is key to define the action of G C
δ (resp. Gδ) on Cδ (resp.

Aδ).

Lemma 43. (cf. [13, Lemma 3.5]) Let δ ∈ Rm satisfy 0 < δ < 1 and i = 0,1, the space

L1,2
δ,a+i(Λ0,iX ⊗ EndE) is a Banach module over the Banach algebra L̂2,2

δ,s(EndE).

Similar statements hold when EndE is replaced by u(E).

Proof. To show that L̂2,2
δ,s(EndE) is a Banach algebra, we need to show that for any

u, v ∈ L̂2,2
δ (EndE), uv also belongs to L̂2,2

δ,s(EndE).

For uD ∈ L̂2,2
δ,s , from its definition, we have uD ∈ L1,2

δ−1,s and ∇uD ∈ L1,2
δ,s+1, by

Lemma 32, uD ∈ Lpδ−1,s for some p > 2 and ∇uD ∈ Lpδ,s+1, in particular, uD ∈ L̂1,p
δ,s , which

by Lemma 34 implies that uD ∈ e−ρsC0
δ . In a similar way, uH ∈ e−ρsC0

δ . Therefore, the

pointwise multiplication and inversion are well-defined. Hence, it remains to check

the regularity. Let’s look at ∇2(uv) as an example. As ∇2(uv) = ∇2uv+u∇2v+∇u∇v,

the first two terms (both their "D" and "H" parts) belongs to L2
δ,s due to the fact

u, v ∈ e−ρsC0
δ (X) that we just discussed. For the third term, as ∇uD,∇vD ∈ Lpδ,s+1

for any p > 2 as we just discussed, by Lemma 32, we conclude that their product

lies in L2
δ,s. The rest part of the lemma can be proven in a similar manner.

Lemma 44. (cf. [13, Lemma 2.1]) Gδ is a Banach Lie group which acts smoothly

on Aδ by

g(dA) = g ○ dA ○ g−1
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and its Lie algebra is given by

Lie(Gδ) = L̂2,2
δ,s(u(E)).

Its action on is smooth. In analogue, G C
δ is a Banach Lie group that acts smoothly

on Cδ, and its Lie algebra is given by

Lie(G C
δ ) = L̂2,2

δ,s(EndE).

Proof. We will prove the above statement for G , while other statements can be

proved easily in a similar way. Define the following smooth function

F ∶ L̂2,2
δ,s(EndE) → S ∶= {a ∈ L̂2,2

δ,s(EndE), a = a∗}

u↦ uu∗ − id

and we will prove that 0 ∈ S is a regular value of F and hence F is an submersion

at every point of Gδ. For that purpose, we compute the differential of F at a ∈ Gδ

with respect to the direction h ○ a ∈ L̂2,2
δ,s(EndE):

D(F)a(h ○ a) =
d

d t
∣t=0F (a + t h ○ a)

= a ○ a∗ ○ h∗ + h ○ a ○ a∗

= h + h∗

Therefore, D(F) is surjective at every point of Gδ to S, by Implicit function theorem,
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Gδ is a smooth Banach manifold. Furthermore, the tangent space to Gδ is given by

the kernel of D(F) at a = id, which is given exactly by L̂2,2
δ,s(u(E)).

To see that Gδ is a Lie group, we need to show that pointwise multiplication Gδ×

Gδ → Gδ is well-defined and continuous, and see Lemma 43 for the proof. Similarly,

the inverse map u↦ u−1 is also smooth since u−1 = u∗ in Gδ.

As to the complex gauge group G C, it is an open subset of the Banach space

L̂2,2
δ,s(EndE) and the claim follows easily.

2.3.3 Fredholmness

In the following, given any unitary connection dA ∈ Aδ and Dolbeault operator

∂̄A ∈ Cδ on E, we investigate the Fredholmness of the related Laplacian operators.

We will only discuss the case with the Dolbeault operator as the argument for the

case of a unitary connection is similar. In fact, we show that

Theorem 45. (cf. [13, Lemma 5.1] ) For admissible choice of weight δ ∈ Rm and

any ∂̄A = ∂̄0 +A ∈ Cδ, the Dolbeault Laplacian

∆A ∶= ∂̄∗A∂̄A ∶ L̂2,2
δ,s(EndE) → L2

δ,s+2(EndE) (2.10)

is Fredholm, of index 0.

Proof. First note that, by Lemma 32 and Lemma 31, the perturbation A is a com-

pact operator, therefore we are reduced to prove Theorem 45 for ∆0 = ∂̄∗0 ∂̄0.

To see the Fredholmness of ∆0, as along each cusp end Zk, with respect to the
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fixed orthonormal frames {ei}ni=1 of E, the action of ∆0 on EndE is of the form

∆0u = ∑
i,j

{ − y2 d
2

dy2
− y2( d

dx
+ i(αi − αj))

2}uijei ⊗ e∗j ,

i.e., it is the Beltrami Laplacian of underlying hyperbolic metric twisted by the

parabolic weights. By [77, Theorem 5.2], it is Fredholm provided δ is away from

its indicial indices, which in our case, is the lattice generated by the eigenvalues

of the operator i ddx − (αi − αj), hence by the definition of admissible weights, ∆0 is

Fredholm.

As to the vanishing of the index of ∆0, this follows from Lemma 5.1 of [13]

and Lemma 28.

Remark 46. By Weitzenböck formula and the same argument as above, for any

unitary connection dA ∈ Aδ,

∆A ∶= d∗AdA ∶ L̂2,2
δ,s(u(E)) → L2

δ,s+2(u(E)), (2.11)

is Fredholm of index 0.

We conclude this part by recording the following result on small perturbation

of an elliptic operator.

Lemma 47 ([10], Proposition 1.11.). Suppose that P ∶ X → Y is a semi-Fredholm

map between Banach spaces X,Y . Then there are constants C, ε > 0 depending only

on P such that if P ′ ∶ X → Y is any semi-Fredholm map satisfying ∥P − P ′∥op < ε,
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then

dim kerP ′ ≤ dim kerP.
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Chapter 3: Gauge Theory of the Moduli Space of Stable Parabolic

Bundles

In this chapter, we present gauge theoretical constructions of the moduli space

of irreducible flat unitary connections, denoted by M ∗
HE, and of the moduli space

of stable parabolic bundles, denoted by M s
P. The program of using gauge theory

to investigate moduli problems was initiated by Atiyah and Bott in [6]. The con-

struction of moduli space of stable parabolic bundles over a Riemann surface with

cylindrical ends has been carried out by Daskalopoulos and Wentworth in [32] and

by Poritz in [96]. The construction of moduli space of stable parabolic Higgs bun-

dles has been carried out by Konno in [74]. In the second part of this chapter, we

study the Riemannian structure on M ∗
HE and the holomorphic structure on M s

P.

Our treatment here is inspired by that of Itoh in [67] and [68], where the moduli

space of Yang-Mills connections over a closed Kähler surface was studied.
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3.1 Construction of Moduli Spaces

3.1.1 Local Model of Dolbeault Operators

Before we dive into the construction of moduli space, let us digress and under-

stand that any Dolbeault operator ∂̄γ = ∂̄0+γ ∈ Cδ in fact defines the same parabolic

structure. In fact, we will show that there exists a local complex gauge transforma-

tion of E in a neighborhood of each cusp end Zk such that ∂̄γ can be put into the

standard form ∂̄0 as in (2.6), and then Deligne’s extension applies to get the desired

extension.

Since the problem is local in nature, we will work with a small punctured disk

D∗(ε) model of the cusp end Zk together with an adapted trivialization of E such

that γ is represented as a matrix of (0,1)-forms, our goal is to find over D∗(ε), by

shrinking it if needed, a complex gauge transformation

g ∶ D∗(ε) → GL(n,C),

with gγg−1 = ∂̄0gg−1 on D∗(ε). In fact, we will prove that,

Lemma 48. Given any choice of admissible weight δ ∈ Rm, there exists η > 0 such

that if ∥γ∥L1,2
δ,0

< η, there exist local continuous complex gauge transformation gk

such that gHk ∈ C0
δ′,−1 for some δ′ < δ with

g(∂̄0 + γ) = ∂̄0
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on each cusp end Zk.

To prove this, we need the following technical lemma concerning the Cauchy

kernel of ∂
∂z̄ on D∗(ε):

Lemma 49. For any 0 < α < 1, for any weight 0 < δ < α and p > 2, and any fdz̄ ∈

Lpδ,1(Λ0,1D∗(ε)), where D∗(ε) is equipped with the Poincaré metric, convolution with

the Cauchy kernel

u(z) = i

2π ∫
f(w)
z −wdz ∧ dz̄ (3.1)

provides an inverse to the following problem

(z̄ ∂
∂z̄

− α
2
)dz̄
z̄
u = f z̄,

satisfying

∥u∥C0
δ′
≤ C∥f z̄∥Lp

δ,1
,

for some 0 < δ′ < δ

Proof. By density of C∞
c ⊂ Lpδ , we will prove the statement for any compactly sup-

ported (0,1)-form f dz̄.

Note that

∂

∂z̄
− α

2

dz̄

z̄
= ∣z∣α ○ ∂

∂z̄
○ ∣z∣−α,

therefore we are reduced to solve

∂

∂z̄
( u

∣z∣α ) =
f

∣z∣α ,
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to which we can apply (3.1). By Hölder inequality, we get

∣u(z)∣ ≤ ∣z∣α∫
D(ε)

∣f ∣
∣w∣−1+δ+ 2

p

∣w∣((1+δ−α)−2 p−1
p

) ln ∣w∣
2
p

∣z −w∣ ∣dw∣2

≤ c∣z∣α∥f z̄∥Lp
δ
{∫

D(ε)
(∣w∣((1+δ′−α)

p
p−1

−2)

∣z −w∣
p
p−1

)∣dw∣2}
p−1
p

≤ c′∥f z̄∥Lp
δ
∣z∣α 1

∣z∣α−δ′

≤ c′∣z∣δ′∥f z̄∥Lp
δ
.

Hence the claim follows.

Proof of Lemma 48. (cf. [13, Lemma ]) Define the following Banach spaces

Uδ′ = {u ∈ C0(EndE) ∣uH ∈ C0
δ′,−1(EndE)};

Aδ = {γ ∈ Lpδ,0(EndE)}.

Observe that since γ ∈ L1,2
δ,0 , by Lemma 32, it belongs to Lpδ”,0 for some δ” < δ and p

large. We then pick a δ′ < δ”.

Write g = 1 + u, then we need to solve

∂̄0u = uγ + γ (3.2)

near each cusp end. As ∂̄0 is along each cusp end is of the form studied in Lemma

49, there is a bounded right inverse between Uδ′ and Aδ. This enables us to use the
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contraction mapping theorem to find a solution of (3.2). That is, we look at

u↦ G(uγ + γ).

As

∥G(uγ + γ) −G(vγ + γ)∥Uδ′ ≤ c∥u − v∥Uδ′∥γ∥Aδ ,

we conclude the proof by using the freedom of scaling

γ(z) ↦ rγ(rz),

and take r sufficiently small.

3.1.2 Mehta-Seshadri Theorem

Lemma 50. (cf. [74, Proposition 1.3, Theorem 1.5]) For any admissible choice of

weight δ ∈ Rm, the following map

C /G C → Cδ/G C
δ , (3.3)

and

A /G → Aδ/Gδ, (3.4)

are well-defined and bijective.

Proof. By Lemma 44 and Lemma 42, the maps defined above is well-defined. The
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injectivity follows from Lemma 41. To see that these maps are surjective, it follows

from Theorem 45 and the argument of Atiyah and Bott in Lemma 14.8 in [5]. See

also Proposition 2.8 of [12].

Definition 51. A unitary connection dA is called irreducible if its covariant deriva-

tive

dA ∶ L2,2
δ,s(u(E)) → L1,2

δ,s+1(Ω1(u(E))),

ψ ↦ dAψ,

has trivial kernel. A unitary connection is called reducible if it is not irreducible.

Set

StabA ∶= {g ∈ Gδ, dA g = 0},

to be the stabilizer of dA. It is easy to check that StabA is a group. Let Z (= S1)

denote the center of U(n), where we identify element of Z with constant sections

with value in Z, then Z ⊂ StabA for all dA ∈ Aδ. On the other direction, given a

g ∈ StabA, in a local trivialization, g−1 ○ dA ○ g − dA = g−1 dA g = 0. This implies that

g = c ⋅ idE, c ∈ S1, therefore, dA is irreducible precisely when StabA = Z. Then the

first covariant derivative dA in (3.11) can be interpreted as the infinitesimal action

of the gauge group Gδ on Aδ, and H0
A,δ measures the reducibility of dA. Let A ∗

δ

denote the space of irreducible unitary connections. As the action of G̃δ ∶= Gδ/Z is
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free, we call the quotient space

B∗ = A ∗
δ /G̃δ

as the moduli space of irreducible unitary connections.

Let A ∗
F,δ denote the space of flat irreducible unitary connections. As Fg(A) =

FA, the action of G̃δ preserves A ∗
F,δ. The quotient space

M ∗
HE = A ∗

F,δ/G̃δ

is called the moduli space of irreducible flat Hermitian connections. Infinitesimally

speaking, H1
A,δ represents the deformation of dA in M ∗

HE. We will denote by [dA]

the image of dA in the quotient space.

Similarly, we will define that

Definition 52. A Dolbeault operator ∂̄A ∈ Cδ is stable if there is a smooth repre-

sentative in its G C
δ -orbit, which exists by Lemma 42, is stable.

Let C s
δ denote the space of stable Dolbeault operators on E. We will denote

by

M s
P = C s

δ /G C
δ

as the moduli space of stable parabolic bundles.

To see the relation between M ∗
HE and M s

P, we consider the following map
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obtained with respect to the fixed adapted Hermitian metric h on E,

Φh ∶ Aδ Ð→ Cδ,

dA ↦ ∂̄A ∶= d0,1
A .

with its inverse given by the Chern connection construction, see Lemma 18, with

respect to the fixed adapted metric h.

By the same arguments as in Theorem 2.5 in [122] and Proposition 2.13 in

[12], we can show that

Lemma 53. Any Dolbeault operator whose Chern connection is flat and irreducible

is itself stable.

Hence the above map Φh has a well-defined restriction to

Φh ∶ A ∗
F,δ Ð→ C s

δ . (3.5)

On the other hand, Mehta and Seshadri [85] proved the following in the case

of rational parabolic weights,

Theorem 54 (Mehta-Seshadri [85]). Let E be a holomorphic bundle over X with

fixed parabolic structure, which is indecomposable and par-deg(E) = 0, then E is

stable if and only if there exists an irreducible unitary representation ρ ∶ π1(x) →

U(n) such that E ≅ Eρ. Here, Eρ denotes the Deligne’s extension to X.

Biquard [12] improved the above theorem to the case of real weights, and

showed that within each G C
δ -orbit of any stable ∂̄A ∈ Cδ, there exists a ∂̄′A, unique
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up to Gδ, such that the latter’s Chern connection with respect to h is irreducible

and flat. Hence the map Φh descends to the following bijection

Φh ∶ M s
P →M ∗

HE. (3.6)

Remark 55. Such a bijection as proved in [12] is between sets of equivalence classes.

Later on, we will improve this result and show that they are in fact a diffeomorphism

so that various differential geometric structures can be identified.

3.2 Geometry of Moduli Spaces: the Local Theory

3.2.1 Riemannian Metric on M ∗

HE

In this part, we construct the Riemannian metric explicitly on a local (non-

linear) Hermitian-Einstein slice of M ∗
HE.

By Lemma 47, irreducibility is an open condition, hence the tangent space

of A ∗
δ at any given point is given by L1,2

δ,s+1(Λ1X ⊗ u(E)), which is a subspace of

L2(Λ1X ⊗ u(E)). Therefore, we may define the L2-metric by

< φ,ψ >∶= ∫
X
tr(φ ∧ ∗ψ),

for any φ,ψ ∈ L1,2
δ,s+1(Λ1X ⊗ u(E)). Here tr denote the fiberwise matrix trace. Since

this definition is Gδ-invariant, it induces a natural metric on the quotient space

B∗
δ = A ∗

δ /G̃δ. To understand the induced metric better, we first construct, for any
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[dA] ∈ B∗
δ , a local (infinite dimensional) slice in A ∗

δ for the Gδ-action.

The proof of this claim is a typical implicit function theorem argument which

will be used extensively, hence we record it in the following for reference.

Theorem 56 (Implicit Function Theorem). Let X,Y,Z be Banach spaces, U ⊂X,

V ⊂ Y open sets and

F ∶ U × V → Z

a smooth map. Let (x0, y0) ∈ U × V and z0 ∶= F (x0, y0). Suppose that its Frechet

derivative of the second variable

Dy0F (x0, ⋅) ∈ L (Y,Z),

is invertible. Then there exist open neighborhoods U ⊂ U of x0 in X, V ⊂ V of y0

in Y , and a smooth map G ∶ U → V such that the set S of solution (x, y) of the

equation F (x, y) = z0 which lie inside U × V can be identified with the graph of G,

i.e.,

{(x, y) ∈ U × V ;F (x, y) = z0} = {(x,G(x)) ∈ U × V ;x ∈ U}.

Proposition 57. For any admissible choice of weight δ ∈ Rm and any dA ∈ A ∗
δ ,

define the slice neighborhood of dA by SA = {a ∈ L1,2
δ,s+1(u(E)), d∗A a = 0}. Then the

following map

πA ∶ SA Ð→B∗
δ ,

a↦ [dA + a],
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is a local homeomorphism near a neighborhood of 0 ∈ SA and that of [dA] in B∗

with the induced topology. Here, d∗A is the formal adjoint of dA with respect to the

L2-inner product.

Proof. Firstly, we show that the map π is a locally surjective map near a = 0. That

is to show that for any dA + b ∈ A ∗
δ with ∥b∥L1,2

δ
sufficiently small, there exists a

unitary gauge transformation g ∈ G̃δ such that

g(dA + b) − dA ∈ SA.

Consider the following smooth map

FA ∶ G̃δ × SA → A ∗
δ ,

(g, a) ↦ g−1 ○ (dA + a) ○ g.

Its differential at (IdE,0) is given by

dFA(0,0) ∶ S2,2
δ,s (u(E)) × kerd∗A → Aδ(u(E)),

(u, a) ↦ dAu + a

Due to fact that L2,2
δ,s ⊂ C0

δ for s ≤ 0 and that L1,2
loc has a continuous restriction to any

hypersurface onX, we can apply integration by parts and considering Remark 46, we

get that imdA and kerd∗A are orthogonal with respect to the L2 inner product. Hence

dFA is injective. Let GA denote the Green’s operator of the Bochner Laplacian
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∆A = d∗AdA, which exists again by Remark 46. For any dA + b ∈ Aδ, we have

d∗A (b − dA ○GA ○ d∗A b) = 0

and dFA is surjective. Therefore, by implicit function theorem, there exists a suf-

ficient small ε > 0 such that for any a ∈ L1,2
δ,s+1(u(E)) with ∥a∥L1,2

δ,s+1
< ε, there exist

unique b ∈ SA and u ∈ S2,2
δ,s both close to 0, such that

e−u ○ (dA + a) ○ eu = dA + b.

Here we use the fact that exp ∶ u(n) → U(n) is a local homeomorphism. Therefore,

π is locally surjective on SA,ε.

Now we prove that π is locally injective. That is to say, there exists ε > 0

sufficiently small, for given any a1, a2 ∈ SA with ∥ai∥L1,2
δ,s+1

< ε and a unitary gauge

transformation g ∈ Gδ such that g(dA + a1) = dA + a2, then g = c ⋅ IdE for some c ∈ S1.

Without loss of generality, we may assume that g = IdE + g0, where g0 ∈ S2,2
δ,s (u(E)).

By Remark 46, there exists a constant c > 0 such that

∥g0∥L2,2
δ,s

≤ c∥dA g0∥L1,2
δ,s+1

.

Therefore, using the fact that dA g = dA g0 = ga1−a2g, where ai = dAi−dA and Lemma

32, we have

∥g0∥L2,2
δ,s

≤ c′(∥IdE∥L2,2
δ,s
+ ∥g0∥L2,2

δ,s
)(∥a1∥L1,2

δ,s
+ ∥a2∥L1,2

δ,s+1
).
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which implies that by choosing a1, a2 sufficiently small, g0 is close to 0 and we can

invoke the proof of the surjectivity to conclude that π is locally injective.

Let us now discuss the Riemannian metric on the slice SA,ε, the latter being

interpreted as a local chart on B∗
δ . For each a ∈ SA,ε, by Remark 46, we have the

following orthogonal decomposition with respect to dA + a, that is

L1,2
δ,s+1(Ω1(u(E))) = imdA+a ⊕ kerd∗A+a,

Thus any b ∈ TaSA,ε ≅ kerd∗A splits into its vertical part and horizontal part

b = bv + bh, (3.7)

with bv ∈ imdA+a ∩ kerd∗A and bh ∈ kerd∗A+a ∩ kerd∗A. Therefore, the L2-inner metric

at a ∈ SA,ε is given by

⟨ b1, b2⟩A+a = ⟨ bh1 , bh2 ⟩, (3.8)

where the "h" refers to the decomposition (3.7) with respect to dA + a.

The following concerns the dependence of the above L2-metric on different

choices of slice representations, that is

Lemma 58. The L2-metric as defined in (3.8) is independent of the choice of slice

representations and defines a Riemannian metric on B∗.

Proof. Suppose that SA1,ε and SA2,ε are two ε-slices of B∗ such that SA1,ε ∩ π−1
A1
○

πA2(SA2,ε) ≠ ∅, with dA1 + a1 = dA2 + a2, then for a small neighborhood of a1, there
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exists a smooth gauge transformation ga ∈ Gδ for each a close to a1 in SA1,ε ∩ π−1
A1
○

πA2(SA2,ε) such that ga(A1 +a) = A2 +a′ ∈ SA2,ε, i.e., ga is the ”change of coordinate”

from the neighborhood of a1 to a neighborhood of a2. We may define

F ∶ SA1,ε ∩ π−1
A1
○ πA2(SA2,ε) → SA2,ε ∩ π−1

A2
○ πA1(SA1,ε),

a↦ ga(dA1 + a) − dA2 .

Its differential dFa can be computed by

dFa(b) =
d

dt
F (dA1 + a + tb)∣t=0

= d

dt
g(a+tb)(dA1 + a + tb)∣t=0

.

with g(a+tb) = ga ⋅ expψt and ψ̇ = d
dt
∣
t=0
ψt, we thus have

= d

dt
∣
t=0
g(a+tb)(dA1 + a) +

d

dt
∣
t=0
g(a+tb)(tb)

= dA2+a2ψ̇ + ga(b).

Thus the horizontal part of dFa(b) is given by ga(bh), which implies the desired

statement.

Because Fg(A) = g ○ FA ○ g−1, M ∗
HE is a finite dimensional submanifold of the

Banach manifold B∗, and the Riemannian metric (3.8) of B∗ induces one on M ∗
HE.

As the local expression of the metric depends on the local charts chosen on M ∗
HE.

Definition 59. For any [dA] ∈ M ∗
HE, we will call the local (nonlinear) slice around
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[dA] given by

UA, ε = M ∗
HE ∩ SA,ε = {dA + a, ∥a∥L1,2

δ,s+1
< ε, d∗A a = 0, dA a + a ∧ a = 0} (3.9)

with the induced topology from B∗ as the Hermitian-Einstein slice.

As the tangent space at [dA + a] ∈ UA,ε is given by

TaUA,ε = {b ∈ L1,2
δ,s+1(Λ1X ⊗ u(E)); d∗A b = 0, dA+a b = 0},

the restriction of the L2-metric (3.8) on UA,ε has the following expression

⟨ b1, b2 ⟩A+a = ⟨Pa(b1), Pa(b2) ⟩, (3.10)

where b1, b2 ∈ TaUA,ε and Pa denotes the projection ontoH1
A+a,δ with respect to dA+a.

Remark 60. A more traditional choice of slice near [dA] is to use the first coho-

mology group of the de Rham complex

0→ L̂2,2
δ,s(Ω0(u(E))) dAÐ→ L1,2

δ,s+1(Ω1(u(E))) dAÐ→ L2
δ,s+2(Ω2(u(E))) → 0. (3.11)

That is, there exists a sufficiently small ε > 0 such that

ŨA, ε = {dA + a, ∥a∥L1,2
δ,s+1

< ε, d∗A a = 0, dA a = 0} ⊂H1
A,δ,

is a linear local slice near [dA] ∈ M ∗
HE. To understand the Riemannian metric on this
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slice involves the Kuranishi map, which is not suitable for variation computation in

the Dolbeault coordinate to be defined later, hence we will refer the reader to [68,

pp.16-17] for more detailed discussion.

We conclude this part of discussion by the following regularity result on the

connections in the Hermitian-Einstein slice.

Lemma 61. Suppose dA ∈ A ∗
δ is any smooth irreducible flat connection on E, then

any connection dA + a ∈ UA,ε lies in C∞ ∩C0
δ′ for any 0 < δ′ < δ.

Proof. This follows from the a priori estimate in Lemma 37, the Sobolev multipli-

cation theorem 31, and a bootstrap argument as in [38, Proposition (2.3.4)].

3.2.2 Complex Structure of M s
P

In this part, we will show that M s
P is a (smooth) complex manifold. That

is, we construct near any [∂̄A] ∈ M s
P a local complex chart and show that the

transformation between any two such local coordinate charts is holomorphic.

To begin with, given any ∂̄A ∈ C s
δ , we consider the following two term Dolbeault

complex

0→ L̂2,2
δ,s(Ω0(EndE)) ∂̄AÐ→ L1,2

δ,s+1(Ω0,1(EndE))) → 0. (3.12)

By a similar argument as in Lemma 57 and the fact that stability is an open condition

which follows from Lemma 47.

Definition 62. There exists, near any ∂̄A ∈ C s
δ , the following Dolbeault slice of the
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form

VA, ε = {∂̄A + a, ∥a∥L1,2
δ,s+1

< ε, ∂̄∗Aa = 0} ⊂H0,1
A,δ, (3.13)

for the G C
δ action on C s

δ .

Here H0,1
A,δ denotes the first cohomology group of the above complex, with a

canonical complex structure given by multiplication by i.

Suppose ∂̄A1 , ∂̄A2 ∈ C s
δ with their respective local Dolbeault slices satisfy that

VA1,ε1 ∩ VA2,ε2 ≠ ∅, i.e., there exist a, b ∈ C s
δ such that ∂̄A1 + a = ∂̄A2 + b. Moreover,

by an implicit function theorem type argument as in Lemma 67, for any a′ in a

sufficiently small neighborhood of a, there exists a unique ga′ ∈ G̃ C
δ close to identity

such that ga′(∂̄A1 + a′) ∈ VA2,ε. Moreover, the dependence of ga′ on a′ is smooth.

In the following, we show that, ga′ depends on a′ holomorphically, that is

Proposition 63. The Dolbeault slices defined as above endow M s
P with a holomor-

phically compatible system of complex local charts.

We will need the following technical lemma below.

Lemma 64. [61, Proposition 3.35] Let X be any element in Mn(C), we define

adX ∶Mn(C) →Mn(C),

by adX(Y ) = [X,Y ]. Then for any Y ∈Mn(C), we have

exp(X)Y exp(−X) = ∑
n≥0

adnX(Y ) t
n

n!
= Y + [X,Y ] + 1

2
[X, [X,Y ]] + ⋯
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Remark 65. Note that in the above formula, every term depends on Y linearly.

Furthermore, the above expression converges with infinite radius in ∥X∥.

Proof of Proposition 63. Let ∂̄A1 + a(t) be a holomorphic family in VA1,ε1 such that

a(0) = a. Let gt be a family of complex gauge transformations such that

gt(∂̄A1 + a(t)) = ∂̄A2 + b(t); g0(∂̄A1 + a0) = ∂̄A2 + b0.

We first claim that when ∥bt∥L1,2
δ,s+1

is small, such a family is unique and close to the g0

in L̂2,2
δ,s norm. Set ht = gt ○ (g0)−1, h0 = Id, and there exists a family ut ∈ S2,2

δ,s (EndE)

such that ht = exp(ut) with u0 = 0. Moreover, we have

gt(∂̄A1 + a(t)) = ∂̄A2 + b + ∂̄A2+b(ht)h−1
t + htg0 a(t) g−1

0 h−1
t ,

= ∂̄A2 + b + ∂̄A2+b(ut) + g0 a(t) g−1
0 +R(ut, at).

In the second equality, we have used Lemma 64, and R(ut, at) denotes the terms of

order greater or equal to two. Since the it lies in VA2,ε2 , by definition,

∂̄∗A2
∂̄A2+b0ut + ∂̄∗A2

(g0 a(t) g−1
0 ) + ∂̄∗A2

R(ut, at) = 0

By Theorem 45, we can apply ∆−1
A2

on S2,2
δ,s (EndE) and we get,

F (ut, at) ∶= ut +∆−1
A2
∂̄∗A2

([b0, ut]) +∆−1
A2
∂̄∗A2

(g0 a(t) g−1
0 ) +∆−1

A2
∂̄∗A2

R(ut, at) = 0

Note that F (0,0) = 0 and Dut=0F (⋅, at) is invertible provided ∥b0∥L1,2
δ,s+1

is sufficiently
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small by the following estimate

∥∆−1
A2
∂̄∗A2

([b0, ut])∥S2,2
δ,s
≲ ∥b0∥L1,2

δ,s+1
∥ut∥S2,2

δ,s
,

which in turn results from Theorem 45 and Lemma 31. By the implicit function

theorem, ut is unique and depends on t smoothly.

Now, apply ∂
∂t̄ to F and by the fact that at is holomorphic, we get that

u̇t +∆−1
A2
∂̄∗A2

([b0, u̇t]) +∆−1
A2
∂̄∗A2

R(u̇t, at) = 0,

where ⋅ denotes ∂
∂t̄ . Again, the last two terms can be made sufficiently small provided

∥a0∥L1,2
δ,s+1

and ∥b0∥L1,2
δ,s+1

are sufficiently small. Therefore, we have that

∥u̇t∥S2,2
δ,s

≤ c(∥a0∥L1,2
δ,s+1

+ ∥b0∥L1,2
δ,s

)∥u̇t∥S2,2
δ,s

< ∥u̇t∥S2,2
δ,s
,

which implies that u̇t = 0 and our claim follows.

To sum up, we have showed that M s
P is a complex manifold, and the restriction

of the canonical line bundle on VA,ε is given by

λ∣
VA,ε

= detTM s
P∣VA,ε = detT ∗VA,ε. (3.14)
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3.2.3 Hermitian Metric on M s
P

Given any irreducible flat unitary connection dA ∈ A ∗
δ , we denote its (0,1) part

by ∂̄A, which defines a stable parabolic structure on E by Lemma 53. We have seen

that there exist two different local slices: the Hermitian-Einstein slice UA,ε ⊂ M ∗
HE

and the Dolbeault slice VA,ε ⊂ M s
P.

Definition 66. We will refer the image of UA,ε in M s
P under the map Φh, denoted

by U0,1
A,ε, as the Hermitian-Einstein slice in M s

P.

In particular, DΦh induces a R-linear isomorphism between the tangent bun-

dles of these two different Hermitian-Einstein slices. For dA + a ∈ UA,ε with ∂̄A + a0,1

its (0,1)-part in U0,1
A,ε, we define the following Hermitian metric,

⟨ b0,1
1 , b0,1

2 ⟩a0,1 = ⟨Pa(b1), Pa(b2) ⟩, (3.15)

for any b0,1
1 , b0,1

2 ∈ TaU0,1
A,ε, which is canonically the (0,1)-part of TaUA,ε, and Pa is the

orthogonal projection with respect to ∂̄A +a0,1. In the following, we will construct a

local diffeomorphism from VA,ε to U0,1
A,ε to pull-back the above Hermitian metric to

the Dolbeault slice VA,ε.

Theorem 67. Let dA ∈ A ∗
δ be a fixed irreducible flat unitary connection. For ε > 0

sufficiently small, and for any ∂̄A + µ ∈ VA,ε, there exists a unique gµ ∈ G̃ C
δ close to

the identity which depends on µ smoothly satisfying

g−1
µ (∂̄A + µ) = gµ ○ (∂̄A + µ) ○ g−1

µ ∈ U0,1
A,ε.
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Proof. In order to find gµ ∈ G̃ C
δ such that g−1

µ (∂̄A+µ) lies in U0,1
A,ε, by Kähler identity,

we only need

∂̄∗A(−∂̄Agµg−1
µ + gµµg−1

µ ) = 0. (3.16)

Set gµ = exp(u) with u ∈ S2,2
δ,s (EndE), by Lemma 64, (3.16) simplifies to be

∂̄∗A∂̄Au − ∂̄∗A[u,µ] + ∂̄∗AR(u,µ) = 0. (3.17)

Applying ∆−1
A on S2,2

δ,s (EndE) to (3.17), we get

u −∆−1
A ∂̄

∗
A[u,µ] +∆−1

A ∂̄
∗
AR(u,µ) = 0.

Applying implicit function theorem to the linearization of (3.17), we can argue as in

Lemma 57 and prove the existence and uniqueness of u, and the smooth dependence

of u on µ.

To sum up, for any smooth ∂̄A ∈ C s
δ , if its Chern connection dA satisfies F (A) =

0, then we have constructed near it two different local slices, U0,1
A,ε and VA,ε, for the

action of G C
δ on C s

δ . That is, they both provide a local coordinate patch of M s
P near

[∂̄A]. Moreover, we have constructed a unique smooth map

ΨA ∶ VA,ε → G̃ C
δ , (3.18)

∂̄A + µ↦ gµ,
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satisfying

gµ(∂̄A + µ) = gµ ○ (∂̄A + µ) ○ g−1
µ ∈ U0,1

A,ε.

In particular, g0 = Id. Via this identification, we pull back the Hermitian metric

(3.15) of U0,1
A,ε to VA,ε.

Definition 68. The Hermitian metric on T∂̄A+µVA,ε ≅ H
0,1
A,δ(EndE) is given for any

X,Y ∈H0,1
A,δ(EndE) by

⟨X,Y ⟩A+µ ∶= ⟨Pµ(gµXg−1
µ ), Pµ(gµY g−1

µ ) ⟩, (3.19)

where

Pµ ∶ L1,2
δ,s+1(Ω0,1(EndE)) →H0,1

A+a,δ(EndE),

is the orthogonal projection with respect to decomposition associated with the Dol-

beault operator gµ ○ (∂̄A + µ) ○ g−1
µ ∈ U0,1

A,δ.

By the same argument as in Lemma 58, we can show that the above Hermitian

metric is well-defined on M s
P under change of coordinate, hence patch together to

endow M s
P with a global Hermtian metric.
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Chapter 4: Kähler Metric on the Moduli Space of Stable Parabolic

Bundles

In this chapter, we prove that the Hermitian metric (3.19) is Kähler, moreover,

the Dolbeault slices provide an atlas of normal coordinate charts on M s
P . Then we

proceed to compute the L2-curvature of the canonical bundle of M s
P over a Dolbeault

slice VA,ε.

4.1 Kählerian Property

Fix a basis {µ1,⋯, µd} ⊂H0,1
A,δ(EndE), where d denotes the complex dimension

of M s
P. For any point ∂̄A + tµ ∈ VA,ε, the Hermitian metric (3.19), with respect to

the fixed basis is then given by

hij̄(t) ∶= ⟨Pt(gtµ ○ µi ○ g−1
tµ ), Pt(gtµ ○ µj ○ g−1

tµ ) ⟩, (4.1)

where gtµ is the unique complex gauge transformation close to identity satisfying

∂̄A + γ(t) ∶= gtµ ○ (∂̄A + tµ) ○ g−1
tµ ∈ U0,1

A,ε,
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which exists and depends on t smoothly as a result of Theorem 67. In the following,

we will show that hij̄ osculates to second order at ∂̄A ∈ VA,ε, i.e., the following

equality

hij̄(0) = δi,j,
∂

∂ µk
hij̄(0) =

∂

∂ µ̄k
hij̄(0) = 0,

is valid for any i, j, k = 1,⋯, d. This is one of the equivalent definition for a Hermitian

metric to be Kähler. As the choice of ∂̄A is arbitrary, this implies that

Proposition 69. The Hermitian metric defined in (3.19) is Kähler on M s
P. More-

over, the Dolbeault slice VA,ε is a local normal coordinate.

Lemma 70.
∂

∂ t
(g∗tµkgtµk)∣

t=0

= ∂

∂ t̄
(g∗tµkgtµk)∣

t=0

= 0.

Proof. Set

∂̄A + γ = gµ(∂̄A + µ)g−1
µ , (4.2)

where ∂̄A + γ satisfies that

− ∂̄A(γ∗) + ∂A(γ) − [γ, γ∗] = 0, (4.3)

with γ(0) = 0 and g(0) = Id. Differentiate (4.2) with respect to t and set t = 0, we

have

∂̄Aġµk = µk − γ̇
0,1
k . (4.4)

where ẋ means dx
d t . Differentiate (4.2) with respect to t̄ at t = 0, and taking its
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adjoint with respect to h, we get

∂Aġ
∗
µk

= γ̇1,0
k . (4.5)

Differentiating (4.3) with respect to t and take t = 0, we get

∂̄Aγ̇
1,0
k + ∂Aγ̇0,1

k = 0.

Now, apply ∂̄∗A and ∂∗A to (4.4) and (4.5), respectively and use Kähler identities, we

can sum these together and get

∂̄∗A∂̄A(ġµk + ġ∗µk) = 0.

As ġµk ∈ S
2,2
δ,s (EndE), by Theorem 45, we have

∂

∂ t
(g∗tµkgtµk)∣

t=0

= ġµk + ġ∗µk = 0.

The case of ∂
∂ t̄

∣
t=0

(g∗tµkgtµk) = 0 is similar and this completes the proof.

Proof of Proposition 69. Note that

∂

∂ t
hij̄(t)∣

t=0

= ∂

∂ t
⟨Ad g∗tµ ○ (1 − ∂̄γ∆−1

γ ∂̄
∗
γ) ○Ad gtµ(µi), µj ⟩∣

t=0

,

= ∂

∂ t
⟨Ad g∗tµgtµ(µi), µj ⟩∣

t=0

− ∂

∂ t
⟨Ad g∗tµ ○ ∂̄γ∆−1

γ ∂̄
∗
γ ○Ad gtµ(µi), µj ⟩∣

t=0

,

= 0.
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where in the last equality, we have used Lemma 70 to the first term, while for the

second term, note that g0 = Id and Im ∂̄A is orthogonal to µj with respect to the L2

inner product.

4.2 L2-Curvature of the Canonical Bundle

Recall that the canonical line bundle

λ ∶= det(T ∗VA,ε) ≅ det T ∗M s
P∣VA,ε , (4.6)

is equipped with a Hermitian metric induced from (3.19) on VA,ε. Fix an orthonormal

basis {µi, i = 1,⋯, d} ⊂H0,1
A,δ(EndE) to simplify our computation. Let M denote the

d×d matrix valued function on VA,ε with its (i, j)-th entry given by hij̄(t), see (4.1).

The curvature form of λ can be written as

ΘL2(λ) = ∂∂̄ logdetM. (4.7)

In the following, we evaluate (4.7) over the Dolbeault slice VA,ε. More explicitly,

Theorem 71. The curvature of the canonical line bundle λ = detT ∗M s
P with respect

to the induced L2-Hermitian metric is given by

ΘL2(µ, ν̄) = −Tr (ad fµ, ν̄ ○ PA − adµ ○∆−1
A ○ ∗adν ∗ ○PA),

for any µ, ν ∈ H0,1
A,δ ≅ T∂̄AVA,ε on VA,ε. Here Tr denotes the operator trace on
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L2(Ω0,1(EndE)) and adµ denotes the adjoint action [µ, ⋅].

For the proof of Theorem 71, we will need the following technical lemmas.

Lemma 72. For any µ, ν ∈H0,1
A (EndE), we have

∂2

∂ t∂ s̄
(g∗tµ+sν ○ gtµ+sν)∣

t=s=0
= −∆−1

A (∗[∗µ, ν]). (4.8)

As the proof of Lemma 72 is lengthy and computational, we postpone its proof

in Appendix C. In the following, we will denote ∆−1
A (∗[∗µ, ν]) by fµ,ν̄ , and since it

belongs to L2,2
δ,s(EndE), by Lemma 34, its limiting value along each cusp end Zk

exists and we will denote it by F k
µν̄ which lies in EndEpk . Moreover, we have the

following symmetry property,

f∗µν̄ = fνµ̄. (4.9)

Lemma 73. The second variation of hij̄ is given by

∂2

∂ s̄ ∂ t
hij̄ ∣

t=s=0
= −⟨ [ fµ, ν̄ , µi ] − [µ,∆−1

A ∗ [ν, ∗µi ] ], µj ⟩.

Proof.

∂2

∂ s̄ ∂ t
hij̄ ∣

t=s=0
= ∂2

∂ s̄ ∂ t
⟨Ad(g∗g)(µi), µj ⟩∣

t=s=0

− ∂2

∂ s̄ ∂ t
⟨Ad(g∗g)(∂̄A + tµ + sν)Ad(g−1)∆−1

γ Ad(g)

Ad(g∗g)−1(∂̄A + tµ + sν)∗ Ad(g∗g)(µi), µj ⟩∣
t=s=0

,

= −⟨ [fµ,ν̄ , µi], µj ⟩ − ⟨ [µ,∆−1
A ∗ [ν,∗µi]], µj ⟩.
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In the last equality, we have used Lemma 70 and Lemma 72.

Proof of Theorem 71. For µ, ν ∈H0,1
A (EndE),

ΘL2(µ, ν̄) = ∂t∂s̄ logdetM ∣
t=s=0

,

= ∂t trM−1∂s̄M ∣
t=s=0

,

= (trM−1∂t∂s̄M − trM−1∂tMM−1∂s̄M)∣
t=s=0

.

where tr denote the ordinary matrix trace. Since {µi} chosen to be orthonormal

at ∂̄A, the result follows from Proposition 69, Lemma 72, and Lemma 73, and the

following fact that for a finite dimensional subspace V in a Hilbert space E, with

any orthonormal basis e1, , ed, and linear operator F , we have

d

∑
i,j=1

⟨Fei, ej ⟩ = Tr(F ○ P ),

where P is the orthogonal projection onto V .

4.3 Identification With the Index Bundle

For any ∂̄γ = ∂̄A + γ in the Hermitian-Einstein slice U0,1
A,ε, by Proposition 133,

the following L2 complex

0→ L2(EndE) ∂̄γÐ→ L2(Λ0,1 ⊗EndE) → 0,
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is Fredholm. We may define the determinant line bundle on U0,1
A,ε as follows,

det(ind ∂̄γ) = (Λmaxker ∂̄γ) ⊗ (Λmaxcoker ∂̄γ)−1,

= (Λmaxcoker ∂̄γ)−1.

where we use the stability condition of the associated parabolic bundle (E, ∂̄γ). As

the dimension of coker ∂̄γ remains constant on U0,1
A,ε, the above is a well-defined line

bundle and it is equipped with a L2-Hermitian metric.

Moreover, by the local diffeomorphism between U01
A,ε and VA,ε as is shown in

Theorem (67) and Definition 3.19, we get the first part of the following identification

as an isometry between Hermitian line bundles,

TVA,ε ≅ TU0,1
A,ε = L2 coker ∂̄γ. (4.10)

where as the second part of the above identification is discussed below.

One direction of inclusion is easy. Given any σ ∈ H0,1
A,δ = T[∂̄A]M

s
P, by Lemma

37 and Lemma 32, it belongs to C0
δ ∩ C∞(Λ0,1X ⊗ EndE). In particular, TU0,1

A,ε ⊂

L2 coker ∂̄γ. Moreover, as we have the following Hodge decomposition, where

H1
A,δ ⊗C =H1,0

A,δ ⊕H
0,1
A,δ, H

0,1
A,δ ≅H

1,0
A,δ.

With respect to the fixed holomorphic adapted frame {fi,k} along each cusp end Zk,

the (i, j)-th component σij,k of σ is in particular a anti-holomorphic function which
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satisfies

∥σij,kfi,k ⊗ f∗j,kdz̄∥C0 ≲ e−δky.

This implies that in terms of the punctured disk model, σij,k extends to a anti-

holomorphic function on D(ε) with

σij,k(0) =
⎧⎪⎪⎨⎪⎪⎩

0, αi ≥ αj;
otherwise, αi < αj.

As dz̄ transforms to dw̄
w̄ , we see that there exists a conjugate linear isomorphism

between the tangent space H0,1
A,δ and the space of (1,0)- meromorphic forms with

values in EndE such that it has at most a simple pole at the origin with its residues

respecting the flag structure strictly, i.e.,

res(σ)pk(Fi,k) ⊂ Fj,k,

if and only if αi < αj, or equivalently res(σ)pk is strictly lower triangular. Considering

similar description of L2 coker ∂̄γ in Appendix D. of [45], in particular Proposition

D.4 (b), we have H0,1
A,δ = L2 coker ∂̄γ . Therefore, we have seen that

Lemma 74. With respect to the Riemannian metric g of cusp type on X and the

adapted Hermitian metric h on E, the first L2-cohomology group of the following

complex

0→ L2(X,EndE) ∂̄AÐ→ L2(X,Λ0,1X ⊗EndE) → 0,

satisfies that H0,1
A,δ ≅ L2H0,1

A .
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As for any ∂̄γ ∈ U0,1
A,δ, there exists a temporal gauge by Lemma 19, the above

argument applies without any change, and we have shown that

TU0,1
A,ε = L2 coker ∂̄γ,

as a Hermitian bundle over U0,1
A,ε. Therefore, we get the following identification of

the associated determinant lines,

λ ∶= det(T ∗VA,ε) ≅ det(ind ∂̄γ) (4.11)

Later on, we will use this identification to pull-back the Quillen metric defined on

the latter to the canonical line λ and compute its curvature form.

Remark 75. It is easy to see from the above that local existence of universal family

of parabolic bundles is always valid on M s
P . On the other hand, Boden and Yoko-

gawa in [15] and [17] showed that for a generic choice of parabolic weights, semi-

stability implies stability, in particular, the moduli space M s
P of stable parabolic

bundles is compact; moreover, for a generic choice of parabolic weights, the mod-

uli space M s
P of stable parabolic bundles of vanishing parabolic degree admits a

universal parabolic vector bundle.

Let us finish this part with the discussion of the following Hermitian holomor-

phic line bundles defined on VA,ε. Namely, for the fixed temporal frame {ei,k}ni=1
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adapted to the fixed descending flag structure of E

Epk = E1,k ⊃ E2,k ⊃ ⋯ ⊃ Esk,k ⊃ 0,

i.e., the span of {en−m1,k−⋯−mi−1,k,k,⋯, en,k} equals Ei,k. Therefore, we can form the

following trivial holomorphic line bundle over VA,ε:

λi,k = det(Ei,k/Ei+1,k), (4.12)

with its basis given by ui,k ∶= en−m1,k−⋯−mi−1,k,k ∧ ⋯ ∧ en−m1,k−⋯−mi,k+1,k. As to its

metric, at the point ∂̄A + µ ∈ VA,ε, we set

∥ui,k∥2
i,k = det (g∗µgµ)i,k, (4.13)

where gµ is the complex gauge transformation defined in Lemma 67. Since g∗µgµ

varies smoothly depending on µ, it has a limiting value in Herm+(m1,k) × ⋯ ×

Herm+(msk,k) along the cusp end Zk, whose existence is guaranteed by Lemma

34, and the above definition is independent of the chosen temporal frame, therefore

the definition (4.13) makes sense. Herm+(n) denotes the space of positive definite

Hermitian matrices on a complex vector space of dimension n. The sub-index indi-

cates that we are taking the i-block along the k-th cusp ends. By Lemma 72, we

have the following

Lemma 76. The curvature form Θi,k of the Hermitian holomorphic line bundle
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(λi,k, ∥ ⋅ ∥i,k) on the Dolbeault slice VA,ε is given by

Θi,k(µ, ν̄) = − trF i,k
µ,ν̄ , (4.14)

where F i,k
µ,ν̄ denotes the i-th diagonal block of F k

µ,ν̄ ∶= limIm z→∞ ∆−1
γ (∗[∗µ, ν]) along

the k-th cusp end.

Remark 77. By the uniqueness of the transformation map gµ on the Dolbeault

slice VA,ε, if VA1,ε∩VA2,ε ≠ ∅, then there exists unique unitary gauge transformations

connecting these coordinate charts such that the above defined metric is preserved

and hence define a global Hermitian metric on these line bundles λi,k on M s
P .

75



Chapter 5: The Quillen Metric

In this chapter, we apply the relative zeta function regularization, which was

first proposed by Müller [89], to define a relative regularized determinant det(∆γ,∆A)

for the pair of Dolbeault Laplacians ∆γ associated with any ∂̄γ ∈ U0,1
A,ε and the ref-

erence operator ∆A. Such construction have been studied extensively, see e.g. [86],

[48], [24], [70], and [19].

5.1 Formal Definition of the Relative Determinant

Suppose a pair of non-negative self-adjoint operators A and A0 on a separable

Hilbert space H satisfies that

1. e−tA − e−tA0 is of trace class for any t > 0.

2. As t→ 0, there exists an asymptotic expansion of the form

Tr(e−tA − e−tA0) ∼
∞

∑
j=0

k(j)

∑
k=0

aj,kt
αj(log t)k,

where −∞ < α0 < α1 < ⋯ and αj →∞. In particular, we assume that αj,k = 0 if

αj = 0 and k ≥ 1.
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3. As t→∞, there exist h ∈ C and c > 0 such that

Tr(e−tA − e−tA0) ∼ h +O(e−ct).

We can define

Definition 78. The relative zeta function of the pair of operators A and A0 is given

by

ζ(A,A0, s) =
1

Γ(s) ∫
∞

0
Tr(e−tA − e−tA0) ts−1 dt,

which is a meromorphic function on C. In particular, ζ(A,A0, s) is holomorphic at

s = 0. The relative determinant of A and A0 is then defined as

det(A,A0) = exp( − d

ds
ζ(A,A0, s)∣s=0

).

Note that the existence of a spectral gap implies condition (3), that is

Lemma 79. [89, Lemma 2.2.] Suppose that Pess(A0) ⊂ [c,∞) where c > 0. Then

kerA and kerA0 are both finite dimensional and there exists c1 > 0 such that

Tr(e−tA − e−tA0) = dimkerA − dimkerA0 +O(e−c1t),

as t→∞.
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5.2 Heat Kernels and Estimates

By a theorem of Chernoff [27], the Dolbeault Laplacian ∆γ associated with

any ∂̄γ = ∂̄A + γ ∈ U0,1
A,ε is essentially selfadjoint on L2(EndE), see Theorem 133.

By spectral theorem, we can construct the heat semigroup e−t∆γ . Its heat kernel

K∆γ(t; z, z′) is a (smooth) family of sections of EndE ⊠EndE∗ depending on t > 0

and satisfies the following properties

1. It is C1 in the time variable t and C2 in the space variables z, z′;

2. Denote by ∆γ,z the Laplacian ∆γ acting on the variable z, then

d

d t
K∆γ(t; z, z′) +∆γ,zK∆γ(t; z, z′) = 0;

3. For any compactly supported smooth section s of EndE, we have

lim
t→0
∫
X
K∆γ(t; z, z′)s(z′)dvg(z′) = s(z).

Since X is noncompact, in order to obtain uniqueness, we will also require

that K∆γ(t; z, z′) is "good" (cf. [39, Page 488, P.4.]);

4. For any T > 0 and 0 < t ≤ T , one has

∣ ∂
i

∂ ti
∇j
z∇k

z′K∆γ
(t; z, z′)∣ < Ct−1−i−j−k(i(z)i(z′)) 1

2 e
−d(z,z′)2

8t ,

where i, j, k ∈ N, C depends only on T , and i(z) is the smoothing of the variable
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y along cusp ends, which is defined as

i(z) =
⎧⎪⎪⎨⎪⎪⎩

1, for z ∈M1

y, for z ∈ ∪mk=1Zk.

Lemma 80. A smooth kernel K∆γ(z, z′, t) which satisfies (l)- (4) is uniquely deter-

mined by these properties.

Proof. First, we show that for any f ∈ C∞
c (X,EndE),

u(z, t) ∶= ∫
X
K∆γ(z, z′, t)f(z′)dvg(z′) ∈ L2(EndE).

From condition (4) and a substitution y′ = vy, we have

∥u(z, t)∥2
L2 = ∫

X
∣u(z, t)∣2dvg(z) ≲ t−2∫

∞

1
(∫

∞

1
e−

log2 v
8t ∣f(vy)∣ dv

v
3
2

)
2
dy

y3
,

≲ t−2(∫
∞

1
∫

∞

1
e−

log2 v
4t

dv

v

dy

y3
)∥f∥2

L2

≲ t− 3
2 ∥f∥2

L2 .

Now, suppose K1(t; z, z′) and K2(t; z, z′) are two kernels satisfying the above

conditions (1)-(4), and set v(z, t) ∶= ∫X(K1(t; z, z′)−K2(t; z, z′))f(z′)dvg(z′) for any

f ∈ C∞
c (X,EndE). We have

1

2

d

dt
∥v(z, t)∥2 = ⟨ d

dt
v(z, t) , v(z, t) ⟩ = −∥∂̄γv∥ ≤ 0.

Because of condition (2), the initial value of v(z, t) is 0 and the uniqueness follows.
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In the remaining part of this section, we present a construction of the heat

kernel K∆γ(t; z, z′) for any ∂̄A + γ ∈ U0,1
A,ε.

5.2.1 Heat Kernels on H

In this part, using the work of Fay [47] and Phong and D’Hoker [34], [35], we

exhibit explicit formulae for the heat kernels of the standard Dolbeault Laplacians

on the upper half plane H satisfying certain Gaussian upper bounds.

Let

∂̄ = ∂z̄d z̄ ∶ Ω0(H) → Ω0,1(H),

and

∂̄∗ = −2y2∂zd z ∶ Ω0,1(H) → Ω1,1(H) ≅ Ω0(H),

denote the standard Cauchy-Riemann operator and its adjoint on H, where we have

used the Hodge duality in the last isomorphism, one obtains the following non-

negative self-adjoint Laplacians

∆H,0 = 2∂̄∗∂̄ = −y2( d
2

dx2
+ d2

dy2
),

and

∆H,1 = 2∂̄∂̄∗ = −y2( d
2

dx2
+ d2

dy2
) − 2iy( d

dx
− i d
d y

).
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For n = 0,1, we define the following self-adjoint second order operators

Dn ∶= −y2( d
2

dx2
+ d2

dy2
) + 2iny

d

dx
,

acting on Ω0(H) and the anti-linear isometries

In ∶ f(z)d z̄n ↦ ynf̄(z).

By simple computation, we have

Dny
nf̄(z) = yn∆H,nf̄(z), n = 0,1. (5.1)

We will denote by K∆H,n(t; z, z′) and KDn(t; z, z′) the related heat kernels of

∆H,n and Dn.

Theorem 81 (see e.g. [84], [47], [34] [35]). Let d = d(z, z′) denote the hyperbolic

distance function,

KDn(t; z, z′) =
√

2e−
t
4

(4πt) 3
2
∫

∞

d

ue−
u2

4t

√
cosh(u) − cosh(d)

T2n (
cosh(u

2)
cosh(d2)

)du,

where T2n(t) is the 2n-th Chebyshev polynomial.

Remark 82. [33, page 29.] In the case of n = 0, this formula was proved by McKean

in [84], and was later generalized by Fay in [47] to arbitrary n ∈ Z. In [34], Phong

and D’Hoker noted that the complicated factor appearing in the integrand of Fay’s

formula can be simplified in terms of the Chebyshev polynomial, but there was a

81



mistake as the contribution of the discrete spactrum was computed twice, which was

pointed out by Fay to Phong and D’Hoker in [35] on page 1004.

We record the following technical lemma.

Lemma 83. For any a > 0, and b, d, l ∈ R, we have

∫
l

d
e−ax

2+bx dx = e
b2/4a

√
a
∫

√
a(l+b/2a)

√
a(d+b/2a)

e
−v2+ b

√
a
v
dv ≤

√
π
eb

2/4a

√
a
.

Proof. This follows from a simple change of variable computation.

Proposition 84. For n = 0,1 and each T > 0, there exists constant C > 0 depending

only on T such that for 0 < t ≤ T , we have

∣( d
d t

)i∇j
z∇k

z′KDn(t; z, z′)∣ < Ct−1−i−j−ke
−d(z,z′)2

8t ,

where i, j, k ∈ N.

Proof. The case of n = 0 and i = j = k = 0 is proved in [23], Lemma 7.4.26. We can

adapt the proof to the case n = 1 and i = j = k = 0 since

1. T2n(t) ≈ t2n for any t ≥ 1;

2. cosh(u
2
)

cosh( d
2
)
≈ eu−d;

The result then follows from Lemma 83 and induction on i, j, k.

As to the heat kernel K∆H,n(t; z, z′), we have
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Lemma 85. For t > 0, and z, z′ ∈ H,

K∆H,n(t; z, z′) =
Im(z)n
Im(z′)nKDn(t; z, z′).

Proof. By 5.1 and the fact that KDn(t; z, z′) is real valued, we have

d

d t

Im(z)n
Im(z′)nKDn(t; z, z′) =

Im(z)n
Im(z′)nDn,zKDn(t; z, z′)

= (∆H,n)z
Im(z)n
Im(z′)nKDn(t; z, z′).

Hence it solves the heat equation for ∆H,n. It is easy to see that K∆H,n(t; z, z′)

satisfies the initial condition. By Proposition 84 and Corollary 85.1, these kernels

are "good" and this completes the proof.

Corollary 85.1. For n = 0,1, for each T > 0, there exists constant C > 0 such that

for 0 < t ≤ T , we have

∣( d
d t

)i∇j
z∇k

z′K∆H,n(t; z, z′)∣ < Ct−1−i−j−ke
−d(z,z′)2

8t ,

where i, j, k ∈ N.

Proof. This follows from Lemma 84 and the observation that y
y′ ≤ ed(z,z

′), which

results from Lemma 12.

Remark 86. Donnelly [39] presented a construction of the above heat kernels on

H using the standard parametric construction as in [11], which is justified by the

fact that H is of bounded geometry and the finite speed of propagation technique
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as used in [25].

5.2.2 Heat Kernels on the Cusp

By Lemma 19, there exists a temporal gauge for each ∂̄γ = ∂̄A+γ ∈ U0,1
A,ε and the

dependence is smooth. In the following, we will construct the heat kernel associated

with the model Dolbeault operator (2.6), denoted as K∆Z,n
(t; z, z′), on the complete

cusp Z.

Let Γ denote π1(Z) ≅ Z, with its generator denoted by P ∶ z ↦ z + 2π. Let

ρ ∶ π1(Z) → U(n) be the unitary representation such that ρ(P ) is given by (2.8).

Given the covering map π ∶ H → Z, the endomorphism bundle EndE on Z can be

identified with

EndE ≅ H ×Adρ End(Cn), (z ⋅ P, s) ∼ (z,Adρ(P )s),

hence we can define

K∆Z,n
(t; z̄, z̄′) = ∑

j∈Z
K∆H,n(t; z,P jz′)Adρ(P j). (5.2)

for any z, z′ ∈ H with their images denoted by z̄, z̄′ ∈ Z, It is clear that these kernels

satisfy the heat equation. Hence it remains to show that they are "good" as defined

in 5.2 (4).

Lemma 87. (c.f. [87, Lemma 5.3]) For any T, a > 0, there exists constant C > 0
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such that for 0 < t ≤ T , and z, z′ ∈ H that projects to z̄, z̄′ ∈ S1 × [a,∞), we have

∑
j∈Z
e−

d(z,Pjz′)2

4t ≤ C(yy′) 1
2 e−

d(z,z′)2

8t .

Proof. First, we estimate

N(d) ∶= N(z, z′, d) = ∣{j ∈ Z ∣d(z,P jz′) < d}∣,

for d > 0. That is, N(d) counts the number of geodesic paths on Hy≥a connecting

z and P jz′ with length at most d. Given any point z = x + iy, let B(z, d) denote

the ball of radius d centered at z, and let B(z) denote the hyperbolic rectangle

[x − 1
2 , x + 1

2] × [y/2,2y]. By our definition of B(z′), we have B(z′) ∩P jB(z′) = ∅ if

j ≠ 0. Assume that d is larger than the diameter of B(z′), then if B(z, d) contains p

Γ-translations of z′, B(z,2d) would contain at least p non-overlapping Γ-translations

of B(z′). Using the following facts that

1. The diameter of B(z′) is uniformly bounded on Hy≥a;

2. The volume of B(z, d) is uniformly bounded by c1ec2d for some constants

c1, c2 > 0;

3. The volume of B(z′) is uniformly bounded by c3y′ for some constant c3 > 0.

Combining these altogether, there exists constants c4, c5 > 0 such that

N(d) ≤ vol(B(z, d))/vol(B(z′)) ≤ c4y
′ec5d. (5.3)
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Now, choose d > diam(B(z′)). using estimate (5.3), we have

∑
j∈Z
e−

d(z,Pjz′)2

4t =
∞

∑
n=0

∑
nd≤d(z,P jz′≤(n+1)d)

e−
d(z,Pjz′)2

4t (5.4)

≤ c6y
′
∞

∑
n=0

ec7(n+1)d−n
2d2

8t
−
d2(z,z′)

8t (5.5)

Now, using the fact that

∞

∑
n=0

ec8nd−
n2d2

8t ≲ ∫
∞

0
ecxd−

x2d2

8t ≲ 1

d
ec9t.

This implies that

∑
j∈Z
e−

d(z,Pjz′)2

4t ≤ c10e
c7dy′e−

d2(z,z′)
8t ,

for 0 < t ≤ T and z, z′ ∈ Ha. Finally, for y′ ≥ a, the diameter of B(z′) is uniformly

bounded, and use symmetry between z and z′, we get our desired estimate.

By (5.2), the fact that Adρ is unitary, and Lemma 87, we obtain

∣K∆Z,n
(t; z̄, z̄′)∣ ≤ Ct−n2 ∑

j∈Z
e−

d(z,Pjz′)2

4t

≤ C ′t−
n
2 (yy′) 1

2 e−
d2(z,z′)

8t

The estimates of higher derivatives of K∆Z,n
(t; z̄, z̄′) follows from the estimate in

[11, p. 86]. To summarize, we have proved

Proposition 88. The heat kernels K∆Z,n
(t; z̄, z̄′) of the Dolbeault Laplacians ∆Z,n,

n = 0,1, is given by (5.2). In particular, for any T > 0 and a >, there exist constants
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C, c > 0 such that for 0 < t ≤ T and Im(z), Im(z′) ≥ a, we have

∣ ∂
i

∂ ti
∇j
z∇k

z′K∆Z,n
(t; z, z′)∣ ≤ C t−1−i−j−k(yy′) 1

2 exp(−c d
2(z, z′)
t

). (5.6)

for i, j, k ∈ N.

Remark 89. With respect to the fixed temporal frame along each cusp end, a good

local parametrix of K∆γ ,n(t; z, z′) on X is provided by

KZk
∆γ,n

(t; z, z′) ∶= UγK∆Z,n
(t; z, z′)U−1

γ ,

along the cusp end where Uγ is a unitary endomorphism which depends on γ and

the choice of base point x for π1(X,x) smoothly. We will see that since any two ∂̄γ1

and ∂̄γ2 in U0,1
A,ε are unitary gauge equivalent, in particular, their heat trace along

each cusp Zk agrees up to O(t∞), which follows from a finite speed of propagation

argument which essentially says that the long range contribution from the compact

part of the surface to the cusp ends is negligible when t is small.

5.2.3 Heat Kernels on Riemann Surfaces with Cusp Ends

In this part, we will restrict our attention to the heat kernel of ∆γ = ∆γ,0 =

∂̄∗γ ∂̄γ, as the case of ∆γ,1 is similar.

First, we construct a good interior parametrix QN
∆+
γ
(t; z, z′) for the heat kernel

K∆γ(t; z, z′) associated with any ∂̄γ = ∂̄A + γ ∈ U0,1
A,ε.
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For any ` > 0, we define the truncated surface of X at level ` by

M` =X ∖
m

⋃
k=1

Zk,y>`, (5.7)

with its injectivity radius ρ(`) > 0. Let f(a, b) be an increasing smooth function on

R such that f(x) = 0 for x ≤ a, and f(x) = 1 for x ≥ b. Set ψ = f(1
2 ,1).

For any N ∈ N, apply the procedure in Theorem 2.26 [11] and we can construct

the following parametrix on M`+1,

QN,`+1
∆γ

(t; z, z′) = ψ(d(z, z
′)

ρ
) 1

4πt
exp(−d(z, z

′)2

4t
)
N

∑
i=0

tiFi(z, z′), (5.8)

where Fi are smooth sections of EndE⊠EndE∗ supported in a neighborhood of the

diagonal of M`+1 ×M`+1, in particular, F0(z, z′) = F∇γ(z, z′) is the parallel transport

from z′ to z with respect to the unitary connection ∇γ. Moreover,

Proposition 90. [11, Cf. Theorem 2.26]

1. For any T > 0 and k ∈ N, the kernel QN,`+1
∆γ

(t; z, z′) define a uniformly bounded

family of operators on Ck(X`+1,EndE) such that

∥QN,`+1
∆γ

(s) − s∥Ck → 0, s ∈ Ck(X`+1,EndE),

over any compact subset of X`+1.
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2. The "defect" rN,`+1(t; z, z′) ∶= ( ∂∂t +∆γ,z)QN,`+1
∆γ

(t; z, z′) satisfies

∣ ∂
i

∂ ti
∇j
z∇k

z′(t; z, z′)rN,`+1(t; z, z′)∣ ≤ CtN−1−i−k−j,

on any compact subset of X`+1 supported away from the boundary.

Remark 91. In Proposition 90, we are a little sloppy in not imposing any boundary

condition at ∂X`+1. By the principle of not feeling the boundary by Kac [71] and

the fact that we will be gluing using some cut off function supported away from the

boundary of X`+1, this won’t cause a problem.

We now construct a parametrix of the heat kernel K∆γ(t; z, z′) on X with good

estimates. Our treatment here follows that of [18] and [11].

Let Φ1,Φ2,Ψ1,Ψ2 be the following gluing functions on Z satisfying

1. Φ1 = f(`, ` + 1/4); Ψ1 = f(` + 3/8, ` + 5/8);

2. Φ2 = 1 − f(` + 3/4, ` + 1); Ψ2 = 1 −Ψ1.

3. dist(supp(∇Φi), supp Ψi) ≥ 1/8.

We can define

KN
∆γ

(t; z, z′) = Φ1(z)QN,`+1
∆γ

(t; z, z′)Ψ1(z′) +
m

∑
k=1

Φ2(z)KZk
∆γ

(t; z, z′)Ψ(k)
2 (z′). (5.9)

with its "defect" denoted by

RN
∆γ

(t; z, z′) = ( ∂
∂ t

+∆γ,z)KN
∆γ

(t; z, z′).
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By its construction, RN
∆γ

(t; z, z′) vanishes whenever z, z′ ∈ Z̊k,y≥`+1 and d(z, z′) >

ρ(`), hence it satisfies similar Gaussian type upper bound as given in Proposition

84. Because of the following elementary inequality

d(x, z)2

4t
≤ d(x, y)

2

4s
+ d(y, z)

2

4(t − s) , 0 < s < t,

the Volterra series construction as used in Theorem 2.19 [11] is still valid. Therefore

we get,

Theorem 92 (cf. [11], Theorem 2.23). Set N > k + 1.

1. The following Volterra series

KN
∆γ

(t; z, z′) +
∞

∑
i=1

(−1)i(KN
∆γ

∗RN,i
∆γ

)(t; z, z′), (5.10)

converges to K∆γ(t; z, z′) in the Ck-norm on X. Here

RN,1
∆γ

∶= RN
∆γ
, RN,i

∆γ
= RN

∆γ
∗RN,i−1

∆γ
,

and α ∗ β(t; z, z′) denotes the convolution

α ∗ β(t; z, z′) = ∫
t

0
∫
X
α(s; z,w)β(t − s;w, z′)dwds.

2. For any T > 0, there exists a constant C, c > 0 such that

∣K∆γ(t; z, z′)∣ ≤ Ct−1(i(z)i(z′)) 1
2 e−C

′ d
2
(z,z′)
t , (5.11)
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where i(z) is the smoothing of the variable y along cusp ends, which is defined

as

i(z) =
⎧⎪⎪⎨⎪⎪⎩

1, for z ∈M1

y, for z ∈ ∪mk=1Zk.

3. The kernel KN
∆γ

approximates K∆γ in the sense that

∣ ∂
l

∂tl
(KN

∆γ
−K∆γ)(t; z, z′)∣ ∼ O(tN−l−k), (5.12)

for small time t > 0.

4. Moreover, for 0 < t ≤ T , there exists a constant C > 0 such that

∣
∞

∑
i=1

(−1)i(KN
∆γ

∗RN,i
∆γ

)(t; z, z′)∣ ≤ CtN−1e−
d(z,z′)2

4t . (5.13)

5.3 Relative Heat Trace

Let R,S,T be bounded operators defined on a separable Hilbert space H,

we recall the following basic facts about Hilbert–Schmidt operators and trace-class

operators.

1. Let R be a trace-class operator and S a bounded operator, then T ∶= RS is

trace class with

∥T ∥1 ≤ ∥R∥1∥S∥.

2. Let R,S be two Hilbert-Schmidt operators. Then T ∶= RS is of trace-class
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with

∥T ∥1 ≤ ∥R∥2∥S∥2,

where ∥ ⋅ ∥1 and ∥ ⋅ ∥2 denote the trace norm and the Hilbert-Schmidt norm.

3. For an integral operator R with integral kernel r(z, z′), its Hilbert-Schmidt

norm is then given by

∥R∥2 = ∫
X
∫
X
∣r(z, z′)∣2 dvg(z)dvg(z′).

5.3.1 Trace Class Property

Without loss of generality, we assume till the end of this chapter that, with

respect to the fixed temporal frame along each cusp end Zk, the Dolbeault operator

∂̄A is given by the model Dolbeault operator as in (2.6). The main result of this

section is the following,

Theorem 93. The relative heat operator

e−t∆γ − e−t∆A

is trace class for any t > 0.

To prove this statement, we apply the technique as used by Müller and Sa-

lomonsen [90] and the Duhamel principle,

e−t∆γ − e−t∆A = ∫
t

0
e−s∆γ(∆A −∆γ)e−(t−s)∆A ds. (5.14)
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Taking the respective trace norm and Hilbert-Schmidt norm, we get

∥e−t∆γ − e−t∆A∥1 ≤ ∫
t/2

0
∥e−s∆γ∥∥(∆γ −∆A)e−(t−s)∆A∥1 ds

+ ∫
t

t/2
∥e−s∆γ(∆γ −∆A)∥1∥e−(t−s)∆A∥ds

≤ ∫
t/2

0
∥(∆γ −∆A)e−(t−s)∆A∥1 ds

+ ∫
t

t/2
∥e−s∆γ(∆γ −∆A)∥1 ds. (5.15)

where the decomposition avoids the singularity t = 0. Therefore, we have reduced

to question to show the uniform trace-norm estimate of the above two integrands,

which we deal in the following lemma.

Lemma 94. (cf. [90, Lemma 6.3]) The following operators

(∆γ −∆A)e−t∆A and e−t∆γ(∆γ −∆A)

are trace class and their trace norms are uniformly bounded for t in any closed

interval of (0,∞).

We record the following technical lemma that will be used repeatedly below.

Lemma 95. For any δ > 0, 0 < t < T , k, l ∈ Z, c > 0, we have

∫
∞

1
∫

∞

1
e−δy

′

yky′le−
c
t

log(y/y′)2

dy dy′ ≲
√
te(1+k)

2 t
c .

Similar result holds when δ = 0, and any k, l ≤ 0 with k + l < −2.
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Proof. Let v = log(y/y′), then y = y′ev and such change of variable reduces the

integral into

∫
∞

1
∫

∞

1
e−δy

′

yky′le−
c
t

log(y/y′)2

dydy′ = ∫
∞

1
∫

∞

− log y′
e−δy

′

y′l+k+1e−
c
t
v2+(1+k)v dvdy′

≤ ∫
∞

1
e−δy

′

y′l+k+1dy′∫
∞

−∞
e−

c
t
v2+(1+k)v dv

≲
√
te(1+k)

2 t
c .

where the last inequality follows from Lemma 83. The case of δ = 0 and k + l < −2

follows by similar argument.

Proof. Let Mφ and M−1
φ denote the multiplication by φ(z) ∶= i(z)−1/2 and φ(z)−1 =

i(z)1/2, respectively. As the proof of the two cases are analogous, we work the second

case here.

By the semi-group property of e−t∆γ and the trick of Deift-Simon as in [86]

and [69], we have

e−t∆γ(∆γ −∆A) = e−t/2∆γMφ ○M−1
φ e−t/2∆γ(∆γ −∆A),

and we will thus show that these two factors both have uniform Hilbert-Schmidt

norm for t in a compact set of (0,∞).

Let us start with e−t/2∆γMφ. Its Hilbert-Schmidt norm is given by

∫
X
∫
X
i(z′)−1∣Kγ(t; z, z′)∣2 dvg(z)dvg(z′).
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Given the decomposition of X in (2.3), the above integral can be decomposed into

four parts:

1. The short range contribution of each cusp end Zk is estimated by

1/t2∫
∞

1
∫

∞

1
ye−c/t log(y/y′)2 dy

y2

dy′

y′2
≲ 1/t1/2,

where we have used ∣ log(y/y′)∣ ≤ d(z, z′) in Lemma 12, the estimate in part 2

of Theorem 92, and Lemma 95. Note that we need the Mφ decay in this part.

2. The short range contribution of M is bounded by

1/t2∫
M
∫
M
e−c

d2(z,z′)
t dvg(z)dvg(z′) ≲ 1/t2,

as a result of the estimate in Proposition 90 and part 3 of Theorem 92

3. The long range contribution from the interaction between any cusp end Zk

and M is estimated by

1/t2∫
M
∫
S1
∫

∞

0

1

y′3
e−c

d2(z,z′)
t dy′dx′dz ≲ 1/t2∫

∞

0

1

y′3
e−c/t log(y′)2

dy′ ≲ 1/t3/2,

where we have used part 2 of Theorem 92, the fact that ∣ log(y′)∣ ≲ d(∂M, z′) ≤

d(z, z′), and Lemma 95.

4. The long range contribution from the interaction between any two cusp ends

Zk and Zj can be estimated analogously to the above case.

95



This concludes that the Hilbert-Schmidt norm of e−t/2∆γMφ is uniformly bounded

away from t = 0.

Remark 96. In [21, page 70 -71], Bunke estimated the above long range con-

tribution using a combination of the semi-group domination principle as in Hess,

Schrader, Uhlenbrock in [63] and the heat kernel upper bound from Cheng, Li, and

Yau [26], and it is at this point the geometry of the manifold enters the argument,

while the short range estimates are localized. For us, due to the explicit heat kernel

upper bound in Theorem 92, our estimates are reduced to local computations.

To show thatM−1
φ e−t/2∆γ(∆γ−∆A) has uniform bounded Hilbert-Schmidt norm

for t in any compact subset of (0,∞), first note that since ∆γ and ∆A are self-adjoint,

the kernel of e−t∆γ(∆γ − ∆A) is given by (∆γ − ∆A)z′Kγ(t; z, z′); Then use Kähler

identity, we get

∆γ −∆A = iΛg(γ∗(z′)∂̄A,z′ + γ(z′)∂A,z′ − ∂A(γ)(z′) + γ∗ ∧ γ(z′)),

which lies in L2
δ,s+2. We can apply the similar argument as above together with

Lemma 95 and Hölder inequality to show that ∥M−1
φ e−t/2∆γ(∆γ −∆A)∥2 is uniformly

bounded when t lies in a compact part of (0,∞). This concludes the second part.

To sum up, we have finished the proof of Theorem 93. With similar argument,

we can also show the following

96



Proposition 97. Given any section β ∈ L1,2
δ,s+1(EndE), the following operator

Mβ(z)∇i
z∇j

z′e
−t∆γ(z, z′)

is trace class for t > 0. Here Mβ denotes multiplication by β.

5.3.2 Asymptotics of the Relative Heat Trace

In order to define the relative regularized determinant for the pair of Dolbeault

Laplacians ∆γ and ∆A, we still need to show that

Proposition 98. There exists an asymptotic expansion of the relative heat trace

of the following form,

Tr(e−t∆γ − e−t∆A) = a−1
1

t
+ a0 + a1t +O(t2), (5.16)

as t→ 0.

Proof. By Theorem 92, to find the asymptotic behavior of Tr(e−t∆γ − e−t∆A), we

could use the parametrices KN
∆γ

(t; z, z′) and KN
∆A

(t; z, z′) instead to find the right

asymptotic expansion.

On the compact part M`, the short time asymptotic expansion follow from

Theorem 2.30 [11], whereas on each cusp ends, by Remark 89, the relative trace of

the above parametrices is therefore of O(t∞), hence the result follows.
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Lemma 99. There exists a constant c > 0,

Tr(e−t∆γ − e−t∆A) ∼ e−ct, (5.17)

as t→∞.

Proof. This follows from Lemma 79.

Combining Lemma 99, Theorem 93, and Proposition 98, based on our discus-

sion of relative determinant in Section 5.1, we may define

Definition 100. For any ∂̄γ ∈ U0,1
A,ε, we define the relative zeta function of the pair

∆γ and ∆A as

ζ(∆γ,∆A, s) =
1

Γ(s) ∫
∞

0
Tr(e−t∆γ − e−t∆A) ts−1 d t. (5.18)

Furthermore, we define the zeta regularized determinant of ∆γ with respect to ∆A

as

det ∆γ ∶= det(∆γ,∆A) = exp( − d

ds
∣
s=0
ζ(∆γ,∆A, s)). (5.19)

Remark 101. It is clear that we can define the relative determinant det(∆γ,∆A)

as a function on A ∗
δ , with Dolbeault Laplacian changed to Bochner Laplacian of

the unitary connections. Moreover, such a relative determinant is Gδ-invariant and

descends to a function on M ∗
HE. Also, we could have chosen the reference Dolbeault

Laplacian associated with any point in C s
δ .

Recall that we have shown that the operator Mβe−t∆γ with β ∈ L1,2
δ,s+1(Λ0,1 ⊗

98



EndE) is trace class for any t > 0. We conclude this part of discussion by investi-

gating the related long time and short time asymptotic behavior of its trace. For

the rest of this part, we will assume that β ∈ L1,2
δ,s+1(Λ0,1⊗EndE)∩C∞(Λ0,1⊗EndE)

as for our Dolbeault operator ∂̄A + γ ∈ U0,1
A,ε, γ always satisfies this assumption. Let

us consider the long time behavior first.

Proposition 102. There exists a constant c > 0 such that

Tr (Mβ(e−t∆γ − PKer ∆γ)) = O(e−ct),

as t→∞.

Proof. By Theorem 133, the essential spectral of ∆γ is bounded from below by a

constant C > 0. Therefore, we have

∥(Mβ(e−t∆γ − PKer ∆γ))∥1 ≤ ∥Mβe
−t/2∆γ∥1∥e−t/2∆γ(1 − PKer ∆γ)∥

≲ O(e−ct),

where in the last inequality, we have used spectral theorem to infer that e−t/2∆γ(1−

PKer ∆γ) is a bounded operator with norm bounded by e−ct, where c is the infinimum

of nonzero spectrum of ∆γ.

On the other hand, as to the short time asymptotic behavior, we have
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Proposition 103. The trace of Mβ(e−t∆γ − PKer ∆γ) has the following asymptotics

Tr (Mβ(e−t∆γ − PKer ∆γ)) ∼ ∫
X

tr (β(z)( Id

4πt
+ ΩE

4π
+ Rg

24
− Id

Vol(X)))dvg(z) +O(t),

as t→ 0. Here ΩE denotes the Hermitian-Einstein tensor of E.

Proof. By Theoerm 92, we know that the asymptotic behavior can be determined

by the parametrix we constructed, hence the contribution to short time asymptotics

splits into two parts.

For the relative compact part M` ⊂ M`+1, by Proposition 5.8, Theorem 2.30

[11], and [117], we have the following asymptotic behavior

∫
M`

tr (β(z)(QN,`
∆γ

(t; z, z′) − Id

Vol(X)))dvg(z)

∼ ∫
M`

tr (β(z)( Id

4πt
+ ΩE

4π
+ Rg

24π
− Id

Vol(X)))dvg(z) +O(t),

uniformly on M`.

For each cusp end Zk, by the discussion in 5.5.2, we know that

KZk
∆γ

(t; z, z′) = Uγ∑
j∈Z
K∆H(t; z̃, P j z̃′)Adρ(P j)U−1

γ

= UγK∆H(t; z̃, P j z̃′)U−1
γ +Uγ∑

j≠0

K∆H(z̃, z̃′ + 2jπ)U−1
γ ,

where the second term of this expression is of the order O(tk) for any k ∈ N. This

follows from the fact

∣K∆H
(z̃, z̃′)∣ ≲ 1

t
e−c

d(z̃,z̃′)
t ,
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and the explicit distance formula on the upper half plane that

d((x̃ +m, ỹ), (x̃, ỹ)) = cosh−1(1 + 2m2

ỹ2
) ≥ log(1 + 2m2

ỹ2
),

where the second inequality follows from the fact that cosh−1(s) = log(s +
√
s2 − 1)

when s > 1. Then we can apply the argument as in Lemma 87 to get the desired

estimate. For the first term in the above expression, by the local expansion of

K∆H
(z̃, z̃′) as discussed in Theorem 3.3 in Donnelly [39] and the fact that these local

expressions are univeral polynomials involving covariant derivatives of the curvature

of (X,g) and (EndE,h), see [20] for more details, which vanishes by our assumption

of the geometry along the cusp ends. Therefore, we have

∫
X

tr (Mβe
−t∆γ − Id

Vol(X))(t; z, z)dvg(z)

∼ ∫
X

tr (β(z)( Id

4πt
+ ΩE

4π
+ Rg

24π
− Id

Vol(X)) Id )dvg(z) +O(t),

as t→ 0. This completes the proof of the statement.

Remark 104. Similar asymptotic expansion holds for ∆−
γ ∶= ∂̄γ ∂̄∗γ , that is, as t→ 0,

Tr (Mβ(e−t∆
−

γ − PKer ∆−
γ
)) ∼∫

X
tr{β(z) ∧ (( Id

4πt
+ ΩE⊗K∗

4π
+ Rg

24π
)

−∑
i

ω∗γ,i(z) ⊗ ωγ,i(z))}dvg(z) +O(t),

where β ∈ L1,2
δ,s+1(Λ1,0 ⊗EndE) and {ωγ,i(z)} is any orthonormal basis of Ker ∆−

γ .
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Chapter 6: The Curvature of the Quillen Metric

In this chapter, we apply the method as used by Quillen [98] and study the

heat regularization of the Cauchy kernel of ∂̄γ ∈ U0,1
A,ε, both in the interior of X and

on its cusp ends, to compute the curvature of the canonical line bundle

λ = det(T ∗VA,ε) ≅ det(ind ∂̄γ), (6.1)

with respect to the Quillen metric

∥ ⋅ ∥2
Q = ∥ ⋅ ∥2

L2(det ∆γ)−1, (6.2)

where det ∆γ is the relative determinant, see Definition 100.

We remark that similar computation of the first variation of the Quillen metric

interpreted as the anomaly associated with change of certain complex structure has

been considered in [101] and [103]. Our treatment of the heat regularization of the

Cauchy kernels in the interior of X follows that of [98], [97], and [106].
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6.1 First Variation of the Quillen Metric

Let ∂̄A + ε1µ+ ε2ν be a holomorphic family of Dolbeault operators in VA,ε with

µ, ν ∈ H0,1
A,δ. By Lemma 67, there exists a unique smooth family of complex gauge

transformation g(ε1, ε2) close to the identity and a family of Dolbeault operators

∂̄γ ∶= ∂̄A + γ(ε1, ε2) in the Hermtian-Einstein slice U0,1
A,ε satisfying ∂̄γ = g ○ (∂̄A + ε1µ +

ε2ν) ○ g−1. With respect to the their action on EndE, we have

∂̄γ = Ad g ○ (∂̄A + ε1µ + ε2ν) ○Ad g−1. (6.3)

where Ad g(ω) ∶= g○ω○g−1 for any section ω ∈ Ω0,∗(EndE). Furthermore, the formal

adjoint of ∂̄γ satisfies

∂̄∗γ = Ad g∗−1 ○ (∂̄A + ε1µ + ε2ν)∗ ○Ad g∗, (6.4)

In the rest of this chapter, we will denote by ∆+
γ = ∂̄∗γ ∂̄γ and ∆−

γ = ∂̄γ ∂̄∗γ . Similarly,

we will denote by P ±
γ the projection to ker ∆±

γ , respectively.

Recall that the relative zeta function associated with the family of Dolbeault

Laplacians ∆+
γ is given by

ζ(s) = 1

Γ(s) ∫
∞

0
Tr(e−t∆+

γ − e−t∆+

A) ts−1 dt. (6.5)

In order to compute the curvature of the Quillen metric, we need to compute the
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following,

− δε̄2δε log det ∆γ = δε̄2δεζ ′(0). (6.6)

Let us start by considering the first variation of ζ(s) as follows,

δε1ζ(s) =
−1

Γ(s) ∫
∞

0
Tr{δε1(∂̄∗γ ∂̄γ) e−t∂̄

∗

γ ∂̄γ} ts dt,

= 1

Γ(s) ∫
∞

0
Tr{ad(g∗−1∂g

∗

∂ε1
)∂̄∗γ ∂̄γ e−t∂̄

∗

γ ∂̄γ} ts dt

+ −1

Γ(s) ∫
∞

0
Tr{ad(g∗−1∂g

∗

∂ε1
)∂̄γ ∂̄∗γ e−t∂̄γ ∂̄

∗

γ} ts dt

+ −1

Γ(s) ∫
∞

0
Tr{ad( ∂g

∂ε1
g−1)∂̄γ ∂̄∗γ e−t∂̄γ ∂̄

∗

γ} ts dt

+ 1

Γ(s) ∫
∞

0
Tr{ad( ∂g

∂ε1
g−1)∂̄∗γ ∂̄γ e−t∂̄

∗

γ ∂̄γ} ts dt

+ −1

Γ(s) ∫
∞

0
Tr{∂̄∗γ Ad g adµAd g−1 e−t∂̄

∗

γ ∂̄γ} ts dt,

(6.7)

where we have used the following identities in the second equality,

e−t∂̄
∗

γ ∂̄γ ∂̄∗γ = ∂̄∗γ e−t∂̄γ ∂̄
∗

γ ,

and

Tr{∂̄∗γ ad( ∂g
∂ε1

g−1)∂̄γ e−t∂̄
∗

γ ∂̄γ} = Tr{ad( ∂g
∂ε1

g−1) ∂̄γe−t∂̄
∗

γ ∂̄γ ∂̄∗γ}

= Tr{ad( ∂g
∂ε1

g−1)∂̄γ ∂̄∗γ e−t∂̄γ ∂̄
∗

γ},

which follow from the uniqueness of the heat kernels for ∆±
γ , see Lemma 80, and

Proposition 97. Since on the space complementary to their kernel, the Dolbeault
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Laplacians ∆±
γ are invertible, therefore by Proposition 103 and Remark 104, we

can perform an integration by parts with respect to t-variable to (6.7) and get the

following,

δε1ζ(s) = −
s

Γ(s) ∫
∞

0
Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
) e−t∂̄∗γ ∂̄γ(1 − P +

γ )} ts−1 dt

+ s

Γ(s) ∫
∞

0
Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
) e−t∂̄γ ∂̄∗γ(1 − P −

γ )} ts−1 dt

+ s

Γ(s) ∫
∞

0
Tr{Ad g adµAd g−1 e−t∂̄

∗

γ ∂̄γ(∂̄∗γ ∂̄γ)−1∂̄∗γ} ts−1 dt.

(6.8)

Since Γ(s) = 1/s+c+O(s), δε1ζ ′(0) equals the constant term of the short time asymp-

totic expansion of the right hand side of (6.8). By Proposition 103 and Remark 104,

such short time asymptotic expansions exist and we get the following,

δε1ζ
′(0) = − ∫

X
ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
)(z)(a+0(z) − a−0(z) − β+(z, z) + β−(z, z))dvg(z)

+ LIM
t→0

Tr{Ad g adµAd g−1 e−t∂̄
∗

γ ∂̄γ(∂̄∗γ ∂̄γ)−1∂̄∗γ}.

(6.9)

Here a±0 denote the constant terms in the asymptotic expansion of the heat kernels

of ∆±
γ . β±γ (z, z′) = ∑ω±i (z)⊗ω±∗i (z′) denote the integral kernels of P ±

γ with ω±i being

any chosen orthonormal basis of ker ∆±
γ . In particular, the orthonormal basis for

ker ∆+
γ is given by ω+1 = Id√

vol(X)
. By Proposition 103, the second term in (6.9) has a

short time asymptotic expansion of the form a−1t−1 + a0 +⋯, and the notation LIM
t→0

indicates that we are to pick out the constant term in the expansion.

Proposition 105. The first variation of the relative zeta function (6.5) with respect
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to ε1 is given by

δε1ζ
′(0) = −Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
)P −

γ } + LIM
t→0

Tr{ad(P −
γ (gµg−1)) e−t∂̄∗γ ∂̄γ(∂̄∗γ ∂̄γ)−1∂̄∗γ}.

(6.10)

Proof. By Proposition 103, we know that a+0(z) − a−0(z) = −
ΩK∗(z)

24π , which is a scalar

multiple of the identity map on EndE. From the following fact

tr(ada ⋅ IdEnd) = 0, (6.11)

we see that P −
γ is the only part that contributes non-trivially in the first term of

(6.9). For the second part of the expression, note that we have Ad g adµAd g−1 =

ad(gµg−1), and for any s ∈ ker⊥(∆γ), we have

(1 − P −
γ ) ○ ad(gµg−1)(s) = ∂̄γ∆−1

γ ∂̄
∗
γ ○ ad(gµg−1)(s),

= −∂̄γ∆−1
γ ∂̄

∗
γ(ad(gµg−1))(s) + ad(gµg−1)(∂̄γ∆−1

γ ∂̄
∗
γs),

= P −
γ (ad(gµg−1))(s),

= ad(P −
γ (gµg−1))(s).

(6.12)

Therefore our desired expression follows.
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6.2 The Heat Regularization

In this part, our objective is to understand the term

LIM
t→0

Tr{ad(P −
γ (gµg−1)) e−t∂̄∗γ ∂̄γ(∂̄∗γ ∂̄γ)−1∂̄∗γ}. (6.13)

Let Gγ(z, z′) denote the integral kernel of (∆+
γ)−1∂̄∗γ ( = (∂̄∗γ ∂̄γ)−1∂̄∗γ ), which will be

identified with a section of (EndE)z⊗(EndE∗⊗Λ1,0X)z′ . By the argument in Part

II below, we may define

Jγ(z) = LIM
t→0

∫
X
K∆γ(t; z, z′)Gγ(z′, z)dvg(z′), (6.14)

and it is this term that determines the finite part of (6.13). Since ∆−1
γ ∂̄

∗
γ = ∂̄−1

γ on

(ker ∂̄∗γ)⊥, these two operators share the same parametrix and we will try to under-

stand Gγ(z, z′) via constructing a parametrix G#
γ (z, z′) of ∂̄−1

γ instead. Moreover,

we will show that, by a cancellation mechanism, we have

Jγ(z) = lim
t→0
∫
X
K∆γ(t; z, z′)Gγ(z′, z)dvg(z′).

and we will use this expression to study the second variation of δε1ζ ′(0).

6.2.1 A Parametrix of the Dolbeault Operator

Given any ∂̄γ ∈ U0,1
A,ε, ` > 0, and any point z′ ∈M`, we pick a neighborhood Uz′

with coordinate z and an orthonormal frame of E on Uz′ . With respect to these
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choices,

∂̄γ = ( ∂
∂z̄

+ αγ)dz̄.

By the Cauchy integral formula, the locally integrable function 1
z satisfies the dis-

tributional equation

∂

∂z̄
( 1

π(z − z′)) = δ(z − z
′),

with respect to the volume form dx∧dy. As the integral kernel of ∆−1
γ ○ ∂̄∗γ , Gγ(z, z′)

satisfies

(∂̄γ)z((z − z′)Gγ(z, z′)) = 0,

by Poincaré lemma, Gγ(z, z′) is of the following form on Uz′ ,

Gγ(z, z′) =
i

2π

dz′

(z − z′)Fγ(z, z
′),

where Fγ(z, z′) is a smooth section of (EndE)z ⊗ (EndE∗)z′ close to the identity

near the diagonal of Uz′ ×Uz′ . Taking the Taylor expansion around z′, we get

Fγ(z, z′) = 1 +A(z′)(z − z′) +B(z′)(z − z′) +O((z − z′)2),

and

αγ(z) = αγ(z′) + ∂zαγ(z′)(z − z′) + ∂z̄αγ(z′)(z − z′) +O((z − z′)2),

because

∂̄γGγ(z, z′) = δ(z − z′),
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we find that B(z′) = −αγ(z′) and in particular,

Fγ(z, z′) = Id+βγ(z′)(z − z′) − αγ(z′)(z − z′) +O((z − z′)2),

for some smooth section βγ(z′) ∈ End EndE depending holomorphically on αγ.

Moreover, any parametrix of ∆−1
γ ○ ∂̄∗γ is of the following form on Uz′ :

Gγ(z, z′) =
i

2π
( 1

z − z′ − αγ(z
′)(z − z

′)
z − z′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

singular part

+ const + terms vanishing at z = z′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regular part

)dz′.

Remark 106. The expression of βγ(z′) depends on the choice of the local coordinate

z. For if we take w = z + cz2 +⋯ to be another coordinate near z′, since

dw

w
= dz
z
+ c dz +O(z),

this would add a constant −c to βγ(z′).

Let ∇γ denote the Chern connection associated with ∂̄γ on E. The parallel

transport F∇γ(z, z′) ∈ Hom(EndEz′ ,EndEz) along geodesic ray from z′ to z has the

following expansion:

F∇γ(z, z′) = Id+α∗γ(z′)(z − z′) − αγ(z′)(z − z′) +O((z − z′)2),

109



and this implies that

G#
γ,z′(z, z′) ∶=

i

2π
ψ(d(z, z

′)
ρ

)(∂z′ log d2(z, z′))F∇γ(z, z′) on Uz′

is a local parametrix of Gγ(z, z′) near z′. Here, ψ is the cut off function defined in

(5.8)

In Theorem 141 in Appendix D, we showed that there exists a local parametrix

of Gγ, denoted by Gγ,k, on each cusp end Zk. Actually, we know that along each

cusp end Zk, the following difference

lim
z′→z

∣Gγ,k(z, z′) −
i

2π(z − z′)dz ∣ ∼ O(1),

is smooth and uniformly bounded along each cusp end Zk. This follows from the

fact that the Cauchy kernel on the upper half plane is explicitly given by

Q(z, z′) = i

2π
( 1

z − z′ −
1

z̄ − z′ ),

with respect to the volume form dz ∧ dz̄ and the method of periodization to construct

the exact kernel of ∂̄−1
γ on Zk (see Proposition 111 below and the related discussion).

Hence we will take Gγ,k to be the i
2π(z−z′) in the following.

AsM` is compact, there exists a finite covering {Uz′j
} ofM`. Let {ψz′j(z)} and

{ψk(z)} denote a partition of unity subordinate to the covering {Uz′j
}j together with
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{Zk,y≥`−1}k. With an abuse of notation, we define the following global parametrix

G#
γ (z, z′) = ∑G#

γ,z′j
(z, z′)ψz′j(z

′) +∑Gγ,kψk(z′),

of Gγ(z, z′) on X. It is not hard to see that the following lemma holds and hence

we will omit its proof.

Lemma 107. There exists a global parametrix G#
γ (z, z′) of ∆−1

γ ∂̄
∗
γ on X, which

satisfies that

1. On each Uz′j
,

G#
γ (z, z′) =

i

2π
ψ(d(z, z

′)
ρ

)(∂z′ log d2(z, z′))F∇γ(z, z′);

2. Along each cusp end Zk, with respect to the fixed cusp coordinate and temporal

gauge, G#
γ (z, z′) = i

2π
dz′

z−z′ .

3. limz′→z ∣Gγ(z, z′) −G#
γ (z, z′)∣ is smooth and uniformly bounded on X

Remark 108. The construction of G#
γ (z, z′) clearly depends on the level ` > 0. In

the following, we will show that

Jγ(z) = lim
`→∞

lim
z′→z

(Gγ(z, z′) −G#
γ (z, z′)),

exists and is uniformly bounded on X. Moreover, we will find an explicit expression

for its limiting value as z goes to infinity along each cusp end.
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6.2.2 An Invariant Section Jγ

By Theorem 92, for sufficiently large N ∈ N, we know that ∣KN
∆γ

(t; z, z′) −

K∆γ(t; z, z′)∣ is uniformly bounded and tends to zero near the diagonal uniformly

as t → 0. Due to the fact that Gγ(z, z′) is locally integrable and its behavior along

each cusp end, see Lemma 107, it follows that we have

lim
t→0
∫
X
∣(K∆γ(t; z, z′) −KN

∆γ
(t; z, z′))Gγ(z′, z)∣dvg(z′) = 0.

Therefore,

Jγ(z) = LIM
t→0

∫
X
KN

∆γ
(t; z, z′)Gγ(z′, z)dvg(z′). (6.15)

which reduces our computation of Jγ to the interior of X and along the cusp ends.

In the following, we analyze the behavior of Jγ(z) when either z ∈ M` for ` in any

bounded interval of [1,∞) or z ∈ Zk for k = 1, ,m. The first part was done by Quillen

[98] and we provide the details here for the reader’s convenience. In the second part,

the key is to prove uniform convergence of (6.14) and find explicit expression of Jγ

along the cusp ends. These form the key results of this part.

Part I. Given any ` > 0, for any point z ∈ M`, we study the existence and some

properties of the limit Jγ(z) defined in (6.14).

For any point z ∈M`, fix a local coordinate z and an orthonormal frame of E

as discussed in the construction of G#
γ (z, z′). By definition, the section Jγ(z) is the
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constant term of the following expression,

Jγ(z) = LIM
t→0

∫
C

1

4πt
exp(−d

2(z,w)
4t

)(F∇γ(z,w) +⋯ + tNFN(z,w))( dz

w − z )

( Id+βγ(z)(w − z) − αγ(z)(w − z) +O(∣w − z∣2))g(w)dw ∧ dw̄,

= LIM
t→0

∫
C

1

4πt
exp(−d

2(z,w)
4t

)( dz

w − z )(Id+βγ(z)(w − z) − α∗γ(z)(w − z)

+O(∣w − z∣2))g(w)dw ∧ dw̄.

Here, g(z) = ∣ ∂∂z ∣2. The expansions of g and d(z,w) is given by

g(w) = g(z) + ∂wg(z)(w − z) + ∂w̄g(z)(w − z) +O(∣w − z∣2),

d2(z,w) = ∣z −w∣2(g(z) + 1

2
∂wg(z)(w − z) + 1

2
∂w̄g(z)(w − z) +O(∣w − z∣2).

To simplify the above computation, we set z = 0 and use the substitution

u = w
2
√
t
, we get

Jγ(0) = lim
t→0
∫
C

exp(−g(0)∣u∣2)(1 − 2
√
t∣u∣2(∂wg(0)u

2
+ ∂w̄g(0)ū

2
) +O(t))( 1

2
√
tu

)

(1 + 2
√
tβγ(0)u − 2

√
tα∗γ(0)ū +O(t))(g(0) + 2

√
t(∂wg(0)u + ∂w̄g(0)ū) +O(t))du ∧ dūidz

2π
,

= ∫
C

exp(−g(0)∣u∣2)( − ∣u∣2∂wg(0)
2

+ βγ(0) − α∗γ(0))g(0)du ∧ dū
idz

2π
,

where the singular coefficients involving t vanish because for any k ∈ N, the following

integrals vanish by symmetry,

∫
C

e−∣u∣
2

u
∣u∣k dxdy

π
= 0 and ∫

C
e−∣u∣

2 ∣u∣k ū
u

dxdy

π
= 0. (6.16)
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Together with the following identities,

∫
C
e−g(0)∣u∣

2

du ∧ dū = 1

g(0) and ∫
C
e−g(0)∣u∣

2 ∣u∣2du ∧ dū = 1

g(0)2
, (6.17)

we conclude that for any z ∈ M̊`,

Jγ(z) = (βγ(z) − α∗γ(z) +
1

2
∂z log g(z))idz

2π
. (6.18)

Proposition 109. Given any ` > 0 and any z ∈ M`, the constant term in (6.14)

exists and is a smooth section of EndE⊗EndE∗⊗Λ1,0X uniformly bounded onM`.

It is locally given by

Jγ(z) = (βγ(z) − α∗γ +
∂zg(z)
2g(z) )idz

2π
= (βγ(z) − α∗γ +

1

2
∂z log g(z))idz

2π
,

with such an expression invariant under change of coordinates.

Proof. The exact local expression has been found as above, it remains to prove the

rest of the statements. To show the invariance under change of coordinate, note

that under any new coordinate w = z + cz2 +⋯, we have

g̃ = ∣ ∂
∂w

∣2 = ∣ ∂z
∂w

∣2g(z).

Hence

∂ log g̃(z) − ∂ log g(z) = d
2w

dz2
/dw
dz

= 2c.
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By Remark 106, we finish the proof of invariance of coordinate representation.

Corollary 109.1. For any given ` > 0 and any z ∈M`, we have

lim
t→0
∫
X
K#

∆γ
(t; z, z′)G#

γ (z′, z)dvg(z′) = 0. (6.19)

In particular, Jγ(z) = limz′→z(Gγ(z′, z) −G#
γ (z, z′)) on M`.

Proof. This follows essentially from the following identities

F∇γ(z, z′) = Id+α∗γ(z′)(z − z′) − αγ(z′)(z − z′) +O((z − z′)2),

F∇γ(z′, z) = Id−α∗γ(z′)(z − z′) + αγ(z′)(z − z′) +O((z − z′)2),
(6.20)

and therefore the product that appears in the regularization (6.19) contains only

the singular term 1
z−z′ and terms of order greater or equal to 2, hence the statement

follows from the above computation.

Part II. Let us first consider the contribution of the singular part of Gγ,k along the

cusp end Zk. For any z ∈ Zk with Im z ≥ ` + 1, we have

LIM
t→0

∫
X
K#

∆γ
(t; z,w)G#

γ (w, z)dvg(w) = LIM
t→0

(∫
Zk
KZk

∆γ
(t; z,w)( 1

w − z )
dw

w2
) i

2π
dz,

and by Lemma 88 and Remark 89, it becomes

Uγ ⋅ LIM
t→0

(∑
j∈Z
∫
Zk
K∆H(t; z,P jw)Adρ(P j)( 1

w − z )
dw

w2
) ⋅U−1

γ

i

2π
dz.

(6.21)
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We claim that the above expression vanishes as t goes to 0. Moreover, the following

expression

∫
Zk

Ad g adµAd g−1KZk
∆γ

(t; z,w)( 1

w − z )
dw

w2

i

2π
dz, (6.22)

goes to 0 uniformly along the cusp Zk. To prove these claims, we split (6.21) into

two parts:

LIM
t→0

(∫
Zk
K∆H(t; z,w) 1

w − z
dw

w2
) i

2π
dz, (6.23)

and

LIM
t→0

(∑
j≠0
∫
Zk
K∆H(t; z,P jw) 1

w − z
dw

w2
) ⋅Uγ ⋅Adρ(P j)U−1

γ

i

2π
dz. (6.24)

(6.23) vanishes by exactly the same argument we have used in the computation of

Jγ and the fact that H is of bounded geometry. To estimate (6.24), we use the

following estimate

∣K∆H(t; z,P jw)∣ ≲ 1

t
e−c

d2(z,w+2jπ)
4t .

and the fact that the distance between (x, y) and (x + 2jπ, y) is given by

d((x + 2jπ, y), (x, y)) = cosh−1(1 + 8j2π2

y2
) ≥ log(1 + 8j2π2

y2
),

where the second inequality follows from the fact that cosh−1(s) = log(s +
√
s2 − 1)
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when s > 1. Set a2 = y2

8π2 and use the fact that log(1+ s) ≥ s/2 when 0 ≤ s ≤ 1, we get

∣ ∫
Zk
K∆H(t; z,P jw) 1

w − z
dw

w2
∣ ≤ 1

t
e−c

log2
(1+

8j2π2

y2 )

4t ∫
Zk

∣ 1

w − z ∣
dw

w2

≲ 1

t
e−c

log2
(1+

j2

a2 )

4t

≤ 1

t
e−c

1
8a4t e−c

log2
(1+

j2

a2 )

8t .

Set v = log(x/a) and by integral estimate,

∞

∑
j=1

e−c
log2

(1+
j2

a2 )

4t ≤ ∫
∞

1
e−c

log2
(1+x

2

a2 )

4t dx

≤ ∫
a

1
e−c

log2
(1+x

2

a2 )

4t dx + ∫
∞

a
e−c

log2
(1+x

2

a2 )

4t dx

≤ (a − 1) + ∫
∞

1
e−4c

log2
(
x
a )

4t dx

≤ (a − 1) + ∫
∞

0
e−4c v

2

4t evdv

< a(1 +
√
tec

′t) ≲ a.

Therefore, we have shown that

∞

∑
j=1

∣ ∫
Zk,y≥`+1

K∆H(t; z,P jw) 1

w − z
dw

w2
∣ ≤ y

2

t
e
− c′

y4t → 0.

Though the above expression does not vanish uniformly on Zk, since P −
γ (gµg−1) ∈

C∞ ∩ L∞δ (this follows from Lemma 34 and Lemma 37), their product will satisfy

that

∫
Zk

ad(P −
γ (gµg−1))KZk

∆γ
(t; z,w) i

2π

1

w − z
dw

w2
dz → 0,

117



uniformly for any z ∈ Zk with Im z ≥ ` + 1. This implies that

Jγ(z) = LIM
t→0

∫
Zk
KZk

∆γ
(t; z,w)(Gγ,k(w, z) −

i

2π

1

w − z)
dw

w2
dz.

= lim
z′→z

(Gγ,k(w, z) −
i

2π

1

w − z)dz,
(6.25)

where in the second equality, we have used the same analysis as above to conclude

that only the term j = 0 of KZk
∆γ

(t; z, z′) as discussed above contributes non-trivially.

With the aid of (6.25), let us find the explicit behavior of Jγ(z) along a cusp end

Zk.

Proposition 110. Along each cusp end Zk, we have that

Jγ(z) = Uγ,k( sgn(αi,k − αj,k)(
1

2
− ∣αi,k − αj,k∣))

ij

U−1
γ,k

dz

2π
+ o(1), (6.26)

where Uγ is the constant unitary gauge transformation that puts ∂̄γ into the model

operator (2.6). In particular, it depends smoothly on γ and UA,k = Id.

Proof. By Lemma 19, there exists a unitary gauge transformation Uγ,k along each

Zk that takes ∂̄γ into the model operator (2.6), that is with respect to the fix a local

temporal frame {ei,k}i and any section f ∈ C∞
c (EndE), we have

(Uγ,k ○ ∂̄γ ○U−1
γ,k)fij,k(z)ei,k ⊗ e∗j,k = ( ∂

∂z̄
+ i

2
(αi,k − αj,k))fij,k(z)ei,k ⊗ e∗j,kdz̄,

where fij,k is the ij-th component of f with respect to the fixed temporal frame along

Zk. Therefore, the action of ∂̄γ,k on EndE is diagonalized by Uγ,k. Moreover, the
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adjoint representation Adρ of its local holonomy is also diagonalized simultaneously

by Uγ with respect to the fixed temporal frame. It is easy to see that Uγ,k depends

on γ smoothly and UA,k is the identity by our assumption. As the Cauchy kernel of

∂
∂z̄ on the upper half plane is explicitly given by

G(z, z′) = i

2π
( 1

z − z′ −
1

z̄ − z′ ),

hence by Proposition 111, we can take the nonsingular part of its periodization with

respect to the vertical strip [0,2π)×[a,∞) to find an expression of Jγ along the cusp

end. That is, for any (x, y) ∈ [0,2π) × [a,∞) and in terms of the ij-th component,

we have

Jγ(z) = (Uγ∑
n≠0

G(z, z + 2nπ)Adρn(P )U−1
γ )

ij

− idz
2π

( 1

z̄ − z )

= Uγ(∑
n≠0

( 1

2πn + 2iy
− 1

2πn
) e2nπi(αi−αj))

ij

U−1
γ

idz

2π
− idz

2π
( 1

z̄ − z )

= Uγ(
1

π
∑
n>0

sin 2πn(αi − αj)
n

+ ∑
n≠0

e2πni(αi−αj)

2πn + 2iy
)
ij

U−1
γ

dz

2π
− idz

2π
( 1

z̄ − z )

= Uγ( sign(αi − αj)(
1

2
− ∣αi − αj ∣))

ij

U−1
γ

dz

2π
+ o(1).

(6.27)

where we have used the fact that

∑
n>0

sinnα

n
= Im(

∞

∑
n=1

einα

n
) = Im(− log(1 − eiα))

= (π
2
− α

2
) mod π ∈ (−π

2
,
π

2
].
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and

∫
∞

−∞

cos(x)
x2 + y2

dx = π exp(−y)
y

; and ∫
∞

−∞

x sin(x)
x2 + y2

dx = π exp(−y). (6.28)

This in particular gives us the explicit limiting value of Jγ as y →∞.

Part III. For z ∈M`+1 ∩Zk,y>`, by the local integrability of Gγ(z, z′) and the above

analysis, we know that for any z

∣Jγ(z) − lim
z′→z

(Gγ(z, z′) −G#
γ (z, z′))∣ → 0,

uniformly as `→∞. Therefore, we have shown that

Proposition 111. The smooth section Jγ ∈ EndE ⊗ EndE∗ ⊗ Λ1,0X defined in

(6.14) is uniformly bounded. Furthermore, it is given by

Jγ(z) = lim
`→∞

lim
t→0
∫
X
K∆γ(t; z, z′)(Gγ(z′, z) −G#

γ (z, z′))dvg(z′),

= lim
`→∞

(Gγ(z, z′) −G#(z, z′))∣
z=z′

.

(6.29)

Corollary 111.1. The first variation of the Quillen metric can be written as

δε1ζ
′(0) = −Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
) ○ P −

γ } + ∫
X

ad(P −
γ (gµg−1)) ∧ Jγ,

= −Tr{ad( ∂ g
∂ ε1

g−1 + g∗−1∂ g
∗

∂ ε1
) ○ P −

γ }

+ lim
`→∞

∫
M`

ad(P −
γ (gµg−1)) ∧ (Gγ(z, z′) −G#(z, z′))∣

z=z′
.

(6.30)

We conclude this section with the following property of Jγ first noted by
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Quillen [97].

Lemma 112. (cf. [97]) For any ` > 0, the restriction of Jγ on M`, as a section of

EndE ⊗EndE∗ ⊗Λ1,0X, satisfies

∂̄γ(Jγ) =
1

2
ωg,

where ωg is the curvature form associated with g. Moreover, ∂̄γ(Jγ)(z) is uniformly

bounded on each cusp end Zk.

Proof. The first part of this Lemma is a local computation and we work on a small

neighborhood Uz around z. Take a gauge transformation locally that takes ∂̄γ =

( ∂
∂z̄ + αγ)dz̄ to the standard Cauchy-Riemann operator ∂

∂z̄dz̄, this implies that

αγ = −
∂

∂z̄
gg−1. (6.31)

Moreover, in this new frame, F (z, z′) is replaced by g(z)−1F (z, z′)g(z′). As the

fundamental solution of ∂
∂z̄dz̄, we have

∂

∂z̄

i

2π

g(z)−1F (z, z′)g(z′)
z − z′ = δ(z − z′). (6.32)

In particular, (6.32) implies that g(z)−1F (z, z′)g(z′) is a holomorphic function of

the z-variable, and together with (6.31), implies that

∂̄γβγ =
∂

∂z̄
βγ + [αγ, βγ] =

∂

∂z
αγ.
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Since ∂̄γ(α∗γ) = ∂̄α∗γ + [αγ, α∗γ], we therefore find that

∂̄γ(βγ − α∗γ) = F (∇γ) = 0.

The result now follows from the fact that the curvature form of (X,g) is given by

ωg = −∂z̄∂z log ∣ ∂∂z ∣2.

As to the second part of the Lemma, this follows from Proposition 110, and

the estimate (6.28), in particular.

Remark 113. Note the analogy of Lemma 112 to the following index formula:

indF = trace[F,G],

where F ∶ X → Y are Fredholm operator between Hilbert spaces with its pseudoin-

verse G satisfying 1 −GF and 1 − FG are both trace class operator.
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6.3 Second Variation of the Quillen Metric

With the previous preparation, we are ready to evaluate the following,

∂2

∂ε̄2∂ε1
log det ∆γ∣

ε1=ε2=0

= − ∂2

∂ε̄2∂ε1
ζ ′(0)∣

ε1=ε2=0

,

= ∂

∂ε̄2
Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
) ○ P −

γ }∣
ε2=0

− ∂

∂ε̄2
∫
X

ad(P −
γ (Ad g(µ))) ∧ Jγ∣

ε2=0

,

= ∂

∂ε̄2
Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
) ○ P −

γ }∣
ε2=0

− lim
`→∞

( ∂

∂ε̄2
∫
M`

ad(P −
γ (gµg−1)) ∧ (Gγ(z, z′) −G#

γ (z, z′))∣z=z′∣
ε2=0

),

(6.33)

The following technical lemmas will be needed.

Lemma 114.

∂

∂ε̄2
Tr{ad( ∂ g

∂ ε1
g−1 + g∗−1∂ g

∗

∂ ε1
)P −

γ }∣
ε2=0

= −Tr (ad(fµν̄) ○ P −
A). (6.34)

Proof. From Lemma 70 and Lemma 72, we have

∂

∂ε̄2
( ∂ g
∂ ε1

g−1 + g∗−1∂ g
∗

∂ ε1
)∣
ε2=0

= ∂2

∂ε̄2∂ε1
(g∗g)∣

ε1=ε2=0

= −fµν̄ ,

and result follows.

Lemma 115. We have that

∂

∂ε̄2
(∆+

γ)
−1
∂̄∗γ ∣

ε2=0

= −(∆+
A)

−1 ○ ∗adν ∗ ○P −
A. (6.35)
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Therefore, we have the following

lim
`→∞

(∫
M`

ad(P −
γ (gµg−1)) ∧ ∂

∂ε̄2
Gγ(z, z′)∣z=z′∣

ε2=0

) = −Tr{adµ ○ (∆+
A)

−1 ○ ∗adν ∗ ○P −
A}.

(6.36)

Proof. Because of Lemma 70, the first statement follows from the following formal

computation,

∂

∂ε̄2
(∆+

γ)
−1
∂̄∗γ ∣

ε2=0

= −(∆+
γ)

−1 ∂

∂ε̄2
(∆+

γ)(∆+
γ)

−1
∂̄∗γ ∣

ε2=0

+ (∆+
γ)

−1 ∂

∂ε̄2
∂̄∗γ ∣

ε2=0

,

= (∆+
γ)

−1 ∂

∂ε̄2
(∂̄∗γ)(1 − ∂̄γ(∆+

γ)
−1
∂̄∗γ)∣

ε2=0

,

= −(∆+
A)

−1 ○ ∗adν ∗ ○P −
A.

For the second equality, note that Gγ(z, z′) is the integral kernel of ∆−1
γ ∂̄

∗
γ , whose

singularity along the diagonal is of the form 1
z−z′ , hence the integral converges uni-

formly as `→∞ as µ decays exponentially to 0.

Lemma 116.

lim
`→∞

(∫
M`

ad(P −
γ (gµg−1)) ∧ ∂

∂ε̄2
G#
γ (z, z′)∣z=z′∣

ε2=0

) = − 1

2π ∫X adµ ∧ ad∗ν. (6.37)

Proof. This follows from the Lemma 107.

Lemma 117. We have the following,

∂

∂ε̄2
P −
γ (gµg−1)∣

ε2=0

= −∂̄Afµν̄ . (6.38)
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and

ad(∂̄Afµν̄) = ∂̄A(ad fµν̄).

Proof. For the first equality, we have

∂

∂ε̄2
P −
γ (gµg−1)∣

ε2=0

= ∂

∂ε̄2
(1 − ∂̄γ∆−1

γ ∂̄
∗
γ)(gµg−1)∣

ε2=0

,

= ∂̄A∆−1
A ∗ adν ∗ µ + P −

A([
∂

∂ε̄2
g∣
ε2=0

, µ]),

= −∂̄Afµν̄ + P −
A([

∂

∂ε̄2
g∣
ε2=0

, µ]).

The result follows from the claim that ∂
∂ε̄2
g∣
ε2=0

= 0. By definition, g satisfies

g(∂̄A + ε2ν)g−1 = ∂̄A + γ ∈ U0,1
A,ε,

where γ satisfies the following

∂̄∗Aγ − ∂∗Aγ∗ = 0,

and

−∂̄Aγ + ∂Aγ − [γ, γ∗] = 0,

which is essentially the defining condition on tangent space to U0,1
A,ε, see Definition

59. Differentiate these conditions with respect to ε2 and let ε2 = 0, and apply Kähler

identities, we get

∆A(
∂

∂ε̄2
g∣
ε2=0

) = 0.
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Then the claim follows as ∂
∂ε̄2
g∣
ε2=0

belongs to S2,2
δ,s (EndE), on which ∆A is invertible.

For the second equality, note that for any s ∈ L2(EndE), by definition we have

∂̄A ○ ad fµν̄(s) − ad fµν̄ ○ ∂̄A(s) = ∂̄A[fµν̄ , s] − [fµν̄ , ∂̄As]

= [∂̄Afµν̄ , s]

= ∂̄A(ad fµν̄)(s).

(6.39)

Theorem 118. Given the holomorphic family of Dolbeault operators ∂̄A+ε1µ+ε2ν,

the curvature of the canonical line bundle λ with respect to the Quillen metric (1.10)

is given by:

Θ(µ, ν̄) = − ∂2

∂ε̄2∂ε1
ζ ′(0)∣

ε1=ε2=0

,

= −Tr (ad fµν̄ ○ P +
A) +Tr (adµ ○∆−1

A ○ ∗adν ∗ ○P −
A)

+ ∫
X

tr(∂̄A(ad fµν̄) ∧ JA) −
1

2π ∫X tr(adµ ∧ ad∗ν),

= ΘL2(µ, ν̄) + ∫
X

tr(∂̄A(ad fµν̄) ∧ JA) −
1

2π ∫X tr(adµ ∧ ad∗ν).

(6.40)

Proof. Combining Lemma 114, Lemma 115, Lemma 116, and Lemma 117, we get

the desired result.

Theorem 119. The first Chern form Ω of the canonical bundle λ equipped with
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the Quillen metric 1.10 is given by

Ω(µ, ν̄) = − i

4π2 ∫X adµ∧ad∗ν+ i

2π

m

∑
k=1

sk

∑
i≠j=1

sgn(αi,k−αj,k)(1−2∣αi,k−αj,k∣)mi,kΘj,k(µ, ν̄),

(6.41)

for any µ, ν ∈H0,1
A,δ ≅ T∂̄AVA,ε. Here Ωi,k is the curvature form of the line bundles λi,k,

see Definition 4.13.

Proof. By Theorem 71 and Proposition 118, we get that

δε̄2δε1ζ
′(0)(µ, ν̄) = Θ(µ, ν̄) + ∫

X
tr(∂̄A ad fµν̄ ∧ JA) +

−1

2π ∫X tr(adµ ∧ ad∗ν).

Applying integration by parts to the second term in the above formula, together

with Lemma 109, Lemma 112, we see that

∫
X

tr(∂̄A ad fµν̄ ∧ JA) = lim
`→∞

∫
M`

tr(∂̄A ad fµν̄ ∧ JA)

= − lim
`→∞

∫
M`

tr(ad fµν̄ ∧ ∂̄γJA) + lim
`→∞

∫
y=`

tr(ad fµν̄ ∧ JA),

= −
m

∑
k=1

sk

∑
i≠j=1

sgn(αi,k − αj,k)(1 − 2∣αi,k − αj,k∣)mi,kF
j,k
µν̄ ,

=
m

∑
k=1

sk

∑
i≠j=1

sgn(αi,k − αj,k)(1 − 2∣αi,k − αj,k∣)mi,kΘj,k(µ, ν̄).

In the third equality, we have used the following fact that

adM(eij) = ∑
k

(Mkiekj −Mjkeki),

where M and eij are n × n matrix with eij the basis matrix with 1 at ij-entry and
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0 otherwise. The result follows then from the limiting behavior of Jγ in (6.27).

Remark 120. Our formula is the same as those obtained by Takhtajan and Zograf

[113], and Albin and Rochon [1], and it should be noted that there is a typographical

error in the statement of Theorem 2 of [113]: the sum should be only for i ≠ j, also

the normalization constant of in Theorem 5.4 of [1] is wrong and should be corrected

to i
2π in equation (5.15).
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Appendix A: Weighted Sobolev Spaces on Surfaces with Cylindrical

Ends

In this part, we provide an account of the analytic preliminaries of weighted

Sobolev spaces on a surface with cylindrical ends. Much of the material presented

here is well-known and we refer the reader to [78], [77], [12], [114], and [95] for more

details.

Let E be a Hermitian vector bundle over (X,g0) the surface with cylindrical

ends together and we fix a trivialization E∣Zk ≅ Zk × Cn. Let ∇ ∶ Ω(E) → Ω1(E)

denote a fixed covariant derivative that is trivial along each cylindrical ends.

Let {τk ∶ X → [0,∞), k = 1,⋯,m} be an m-tuple of smooth functions defined

as

τk(x, y) =
⎧⎪⎪⎨⎪⎪⎩

0, for z ∈M
y, for z = (x, y) ∈ Zk

Let δ ∈ Rm be an m-tuple of real numbers called the weights. We denote by δτ

the scalar product. For δ1, δ2 ∈ Rm, we say that δ1 ≤ (resp. <) δ2 if δk1 ≤ (resp. <) δk2

for k = 1,⋯,m.

Definition 121. Let 1 < p < ∞, δ ∈ Rm, k ∈ N. The weighted Lebesgue space

Lk,pδ (E) is defined as the space of all sections u ∈ Lk,ploc(E) such that
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∥u∥Lk,p
δ

∶= ∥eδτu∥Lk,p = (
k

∑
i=0
∫
X
∥∇i(eδτu)∥p dvg)1/p

is finite.

Lemma 122 ( [75] Theorem 1.3). These spaces (Lk,pδ (X), ∥⋅∥Lk,p
δ

) are Banach spaces.

Lemma 123. The space C∞
0 (E) is dense in Lk,pδ (E).

In the following, we generalize the Sobolev embedding and multiplication the-

orems to Riemann surfaces with cusp ends.

Lemma 124 (Weighted Hölder Inequality). Let 1 < p, q, r < ∞ and δ, δ1, δ2 ∈ Rm

satisfy 1
p + 1

q = 1
r and δ1 + δ2 = δ. Let u ∈ Lpδ1(E) and v ∈ Lqδ2(E), then

∥uv∥Lr
δ
≤ ∥u∥Lp

δ1
∥v∥Lq

δ2

Proof. This is a direct application of the usual Hölder inequality.

Lemma 125 (Multiplication Theorem). Let E,E′ be two bundles with adapted

metrics over X. The tensor product on smooth sections induces an continuous map

Lk1,p1

δ1
(E) ×Lk2,p2

δ2
(E′) → Lk,pδ (E ⊗E′)

provided k ≤ min(k1, k2), δ > δ1 + δ2 and k − 2/p < k1 − 2/p1 + k2 − 2/p2.

Proof. This follows from the decomposition of Zk =
∞

⋃
i=1
Cj,k with Cj,k ∶= S1 × [j, j +

1] and applying Sobolev multiplication to eδtu on each Cj,k. Hence we omit the

details.
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Lemma 126 (Weighted Sobolev Embeddings). Let k, l ∈ N, 1 < p, q < ∞, δ, δ′ ∈ Rm,

we have

1. If k ≥ l, k − 2/p ≥ l − 2/q, either p < q and δ > δ′ or p ≥ q and δ ≥ δ′, we have

Lk,pδ (E) ↪ Ll,qδ′ (E) is continuous;

2. If k > l, k − 2/p > l − 2/q and δ > δ′, then Lk,pδ (E) ↪ Ll,qδ′ (E) is compact;

3. If k − 2/p > 0 and δ′ < δ, then Lk,pδ (E) ↪ C0
δ′(E), where the weighted C0

δ′-norm

is defined by

∥u∥C0
δ′
= sup
z∈X

{ eδ′τ ∣u(z)∣}.

We have,

∥u∥C0
δ′
(Cj,k) = o(1) as j →∞.

Proof.

Part 1. Covering M by a finite charts, together with the m cusp ends, this form

an atlas of X. Take a partition of unity subordinate to this covering and apply the

standard Sobolev embedding to the interior of X, we are reduced to the proof to

sections supported on each cusp end Zk.

When k ≥ l, k − 2/p ≥ l − 2/q, there exists a constant c > 0 (independent of j)

such that for any u ∈ Ω(Zk,E), its restriction to each Cj,k satisfies that

∥u∥Ll,q(Cj,k,dA) ≤ c∥u∥Lp,k(Cj,k,dA), (A.1)

where dA stands for the Euclidean volume element.
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Assume further that q ≥ p and δ > δ′. Multiplying the left and right sides of

A.1 by e(j+1)δ′ and ejδ, respectively, and for N sufficiently large and j ≥ N , there

exist constants C > 0 and 0 < c < 1 such that

∥u∥Ll,q
δ′

(Cj,k, dvg)
≤ C ecj(δ′−δ) ∥u∥Lk,p

δ
(Cj,k, dvg)

. (A.2)

Summing (A.2) over j ≥ N , we get that

∥u∥q
Ll,q
δ′

(Zj≥N , dvg)
= ∑
j≥N

∥u∥q
Ll,q
δ′

(Cj , dvg)

≤ c′ecN(δ′−δ)(∑
j≥N

∥u∥p
Lk,p
δ

(Cj , dvg)
)q/p

= c′ecN(δ′−δ)∥u∥q
Lk,p
δ

(Zj≥N , dvg)
(A.3)

In the second inequality, we have used the following Hölder inequality

(∫ ∥eδ′tf∥qdvg)
1
q ≤ (∫ ∥eδtf∥pdvg)

1
p (∫ er(δ

′−δ)tdvg)
1
r ,

where 1/q = 1/p + 1/r, and the fact that for a positive sequence an and q > p,

∞

∑
n=1

a
q/p
n ≤ (

∞

∑
n=0

an)q/p (A.4)

Hence we have proved the case when k ≥ l, k−2/p ≥ l−2/q and q ≥ p and δ > δ′.

In the case when l = k = 0, δ ≥ δ′, and p > q, by Hölder inequality, we have that
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(∫
Zj≥N

∣eδ′τu∣q dvg)
1
q ≤ (∫

Zj≥N
e
pq
p−q

(δ′−δ)τ dvg)
p−q
pq (∫

Zj≥N
∣eδτu∣p dvg)1/p

≤ c eN(δ′−δ)(∫
Zj≥N

∣eδτu∣p dvg)1/p (A.5)

The general case follows from applying Equations (A.1) and (A.5) to the covariant

derivatives of u inductively.

Part 2 (see also [28], Lemma 2.1). The idea is to verify the totally boundedness of

the image of unit ball B ⊂ Lk,pδ in Ll,qδ′ , i.e. for any ε > 0, there exists a finite covering

of the image of B by balls of radius less than ε in Ll,qδ′ .

Again, by the patching argument with the Rellich-Kondrachov lemma, we are

reduced to show that for any ε > 0, there exists N sufficiently large, such that for

any u ∈ B,

∥u∥Ll,q
δ′

(Zj≥N ,dVg)
≤ ε

The statement follows from Equations (A.3) and (A.5).

Part 3. By Sobolev embedding on (Cj,k, dA), there exists a constant c > 0 such that

for any u ∈ C∞
c (Zj≥1) and any δ′ < δ,

∥eδ′τu∥C0(Cj,k) ≤ c ∥eδ
′τu∥Lk,p(Cj,k,dA)

≤ c (j + 1)1/p∥eδ′τu∥Lk,p(Cj,k,d Vg)

≤ c′∥eδτu∥Lk,p(Cj,k,d Vg).
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Summing over j ≥ N , and since ∥eδτu∥Lk,p(Zj≥N ,d Vg) is finite, this implies that

{∥eδ′τu∥C0(Cj,k), j ∈ N}

form a Cauchy sequence that approaches 0.

Now we define the following weighted Sobolev spaces where different weights

are assigned to different degree of covariant derivatives.

Definition 127. We denote by L̂1,p
δ (E) the space of all sections u ∈ L1,p

loc(E) such

that its L̂1,p
δ -norm

∥u∥L̂1,p
δ

= (∥e−τu∥p
Lp
δ

+ ∥∇0 u∥pLp
δ

)1/p.

is finite.

Lemma 128 (Weighted Poincaré Inequality). 1. For any p > 1 and a local sec-

tion u of E supported on the end Zk, if δ < 0 and u vanishes on the boundary

of Zk, or if δ > 0 and u vanishes near the infinity of Zk, then

∥du
dy

∥Lp
δ
≤ c∥u∥Lp

δ
.

In particular, if δ < 0, then

L1,p
δ−1 = L̂

1,p
δ−1.
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2. For p > 2 and δ > 0 such that 1 − 2/p < δ, then any u ∈ L̂1,p
δ ⊂ C0(D(e−ak)) and

u − u(0) ∈ L1,p
δ .

Proof.

Part 1. For any smooth section u supported on Zk, applying integration by parts,

we get

pδ∫
Zk
epδτ ∣u∣pdy ∧ ∗dy = −∫

Zk
epδτd ∣u∣p ∧ ∗dy − ∫

y=1
epδτ ∣u∣p ∗ dy (A.6)

+ lim
A→∞

∫
y=A

epδτ ∣u∣p ∗ dy,

If δ > 0 and u vanishes at infinity, from Kato’s inequality,

≤ p∫
Zk
epδτ ∣u∣p−1 ∣du

dy
∣dy ∧ ∗dy

By Cauchy-Schwarz inequality, we get the desired inequality,

∫
Zk
epδτ ∣u∣p dvg ≤ c∫

Zk
epδτ ∣du

dy
∣p dvg.

The above argument also works for the case of δ < 0 and u vanishing near the

boundary of Zk.

For the third statement in part 1, let χ ∶ [1,∞) → [0,1] be a fixed smooth

cut-off function defined by
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χ(y) =
⎧⎪⎪⎨⎪⎪⎩

0, for ak ≤ y ≤ ak + 2,

1, for y ≥ ak + 3.

Applying (A.6) to χu and we get

−pδ∫
Zk
epδτ ∣χu∣p dvg ≤ ∣∫

Zk
epδτd ∣χu∣p ∧ ∗dy∣,

by Kato’s inequality, there exists a constant c > 0,

∫
Zk
epδτ ∣χu∣p dvg ≤ c∫

Zk
epδτ(∣dχu∣ + ∣χdu∣)∣u∣p−1 dvg.

Since dχ is bounded with its support contained in S1×[aK +2 ≤ y ≤ aK +3], applying

Hölder inequality to the second term, there exists a constant c′ > 0,

∫
Zk
epδτ ∣u∣p dvg ≤ c′(∫

Zk
ep(δ−1)τ ∣u∣p dvg + ∫

Zk
ep(δ−1)τ ∣du∣p dvg).

In the last step, we need δ < 0, and this finishes the proof of part 1.

Part 2. By identifying the punctured disk D∗(e−ak) with the end Zk, the L1,p-norm

on D(e−ak) can be written as

∥u∥p
L1,p(D(e−ak),dA)

= ∫
Zk

∣e−2/pτu∣p + ∣e(1−2/p)τdu∣p dvg,

for any u ∈ C∞
c (D(e−ak)). Therefore, for any δ satisfying 1 − 2/p < δ < 1, we have

∥u∥L1,p(D(e−ak)) ≤ c∥u∥L̂1,p
δ

(Zk, dvg)
.
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In this case, C∞
c (D(e−ak),E) is dense in L̂1,p

δ (Zk). By Taylor expansion, we have

∣u − u(∞)∣ ∼ O(e−τ)

This enable us to apply the same integration by parts argument as in (A.6) to

∣u − u(∞)∣ as the boundary term approaches to 0 by the above estimate, hence our

result follows.

Definition 129. We denote by L̂2,2
δ (E) the space of all sections u ∈ L2,2

loc(E) such

that its L̂2,2
δ -norm

∥u∥L̂2,2
δ

= (∥e−2τu∥2
L2
δ
+ ∥∇0 u∥2

L1,2
δ

)1/2.

is finite.

Corollary 129.1. The spaces L̂2,2
δ (E) are Banach spaces. Moreover, the subspace

L2,2
δ (E) of finite codimension.

Proof. By definition, any section u ∈ L̂2,2
δ (E) satisfies that, for any p > 2, u ∈ Lp

−1+δ

and ∇0u ∈ Lpδ , which in turn by Lemma 128 implies that u has limiting values uk(∞)

along each cusp Zk. Let χk ∶ Z → [0,1] be smooth cutoff functions such that it equals

1 along the cusp end Zk for y ≥ 2 and vanishes outside Zk for y ≤ 1. Furthermore,

by Lemma 128,

u −∑
k

χkuk(∞)

belongs to L2,2
δ . Let P denote this fixed projection from L̂2,2

δ to L2,2
δ . We see that,
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L̂2,2
δ contains L2,2

δ as a finite codimension subspace, which implies that L̂2,2
δ is a

Banach space.

Lemma 130 (Weighted Elliptic L2 Estimate and Regularity). Let D be an second

order elliptic operator, and let δ ∈ Rm. There exists a constant c(δ) > 0 such that

for all u ∈ L2
δ satisfying Du ∈ L2

δ ,

∥u∥Ls,2
δ

≤ c(∥Du∥L2
δ
+ ∥u∥L2

δ
).

Proof. Due to the interior L2 estimate, by a patching argument, we only need to

prove the above estimate along the cusp end. Let u, v ∈ L2
δ(Z,E), such that Du = v

in the weak sense. Restricting to Zj≤y≤j+1, by local L2 estimate, there exists a

uj ∈ W 2,2
0 (Zj≤y≤j+1,E) such that Duj = v on Zj≤y≤j+1. In particular, D(u − uj) = 0

and hence u− uj is smooth, which implies that u∣j≤y≤j+1 ∈W 2,2(j ≤ y ≤ j + 1,E). We

have in this case

∥u∥L2,2(Zj≤y≤j+1) ≤ c (∥v∥L2(Zj−1≤y≤j+2) + ∥u∥L2(Zj−1≤y≤j+2)).

Multiplying both side by eδτ , and summing over j ∈ N, we conclude that

∥u∥L2,2
δ

≤ c′ (∥v∥L2
δ
+ ∥u∥L2

δ
).

This completes the proof of the result.
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Appendix B: L2-Index of Dolbeault Operators

Given the complete cusp metric g on X and the induced Hermitian metric on

EndE with respect to the fixed temporal frame of E, we define the L2-product for

any σ1, σ2 ∈ C∞
c (X,EndE) as

(σ1, σ2)L2 ∶= ∫
X
⟨σ1, σ2⟩dvg,

with the L2-norm denoted by ∥ ⋅ ∥.

Definition 131. For k ∈ N, we define the Sobolev space Hk(X,EndE) as the

space of sections σ ∈ L2
loc(X,EndE) such that the i-th order covariant derivative

∇iσ ∈ L2(X,ΛiX ⊗EndE) for all i ≤ k. The Sobolev Hk-norm is defined as

∣∣σ∣∣2Hk ∶=
k

∑
i=0

∣∣∇iσ∣∣2L2 .

Given any Dolbeault operator ∂̄γ ∈ U0,1
A,ε, consider the following L2 Dolbeault

complex

∂̄γ ∶ L2(EndE) → L2(Λ0,1X ⊗EndE),

with its initial domain C∞
c (X,EndE). There are two possible closed extensions
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of ∂̄γ. The first is the minimal extension ∂̄γ,min whose domain is defined as the

completion of C∞
c (X,EndE) with respect to the graph norm defined below,

∣∣σ∣∣2
∂̄γ
∶= ∣∣σ∣∣2L2 + ∣∣∂̄γσ∣∣2L2 .

The second is the maximal extension ∂̄γ,maxa whose domain is defined via duality as

the space of all σ ∈ L2(X,EndE) such that there exists a section η ∈ L2(X,E) such

that

⟨∂̄γ,maxσ , f⟩L2 = ⟨η , ∂̄∗γf⟩L2 , ∀f ∈ C∞
c (X,EndE).

It is obvious that C∞
c (X,EndE) ⊂ dom(∂̄γ,max). In our case, the minimal and

maximal extensions of ∂̄γ coincide, that is C∞
c (X,EndE) is dense in the domain of

∂̄γ,max with respect to the graph norm; moreover, the Dolbeault Laplacians ∆±
γ are

essentially self-adjoint, which follow from the following,

Theorem 132 ([27] [53] [54]). Let X be a complete Riemannian manifold with

compact boundary Y (possibly empty) and E,F two Hermitian bundles. Suppose

D is a first order differential opearator acting between E and F , whose symbol

satisfies that the principal symbol ∣σ(D)(x, ξ)∣ ≤ C(1 + ∣ξ∣) uniformly on X, then

1. dom(Dmin) = dom(Dmax)

2. D∗D and DD∗ are essentially self-adjoint.

In particular, any Dirac-type operators on X satisfies condition (1).

To define the L2-index of the above Dolbeault complex, we need the following,
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Proposition 133. [87, Corollary 6.26] The following L2 Dolbeault complex

∂̄γ ∶ L2(EndE) → L2(Λ0,1X ⊗EndE),

is Fredholm.

Alternate proof of this proposition can be found in Ballmann and Brüning

in [8], Stern [112], and Lott [79]. Since ker ∂̄γ ∩ L2 and ker ∂̄∗γ ∩ L2 are both finite

dimensional, we may define

Ind(∂̄γ) = dim(ker ∂̄γ ∩L2) − dim(ker ∂̄∗γ ∩L2),

and it is our goal in this part to compute the L2-index of the Dolbeault complex

(3.12).

Our strategy here follows that of [99]. That is, as the spectral invariant L2 −

ind(D) is stable under surgery, we decompose the surface X at any given level ` > 0

along the cusp ends, that is we have the decomposition of the following form

X` ∶=M`⋃
Y

∪mk=1Zk,y≥`,

where Y is a disjoint union of m-circles at level `. By imposing suitable boundary

conditions at Y , we prove a gluing formula for L2-index which reduces our compu-

tation to the compact part and the cusp ends where the geometry is explicit.

As to the computation of the L2-index of the compact part, the key obser-
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vation, due to Alvarez [3] and Wentworth [123], is that when considered as a real

Cauchy-Riemann operator, the totally real boundary condition, see Definition 135,

is elliptic for ∂̄γ; More importantly, the Dolbeault complex becomes a Fredholm

complex when imposed with these boundary conditions along Y , hence making the

heat kernel approach of index computation available.

The first appearance of the totally real boundary condition was in [118], and

we refer the reader to [18, Section 2.1] for an interesting discussion of the Hellwig-

Vekua index theorem, which can be seen as a predecessor of the result to be proven

in this part. The ellipticity of the totally real boundary condition was discussed in

[108] and [124]. We refer the reader to Appendix C of [83] for a readable introduction

of the analytic preliminaries concerning these boundary conditions. For the general

theory of elliptic boundary value problem of a first order Dirac type operator, we

refer the reader to [9] for a comprehensive discussion.

B.1 Totally Real Boundary Condition

In this part, we introduce the totally real boundary condition for the Dolbeault

operator ∂̄γ on the complete surface with boundary X`⋃Y ∪mk=1Zk,y≥` and discuss its

ellipticity in the sense of Shapiro-Lopatinskii. We will refer the reader to the general

theory of elliptic boundary value problems to [57], [124], and [9].

First, we remark that there do not exist any (C -linear) elliptic boundary

conditions for the Cauchy-Riemann operator ∂̄γ. Suppose that the boundary Y of

M` is totally real, i.e. there exist coordinates z = x + iy in a neighborhood of the
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boundary such that the equation of Y is y = 0. Without loss of generality, we assume

that E is a trivial line bundle on this coordinate patch, therefore we have

∂̄γ =
1

2
( ∂
∂x

+ i ∂
∂y

) = i

2
( ∂
∂y

+ 1

i

∂

∂x
)

with its symbol given by

σ(∂̄γ)(x,0) = −
1

2
(p − iξ)

Consider solutions of the following ordinary differential equation

σ(∂̄γ)(x,0;−i ∂
∂t
, ξ)φ(t) = 0.

By basic knowledge of initial value problem in ordinary differential equations, for

each ξ, σ(∂̄γ)(x,0, ξ) defines an isomorphism from the space of all initial data in

C to the corresponding solution of this equation. Let L+(x, ξ) denote the space of

initial data of the solution satisfying lim
t→∞

φ(t) = 0. We have

L+ =
⎧⎪⎪⎨⎪⎪⎩

0, for Re(ξ) < 0,

C, for Re(ξ) > 0,

which does not define a bundle on Y . Therefore, by the Shapiro-Lopatinskii criterion

[57, page 102 - 103, (1.11.76) and (1.11.77)], there does not exist any local elliptic

boundary condition for ∂̄γ.

Now, in order to define an elliptic boundary problem for the Dolbeault com-

plex, there are two possible approaches. One is to ues the Atiyah-Patodi-Singer

global boundary condition [7]. Another is to use the totally real boundary condition
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to be defined below.

Let M` be the compact surface with boundary Y . By restriction of scalar to

R, we will consider E as a real bundle equipped with the real part of the Hermitian

metric h, denoted as ( , ), which is clearly an inner product. Let J denote the

complex structure of E, it is in particular orthogonal with respect to ( , ) and it

satisfies J2 = −1. ∇γ also descends to a metric connection and commutes with J . In

the real setting, ∂̄γ can be written formally as

∂̄γ ∶= (∇γ)(0,1) =
1

2
(∇γ + J ○ ∇γ ○ j) (B.1)

where j is the complex structrue on X.

We will assume that, with respect to the fixed temporal frame {ei,k}i near

Y , ∂̄γ coincides with the model Dolbeault operator (2.6). Let n⃗ = y ∂
∂y be the unit

normal on Y . We will denote by in⃗ the inner contraction by n⃗0,1 ∶= 1
2(n⃗ + J ○ jn⃗).

Lemma 134 (Green’s Formula). For any s ∈ C∞
c (M`,EndE) and σ ∈ C∞

c (M`,Λ0,1⊗R

EndE), we have

∫
M`

(∂̄γs, σ)dvg − ∫
M`

(s, ∂̄∗γσ)dvg = ∫
Y
(s, in⃗σ) dY,

where dY denotes the induced volume form on Y .

Given the Riemannian vector bundle E with a compatible complex structure

J over M`, we define
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Definition 135. A totally real frame of E on Y is a choice of an orthonormal frame

(e1,⋯, er) of E∣Y such that F ∶= spanR{e1,⋯, er} ⊂ E∣Y satisfies F ⊥ JF .

Trivially, the fixed temporal frame {ei,k⊗ e∗j,k} is totally real. In the following,

we will fix them as the totally real frame of EndE along Y .

Definition 136. A section s ∈ C∞
c (M`,EndE) is said to satisfy the totally real

boundary condition on Y if s(z) ∈ Fz for all z ∈ Y .

Given the totally real frame {ei,k ⊗ e∗j,k}, this gives rise to an involution τ of

EndE∣Y such that

τ 2 = 1; τ ○ J + J ○ τ = 0; (τ ⋅, ⋅) = (⋅, τ ⋅);

with the corresponding projection Π ∶= 1
2(Id + τ).

In the following, we give a direct proof that, in our above setup, the totally

real boundary condition is a (local) elliptic boundary condition. As ∇γ is flat, by

the Weitzenböck formula, the following is true,

Proposition 137. For any s1, s2 ∈ C∞
c (M`,EndE), we have

(s1, s2)H1 ∶= ∫
M`

(s1, s2)dvg + ∫
M`

(∇γs1,∇γs2)dvg,

= ∫
M`

(s1, s2)dvg + 2∫
M`

(∂̄γs1, ∂̄γs2)dvg + ∫
Y
(s1,As2)dY,

where A = y(i ddx − [α, ⋅]) is the boundary operator satisfying

Π ○A −A ○ (1 −Π) = [α, ⋅] ○ τ.
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Proposition 138. For any s ∈ dom(∂̄γ,max) satisfying (1 − Π)s = 0. For any ϕ ∈

C∞
c (M`) and any δ > 0, there exists C > 0 such that the following

∥ϕs∥2
H1 ≤ (c + 2δ)∥ϕ∂̄γ(s)∥2

L2 +C∥ϕs∥2
L2 (B.2)

always holds.

Proof. The case when supp(ϕ)∩Y = ∅ follows from the interior elliptic regularity of

the Dolbeault operator. It remains to prove the above statement when supp(ϕ)∩Y ≠

∅, i.e. regularity up to the boundary. Without loss of generality, let us assume that

Y ⊂ supp(ϕ) ⊂ U , where U is a compact domain of M`.

From Proposition 137 and the fact that (1 −Π)s = 0, we get that

∥ϕs∥H1 = ∫
U
(ϕs,ϕs)dvg + 2∫

U
(∂̄γ(ϕs), ∂̄γ(ϕs))dvg + α∫

Y
(ϕs, τ(ϕs))dµ∂ (B.3)

Since the restriction to the boundary extends to a compact operator from H1(U,E)

to L2(Y,E∣Y ), by an inequality of Ehrling type, that is, for each δ > 0 there is C > 0

such that

∥ϕs∥2
L2(Y,E∣Y )

≤ δ∣∣ϕs∣∣H1(U,E) +C ∣∣ϕs∣∣L2(U,E), (B.4)

holds for all s ∈ C∞(U,E). The desired estimate now follows.

Remark 139. According to Corollary 7.22 in [9], we know that (∂̄γ,1 − Π) is an

elliptic boundary value problem along each cusp end Zk.
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B.2 A Gluing Formula of L2-Index

For θ ∈ [0, π/4], for any s+ ∈H1
loc(M`,EndE) and s− ∈H1

loc(∪mk=1Zk,y≥`,EndE),

we define the following continuous family of elliptic boundary value problems on X`,

that is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂̄γs+ = ∂̄γs− = 0,on X`,

cos(θ)Π(s+) = sin(θ)(1 −Π)(s−);
cos(θ)Π(s−) = sin(θ)(1 −Π)(s+);

Let us denote the boundary condition as Πθ, then note that when θ = 0, we

get the totally real boundary condition on s+ and s−, whereas when θ = π/4, we get

the transmission boundary condition, which is equivalent to solving for s ∈ H1
X,loc

such that ∂̄γs = 0 on X. By Theorem 8.12 in [9], we get that for θ ∈ [0, π/4],

IndR(∂̄γ,Π,M`) + IndR(∂̄γ,Π,∪mk=1Zk,y≥`) = IndR(∂̄γ,Π0)

= IndR(∂̄γ,Ππ/4)

= 2 IndC(∂̄γ).

Let us determine IndR(∂̄γ,Π,M`) first. For this purpose, we apply C.1.10 (ii)

in [83], and get that

IndR(∂̄γ,Π,M`) = n2(2 − 2h),

because in our case of the temporal framing, which by definition trivially extends

to a global complex frame, hence the Maslov index µ(E,F ) vanishes.

Remark 140. Wentworth [123] derived the above formula using an interesting fea-
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ture of the totally real boundary condition, that is, when equipped with the totally

real boundary condition, the Dolbeault complex on M` is a Fredholm complex and

we can apply the heat kernel method to compute the related index.

As for the term IndR(∂̄γ,Π,∪mk=1Zk,y≥`), this reduces to compute the index of

the following operator ( ∂
∂z̄ + i

2α) over Zk acting on function f(z) subjecting to the

totally real boundary condition on ∂Zk.

First note that if any function f(z) lying in the kernel of ∂
∂z̄ + i

2α, then e
−αyf(z)

is a holomorphic function on Zk. By the L2 integrability with respect to the hy-

perbolic metric on Zk, this implies that in the case when α ≥ 0, the kernel is of

real dimensional one and its dimension is zero when α < 0. On the other hand,

the codimension of the cokernel is constant equals to one by the Poisson formula.

Therefore, we have proved that

IndR(∂̄γ,Π,∪mk=1Zk,y≥`) = − ∑
i,j,k

αi,k < αj,k = −2∑
k

dimC Fk,

as in (2.2). Putting all these together, we have found that the real index of the

Dolbeault complex (3.12) is given by (2 − 2h)n2 − 2∑k dimC Fk, and the dimension

of the moduli space of stable parabolic bundles is then given by

dimM s
P = n2(h − 1) + 1 +∑

k

dimC Fk.
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Appendix C: Proof of Lemma 72

In this part, under the assumption of Lemma 72, we show that the following

equality holds.

∂̄∗A∂̄A
∂2

∂t∂s̄
(g∗g)∣

t=s=0
= − ∗ [∗µ, ν].

Proof. Given the holomorphic family of Dolbeault operators ∂̄A+ tµ+sν, with t and

s sufficiently small, by Lemma 67, there exists a unique smooth family g(t, s) ∈ G̃ C
δ

and ∂̄A + γ(t, s) ∈ UA,ε satisfying

γ = −∂̄A(g)g−1 + g(tµ + sν)g−1, (C.1)

γ∗ = −(g∗)−1∂A(g∗) + g∗−1(t̄µ∗ + s̄ν∗)(g∗), (C.2)

with g(0,0) = Id and γ(0,0) = 0. Since ∂̄γ ∈ U0,1
A,ε, we additionally have

−∂̄Aγ∗ + ∂Aγ − [γ, γ∗] = 0, (C.3)

∂̄Aγ
∗ + ∂Aγ = 0. (C.4)

First, we show that the first order derivatives of g and g∗ vanish. Take g as an

example, differentiate (C.1), (C.3) and (C.4) with respect to t and let t = s = 0, we
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then get

µ − ∂̄A(
∂

∂t
g∣
t=s=0

) = ∂

∂t
γ∣
t=s=0

, (C.5)

−∂̄A(
∂

∂t
γ∗∣

t=s=0
) + ∂A(

∂

∂t
γ∣
t=s=0

) = 0, (C.6)

∂̄A(
∂

∂t
γ∗∣

t=s=0
) + ∂A(

∂

∂t
γ∣
t=s=0

) = 0. (C.7)

Apply ∂A to (C.5) and use (C.6) and (C.7), we get

−∂A∂̄A(
∂

∂t
g∣
t=s=0

) = ∂̄A(
∂

∂t
γ∗∣

t=s=0
) = ∂A(

∂

∂t
γ∣
t=s=0

) = 0.

Since ∂
∂tg∣t=s=0

∈ S2,2
δ,s (EndE), on which ∆A is invertible, hence ∂

∂tg∣t=s=0
= 0. The

other claims about g and g∗ follow similarly. From these properties of g and g∗, we

get

∂2

∂t∂s̄
(g∗g)∣

t=s=0
= ∂2

∂t∂s̄
g∣
t=s=0

+ ∂2

∂t∂s̄
g∗∣

t=s=0
. (C.8)

To compute this, we apply ∂2

∂t∂s̄ to (C.3) and let t = s = 0, and get

∂A
∂2γ

∂t∂s̄
∣
t=s=0

− ∂̄A
∂2γ∗

∂t∂s̄
∣
t=s=0

− [∂γ
∂t
,
∂γ∗

∂s̄
] − [∂γ

∂s̄
,
∂γ∗

∂t
] = 0.

Use the following ∂A∂̄A ∂2g
∂t∂s̄ ∣

t=s=0
= −∂A ∂2γ

∂t∂s̄ ∣
t=s=0

and ∂̄A∂A
∂2g∗

∂t∂s̄ ∣
t=s=0

= −∂̄A ∂
2γ∗

∂t∂s̄ ∣
t=s=0

,
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and we apply the contraction by the Kähler form ωg on (X,g), we get

∂̄∗A∂̄A
∂2

∂t∂s̄
(g∗g)∣

t=s=0
= −iΛωg[

∂γ

∂t
,
∂γ∗

∂s̄
] (C.9)

= − ∗ [∗µ, ν]. (C.10)

We have used the following equality in the last equality’s ∂
∂tγ = µ and ∂

∂s̄γ = ν∗, the

latter follows from (C.5) and its analogous result.
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Appendix D: A Parametrix Along the Cusp Ends

In this part, we use the method of [31, page 431-433] to show the existence

of an right inverse Gγ,k to the Dolbeault operator ∂̄γ ∈ U0,1
A,ε along the cusp end

Zk = [a,∞) × S1.

Proposition 141. For any fdz̄ ∈ C∞
c (Λ0,1(Z̊k) ⊗ EndE), there exists a smooth

section u = Gγ,k(fdz̄) ∈ L2(Zk,EndE) such that

∂̄γu = f z̄.

Proof. Fix a temporal frame {ei}ni=1 for the Dolbeault operator ∂̄γ along Zk, which

exists due to Lemma 19. Hence we only need to prove the Proposition for the model

Dolbeault operator (2.6), which is given componentwise as follows,

∂̄0u = ∑
i,j

( ∂
∂z̄
uij +

i

2
(αi − αj)uij)dz̄ ⊗ ei ⊗ e∗j = ∑

i,j

fijdz̄ ⊗ ei ⊗ e∗j . (D.1)

In terms of Fourier expansion,

uij(x, y) = ∑
n

uij,n(y)einx and fij(x, y) = ∑
n

fij,n(y)einx,
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and (D.1) becomes

( d
dy

+ (n + αi − αj))uij,n = 2fij,n.

By knowledge of ordinary differential equations, we construct the "candidate"

operator G0 of ∂̄0 as follows:

uij,n(y) ∶= G0(fdz̄)ij =
⎧⎪⎪⎨⎪⎪⎩

2e−(n+αi−αj)y ∫
y

a e
(n+αi−αj)tfij,n(t)dt, if n + αi − αj ≥ 0;

2e−(n+αi−αj)y ∫
∞

y e(n+αi−αj)tfij,n(t)dt, if n + αi − αj < 0.

Clearly, it satisfies ∂̄0u = fdz̄. Now, we verify that G0 is a bounded right

inverse, i.e., there exists a constant C > 0 such that

∥G(f z̄)∥ ≤ C∥fdz̄∥.

For the case n + αi − αj > 0, we have

∫
∞

a
∣uij,n(y)∣2

1

y2
dy = 4∫

∞

a
e−2(n+αi−αj)y(∫

y

a
e(n+αi−αj)tfij,n(t)dt)

2 dy

y2

≤ C ∫
∞

a
e−2(n+αi−αj)y ∫

y

a
e2(n+αi−αj)tf 2

ij,n(t)dt dy

where we have used Hölder inequality in the second line. By change of order of

integration,

≤ C ∫
∞

a
∫

∞

t
e−2(n+αi−αj)y dy e2(n+αi−αj)tf 2

ij,n(t)dt

≤ C

2(n + αi − αj) ∫
∞

a
f 2
ij,n(t)dt.

In the case when n+αi−αj = 0, we set F (y) = ∫
y

a fij,n(t)dt. Note that F (a) = 0 and
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limy→∞F (y) = const. By integration by parts, we get

∫
∞

a
F 2(y) dy

y2
= ∫

∞

a

d

dy
F 2(y)1

y
dy − 2∫

a
F (y)F ′(y)1

y
dy

≤ C(∫
∞

a
f 2
ij,n(y)dy)

1
2 (∫

∞

a
F 2(y) dy

y2
)

1
2

≤ C ∫
∞

a
f 2
ij,n(y)dy.

The case of n + αi − αj < 0 follows similarly, and we get our desired estimate.

154



Bibliography

[1] P. Albin and F. Rochon. Some index formulae on the moduli space of stable
parabolic vector bundles. Journal of the Australian Mathematical Society,
94(1):1–37, 2013.

[2] C. L. Aldana. Asymptotics of relative heat traces and determinants on open
surfaces of finite area. Annals of global analysis and geometry, 44(2):169–216,
2013.

[3] O. Alvarez. Theory of strings with boundaries: fluctuations, topology and
quantum geometry. Nuclear Physics B, 216(1):125–184, 1983.

[4] M. F. Atiyah. Vector bundles over an elliptic curve. Proceedings of the London
Mathematical Society, 3(1):414–452, 1957.

[5] M. F. Atiyah and R. Bott. The Yang-Mills equations over Riemann surfaces.
Philosophical Transactions of the Royal Society of London. Series A, Mathe-
matical and Physical Sciences, 308(1505):523–615, 1983.

[6] M. F. Atiyah, N. J. Hitchin, and I. M. Singer. Self-duality in four-dimensional
Riemannian geometry. Proceedings of the Royal Society of London. A. Math-
ematical and Physical Sciences, 362(1711):425–461, 1978.

[7] M. F. Atiyah, V. K. Patodi, and I. M. Singer. Spectral asymmetry and Rieman-
nian geometry. I. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 77, pages 43–69. Cambridge University Press, 1975.

[8] W. Ballmann and J. Brüning. On the spectral theory of surfaces with cusps. In
Geometric analysis and nonlinear partial differential equations, pages 13–37.
Springer, 2003.

[9] C. Bär and W. Ballmann. Boundary value problems for elliptic differential
operators of first order. arXiv preprint arXiv:1101.1196, 2011.

[10] R. Bartnik. The mass of an asymptotically flat manifold. Communications on
pure and applied mathematics, 39(5):661–693, 1986.

[11] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators.
Springer Science & Business Media, 2003.

155



[12] O. Biquard. Fibrés paraboliques stables et connexions singulieres plates. Bul-
letin de la Société Mathématique de France, 119(2):231–257, 1991.

[13] O. Biquard and P. Boalch. Wild non-abelian Hodge theory on curves. Com-
positio Mathematica, 140(1):179–204, 2004.

[14] D. Bleecker and B. Booss—Bavnbek. Spectral invariants of operators of Dirac
type on partitioned manifolds. In Aspects of boundary problems in analysis
and geometry, pages 1–130. Springer, 2004.

[15] H. U. Boden and Y. Hu. Variations of moduli of parabolic bundles. 1995.

[16] H. U. Boden and K. Yokogawa. Moduli spaces of parabolic Higgs bundles
and parabolic K(D) pairs over smooth curves: I. International Journal of
Mathematics, 7(05):573–598, 1996.

[17] H. U. Boden and K. Yokogawa. Rationality of moduli spaces of parabolic
bundles. Journal of the London Mathematical Society, 59(2):461–478, 1999.

[18] B. Booß-Bavnbek and K. P. Wojciechhowski. Elliptic boundary problems for
Dirac operators. Springer Science & Business Media, 2012.

[19] D. Borthwick, C. Judge, and P. Perry. Determinants of Laplacians and isopolar
metrics on surfaces of infinite area. Duke Mathematical Journal, 118(1):61–
102, 2003.

[20] T. P. Branson, P. B. Gilkey, and B. Ørsted. Leading terms in the heat in-
variants. Proceedings of the American Mathematical Society, 109(2):437–450,
1990.

[21] U. Bunke. Relative index theory. Journal of functional analysis, 105(1):63–76,
1992.

[22] D. Burghelea, L. Friedlander, and T. Kappeler. Meyer-vietoris type formula for
determinants of elliptic differential operators. Journal of functional analysis,
107(1):34–65, 1992.

[23] P. Buser. Geometry and spectra of compact Riemann surfaces. Springer Science
& Business Media, 2010.

[24] G. Carron. Déterminant relatif et la fonction Xi. American Journal of Math-
ematic, 124(2):307–352, 2002.

[25] J. Cheeger, M. Gromov, and M. Taylor. Finite propagation speed, kernel
estimates for functions of the Laplace operator, and the geometry of complete
Riemannian manifolds. Journal of Differential Geometry, 17(1):15–53, 1982.

[26] S. Y. Cheng, P. Li, and S.-T. Yau. On the upper estimate of the heat ker-
nel of a complete Riemannian manifold. American Journal of Mathematics,
103(5):1021–1063, 1981.

156



[27] P. R. Chernoff. Essential self-adjointness of powers of generators of hyperbolic
equations. J. Func. Anal., 12:401–414, 1973.

[28] Y. Choquet-Bruhat and D. Christodoulou. Elliptic systems in Hs,δ spaces on
manifolds which are euclidean at infinity. Acta Mathematica, 146(1):129–150,
1981.

[29] Y. Colin de Verdière. Spectre du laplacien et longueurs des géodésiques péri-
odiques. I. Compositio Mathematica, 27(1):83–106, 1973.

[30] K. Corlette. Flat G-bundles with canonical metrics. Journal of Differential
Geometry, 28(3):361–382, 1988.

[31] G. Daskalopoulos and R. Wentworth. Local degeneration of the moduli space
of vector bundles and factorization of rank two theta functions. I. Mathema-
tische Annalen, 297(1):417–466, 1993.

[32] G. D. Daskalopoulos and R. A. Wentworth. Geometric quantization for the
moduli space of vector bundles with parabolic structure. 1997.

[33] G. De Gaetano. A regularized arithmetic Riemann-Roch theorem via metric
degeneration. 2018.

[34] E. D’Hoker and DH. Phong. On determinants of Laplacians on Riemann
surfaces. Communications in mathematical physics, 104(4):537–545, 1986.

[35] E. D’Hoker and DH. Phong. The geometry of string perturbation theory.
Reviews of Modern Physics, 60(4):917, 1988.

[36] J. Dodziuk. Maximum principle for parabolic inequalities and the heat flow
on open manifolds. Indiana University Mathematics Journal, 32(5):703–716,
1983.

[37] S. K. Donaldson. A new proof of a theorem of Narasimhan and Seshadri.
Journal of Differential Geometry, 18(2):269–277, 1983.

[38] S. K. Donaldson and P.B. Kronheimer. The geometry of four-manifolds. Ox-
ford University Press, 1990.

[39] H. Donnelly. Asymptotic expansions for the compact quotients of properly
discontinuous group actions. Illinois Journal of Mathematics, 23(3):485–496,
1979.

[40] H. Donnelly. On the cuspidal spectrum for finite volume symmetric spaces.
Journal of Differential Geometry, 17(2):239–253, 1982.

[41] H. Donnelly and P. Li. Pure point spectrum and negative curvature for non-
compact manifolds. Duke Mathematical Journal, 46(3):497–503, 1979.

157



[42] I. Efrat. Determinants of Laplacians on surfaces of finite volume. Communi-
cations in mathematical physics, 119(3):443–451, 1988.

[43] I. Efrat. Determinants of Laplacians on surfaces of finite volume. Communi-
cations in Mathematical Physics, 138(3):607–607, 1991.

[44] J. Eichhorn. Global analysis on open manifolds. Nova Publishers, 2007.

[45] H. Esnault and E. Viehweg. Logarithmic de Rham complexes and vanishing
theorems. Inventiones mathematicae, 86(1):161–194, 1986.

[46] S. Farinelli and G. Schwarz. On the spectrum of the Dirac operator under
boundary conditions. Journal of Geometry and Physics, 28(1-2):67–84, 1998.

[47] J. D. Fay. Fourier coefficients of the resolvent for a Fuchsian group. J. reine
angew. Math, 293(294):143–203, 1977.

[48] S. Finski. Analytic torsion for surfaces with cusps I. Compact perturbation
theorem and anomaly formula. arXiv preprint arXiv:1812.10442, 2018.

[49] O. Forster. Lectures on Riemann surfaces, volume 81 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1991. Translated from the 1977
German original by Bruce Gilligan, Reprint of the 1981 English translation.

[50] D. Freed. On determinant line bundles. Mathematical aspects of string theory,
1:189–238, 1987.

[51] D. Fried. Analytic torsion and closed geodesics on hyperbolic manifolds. In-
ventiones mathematicae, 84(3):523–540, 1986.

[52] J. S. Friedman. Regularized determinants of the Laplacian for cofinite Kleinian
groups with finite-dimensional unitary representations. Communications in
mathematical physics, 275(3):659–684, 2007.

[53] M. P. Gaffney. The harmonic operator for exterior differential forms. Pro-
ceedings of the National Academy of Sciences of the United States of America,
37(1):48, 1951.

[54] M. P. Gaffney. A special Stokes’s theorem for complete Riemannian manifolds.
Annals of Mathematics, pages 140–145, 1954.

[55] O. García-Prada, P. Gothen, and V. Muñoz. Betti numbers of the moduli space
of rank 3 parabolic Higgs bundles, volume 184. American Mathematical Soc.,
2007.

[56] P. B. Gilkey. Asymptotic formulae in spectral geometry. CRC press, 2003.

[57] P. B. Gilkey. Invariance theory: the heat equation and the Atiyah-Singer index
theorem. CRC press, 2018.

158



[58] M. Gromov and H. B. Lawson. Positive scalar curvature and the Dirac operator
on complete Riemannian manifolds. Publications Mathématiques de l’IHÉS,
58:83–196, 1983.

[59] A. Grothendieck. Sur la classification des fibrés holomorphes sur la sphere de
Riemann. American Journal of Mathematics, 79(1):121–138, 1957.

[60] G. Grubb. Distributions and operators, volume 252. Springer Science & Busi-
ness Media, 2008.

[61] B. Hall. Lie groups, Lie algebras, and representations: an elementary intro-
duction, volume 222. Springer, 2015.

[62] A. Hassell and S. Zelditch. Determinants of Laplacians in exterior domains.
arXiv preprint math/0002023, 2000.

[63] H. Hess, R. Schrader, and DA. Uhlenbrock. Domination of semigroups and
generalization of Kato’s inequality. Duke Mathematical Journal, 44(4):893–
904, 1977.

[64] P. D. Hislop and I. M. Sigal. Introduction to spectral theory: With applications
to Schrödinger operators, volume 113. Springer Science & Business Media,
2012.

[65] N. J. Hitchin. The self-duality equations on a Riemann surface. Proceedings
of the London Mathematical Society, 3(1):59–126, 1987.

[66] L. Hormander. An introduction to complex analysis in several variables. El-
sevier, 1973.

[67] M. Itoh. The moduli space of Yang-Mills connections over a Kähler surface is
a complex manifold. Osaka Journal of Mathematics, 22(4):845–862, 1985.

[68] M. Itoh. Geometry of anti-self-dual connections and Kuranishi map. Journal
of the Mathematical Society of Japan, 40(1):9–33, 1988.

[69] A. Jensen, A. Jensen, and T. Kato. Asymptotic behavior of the scattering
phase for exterior domains. Communications in Partial Differential Equations,
3(12):1165–1195, 1978.

[70] J. Jorgenson and R. Lundelius. Continuity of relative hyperbolic spectral
theory through metric degeneration. Duke Mathematical Journal, 84(1):47–
81, 1996.

[71] M. Kac. On some connections between probability theory and differential and
integral equations. In Proceedings of the second Berkeley symposium on math-
ematical statistics and probability. The Regents of the University of California,
1951.

159



[72] J. L. Kazdan. Applications of partial differential equations to problems in
geometry. Lecture Notes, 1996, 1983.

[73] S. Kobayashi. Differential geometry of complex vector bundles, volume 793.
Princeton University Press, 2014.

[74] H. Konno. Construction of the moduli space of stable parabolic Higgs bun-
dles on a Riemann surface. Journal of the Mathematical Society of Japan,
45(2):253–276, 1993.

[75] A. Kufner and B. Opic. How to define reasonably weighted sobolev spaces.
Commentationes Mathematicae Universitatis Carolinae, 25(3):537–554, 1984.

[76] Peter D. Lax. Functional analysis. Pure and Applied Mathematics (New
York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

[77] R. Lockhart. Fredholm, Hodge and Liouville theorems on noncompact mani-
folds. Transactions of the American Mathematical Society, 301(1):1–35, 1987.

[78] R. B. Lockhart and R. C. McOwen. Elliptic differential operators on non-
compact manifolds. Annali della Scuola Normale Superiore di Pisa-Classe di
Scienze, 12(3):409–447, 1985.

[79] J. Lott. On the spectrum of a finite-volume negatively-curved manifold. Amer-
ican Journal of Mathematics, 123(2):185–205, 2001.

[80] M. Lubke and A. Teleman. The Kobayashi-Hitchin correspondence. World
Scientific, 1995.

[81] G. Matić. SO(3)-connections and rational homology cobordisms. J. Differen-
tial Geom., 28(2):277–307, 1988.

[82] R. Mazzeo and M. Taylor. Curvature and uniformization. Israel Journal of
Mathematics, 130(1):323–346, 2002.

[83] D. McDuff and D. Salamon. J-holomorphic curves and symplectic topology,
volume 52. American Mathematical Soc., 2012.

[84] H. P. McKean. Selberg’s trace formula as applied to a compact riemann
surface. Communications on Pure and Applied Mathematics, 25(3):225–246,
1972.

[85] V. B. Mehta and C. S. Seshadri. Moduli of vector bundles on curves with
parabolic structures. Mathematische Annalen, 248(3):205–239, 1980.

[86] W. Müller. Spectral theory for Riemannian manifolds with cusps and a related
trace formula. Mathematische Nachrichten, 111(1):197–288, 1983.

[87] W. Müller. Manifolds with cusps of rank one. In Manifolds with Cusps of
Rank One, pages 31–45. Springer, 1987.

160



[88] W. Müller. Spectral geometry and scattering theory for certain complete
surfaces of finite volume. Inventiones mathematicae, 109(1):265–305, 1992.

[89] W. Müller. Relative zeta functions, relative determinants and scattering the-
ory. Communications in mathematical physics, 192(2):309–347, 1998.

[90] W. Müller and G. Salomonsen. Scattering theory for the Laplacian on mani-
folds with bounded curvature. Journal of Functional Analysis, 253(1):158–206,
2007.

[91] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, vol-
ume 34. Springer Science & Business Media, 1994.

[92] M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on
a compact Riemann surface. Annals of Mathematics, pages 540–567, 1965.

[93] V. Nazaikinskii, B. W. Schulze, and B. Sternin. The localization problem in
index theory of elliptic operators. Springer, 2014.

[94] A. Newlander and L. Nirenberg. Complex analytic coordinates in almost
complex manifolds. Annals of Mathematics, pages 391–404, 1957.

[95] F. Pacard. Connected sum constructions in geometry and nonlinear analysis.
Unpublished lecture notes, 2008.

[96] J. A. Poritz. Parabolic vector bundles and Hermitian-Yang-Mills connections
over a Riemann surface. International Journal of Mathematics, 4(03):467–501,
1993.

[97] D. Quillen. Quillen notebooks 1968–2003, edited by G.Luke and G.Segal.
published online by the clay mathematics institute.

[98] D. Quillen. Determinants of Cauchy-Riemann operators over a Riemann sur-
face. Functional Analysis and Its Applications, 19(1):31–34, 1985.

[99] J. Råde. Callias’ index theorem, elliptic boundary conditions, and cutting and
gluing. Communications in mathematical physics, 161(1):51–61, 1994.

[100] D. B. Ray and I. M. Singer. R-torsion and the Laplacian on Riemannian
manifolds. Advances in Math., 7:145–210, 1971.

[101] D. B. Ray and I. M. Singer. Analytic torsion for complex manifolds. Annals
of Mathematics, pages 154–177, 1973.

[102] M. Reed and B. Simon. II: Fourier Analysis, Self-Adjointness, volume 2.
Elsevier, 1975.

[103] S. Rosenberg. Anomalies associated to the polar decomposition of GL(n,C).
Trans. Amer. Math. Soc., 334(2):749–760, 1992.

161



[104] P. Sarnak. Determinants of Laplacians. Communications in mathematical
physics, 110(1):113–120, 1987.

[105] M. Schottenloher. Mathematical Aspects of the Verlinde Formula. In A Math-
ematical Introduction to Conformal Field Theory, pages 213–233. Springer,
2008.

[106] S. Scott. Traces and determinants of pseudodifferential operators. OUP Ox-
ford, 2010.

[107] R. Seeley. Topics in pseudo-differential operators. In Pseudo-differential op-
erators, pages 167–305. Springer, 2010.

[108] R. T. Seeley. Singular integrals and boundary value problems. American
Journal of Mathematics, 88(4):781–809, 1966.

[109] R. T. Seeley. Complex powers of an elliptic operator. Electron. Res. Announc.
Am. Math. Soc., pages 288–307, 1967.

[110] C. T. Simpson. Constructing variations of Hodge structure using Yang-Mills
theory and applications to uniformization. Journal of the American Mathe-
matical Society, 1(4):867–918, 1988.

[111] C. T. Simpson. Harmonic bundles on noncompact curves. Journal of the
American Mathematical Society, 3(3):713–770, 1990.

[112] M. Stern. L2-index theorems on locally symmetric spaces. Inventiones math-
ematicae, 96(2):231–282, 1989.

[113] L. A. Takhtajan and P. Zograf. The first Chern form on moduli of parabolic
bundles. Mathematische Annalen, 341(1):113–135, 2008.

[114] C. H. Taubes. Gauge theory on asymptotically periodic 4-manifolds. Journal
of Differential Geometry, 25(3):363–430, 1987.

[115] M. Thaddeus. An introduction to the topology of the moduli space of stable
bundles on a Riemann surface. Lecture Notes in Pure and Applied Mathemat-
ics, pages 71–100, 1996.

[116] K. Uhlenbeck and S.-T. Yau. On the existence of Hermitian-Yang-Mills con-
nections in stable vector bundles. Communications on Pure and Applied Math-
ematics, 39(S1):S257–S293, 1986.

[117] D. V. Vassilevich. Heat kernel expansion: user’s manual. Physics reports,
388(5-6):279–360, 2003.

[118] I. N. Vekua and I. N. Vekua. Systeme von Differentialgleichungen erster Ord-
nung vom elliptischen Typus und Randwertaufgaben: mit einer Anwendung
in der Theorie der Schalen, von IN Vekua, volume 2. Deutscher Verlag der
Wissenschaften, 1956.

162



[119] A. B. Venkov. Spectral theory of automorphic functions, the Selberg zeta-
function, and some problems of analytic number theory and mathematical
physics. Russian Mathematical Surveys, 34(3):79, 1979.

[120] A. B. Venkov, V. L. Kalinin, and L. D. Faddeev. A nonarithmetic derivation
of the Selberg trace formula. Zapiski Nauchnykh Seminarov POMI, 37:5–42,
1973.

[121] A. Voros. Spectral functions, special functions and the Selberg zeta function.
Communications in Mathematical Physics, 110(3):439–465, 1987.

[122] R. O. Wells and O. García-Prada. Differential analysis on complex manifolds,
volume 21980. Springer New York, 1980.

[123] R. A. Wentworth. Gluing formulas for determinants of Dolbeault laplacians
on Riemann surfaces. arXiv preprint arXiv:1008.2914, 2010.

[124] J. T. Wloka, B. Rowley, and B. Lawruk. Boundary value problems for elliptic
systems. Cambridge University Press, 1995.

[125] S. A. Wolpert. Cusps and the family hyperbolic metric. Duke Math. J.,
138(3):423–443, 2007.

[126] P. G. Zograf and L. A. Takhtadzhyan. The geometry of moduli spaces of
vector bundles over a Riemann surface. Izv. Akad. Nauk SSSR Ser. Mat.,
53(4):753–770, 911, 1989.

[127] S. Zucker. Hodge theory with degenerating coefficients: L2 cohomology in the
Poincaré metric. Annals of Mathematics, pages 415–476, 1979.

163


	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	Background
	Main Results
	Outline

	Preliminaries
	Parabolic Bundles
	Local Geometry
	Cusp Ends
	Adapted Hermitian Metrics

	Weighted Sobolev Spaces on Surfaces with Cusp Ends
	Function Spaces
	Module Structure
	Fredholmness


	Gauge Theory of the Moduli Space of Stable Parabolic Bundles
	Construction of Moduli Spaces
	Local Model of Dolbeault Operators
	Mehta-Seshadri Theorem

	Geometry of Moduli Spaces: the Local Theory
	Riemannian Metric on M*HE
	Complex Structure of MsP
	Hermitian Metric on MsP


	Kähler Metric on the Moduli Space of Stable Parabolic Bundles
	Kählerian Property
	L2-Curvature of the Canonical Bundle
	Identification With the Index Bundle

	The Quillen Metric
	Formal Definition of the Relative Determinant
	Heat Kernels and Estimates
	Heat Kernels on H
	Heat Kernels on the Cusp
	Heat Kernels on Riemann Surfaces with Cusp Ends

	Relative Heat Trace
	Trace Class Property
	Asymptotics of the Relative Heat Trace


	The Curvature of the Quillen Metric
	First Variation of the Quillen Metric
	The Heat Regularization
	A Parametrix of the Dolbeault Operator
	An Invariant Section J

	Second Variation of the Quillen Metric

	Weighted Sobolev Spaces on Surfaces with Cylindrical Ends
	L2-Index of Dolbeault Operators
	Totally Real Boundary Condition
	A Gluing Formula of L2-Index

	Proof of Lemma 72
	A Parametrix Along the Cusp Ends
	Bibliography




