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Abstract

We consider a discrete time Markov Decision Process with infinite horizon. The criterion to be
maximized is the sum of a number of standard discounted rewards, each with a different discount
factor. Situations in which such criteria arise include modeling investments, modeling projects
of different durations and systems with different time-scales, and some axiomatic formulations of
multi-attribute preference theory. We show that for this criterion for some positive ¢ there need
not exist an e-optimal (randomized) stationary strategy, even when the state and action sets are
finite. However, e-optimal Markov (non-randomized) strategies and optimal Markov strategies exist
under weak conditions. We exhibit e-optimal Markov strategies which are stationary from some
time onward. When both state and action spaces are finite, there exists an optimal Markov strategy

with this property. We provide an explicit algorithm for the computation of such strategies.

Subject classification: Dynamic programming, Markov: sum of discounted rewards with different

discount factors.



The use of a discounted reward criterion in Markov decision models is consistent with the notion
that what happens far in the future is unimportant. Discounted future cost can be given the
economic interpretation of an opportunity cost. It can also arise through the subjective notion that
immediate rewards are better than delayed rewards. Existing theory deals with the following three
situations: the case of a fixed discount rate (Shapley 1953, Blackwell 1962, 1965, Denardo 1967,
Bertsekas 1987, Dynkin and Yushkevich 1979, Heyman and Sobel 1984, Ross 1984, Whittle 1982),
the case when the discount rate depends on current states and actions (Schél 1975), and the case
when the discount rate is a function of the history of the process (Hinderer 1970). Naturally, results
in the last situation are very limited, and no effective computational procedures are available.

Discount factors depend on perceived investment opportunities. When there are several dif-
ferent investment opportunities then it is natural to consider a weighted discounted criterion. This
criterion is the sum of several expected total discounted rewards with different discount factors.
Such criteria arise in models of investments with different risk classes. Two cash flow streams
with different risks would have different required rates of return and hence different discount rates.
Nevertheless, the value of the portfolio consisting of both cash flow streams would be the sum of
their individual values, a principle appropriately named value additivity; Brealey and Myers (1988).
Thus, the value of the portfolio is the sum of the discounted values of each cash flow stream in the
portfolio.

Other examples when weighted discounted criteria arise in economics include investments in
different assets within a company, investments in different pension funds, management of state
budgets, and investment opportunities in a country with a prevalent underground economy.

Another possible interpretation of total discounted rewards is the sum of total rewards in
models with finite but random horizon; Ross (1984). If the model reflects the managing of long-
term and short-term projects in parallel, weighted discounted criteria arise.

Various weighted criteria were considered by Feinberg (1982b) as an illustration of possible
applications of methods developed in that paper. The case of the weighted sum of two criteria was
considered by Filar and Vrieze (1989) in the context of stochastic games. They consider the finite
model and obtain existence of e-optimal Markov strategies for the sum of two criteria; one being
the total discounted cost, and the other either the discounted or the average reward per unit time.
When the first criterion is total discounted costs and the second one is average reward per unit
time, the weighted Markov decision problem was considered by Krass, Filar, and Sinha (1990) for
discrete time models and by Ghosh and Marcus (1991) for continuous time models. Models with

average reward per unit time may be described through discounted models with discount factors
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close to 1; see Blackwell (1962), Veinott (1966), Denardo (1971). Thus, our model covers the
management of projects with long and short durations. By considering different discount factors
we can optimize not only interactions of two projects, long and short, but more generally model
interactions of several projects with different durations.

Weighted discounted criteria also arise in the axiomatic formulation of multi-attribute prefer-
ence theory. Sobel (1990) describes general preference axioms leading to discounted and weighted
discounted criteria.

We present a theory for the weighted discounted criteria, which is defined more precisely in
(1.1)-(1.2) below. In Section I we describe the model and the problems under investigation, and
show that even the simplest weighted problem may not possess the structural properties of the
standard discounted problem. In particular, even for finite state and action spaces there may
not exist a stationary (non-randomized) optimal strategy; in fact, there may not exist an c-optimal
randomized stationary strategy! Moreover, randomized stationary strategies perform strictly better
then (nonrandomized) stationary strategies, and the best stationary (and randomized stationary)
strategies may depend on the initial state. In these examples, the optimal strategy turns out to be
stationary only after some initial time. In Sections II-TII we show that this is generic.

In Section II we prove the existence of e-optimal and optimal Markov strategies. We also
establish the existence of e¢-optimal strategies which are Markov and are stationary from some
time N onward: we call strategies of this form (N, co)-stationary. In Section III we consider the
model with finite state and action sets. For this model we show that there exist optimal strategies
of this form and provide an explicit algorithm to compute an optimal strategy of this form. This
algorithm is of the same level of complexity as the computation of optimal strategies for the standard

discounted reward problem.



I. Definitions and examples.

Consider a discrete-time controlled Markov chain with
(i) countable state space X,
(i) measurable action space A endowed with a o-field A containing all one-point subsets of A,
(iii) sets of actions A(z) available at 2 € X. These sets are assumed to be elements of A,
(iv) transition probabilities {p(y | z,a)}. For each z,y € X the function p(y | , a) is nonnegative
and measurable in a, and ZyEX p(y | z,a) =1 for each 2 € X and a € A(z).

Let H, = X x (A xX)" be the space of histories up to the time n = 0,1,...,00. Let H = |J H,
0<n<

be the space of all finite histories. The spaces H,, and H are endowed with o-fields generated by 2%
and A. A strategy 7 is a function that assigns to each history h, = zoao2z1...2n—10n_12, € Hy,
n=0,1,..., a probability measure 7(- | h,) on (A, A) satisfying the following conditions:

(a) w(A(zn) | hn) =1,

(b) for any B € A the function 7(B | -) is measurable on H.

A Markov strategy ¢ is a sequence of mappings ¢, : X — A, n=0,1,..., such that ¢,(z) €
A(z) for any z € X. We say that a Markov strategy ¢ is (IV, oo)-stationary, where N = 0,1,...,
if ¢p(z) = én(2) forany n = N+ 1, N +2,... and for any 2 € X. A (0,00)-stationary strategy
is called stationary. A stationary strategy is determined by a function ¢ : X — A such that
#(z) € A(z), z € X. We will also consider randomized stationary strategies. A randomized
stationary strategy ¢ is defined by conditional distributions é(- | z), z € X, over (A, A) such that
d(A(z)|z) =1 for any z € X.

Using standard notation and construction, each strategy = and initial state z induce a proba-
bility measure IPT on H,,. We denote the corresponding expectation operator by IE7. In contrast
with traditional models, we also have
(v) a collection of one-step rewards {ry(z,a), ¥ = 1,2,..., K} which are assumed bounded above

and measurable in a, and
(vi) a collection of discount factors {8k, k£ = 1,2,..., K}, where 0 < f, < 1forany k =1,2,... K.

The discounted reward associated with the one-step reward r; and discount factor j3; when

the initial state is # and strategy = is used is given by

[ere]

Vilz;7) = BL Y (8i) i@ ar) - (1.1)

t=0
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The weighted discounted reward when the initial state is 2 and strategy 7 is used is now defined as

K
V(z;n) = Z Vi(zy ) . (1.2)
k=1

The value of this problem is given by

V(iz) = sup Vi(e;). (1.3)

Let € be a nonnegative constant. A strategy «* is called e-optimal if, for all z,
V(zg;7n*) > V(z) —¢. (1.4)

A 0-optimal strategy is called optimal.

In section II we establish the existence of e-optimal Markov (Theorem 2.1), e-optimal (N, oc)-
stationary (Theorem 2.4), and Markov optimal (Theorems 2.2, 2.6) strategies for this criterion. In
section IIT we establish the existence of optimal (N, co)-stationary strategies for models with finite
state and action sets and describe an effective algorithm for the computation of these strategies.
However, some interesting features of the weighted average criterion are displayed in the following

examples.

Example 1.1. For all ¢ > 0 small enough, there exists no e-optimal randomized stationary strategy
for a model with finite state and action sets. Moreover, the best strategy among the randomized

stationary ones is indeed randomized.

Consider the model with X = {z,y} and A = {a,b}. Let
plz | z,a)=1=p(y|20b), z==z,y.
We will take the simplest case where K =2, ry = r, = r, and
r(z,a) =1, r(y,a) = r(z,b) =0, r(y,b) = 2.

Now fix 1 > 8 > 0 and consider the standard discounted Markov decision process with criterion Vj
as defined in (1.1) with 8y = . For this maximization problem there exists an optimal stationary
(non-randomized) strategy. It is clear that action b is optimal at y. Thus the two candidates for
optimal stationary strategy are

g': stay where you are, i.e. use a at z and b at y, or
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g": go to y and stay there, i.e. use only action b.

A simple calculation gives

- 1
V M ! = t = —————
ﬁ(whg ) ; ﬁ 1 ﬁ7
(1.5)
[eo]
2
v, cq"\ = 0 9 11 — .
s(z39") +§;ﬁ T—%
Thus g’ is optimal if 8 < £, while ¢” is optimal if § > 1.
We shall now compute the strategy which is best among all stationary randomized strategies
for the weighted-discounted criterion V as defined in (1.1)—(1.3) with some f; < % and 2 > 3. A

randomized stationary strategy = is defined through 7(a | ¢) = o, 7(a | y) = 6. The discounted

cost V(7;2), 2 = z,y, is the unique solution of the system of the linear equations

{ Va(z;m) = a1+ fVp(z; 7)) + (1 - a)8Vs(y; )
Vi(y;m) = 88Vp(z;m) + (1 - 6)(2+ BVp(y; 7))

Viwsm = A= (1= )8+ 2(1 = 5)(1 = a)3
A T U= aB)(I-(1-0)8) - (1 - a)F?s

(0 +23 - 308) + (3a — 2)85
T T (1-A)(1-aB +59)

Denote Vg(z;a,§) = Vp(z; 7). It is intuitively clear that Vg(z;a,0) > Va(z; e, 6) for any 6 in [0, 1],

so that

(1.6)

since b is optimal at y, and this for all § and «. This can also be seen more formally, as follows.

From (1.6) we obtain after some algebra

V(a3 0,8) _ fla—1)(26(1 — @) + 2 — ap)

‘ <0
06 (1-03)(1—af + 6)? -
for any «,6 € [0,1] and any 8 € (0,1). Therefore,
Va(z; 2,0) = (1= f)a + 201 - o)f > Va(a; a,6)

(1= B)(1 - ap)
6



for any «,é € [0,1] and any 8 € (0,1).
Now fix #1 # B2 and define V through (1.2). Let V(=;a,8) = Vs, (z; @, 8) + Vg, (z; ., §). Then
by the previous argument, V(z;a,0) > V(z;,§) for any «,é € [0,1]. For 1 = + and B = 2,

502 — 1200 + 175

Vizien0)= — s ta T 50

for all @ € [0,1]. Taking the derivative with respect to o and equating to zero, we get

, 20-5V3
o = —
13

and it is easy to verify that o* maximizes V(z;,0) for « € [0, 1]. The reward associated with the

strategy 7" defined through o = a* and § = 0 is

V(z;a*,0)= sup V(z;a,§)~ 3.767949 .
0<a,6<1

Therefore, given the initial state z and 3 = %, By = g’-, the randomized stationary strategy ©* is
best among all randomized stationary strategies.
Define the strategy f by
g ifn=0;
g’ ifn>1.
Direct calculation yields

2 2
v = (25 ) + (14125 =20

1 1
V(zig') = T <

o 1-f
We conclude that, for € < 3.9 — 3.76795 there does not exist an e-optimal randomized stationary

3.75, V(z;¢") = 3.5.

strategy, and that the best randomized stationary strategy is strictly better than the best stationary

(non-randomized) strategy.

Remark 1.2. Example 1.1 can be modified so that the decision process is ergodic (i.c. the process
is an ergodic Markov chain under all stationary strategies). Since the reward is continuous in the
transition probabilities, the conclusions will continue to hold under such a small change. Thus the

source of the non-stationarity is indeed the structure of the criterion.
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If the state and action spaces are finite, then so is the number of stationary strategies. There-
fore, for any given initial state there is a best stationary strategy. Example 1.3 shows that, in

contrast to standard discounted (or average) problems, the best stationary strategy may depend

on the initial state.

Example 1.3. Consider the model from Example 1.1, but with an additional state s, A(s) = {a}
and p(z | s,a) = 1. We let r1(s,a) = r5(s,a) = 0 and, as in Example 1.1, we set 8, = 1, f, = 2.
Since the set of actions at s is a singleton, we retain the same notation for stationary strategies as
in Example 1.1. As shown in Example 1.1, the stationary strategy ¢’ is the only stationary strategy

which is best for both initial states z and y. However,

b1 B2 7
14 S8, N = -+ = -,
(5:9) 1-p1 1-06; 4
2 922
V(S,g”) — Qﬂl + 2ﬁ2 — 19

1-6 1-6, 10°

Therefore, V(s,¢") > V(s,g¢') and we conclude that the best stationary strategy depends on the

initial state.

Note that the optimization of this model starting at state s is equivalent to the optimization
of the model starting at z, but with the reward functions changed from r; and 7, to Syr1 and fBars.
Direct computation along the lines of Example 1.1 shows that the best randomized stationary

strategy in Example 1.3 also depends on the initial state.



I1. The structure of optimal strategies.

We establish the existence of optimal Markov strategies by embedding our model into a standard
stationary discounted Markov decision process. Consider the Markov decision process with state
space X X IN, where IN = {1,2,...}. Denote the generic state variable by & = (z,¢). The action
space remains unchanged, and the set of action available at state 2 = (2,t) is A(z). The new

transition probabilities are defined through

ply|z,a) it =t+1,
B((y,t) | (w,1),0) =

0 otherwise.
It is easy to check that conditions (i)—(iv) of §I hold for the new model. It is also clear that for
any strategy m of the original model there corresponds a strategy # in the extended model, which
is uniquely specified for (extended) histories such that &, = (z,0). Now assume without loss of
generality that the discount factors are ordered 8y > 2 > ... > Sg. Under assumption (v) we can

write the reward (1.1)- (1.2) as

Viem) = B Y ()" (IZ (gﬁ)()) |

t=0
Then letting

r((z,t),a) = i (&Yrk(x,a) (2.1)

we have

V((2,0);%) = V(z;7) = EZ Y (B1)'r(&4, a0) (2.2)

and the resulting model is stationary.
Since 3; is the largest discount factor, assumption (v) of §I implies that r is bounded above
and measurable. But then we have a standard countable state discounted Markov decision process

with reward bounded above.

Theorem 2.1. For any € > 0 there exists an c-optimal Markov strategy for the weighted discounted

problem (1.1)—(1.3).

Proof. Given € > 0, a stationary e-optimal strategy exists for a discounted Markov decision model,

if the one-step reward function is bounded above; see Dynkin and Yushkevich (1979). Since the
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reward functions r; are bounded above, the one-step reward function r in the extended model (2.1)
is bounded above on X x IN xA. For a given ¢ > 0, let ¢ be a stationary e-optimal strategy for

the extended model. By our construction, this strategy corresponds to a (non-stationary) Markov

strategy ¢ for the original model through

on(z) = H(z,n) . (2.3)

e-optimality follows from the embedding and (2.2). [ |

Theorem 2.2. There exists an optimal Markov strategy for the weighted discounted problem if
A(z) are compact subsets of a Borel space, ri(z,-) are upper semi-continuous and p(y | z,) are

continuous for each z,y and k.

Proof. Under the hypotheses, the results on standard dynamic programming (Schil 1981, Theorem

7.5) imply that there exists an optimal stationary strategy é for the extended model. The Markov
strategy ¢, defined through (2.3) is optimal for the original model. [

Corollary 2.3. If A(z) is finite for each € X, then there exists an optimal Markov strategy for
the weighted discounted problem.

Theorem 2.4. If the functions r; are bounded for all k = 1,..., K , except possibly one, then
for any € > 0 there exist a finite N and (N, oo)-stationary e-optimal strategy for the weighted

discounted problem.

Proof. Recall that in our model, all functions r; are bounded above. There exist e-optimal
stationary strategies for discounted problems with rewards bounded above; see Dynkin and
Yushkevich (1979). Therefore, we shall consider the case K > 1. Suppose that the functions
T1yeeosTm—1sTm+1,- .-, Kk are bounded, with 1 <m < K.
We fix some € > 0. Let ¢ be a stationary strategy such that ¢ is (¢/4)-optimal for the criterion
V. Let o be a Markov (€/4)-optimal strategy for the weighted problem.
Let |rg(-, )] K R< oo fork=1,....m—1,m+1,...,K. Choose N € IN such that
R3Y < €
1—- B~ 4K -1)

=1,....m—-1,m+1,...,K.

Define the (N, oo)-stationary strategy v :

_Jou(z) ifn< N;
7(z) = {¢>(m) ifn>N,
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and a Markov strategy o'V :

0-7]zv('):0'n+N(')7 n=20,1,....
Then for any 2z € X

o0

K
V(z;0) = V(z;y) =B Y D (Bk)ra(wi, a0)
t=N k=1

co K

— LY D (B el an) + (BN EZ (Vm(xN; oN) = V(2w ¢))

t=N k=1
k#m

Je

<i4li4plio
- 4 4

e
e

Therefore, for any z € X

V(zi) 2 V(z,0)- %> V(z)—e
]

Remark 2.5. Theorems 2.1 and 2.2 hold for more general models. In fact, consider the condi-
tions under which the standard discounted problem (i)—(iv) with reward (1.1) possesses an optimal
stationary strategy. If this holds for each £ = 1,2,..., K, then (under all currently available con-
ditions) the conclusion of Theorem 2.2 holds. See, e.g. Schél (1975), Whittle (1982) and references
therein. Theorem 2.1 holds for the model (i)-(vi) with Borel state space, and even for K = oo,
provided that sup, fx < 1 and that the sum in (2.1) is bounded for ¢ = 0. In fact, this approach
is applicable even when the sum in (1.2) is replaced by an integral with respect to some measure,

over a continuum of values of 3.

Theorem 2.6. If there exist an optimal strategy for the weighted discounted problem then there

exists a Markov optimal strategy.

Proof. The following result holds for a nonstationary Markov decision model with total expected
rewards, when a value function is finite (Feinberg 1982a, Theorem 3). Given an initial distribution,
for any strategy there exists a Markov strategy with greater or equal total expected rewards. If the
state space is finite or countable, one may consider an initial distribution such that for any z € X
the probability that z is an initial state is positive. Thus, if = is an optimal strategy then there

exists a Markov strategy which is not worse than 7, and hence is optimal as well. Therefore, if for a
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nonstationary Markov decision model there exist an optimal strategy then there exists an optimal
Markov strategy.

Consider now the weighted discounted problem. The existence of an optimal strategy for the
original model implies the existence of an optimal strategy for the extended model. Therefore, for
the extended model there exists an optimal Markov strategy ¢. The Markov strategy ¢ defined by
dn(2) = @n(:r, n) is optimal for the weighted discounted model. |

III. The structure of optimal strategies in finite models.

In this section we consider a finite model (finite state and action spaces). As in §II we assume
without loss of generality that §; > f5... > Bk. In this case there always exists a stationary
optimal strategy for the standard discounted problem, and it is optimal if and only if it solves
the optimality equation (see e.g. Bertsekas 1987, Dynkin and Yushkevich 1979, Heyman and Sobel
1984, Ross 1984). By Corollary 2.3 there exists an optimal Markov strategy for the weighted
problem.

Consider now the discounted problem associated with 7, and 35. Let V() denote the optimal
(maximal) value of the discounted problem with this reward and discount factor, and let V,” (2)
denote the minimal value, attained over all strategies. Let I'i(x) denote the set of conserving

actions of the discounted problem with reward ry and discount 5; at state z, that is
Iy(z) = {a € A(z); Va(z) = ri(e,a) + By ZP(ZIfU,a)‘/l(Z)} :
z€X

If the action sets A(-) are reduced to T'y(-), then any strategy in the new model is optimal in the
initial model for the criterion V.

Let X1 = {z € X; A(z) # TI'1(2)} and

minzexl (‘/i(x) — MaXgeA(2)\I'1(z) (’I“](il‘,a) + ﬁl E p(y | lva)vl(y))) if Xl # (b?
€ = yeX

0 otherwise.

Recall that 8; > S for all k. If ¢, > 0, we define

K n
N{ = min {n €{0,1,.. .};¢e > ; (%) max (Vk(a:) - Vk_(:c))} . (3.1)

If ¢, = 0, we define Ny = 0.
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Lemma3.1. Let X and A be finite. If o is an optimal Markov strategy for the weighted discounted
problem and t > Ny, then o4(2¢) € I'1(z¢) (PJ-a.s.) for any z € X.

Proof. If X; = 0 then Ty(z) = A(z) for any z € X, and Lemma 3.1 is trivial. Therefore, we
consider the case X; # §. In this case ¢ > 0 and N; is defined by (3.1). The result will be
established by contradiction.

First, we prove that for any stationary strategy ¢ and states z,z € X such that ]Pf{act =z} >

0, one has

s=1 k=1 s=1 k=1

oo K oo K
Eg{E:E:ﬂ?%@maQMtIZ}EEEi{ESE:ﬂp%W”aQMt:z}, (3.2)

To prove (3.2) by contradiction we define a (non-randomized) strategy = through

$(z,) ifn>tandz, =z,
T(Toag ... Tpn) =
o(z,) otherwise.
If (3.2) does not hold then V(z;7) > V(z;0). This contradicts the optimality of o. Therefore,
inequality (3.2) is proved.
For a Markov strategy v = (y0,71,...) we consider the shifted strategies Y7 = (Yn, Vat1,- - ),

n=0,1,.... We can rewrite (3.2) in the following way

K K
> BiVi(z0%) = > BLV(2: ¢).
k=1 k=1
Therefore,
K
Zﬂ,{ (Vk(z; at) — Vi(z; ¢)) > 0. (3.3)
k=1

To continue the proof by contradiction we assume that for some z and z in X there exists
some ¢ > Ny such that o4(z) ¢ I'1(2), with P (z; = 2) > 0. Let ¢ be a stationary strategy such
that ¢(y) € T'1(y), for any y € X. Then

Vi(y; ¢) = Vi(y), y € X. (3.4)
We have finally
K 3t K 3t
€ > Z =2 (Vi(2) =V (2)) > Z £ (Vi(z;0") = Vi3 ¢)) > Va(z) — Vi(z;0Y) (3.5)
k=2 /Bl k=2 ﬂl
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where the first inequality follows from the definition of Ny, the second one follows from the defini-
tions of the value functions, and the third one follows from (3.3) and (3.4).
On the other hand,

Vi(z50") = ri(z,002)) + Y, p(ylz, 0u(2))Va(y; o+

yeX
<riz,042) + ) plylz, ou(2)Valy),
yeX
so that, from the definition of ¢
Vi(2) = Vilz50) 2 Vaz) — | (o) + 3 plulsnod Wil | 2 (3.6)
yeX
since 04(2) ¢ I'1(2). Inequalities (3.5) and (3.6) contradict each other. [

Corollary 3.2. Let X and A be finite. There exists a Markov optimal strategy ¢ such that
¢+(z) € I'1(z) for any x € X and for any t > Nj.

Proof. Let o be an optimal Markov strategy. If ¢ > Ny and Py {z; = z} > 0 for some z,y € X,
then oy(z) € T'y(z) in view of Lemma 3.1. We consider a Markov strategy ¢ such that ¢;(z) = oy(2)
if ]Pg{a:t =z} > 0 for some y € X and ¢4(z) € [y(z) if IPZ’{xt =2} = 0 for any y € X. Then
é4(-) € I'y(-) when t > N = Ny. Since IPZ5 =Py for any y € X, the strategy ¢ is optimal. |

If I'y(z) is a single-point for each z € X then Corollaries 2.3 and 3.2 imply that there is
an optimal (N, oo)-optimal strategy ¢ such that ¢:;(z) = I';(z), for any 2 € X, and for any
t > N;. Optimal actions ¢¢(z), « € X may be found as a solution of Ni-step dynamic programming

model with state space X, action space A(z), z € X, transition probabilities p, one-step rewards

K K
Ft = 3 Birg, t = 0,...,N; — 1, and terminal rewards 3 ﬂ,]jl‘/k(a:;'lp), where ¥ = ¢™ is a
k=1 k=1

stationary strategy.

If T'y(z) is not a single-point for some z € X then, as Corollary 2.3 states, the action sets
A(z;) for t > Ny may be actually reduced to I';(z;). Moreover, for any strategy 7 using actions
from sets I'y(-), one has Vi(z;7) = Vi(z), ¢ € X. Therefore, the expected rewards for criterion
V1 from epoch Ny to oo are the same for any Markov strategy ¢ such that ¢;(z) € I'y(z) for any

t > Ny and for any @ € X. Thus, if our goal is to construct an optimal strategy from moment N;
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onward, then we have reduced the problem with K reward functions ry,7s,...,rx to the problem
with K — 1 reward functions ry,...,7rx.

Fix £k = 2,3,...,K. We denote To(-) = A(-). For [ = k,k+1,...,K let VD denote the
value function for the discounted problem with state space X, action sets I'y_1(2), 2 € X, rewards
7, transition probabilities p and discount factor 3;. Let Vikl) denote the minimal value for the
respective minimization problem and let I'x(z), z € X be the sets of conserving actions for the

maximization problem:

T'e(z) = {a € Tio1(2); V(@) = ri(a,a) + B Y p(Zva,a)V(kk)(Z)} :

zeX

Define X = {2 € X; Tx_1(z) # T'k(z)} and

min (V) () ~ maxuer,_, @nrace (r4(2: @) + B X plola, VI (y))) i X, £ 0,
€k o re€Xg yex
0 otherwise.

If €, > 0, we define

K n
Nj = min {n € {Nk_1, N1+ 1,..}; e > z (/—?—i) mgx{v(kl)(l,) _ Vikl)(a?)}} _
l=k+1
If €, = 0, we define N = Nyp_1. We denote yah — Vi, VEU) =V, l=1,.. K.

We are now ready to state an algorithm for the computation of optimal strategies.

Algorithm 3.3.
0. Set £ = 1.
1. Compute VR () Ty (+), VI (1), kal)(-), l=k+1,...,K,¢,and N .
2. If Tx(2) is a singleton for all z or k = K, set N = Ny and I'(z) = I'i(2), = € X and continue
to step 3. Otherwise increase & by 1 and repeat from 1.
3. Fix a stationary strategy ¢ such that ¢(z) € I'(z), z € X.
4. Compute Vi(z;v), k=1,2,...,K,z€X.
5. Compute an N-stage optimal Markov strategy o by solving the N-stage Markov decision

problem with state space X, action sets A(z), € X, transition probabilities p,, rewards

K
7t = Y Birk, and terminal rewards
k=1

K
> B Vilw; ) .

k=1
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6. Construct an (N, co0)-stationary optimal strategy ¢ :

_Jouz) ift< N,

dule) = {¢(x) ift> N.
Theorem 3.4. If the state and action spaces are finite, then there exists an (N, o0)-stationary
optimal strategy ¢ for the weighted problem, with N < cc. Algorithm 3.3 finds such a strategy. The
stationary strategy ¢ which an optimal strategy ¢ uses when the time parameter is greater than or
equal N (¢N = 1; see Algorithm 3.3) coincides with a stationary strategy which is lexicographically

optimal for the problem with discounted criteria V1, Vs, ..., Vk.

Proof. We apply Lemma 3.1 iteratively at most K —1 times. After k-th iteration, bk = 1,..., K — 1,
we replace the original model by the model that starts at moment Ny. This means that the initial
rewards rj, j = 1,..., K, are replaces by (8;)™r;. Lemma 3.1 allows to reduce the action sets to
I'x(-) after the k-th iteration. Since for a new model criteria V4, ..., V}, are insensitive to strategies,
we can replace r; by 0 when 5 = 1, ..., k. After a finite number of iterations we have from Lemma 3.1
that the stationary strategy ¢ defined in step 3 of Algorithm 3.3 describes some optimal Markov
strategy from time N onward, where N is the last value of Ny in the algorithm. Any solution
of a finite stage dynamic programming problem described in step 5 of Algorithm 3.3 provides an
optimal strategy at moments 0, ..., N — 1.

We note that J] I'(z), where the sets I'(-) are defined in Algorithm 3.3, is the set of lexico-
z€X

graphically optimal stationary strategies for the problem with discounted criteria Vi, ..., V. [ |

Remark 3.5. The computational complexity of solving the finite weighted discounted problem is
of the same order of magnitude as that of solving a standard discounted problem. We need to solve
a sequence of such problems, but at each step the size of the action space decreases. Finally, we
need to solve a finite problem, whose size depends on the ratios of the discount factors (through
N).

Remark 3.6. In order to compute Ny we need to compute V(#) and VD for | = kRok+1,. K.
Note that these need to be recomputed at every stage since the action set changes at every stage.
This requires the solution of 2( K — k) discounted problems at stage k. To avoid this computation,
one may replace kal) by a lower bound R)/(1 — Bi), where Ry = inf{ri(2z,a); ¢ € X,a €
Tr_1(2)}, k=1,2,...,K,l=k+1,..., K. Similarly, V(*) may be replaced by the upper bound
R /(1 - B), where R*) = sup{ri(z,a); € X,a € Tp_y(2)}, k=1,2,..., K, l=k+1,...,K.

But the computation of V(*%) cannot be avoided, if the algorithm reaches step 1 with this k.
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This results in a considerable reduction in the complexity of computing N;. However, this cruder
estimate will lead to a larger final value for N, and hence increase the complexity of the finite
problem in step 5 of Algorithm 3.3. It is also possible to use V() as upper bounds of V(™) and
VEH) as lower bounds of mel), k < m, in order to reduce the number of discounted dynamic
programming problems that should be solved at step 1 of the algorithm.

Remark 3.7. In fact Algorithm 3.3 describes the set of all Markov strategies which are optimal
not only for all initial states, but also for all intermediate states. Such strategies have the following
structure. Starting from time N, any Markov strategy with actions in I'(-) may be chosen. At
moments 0,..., N — 1 such strategies are solutions of the dynamic programming problem in step 5

of the algorithm.
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