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1 Introduction

A suite of procedures has been designed and developed to efficiently solve a class of problems
commonly known as irregular problems. Irregular concurrent problems are a class of irregular
problems which consist of a sequence of concurrent computational phases. Patterns of data ac-
cess and computational cost of each phase of these types of problems cannot be predicted until
runtime. This prevents compile time optimization. In this class of problems, once runtime in-
formation is available, data access patterns are known in advance making it possible to utilize a
variety of profitable pre-processing strategies. Runtime support compilation methods are being
developed that are applicable to a variety of unstructured problems including explicit multi-
grid unstructured computational fluid dynamic solvers, molecular dynamics codes (CHARMM,
AMBER, GROMOS, etc.), diagonal or polynomial preconditioned iterative linear solvers, di-
rect simulation Monte Carlo (DSMC) codes, and particle-in-cell (PIC) codes. These problems
share the characteristics of (1) arrays accessed through one or more levels of indirection, and
(2) formulation of the problem as a sequence of loop nests which prove to be parallelizable.

The CHAOQOS procedures described in this manual can be viewed as forming a portion of a
portable, compiler independent, runtime support library. The CHAOS libray has been written
in C, however, interfaces have been provided to call CHAQS library routines from Fortran
application programs as well. This manual presents CHAOS procedures for Fortran application
codes.

1.1 Getting the CHAOS Library

The CHAOS procedures presented in this manual and related technical papers can be obtained
from the anonymous ftp site hyena.cs.umd.edu.
Example codes shown in this manual are distributed along with CHAOS software.

1.2 Sneak Preview: Problems, Data Structures, and Procedures

An example of an irregular problem is presented in this section; CHAQOS data structures and
procedures to parallelize this example are introduced. Figure 1 illustrates a simple sequential
Fortran irregular loop (loop L2) which is similar in form to loops found in unstructured com-
putational fluid dynamics (CFD) codes and molecular dynamics codes. In Figure 1, arrays x
and y are accessed by indirection arrays edgel and edge2. Note that the data access pattern
associated with the inner loop, loop L2 is determined by integer arrays edgel and edge2.
Because arrays edgel and edge2 are not modified within loop L2, 1.2’s data access pattern
can be anticipated prior to executing it. Consequently, edgel and edge2 are used to carry
out preprocessing needed to minimize communication volume and startup costs. Since large
data arrays are associated with a typical fluid dynamics problem, the first step in parallelizing
involves partitioning data arrays @ and y. The next step involves assigning equal amounts of
work to processors to maintain load balance.

1.2.1 Translation Table, Dereference, and Schedule

On distributed memory machines large data arrays may not fit in a single-processor’s memory
hence they are divided among processors. Also computational work is divided among indi-
vidual processors to achieve parallelism. Once distributed arrays have been partitioned, each



C Outer loop L1
L1 doi =1, n_step

C Sweep Over Edges: Inner Loop L2
L2 doi=1, nedge
nl = edgel(i)
n2 = edge2(i)
y(n1) = y(n1) + f(x(n1), x(n2))
v(12) = y(n2) + g(x(n1), x(12))
end do

end do

Figure 1: An Example code with an Irregular Loop

processor ends up with a set of globally indexed distributed array elements. Each element in
a size N distributed array, A, is assigned to a particular home processor. In order for another
processor to be able to access a given element, A(7), of the distributed array the home processor
and local address of A(7) must be determined. Generally, unstructured problems solved with
irregular data distributions perform more efficiently than with a regular data distribution such
as BLOCK. In the case of irregular data distribution, a lookup table called translation table is
built that for each array element, lists the home processor and the local address.

Memory considerations make it clear that it is not always feasible to place a copy of the
translation table on each processor, so the translation table must be distributed between pro-
cessors. This is accomplished by distributing the translation table by blocks, i.e., putting the
first N/P elements on the first processor, the second N/P elements on the second processor,
and so on, where P is the number of processors.

When an element A(m) of distributed array A is accessed, the home processor and local
offset are found in the portion of the distributed translation table stored in processor ((m —
1)/N)* P+ 1. A translation table lookup aimed at discovering the home processor and the
offset associated with a global distributed array index is referred to as a dereference request.

Consider the irregular loop L2 in Figure 1 that sweeps over the edges of a mesh. In this case,
distributing data arrays x and y corresponds to partitioning the mesh vertices; partitioning
loop iterations corresponds to partitioning edges of the mesh. Hence, each processor gets a
subset of loop iterations (edges) to work on. An edge ¢ that has both end points (edgel(7)
and edge2(7)) inside the same partition (processor) requires no outside information. On the
other hand, edges which cross partition boundaries require data from other processors. Before
executing the computation for such an edge, processors must retrieve the required data from
other processors.

There is typically a non-trivial communication latency, or message startup cost, on dis-
tributed memory machines. communication can be aggregated to reduce the effect of com-
munication latency; software caching can be done to reduce communication volume. To carry



out either optimization, it is helpful to have a-priori knowledge of data access patterns. In
irregular problems, it is generally not possible to predict data access patterns at compile time.
For example, the values of indirection arrays edgel and edge2 of loop L2 in Figure 1 are
known only at runtime because they depend on the input mesh. During program execution,
data references of distributed arrays are pre-processed. On each processor, data needed to be
exchanged are pre-computed. The results of this pre-processing is stored in a data structure
called communication schedule. The process of analyzing the indirection arrays and generating
schedules is called the inspector phase.

Each processor uses communication schedules to exchange required data before and after
executing a loop. The same schedules can be used repeatedly, as long as the data reference
patterns remain unchanged. The process of carrying communication and computation is called
the executor phase.

1.2.2 Computing Schedules

This section presents a discussion on the process of generating and using schedules to carry
out communication vectorization and software caching. Consider the example shown in Fig-
ure 1. Arrays x, y, edgel and edge2 are partitioned between the processors of the distributed
memory machine. The local size of data arrays x and y on each processor is local_nnode and
indirection arrays edgel and edge2 is local_nedge. It is assumed that arrays x and y are
distributed in the same fashion and the distribution is stored in a distributed translation table.
The partitioned indirection arrays edgel and edge2 are called part_edgel and part_edge2
respectively. To compute schedules, the local data array references (local indirection array
values) are collected in an array and passed to the procedure localize.

In loop L2 of Figure 1, values of array y are updated using the values stored in array x.
Hence, a processor may need an off-processor array element of x to update an element of y; it
may update an off-processor array element of y also. The goal of the inspector is to pre-fetch
off-processor data items before executing the loop and carry out off-processor updates after
executing the loop. Hence, two sets of schedules are computed in the inspector : 1) gather
schedules — communication schedules that can be used to fetch off-processor elements of x, and
2) scatter schedules — communication schedules that can be used to send updated off-processor
elements of y. However, the arrays x and y are referenced in an identical fashion in each
iteration of the loop L2 and also they are identically distributed, so a single schedule that
represents data references of either x or y can be used for both fetching off-processor elements
of x and sending off-processor elements of y.

Figure 2 contains the pre-processing code for the simple irregular loop L2 shown in Figure 1.
The distribution of data arrays x and y are stored in a translation table itable. The globally
indexed reference pattern used to access arrays x and y are collected (Loop K1) in an array
ig_ref. The procedure localize dereferences the index array ig_ref to get the addresses and
translates ig_ref so that valid references are generated when the loop is executed.

Off-processor elements are stored in a on-processor buffer area. The buffer area for each
data array immediately follows the on-processor data for that array. For example, the buffer
for data array y begins at y(local_nnode—+1). Hence, when localize translates ig_ref to local-
ized _edge, the off-processor references are modified to point to buffer addresses. The procedure
localize uses a hashtable to remove any duplicate references to off-processor elements so that
only a single copy of each off-processor datum is transmitted. When the off processor data is
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Inspector Phase: build translation table, compute schedule and translate indices
itable = build_translation_table(1, local_indices, local_nnode)
do i = 1,local_nedge
ig_ref(i) = local_edgel(i)
ig_ref(local_nedge+i) = local_edge2(i)
end do
call localize(itable,isched,ig_ref,localized_edge, 2*local_nedge, n_off_proc,local_nnode,1)
doi = 1, local_nedge
local_edgel(i) = localized_edge(i)
local_edge2(i) = localized_edge(local_nedge+i)
end do
Erecutor Phase: carry out communication and computation
call zero_out_buffer(y(local_-nnode+1), off_proc)
call gather(x(local_-nnode+1), x, isched)
do i=1, local_nedge
nl = local_edgel(i)
n2 = local_edge2(i)
y(n1) = y(n1) + f(x(n1) , x(n2))
v(12) = y(n2) + g(x(nl) , x(n2))
end do

call scatter_add(y(local.-nnode+1), y, isched)

Figure 2: Node Code for Simple Irregular Loop
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Figure 3: Index Translation by Localize Mechanism

collected into the buffer using the schedule returned by localize, the data is stored in a way such
that execution of the loop using the local _edgel and local_edge2 accesses the correct data.
A sketch of how the procedure localize works is shown in Figure 3.

The executor code starting at 5S4 in Figure 2 carries out the actual loop computation. In
this computation the values stored in the array y are updated using the values stored in x.
During computation, accumulations to off-processor locations of array y are carried out in the
buffer associated with array y. This makes it necessary to initialize the buffer corresponding
to off-processor references of y. To perform this action the function zero_out_buffer is called.
After the loop’s computation, data in the buffer location of array y is communicated to the
home processors of these data elements (scatter_add). There are two potential communication
points in the executor code, i.e. the gather and the scatter_add calls. The gather on each
processor fetches all the necessary x references that reside off-processor. The scatter_add calls
accumulates the off-processor y values.

2 Overview of CHAOS

Solving such concurrent irregular problems on distributed memory machines using CHAOS
runtime support usually involves six major phases (Figure 4). The first four phases concern
mapping data and computations onto processors. The next two steps concern analyzing data
access patterns in a loop and generating optimized communication calls. A brief description of
these phases follows; they will be discussed in detail in later sections.



Phase A : Data Partitioning Assign elements of data arrays to processors

Phase B :  Data Remapping Redistribute data array elements

Phase C : Iteration Partitioning Allocate iterations to processors

Phase D : Iteration Remapping Redistribute indirection array elements
Phase E : Inspector Translate indices; Generate schedules
Phase ' :  Executor Use Schedules for Data Transportation;

Perform computation

Figure 4: Solving Irregular Problems

. Data Distribution : Phase A calculates how data arrays are to be partitioned by
making use of partitioners provided by CHAOS or by the user. CHAOS supports a
number of parallel partitioners that partition data arrays using heuristics based on spatial
positions, computational load, connectivity, etc. The partitioners return an irregular
assignment of array elements to processors, which is stored as a CHAQOS construct called
the translation table. A translation table is a globally accessible data structure which
lists the home processor and offset address of each data array element. The translation
table may be replicated, distributed regularly, or stored in a paged fashion, depending on
storage requirements.

. Data Remapping : Phase B remaps data arrays from the current distribution to the
newly calculated irregular distribution. A CHAOS procedure remap is used to generate
an optimized communication schedule for moving data array elements from their original
distribution to the new distribution. Other CHAOS procedures, gather, scatter, and
scatter_append, use the communication schedule to perform data movement.

. Loop Tteration Partitioning : Phase C determines how loop iterations should be par-
titioned across processors. There are a large number of possible schemes for assigning
loop iterations to processors based on optimizing load balance and communication vol-
ume. CHAOS uses the almost-owner-computes rule to assign loop iterations to processors.
Each iteration is assigned to the processor which owns a majority of data array elements
accessed in that iteration. This heuristic is biased towards reducing communication costs.
CHAOS also allows the owner-computes rule.

. Remapping Loop Tterations : Phase D is similar to phase B. Indirection array elements
are remapped to conform with the loop iteration partitioning. For example, in Figure 1,
once loop L2 is partitioned, indirection array elements edgel(i) and edge2(i) used in
iteration ¢ are moved to the processor which executes that iteration.

. Inspector : Phase E carries out the preprocessing needed for communication optimiza-
tions and index translation.



6. Executor : Phase I uses information from the earlier phases to carry out the computa-
tion and communication. Communication is carried out by CHAOS data transportation
primitives which use communication schedules constructed in Phase E.

In static irregular problems, Phase I' is executed many times, while phases A through E
are executed only once. In some adaptive problems data access patterns change periodically
but reasonable load balance is maintained. In such applications, phase E must be repeated
whenever the data access pattern changes. In even more highly adaptive problems, the data
arrays may need to be repartitioned in order to maintain load balance. In such applications,
all the phases described above are repeated.

3 Inspector

The CHAOS procedures that can be used to generate the data structures translation tables
and schedules and to operate on these data structures are illustrated in this section. The
functionalities of the procedures explained in this section are shown in Table 1.

3.1 Communication Schedules

To describe the inspector primitives provided by CHAQS, we shall often refer to the example
code in Figure 1. In that example, one should notice that the arrays (edgel and edge2) are
used to index other arrays (x and y). Since this is a indirect indexing method, we call edgel
and edge2 indirection arrays. As we see from the parallelized node code version ( Figure 2)
of the simple loop, we need to do some preprocessing before we can actually execute the loop.
This preprocessing is aimed at achieving the following goals :

1. Global to Local translation of references : Determine which of the references made by
an indirection array (e.g. edgel, edge2) are references to data that is now on-processor.
These references are changed so that they now point to the local address. For references to
data that is now off-processor, we need to assign on-processor buffer locations where these
off-processor elements will be brought into. The off-processor references of the indirection
array are changed so that they now point into this buffer location.

2. Communication Schedule Generation : The communication schedule specifies an opti-
mized way to gather off-processor data, and to scatter back local copies after computa-
tion. CHAQS primitves are used to scan the data access pattern and determine which
off-processor elements will be needed during computation. Duplicates among these ref-
erences are removed, and the off-processor references are merged so that fewer messages
will be needed for moving data. The communication schedule data structure typically
contains the following :

(a) send list — a list of local array elements that must be sent to other processors,

(b) permutation list — an array that specifies the data placement order of incoming off-
processor elements, ( in a local buffer area which is designated to receive incoming
data ),

(c) send size — an array that specifies the sizes of out-going messages from processor p
to other processors.



Table 1: CHAOS - Inspector/Executor Procedures

Task Functionality Procedure
Inspector
compute Schedule localize()
compute Schedule reglocalize( )
compute Schedule PARTI schedule()
Schedule compute Incremental Schedule PARTI incremental_schedule()
hash global references PARTI hash()
create hash table PARTI creat_hash_table()
deallocate hash table PARTI free_hash_table()
build translation table build _translation_table()
Translation build translation table build_reg_translation_table()
Table build paged translation table build_dst_translation_table()
update a paged table table_remap()
get replication factor getTableRepF ()
get table page size getTablePageSize( )
dereference dereference()
dereference only processor derefproc()
dereference only offset derefoffset()
get local indices getTablelndices()
deallocate translation table free_table()
Executor
Fetch off-processor data PREFIXgather()
scatter off-processor data PPREFIXscatter()
Data scatter off-processor data with function | PREFIXscatter FUNC()
Exchangers fetch off-processor data PREFIXmulitgather()
scatter off-processor data PREFIXscatternc()
scatter off-processor data PREFIXmulitscatternc()
scatter off-processor data PREFIXmulitscatter_.FUNCne()
gather off-processor data PARTI gather()
gather off-processor data PARTI mulgather()
scatter off-processor data PARTI scatter()
scatter off-processor data PARTI mulscatter()
Miscellaneous

Initialize CHAOS environment
Renumber data arrays

PARTI setup()

renumber()

PREFIX: data type: d for double precision, f for real, i for integer

FUNC: function :

add for addition, mult for multiplication




(d) fetch size — an array that specifies the sizes of in-coming messages to processor p
from other processors

Some schedules do not need all of these entries. These variants are described below.

The following example further clarifies the process of index-translation. Let us assume that
an array x, with 5 elements, x(1)...x(5), has been distributed over two processors. Similarly
the indirection arrays, edgel and edge2 are also distributed over the two processors. The local
portions of each array x, edgel and edge2, look like this :

<--local area--> <--local area-->

| x(2) | x(5) | I x(1) | x(3) | x(4) |
Local: x(1) x(2) x(1) x(2) x(3)
nedge = 5, and nedge = 5
edgel = 2, 1, 4, &5 ,1 edgel = 4, 1, 3, 4, 2

1]
®
M
N
N
N

edge2 1, 3, 56,1, 2

edge?2
where the underlined references are off-processor.

As explained in Section 1.1.2, before we execute the loop we must bring in a copy of all
off-processor references that might be made inside the loop. In this case, we have 9 off-processor
references ( only 5 of these are distinct). We can assign these copies memory just at the end
of the local portion of the array. This new region is called the ghost area or the off-processor

buffer.

<--local area-><-ghost cells -> <--local area------- ><ghost cells>
I x(2) | x(5) | x(1) x(4) x(3)| I x(1) | x(3) | x(4) 1 x(2) x(5)|
x(1) x(2) x(3) x(4) =x(5) x(1)  x(2) x(3) x(4) =x(5)

Now we must change the global references in edgel, edge2
so that they now point to the appropriate local references.
After index-translation, we have :

nedge = 5 nedge = 5
edgel =1, 3, 4, 2, 3 edgel = 3, 1, 2, 3, 4
edge2 = 4, 3, 5, 2, 1 edge2 =1, 2, 5, 1, 4

The next task is to build a communication schedule. The fetch_size and send_size are
the amounts of data that must be transferred during a “gather” operation. The send_list



specifies the data that must be sent to every other processor. The permutation_list specifies
where incoming data from each processor should be placed in the ghost area. Note that a
communication schedule is dependent on the global-to-local index translation having been done,
since the permutation list can only be determined after each off-processor reference has been
assigned a ghost-area location during index translation. In the permutation list, the local indices
are stored as offsets from the beginning of the ghostarea, instead of being stored as absolute
local index values. For the example above, the communication schedule would look as follows:

Schedule_PO { Schedule_P1 {

fetch_size : [ 0, 3] fetch_size : [ 2, 0 ]

send_size Lo, 2] send_size [ 3, 0]

send_list : pO -> NULL send_list : p0 -> 1, 2, 3
pl -> 1, 2 pl -> NULL

perm_list : pO -> NULL perm_list : p0O -> 1, 2
pt -> 1, 3, 2 pl -> NULL

b b

In the following sections, CHAQOS primitives for performing index-translation and schedule
generation have been described. Since index-translation and schedule-generation are usually
performed one after the other, CHAOS primitves can combine the two-steps into a single
primitive which, given an indirection array, returns a translated indirection array, as well as a
communication schedule. In some cases however, it is possible to reuse the index translation
process to generate different schedules. For such applications, CHAOS allows the user to use a
two-step inspector process; by breaking the inspector step into index-translation and schedule-
generation stages.

3.2 Single-phase Inspector

Single-step inspector primitives perform both index-translation as well as schedule-generation,
with respect to a given set of indirection arrays.

3.2.1 subroutine localize()

localize is used to translate all the global indices in the given indirection array into local
indices. It also returns the schedule corresponding to that indirection array. The schedule
pointer returned by localize is used to gather data and store it at the end of the local array.
This schedule created is such that multiple copies of the same data is not brought in during
the gather phase. The elimination of duplicates is achieved by using a hash table. localize
returns the local reference string corresponding to the global references which are passed as a
parameter to it. The number of off-processor data elements are also returned by localize so
that one can allocate enough space at the end of the local array.

Synopsis

subroutine localize(itabptr,ilsched,iglobal_refs, ilocal_refs,ndata,n_off_proc,
my _size,repetition )

10



Parameter Declarations

integer itabptr refers to the relevant translation table pointer.
integer ilsched refers to the relevant schedule pointer (returned by localize).
integer iglobal_refs() the array which stores all of the global indirection array references.

integer ilocal_refs() the array which stores the local reference string corresponding to the
global references (returned by localize).

integer ndata number of global references.
integer n_off_proc number of off-processor data (returned by localize).
integer my size the size of my local data array.

integer repetition maximum number of columns or rows from which data will be gathered
or scattered using the schedule returned by localize.

Return Value
None
Example

Assume that data arrays x and y are identically but irregularly distributed between proces-
sors 0 and 1. and the processors take part in a computation that involves a loop which refers
to off-processor data. The indirect data array references are stored in global_ref and the
array my_index has the local indices of the data arrays. The inspector and the executor
code for the loop is presented here.

integer i,ndata,indirection, BUFSIZE

parameter (BUFSIZE = 4)

integer my_index(5),global_ref(5),local_ref(5)

double precision x(5),y(5+BUFSIZE)

integer tabptr,schedptr, build_translation_table
c data initialization

if (MPI_mynode() .eq. 0) then

my_index(1) = 2
my_index(2) = 3
my_index(3) = 6

my_size = 3
global_ref(1) = 4
global_ref(2) =
global_ref(3) = 2
ndata = 3

else if (MPI_mynode() .eq. 1) then

[e¢]

my_index(1) = 1
my_index(2) = 4
my_index(3) = 5
my_index(4) = 7
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my_index(5) = 8
my_size = 5
global_ref (1)
global_ref(2)
global_ref(3) =
global_ref (4)
global_ref (5)
ndata = 5
else

]
~N =W o

1}
(@]

my_size
ndata = 0
end if
do 20 i=1,my_size
x(1) = my_index(i)
y(i) = 2*my_index(i)
20 continue
C initialize Chaos environment
call PARTI_setup()
c the following is the inspector code
tabptr = build_translation_table(l,my_index,my_size)
call localize(tabptr,schedptr,global_ref,
$ local_ref,ndata,n_off_proc,my_size,1)

do 10 i=1,ndata
global_ref(i) = local_ref(i)
10 continue
¢ end of the inspector and the executor begins
call dgather(y(my_size+1),y,schedptr)
do 30 i=1,ndata
indirection = global_ref (i)
x(1) = x(i) + y(indirection)
30 continue
¢ end of the executor code
if (MPI_mynode() .eq. 0) then
WRITE(*,*) (X(I), I=1,my_size)
WRITE(*,*) (global_ref(I), I=1,ndata)
WRITE(*,*) (Y(global_ref(I)), I=1,ndata)
end if
call MPI_gsync()
if (MPI_mynode() .eq. 1) then
WRITE(*,*) (X(I), I=1,MY_SIZE)
WRITE(*,*) (global_ref(I), I=1,ndata)
WRITE(*,*) (Y(global_ref(I)), I=1,ndata)
end if

end
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The distribution of data arrays are stored in a translation table tabptr and the communication
pattern between processors are stored in a schedule schedptr. The procedure dgather brings
in the off-processor data. After the end of the computation in processor 0 the values of x(1),
x(2) and x(3) are 10.0, 19.0 and 10.0 respectively. On processor 1 the values of x(1), x(2),
x(3), x(4) and x(5) are 10.0, 6.0, 8.0, 2.0 and 14.0 respectively.

3.2.2 subroutine reglocalize()

The functionality of this procedure is similar to that of the localize procedure, except in this
case instead of passing a pointer to the translation table (for an irregular data distribution
specification) we must give a regular distribution. At the present time we support BLOCK and
CYCLIC distributions. Other regular distribution can be supplied by the user by writing their
own regular dereference.

Synopsis

subroutine reglocalize(distribution,size,ilsched,iglobal_refs,
ilocal_refs,ndata,n_off_proc,my size,repetition)

Parameter Declarations

integer distribution BLOCK = 1, CYCLIC = 2 or OWN = 3.

integer size The array size from which data is to be gathered or scattered.

integer ilsched refers to the relevant schedule pointer (returned by reglocalize).
integer iglobal_refs() the array which stores all of the global indirection array references.

integer ilocal_refs() the array which stores the local reference string corresponding to the
global references (returned by reglocalize).

integer ndata number of global references.
integer n_off_proc number of off-processor data (returned by reglocalize).
integer my size parameter will return the size of the local array.

integer repetition maximum number of columns or rows from which data will be gathered
or scattered using the schedule returned by localize.

Return Value
None
Example

The example is similar to the one presented in the localize section except that the data
arrays are regularly distributed i.e., by BLOCK.
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integer i,ndata,indirection, BUFSIZE, global_size, BLOCK
integer my_index(4)

parameter (BUFSIZE = 4)

integer iglobal_ref(4),ilocal_ref(4)

real buffer(3), aloc(4)

double precision x(5),y(5+BUFSIZE)

integer itabptr, ischedptr, build_translation_table

BLOCK = 1
global_size = 8
if (MPI_numnodes() .le. global_size) then
my_size = global_size/MPI_numnodes()
else
if (MPI_mynode() .1t. global_size) then
my_size = 1
else
my_size = 0
endif
endif
if (MPI_mynode() .eq. 0) then
iglobal_ref(1) = 4
iglobal_ref(2) = 8
iglobal_ref(3) = 2
ndata = 3
else if (MPI_mynode() .eq. 1) then
iglobal_ref(1) = 5
iglobal_ref(2)
iglobal_ref(3)
iglobal_ref(4)
ndata = 4
else
ndata =0
end if

3
4
1

C initialize Chaos environment

call PARTI_setup()

c the following is the inspector code

10

$

call reglocalize(BLOCK,global_size,ischedptr,iglobal_ref,

ilocal_ref,ndata,n_off_proc,my_size,1)
do 10 i=1,ndata
iglobal_ref(i) = ilocal_ref(i)
continue

do i=1, ndata
x(i) = MPI_mynode()*100 + 1
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enddo
do 20 i=1, my_size
y(i) = MPI_mynode()*100 + 2x*i
20 continue

¢ end of the inspector and the following is the executor code
call dgather(y(my_size+1),y,ischedptr)

do 30 i=1,ndata
indirection = iglobal_ref(i)
x(i) = x(i) + y(indirection)
30 continue

¢ end of the executor code

if (MPI_mynode() .le. 1) then
WRITE (*,%)

$ >[? ,MPI_mynode(),’] x:’,(X(I), I=1,ndata)
WRITE (*,%)

$ »[? ,MPI_mynode(),’] gref:’,(iglobal_ref(I), I=1,ndata)
WRITE (*,%)

$ »[? ,MPI_mynode(),’] y:’,(Y(iglobal_ref(I)), I=1,ndata)
end if
call MPI_gsync()

C Gather example
do 11 i=1,my_size
aloc(i) = float(MPI_mynode())+0.1*1
11 continue

call fgather(buffer,aloc,ischedptr)
if (MPI_mynode() .le. 1) then
write (*,%*) ’Gather results’
WRITE(*,*) MPI_mynode(), (buffer(I), I=1,n_off_proc)
endif

end

After the end of the computation in processor 0 the values of x(1), x(2), x(3), and x(4) are
9.0, 18.0, 7.0 and 4.0 respectively. On processor 1 the values of x(1), x(2), x(3), and x(4)
are 15.0, 12.0, 15.0, and 10.0 respectively.
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3.3 Two-phase Inspector

Instead of using localize or reglocalize, the user may also choose to perform index-translation

and schedule-generation in separate steps. For this purpose, CHAOS provides the four primi-

tives — PARTI create_hash_table(),PARTI hash(),PARTI_schedule() and PARTI free hash_table().
PARTI hash() is used to enter a data access pattern (i.e an indirection array) into a hash table,

where duplicates are removed and global-to-local index translation is performed. PARTI schedule()

is used to build a communication schedule by inspecting the entries in the hash table. PARTI create hash table
and PARTI free hash_table() are used to allocate and deallocate memory for the hash table.

3.3.1 subroutine PARTI schedule()

Synopsis
PARTI_schedule( hash_table, combo_mask, sched, maxdim)
Parameters
integer hash_table the hash table
integer combo_mask the combination of indirection arrays for which a schedule is needed.

integer sched the schedule that is returned.

integer maxdim maximum number of columns or rows from which data will be gathered
or scattered using the schedule returned by PARTI _schedule.

Return Value

None

3.3.2 subroutine PARTI hash()

Enters the global references into the heap, and converts them into referencres to a local array.

Synopsis

PARTI hash(trans_table, hash_table, supermask, new_stamp, global_refs, ndata, my size,
nooff_proc, no_new _off_proc)

Parameters
integer trans_table translation table used to determine local address of any global address

integer hash_table the heap into which all the global references will be hashed. It must
have been created earlier using PARTI create_hash_table()

integer global_refs() the global references

integer ndata size of global refs array
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integer my size the size of the local buffer - the off_processor global references will be
modified so that they now point to address beginning from mysize onwards..

integer no_off_proc Conatins the number of off_processor references in global_refs (re-
turned by PARTI hash).

integer no_new _off_proc Some of the off processor references may have already been
hashed into the heap by previous indirection arrays. This parameter will have the
number of new or unique off_processor references (returned by PARTI hash).

integer new_stamp A heap ( hash_table) can be used to hash in many indirection array
- all entries hashed in by a particular indirection array have a specific id. The param-
eter new_stamp returns the id assigned to this particular indirection array’s elements
(returned by PARTI hash).

integer supermask FEach indirection array can specify which of the previous indirection
arrays’ entries it wants to reuse - this is done by passing in a parameter called the
supermask. A supermask is created by converting the id’s of the previous indirection
arrays into a "mask” using PARTI_make_mask (id) and then using ”bitwise-or” to OR
these masks If a user does not care for reusing previous index analyses, a -1 should be
passed.

Return value

None

3.3.3 function PARTI create_hash_table()

Creates a heap into which each processor will enter its global references. ( any data_range will
do - but a good estimate improves performance)

Synopsis

PARTI create_hash_table(data_range )
Parameters

integer data_range the maximum size of a global reference
Return Value

an integer identifying the hash table

17



3.3.4 subroutine PARTI free_hash_table()
Deallocates the hash_table created with PARTI create_hash_table()

Synopsis

PARTI free_hash_table( hash_table )
Parameters

integer hash_table an integer identifying the hash table
Return Value

None

3.3.5 function PARTI make_mask()

Synopsis
PARTI_make mask( stamp )

Parameters

integer stamp
Return Value

an integer representing the bit-mask.

Converts an id to a bit-mask ( see PARTI hash )

integer i,ndata,indirection, BUFSIZE, my_size
parameter (BUFSIZE = 4)
integer my_index(5),global_ref(5),local_ref(5)
double precision x(5),y(5+BUFSIZE)
integer tabptr,schedptr, build_translation_table
integer parti_create_hash_table
integer parti_make_mask
integer hashptr
integer istamp, imask, ndont_care, n_off_proc
c data initialization
if (MPI_mynode() .eq.0) then
my_index(1) = 2
my_index(2) = 3
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my_index(3) = 6
my_size = 3
global_ref (1)
global_ref(2) =
global_ref(3)
global_ref (4)
ndata = 4
else if (MPI_mynode().eq. 1) then
my_index(1) = 1
my_index(2)
my_index(3)
my_index (4)
my_index(5)
my_size = 5
global_ref (1)
global_ref(2) =
global_ref(3) =
global_ref(4) =
global_ref(5) =
ndata = 5
else

1]
n n 1 n
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my_size =
ndata = 0

end if

do 20 i=1,my_size

x(1) = my_index(i)
y(i) = 2*my_index(i)
20 continue

C initialize CHAOS environment
call PARTI_setup()
c the following is the inspector code
tabptr = build_translation_table(l,my_index,my_size)
hashptr = PARTI_create_hash_table(8)
call PARTI_hash(tabptr,hashptr,—1,istamp,global_ref,
$ ndata, my_size, ndont_care, n_off_proc)

The stamp returned by PARTI_hash is an integer between 1 and 32.
PARTI_make_mask maps this integer into a specific bit in an integer mask
masks can then be bit-0R’ed if needed.

O o0 0 00

imask = PARTI_make_mask(istamp)
call PARTI_schedule(hashptr, imask, schedptr, 1)

¢ end of the inspector and the executor begins

call dgather(y(my_size+1),y,schedptr)
do 30 i=1,ndata
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indirection = global_ref (i)
x(1) = x(1) + y(indirection)
30 continue

if (MPI_mynode().eq.0) then
WRITE(*,*) ’Processor 0’
WRITE(*,*) (X(I), I=1,my_size)
end if

call MPI_gsync()

if (MPI_mynode().eq.1) then
WRITE(*,*) ’Processor 1°
WRITE(*,*) (X(I), I=1,MY_SIZE)
end if

end

3.4 Inspectors for Partially Modified Data Access Patterns

The previous section described how a two-step inspector can be used instead of a single
primitive such as localize. Both schemes provide the same functionality; indeed localize
and reglocalize have been built on top of the more general primitives PARTI hash and
PARTI_schedule.

We recommend that users use the one-step inspector routines whenever possible. Two-step
inspectors are usually needed when the indirection arrays are modified slightly during the course
of computation. In such cases, the index analysis for the old indirection array can be reused
since information is maintained in the hash-table.

To clarify how this is done, we provide the following example.

integer i,ndata,indirection, BUFSIZE

parameter (BUFSIZE = 4)

integer my_index(5),global_ref(5),local_ref(5)

double precision x(4),y(4+BUFSIZE)

integer tabptr,schedptr, build_translation_table

integer hashptr

c data initialization

if (mynode() .eq. 0) then
my_index (1)
my_index(2)
my_index(3)
my_size = 3
global_ref(1) =
global_ref(2) =
global_ref(3) =
global_ref(4) =
ndata = 4

else

nn n
D W N

= N 00 W
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my_index (1)
my_index(2)
my_index(3)
my_index (4)
my_index(5)
my_size = 5
global_ref (1)
global_ref(2) =
global_ref(3) =
global_ref(4) =
global_ref(5) =
ndata = 5
end if
do 20 i=1,my_size
x(1) = my_index(i)
y(i) = 2*my_index(i)
20 continue

~N = WO

C initialize CHAOS environment
call PARTI_setup()

c the following is the inspector code
tabptr = build_translation_table(l,my_index,my_size)
call PARTI_create_hash_table(8)

do k = 1, no_time_steps
c SSS
if ( k .eq. 1)
ioldmask = -1
else
ioldmask
endif

PARTI _make_mask(istamp)

call PARTI_hash(tabptr,hashptr,ioldmask,istamp,global_ref,
$ ndata, my_size, ndont_care, n_off_proc)

imask = PARTI_make_mask(istamp)
call PARTI_schedule(hashptr, imask, schedptr, 1)
c EEE

¢ end of the inspector and the executor begins
call dgather(y(my_size+1),y,schedptr)
do 30 i=1,ndata
indirection = global_ref (i)
x(1) = x(1) + y(indirection)
30 continue

C On some weird conditions change a few entries
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C in the indirection array.

do 1 =1, ndata
if (i .eq. random(k) ) then
global_ref(i) = global_ref(i) + 2
endif
enddo

enddo
¢ end of the executor code

In the previous example, the indirection array changes every time step; hence the sched-
ule must be regenerated each time. Since most of the index analysis can be resued, we call
PARTI hash with a pointer to the old hash table and pass the mask of the previous indirection
array. Using this information, the PARTI hash hashes in each entry of the new indirection array
and resues the index analysis information of matching pre-existing entries in the hash-table.
Index analysis is performed only for those entries that are not found in the hash table. There
is a caveat to the previous example : the number of distinct stamps that PARTI_hash can issue
is limited to 32. This implies that the previous example will work only when the number of
time-steps is less than 32.

CHAOS provides two ways of working around this problem. PARTI clear _stamp can clear
all entries with a particular stamp. PARTI clear mask is a more general primitive with which
any entry in the hash table with a particular combination of stamps can be removed. The second
method is to instruct PARTI hash not to issue a new stamp every iteration. For instance, in
the previous example, each indirection array is used only for one schedule; indirection arrays
for old time-stamps are never resued. By passing in an istamp value of -1 to PARTI hash the
user can direct it to reuse the last issued stamp value for all new entries.

The following code segment shows how each of this can be done. These code segments
reflect the section between SSS and EEE in the previous example.

¢ Using PARTI_clear_mask to clear entries in hash table

c SSS
if ( k .eq. 1)
ioldmask = -1
else
ioldmask = PARTI_make_mask(istamp)
endif
call PARTI_hash(tabptr,hashptr,ioldmask,istamp,global_ref,
$ global_ref, ndata, mysize, ndont_care, n_off_proc)
if ( k .gt. 1) call PARTI_clear_mask(ioldmask)
imask = PARTI_make_mask(istamp)
call PARTI_schedule(hashptr, imask, schedptr, 1)
c EEE
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c Using stamp reuse to limit  stamp numbers

c SSS
if ( k .eq. 1)
ioldmask = -1
else
ioldmask = PARTI_make_mask(istamp)
endif
istamp = -1
call PARTI_hash(tabptr,hashptr,ioldmask,istamp,global_ref,
$ ndata, my_size, ndont_care, n_off_proc)
imask = PARTI_make_mask(istamp)
call PARTI_schedule(hashptr, imask, schedptr, 1)
c EEE

3.4.1 subroutine PARTI clear_mask()

Synopsis
PARTI clear_mask (hash_table, mask )

Parameters
integer hash_table

integer mask
Return Value

None

Removes all entries in a hash_table which belong uniquely to this mask

3.4.2 subroutine PARTI clear_stamp()

A wrapper around PARTI clear_mask(). You can directly give the id of the indirection array
that you want removed from the heap.

Synopsis
PARTI clear_stamp ( hash_table, stamp )

Parameters

integer hash_table
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integer stamp
Return Value

None

3.5 Incremental schedules

Incremental scheduling is a method by which users can take advantage of the similarities between
various data access patterns. Many of the off-processor references specified in an indirection
array may be the same as the references in a previously analysed indirection array. In such
cases some of the off-processor references of the second indirection array can be treated as local
during schedule generation. This effectively reduces the communication volume of gathered
elements.

To build incremental schedules, PARTI hash must be passed masks corresponding to stamps
of previous indirection arrays. This notifies the underlying layer which existing entries in the
hash table can be resued. After hashing, PARTI incremental schedule is used to build the
schedule.

3.5.1 subroutine PARTI incremental_schedule()

Similar to PARTI schedule() except that it builds a schedule only for entries in the hash_table
which uniquely belong to this particular mask.

Synopsis
PARTI.incremental_schedule( hash_table, combo_mask, sched, maxdim)

Parameters
integer hash_table the hash table
integer combo_mask the combination of indirection arrays for which a schedule is needed.
sched refers to the relevant schedule pointer (returned by PARTI incremental_schedule).

maxdim maximum number of columns or rows from which data will be gathered or scat-
tered using the returned schedule.

Return Value

None

4 Data Exchangers

The CHAOS data structure schedule stores the send/recieve patterns, but the CHAOS data
exchangers actually move data between processors using schedules.
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4.1 subroutine PREFIXgather()

PREFIX can be d (double precision), i (integer) , f (real) or ¢ (character). The PREFIXgather
procedure uses a schedule and copies of data values obtained from other processors are placed
in memory pointed to by buf fer. Also passed to PREFIXgather is a pointer to the location
from which data is to be fetched on the calling processor. This pointer is designated here as
aloc.

Synopsis
PREFIXgather(buffer,aloc,schedinfo)
Parameter Declarations

TYPE buffer() pointer to buffer for copies of gathered data values
TYPE aloc() location from which data is to be fetched from calling processor

integer schedinfo refers to the relevant schedule
Return Value

None

Assume that a schedule has already been obtained and that real numbers are gathered,
i.e., fgather is used. On each processor, aloc points to the arrays from which values are to
be obtained. Buffer points to the location into which will be placed copies of data values
obtained from other processors.

real buffer(3), aloc(4)
integer ischedptr

do 10 i=1,4
aloc(i) = float(mynode()) + 0.1*1
10  continue

call fgather(buffer,aloc,ischedptr)
WRITE(*,*) (buffer(i), i=1,n_off_proc)

On processor 0, buffer(1) is 1.4 and on processor 1, buffer(1), buffer(2) and buffer(3) are
now equal to 0.3, 0.4 and 0.1. The size of off-processor elements n_of f_proc is returned by
the procedure reglocalize.
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4.2 subroutine PREFIXscatter()

PREFIX can be d (double precision), i (integer) , f (real) or ¢ (character). PREFIXscatter uses
a schedule produced by a call to another subroutine which creates a schedule (eg: reglocalize).
Copies of data values to be scattered to other processors are placed in memory pointed to by
buffer. Also passed to PREFIXscatter is a pointer to the location to which copies of data are
to be written on the calling processor. This pointer is designated here as aloc.

Synopsis
PREFIXscatter(buffer,aloc,schedinfo)
Parameter Declarations

TYPE buffer() points to data values to be scattered from a given processor

TYPE aloc() points to first memory location on calling processor for scattered data to be
placed

integer schedinfo refers to the relevant schedule.
Return Value

None
Example

We assume that a schedule has already been obtained by calling a subroutine such as reglo-
calize. Our example will assume that we wish to scatter real precision numbers, i.e., that we
will be calling fscatter. On each processor, aloc points to the arrays to which values are to
be scattered. "buffer” points to the location from which data will be obtained to scatter.

real buffer(3), aloc(4)
integer ischedptr
do 11 i=1,4
aloc(i) = 10.0
11 continue
if (mynode() .eq.0) then
buffer(1) = 555.55
endif

if (mynode() .eq.1) then
buffer(1l) = 666.66

buffer(2) = 777.77
buffer(3) = 888.88
endif

call fscatter(buffer,aloc,ischedptr)
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On processor 0, the first four elements of aloc are 888.88, 10.0, 666.66, and 777.77. On
processor 1, the first four elements of aloc are 10.0, 10.0, 10.0 and 555.55.

4.3 subroutine PREFIXscatter FUNC()

PREFIX can be d (double precision), i (integer) , f (real) or ¢ (character). FUNC can be add,
sub or mult . PREFIXscatter stores data values to specified locations. PREFIXscatter FUNC
allows one processor to specify computations that are to be performed on the contents of

given memory location of another processor. The procedure is in other respects analogous to
PREFIXscatter.

Synopsis
PREFIXscatter_.FUNC(buffer,aloc,ischedinfo)
Parameter Declarations

TYPE buffer() points to data values that will form operands for the specified type of
remote operation.

TYPE aloc() points to first memory location on calling processor to be used as targets of
remote operations.

integer schedinfo refers to the relevant schedule.
Return Value

None
Example

We assume that a schedule has already been obtained by calling a subroutine such as reglo-
calize. Our example will assume that we wish to scatter and add real numbers, i.e. that we
will be calling fscatter_add. On each processor, aloc points to the arrays to which values are
to be scattered and added. "buffer’ points to the location from which values will be obtained
to scatter and add.

real buffer(3), aloc(4)
integer ischedptr
do 13 i=1,4
aloc(i) = 10.0
13  continue
if (mynode() .eq.0) then
buffer(1) = 555.55
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endif

if (mynode() .eq.1) then

buffer(1l) = 666.66

buffer(2) = 777.77

buffer(3) = 888.88
endif

call fscatter_add(buffer,aloc,ischedptr)

On processor 0, the first four elements of aloc are 898.88, 10.0, 676.66 and 787.77. On
processor 1, the first three elements of aloc are 10.00, 10.00, 10.00 and 565.55.

4.4 subroutine PREFIXmultigather()

This primitive is an extension of the regular gather primitive, such that it allows one to specify
multiple schedules to be used to gather data from the target array into the buffer. It also allows
multi-column or multi-row gathers if the columns are distributed in the same way. The different
schedules to be used are passed in an array data structure to the function, and the number of
schedules need to be specified as a parameter to the function.

Synopsis
PREFIXmultigather(buffer,aloc,n_scheds, scheds,base_shift,dilation,repetition)
Parameter Declarations

TYPE buffer() buffer for copies of gathered data values

TYPE aloc() location from which data is to be fetched from calling processor
integer n_scheds number of schedules passed

integer scheds() array of pointers where each pointer points to a schedule
integer base_shift size of the distributed dimension.

integer dilation the factor by which the distance between two data accesses on any di-
mension changes when that dimension is transposed.

integer repetition maximum number of columns or rows from which data will be accessed.
Return Value

None
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4.5 subroutine PREFIXmultiscatter()

This primitive is an extension of the regular scatter primitive, but it allows one to specify
multiple schedules to be used to scatter data from the target array into the buffer. It also
allows multi-column or multi-row scatters if the columns are distributed in the same way. The
different schedules to be used are passed in an array data structure to the function, and the
number of schedules need to be specified as a parameter to the function.

Synopsis

PREFIXmultiscatter(buffer,aloc,n_scheds,
scheds,base_shift,dilation,repetition )

Parameter Declarations

TYPE buffer() buffer for copies of scattered data values

TYPE aloc() location from which data is to be scattered from calling processor
integer n_scheds number of schedules passed

integer scheds() array of pointers where each pointer points to a schedule.
integer base_shift size of the distributed dimension.

integer dilation the factor by which the distance between two data accesses on any di-
mension changes when that dimension is transposed.

integer repetition maximum number of columns or rows to which data will be scattered.
Return Value

None
Example

Data can be scattered to multi-columns or rows using more than one schedules.

4.6 subroutine PREFIXmultiscatter FUNC()

FUNC can be add, sub or mult . This primitive is an extension of the regular scatter FUNC
primitive, but it allows one to specify a number of schedules to be used to perform computations
on the contents of a given memory location of another processor. It also allows multi-column
or multi-row operations if the columns or rows are distributed in the same way. The different
schedules to be used are passed in an array data structure to the function, and the number of
schedules need to be specified as a parameter to the function.

Synopsis

PREFIXmultiscatter .FUNC(buffer,aloc,n_scheds,
scheds,base_shift,dilation,repetition )
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Parameter Declarations

TYPE buffer() points to data values that will form operands for the specified type of
remote operation.

TYPE aloc() points to first memory location on calling processor to be used as targets of
remote operations.

integer n_scheds number of schedules passed
integer scheds() array of pointers where each pointer points to a schedule.
integer base_shift size of the distributed dimension.

integer dilation the factor by which the distance between two data accesses on any di-
mension changes when that dimension is transposed.

integer repetition maximum number of columns or rows from which data will be accessed.
Return Value

None
Example

Simple arithmetic operations can be performed on the memory location of another processor
similar to the way a gather is performed.

4.7 subroutine PREFIXscatternc()

This works just like a normal scatter function except it does an on-processor gather before it
does the scatter. The on-processor gather it does is done according to pattern stored in the

schedule.

Synopsis
PREFIXscatternc(buffer,aloc,schedinfo)
Parameter Declarations

TYPE buffer() array from which data is to be scattered.
TYPE aloc() array to which data is to be scattered. processor

integer schedinfo refers to the relevant schedule pointer
Return Value

None
Example

This works similar to the scatter_addnc function.
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4.8 subroutine PREFIXmultiscatternc()

This primitive is an extension of the regular multiscatter primitive, such that an on processor
gather is performed before the scatter occurs. The on-processor gather is done according to a
pattern stored in the schedule.

Synopsis

PREFIXmultiscatternc(buffer,aloc,n_scheds,
scheds,base_shift,dilation,repetition )

Parameter Declarations

TYPE buffer() buffer for copies of scattered data values

TYPE aloc() location from which data is to be scattered from calling processor
integer n_scheds number of schedules passed

integer scheds() array of pointers where each pointer points to a schedule.
integer base_shift size of the distributed dimension.

integer dilation the factor by which the distance between two data accesses on any di-
mension changes when that dimension is transposed.

integer repetition maximum number of columns or rows to which data will be scattered.
Return Value

None
Example

Data can be scattered to multi-columns or rows using more than one schedules.

4.9 subroutine PREFIXscatter FUNCnc()

This works just like a normal scatter FUNC function except it does a on-processor gather before
it does the scatter FUNC. The on-processor gather it does is done according to pattern stored
in the schedule.

Synopsis
void PREFIXscatter_F'UNCnc(buffer,aloc,schedinfo)
Parameter Declarations

TYPE buffer() array from which data is to be scattered.
TYPE aloc() array to which data is to be scattered. processor
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integer schedinfo refers to the relevant schedule pointer
Return Value

None

4.10 subroutine PREFIXmultiscatter FUNCnc()

FUNC can be add, sub or mult . This primitive is an extension of the regular multiscat-
ter PUNC primitive, such that it allows the user to perform an on-processor gather before the
scatter_FUNC operation.

Synopsis

subroutine PREFIXmultiscatter . F'UNCnc(buffer,aloc,n_scheds, scheds,base_shift,dilation,repetition )
Parameter Declarations

TYPE buffer() points to data values that will form operands for the specified type of

remote operation.

TYPE aloc() points to first memory location on calling processor to be used as targets of
remote operations.

integer n_scheds number of schedules passed
integer scheds() array of pointers where each pointer points to a schedule.
integer base_shift size of the distributed dimension.

integer dilation the factor by which the distance between two data access on any dimen-
sion changes when that dimension is transposed.

integer repetition maximum number of columns or rows from which data will be accessed.
Return Value

None
Example

Simple arithmetic operations can be performed on the memory location of another processor
similar to the way a gather is performed.
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4.11 Data Exchangers For General Data Structures
4.11.1 subroutine PARTI gather()

Synopsis
subroutine PARTI_gather(sched, data, target, size)
Parameter Declarations

integer sched refers to the relevant schedule.

jany type; data() points to data values that will form operands for the specified type of
remote operation.

jany type; target() points to first memory location on calling processor to be used as
targets of remote operations.

integer size size of the data structure.
Return Value

None

Similar to TYPEgather() except that this subroutine can be used to gather any type of data
structure. The size of the data structure must be provided.

4.11.2 subroutine PARTI scatter()

Synopsis
subroutine PARTI scatter(sched, data, target, size, func)
Parameter Declarations

integer sched refers to the relevant schedule.

data() points to data values that will form operands for the specified type of remote
operation.

target() points to first memory location on calling processor to be used as targets of remote
operations.

integer size size of the data structure.

func function to be used.
Return Value

None
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Similar to scatter FUNC subroutine, but the function is provided by the user. The parameter
func’ specifies the operation for scatter routine. For standard functions the following constants
can be used:

NULL : no operation (scatter function)
PARTI_add : integer addition

PARTI_sub : integer substraction

PARTI_mul : integer multiplication

PARTI_cadd : character addition
PARTI_csub : character substraction
PARTI_cmul : character multiplication
PARTI_fadd : float addition
PARTI_fsub : float substraction
PARTI_fmul : float multiplication
PARTI_dadd : double addition
PARTI_dsub : double substraction
PARTI_dmul : double multiplication

4.11.3 subroutine PARTI mulgather()

Synopsis
PARTI_mulgather(sched, size, narray, data, target [, data, target, ... |)
Parameter Declarations

integer sched refers to the relevant schedule.
integer size size of the data structure.
integer narray number of arrays.

data() points to data values that will form operands for the specified type of remote
operation.

target() points to first memory location on calling processor to be used as targets of remote
operations.

Return Value

None

The gather routine for multiple arrays.

4.11.4 subroutine PARTI mulscatter()

Synopsis

PARTI_mulscatter(sched, func, size, narray, data, target [, data, target, ...])
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Table 2: CHAQOS Procedures for Adaptive Problems

Task Functionality Procedure

Inspector

Light-Weight compute schedule | schedule_proc()

Schedule

Executor

Data exchange data PREFIXscatter_append()
restore data PREFIXscatter_back()

Transportation | exchange data PREFIXmultiscatter_append()
restore data PREFIXmultiscatter_back()
exchange data PREFIXmultiarr_scatter_append()
restore data PREFIXmultiarr_scatter_back()

Parameter Declarations

integer sched refers to the relevant schedule.
func function to be used.

integer size size of the data structure.
integer narray number of arrays.

data() points to data values that will form operands for the specified type of remote
operation.

target() points to first memory location on calling processor to be used as targets of remote
operations.

Return Value

None

The scatter routine for multiple arrays.

5 CHAOS Procedures for Adaptive Problems

5.1 Introduction

In a class of highly adaptive problems, patterns of data access vary frequently. As a result,
pre-processing, or inspector must be carried out whenever change in data access pattern occurs.
The implication is that the processing cost of inspector can hardly be amortized because the
communication schedule produced by the inspector procedures for one time step may not be
reused for the consequent time steps. Inspector procedures for application codes in which partial
change in data access patterns occur, are discussed in Section 3.4.

A set of primitives for highly adaptive problems have been developed. These procedures are
particularly suitable for applications where order of data storage and computation is not strictly
maintained. The procedure developed for adaptive problems compute light-weight schedules
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at very low cost. These procedures compute space requirements for data migration on each
processor and determine how collective communications can be performed. Data transportation
routines developed for this routines uses these schedules and perform irregular communications
efficiently.

5.2 function schedule_proc()

This function returns a communication schedule as PARTI_schedule does, but the schedule
generated by schedule_proc function does not have information on addresses in destination
processors for off-processor data items.

Synopsis
integer schedule_proc(proc, ndata, new_ndata, maxdim)
Parameter declarations

integer proc() a list of destination processor indices
integer ndata the number of local array elements
integer new_ndata number of new local array elements

integer maxdim maximum number of columns or rows from which the distributed arrays
will be exchanged

Return value

an integer value representing a light-weight communication schedule

5.3 subsection PREFIXscatter_append()

PREFIX can be d (double precision), i (integer), f (float), ¢ (character). The PREFIXscat-
ter_append procedure uses a schedule produced by a call to schedule_proc(). The ownership
of distributed array data is exchanged among participating processors and a copy of new local
portion of the distributed array is placed in memory pointed to by target.

Synopsis
subroutine PREFIXscatter_append(sched, data, target)
Parameter declarations

integer sched a light-weight schedule data exchange
TYPE data() a distributed array pointer

TYPE target() a pointer to buffer where the new copy of local portion of the array will
be placed
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Return value

None

5.4 subsection PREFIXscatter_back()

PREFIX can be d (double precision), i (integer), f (float), ¢ (character). The PREFIXs-
catter_back procedure uses the same schedule which was previously used by PREFIXscat-
ter_append() function to reverse the effects of data exchange done by PREFIXscatter_append().
Each element of the distributed array will be restored into its original position within the pro-
cessor which owned it before data exchange.

Synopsis
subroutine PREFIXscatter_back(sched, data, target)
Parameter declarations

integer sched a light-weight schedule for data exchange
TYPE data() a distributed array pointer

TYPE target() a pointer to buffer from which the copy of local portion of the array is to
be restored

Return value

None

5.5 subsection PREFIXmultiscatter_append()

This subroutine is an extension to the PREFIXscatter_append() so that it allows one to
specify a number of schedules to be used to exchange distributed arrays. It also allows data
exchange of multidimensional arrays. The different schedules to be used are passed in an array
of schedules to PREFIXmultiscatter_append(), and the number of schedules needs to be
specified as a parameter to this subroutine.

Synopsis
subroutine PREFIXmultiscatter_append(nsched,scheds,data,target, base_shift,dilation,repetition)
Parameter declarations

integer nsched the number of schedules passed

integer scheds an array of schedules
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TYPE data() a distributed array

TYPE target() a pointer to buffer where the new copy of local portion of the array will
be placed

integer base_shift size of the distributed dimension
integer dilation Not used

integer repetition Not used
Return value

None

5.6 subroutine PREFIXmultiscatter_back()

The functionality of this subroutine is the same to that of PREFIXscatter_back() except
that it allows one to use a number of schedules .

Synopsis
subroutine PREFIXmultiscatter_back(nsched,scheds,data,target, base_shift,dilation,repetition)
Parameter declarations

integer nsched the number of schedules passed

integer scheds an array of schedules

TYPE data() a distributed array whose ownership will be restored

TYPE target() a pointer to buffer from which the copy of the array is to be restored
integer base_shift size of the distributed dimension

integer dilation Not used

integer repetition Not used
Return value

None

5.7 subroutine PREFIXmultiarr_scatter_append()

This subroutine is another extension to the PREFIXscatter_append(), which can be used
to exchange arrays which are distributed in a similar manner.

Synopsis
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subroutine PREFIXmultiarr_scatter_append(sched narrays, dataq, targety, ..., data,,target, )
Parameter declarations

integer sched a schedule for

integer narrays the number of pairs of data; and target;
TYPE data;() array to be distributed

TYPE target;() a pointer to buffer where the new copy of local portion of the array will
be placed

Return value

None

5.8 subroutine PREFIXmultiarr_scatter_back()

This subroutine is another extension to the PREFIXscatter_append(), which can be used
to exchange data of multiple arrays which are distributed indentically.

Synopsis
subroutine PREFIXmultiarr_scatter_back(sched,narrays, datay,targety, ..., data,,target, )
Parameter declarations

integer sched a schedule for

integer narrays the number of pairs of data; and target;

TYPE data;() a distributed array whose data will be restored

TYPE target;() a pointer to buffer from which the copy of the array is to be restored

Return value

None

5.9 Example

integer ndata
double precision x(ndata), y(ndata), load(i)

do k = 1, timestep ! Loop L1
c computation
do i = 1, ndata ! Loop L2

do j =1, load(i)
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x(i) = y() + ...
enddo
load(i) = x(i)
enddo

end do

Consider the above sequential code 1.2. Loop L2 is executed many times inside the loop L1.
Computation load for iteration ¢ depends on the value of load(i) and it is updated in every
iteration k of the loop L1. Note that there is no communication involved. To efficiently run
this code on a parallel machine, load in processors must be balanced for every iteration of loop
L1.

Let us see how to parallelize this code. Assume that data arrays data, x and y are identically
(and maybe irregularly) distributed among several processors, and they need to be remapped
to balance the workload. The data array workload stores the load information per each data
point, and user specified load balancing primitive load_balancer() generates a list of destination
processor indices using the load information passed. A light-weight schedule sched is computed
using the procedure schedule_proc. Sice arrays x, y and load are distributed identically, the
same schedule can be used to tranport all the arrays to new locations.

integer sched, ndata, new_nd, BUFSIZE

parameter (BUFSIZE = 1000)

integer proc(BUFSIZE)

real workload(BUFSIZE), data(BUFSIZE)

double precision x(BUFSIZE), y(BUFSIZE), load(BUFSIZE)

do k = 1, timestep ! Loop L1

c compute the workload of each data point
do i = 1, ndata
workload(i) = ...
enddo

¢ initialize CHAOS environment
call PARTI_setup()

c produce a list of destination processor indices
call load_balancer(proc,workload,ndata)

c build up a schedule for data exchange
sched = schedule_proc(proc,ndata,new_nd,1)

c check the buffer size for the new local portion of arrays
if (new_nd .gt. BUFSIZE) then
write(*,%*) ’Exceed the local buffer size.’
call exit
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endif

c exchange distributed data arrays among participating processors
call fscatter_append(sched,data,data)
call dmultiarr_scatter_append(sched,3,x,x,y,y,load,load )

¢ local computation
do i =1, new_nd ! Loop L2

enddo

c restore data distributed arrays
call fscatter_back(sched,data,data)
call dmultiarr_scatter_back(sched,3,x,x,y,y,load,load)

end do

6 Translation Table

6.1 function build_translation_table()

In order to allow a user to assign globally numbered indices to processors in an irregular pattern,
it is useful to be able to define and access a distributed translation table. By using a distributed
translation table, it is possible to avoid replicating records of where distributed array elements
are stored in all processors. The distributed table is itself partitioned in a very regular manner.
A processor that seeks to access an element I of a irregularly distributed data array is able to
compute a simple function that designates a location in the distributed table; the location of
the actual array element sought is obtained from the distributed table.

The procedure build_translation_table constructs a distributed translation table. It assumes
that distributed array elements are globally numbered. Fach processor passes build_translation_table
a set of indices for which it will be responsible. The distributed translation table may be striped
or blocked across the processors. With a striped translation table, the translation table entry
for global index I is stored in processor (I modulo number_of_processors); the local index of
the translation table is (I/ number_of_processors). In a blocked translation table, translation
table entries are partitioned into a number of equal sized ranges of contiguous integers, these
ranges are placed in consecutively numbered processors. With blocked partitioning, the block
corresponding to index Iis (I/B) and the local index is (I modulo B), where B is the size of the
block. Let M be the maximum global index passed to build_translation_table by any processor
and NP represent the number of processors; B = [M/N P].

Synopsis
function build_translation_table(part,indexarray,ndata)

Parameter Declarations
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integer part how translation table will be mapped - may be BLOCKED(=1) or STRIPED
(=2)

integer indexarray() each processor P specifies list of globally numbered indices for which
P will be responsible

integer ndata number of indices for which processor P will be responsible
Return Value

integer which refers to the translation table corresponding to the input data.
Example

For a detailed example refer to Section 6.2.

6.2 subroutine dereference()

The subroutine dereference accesses a translation table and determines owner processors and
local addresses on the owner processors for a list of global numbered array elements. The
subroutine dereference is passed a pointer to a translation table; this structure defines the
irregularly distributed mapping created. dereference is passed an array with global indices that
need to be located in distributed memory; dereference returns arrays local and proc that contain
the processors and local indices corresponding to the global indices.

Synopsis
subroutine dereference(global,local,proc,ndata,index_table)
Parameter declarations

integer global() list of global indices we wish to locate in distributed memory

integer local() local indices obtained from the distributed translation table that corre-
spond to the global indices passed to dereference

integer proc() array of distributed translation table processor assignments for each global
index passed to dereference

integer ndata number of elements to be dereferenced

integer index_table refers to the relevant translation table
Return value
None

Example
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Table 3: Values obtained by dereference
Processor | proc(1l) | local(1) | proc(2) | local(2)
0 0 1 1 1
1 1 2 0 2

A one dimensional distributed array is partitioned in some irregular manner so we need a
distributed translation table to keep track of where one can find the value of a given element
of the distributed array.

In the example below, we show how a translation table is initialized. Processor 0 calls

build _translation_table and assigns indices 1 and 4 to processor 0, processor 1 calls build_translation_table
and assigns indices 2 and 3 to processor 1. The translation table is partitioned between pro-
cessors in blocks.

Processor 0 then uses the translation table to dereference global variables 1 and 2, processor
1 uses the translation table to dereference global variables 3 and 4. On each processor,
dereference carries out a translation table lookup. The values of proc and local are returned
by dereference are shown in Table 3). The user gets to specify the processor to which each
global index is assigned, note however that build_translation_table assigns local indices.

program dref

integer size, 1, index_array(2)
integer deref_array(2)

integer local(2), proc(2)
logical build_translation_table

¢ initialize CHAOS environment
call PARTI_setup()

¢ Assign indices 1 and 4 to processor 0
my_size = 2
if (mynode() .eq.0) then
index_array(1) = 1
index_array(2) = 4
endif
c Assign indices 2 and 3 to processor 1
if (mynode() .eq.1) then
index_array(1) = 2
index_array(2) = 3
endif
c set up a translation table
itable = build_translation_table(l,index_array,my_size)
Processor 0 seeks processor and local indices
for global array indices O and 1 */
if (mynode() .eq.0) then

[e e
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deref_array(1) = 1
deref_array(2) = 2
endif
c Processor 1 seeks processor and local indices
C for global array indices 2 and 3 */

if (mynode() .eq.1) then
deref_array(1) = 3
deref_array(2) = 4
endif

¢ Dereference a set of global variables
call dereference(table,deref_array,local,proc,size)

local and proc return the processors and local indices where
global array indices are stored.

In processor 0, proc(0) = 0, proc(1l) =1, local(0) =1 , local(l) =1
In processor 1, proc(0) = 1, proc(l) 0, local(0) 2 , local(1)

O o0 00

stop
end

Now assume that processor 0 needs to know to values of distributed array elements 1,2, and
4 while processor 1 needs to know the value of element 3. We call dereference to find the
processors and the local indices that correspond to each global index. At this point schedule
can be called and gathers and scatters carried out.

6.3 function build_reg_translation_table()

Builds a translation table for a regular distribution. It returns an id for the translation table
built. The distribution could be blocked or cyclic for the current implementation. No other
regular distribution is supported as before, however provisions for an analytic user function and
parameterized general block distributions have been made. The translation tables returned by
this function DO NOT explicitly list all global indices.

Synopsis
build_reg_translation_table ( dist_type, data_size )
Parameter declarations

integer dist_type distribution type BLOCK = 1 and CYCLIC = 2

integer data_size global data array size

Return value
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an integer representing a translation table

6.4 function build_dst_translation_table()

Builds a translation table for a degenerate irregular distribution. ’index’ is the list of global
indices for which the calling processor is responsible for. 'nindex’ denotes the size of the "index’
array. 'repf’ is a floating-point number between 0 and 1 (inclusive), denoting the replication
factor for the translation table storage (more on this later). ’psize’ is the page size for the
page decomposition of the translation table contents. The function returns an ID for the table
generated to be used by dereference functions.

Synopsis
build_dst_translation_table ( index, nindex, repf, psize )
Parameter declarations

integer index() index list to be dereferenced
integer nindex size of the index_array
real repf replication factor
integer psize page size
Return value

an integer reprezenting a translation table

This type of translation tables list all the global indices and their location assignment in
the distributed memory. The global list of indices are decomposed into pages of size ’psize’
and the storage is managed in page level (rather than individual index level). The pages
are distributed between the processors using block distribution. Furthermore, each processor
replicates (repf*(N-N/P)) pages in its local memory, where N denotes the total number of pages
and P is the number of processors in the system.

6.5 function init_ttable with_proc()

A partial translation table that stores only processor information for a distribution can be built
using the function init_ttable_with_proc().

Synopsis
function init_ttable_with_proc(part,proc,ndata)

Parameter Declarations
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integer part how translation table will be mapped - may be BLOCKED(=1) )
integer proc() list of owner processor numbers for a global data array

integer ndata size of of proc array
Return Value
integer which refers to the translation table corresponding to input data.

Example

6.6 subroutine free_table()

It deallocates storage space associated with a translation table.

Synopsis

free_table(trans_table)
Parameter declarations

integer trans_table translation table id
Return value

None

6.7 subroutine derefproc()

Same as dereference, but the function does not return offset assignment of global indices.
Translation table argument is generic, both irregular and regular distributions uses the same
function.

Synopsis
derefproc(trans_table,index_array,proc,ndata)
Parameter declarations

integer trans_table translation table table id
integer index_array() index list to be dereferenced
integer ndata size of the index_array

integer proc() list of processor numbers
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Return value

None

6.8 subroutine derefoffset()

Same as dereference, but the function does not return processor assignment of global indices.
Translation table argument is generic, both irregular and regular distributions uses the same
function.

Synopsis
derefoffset(trans_table,index_array,local,ndata)
Parameter declarations

integer trans_table translation table table id
integer index_array() index list to be dereferenced
integer ndata size of the index_array

integer local() list of local offset
None
Return value

None

6.9 subroutine remap_table()

Updates the translation table entries to reflect the changes in the distribution of data. This
function does not perform any action if the old distribution was regular. oldt is the translation
table containing the current distribution of data. newlndex is the new set of global indices
for which the calling processor is responsible for. nindex is the size of newlIndex. The size of
the global data space should be same for the new distribution and current distribution. The
effect of this function is that, it updates translation table, and the result is translation table
contains entries for the new data distribution. (Note: Space is re-used, user should not free the
old translation table space).

Synopsis
remap_table(oldt, newIndex, nindex)

Parameter declarations
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integer oldt translation table table id
integer newIndex() new index set

integer nindex size of the new index list
Return value

None

6.10 function tableGetReplication()

Returns the replication factor for a distributed translation table. For regular distribution it
returns a symbolic TT_ERROR.

Synopsis

real tableGetReplication(table)
Parameter declarations

integer table translation table table id
Return value

a real number which gives the replication factor.

6.11 function tableGetPageSize()

Returns the page size for a distributed translation table. For regular distribution it returns a

symbolic TT_ERROR.

Synopsis

integer tableGetPageSize(table)
Parameter declarations

integer table translation table table id
Return value

an integer number which gives the page size of the table
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6.12 subroutine tableGetIndices()

Returns the list of indices owned by processors in global address.

Synopsis
tableGetIndices( table, indices, nindex)
Parameter declarations

integer table translation table table id
integer indices() local set of indices

integer nindex size of the local indices
Return value

None

7 Miscellaneous Procedures

7.1 subroutine PARTI setup

Synopsis
PARTI setup()
Parameter declarations
None
Return value

None

The procedure PARTI setup is called once at the begining of the application program. This
procedure sets up buffer space and environment variables.

7.2 subroutine renumber

Synopsis
renumber(table, index, array, size, rarray)

Parameter declarations
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Table 4: Choas runtime data mapping procedures

Task Function Primitive
initializing hash table init_rdg_hash_table()
Data generating local graph eliminate_dup_edges()
Partitioning generating distributed graph generate_rdg()
Loop iteration | generating loop iteration graph dref_rig()
Partitioning partitioning loop iteration graph iteration_partitioner()
Remap generating schedule to remap array remap()
indices and other aligned data arrays

integer table translation table id

integer index() local index set in global address
integer array() array to be renumbered
integer size size of array index list

integer rarray() array with renumbered values
Return value

None

8 Runtime Data Distribution

In scalable multiprocessor systems, high performance demands that computational load be
balanced evenly among processors and that inter-processor communication be minimized. Over
the past few years a lot of study has been carried out in the area of mapping irregular problems
onto distributed memory multicomputers. As a result of this, several general heuristics have
been proposed for efficient data mapping. Currently these partitioners must be coupled to user
programs manually. A standard interface can, however, be used to link these partitioners with
programs at runtime. We use a distributed data structure to represent array access patterns that
arise in particular loops of a program. This data structure is passed to the graph partitioner.
The partitioner returns a data distribution. In this section, we present the CHAOS procedure
that can be used to generate the distributed data structure, link the partitioners, and support
data redistribution.

8.1 Runtime Data Graph

To implement the data partitioning, we generate a distributed data structure called the Runtime
Data Graph or RDG. The runtime graph is generated from the distributed array access patterns
in the user selected loops. Here it is assumed that all distributed arrays considered for RDG
generation are to be partitioned in the same way and also that they are of the same size. Node
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Selected Loop
doi=1,5
S1 ¥(IA() = x(IB())
end do
Input
IA ={1,3,4,2,5}
IB={4,2,1,5,5}
Runtime Data Graph

1——>4
2 -——>3,5
3-—>2
4——>1
5——>2

Runtime Data Graph in Compressed Row Format
adjacency list_array = {4, 3, 5, 2, 1, 2}
adjacency list_pointr = {1, 2, 4, 5, 6, 7}

Figure 5: An example of runtime data graph generation

1 of an RDG represents element ¢ of all distributed arrays if there is more than one distributed
array used for graph generation.

An RDG is constructed by executing a modified version of the loop which forms a list of
edges instead of performing numerical calculations. The graph partitioners that we consider
divide the graph into equal subgraphs with as few edges as possible between them. The intent
is that two nodes in RDG will be linked if one is used to compute the other and they are to be
allocated to the same processor; There is an edge between nodes ¢ and 7 in the RDG if, on some
iteration of the loop, an assignment statement writes element ¢ of an array (i.e. z(7) appears
on the left-hand side) and references element j (i.e. y(j) appears on the right-hand side), or
vice-versa.

Figure 5 shows a simple example of sequential generation of a runtime graph. The statement
S1in the figure has indirections, IA and IB, both on the left and the right hand sides. In this
example, the arrays z and y, of the same size 5, are considered for graph generation. Each
vertex in the graph represents an array element. Hence, the runtime graph will have 5 vertices.
The RDG is constructed by adding an undirected edge between the node pairs representing the
left hand side (IA(7)) and the right hand side (IB(¢)) array indices, for each loop iteration i.
For instance, during the first loop iteration an edge between vertex 1 and 4 and also an edge
between 4 and 1 are added to the graph. The run time graph is stored in a format closely
related to compressed sparse row format.

Figure 6 shows the parallel RDG generation steps. Initially, data arrays and loop iterations
are divided among processors in uniform blocks. Each processor generates a local RDG using
the array access patterns that occur in local loop iterations. For clarity, the local RDG is shown
as an adjacency matrix in the figure. The local graph is then merged to form a distributed
graph. While merging, if we view the local graph as an adjacency matrix stored in compressed
row format, then processor Py collects all entries of the first N/P rows in the matrix from all
other processors, where N is the number of nodes (array size) and P is the number of processors.
Processor Py collects the next N/P rows of the matrix and so on. Processors remove duplicate

51



* Generate local graph on each processor representing
Loop’s array access pattern
N x N N x N

Local
graph

* Merge local graphsto produce a distributed graph

N/Px N __N/PXN

Merged
graph

Figure 6: Parallel generation of runtime data graph

do i = 1, nedges

nil = nde(i,1)
n2 = nde(i,2)
n3 = nde(i,3)

S1  y(nl) = y(@l) + x(n1) + x(n2) + x(n3)
S2  y(@2) = y(n2) - x(n1) + x(n2)
enddo

Figure 7: An example sequential loop

entries when they collect adjacency list entries.

8.2 Data Mapping Procedures

In this section, we present the CHAOS procedures that can be used for data mapping on MIMD
machines. The kernel shown in Fig. 7 is an example of the kind of loop that commonly occurs in
a variety of sparse or unstructured code. We use this kernel as a running example to illustrate
the procedures. The CHAOS procedures carry out data mapping and loop iteration partitioning
in parallel. To perform operations in parallel, the loop iterations of the selected loops and the
arrays to be partitioned are distributed among processors in uniform blocks. Figure 8 shows
the modified version of the sequential loop and the initial data and loop distribution. The
array local ind_list in the figure has a list of local array descriptors assigned to each processor
and n_local is the size of local_ind_list. The array local ster_list has a list of local iteration
numbers. Figure 9 shows parallel pre-processing code, for the example code in Figure 7, with
data mapping procedures incorporated.
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do i = 1, nlocal_edges

nl = local_nde(i,1)
n2 = local_nde(i,2)
n3 = local_nde(i,3)

S1  y(nl) = y(@l) + x(n1) + x(n2) + x(n3)
S2  y(@2) = y(n2) - x(n1) + x(n2)
enddo

Assuming the size of arrays x and y to be 6, value of nedges to be 10 and
nde = {(17273)7 (17374)7 (47273)7(27471)7 (27376)7(67472)7 (27473)7(37475)7(37574)7 (67573)}

the initial data and loop iteration distributions for 2 processors are:

Processor 0 Processor 1

local_iter list = {1,2,3,4,5} local_iter list = {6,7.8,9,10}
nlocal_edges = 5 nlocal_edges = 5

local_ind_ list = {1,2,3} local_ind_list = {4,5,6}

n_local = 3 n_local = 3

local_nde = {(1,2,3), (1,3,4), (4,2,3), local_nde = {(6,4,2), (2,4,3), (3,4,5),
(2,4,1),(2,3,6)} (3,5,4), (6,5,3)}

Figure 8: Modified example code for parallel pre-processing

8.2.1 subroutine eliminate_dup_edges()

The procedure eliminate_dup_edges generates a local runtime graph on each processor. This
procedure is called once for each statement in the loops that accesses the distributed arrays on
both the left hand side and the right hand side of the statement. For all these statement, the left
hand side ({hs_ind) array indices and the corresponding list of right hand side(rhs_ind) array
indices, for each local iteration, are generated separately. For example, in Figure 9 statements
S1 and S2 access the distributed arrays both on left and right hand sides. The statement S1 has
2 distinct array indices on the right hand side for each left hand side index, whereas statement
52 has only one. The left hand side and right hand side index pairs are generated separately
for each statement and the procedure is called twice.

The procedure eliminate _dup_edges inputs the lists [hsind and rhs_ind, the size of
lhs_ind (n_count) and the number of unique rhs_ind indices (n_dep) for each lhs_ind. This
procedure generates the local graph by adding an undirected edge between the left hand side
and right hand index lists and stores it in a hash table. An undirected edge between nodes ¢
and j is formed by adding j to the adjacency node list of node ¢ and vice versa.

The procedure eliminates any duplicate edges and also self edges as there is no potential for
communication. The current version of the procedure does not distinguish the edges connecting
the same pairs of nodes but arise due to different pairs of arrays. The future version of this
procedure will take this case into account and it will produce graphs with weighted edges.

Synopsis
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btable = build_translation_table(type, local_ind_list, n_local)
C-- Initialize hash table to store runtime data graph

n_depl = 2
n_dep2 =1
hashindex = init_rdg_hash_table(2*(n_depl+n_dep2)*nlocal_edges)
jcount =1
icount =0
kcount =1
lcount =1

do i = 1, nlocal_edges

nl = local_nde(i,1)
n2 = local_nde(i,2)
n3 = local_nde(i,3)

C 381 y(n1) = yn1) + x(nl) + x(n2) + x(n3)
lhs_ind1(icount+1) = nl

rhs_ind1(jcount) = n2

jcount = jcount + 1

rhs_ind1(jcount) = n3

jcount = jcount + 1
Cs2 y@m2) = y(n2) - x(n1) + x(n2)

lhs_ind2(icount+1) = n2

rhs_ind2(lcount) = nl

lcount = lcount + 1
icount = icount + 1
enddo

C--Generate local run time graph
call eliminate_dup_edges(hashindex, lhs_indl, rhs_indl, n_depl, icount)
call eliminate_dup_edges(hashindex, lhs_ind2, rhs_ind2, n_dep2, icount)
C--Generate distributed run time graph
call generate_rdg(hashindex, local_ind_list,
& n_local, csr_ptr, csr_cols, ncols)
C-- call parallel graph partitioner
call parallel_rsb(local_ind_list, n_local, csr_ptr, csr_cols, ntable)
C-- Remap array indices
call remap(ntable, local_ind_list, sched, new_ind_list, new_size)
call dgather(x, x, sched)
call dgather(y, y, sched)

Figure 9: Parallel preprocessing code for data mapping
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eliminate_dup_edges(hashindex, lhs_ind, rhs_ind, n_count, n_dep)
Parameter declarations

integer hashindex an integer identifying the hash table that stores RDG
integer lhs_ind() list of left hand side array indices of all local iterations
integer rhs_ind() a list of right hand side unique indices of each local iterations
integer n_count number of left hand side indices

integer n_dep number of unique right hand indices for each left hand side index in the
considered statement

Return value
None

Example

Assume that in the example kernel shown in Figure 7, two processors are employed, and
arrays « and y are to be mapped in a conforming manner and are of the same size (6).

The RDG is generated based on the access pattern of the arrays z and y in the modified
loop shown Figure 9. The statements S1 and S2 in the kernel are not executed while generating
the graph. Initially, the arrays  and y and the loop iterations are distributed in uniform blocks
as shown in Figure 8. The modified loop is executed in parallel to form a local list of array
access patterns on each processor as shown in Figure 8. The lists lhs_indl and rhs_tndl in
Figure 9 have the left hand side and right hand side array access patterns in statement S1
and lhsand2 and rhs_ind2 have the patterns in S2. All processors then call the procedure
eliminate_dup_edges with the list of left hand side and right hand side array indices. The
RDG generated by the procedure is shown in Figure 10. The RDG is stored in the hash table
which is identified by an integer (hashindez). The RDG obtained using S1 does not get altered
by the statement S2 as there are no new pair of array indices.

8.2.2 subroutine generate_rdg()

Once array access patterns in a loop have been recorded in a hash table by the procedure
eliminate_dup_edges, the procedure generate_rdg can be called on each processor to flatten
its local adjacency list in the hash table into an adjacency list data structure (closely related
to Compressed Sparse Row (CSR) format). This procedure performs a global scatter operation
(resolving collisions by appending lists) and then combines these local lists into a complete
graph, also represented in CSR format. This data structure is distributed so that each processor
stores the adjacency lists for a subset of the array elements.

Synopsis
generate rdg(hashindex, local_ind_list, n_local, csr_ptr, csr_col, ncols)

Parameter declarations
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Processor O Processor 1

Thsindl = {1,1,4,2,2} Ihs_ind1 = {6,2,3,3,6)
rhsindl = {2,3,3,4.2.3.4,1,3,6} rhsindl = {4,2,4,3,4.5,5,4,5,3)
Thsind2 = {1,1,4,2,2} Ihs_ind2 = {6,2,3,3,6)
rhs_ind2 = {2,3,2,4,3} rhsind2 = {4,4,4,5,5}

after eliminate_dup_edges call for statement S1 - RDG in hash table
RDG = {(1,2), (2,1),(1,3),(3,1), RDG = {(6,4),(4,6),(6,2),(2,6),
(1,4),(4,1)4(2,4),(4,2),(4,3),(3:4),  (2:4),(4,2),(2,3),(3,2),(3,4),(4,3),
(2,3), (3,2),(2,6),(6,2) } (3,5),(5.3),(6,5),(5,6),(6,3),(3,6) }
after eliminate_dup_edges call for statement S2 - RDG in hash table
RDG ={(1,2), (2,1),(1,3),(3,1) RDG = {(6,4),(4,6),(6,2),(2,6),
(L) 41).(2).(42),(43).(34), (24)(4.2),(2:3).(3.2).(34).(4.3).
(2,3), (3,2),(2,6),(6,2) } (3,5),(5.3),(6,5),(5,6),(6,3),(3.,6) }

Figure 10: Example output - eliminate_dup_edges()

integer hashindex an integer identifying the hash table which stores RDG

integer local_ind_list() list of array descriptors

integer n_local size of local ind list

integer csr_ptr() list of csr format pointers pointing into csr_col

integer csr_col() adjacency list for indices occur in local iterations

integer ncols size of csr_cols returned by generate rdg

Return value

None

Example:

Processor 0
after flattening

Processor 1

csr_col = {2,3,4,1,4,3,6,1,4,2,1,2,3,2} csr_col = {6,4,3,2,4,5,6,6,2,3,6,3,4,2,5,3}
csr_ptr = {1,4,8,11,14,14,15} csrptr = {1,1,4,8,11,13,17}

after merging

csr_col = {2,3.4,1,3,4,6,1,2,4,5,6} esr_col = {1,2,3,6,3,6,2,3,4,5}
csr_ptr = {1.4,8,13} esr_ptr = {1,5,7,11}

Figure 11: Example output - generate_rdg()

The flattening process groups edges for each array element together and then stores in
a list (csr_col). A list of pointers (csr_ptr) identifies the beginning of the edge list for each
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array element in csr_col. Since the flattening process uses only the local hash table, there is no
communication between processors. In the merging process, processor P0 collects the adjacency
list for arrays indices {1,2,3} and P1 for array indices {4,5,6} as shown in Figure 11.

8.2.3 function init_rdg_hash_table()

The hash table used in procedures eliminate_dup_edges and generate rdg can be initial-
ized by using the procedure init_rdg hash table. This procedure is called with the initial
number of expected entries in the hash table, for memory allocation. Extra memory space is
automatically allocated when the hash table entries overflow the initial allocation.

Synopsis

function init_rdg_hash_table(size)
Parameter declarations

integer size number of expected entries in the hash table
Return value

An integer identifying the hash table

8.3 Loop Iteration Partitioning Procedures

Upon identifying the new array distribution, loop iteration partitioning procedures are called
to distribute the loop iterations. These procedures, by distributing the loop iterations, balance
computation among processors and reduce off-processor memory accesses. Figure 12 shows
pre-processing code for mapping loop iterations of the kernel shown in Figure 7. In the follow-
ing section the loop iteration partitioning procedures dref rig and iteration_partitioner are
discussed.

8.3.1 subroutine dref_rig()

To partition loop iterations, we use the Runtime Iteration Graph(RIG) which lists, for each
loop iteration, the distinct distributed array elements referenced. For example, in Figure 12,
each loop iteration accesses three different array indices (nl,n2,n3) of the distributed arrays.
In this case, the RIG has a list of nl, n2, and n3 for all local iterations. Using the RIG,
procedure dref_rig generates a Runtime Iteration Processor Assignment graph (RIPA) that
has a list of processors that own array elements in the RIG. The future version of this procedure
will support a RIG with a weight associated with each entry in the graph.

Synopsis

dref_rig(ttable, rig, niter, n_ref, ripa)
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C-- Create translation table with the current loop iteration list
ttable = build_translation_table(l, local_iter_list, nlocal_edges)
icount 1
n_ref 3
do 1 = 1, nlocal_edges

nl = local_nde(i,1)

n2 = local_nde(i,2)

n3 = local_nde(i,3)
C 31 ym1) = y(n1l) + x(nl) + x(n2) + x(n3)
C 32 y@m2) = y(n2) - x(nl) + x(n2)

rig(icount) = nl

rig(icount+1) = n2

rig(icount+2) = n3

icount = icount + 3
enddo

C-- Generate runtime iteration graph
call dref_rig(ntable, rig, nlocal_edges, n_ref, ripa)
C-- Partition runtime iteration graph
call iteration_partitioner(ripa, nlocal_edges, n_ref, ltable)
C-- Remap loop iterations
call remap(ltable, local_iter_list, sched, new_iter_list, new_loop_size)
call igather(local_nde(1,1), local_nde(1,1), sched)
call igather(local_nde(1,2), local_nde(1,2), sched)
call igather(local_nde(1,3), local_nde(1,3), sched)

Figure 12: Example code with loop iteration partitioning procedures

Parameter declarations

integer ttable an integer identifying the distribution translation table which describes the
distribution arrays returned by the partitioner

integer rig() list of distinct indices accessed for each local iteration
integer niter number of local iterations
integer n_ref number of unique indices accessed per iteration

integer ripa() list of processors that own each entry in rig
Return value

None

8.3.2 subroutine iteration_partitioner()

The current version of mapper procedure iteration_partitioner inputs the RIPA and assigns
iterations to processors by assigning each iteration to the processor that owns the most data.
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Processor 0 Processor 1

new_ind_list = 2,4,5 new_ind_list = 1,3,6

n_ref = 3 nref = 3

rig = {1,2,3,1,3,4,4,4,2,3,.2,4,1,23.6} rig = {6,4,2,2,4,3.3,4,5.3,5,4,6,5,3}
after dref_rig

ripa = {1,0,1,1,1,0,0,0,1,0,0,1,0,1,1}  ripa = {1,0,0,0,0,1,1,0,0,1,0,0,1,0,1}
after iteration_partitioner and remap

followed by gather

new_iter_list = {3,4,6,7,8,9} new_iter_list = {1,2,5,10}

Figure 13: Example output - drefref() and iteration_partitioner()

The new loop iteration distribution is described by a translation table.

Synopsis
iteration_partitioner(ripa, niter, n_ref, itable)
Parameter declarations

integer ripa() list of processors that own each entry in rig
integer niter number of local iterations
integer n_ref number of unique indices accessed per iteration

integer itable an integer identifying distribution translation table
Return value

None
Example

Assuming array elements {2,4,5} are distributed to P0 and array elements {1,3,6} are dis-
tributed to P1in Figure 12 and loop iterations are partitioned initially as shown in Figure 8,
the Figure 13 shows the new loop distribution.

The procedure dref_rig returns a list of processor numbers(ripa) which own indices referred
in each local iteration. This list is obtained by dereferencing the translation_table (ttable).
The ttable describes the new distribution of arrays. Note that the loop iteration partitioning
can only be done after the arrays are remapped (Section 8.4) based on the new distribution
returned by the partitioner. The procedure iteration_partitioner assigns a loop iteration
to a processor which owns the maximum number of indices accessed in that iteration. Ties
are broken arbitrarily. The procedure returns the loop iteration mapping for its initial list of
iterations (local_iter_list) in the form of a translation table({table). Each processor then calls
the procedure remap to obtain a schedule (sched). This schedule can be used to get the new
iteration list (new_iter_list) using CHAOS data exchager (gather).
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8.4 Data Remapping

Once the new array distribution has been identified the array index list must be remapped
based on the new distribution. The data arrays associated with the distributed array must
also be remapped. The procedure remap inputs the translation table (newtable) describing
the new array mapping and a list of initial array indices (localind_list). It returns a schedule
(sched) and a new index list(new_ind_list). A schedule stores send/receive patterns and this
can be used to move data among processors using the CHAOS data exchangers described in
Section 4. The returned schedule can be used to remap the data arrays associated with the
distributed array descriptors.

8.4.1 subroutine remap()

Synopsis
remap(newtable, local_ind_list, sched, new_ind_list, nind)
Parameter declarations

integer newtable translation table index describing new mapping
integer local_ind_list() list of initial local indices (in global numbering)
integer sched schedule index returned

integer new_ind_list() list of new local indices (in global number ing)

integer nind number of new local indices
Return value

None
Example

In Figure 9, initially arrays  and y and any data arrays associated with them are distributed
in a conforming manner. The procedure parallel_rsb, on each processor, returns a new
distribution for the initial local array elements of x and y. This distribution is returned
in the form of a translation table (newtable). The procedure remap returns a new list of
indices (new_ind_list) for arrays @ and y based on the new partition for each processor. It
also returns a schedule (sched) which is used to remap the data arrays. These associated
arrays are actually transported using the CHAOS data exchange procedures(gather).

9 Parallel Partitioners

In this section we present parallel partitioners that are distributed along with the CHAOS
runtime library. The first two partitioners, namely recursive coordinate bisection and inertial
bisection partitioners, use spatial information. The third parallel partitioner, recursive spectral
bisection, uses graph connectivity information.
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Table 5: Parallel Partitioners

Partitioner Input Procedure
Recursive geometry CoorBisecMap()
coordinate geometry CoorBisec()
bisection geometry and weight | CoorWeighBisecMap()

geometry and weight | CoorWeighBisec()
Recursive geometry InerBisecMap()
coordinate geometry InerBisec()
bisection geometry and weight | InerWeighBisecMap()
geometry and weight | InerWeighBisec()
Spectral bisection | connectivity parallel_rsh()

9.1 Geometry Based Partitioners

There are two types of geometry partitioners: ones which use computational load information
and ones which don’t. There are implemented in two fashions: coloring and remapping. In the
‘coloring’ implementation, only processor assignment of each element are returned, whereas in
the remapping’ implementation, arrays used to specify the geometry information are automat-
ically redistributed and the size of data arrays and indices of new local elements are returned.
Therefore, there are four possible versions of partitioners as shown in Table 5.

9.1.1 Recursive Bisection (Coloring)

The procedure PREFIXBisecMap returns a processor assignment list maparray. PREFIX can
be ’Coor’ for recursive coordinate partitioner and ’Iner’ for Inertial bisection partitioner.

PREFIXBisecMap (maparray, ndata, ndim, x, [, arg...])
Parameters

integer maparray() result of partitioning
integer ndata number of elements
integer ndim number of dimensions

double precision x() {, arg...} coordinate arrays

9.1.2 Weighted Recursive Bisection (Coloring)

Here the partitioners use an additional information to partition data. Computational load at
each point is also considered for partitioning. The load is specified by an array load.

PREFIXWeighBisecMap (maparray, load, ndata, ndim, x [, arg...])
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Parameters

integer maparray() result of partitioning
integer load() loads of elements

integer ndata number of elements
integer ndim number of dimensions

double precision x() {, arg...} ; coordinate arrays

9.1.3 Recursive Bisection with Remapping

PREFIXBisec (remaplevel, myindex, ndata, ndim, x [, arg...])
Parameters

integer remaplevel remap arrays every remaplevel levels
integer myindex() indexes of local elements

integer ndata() number of elements

integer ndim number of dimensions

double precision x() {, arg...} ; coordinate arrays

The arrays used to specify the geometry information are automatically remapped to the
new distribution. The parameter remaplevel is used to specify how often that coordinate arrays
should be remaped, i.e. the coordinate arrays will be remapped and moved every remaplevel
levels.

The parameter myindex is used to keep track of how elements are remapped and moved.
Users input the indexes of current local elements. The partitioner returns indexes of new local
elements after remapping.

Users place the current number of local elements in 'ndata’. Partitioners returns the number
of new local elements in 'ndata’.

9.1.4 Weighted Recursive Bisection with Remapping

PREFIXWeighBisec (remaplevel, myindex, load, ndata, ndim, x [, arg...])
Parameters

integer remaplevel remap arrays every remaplevel levels
integer myindex() indexes of local elements
integer load() loads of elements

integer ndata number of elements
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integer ndim number of dimensions

double precision x() {, arg...} coordinate arrays

9.2

Recursive Spectral Partitioner

parallel_rsb (myindex, n_local, csr_ptr, csr_col, ntable)

Parameters

integer myindex() indexes of local elements

integer n_local number of local elements

integer csr_ptr() list of csr format pointers pointing into csr_col

integer csr_col() adjacency list for all local indices

integer ntable distribution returned in the form a translation table

The csr format representation of RDG (see Section 8) is passed to the procedure parallel_rsb.
The parallel partitioner returns a pointer to a translation table (ntable) which describes the new
array distribution. The parallel version is based on the sequential single level spectral partitioner
provided by Horst Simon. For efficiency reasons, user might want to use the multilevel version
of the partitioner.
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A Example Program 1 : NEIGHBORCOUNT

A.1 Sequential Version of Program

PROGRAM NeighborCount

cC The purpose of this program is to take a graph and determine each node’s
CC in/out degree. The graph is represented by arrays X, Y, edgel and edge2

CC where arrays X and Y are the vertices’ placement on a grid, and edgel and
CC edge2 represent the end points of each edge.

parameter (idim=43)
parameter (NE=125)

INTEGER edgel(NE), edge2(NE)
INTEGER IO0_Degree(idim), X(idim), Y(idim)

C Initialize edges arrays
edgel(1) = INT(rand()*idim) + 1
edge2(1) = INT(rand()*idim) + 1
do 200 1 2, NE
edgel (1)=INT(rand()*idim) + 1
edge2(i)=MOD(INT (rand()*idim-1)+edgel(i),idim)+1
200 continue

C Initialize (X,Y) coord arrays (not used in program
X(1) = INT(rand()*1000) + 1
Y(1) = INT(rand()*1000) + 1
do 300 i =1, idim
X(i) = INT(rand()*1000) + 1
Y(i) = INT(rand()*1000) + 1
300 continue

do 400 1 = 1, idim
I0_Degree(i) = 0
400 continue

C Calculate neighbors

do 100 1 = 1, NE

I0_Degree(edgel(i))

I0_Degree(edge2(i))
100 continue

I0_Degree(edgel(i))+1
I0_Degree(edge2(i))+1

cC The output is in the form of
ce
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CC Node # I0_Degree

do 110 i = 1, idim
print *,i,I0_Degree(i)
tot = tot + I0_Degree(i)

110 continue

print *,’Total = ’,tot

end
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A.2 Parallel Version of Program (1) : Regular (block) Distribution

PROGRAM NeighborCount

cC The purpose of this program is to take a graph and determine each node’s
CC in/out degree. The graph is represented by arrays X, Y, edgel and edge2

CC where arrays X and Y are the vertices’ placement on a grid, and edgel and
CC edge2 represent the end points of each edge.

CcC In this version of the program, the X, Y, edgel, edge2 and I0_Degree
CC arrays are initialized assuming a block distribution.

#include "mpi.fort.h"

integer idim, ne, buff

C i1dim is the number of vertices in the graph

parameter (idim=43)

C NE is the number of edges in the graph

parameter (NE=125)

C buff is the amouunt of buffer space being allocated for
C off proceessor data storage

parameter (buff=NE)

INTEGER build_reg_translation_table
INTEGER rand

C edgel(i) and edge2(i) hold the endpoints for edge #i
INTEGER edgel(NE),edge2(NE)

C newedgel and newedge2 hold the adjusted values of the endpoints
C (adjusted based on which vertices "my" processor has and

C where it has them)

INTEGER newedgel(NE + buff) ,newedge2(NE + buff)

C edgel and edge2 are combined into tempedgearr so tempedgearr can be
C passed to XXXXXXXXXXXX and the adjusted values are returned

C in newtempedgearr

INTEGER tempedgearr(NE + buff), newtempedgearr(NE + buff)

INTEGER IO_Degree(idim + buff)
C The X and Y arrays represent the x,y coordinates of the vertices

INTEGER X(idim), Y(idim)

INTEGER sch, tt, count, tot
INTEGER BLOCKarr1(idim)
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INTEGER size(512), loops(512)

call PARTI_setup()
procs=MPI_numnodes ()

C Each processor must know how many everyone else has to create BLOCKarrs
do 50 i = 1,procs
size(i) = idim/procs
if (i-1 .1t. (idim - size(i)#*procs)) size(i)=size(i)+1
50 continue
mysize=size(MPI_mynode()+1)

do 60 i = 1,procs
loops(i)=NE/procs
if (i-1 .1t. (NE - loops(i)*procs)) loops(i)=loops(i)+1
60 continue
myloops=loops(MPI_mynode()+1)

C Initialize edges arrays

do 100 i = 1, myloops
edge1(i)=MOD(INT(rand()),idim) + 1
edge2(i)=MOD(MOD(INT(rand()),idim-1)+edgel1(i),idim)+1
100 continue

C Initialize (X,Y) coord arrays (not used in this program)
do 200 i = 1, idim

X(i) = MOD(INT(rand()),1000) + 1

Y(i) = MOD(INT(rand()),1000) + 1

200 continue

C Initialize IO_Degree Array
do 250 i = 1, myloops
I0_Degree(i) = 0
250 continue

C Initialize BLOCK distribution arrays to represent initial
C distribution of the data and indirection arrays
offset=0
do 301 i = 1, MPI_mynode()
offset=offset + size(i)
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301 continue
do 302 i = 1, mysize
BLOCKarri(i) = offset + i
302 continue

C Partition Data
tt = build_reg_translation_table(l,idim)

C Inspector
cC The values in the edge end point indirection arrays are adjusted using
CC localize to refer to local indices for on-processor data segments and to
CC buffer space for off-processor data segments.
do 600 i = 1, myloops

tempedgearr(i) = edgel(i)

tempedgearr (i+myloops) = edge2(i)
600 continue

call localize(tt, sch, tempedgearr, newtempedgearr, myloops*2,
$ noff, mysize, 1)

do 650 i = 1, myloops
edgel(i) = newtempedgearr(i)
edge2(i) = newtempedgearr(i+myloops)
650 continue

C Executor

C Calculate neighbors

do 700 i = 1, myloops
I0_Degree(edgel(i))
I0_Degree(edge2(i))

700 continue

I0_Degree(edgel(i))+1
I0_Degree(edge2(i))+1

cC After the local portion of the indirection arrays have been polled, each
CC processor sends any information which it has stored in its buffer areas to
CC the processor which owns the associated node.

call iscatter_add(IO_Degree(mysize+1),I0_Degree,sch)

cC The output is in the form of
cc
CC Home Processor # Node #  I0_Degree
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tot = 0
do 800 i = 1, mysize
print *,MPI_mynode() ,BLOCKarr1(i),I0_Degree(i)
tot=tot+I0_Degree(i)
800 continue

CC The following information is printed out for debugging purposes to
CC make sure that the correct number of edge end points were counted

print *,MPI_mynode(),’‘s TOTAL =’,tot

call MPI_gisum(tot,1,ibuf)
print *,’Total Total = ’,tot

print *,’Total should be ’,2x*NE

end
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A.3 Parallel Version of Program (2) : Irregular Distribution

PROGRAM NeighborCount

cC The purpose of this program is to take a graph and determine each node’s
CC in/out degree. The graph is represented by arrays X, Y, edgel and edge2

CC where arrays X and Y are the vertices’ placement on a grid, and edgel and
CC edge2 represent the end points of each edge.

CcC In this version of the program, the X, Y, edgel, edge2 and I0_Degree
CC arrays are initialized assuming a block distribution.

#include "mpi.fort.h"

parameter (idim=43)
parameter (NE=125)
parameter (buff=NE)

INTEGER build_translation_table

INTEGER edgel(NE),edge2(NE)

INTEGER newedgel(NE + buff) ,newedge2(NE + buff)
INTEGER arr(NE + buff), new2edge(NE + buff)

INTEGER IO_Degree(idim + buff),I0_Degree2(idim + buff)
DOUBLE PRECISION X(idim), Y(idim)

INTEGER schil, sch2, sch3, ttl, tt2, count, tot
INTEGER BLOCKarr1(idim)

INTEGER BLOCKarr2(NE)

INTEGER maparr(idim), newdistarri(idim + buff)
INTEGER newdistarr2(2 * NE + buff)

INTEGER rig(NE * 2), ripa(NE * 2)

INTEGER size(512), loops(512)

call PARTI_setup()
procs=MPI_numnodes ()

C Each processor must know how many everyone else has to create BLOCKarrs
do 50 i = 1,procs
size(i) = idim/procs
if (i-1 .1t. (idim - size(i)#*procs)) size(i)=size(i)+1
50 continue
mysize=size(MPI_mynode()+1)

do 60 i = 1,procs
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loops(i)=NE/procs

if (i-1 .1t. (NE - loops(i)*procs)) loops(i)=loops(i)+1
60 continue

myloops=loops(MPI_mynode()+1)

C Initialize edges arrays

edgel(1) = INT(rand()*idim) + 1
edge2(1) = INT(rand()*idim) + 1
do 100 i = 2, myloops

edgel (1)=INT(rand()*idim) + 1

edge2(i)=MOD(INT(rand()*idim-1)
$ +edgel(i),idim)+1

100 continue

C Initialize (X,Y) coord arrays
X(1) = INT(rand()*1000) + 1
Y(1) = INT(rand()*1000) + 1
do 200 1 =1, idim
X(i) = INT(rand()*1000) + 1
Y(i) = INT(rand()*1000) + 1
200 continue

C Initialize IO_Degree Array

do 250 i = 1, myloops
I0_Degree(i) = 0

250 continue

C Initialize BLOCK distribution arrays to represent initial
C distribution of the data and indirection arrays
offset=0
do 301 i = 1, MPI_mynode()
offset=offset + size(i)
301 continue
do 302 i = 1, mysize
BLOCKarr1(i) = offset + i
302 continue

offset=0

do 401 i = 1, MPI_mynode()
offset=offset + loops(i)

401 continue

do 402 i = 1, myloops
BLOCKarr2(i) = offset + i
402 continue

C Partition Data
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cC The X and Y coordinates are used to create a partitioning scheme for the
CC I0_Degree data arrays. The data arrays are then redistributed from block to
CC the new distribution.

call PARTI_setup()

call CoorBisecMap(maparr, mysize, 2, X, Y)

ttl = init_ttable_with_proc(l, maparr, mysize)

C ReMap data from old distribution to new distribution
call remap(ttl, BLOCKarrl, schl, newdistarrl, newnumlocalind)
tt1l = build_translation_table(1l, newdistarrl, newnumlocalind)
call igather(IO_Degree2, I0_Degree, schl)
mysize=newnumlocalind

C Partition Loops
cC Then the loops are partitioned using the new distribution information in
CC order to try to maximize on-processor work. The indirection arrays are then
CC gathered so that each processor has the portions of the indirection arrays
CC which correspond to the loop iterations they own.
¢ collect all local ind array values for I0_Degree into rig
count = 1
do 500 i = 1, myloops

rig(count) = edgel(i)

rig(count+1) = edge2(i)

count = count + 2

500 continue

call dref_rig(ttl, rig, myloops, 2, ripa)
call iteration_partitioner(ripa, myloops, 2, tt2)
call remap(tt2, BLOCKarr2, sch2, newdistarr2, newmyloops)

call igather(newedgel, edgel, sch2)
call igather(newedge2, edge2, sch2)

C Inspector
cC The values in the edge end point indirection arrays are adjusted using
CC localize to refer to local indices for on-processor data segments and to
CC buffer space for off-processor data segments.
do 600 i = 1, newmyloops
arr(i) = newedgel(i)
arr(i+newmyloops) = newedge2(i)
600 continue
call localize(ttl, sch3, arr, newZ2edge, newmyloops*2,
$ noff, mysize, 1)
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C Executor

C Calculate neighbors

do 700 i = 1, newmyloops

I0_Degree2(new2edge(i)) = I0_Degree2(new2edge(i))+1

I0_Degree2(new2edge (i+newmyloops))=I0_Degree2(new2edge(i+newmyloops))+1
700 continue

cC After the local portion of the indirection arrays have been polled, each
CC processor sends any information which it has stored in its buffer areas to
CC the processor which owns the associated node.

call iscatter_add(IO0_Degree2(mysize+1),I0_Degree2,sch3)

cC The output is in the form of

cc
CC Home Processor # Node #  I0_Degree
tot = 0

do 800 i = 1, mysize
print *,MPI_mynode() ,newdistarri(i),I0_Degree2(i)
tot=tot+I0_Degree2(i)

800 continue

CC The following information is printed out for debugging purposes to
CC make sure that the correct number of edge end points were counted

print *,MPI_mynode(),’‘s TOTAL =’,tot

call MPI_gisum(tot,1,ibuf)
print *,’Total Total = ’,tot

print *,’Total should be ’,2x*NE

end
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B Example Program 2 : Simplified ISING

B.1 Sequential Version of Program

program ising_simulation

parameter (ixdim=64)

parameter (iydim=64)

parameter (frac=20)

parameter (particles=16*ixdim*iydim)
parameter (timeunits=10)

C
C
C
C
C
C

This program will simulate a grid of cells and the energy particles
within those cells. The grid will be initialized in a uniformly
distributed pattern. The simulation will allow a particle to
move one cell left, right up or down (or stay in place) per time
unit. For this program it is assumed there is a one-way permeable
wall through which particles can leave, but not enter the simulation.

integer x(particles), y(particles)
integer count
INTEGER rand

C

C

Initialize Grid (assuming perfect divisibility)
do 100 i = 1, particles
x(1i) = MOD(rand(),ixdim) + 1
y(i) = MOD(rand(),iydim) + 1
100 continue
Do "timeunits'" particle movement cycles

do 200 k = 1, timeunits
do 300 1 1, particles
if ( MOD(rand(),100) .1t. frac ) then
ival = MOD(rand(),4)
if (ival.eq.0) then
y(D)=y(i)-1

else

if (ival.eq.1) then
y(D)=y(i)+1

else

if (ival.eq.2) then
x(1)=x(i)-1

else

if (ival.eq.3) x(i)=x(i)+1

endif

endif

endif

endif
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if (x(1).1t.1) x(i)=ixdim
if (x(i).gt.ixdim) x(i)=1
if (y(i).1t.1) y(i)=iydim
if (y(i).gt.iydim) y(i)=1

300 continue
200 continue

C Calculate number of particles left in grid (can do something else instead)
print *,’Particles in grid : ’, particles

end
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B.2 Parallel Version of Program

program ising_simulation
#include "mpi.fort.h"

parameter (ixdim=64)

parameter (iydim=64)

parameter (frac=20)

parameter (particles=16*ixdim*iydim)
parameter (timeunits=100)

C This program will simulate a grid of cells and the energy particles
C within those cells. The grid will be initialized in a uniformly

C distributed pattern. The simulation will allow a particle to

C move one cell left, right up or down (or stay in place) per time

C unit. For this program it is assumed that when a particle leaves

C the top, it goes to the bottom, and the same for left and right

C and vice-versa.

integer x(particles), y(particles)
integer sched, schedule_proc
integer dest_proc(particles)
integer count,part

INTEGER rand

call PARTI_setup()
procs=MPI_numnodes ()
menode=MPI_mynode ()
part=INT(ixdim/procs)
localloops=particles/procs

C Random number '"hack" so that all processors don’t re-use same random
C numbers.
do 50 i = 1, menode * localloops
l=rand()
50 continue

C Initialize Grid (assuming perfect divisibility)
C NOTE : The x-coordinates are appropriate for the given processor
do 100 i = 1, localloops

x(1) = MOD(rand(),part) + part*menode + 1

y(i) = MOD(rand(),iydim) + 1

100 continue

C Do "timeunits'" particle movement cycles
do 200 k = 1, timeunits
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do 300 i = 1, localloops
if (iprocmap(x(i),ixdim) .ne.menode) print *,’Wrong Processor’
if ( MOD(rand(),100) .1t. frac ) then
ival = MOD(rand(),4)
if (ival.eq.0) then
y(D)=y(i)-1
else
if (ival.eq.1) then
y(D)=y(i)+1
else
if (ival.eq.2) then
x(i)=x(i)-1
else
if (ival.eq.3) x(i)=x(i)+1
endif
endif
endif
endif
if (x(1).1t.1) x(i)=ixdim
if (x(i).gt.ixdim) x(i)=1
if (y(i).1t.1) y(i)=iydim
if (y(i).gt.iydim) y(i)=1
C Create destination processor array listing which processor each particle
C should be on for the next time iteration
dest_proc(i) = iprocmap(x(i),ixdim)
300 continue
C Creating schedule for moving particles between machines
sched = schedule_proc(dest_proc,localloops,newlocalloops,1)
localloops=newlocalloops
C Moving particles’ x and y coordinates to processor which "owns" the
C cell in which that particle resides
call iscatter_append(x,x,sched)
call iscatter_append(y,y,sched)
C Freeing memory used by schedule since this schedule is never useful again
call free_sched(sched)
200 continue

C Check number of particles left in grid (can do something else instead)
print *,’Particles on machine ’,menode,’: ’,localloops

call MPI_gisum(localloops,1,itemp)
if (menode.eq.0) print #*,’Total = ’,localloops

end
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function iprocmap(xcoord,xdim)
integer xcoord,xdim

iprocmap = INT((xcoord-1)/(INT(xdim/MPI_numnodes())))

end
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