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Circular Permutation Layout with Prescribed Between—Pin

Congestions

by

Chong S. Rim, Sumio Masuda and Kazuo Nakajima

Abstract

Suppose that two sets of terminals #4,%s,...,t, and by, by, ... , b, are located on two
concentric circles C,y; and Cj,, respectively. Given a permutation 7 of integers
1,2,...,n, the circular permutation layout problem is the problem of connecting
each pair of terminals ¢; and b,(;) for ¢ = 1,2,...,n with zero width wires in such a
way that no two wires that correspond to different terminal pairs intersect each other.
In this paper, we present a linear time algorithm for the following case: (i) no wire
can cross Coy, (i1) a wire can cross Cj, at most once, and (iii) the number of wires

which can pass between each pair of adjacent terminals on C;, is prespecified.






1. Introduction

Suppose that two sets of terminals ¢1,%5,...t, and by,bs,...,b, are located on
two concentric circles C\y; and Cj,, respectively. We assume that the circle Coys 1s
outside the circle C;, and that the terminals on each circle are labeled in ascending
order of their subscripts in the clockwise direction. Given a permutation 7 of integers
1,2,...,n, the circular permutation layout (CPL) problem is the problem of connect-
ing each pair of terminals ¢; and b,(;) for 2 = 1,2,...,n with zero width wires in such
a way that no two wires that correspond to different terminal pairs intersect each
other.

The CPL problem was first proposed by Ozawa [7] as an extension of the linear
permutation layout (LPL) problem which has widely been studied [2,3,4,5,9,10]. As
pointed out by Ozawa [7], the CPL problem may arise in the design of hybrid inte-
grated circuits and printed circuit boards (PCBs). Consider, for example, the problem
of connecting a series of incoming wires to the pins on a particular module on a PCB
(see Fig. 1). We assume that no two pins on the module are electrically equivalent
and hence any two wires for the connections must not intersect each other. The order
of the incoming wires is previously determined and may not be the same as that of
the pins on the module. If only one layer is available to realize the connections, this
problem is equivalent to the CPL problem. The terminals on Cj, correspond to the
pins on the module and the terminals on Cyy; represent the incoming wires. Since
the pins have fixed spacing and the wires have finite width, we may assume that

the number of wires which can pass between two adjacent pins is limited to some



finite integer. No wires may cross the boundary represented by C,,; since they would
intersect the existing incoming wires.
From the observations mentioned above, we consider the CPL problem with the

following constraints on the wires in its solution layout:

1. No wire can cross Coys,
2. A wire can cross (Y, at most once, and

3. At most x; > 1 wires can pass between two adjacent terminals b; and b;;; on

Oin for ¢z = 1,2,. cey T2, with bn+1 = bl.

We call a layout in which wires satisfy the above constraints a CPL-solution. For
example, Fig. 2 shows a CPL-solution for the permutation = = (30 29 26 25 24 16
151498 713121011618 17 21 20 23 22 19 54 3 28 27 31 2 1 32), where we
assume that x; = 2 for all : = 1,2,...,32. For simplicity, we label each terminal ¢;
or b; as ¢ in the figures throughout this paper. Ozawa [7] developed an O(n?) time
algorithm for finding a CPL-solution if one exists for the special case of k; = 1 for
all ¢ = 1,2,...,n. Recently, Rim et al. [8] developed a linear time algorithm for the
same special case.

In this paper, we present an O(n) time algorithm for finding a CPL-solution for the
more general case described above. In Section 2 we introduce some basic definitions
and notation. Section 3 provides some useful properties of a CPL-solution. In Section
4 we explain merging operations, which play an important role in our algorithm. The
algorithm is presented in Section 5. Quite recently, another linear time algorithm for

the same case as ours was independently discovered [6].

2



2. Definitions and Notation

Let 7 be a given permutation of integers 1,2, ...,n. If there exists a CPL-solution
for m, we say that = is realizable. A net n; is an ordered pair of terminals (;, br(;))
which must be electrically connected. Let w; denote the wire which connects the
terminals of n;. If w; crosses the circle Cyy, it is called an indirect wire; otherwise it is
called a direct wire. For example, in Fig. 2, ws; is a direct wire and w; is an indirect
wire. We assume that a net is routed by an indirect wire if and only if it can not be
replaced by a direct wire. We define /@ 1ltobel+1if1 <I<n—-—1and1lifl=n.
If a wire w; crosses Cj, between two terminals b; and b;g;, we denote this fact by
w; 1 ® b;jg1. For example, wy 1 ® b3 in Fig. 2.

Let N(7w) = {ni = (ti,bx()) |1 < ¢ < n} be the set of nets. Let py,pa,...,pr be
distinct integers between 1 and n. A sequence [p1,pa,...,pr] is called an increasing
consecutive sequence (icseq) if p; ®1 = pjyq for e =1,2,...,k— 1. Let M = {n,, =
(tpirbg;) |1 < 4,5 < m} be a nonempty subset of N(7) such that [py,ps,...,pn] and
[91,92, ..., qm] are icseqs. We say that M is locally realizable if the nets in M can be
routed in such a way that the wires satisfy the three constraints on a CPL-solution
and the constraint that every wire wy,, ¢ = 1,2,...,m, is either a direct wire or an
indirect wire which passes between two adjacent terminals in {by,, by, - - -, by byt }
where qo is an integer such that ¢4 = qo ® 1. A local realization of M is a layout of
M in which wires satisfy all such constraints. In particular, the fourth constraint will
be referred to as the condition of local realizability. For example, the layout of D =

{n17, nis, n1g, N20, N21, N2z, N3} in Fig. 2 satisfies all the constraints, and hence D



is locally realizable. Suppose that M is locally realizable and let Lj; be any local
realization of M. If there is a wire w in Lps such that wleb,, (resp., wleb,,,,), it is
called a left (resp., right) boundary wire of Ly, For example, wy7 is a left boundary
wire and wos is a right boundary wire of the local realization of D in Fig. 2. Note
that if M = N(7), both the left and right boundary wires of Ly, pass between the
same two adjacent terminals.

Let M' = {n, = (ty,by) |1 < 1,j < I} be another subset of N(7) such that
[Py, Py, -+, and [g],43,...,q]] are icseqs. We say that M is parallel to M’ de-
noted by M || M’, if and only if p, ®1 = p} and ¢, &1 = ¢}. For example,
{na9} || {ns0, n31,n32} and {n19, 20} || {n21, 22} in Fig. 2. We now introduce clusters
which play an important role in our algorithm for finding a CPL-solution. We call
M a cluster in N(n) if (i) M # N(7) and 7(p;) = qg—ip1 for e = 1,2, ..., k, or (ii) M
= N(r) and there is an integer = such that 1 <z < n and 7(p;) = ¢u_ijgs for 7 =1,
2, ..., n. If a cluster consists of only one net, it is called a trivial cluster; otherwise it
is called a nontrivial cluster. A cluster is mazimal if and only if it is not contained in
any other cluster. For example, the instance shown in Fig. 2 has the following sixteen
maximal clusters: {ny,n2}, {ns,na,ns}, {ne,nz,ns}, {n9, n10,711}, {N12, 713}, {n1a},
{ms}, {n16}, {n17,n18}, {n19,n20}, {n21,n22}, {n23}, {n24,n25,n26}, {n27,n28}, {nzg}
and {nso,na1,naz}. It is easy to see that if two distinct clusters C' and C’ are both
maximal, CNC' = ¢. Furthermore, if CUC’ = N(«x), N(«) itself is a cluster. Thus, if
N(7) is not a single cluster, it can uniquely be partitioned into three or more maximal

clusters.



3. Layout of Maximal Clusters

Assume that N(7) consists of three or more maximal clusters. Let C = {n,, =

(tu;, b )| 1 <4<k} be a cluster in N(n), where [uy,ug, ..., uz] and [vy,v2, ...,

Vg—i41

vy] are icseqs. Let [2] denote the smallest integer that is not less than z.
Lemma 1. C is locally realizable.

Proof. Since k; > 1fori=1,2,...,n, the nets in C' can always be realized by one of
the following two types of layouts:
1. A Type DL layout of C is the layout such that wyy, ), is a direct wire and
Wy, 1o by, forall e =1,2,...,k with ¢ # [(k +1)/2] (see Fig. 3 (a)).
2. A Type DR layout of C' is the layout such that wu,,,, is a direct wire and wy,; 10by;1
foralls =1,2,...,k with i # [k/2] (see Fig 3 (b)). O
Let M = {n,; = (tp;,04;) |1 < 4,5 < m} be a nonempty subset of N(r) such that
(p1,P2,---,Pm] and [qi, G2, ...,qm] are icseqs. Assume that M is locally realizable
and let Lys be any local realization of M. For the following two lemmas, we assume
that M consists of one or more maximal clusters. Let C' = {ny; = (tu;, by,_;y,) |1 <
i < k < m} be one such cluster in M, where [uy, ug,...,us] and [vy,v,...,v;] are
icseqs. Let Lo denote the layout of C in Lys. It is easy to see that Lo has at most

one direct wire.
Lemma 2. Suppose that C is a maximal cluster. L¢ satisfies the condition of local
realizability if and only if it has a direct wire.

Proof. It is easy to see that if Lo satisfies the condition of local realizability, it has a

direct wire. Assume that Lo has a direct wire. If |C] =1 or M itself is a maximal



cluster, Lo is a local realization of C. Assume that |C| > 2 and M consists of two
or more maximal clusters. Suppose that Lo does not satisfy the condition of local
realizability. Let n,, = (fu,,by,_,,,) be the net that is routed by a direct wire in
Lc. We first consider the case in which z > 2. Let n,,, 1 <y < z —1, be a net
whose corresponding wire violates the condition of local realizability. See Fig. 4. Let
ns = (5, br(s)) be the net in M with 7(s) @ 1 = v;. This net is routed by an indirect
wire. It is easy to see that if ux @1 # s, wy, g1 Will violate the second constraint on a
CPL-solution. Therefore, uy @1 = s and hence CU{n,} forms a cluster in M, which
contradicts the maximality of C'. Similarly, if + = 1, we can show that the wires w,,,

Wyg, - - -, Wy, Pass between b,, and b, g1. [

Lemma 3. If C is a nontrivial cluster and Lg in Ly satisfies the condition of local

realizability, Lo has at least one boundary wire.

Proof. If w,, is not a left boundary wire, w,, can not be a direct wire and it has to
pass between b,, and by,qg1. Thus, w,, is a right boundary wire. Similarly, if w,, is

not a right boundary wire, w,, is a left boundary wire. 0O

We now assume that M consists of two or more maximal clusters. Furthermore,
we assume that there exists at least one indirect wire in Lys. Let By = {bg,, by, - - -
b, } and let go and g4 denote the integers such that ¢; = ¢o®1 and ¢my1 = ¢ @1,
respectively. Let C' = {n,,,; = (tp,yi» bgyys_izs) | 0 <4 <k~ 1} be a cluster in M
whose nets are all routed by indirect wires in Lps. Assume that w,, ., , 1 b, and

Wy, 1 ® by, ,, in Ly for some u and v suchthat ] <u<m+4+1and 0 <v<m. Let By

= {bQu? bQu+1? R b‘Iy—l}’ Tl = {tpx-}-k’ tpa:+k+1’ s tp:r+k+y—u~—1}’ B2 = {be+k7 b‘ly+k+1’



v va} a'nd T2 = {tpx+k+y—v«17 tpx+k+y—v7 crr tpm—l} SuCh tha't [qu7 qu‘i’l’ MR qy"l]7

[px+k7 P41y oo pm+k+y—u—1]’ [Qy+ka Qy+k+1s -+ ‘.Zv] and [p:c+k+y—v-1a Datbgy—vsy « - vy

ps-1] are icseqs. See Fig. 5. Note that |By| = |Ti| and |By| = |Ty|. We define two
sets of terminals Bg and T¢ in the following way: Be = By (resp., By) and Tp = T
(resp., Ty) it By C By (vesp., By C Bys). Note that if M = N(r), both By and B,
are subsets of By, In this case, let Bo = By (resp., B;) and T = Ty (resp., T3)
if |By| < |Ba] (resp., if |By| > |B;]). Let M denote the set of all nets that have

terminals in Bg.

Lemma 4. Every net in M¢ has a terminal in T and Mg is locally realizable.
Proof. Without loss of generality, assume that Bo = B; and T¢ = T7. Also assume
that there is a net n,, = (tp,,br(p,)) in M¢ such that p, & Te. See Fig. 5. Since
|Bo — {br(p)}| < |Tc|, there is a wire w which connects a terminal in Ty and a
terminal not in Bg. However, the existence of the wire w,, and the wires for C
forces the wire w to cross Cj, at least twice, which violates the second constraint on
a CPL-solution. Therefore, every net in Mg has a terminal in 7. Since the nets in
M¢ connect terminals in Bg and those in T, it is easy to see that the layout of My
in Lys satisfies the condition of local realizability, and hence M¢ is locally realizable.
]

Lemma 5. M has at least two parallel maximal clusters.

Proof. If the layout of every maximal cluster in M has a direct wire in Ly, it is easy
to see that there is a pair of parallel maximal clusters. Assume that there is at least
one maximal cluster in M whose nets are all routed by indirect wires in Lj;. Let C

be a maximal cluster such that |M¢| is a minimum among all such maximal clusters.
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Clearly, M consists of two or more maximal clusters; otherwise C' U Mg would form
a single cluster. Since |M¢| is a minimum, no maximal cluster in Mc is routed in Ly,
by indirect wires only. In other words, the layout of every maximal cluster in M¢ has
a direct wire. Therefore, any two adjacent maximal clusters in M¢ are parallel. O

We now assume that 7 is realizable. Let Ly(r) be any CPL-solution for m. The

following lemma provides a useful property of parallel maximal clusters.

Lemma 6. Let C and €' be maximal clusters in N(x). If C || C”, the layouts of C
and C' each satisfy the condition of local realizability in Ly (xy.

Proof. Let C = {ny; = (fusbu_in) |1 < i <r}pand C' = {ny = (tu, by . )1 <

i1
i < s} such that u} = u, ®1 and v] = v, ® 1. Let H = {by,by,,..., b, }. Assume
that Lo in Ly(r) dose not satisfy the condition of local realizability. Then, there is
a net, say ny, = (tp,,bq ), in C such that w,, in Ly(.) passes between terminals b,
and b,,,, which are not contained in H, where [p1,p2,---,pn) and [q1,92,...,qn] are
icseqs. See Fig. 6. Let By = {by,,1,0g,425++1bgnts Tt = {tpastpsr -+ s tpnjn}, B2 =
t, .y tpn }. Using the similar argument as in

{b%a b%: sy qu'} and T = {tpn

—j429 "Pn—j4ar

the proof of Lemma 4, we can show that every terminal in 7} (resp., T3) is connected to
a terminal in By (resp., Ba). Since {by,,buyy. .y bu_p} C By {upiss bugpas s tun} C
Ty. Since B; contains by,,, which is not in H and |Bi| = |1}, t,; is in Ty. Similarly,
since by; & H, by is in Bs. These two facts imply that all nets that have terminals
in By are in either C or C’, and hence all the terminals in T3 belong to those nets.
Thus, N(x) consists of two maximal clusters, which contradicts our assumption that
N(7) consists of three or more maximal clusters. Therefore, Lc in Ly(r) satisfies the

condition of local realizability. Similarly, L¢s in Ly(r) satisfies the condition of local
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realizability. [

4. Components and Merging Operations

Let M = {n,, = (tp;,by;) |1 < 4,5 < m} be a nonempty subset of N(r) such
that [p1,p2,...,Pm] and [¢1, 42, ..., qm] are icseqs. Assume that M consists of one
or more maximal clusters. We call M a component of N(x) if it has a property that
if 7 is realizable, then its layout in any CPL-solution satisfies the condition of local
realizability. Locally realizable subsets are not always components. For example, any
maximal cluster is locally realizable by Lemma 1, but not all maximal clusters are
components (see the cluster {ny,ny} in Fig. 2). On the other hand, every component
is locally realizable as long as 7 is realizable.

A locally realizable component may have many possible local realizations. In
our algorithm, we consider a locally realizable component from the point of view
of necessary boundary wires for its local realization. In fact, as will be seen in the
description of the algorithm in this and the next sections, only two types of local
realization of components are used. Such realizations are specified by three param-
eters type(M), (M) and r(M) associated with each component M. They are to be
interpreted as follows.

1. If type(M) = ‘f’, at least [(M) > 0 left and at least (M) > 0 right boundary

wires are needed for any local realization of M (see Fig. 7 (a)).

2. If type(M) = ‘a’, either at least /(M) > 1 left but no right boundary wires or
at least (M) > 1 right but no left boundary wires are needed for any local

realization of M (see Fig. 7 (b)).



We now assume that a component M is created by our algorithm and type(M)
is either ‘f’ or ‘z’. If a component M is realized by a layout with [(M) left and
no right (resp., r(M) right and no left) boundary wires, we call such a realization
an Lrealization (resp., an r-realization). During the execution of our algorithm,
which will be described in the next section, if # is realizable, a component M whose
type(M) value is ‘z’ will be realized as either an l-realization or an r-realization. The
parameter values of M are modified as type(M) = ‘f’, (M) = (M) and r(M) = 0
(resp., type(M) = ‘f’, I(M) = 0 and r(M) = r(M)) if we realize M as an Irealization
(resp., an r-realization).

A merging operation is an operation that creates a new component by combining a
component called the core with another component or one or two maximal clusters. In
our algorithm, N(7) is first partitioned into maximal clusters. If a merging operation
successfully creates a new component, it also determines the three parameter values
of the new component. Then, the algorithm repeatedly finds merging operands and
performs a merging operation. If it neither constructs a new component by a merging
operation nor finds any merging operands, 7 is not realizable as will be shown later.
On the other hand, if it produces a single component that is locally realizable by
merging all the maximal clusters, clearly 7 is realizable. In the following two sub-
sections, we define two types of merging operations which are used in our algorithm.
They are called P-merging and X-merging operations. In the remaining part of this
paper, we assume that any component that is not a single cluster was created by

either a P-merging or X-merging operation.
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4.1. P-merging Operation

A P-merging operation is to merge two parallel components called P-merging
operands. Let M = {n,, = (15, b;;) | 1 < 4,j < m} and M' = {n, = (tpt, bet) |
1 < 4,5 <1} be components of N(r) such that [p1, ps, ..., pm, P}, Phy .- -, pl] and
lg1, g2, - -5 Gms 41, 43, - - -, q]] are icseqs. Assume that both M and M’ are locally
realizable. It is clear that the combined set My, = M U M’ is a component of N(r).
Suppose that type(M) = ‘f’ and type(M') = ‘f’. If r(M) + I(M") > k,,,, Mpew
can not be routed without violating the third constraint on a CPL-solution since
more than kg, wires must pass between the terminals b, and by Therefore, 7 is
not realizable. On the other hand, if r(M) + I{(M') < kg, clearly M., is locally
realizable. The parameter values of Mye, will be type(Mpew) = f, I Mpew) = (M)
and r(Mpew) = r(M’), which implies that at least [(M) left and at least r(M') right
boundary wires are needed for any local realization of M,,c,,.

As another example, suppose that type(M) = ‘¢’ and type(M’) = ‘«’. If r(M) +
I(M') < Kgpy Myew 18 locally realizable with no boundary wires by obtaining an r
and [realization of M and M’, respectively. In this case, the parameter values are
set as type(Mnew) = ‘f’, {(Muew) = 0 and r(Myey) = 0. If #(M) + (M) > &,
a local realization of M,., will be obtained by using either both [-realizations or
both r-realizations of M and M’. In this case, the parameter values are set as
type(Mpew) = ‘0, I(Mpew) = (M) and r(Mpew) = r(M’).

In Appendix A-1, we describe a complete procedure for a P-merging operation

by considering all possible cases. In a P-merging operation, either M or M’ can be
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the core.
4.2. X—merging Operation

An X-merging operation is to merge a component and one or two maximal clus-
ters. We call such a component and maximal clusters X—-merging operands. In an
X-merging operation, the component is the core. Let M = {n,, = (t,,, b;;) | 1 <
1,5 < m}, Cr = {ny; = (tuis bo,iya) | 1 £ 4,5 <r}and Cp = {ny = (tu, buy_, ) |

1 <4,5 < s} be a component and two maximal clusters, respectively, such that [uy,
Uz, o vy Upy Ply P2y« - vy Pmy Uy, Uhy .oy ub] and [vf, vh, ..., VL, @1, @2, -« Gm, V1, V2,
..., v,] are icseqs. Note that if there is no such C; (resp., C3), we set Cy (resp.,
C3) to be an empty set. We define Hy to be {bys, by, .., by, by} (resp., {484, })
if Cy # ¢ (resp., C3 = ¢), where v} and ¢o are integers such that v; = vy @ 1 and
q1 = ¢o @ 1, respectively. Similarly, H, is defined to be {bg,,, by, buy; -+, by, buy@1}
(resp., {bgnsbymm1}) if C1 # ¢ (resp., C1 = ¢). An X-merging operation is based on
the following lemma.

Lemma 7. If 7 is realizable, every net in C; (resp., Cs) is routed by an indirect wire
which passes two adjacent terminals in Hy (resp., Hs) in any CPL-solution for «.
Proof. The component M has at least two maximal clusters; otherwise C; UM U C,
would become a cluster. Similarly, the subset M = N(7) — (C1 UM UC5) has at least
two maximal clusters. Assume that = is realizable and let Ly, be any CPL-solution
for w. For any subset D of N(x), let Lp denote the layout of D in Ly(y. Without
loss of generality, we only consider the case in which Cy # ¢. Assume that a net in

Cy is routed in Ly(r) by a direct wire or an indirect wire which passes between two
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adjacent terminals at most one of which is in Hy. There are three possibilities.
1. A net in C} is routed by either a direct wire or an indirect wire which passes be-
tween two adjacent terminals in H, (see Fig. 8 (a)). By Lemmas 5, 6 and 2, there are
at least two direct wires in Lp;. Therefore, all nets in M must be realized by indirect
wires. This implies that M consists of a single cluster, not two or more maximal
clusters, a contradiction.
2. A net in Cj is routed by an indirect wire which passes between two adjacent
terminals, say by, and by, in {bg,, by,,. .., by, } (see Fig. 8 (b)). Clearly, all nets that
have terminals in {b,,, by, .. ., by, } must be routed by those indirect wires that violate
the condition of local realizability of M, a contradiction.
3. A net in C] is routed by an indirect wire which passes between two adjacent ter-
minals not in the set {byr, bur, ..., bur, byy, bggy v v vy bgpny bug, buyy o, b } (see Fig. 8 (c)).
Let n,, € Cy besuch anet. Let n, = (%, by(,)) be a net in N(r) such that x(2)®1 = v}
(resp., q1) if Cy # ¢ (vesp., Cy = ¢). Clearly, w, is an indirect wire. Let ny, = (%, br(y))
be a net in N(7) such that y = u, @ 1 (resp., pn, @ 1) if Cy # & (resp., Cy = ¢). It is
easy to see that if 2 # y, wy in Ly violates the second constraint on a CPL-solution.
Therefore, z = y. If Cz # ¢, C2 U {n,} would form a cluster, which contradicts the
maximality of C;. If Cy = ¢, the existence of the maximal cluster that contains n,
would contradict the fact that Cy; = ¢.

In conclusion, every net in Cj is routed in Ly by an indirect wire which passes
between two adjacent terminals in H;. Similarly, every net in C; is routed in Ly(n
by an indirect wire which passes between two adjacent terminals in H,. [

Lemma 7 implies that if = is realizable, the layout of Mye, = C1 UM U C; in

13



any CPL-solution must satisfy the condition of local realizability and hence it is a
component. In the remaining part of this subsection, we describe how to test the
local realizability of M., and how to set its three parameter values if it is locally
realizable.

Case A: Either (3 = ¢ or () = ¢.

Without loss of generality, we assume that C; = ¢. By Lemma 7, every net in C;
must be routed as a left boundary wire of M., = C1 U M. There are two possible
cases to consider. Recall that ¢o is the integer such that ¢; = go @ 1 and r = |C}|.

Case 1. type(M)="‘f.

If r 4+ I(M) > kgy, Mpew is not locally realizable since more than Kg, Wires must pass
between b,, and b,,. Otherwise, M., is locally realizable and the parameter values
are set as type(Mpew) = f, {Mpew) = 7+ (M) and r(Mey,) = 0.

Case 2. type(M) = ‘a’.

If r > kg, clearly M., is not locally realizable. Otherwise, M,,.,, is locally realizable
and the parameter values are set as type(Mpew) = f’, {(Mpew) = r and r(Myey) = 0.
In this case, an r-realization of M is always chosen.

The case in which C; = ¢ can be treated in a similar way.

Case B: Both Cy # ¢ and C; # ¢.

It is easy to see that any local realization of M., = C1 U M U (), requires at least
one boundary wire. If a net in C (resp., C2) is routed by a boundary wire, no wire
corresponding to a net in C; (resp., Cy) can be a boundary wire. Therefore, if M.,
is locally realizable, any such realization has either left or right boundary wires.

In what follows we assume that |C1| > |Csl, that is, » > s. The other case can

14



be treated in a similar way. Let Hf = Hy — {by} and Hy = H; — {by.¢n} (H; and
H, are defined at the beginning of this subsection). Let W = Kol F Kyp 00+ Ky
(resp., Kot + Ko + -+ Koy — (M) if type(M) = ‘a’ (resp., ‘f’). W represents the
total number of wires which can pass between all pairs of adjacent terminals in Hy.
We first consider the cases in which M, is not locally realizable.
Case 1. type(M)="‘f, (M) = &y, and r(M) = &,,,.

If w,, (resp., w,;) does not pass between by, and by, (resp., by, and by, ), wy (resp.,
w,, ) must pass between by, and b,, (resp., by, and by, ). That is, at least one net in
Cy U Cs must be routed by a wire which passes between either by, and by, or b, and

b,

.- Therefore, if type(M) = ‘f’, (M) = &, and r(M) = kq,,, Myew is not locally
realizable.

Case 2. r > W + &,y where vy is the integer such that v5 ® 1 = v}

By Lemma 7, all wires corresponding to the nets in €| must pass between terminals
in H,. Since the total number of wires which can pass between s+ 1 pairs of adjacent
terminals in H; is W + Kub s M,,.., is not locally realizable.

We now show that M., = C; UM U (), is locally realizable if M, satisfies the
conditions that (i) I(M) < Ky or r(M) < kg, if type(M) = ‘f’, and (ii) r < W 4 K,y.
By Lemma 7, every wire for C; passes between two adjacent terminals in H;. Once
such a pair of terminals are determined, the layout of € is automatically determined.
For example, if w,, 1 ® by, then wy; 1 @ b, and if w, le bv;_y_l and wy,,, 1o b”é—y+1’
then Wyt 1o b, ,,, and Wy, 1o b, _..,. Thus, it suffices to describe how to route

the nets in Cy in order to show the local realization of M,.,. We also obtain the

parameter values of M,y
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First assume that » > W. We can route the nets in C} in such a way that W
wires pass between terminals in H] and the remaining r — W wires are left boundary
wires of M,.,. Note in this case that if type(M) = ‘z’, we choose an r-realization
of M. Since at least one wire passes between every pair of adjacent terminals in
HY, at most one wire for C; passes between each pair of adjacent terminals in Hj.
This implies that we can obtain a local realization of M,,.,, with r — W left boundary
wires, and hence M, is locally realizable. On the other hand, if we realize the nets
in Mye with right boundary wires, all the wires corresponding to the nets in C; must
pass between terminals in H, which is not possible since r > W. Therefore, we can
not obtain a local realization of M,,,, that has right boundary wires, and hence the
parameter values are set as type(Mpew) = ‘7, {(Mpew) =7 — W and r(Mpey) = 0.

Second assume that r < W. There are three possible cases.

Case 1. |Cy| > |Cy| (r > s).

If type(M) = ‘a’, we choose an r-realization of M. Since r < W, we can route the
nets in Cy by wires passing between terminals in Hy. Moreover, since r > s, those
wires can be arranged in such a way that at least one wire passes between every pair
of adjacent terminals in Hf. For example, see the figures on the left hand side of
Fig. 9, where we assume that x; = 2 for all ¢ = 1,2,...,n, and that |Ci| = 4 and
|Cy| = 3. This way of routing results in that at most one wire for a net in C; passes
between each pair of terminals in H; and w,, becomes a right boundary wire. Thus,
we can have an rrealization of M,., with one right boundary wire. On the other
hand, suppose that we route the net n,, € Ci as wy, 1 ®b,. Since r — 1 > s, the

remaining nets in C; can still be routed by wires passing between terminals in H such
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that at least one wire passes between every pair of adjacent terminals. This implies
that at most one wire for a net in C; passes between each pair of adjacent terminals
in H;. See the figures on the right hand side of Fig. 9. Thus, we can also have an
[-realization of M,.,, with one left boundary wire. Therefore in this case, M., is
locally realizable, and the parameter values are set as type(M,e) = ‘@’, (M) = 1
and r(M) = 1.

Case 2. |C1] = |Cs| (r = s) and type(M) = ‘@’.

The following way of routing will create an - or r-realization of M,.,,.
(i) An Lrealization: Obtain an [Frealization of M and route the nets in Cy and C,

as Wy, 10 by and wy . 1eb, ., fori=1,2,...,r (see Fig. 10 (a)).

i1
(ii) An rrealization: Obtain an r-realization of M and route the nets in C; and

Cy as Wyl

10 by,_i 101 and wy, 1@ byg for i = 1,2,...,7 (see Fig. 10 (b)).
Therefore, in this case, the parameter values are set as Type(Myew) = ‘2, {(Mper,) = 1
and I(M,e.) = 1.
Case 3. |Cy| = |Cs| (r = s) and type(M) = ‘f’.

There are at most r pairs of adjacent terminals in Hy. Since r < W, we can route the
nets in C by wires passing between terminals in H such that at least one wire passes
between every pair of adjacent terminals. Note that if I(M) = ., then w,, 1 ® by
and n,; can be routed as wy; 1 ¢ by, since r(M) < kg, This way of routing results
in that at most one wire for C; passes between each pair of adjacent terminals in
H3, and hence M,.,, is locally realizable. For example, see Fig. 11 (a). In this case,
we have an r-realization of M., since Wy 18 the right boundary wire. We still

need to check the possibility of an Frealization of My.,. If r(M) < &,,, we can
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obtain an lrealization of M., by routing the nets in 'y and C; as w,, L e bv:, and

i 1 by, iy for i =1,2,...,r. For example, see Fig. 11 (b). If r(M) = &,,,, Ny,
must be routed as w,, { ® b,, since w,; can not pass between b,,, and b,,. Therefore,
exactly s nets from C) are required in order that at least one wire passes between
every pair of adjacent terminals in H;. However, since at least one wire for a net
in Cy must be a left boundary wire, at most r — 1 wires are available and hence no
wire passes between at least one pair of adjacent terminals in Hj. This implies that
r = s > 2 and that there must be at least one pair of adjacent terminals, say b,; and

b in Hy — {b,,} such that x,;, > 2. Therefore, if r(M) = &,,, and r = s = 1

i1
or Ky, = 1 for all ¢ = 1,2,...,r — 1, we can not have an Frealization of Mpe,. For
example, see Fig. 11 (d). Otherwise, we can have an l-realization of M., with one
left boundary wire (see Fig. 11 (c)). From the above discussions, My, is locally
realizable. If r(M) = &, and r = s = l or k,;, = 1 for all 2 = 1,2,...,7r — 1,
the parameter values are set as type(Mpew) = ‘f7 {(Mpew) = 0 and 7(Mpew) = 1;
otherwise, type(Mpew) = ‘@’, [(Myew) = 1 and r(Mpew) = 1.

In Appendix A-2, we describe a complete procedure for an X—merging operation

for the case in which C) # ¢ and C # ¢, and |Cy]| > |Cy|.

5. Algorithm Description

If N(x) itself is a cluster, 7 is realizable and a CPL-solution is trivially formed.
We arbitrarily select a net and route it by a direct wire. The remaining nets can be
routed by either a Type DL or Type DR layout. Thus, we assume that N (7) consists

of three or more maximal clusters.
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The algorithm consists of two main phases, the merging phase and the routing
phase. In the merging phase, it tests whether 7 is realizable or not by using the
merging operations described in Section 4. If 7 is realizable, the algorithm constructs

a CPL-solution in the routing phase.
5.1 Merging Phase

We show below an outline of the merging phase.

Step 1. Partition N(7) into maximal clusters.

Step 2. Execute the following substeps until a merging operation fails or there re-
main no merging operands.

(a) Find P- or X-merging operands.
(b) Perform the merging operation.

Step 3. if Step 2 results in a single component M = {(t,,,b,,) |1 < 4,5 < n} (=
N (7)) such that type(M) # ‘f or (M) +r(M) < k,,, where [p1,p2, ..., Pn]
and [q1,q2,- .. ,‘qn] are icseqs,
then go to the routing phase (7 is realizable),

else terminate the algorithm ( is not realizable).

In Step 1, we construct a circular doubly linked list, called CLIST, which initially
stores all the maximal clusters in the order of their appearances on the outer circle
Cout- The contents of CLIST will be changed during the execution of Step 2.

In Step 2, the first merging operands can be found according to Lemmas 5 and 6.
Since N () consists of three or more maximal clusters, if there are no parallel maximal

clusters, 7 is not realizable by Lemma 5, and thus the algorithm terminates. If N(7)
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has two parallel maximal clusters, they are components due to Lemma 6. When a
maximal cluster C' is found to be a component, its parameter values are determined
as follows:

Case 1. If C is a trivial cluster, the only net in C has to be routed by a direct
wire and hence we set type(C) = ‘f’, [(C) =0 and r(C) = 0.

Case 2. If C' is a nontrivial cluster, any local realization of C' needs at least one

boundary wire by Lemma 3. Since we can have a local realization of C with exactly
one, either left or right, boundary wire as shown in the proof of Lemma 1, we set
type(C) =‘2’, [(C)=1and r(C) = 1.
Recall the definition of the three parameter values given on page 9. In particular, in
Case 2 above, C will be laid out as an - (resp., r) realization with I(C) =1 (resp.,
no) left and no (resp., r(C) = 1) right boundary wire. In Step 2, the algorithm selects
an arbitrary one among the components thus found as the initial core and proceeds
to perform the merging operations.

If merging operands including the current core are found, the algorithm tests
whether they can be combined into a larger component which is locally realizable.
This is done by executing a merging operation described in Section 4. If the merging
operation fails, 7 is not realizable owing to the argument given in Section 4 and the
algorithm terminates. Otherwise, the merging procedure returns a new component
Mo, with new values of parameters type(Mpew), {{ Mnew) and 7(Mipey). This new
component becomes a new core and the merging operands are replaced by M, in
CLIST. At this time, the algorithm may find another new component according to

the following lemma.
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Lemma 8. If there exists a maximal cluster C' such that C' || Myew or Myew || C, C
is a component.

Proof. Suppose that 7 is realizable and let Ly, be any CPL-solution for =. For
any subset D of N(7), let Lp denote the layout of D in Ly(n. Assume that L¢
does not satisfy the condition of local realizability. Then, using the similar argument
as in the proof of Lemma 6, we can show that N(7) = C U M,.,. Let Mo, =
{np; = (tpi,bg;) |1 < 6,5 < m}and C = {ny, = (fu;,bu_iyy) |1 < 7 < K} such
that [u1,us2,..., Uk, P1,P2, ..., Pm] and [v1,02,...,0k,¢1,42,...,qn] are icseqs. Since
L¢ does not satisfy the condition of local realizability, at least one wire, say w,_, in
L¢ passes between two adjacent terminals, say by, and by, in {bg,,bg,,..., by, }. See
Fig. 12. This implies that M., is not the result of an X-merging operation but that

of a P-merging operation. Let M’ and M"” be the P-merging operands such that

M UM" = My, and M’ || M". Note that n,, € M’ and n,, € M". Let T} = {¢

Ug+1?

tum+2a oo atura tm’ tmv s 7tpm—j}7 T2 = {tpm-j+1> tpm-—j+2’ v ’tpm’ tU17 tu2’ Lo ’tuz—1}7

B, = {b4j+1’ bq;‘+2a SRR qu’ by, » bv27 ceey b’Ur—x} and By = {b'Ur—z+27 b'Ur-x+37 cevy by, bqn

b

425+ 0g; }- Similar to the argument given in the proof of Lemma 4, we can show
that every terminal in T} (resp., T3) is connected to a terminal in By (resp., Bj).
Since np,, € M' and br,) € By, all the nets connecting the terminals in B; are in
M’, which contradicts the fact that n,, € M". Therefore, L¢ satisfies the condition
of local realizability. O

If there are no merging operands including the current core for a P— or X-merging

operation, the next component in the clockwise direction in CLIST becomes a new

core.
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Lemma 9. If a component in CLIST becomes the core for the second time, there
remain no merging operands.
Proof. 1f a component is selected as the core twice, all of the other components in
CLIST have been the core before at least once. The lemma clearly follows from this
fact. O

Merging operations are iteratively performed until a merging operation fails for
some merging operands or there remain no merging operands in CLIST. Then, in
Step 3, the algorithm tests the realizability of = based on the following theorem.
Theorem 1. 7 is realizable if and only if all maximal clusters in N(7) are merged into
a single component M = {(t,,,b,;) |1 < ¢,5 < n} (= N(x)) such that type(M) = ‘z’
or (M) + r(M) < kq,, where [p1,ps,...,ps) and [¢1,¢2,...,¢,] are icseqs.
Proof. Suppose that all maximal clusters are merged into a single component M =
{(tpi, ;) | 1 £ 4,5 < n} (= N(r)), where [p1, ps, ..., pa] and [q1, g2, ..., ¢n] are
icseqs. It is easy to see that if type(M) = ‘e’ or I(M) + r(M) < K, 7 is realizable.
Assume that the algorithm fails in creating such a component. If type(M) = ‘f’ and
(M) + r(M) > Kg,, ™ is not realizable since (M) + r(M) boundary wires of the
component have to pass between the same two adjacent terminals by, and b, and
only k,, wires can pass between them. Suppose that 7 is realizable and the algorithm
terminates when CLIST has two or more elements. Let Ly(r) be any CPL-solution
for w. At the termination of the algorithm CLIST has at least one maximal cluster
whose nets are all routed by indirect wires in Ly(n); otherwise any two consecutive
elements in the list would constitute P-merging operands. Let Y be the set of all such

maximal clusters and C be a maximal cluster in Y such that |M¢] is a minimum (Me
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is defined in Section 3). Note that M¢ consists of two or more maximal clusters. If
M itself is an element of CLIST at the termination of the algorithm, the list has X~
merging operands and the algorithm would continue, a contradiction. Thus, CLIST
has at least two elements which form M¢. Since those elements contain no P-merging
operands, one of them is a maximal cluster, say C’, in Y. Clearly |M¢/| < |M¢|, and
hence |M¢| would not be a minimum. Therefore, if the algorithm terminates when
CLIST has two or more elements, 7 is not realizable. [J

During the merging phase, a directed graph called the merging tree is constructed.
Initially, the graph has only isolated nodes which correspond to the maximal clusters.
If a merging operation succeeds, the algorithm adds to the current graph a new
node which corresponds to the resultant component and creates directed edges from
this node to the nodes corresponding to the merging operands. Thus, if all the
maximal clusters are eventually merged into a single component, the graph becomes
a directed tree whose root M = {(t,,,b,,) |1 < ¢,5 < n} corresponds to N(x), where
p1,P2,- -, pn) and [q1, G2, . . -, ¢a] are icseqs. And, if type(M) # ‘> or (M) +r(M) <
Kgn, the merging tree will be used in the next phase to route the nets in N(r). We
give an example here. If the algorithm is applied to the instance of Fig. 2 and {n4}
is first selected as the core of the merging operation, the final merging tree would be
as shown in Fig. 13. Let M = {n,, = (t,,,04;) |1 < 7,5 < m} be a maximal cluster
or a component which was created in the merging phase such that [p,ps,...,pn]
and [q1,¢2,.- -, ¢m] are icseqgs. The node corresponding to M in the merging tree is
represented by a square as shown in Fig. 13. The numbers at the top (resp., bottom)

of the square denote p; and p,, (resp., ¢1 and ¢,) from left to right. If M is a
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component, the 3-tuple in the center of the square denotes (type(M), (M), r(M)). If
M is a maximal cluster, it is indicated by the symbol ‘c’ in the center of the square.
Theorem 2. The time complexity of the merging phase is O(n).

Proof. 1t is easy to find all maximal clusters in O(n) time. Since the number of
maximal clusters is at most n, both the construction of CLIST and finding parallel
maximal clusters can be done in O(n) time. In Step 2, if the algorithm can not find
any merging operands including the current core, it selects a new core. By Lemma 9,
all such selections require only O(n) time in total. The total number of merging
operations performed is at most n — 1 because each merging operation reduces the
number of elements in CLIST by at least one. Furthermore, one execution of a P-
merging (resp., X-merging) operation takes a constant (resp., O(size of the maximal
clusters in the merging operands)) time. Since a maximal cluster is involved in a
merging operation exactly once, all merging operation can be carried out in O(n)

time in total. Therefore, the merging phase can be completed in O(n) time. O
5.2. Routing Phase

Once the merging phase is successfully completed, the nets in N(7) are to be
routed in the routing phase. The merging tree is now a rooted directed tree that has
at most 2n — 1 nodes. Its leaves correspond to the maximal clusters in N(7) and
its nonleaf nodes correspond to the components that have been found in the merging
phase. For convenience, if a node in the tree corresponds to a subset M of N(x), we

call it node M.

In the routing phase, we first check whether the root M, = N(7) is a component
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such that type(N(m)) = ‘a’, and if so, we change its parameter values as type(M,) =
‘f and either I(M,) = {(M,) and r(M,) = 0 or [(M,) = 0 and r(M,) = r(M,).
This selection is arbitrary. Then, starting from the root, the algorithm visits every
nonleaf node M; of the merging tree by depth-first search [1]. For each child M of
M;, if type(M) = ‘@’, its parameter values are modified as type(M) = ‘f” and either
I(M) = (M) and r(M) = 0 or I(M) =0 and r(M) = r(M) so as to be consistent
with the parameter values of M;. If M is a maximal cluster, the nets in M are routed.
These modifications and routings are made in the following manner.

Case 1. M; was created by a P-merging operation.

Let M; and M, be the components such that M; = M; U M, and M, || M.
Suppose that type(M;) = ‘z’. If {(My) = 0, we change the parameter values of M,
as type(My) = ‘f’, I(My) = 0 and r(M;) = r(M); otherwise we change them as
type(My) = *f’, (My) = I(My) and r(My) = 0. Similarly, if type(Mz) = ‘@’, the
parameter values of M, are changed as type(M;) = ‘f and either (M) = I(M,) and
r(M) = 0 or I[(M;) = 0 and r(Mz) = r(M;) depending on whether r(My) = 0 or
not. If M, is a maximal cluster, the nets in M; are routed in the following way. If
I(My) = 0 and r(My) = 0, M is a trivial cluster and its only net is routed by a direct
wire. Otherwise, the nets in M; are routed by either a Type DL or a Type DR layout
depending on whether I[(M;) = 1 or r(M,) = 1. Similarly, if M, is a maximal cluster,
the nets in M, are routed in the same way as above.

Case 2. Mj was created by an X-merging operation.
Let M = {ny; = (i, bg,;) | 1 S 4,5 < m}, Ct = {nu, = (uis by,_iya) | 1 < 3,5 <

r} and Cz = {ny = (tu, b”§—£+1) | 1 <14,j < s} be a component and two maximal
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clusters, respectively, such that My = C4y U M U C; and that [ug, ug, ..., u,, p1, p2,
covy Pmy UG, UG, oo, u) and (v, V5, ..., UL, @1, G2y -y Gy V1, V2, ..., U] are icseqs.
Without loss of generality we assume that |Cy| > |Cy|. The case in which |C}] < |Cq]
can similarly be treated. If C; = ¢, all nets in C; are routed by wires passing between
by, and b, where g is the integer such that ¢s = ¢o @ 1. Note in this case that if
type(M) = ‘a’, the parameter values of M are changed as type(M) = ‘f’, (M) = 0
and r(M) = r(M). We now assume that Cy # ¢. Let W = Ky + K4y ++ - -+ £y (resp.,
Kol + Ky oo+ gy — (M) if type(M) = ‘@’ (resp., ‘f’). The following procedure
will route the nets in C; and Cs in such a way that the layout is consistent with the

parameter values of Mj.

1. procedure

2. begin
3. if r > W then
4, call l-realization1 (Cy, M, Cy);

5. else if /(M) = 0 then
6. call r-realization (Cy, M, C3);

7. else if type(M) = ‘f* and (M) = &,,, and r = s then

8. call l-realization2 (C1, M, C5);
9. else

10. call l-realizations (Cy, M, C2);
11. end

The subroutines used in the above procedure are described in Appendix A-3. Each
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subroutine routes the nets in Cy U Cy so as to produce a layout of My which is
consistent with its corresponding parameter values. If type(M) = ‘a’, the parameter
values of M are also changed appropriately in each subroutine. For example, the
routing phase will construct such a CPL-solution as shown in Fig. 2 for the merging
tree of Fig. 13.

The number of nodes in the merging tree is O(n). If a component M; was created
by a P-merging operation, the algorithm, while visiting this node, spends O(|M)),
O(|Mz]) or O(| M| + | M2]) time, respectively, depending on whether M;, M, or both
M, and M, are maximal clusters. Similarly, if My was created by an X-merging
operation, the algorithm spends O(|Cy| + |C:|) time for routing the nets in C; and
Cs. Therefore, the time complexity of the routing phase is O(n). Since the merging
phase takes O(n) time by Theorem 2, we establish our main theorem.

Theorem 3. Given a permutation 7 of 1,2,...,n, a CPL-solution for = can be

found, if one exists, in O(n) time. O
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Appendix. Procedures for The Merging and Routing Phases

A-1. Procedure for a P-merging Operation

Let M and M’ be components defined in Section 4.1 and assume that M || M’.

1. procedure P-merging(M, M')

2. begin

3 Mpew — MU M';

4, if type(M) = ‘£’ and type(M') = ‘> and r(M) + I(M') > &,,, then
5. stop; /* = is not realizable */

6 if type(M) = ‘2’ and type(M') = ‘2’ and r(M) + {(M') > ,,, then
7 type(Mnew) « ‘2’;

8 else type(Mpew) «— “ f7;

9. if type(M) = ‘@’ and r(M) + I[(M') < K, then

10. { M)  0;

11. else

12. (Myew) — (M);

13.  if type(M') = ‘2’ and r(M) + I{(M’) < kg, then
14. r(Mpew) — 0;

15. else

16. r(Mpew) — m(M');

17. return(M,..,);
18. end P-merging
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A-2. Procedure for an X-merging Operation

Let M, C; and C3 be a component and two maximal clusters defined in Section 4.2
which form X-merging operands. Assume that Cy # ¢, Cy # ¢, and [Cy| > |Cy].

1. procedure X-merging(Cy, M, C>)

2. begin

3 Mpew — C1 UM U Cy;

4 if type(M) = ‘f’ and {(M) = &y, and r(M) = &, then
5. stop; /* = is not realizable */

6 W o Ky + Kyg + -0 K

7 if type(M) = ‘f> then W « W — I(M);

8

9

if r < W then [¥ |Cil=71 %/
. begin
10. if r —W > x,, then [ vi=viD1 %/
11. stop; /* 7 is not realizable */
12. type(Mnew) + ‘75 UMpew) &1 = W; 1(Myew) < 0;
13. end

14. else if type(M) = ‘f’ and r = s and r(M) = &,,, and
(r=s=1lork,, =1forallz=12,...,r—1) then
15. begin

16. type(Mpew) — ‘f); {(Mpew) — 0; 7(Mpew) — 1;
17. end

18. else

19. begin

20. type(Mpew) — @y UMpew) — 1; 7(Mpew) « 1;
21. end

22. return(M,..,);
23. end X-merging
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A-3. Routing for Two Maximal Clusters in an X-merging Operation

Let M, Cy and C; be a component and two maximal clusters, respectively, defined
in Section 4.2 such that M; = C; UM U C,. Assume that Cy # ¢, C; # ¢, and
|C1| > |Cq]. The following four procedures route the nets in Cy U (s in such a way
that the layout of M; will be consistent with its parameter values. If type(M) = ‘a’,
the parameter values of M are changed as either type(M) = ‘f°, I(M) = I(M) and
r(M) = 0 or type(M) = ‘f, (M) = 0 and r(M) = r(M) so that the layout of M
does not conflict with the wires for C; U C3. Note that |C;| = r and |[C| = s and

that each procedure can be done in O(r + s) time.

(a) r > W. Note that r — W wires become left boundary wires.

1. procedure [-realization! (C1, M, Cs) /* obtains an [-realization of My */
2. begin

3 if type(M) = ‘f* and (M) = k,, then

4 begin

5. route n,; as wy leb,; he—s—1;

6 end

7 else h « s;

8 T T

9. if A = 0 then goto 19;

10. for : = h to 1 step —1 do

11. begin

12. if type(M) = ‘f> and 1 = s then z « &, — (M) ~ 1;
13. else z — Ky — 1

14. for j =0 to z step 1 do

15. route Ny, _; as Wy,_; 1 ® bye1;

16. route ny_,  as wy_ 10 buy— i rp1 @13

17. T —x—2z—1;

18. end

19. for i =z to 1 step —1 do

20. route n,, as wy; le b“ﬁ

21. if type(M) = ‘=’ then

22. begin

23. type(M) « ‘r’; (M) « 0; r(M) «— r(M);
24. end

25. end l-realizationl
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(b) r<W.

1. procedure r-realization (Cy, M, C5) /* obtains an r-realization of M; */
2. begin

3. if type(M) = ‘f’ and (M) = &,, then begin

4. route m,; as wy 1@ by; h s —1;

3. end

6. else h « s;

7. Te—r; ye—r—h;

8. for : = h to 1 step —1 do

9. begin

10. if type(M) = f° and ¢ = s then z « ry ~ (M) — 1;
11. else z «— £, — 15

12. if y > z then begin

13. for j =0 to 2z step 1 do

14. route m,, ; as wy,_; le bug@l;

15. route ny: . . as Wy 10 by, 615
16. Te—z—z—1;, ye—y—z

17. end

18. else begin

19. for j =0to y step 1 do

20. route ny,_; as Wy,_; 1 ® bygi;

21. route Myl ., 88 Wy 1o by 1)
22. x+—2z—y—1; goto 26;

23. end

24. end

25. go to 31;

26. if : <1 then goto 31;

27. for j =1—1to 1 step —1 do begin

28. route n,, as wy, 1o bu;.@ﬁ route Ml ., A8 Wy 1® by, _pr101;
29. T —x—1;

30. end

31. if type(M) = ‘2’ then begin

32. type(M) « ‘7’5 (M) « 0; (M) « r(M);
33. end

34. end r-realization
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(c)r < W, and type(M) = ‘f°, r(M) = k,,, and r = 5. Note that there is at least
one integer j, 1 < j < r — 1, such that x,; > 2. Also note that this procedure

can be applied only for the case when r = s > 2.

1. procedure [l-realization2 (Cy, M, Cs) /* obtains an [-realization of M; */
2. begin

3. for: =1 to r step 1 do

4. begin

5. route 7m,; as wy; l @ bvé;

6. if k,,_;, > 2 then

7. begin

8. route ny;_,  as wy_ 10by_, .5 Toute ny_ . as wy_ 10 by,
9. goto 14;

10. end

11. else

12. route ny . as wy . 18by, 3

13. end

14. route 1y, as Wy, ! e bvg+1e;1;

15. if 2 + 1 = r then return;
16. forj=:¢+2tor step1do

17. begin
18. route Ml .. 88 Wy . le bu,_j42; TOUDE TUy; AS Wy, L@ bv;@l;
19. end

20. end Il-realization2
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(d) r < W, and type(M) = ‘@’ or r(M) < &g, or r > s.

1. procedure l-realizationd (C1, M,Cy)  [* obtains an [-realization of My x/
2. begin

3 h «— s;

4. if type(M) = ‘c’ and r = s then h « s — 1;

5. if type(M) = ‘f* and (M) = £, then h «— s — I;

6 zTe—2 ye—r—h-—1;

7

8

9

route ny; as Wy, 10 by ;

if y <0 then

. begin
10. 7 < 1; goto 32;
11. end
12. for:=1to h step 1 do
13. begin
14. route Ml ., @S Wy, 1@ bop i
15. if type(M) = ‘f’ and i = s then z « x,; — (M) - 1;
16. else z « Ky — 1;
17. if y > z then
18. begin
19. for j =0 to z step 1 do
20. route Ny, ; a8 Wy, ; 1 ® byrgn;
21. z—x+z+1; ye—y—2z
22. end
23. else
24. begin
25. for j =0 to y step 1 do
26. route ny,,; as Wy, ; 1@ bygi;
217. z—x-+y+1; goto 31;
28. end
29. end
30. goto 39;
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31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44.
45.
46.
47.

g —1+1;
while s—j+ 1> 0do
begin
lebd

route n,: . as Wy .
s—j+1 s~j+1

if z > r then goto 39;

Vr—x42?

route n,, as wy, le® bv;.en;
z—x+1; j—34+1;
end
if type(M) = ‘2’ and r = s then
begin
type(M) « ‘f7; (M) — I(M); (M) «0;
end
if type(M) = ‘a’ and r # s then
begin
type(M) « f7; (M) « 0; r(M) «— r(M);
end
end [l-realization3
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Fig. 1. An application of circular permutation layout in a single layer
around an IC (module).

18 1y 18

Fig. 2. A CPL-solution for the permutation
©=1(3029262524161514987 131210116 18 17 21 20 23 22
1954328273121 32).
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(a) Type DL layouts.

u ug U3 Uy
NS/

(b) Type DR layouts.

’
,
-
'l

Fig. 3. Examples of Type DL and Type DR layouts of clusters.

Fig. 4. An illustration for the proof of Lemma 2.
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T,=Te

Fig. 5. An illustration for the proof of Lemma 4 with |T1| < |T3]|.
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M

(a) type(M)="‘f, (M) =2 and r(M) =1 (assume that r, > 2).

(b) type(M) =‘a’, (M) =1 and r(M) =1 (assume that xg, > 2).

Fig. 7. Example layouts of components and their parameters.
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(¢)

Fig. 8. Illustrations for the proof of Lemma 7.
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an r-realization. an [-realization.

(a) W =5, and type(M)="‘f, (M) =1, and r(M) < 2.

an r-realization. an [-realization.

(b) W =4, and type(M)="‘f", (M) =2, and r(M) < 2.

Fig. 9. Illustrations of an X-merging operation for the case in which |C;] < W and
|C1] > |Cal.

(a) An l-realization of My.,. (b) An r-realization of M,,e,.

Fig. 10. Tlustrations of an X-merging operation for the case in which |Cy| < W,
|C1| = |Cq| and type(M) = ‘z’.
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(a) An r-realization, where /(M)
2 and Ky > 2.

i

(¢) An l-realization, where r(M) = (d) An [-realization is not possible
Kgn = 2 and Ky, > 2. if r(M) = kg, and &,; =1 for
all ; =1,2,3.

Fig. 11. Illustrations of an X-merging operation for the case in which |C;] < W,
|Cy| = |C;| and type(M) = “f’.

Fig. 12. An illustration for the proof of Lemma 8.
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Fig. 13. A result of the merging phase for the instance of Fig. 2.
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