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Chapter 1: Introduction

Nowadays, the Hartree-Fock approximation is a standard tool in quantum

chemistry. It is a self-consistent field method to compute the approximation to

the ground quantum state of a quantum many-body system. The main equations

of the method are the Hartree-Fock equations and they are used to solve a time-

independent problem. There are already numerous applications of this method. I am

interested in the time-dependent problem. Consider the time-dependent Hartree-

Fock equation [Dir30] in the density matrix formulation for a system consisting of

interacting Fermions. The Hartree-Fock equation provides an approximation scheme

to the many-body Schrödinger equation for quasi-free states.

The existence problem of the time-dependent Hartree-Fock equation has at-

tracted a lot of attentions. In dimension three, when the one-particle Hamiltonian is

the kinetic operator, i.e. it is the Laplace operator −∆, Bove-Prato-Fano [BDPF74]

first showed the there is a unique mild solution to the Hartree-Fock equation if

the two-body interaction potential is bounded. They later extended their result

to the case [BDPF76]1 when the two-body interaction potential is dominated by

the kinetic part −∆ by using the theory of semigroups. By the virtue of Hardy’s
1In this paper, the one-particle Hamiltonian can include the Coulomb potential
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inequality, their two-body interaction includes the Coulomb potential case. In the

same year, Chadam [Cha76] independently obtained the global well-posedness re-

sult for Coulomb potential using a limiting argument. In 1992, Zagatti [Zag92]

used Strichartz estimates and showed the global well-posedness of the Hartree-Fock

equation when the one-particle Hamiltonian is −∆+V, where V and the two-body

interaction potential are singular and they satisfy mixed type Lp conditions. In

dimension three, the two-body interaction potential in [Zag92] can be as singular as

1/∣x∣2−ε for arbitrarily small ε > 0.

In the last two decades, there is a large literature of studying the effective

dynamics of Bosonic many-body systems as the number of particles goes to infinity.

The limiting behavior of effective dynamics is expected to capture the main prop-

erties of the many-body Schrödinger equation. We refer to Chong’s thesis [Cho19]

for detailed discussion. Similar work has also been done for Fermionic many-body

systems. Several groups of authors established mean-field (with possible different

scalings) approximation to the many-body Schrödinger equation using the Hartree-

Fock equation. They compared one-particle density matrices for the two types of

equations and showed the limit of the difference vanishes as the number of particles

goes to infinity. More specifically, Bardos-Golse-Gottlieb-Mauser [BGGM03] for the

case that the initial state is close to a Slater determinant and two-body interac-

tion potential is bounded, Fröhlich-Knowles [FK11] for the case when the initial

state is a Slater determinant and the two-body interaction potential is Coulomb,

Benedikter-Porta-Schlein [BPS14] for the case when the initial state is close to a

Slater determinant and the two-body interaction potential is sufficiently regular,
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and Benedikter-Jakšić-Porta-Saffirio-Schlein [BJP+16] for the case when the initial

data is close to a quasi-free state and the two-body interaction potential is suffi-

ciently regular. The dynamics of the many-body Schrödinger equation can also be

effectively described by the Vlasov equation [Spo81,NS81].

In the thesis, we describe two variations of the Hartree-Fock equation: a re-

duced version for a system of infinitely many Fermions; a more complicated version

for quasi-free states.

The reduced version of Hartree-Fock equation is the Hartree equation, which

is derived by omitting exchange term from Hartree-Fock equation. As shown in

[Sol91,EESY04,BPS14], in the mean-field limit, the exchange term of the Hartree-

Fock equation is of low order. Removing exchange term, the resulting Hartree

equation can still be used to describe the quantum system effectively. The Hartree

equation demonstrates distinct properties from Hartree-Fock equation. Lewin-Sabin

and Chen-Hong-Pavlović [LS15, LS14,CHP17,CHP18] proved there are stationary

solutions to the Hartree equation and the equation is well-posed near the station-

ary solutions, where the stationary solutions are directly related to the Fermi-Dirac

distribution. The density matrices of the stationary solutions are not in trace class

(they are not even compact operators). Therefore the density matrix of the whole

system is not of trace class and formally it corresponds to an infinite many-body

system. Motivated by their work, we considered the Hartree equation for a model

of infinitely many electrons in a constant magnetic field and “project” the equation

of the system to dimension two. we proved that there are two families of stationary

solutions and the Hartree equation is locally well-posed near one family of the sta-
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tionary solutions, which is related to the Fermi-Dirac distribution. The presence of

the constant magnetic field discretizes the spectrum2 of the one-particle Hamilto-

nian: Pauli operator, and the Pauli operator does not dominate the Laplace operator

as the Harmonic oscillator. We can not handle the problem as in the case when there

is no background field. Furthermore, that the stationary solutions are not of trace

class also causes issues when we apply dispersive PDE techniques. We introduced

the Fourier-Wigner transform to our problem and used the asymptotic properties

of associated Laguerre polynomials to derive a collapsing estimate, whose counter-

part for the Laplace case was obtained by [GM17,CH16,CHP17,Cho18]. Using this

ingredient, we obtained the local result.

The more complicated version of Hartree-Fock equation is the Bogoliubov-de

Gennes equations, which describes the evolution of two-particle correlation func-

tions: the one-particle density matrix and the pairing function (for Cooper pairs).

Benedikter-Sok-Solovej [BSS18] formulated the Dirac–Frenkel approximation prin-

ciple in terms of reduced density matrices and applied it to the Fermionic sys-

tem. They obtained the Bogoliubov-de Gennes equations as an approximation

to the many-body Schrödinger equation and the approximation is optimal within

the class of pure quasifree states. Motivated by the work of Grillakis-Machedon

[GM13, GM17], one can also derive the Bogoliubov-de Gennes equations for pure

quasi-free states in a slightly different way. However using the Dirac–Frenkel prin-

ciple, we can naturally generalize from pure quasi-free states to all quasi-free states.

No matter which type of quasi-free states is taken into consideration: pure or mixed,
2The spectrum are Landau levels.
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the Bogoliubov-de Gennes equations for two-particle correlation functions are of

the same form. My work is to extend the existing global well-posedness result of

Benedikter-Sok-Solovej from the Coulomb potential to 1/∣x∣2−ε for arbitrarily small

ε > 0. Intuitively, by the Pauli exclusion principle, the pairing function Λ(x, y)

vanishes on the diagonal y = x and we should be able to deal with more singular

two-body interaction potentials than the Coulomb potential. Mathematically, we

used dispersive PDE techniques and the Morrey’s inequality for Banach spaces and

successfully handled 1/∣x − y∣2−εΛ(x, y) in the Bogoliubov-de Gennes equations.

The thesis is organized as follows: we presented the Fock space formulation

and main results of the two models in Chapter 2. In Chapter 3, we proved the well-

posedness result for the Hartree equation with constant magnetic field. In Chapter

4, we established the global well-posedness result for the Bogoliubov-de Gennes

equations. In the appendix, we discussed the Clifford algebra representation and

the structure of pure quasi-free states.
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Chapter 2: Main Results

2.1 Fock Space Formulation

The setting of our problem is the Fermionic Fock space. Let L2
a (R3n) denote

the L2-subspace of anti-symmetric functions. The Fermionic Fock space F is a

Hilbert space consisting of vectors in the form

∣ψ⟩ = (ψ0, ψ1, ψ2, . . .) ,

where ψ0 ∈ C and ψj ∈ L2 (R3j) , j ≥ 1. The inner product on F is defined as

⟨ϕ,ψ⟩Fa ∶=
∞

∑
j=0

⟨ϕj, ψj⟩L2
a(R3n), ϕ,ψ ∈ Fa,

where ⟨ϕj, ψj⟩L2
a(R3n) = ∫ ϕ̄

jψj are inner products on L2
a (R3n). In a word, the

Fermionic Fock space Fa is the norm completion of the direct sum

C⊕
∞

⊕
n=1

L2
a (R3n)

with the given inner product. The vacuum state (1,0,0, . . .) is denoted as ∣0⟩. Every

subspace L2
a (R3n) of Fa is the state space for a system of n Fermions. We can form
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antisymmetric n-particle functions by antisymmetrizing n functions:

(f1 ∧⋯ ∧ fn) (x1, . . . , xn) ∶=
1

√
n!
∑
σ∈Sn

(−1)sgn(σ)fσ(1)(x1)⋯fσ(n)(xn) (2.1)

where Sn is the symmetric group of {1,2, . . . , n}, sgn(σ) denotes the sign of σ and

fj ∈ L2 (R3). We use physics bra–ket notations to denote operators, for example let

∣ψ⟩ , ∣ϕ⟩ ∈ Fa, ∣ψ⟩ ⟨ϕ∣ acts on Fa as

∣ψ⟩ ⟨ϕ∣ (∣φ⟩) ∶= ∣ψ⟩ ⟨ϕ,φ⟩Fa , ∣φ⟩ ∈ Fa. (2.2)

In this Fock space Fa, we introduce creation and annihilation distribution

valued operators and denote them by a†
x and ax respectively. a†

x and ax act on

L2
a (R3(n−1)) and L2

a (R3(n+1)) in the following way,

a†
x(ψ

n−1)(x1, . . . , xn) ∶=
1

√
n

n

∑
j=1

(−1)j+1δ(x − xj)ψ
n−1(x1, . . . , x̂j, . . . , xn),

ax(ψ
n+1)(x1, . . . , xn) ∶=

√
n + 1ψn+1([x], x1, . . . , xn),

where ψn−1 ∈ L2
a (R3(n−1)), ψn+1 ∈ L2

a (R3(n+1)), x̂j means the variable xj is ignored

and [x] indicates the variable x is frozen. In addition, ax (ψ0) = 0 for ψ0 ∈ C. The

creation and annihilation operators satisfy the canonical anticommutation relations

(CAR)

[ax, ay]+ = 0, [a†
x, a

†
y]+ = 0 and [ax, a

†
y]+ = δ(x − y). (2.3)

Using the distribution valued operators, we can form operators which act on the
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Fock space Fa by introducing a field φ ∈ L2 (R3)

a†(φ) ∶= ∫ φ(x)a†
x dx a(φ) ∶= ∫ φ(x)ax dx,

and for vectors of L2
a (R3(n−1)) and L2

a (R3(n+1))

a†(φ)(ψn−1)(x1, . . . , xn) ∶=
1

√
n

n

∑
j=1

(−1)j+1φ(xj)ψ
n−1(x1, . . . , x̂j, . . . , xn),

a(φ)(ψn+1)(x1, . . . , xn) ∶=
√
n + 1∫

R3
φ(x)ψn+1(x,x1, . . . , xn)dx,

where ψn−1 ∈ L2
a (R3(n−1)) and ψn+1 ∈ L2

a (R3(n+1)). Note that a(φ) is complex linear

in the parameter φ.

2.2 Hartree Equation With Constant Magnetic Field: Well-Posedness

Theory

In this section we present the first model: a system of infinitely many electrons

moving in a constant magnetic field.

Without loss of generality, suppose the constant magnetic field B = (0,0, b),

(b > 0). Let h̃ = (σ ⋅ (−i∇−A))
2 be the Pauli operator, where σ = (σ1, σ2, σ3) are

Pauli matrices and A = −
b

2
(x2,−x1,0) 1 is the vector potential of the field B = ∇×A.

The many-body Hamiltonian for a system of N electrons moving in the constant
1There are other choices of A, for example A = −b(x2,0,0) [LL77, Chapter XV]. We use the

one which is fixed by the Coulomb gauge ∇ ⋅A = 0.
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magnetic field B is described by

ĤN =
N

∑
j=1

h̃j +∑
j>k

V (xj − xk) , xj ∈ R3, (2.4)

and the Schrödinger equation is

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tΨN(t, x1, x2, . . . , xN) = ĤNΨN(t, x1, x2, . . . , xN)

ΨN(t = 0) = ΨN,0

(2.5)

where ΨN,0 ∈ ∧
NL2 (R3,C2): the space of antisymmetric functions, h̃j means h̃ acts

on the variable xj (the j-th electron) and V is the two-body interaction potential.

A direct computation shows

h̃ =

⎛
⎜
⎜
⎜
⎝

(−i∇−A)
2

0

0 (−i∇−A)
2

⎞
⎟
⎟
⎟
⎠

− σ ⋅B,

while σ ⋅B =

⎛
⎜
⎜
⎜
⎝

b 0

0 −b

⎞
⎟
⎟
⎟
⎠

is harmless for the analysis of the system. For simplicity, we

consider the scalar case, i.e.

h = (−i∇−A)
2
. (2.6)

If the initial data ΨN,0 is set to be a Slater determinant

ΨN,0(x1, x2, . . . , xN) = ψ1,0 ∧ ψ2,0 ∧⋯ ∧ ψN,0(x1, . . . , xN),

9



the corresponding Hatree-Fock equation in the density matrix formulation is

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tΓ(t) = [h + ρΓ(t) ∗ V − (V Γ)(t),Γ(t)] ,

Γ(0, x, y) = Γ0(x, y)

(2.7)

where ρΓ(t)(x) = Γ(t, x, x), ρΓ(t) ∗ V denotes the usual convolution, (V Γ)(t, x, y) =

V (x − y)Γ(t, x, y) is the exchange term and

Γ0(x, y) ∶ = ⟨ΨN,0, aya
†
xΨN,0⟩L2

a(R3N )

=
N

∑
j=1

ψj,0(x)ψ̄j,0(y), x, y ∈ R3.

After the time evolution, ΨN(t) may not necessarily stay as a Slater determinant.

Instead, one might expect that in an appropriate sense,

ΨN(t, x1, . . . , xN) ≈ (ψ1(t) ∧ ψ2(t) ∧⋯ ∧ ψN(t)) (t, x1, . . . , xN),

However the density matrix Γ(t) is still a projection and it is in the form

Γ(t, x, y) =
N

∑
j=1

ψj(t, x)ψ̄j(t, y), x, y ∈ R3, (2.8)

where {ψj(t, x)}Nj=1 remains an orthonormal set.

In a mean field regime and in the absence of the background magnetic field

with a scaling of the kinetic part and the interaction part, Equation (2.7) is an

effective description of Equation (2.5) for certain V and initial data, when N is

10



sufficiently large. See details in [BPS14]. In [BPS14], the exchange term (V Γ)(t)

is of lower order and they also proved that the effective description remains true

if Equation (2.7) is replaced by the following Hartree equation 2 in the reduced

Hartree-Fock [Sol91] model. We omit the exchange term and obtain the Hartree

equation

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tΓ(t) = [h + ρΓ(t) ∗ V,Γ(t)] ,

Γ(t = 0) = Γ0,

(2.9)

We refer to [BGGM03,EESY04,FK11] for other comparisons on the three dynamics

from a perspective of mean field and semi-classical limit and refer to [NS81,Spo81]

for a different mean field limit of Equation (2.5) on the Vlasov hierarchy.

The problem of our interest is the well-posedness theory of Hartree equations

(2.9) when we take the formal limit of the number N of particles to be infinite. Note

that Γ0 is not of trace class any more, but it still satisfies the operator inequality

0 ≤ Γ0 ≤ 1 which is due to the Pauli exclusion principle.

In the absence of magnetic fields, if Γ0 is not of trace class, Equation (2.9) was

recently studied by several authors [LS15, LS14, CHP17,CHP18] and they showed

global well-posedness and the long time scattering behavior separately for different

interaction potentials V .

In the presence of a constant magnetic field, to my knowledge, the author is

the first one to consider the Hartree equation when Γ0 is not of trace class or a
2They are called Hartree equations since the operator h + ρΓ(t) ∗ V is derived by applying

the variational principle to the Hartree product ψ1 ⊗ ⋯ ⊗ ψN instead of the Slater determinant
ψ1 ∧⋯ ∧ ψN [SO96, Chapter Three].
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Hilbert-Schmidt operator. Since the operator h is now the Pauli operator, which is

different from the Laplace operator, the spectrum changes from a continuous one to

a discrete one. Besides the eigenspaces of are of infinite dimension. Even though

we mainly care about the case when Γ0 is not of trace class, to complete the picture,

when Γ0 is of trace class and V (x) = 1
∣x∣ , we establish a global well-posedness result

at the energy level in the appendix 3.6.

The explicit form of Equation (2.9) is

i ∂tΓ(t) = [−∂2
x3 +D

∗D + b + ρΓ(t) ∗ V,Γ(t)] , (2.10)

where

D = −2∂z̄ −
b

2
z, D∗ = 2∂z −

b

2
z̄, z = x1 + ix2. (2.11)

Consider first the two dimensional problem

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tγ(t) = [H + ργ(t) ∗ v, γ(t)] ,

γ(0, x, y) = γ0(x, y),

x, y ∈ R2, (2.12)

where

H =D∗D, ργ(t, x) = γ(t, x, x), (2.13)

and γ ∶ L2 (R2) → L2 (R2). If v ∈ L1(R2) 3, Equation (2.12) admits one family 4 of
3For the given family of solutions Π̄φ, ρΠ̄φ

= Π̄φ(x,x) = φ(0) is constant. In order for ρΠ̄φ
∗ v to

make sense, v ∈ L1(R2).
4For the other family, see Section 3.6.2.
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non-trace class stationary solutions with integral kernels in the following form

Π̄φ(x, y) = φ (x − y) e−i
bΩ(x,y)

2 , (2.14)

where Ω(x, y) ∶= x1y2 − x2y1, x, y ∈ R2 and φ is a radial symmetric function: φ(x) =

φ(∣x∣). The derivation is in Section 3.6.2.

Inspired by [LS15,LS14,CHP17,CHP18], we are interested in the evolution of

perturbations of the stationary solutions. Suppose the pertubation of the stationary

solution Π̄φ is Q(t, x, y) = γ(t, x, y) − Π̄φ(x, y), then we have the evolution equation

for Q

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tQ(t) = [H + ρQ(t) ∗ v,Q(t)] + [ρQ(t) ∗ v, Π̄φ]

Q(0, x, y) = Q0(x, y),

(2.15)

where ρQ(t, x) = Q(t, x, x) and x, y ∈ R2.

Before we discuss the main results for Equation (2.15), we summarize the spec-

tral property of the operator H and explain the connection between the stationary

solutions Π̄φ and the Fermi-Dirac distribution. The operator H has a discrete spec-

trum σ(H) = {2bj}j∈N on L2(R2) and its spectral decomposition is as follows

H =
∞

∑
j=0

2bj Pj (2.16)

where Pj are mutually orthogonal projections onto eigenspaces corresponding to

eigenvalues 2bj. The eigenspace for each 2bj is of infinite dimension. More precisely,

13



Pj have integral kernels

b

2π
Lj (

b

2
∣x − y∣2) exp(−

b

4
∣x − y∣2) e−i

bΩ(x,y)
2 (2.17)

where x, y ∈ R2 and Lk(λ) are Laguerre polynomials, i.e.

Lk(λ) =
k

∑
j=0

(
k

j
)
(−λ)j

j!
, (λ ∈ R) . (2.18)

For more details, see Section 3.2. From a functional calculus perspective, for the

stationary solutions (2.14), φ corresponds to a function l defined on the spectrum

σ(H). Let lj denote l(2bj) and l(H) ∶= ∑
∞
j=0 l (2bj)Pj. Then l corresponds to φ in

(2.14):

φ(x) =
b

2π

∞

∑
j=0

ljLj (
b

2
∣x∣2) exp(−

b

4
∣x∣2) . (2.19)

The Fermi-Dirac distributions at different temperatures provide important ex-

amples for the stationary solutions Π̄φ. Let kB be the Boltzmann’s constant and T

be the absolute temperature, the Fermi-Dirac distribution in the operator form is

given by

1

e(H−µ)/kBT + 1
f ∶=

∞

∑
j=0

1

e(2bj−µ)/kBT + 1
Pjf, (2.20)

where f ∈ L2(R2). When we set µ = 2nb, the zero temperature limit (T → 0+) of

(2.20) is 1(H≤2nb), which is exactly the projection Π̄φ with

φ (x) =
b

2π

n

∑
j=0

Lj (
b

2
∣x∣2) exp(−

b

4
∣x∣2) , x ∈ R2. (2.21)
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Now Π̄φ is the projection onto the first n + 1 eigenspaces 5 of H, i.e. the possible

lowest n+ 1 energy levels of H. As an analog of the classical picture of a Fermi sea,

we call Π̄φ the Fermi sea. In the general case, for any finite non-negative µ, the

Fermi-Dirac distribution corresponds to Π̄φ with

φ (x) =
b

2π

∞

∑
j=0

1

e(2bj−µ)/kBT + 1
Lj (

b

2
∣x∣2) exp(−

b

4
∣x∣2) , x ∈ R2. (2.22)

When it comes to which norm to use in our analysis, it is crucial to define

quantities based on the Hamiltonian H. Because the stationary solution is not of

trace class or Hilbert-Schmidt, it does behave well when we measure our data using

other criteria. As above discussion, the Hamiltonian H has a clear spectral structure

and it is natural to define norms based on the spectral decomposition.

Definition 2.1. Suppose f ∈ L2 (R2), s ≥ 0,

∥Hs/2f∥
2

L2 ∶=
∞

∑
j=0

(2bj)
s
∥Pjf∥

2
L2 , ∥⟨H⟩s/2f∥

2

L2 ∶=
∞

∑
j=0

⟨2bj⟩
s
∥Pjf∥

2
L2 ,

∥H̄s/2f∥
L2 ∶= ∥Hs/2f̄∥

L2 , ∥⟨H̄⟩s/2f∥
L2 ∶= ∥⟨H⟩s/2f̄∥

L2 ,

where ⟨2bj⟩ = (1 + (2bj)
2
)

1/2
and H̄ is the complex conjugation of H, i.e.

H̄ =D∗D̄ = (2∂z̄ −
b

2
z)(−2∂z −

b

2
z̄) .

H and its complex conjugation H̄ have similar spectral structures but in an
5In the physics literature, they are called Landau levels.
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“orthogonal” sense. Please see Figure 3.1 for details.

With respect to the new norms, we obtain a local well-posedness result of

Equation (2.15). To state the result, recall that a mild solution of Equation (2.15)

is a solution satisfying the integral equation

Q(t, x, y) = e−it(Hx−H̄y)Q0(x, y) − i∫
t

0
e−it(Hx−H̄y)(t−τ) [ρQ ∗ v,Q + Π̄φ] dτ. (2.23)

The solution space for the Banach fixed point argument is NH
T endowed with the

norm,

Definition 2.2. Let k(t, x, y) be a function t ∈ R and x, y ∈ R2, the norm NH
T is

defined as

∥k(t, x, y)∥NH
T
∶= sup

(q,r)∈Ad

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2k(t, x, y)∥LqtLrxL2
y([0,T ]×R2×R2)

+ sup
(q,r)∈Ad

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2k(t, x, y)∥LqtLryL2
x([0,T ]×R2×R2)

+ ∥⟨∇x⟩
9/8ρk(t)(x)∥L2

tL
2
x([0,T ]×R2),

where T ∈ R and

Ad = {(q, r) ∣(
1

q
,
1

r
) is in the line segment connecting (

1

∞
,
1

2
) and (

1

4
,
1

4
)} .

(2.24)

The first part of NH
T is the Strichartz norm and the set (2.24) is a subset of
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admissible pairs (q, r) which satisfy

1

q
+

1

r
=

1

2
, 2 < q ≤ ∞. (2.25)

The second part of NH
T involves the collapsing term ρQ, whose estimate is the main

new ingredient in this project. The theorem that we want to prove is as follows

Theorem 2.3. Consider Equation (2.15) and suppose that v ∈ L1 (R2) and

φ(x) = φ(∣x∣), ∥⟨H⟩1/2⟨H̄⟩1/2φ∥
L2 < ∞, x ∈ R2. (2.26)

If the initial data Q0(x, y) satisfies

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2Q0(x, y)∥L2
x,y

< ∞,

then for sufficiently short time T , Equation (2.15) has a mild solution in the Banach

space NH
T .

Remark 2.4. ∥⟨H⟩1/2⟨H̄⟩1/2φ∥
L2 is essentially ∥DD̄φ∥

L2 + ∥Dφ∥L2 + ∥D̄φ∥
L2 + ∥φ∥L2 .

By the relation (2.19), the condition passes to {lj} as ∑∞
j=0 j

2l2j < ∞. Thus (2.22)

satisfies the condition (2.26).

Remark 2.5. For the Banach space NH
T , we can increase the size of the set Ad as

long as it does not include to endpoint (1
2 ,

1
∞
). Consequently, the existence time

may decrease.

Since the norm NH
T contains ∥⟨∇x⟩

9/8ρk(t)(x)∥L2
tL

2
x([0,T ]×R2), the proof of Theo-
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rem 2.3 is based on the following collapsing estimate.

Theorem 2.6 (Collapsing Estimate). Suppose γ(t, x, y) = e−i(Hx−H̄y)tγ0(x, y) is the

solution to the linear equation

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tγ(t) = [H,γ(t)]

γ(0, x, y) = γ0(x, y) ∈ L2(R4),

(2.27)

where x, y ∈ R2, the collapsing term ργ(t, x) = γ(t, x, x) satisfies

∥ργ(t)(x)∥L2
tL

2
x([0,π/b]×R2)

≲b ∥⟨Hx⟩
s/2⟨Hy⟩

s/2γ0(x, y)∥L2(R4)
, s >

1

2
, (2.28)

and

∥∣∇x∣
cργ(t)(x)∥L2

tL
2
x([0,π/b]×R2)

≲c,b ∥⟨Hx⟩
1/2⟨H̄y⟩

1/2γ0(x, y)∥L2(R4)
, 0 ≤ c <

5

4
. (2.29)

Remark 2.7. The estimate (2.29) is only stated for the time interval [0, π/b]. How-

ever, since the solution γ(t, x, y) has a period π/b, by a patching argument, (2.29)

holds for arbitrary large time interval [−T,T ], while the constant will depend on T .

This type of estimates has been established in [GM17,CH16,CHP17] for the

Laplacian case, i.e. i ∂tγ(t) = [−∆, γ(t)]. However the technique used in those

papers does not apply to the current case. That method, in the spirit of [KM08],

is to study the characteristic hypersurface, which is derived by applying the space-

time Fourier transform after we collapse the solution eit(∆x−∆y)γ0 to the diagonal

y = x. In our case, the time Fourier transform is replaced by the Fourier series. The
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new ingredients are the Fourier-Wigner transform and a refined estimate about the

asymptotic property of associated Laguerre polynomials.

2.3 Global Well-Posedness for Bogoliubov-de Gennes Equations

In this section, we present the second model: a system of weakly interacting

Fermions, where the expected number of particles is finite and there is no background

field.

In the density matrix formulation, a pure state is an operator on the Fock

space Fa which is in the form ∣ψ⟩ ⟨ψ∣, where ψ ∈ Fa and ∥ψ∥Fa = 1. In general, a

mixed state ω is a positive self-adjoint trace class operator on Fa with trace norm

1. The mixed state is in the form

ω =
∞

∑
j=1

λj ∣ψj⟩ ⟨ψj ∣ (2.30)

where λj ≥ 0, ∑j λj = 1 and ψj ∈ Fa are orthonormal. It can be understood in the

sense, the probability distribution of the system is given by (ψj, λj), where λj is the

probability that the system is in state ψj. The many-body Schrödinger equation of

the system in the density matrix formulation is

i ∂tω(t) = [Ĥ, ω(t)] (2.31)
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where the many-body Hamiltonian is

Ĥ ∶= ∫ −∆xδ(x − y)a
†
xay dxdy +

1

2 ∫
v(x − y)a†

xa
†
yayax dxdy,

and v is the two-body interaction potential: v(x) = v(−x) and v(x) ∈ R. For short

V ∶=
1

2 ∫
v(x − y)a†

xa
†
yayax dxdy

and

−∆̂ ∶= ∫ −∆xδ(x − y)a
†
xay dxdy.

To see how the Fock space Hamiltonian Ĥ acts on Fa, let ψn ∈ L2
a (R3n),

(Ĥψn) (x1, . . . , xn) =
⎛

⎝

n

∑
j=1

(−∆xj) +∑
j<k

v(xj − xk)
⎞

⎠
ψn(x1, . . . , xn).

Next we “project” the many-body Hamiltonian action onto the subspace of

mixed states: quasi-free states, which will be defined shortly. Recall that two-

particle correlation functions of a state ω are defined in the sense of distribution

Γ(x, y) ∶=TrFa (a†
yaxω) =

∞

∑
j=1

λj ⟨ψj, a
†
yaxψj⟩Fa

(2.32)

Λ(x, y) ∶=TrFa(ayaxω) =
∞

∑
j=1

λj ⟨ψj, ayaxψj⟩Fa (2.33)

where the trace TrFa is taken over Fa. Γ and Λ are also called the one particle density

matrix and pairing function respectively, where Λ is used to model the Cooper pairs.
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Other correlation functions can be defined similarly.

A mixed state ω is quasi-free if it satisfies the Wick’s theorem, i.e. any of its

correlation functions can be determined by the two-particle correlation functions in

the way

TrFa (a
#
1 a

#
2 ⋯a

#
2n+1ω) = 0 (2.34)

TrFa (a
#
1 a

#
2 ⋯a

#
2nω) = ∑

σ∈Sad

sgn(σ)TrFa (a
#
σ(1)

a#
σ(2)

ω)⋯TrFa (a
#
σ(2n−1)

a#
σ(2n)

ω)

(2.35)

where a#
j denotes an operator without specifying whether it is a creation or annihi-

lation operator, sgn(σ) denotes the sign of permutation σ and Sad is a subset of the

symmetric group S2n such that

σ(1) < σ(3) < ⋯ < σ(2n − 1), σ(2k − 1) < σ(2k).

To further explain the correspondence between quasi-free states ω and their two-

particle correlation functions, it is more convenient to work on the generalized one-

particle density matrices Sω, which are defined as operators on L2(R3)×L2(R3) such

that

⟨

⎛
⎜
⎜
⎜
⎝

f1

g1

⎞
⎟
⎟
⎟
⎠

, Sω

⎛
⎜
⎜
⎜
⎝

f2

g2

⎞
⎟
⎟
⎟
⎠

⟩

L2(R3)×L2(R3)

= TrFa ((a†(f2) + a(g2)) (a
†(f1) + a(g1))

∗
ω) (2.36)
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where ∗ denotes the adjoint of an operator. More specifically,

Sω =

⎛
⎜
⎜
⎜
⎝

Γ Λ

Λ∗ 1 − Γ̄

⎞
⎟
⎟
⎟
⎠

,

where the notation Γ̄ means the complex conjugation of the operator Γ, which is

defined as

Definition 2.8. Let T be an operator on L2 (R3), the complex conjugation of T̄ is

T̄ f ∶= T f̄ , f ∈ L2 (R3) .

If T has an integral kernel k(x, y), the kernel of T̄ is k̄(x, y).

Using the definition (2.36) and CAR, one can show for any state ω, the gen-

eralized one-particle density matrix Sω satisfies 6

Sω + J SωJ = idL2(R3)×L2(R3) and 1 ≥ S∗ω = Sω ≥ 0 (2.37)

where J is a complex conjugation defined on L2 (R3) ×L2 (R3)

J

⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

∶=

⎛
⎜
⎜
⎜
⎝

ḡ

f̄

⎞
⎟
⎟
⎟
⎠

, f, g ∈ L2 (R3) .

6More generally, if one considers the C∗-algebra generated by a†(f) and a(g) for any f, g ∈
L2 (R3) and states as positive normalized linear functionals over the C∗-algebra, where the nor-
malization is that ω(e) = 1 and e is the identity element in the C∗-algebra, this result still holds.
We refer interested readers to [Ara71], while our Sω and J are the 1 − S and Γ in [Ara71]. Note
that all mixed states in our sense yield positive functionals.
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Definition 2.9. Let Sad denote

Sad ∶= {S ∣S + J SJ = idL2(R3)×L2(R3) and 1 ≥ S∗ = S ≥ 0} (2.38)

For any S ∈ Sad, we can always associate S with a quasi-free by [Ara71, Lemma

4.6]. The correspondence from the space of quasi-free states to Sad is surjective. Sad

has a nice convex property, while the space of quasi-free states may not be convex.

Therefore it is convenient to work on Sad and then lift matrices in Sad to associated

quasi-free states. The lifting procedure is given in Lemma 4.20 Appendix 4.6.

For a pair of functions (Γ(t),Λ(t)), when we say an associated state ω(t), it

could be any state whose two-particle correlation functions are (Γ(t),Λ(t)). In the

case that such a state does not exist, we only use it as a notation. With the prefix

quasi-free, the state refers to the associated quasi-free state shown in Lemma 4.20.

Let us work on quasi-free initial data ω0, which is lifted from a matrix in Sad.

The Bogoliubov-de Gennes equations are an approximation scheme to the many-

body Schrödinger equation, which are defined for two-particle correlation functions

i ∂tΓ(t) = [−∆,Γ(t)] + [v ∗ ρΓ(t),Γ(t)] − [Γ(t),Γ(t)]v + [Λ(t),Λ∗(t)]v
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F1(t;v)

(2.39)

i ∂tΛ(t) = [−∆,Λ(t)]+ + (vΛ)(t) + [v ∗ ρΓ(t),Λ(t)]+ − [Γ(t),Λ(t)]v,+ − [Λ(t), Γ̄(t)]v,+
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F2(t;v)

,

(2.40)
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where ρΓ(t)(x) = Γ(t, x, x) and

(vA) (t, x, y) ∶= v(x − y)A(t, x, y), (2.41)

[A,B]v ∶= (vA)B −A (vB) , [A,B]v,+ ∶= (vA)B +A (vB) . (2.42)

The kernel form of Equation (2.39) and (2.40) is

i ∂tΓ(t, x, y) = (−∆x +∆y)Γ(t, x, y)

+ ∫
R3
dz (v(x − z) − v(y − z)) (Λ(t, x, z)Λ̄(t, y, z)

−Γ(t, x, z)Γ(t, z, y) + Γ(t, x, y)ρΓ(z)) (2.43)

i ∂tΛ(t, x, y) = (−∆x −∆y + v(x − y))Λ(t, x, y)

+ ∫
R3
dz (v(x − z) + v(y − z)) (ρΓ(z)Λ(t, x, y)

−Γ(t, x, z)Λ(t, z, y) −Λ(t, x, z)Γ̄(t, z, y)) . (2.44)

where t ∈ R and x, y ∈ R3.

Recently, [BSS18] formulated the Dirac–Frenkel approximation principle in

terms of reduced density matrices and applied it to the Fermionic system. They

obtained the Bogoliubov-de Gennes equations as an approximation to the many-

body Schrödinger equation and the approximation is optimal within the class of pure

quasifree states. The idea can be extended to mixed states: we project the evolution

equation (2.31) onto the space of quasifree states, use the defining properties (2.34)

and obtain the Bogoliubov-de Gennes equations for mixed states. When the state

is pure, there is also another way of deriving the Bogoliubov-de Gennes equations
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as effective equations following [GM13,GM17]. We refer to Section 4.2 for details.

The total energy of (Γ(t),Λ(t)) (the associated state is ω(t)) is defined as

EBG (ω(t); v) ∶=Tr(−∆Γ(t)) +
1

2
Tr ((ρΓ(t) ∗ v)Γ(t)) (2.45)

−
1

2
Tr ((vΓ)(t)Γ∗(t)) +

1

2
Tr ((vΛ)(t)Λ∗(t))

where the trace Tr is taken over L2 (R3). The expression of the total energy can be

derived from TrFa (Ĥω(t)) when ω(t) is quasi-free. A formal computation shows

the time derivative of TrFa (Ĥω(t)) is TrFa (Ĥ[Ĥ, ω(t)]) and it vanishes using the

formal cyclicity of trace. Thus the energy of the system is conserved. A rigorous

proof will be given in Chapter 4. We also give the corresponding integral form of

the energy

EBG (ω(t); v) =∫
R3
dx (

3

∑
j=1

∂xj∂yjΓ)(t, x, x) +
1

2 ∫R6
dxdy v(x − y)ρΓ(t)(x)ρΓ(t)(y)

+
1

2 ∫R6
dxdy v(x − y) (−∣Γ∣2 + ∣Λ∣2) (t, x, y).

In this model, we study the local and global well-posedness of the Bogoliubov-

de Gennes equations (2.39) and (2.40) for mixed states ω(t). The two-particle

correlation function Λ of a state is anti-symmetric, i.e. Λ(x, y) = −Λ(y, x), because

of CAR. Therefore Λ vanishes along the diagonal, i.e. Λ(x,x) = 0. Based on this

observation, we are able to apply dispersive PDE techniques and a generalization of
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Morrey’s inequality to deal with all singular interaction potentials in the form

v(x) =
1

∣x∣2−ε
, x ∈ R3, where 0 < ε ≤ 2. (2.46)

In order to give a uniform argument, we assume that 0 < ε < 1. For other cases

1 ≤ ε ≤ 2, some steps of our argument need modifying. When ε = 1, v is the Coulomb

potential and this case has been solved by [BSS18]. For the rest of the paper, we

regard ε as a fixed constant which belongs to (0,1).

We are dealing with data defined in the spaces

Definition 2.10. Suppose k ∈ N and 1 ≤ p ≤ ∞. Let k be an operator on L2 (Rd),

the Schatten-Sobolev norm is

∥k∥Ls,p ∶= Tr (∣⟨∇⟩sk⟨∇⟩s∣
p
)

1/p
.

When s = 0, L0,p is the usual Schatten norm and it is denoted as Lp for simplicity.

Let u be a function on Rd and s ≥ 0,

∥u∥W s,p ∶= ∥u∥Lp + ∥∣∇∣su∥Lp , ∥u∥Hs ∶= ∥u∥W s,2 .

Since we are applying dispersive PDE techniques, the solution space, which is

needed for the Banach fixed point argument to Equation (2.39) and (2.40), involves

the following two Strichartz norms

Definition 2.11. Suppose k(t, x, y) is a space-time function where (t, x, y) ∈ [0, T ]×
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R3 × R3 and T ∈ R, then the Strichartz norms involving s derivatives in the space

direction x ∈ R3 and y ∈ R3 are defined as

∥k(t, x, y)∥ST sT ∶= sup
q,r∈Ad

∥⟨∇x,y⟩
sk(t, x, y)∥LqtLrxL2

y([0,T ]×R3×R3) (2.47)

+ sup
q,r∈Ad

∥⟨∇x,y⟩
sk(t, x, y)∥LqtLryL2

x([0,T ]×R3×R3);

∥k(t, x, y)∥ST sεT ∶= sup
q,r∈Adε

∥⟨∇x,y⟩
sk(t, x, y)∥LqtLrxL2

y([0,T ]×R3×R3) (2.48)

+ sup
q,r∈Adε

∥⟨∇x,y⟩
sk(t, x, y)∥LqtLryL2

x([0,T ]×R3×R3)

+ sup
q,r∈Adε

∥⟨∇x,y⟩
sk(t, x, y)∥LqtLrx−yL2

x+y([0,T ]×R3×R3),

where

Adε ∶= {(q, r) ∣
1

q
+

3

2r
=

3

4
, q ≥

4

2 − ε
} , Ad ∶= Ad0.

The norms of the solution space for our local result are

Definition 2.12. Let (Γ(t),Λ(t)) be a pair of operators on L2 (R3),

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∥Γ(t)∥N1T
∶= ∥Γ(t)∥L∞t ([0,T ],L1) + ∥ρΓ(t)(x)∥L1

tL
3
x([0,T ]×R3) + ∥Γ(t, x, y)∥ST 1

T

∥Λ(t)∥N2T
∶= ∥Λ(t, x, y)∥ST 1

εT

. (2.49)

For short, let ω(t) be the associated state,

∥ω(t)∥NT ∶= ∥Γ(t)∥N1T
+ ∥Λ(t)∥N2T

.

Next, we describe the potential v using norm ∥⋅∥M , which involves all quantities
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we are dealt in the proofs of our theorems.

Definition 2.13. Let v be a function on R3, the norm ∥v∥M is defined as

∥v∥M ∶= ∥vχ1∥
L

3
2−ε/2

+ ∥(vχ1)(x)∣x∣∥L3 + ∥χ1∇v∥
L

3
3−ε/2

+ ∥vχ2∥L∞ + ∥χ2∇v∥L∞ (2.50)

+ ∥⟨∇⟩(vχ2)∥L3 + ∥∇(vχ1)∣x∣
(1−ε)/2∥

L6/5 ,

where χ1 and χ2 are cut-off functions such that

supp (χ1) ⊂ [0,2), supp (χ2) ⊂ [1,∞), χ1 + χ2 = 1,

and (vχ1)(x) = v(x)χ1(∣x∣) and (vχ2)(x) = v(x)χ2(∣x∣).

This condition (2.50) includes (2.46) for 0 < ε < 1. Recall that

Definition 2.14. (Γ(t),Λ(t)) a mild solution to Equation (2.39) and (2.40) if it

satisfies the integral equations

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Γ(t) = ei∆tΓ0e
−i∆t − i∫

t

0
ds ei∆(t−s)F1(s; v)e

−i∆(t−s)

Λ(t) = ei∆tΛ0e
i∆t − i∫

t

0
ds ei∆(t−s)((vΛ)(s) + F2(s; v))e

i∆(t−s)

(2.51)

Finally, the local well-posedness theorem is as follows, which is meant to deal

with correlation functions which are more general than correlation functions associ-

ated with quasi-free states.

Theorem 2.15. Suppose the interaction potential v satisfies

∥v∥M < ∞, v(x) = v(−x) and v(x) ∈ R for x ∈ R3,
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and

Γ∗
0 = Γ0, Λ∗

0 = −Λ̄0, Γ0 ∈ L
1, Γ0,Λ0 ∈H

1 (R6) . (2.52)

For sufficiently small time interval [0, T ], T ∈ R, the Bogoliubov-de Gennes equations

(2.39) and (2.40) with initial conditions

Γ(t = 0) = Γ0 and Λ(t = 0) = Λ0,

have a unique mild solution (Γ(t),Λ(t)) such that ∥Γ(t)∥N1T
+ ∥Λ(t)∥N2T

< ∞.

Next we extend the local theory to a global result when the initial data

(Γ0,Λ0) ∈ Sad. In this case, using a limiting argument, we prove that the con-

servation law of trace holds and the solution (Γ(t),Λ(t)) still satisfies Condition

(2.37). The norm NT is below the energy level and the convergence of smooth solu-

tions in NT does not imply the convergence of the energy functional. However if we

assume that the energy is finite initially and use the positivity of Γ(t) and v, we can

recover Γ(t) ∈ L1,1 and prove the conservation law of energy. Using the conserved

quantities, we extend the local mild solution (Γ(t),Λ(t)) obtained from Theorem

2.15 to a global one.

Theorem 2.16. Suppose ∥v∥M < ∞,

v(x) = v(−x) and v(x) ≥ 0 for x ∈ R3,

and the initial data (Γ(t = 0),Λ(t = 0)) = (Γ0,Λ0) ∈ Sad (the associated state is ω0)
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and

Γ0 ∈ L
1, Γ0,Λ0 ∈H

1 (R6) and EBG(ω0; v) < ∞,

then there is a global mild solution (Γ(t),Λ(t)) (the associated state is ω(t)) to the

Bogoliubov-de Gennes equations (2.39) and (2.40) such that

(i) Γ(t) ∈ C (R,H1) ∩L∞ (R,L1,1) and Λ(t) ∈ C (R,H1);

(ii) (Γ(t),Λ(t)) ∈ Sad for t ∈ R;

(iii) Tr(Γ(t)) = Tr(Γ0) for t ∈ R (conservation of trace);

(iv) EBG(ω(t); v) = EBG(ω0; v) for t ∈ R (conservation of energy).

Remark 2.17. (Γ0,Λ0) ∈ Sad implies that Γ∗
0 = Γ0, Λ∗

0 = −Λ̄0 and Γ0 is positive.
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Chapter 3: Hartree Equation With Constant Magnetic Field: Well-

Posedness Theory

The chapter is organized in the following way: in Section 3.1 we define most

notations used in the chapter; in Section 3.2 we discuss the propagator e−iHt and the

spectral structure of H; in Section 3.3 we establish the collapsing estimate Theorem

2.6; in Section 3.4 we first give a low regularity result for Equation (2.12) to show

that the “forcing” term [ρQ∗v, Π̄φ] in Equation (2.15) is a challenging term to handle

and then prove Theorem 2.3; in Section 3.5, we pose open problems for future study.

In the appendix, in Section 3.6.1, we give a short review of the Heisenberg group;

in Section 3.6.2 we present two families of stationary solutions to Equation (2.12);

in Section 3.6.4, we show the global well-posedness of Equation (2.9) for the case

when Γ0 is of trace class and V (x) = 1
∣x∣ .

3.1 Preliminary

For the reader’s convenience, we define most notations used in the chapter in

this section.
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Let Ω denote the canonical symplectic form on R2,

Ω(x, y) ∶= x1y2 − x2y1, x, y ∈ R2, (3.1)

and I, J be matrices

I ∶=

⎛
⎜
⎜
⎜
⎝

1 0

0 1

⎞
⎟
⎟
⎟
⎠

, J ∶=

⎛
⎜
⎜
⎜
⎝

0 1

−1 0

⎞
⎟
⎟
⎟
⎠

. (3.2)

The inner product on L2 (Rd) is defined to be complex linear in the first variable in

this chapter, which is different the other chapters

⟨f, g⟩L2(Rd) ∶ ∫
Rd
f(x)ḡ(x)dx (3.3)

.

Let a and a† be annihilation and creation operators

a ∶=
x + b∂x
√

2
, a† ∶=

x − b∂x
√

2
, x ∈ R. (3.4)

Denote normalized Hermite polynomials by hj, j ∈ N,

hj(x) ∶=
(a†)

j

(bπ)1/4
√
j! bj

e−
x2

2b , x ∈ R. (3.5)

They satisfy ⟨hj, hk⟩L2(R) = δjk. Hh denotes the Hermite operator

Hh ∶= −∆x +
b2∣x∣2

4
, x ∈ R2. (3.6)
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We use the following tools from the harmonic analysis in the phase space

[Fol89]. Let f ∈ L2 (R), the Heisenberg representation β on L2 (R) is defined as

β(p, q, t)f ∶= ei(pP̂+qX̂+tb)f = eiqx+
ibpq

2
+ibtf(x + pb) (3.7)

where x, p, q, t ∈ R, P̂ = −ib∂x and X̂ denotes the multiplication by x. For simplicity,

denote β(p, q,0)f as β(p, q)f . β is a unitary representation.

The twisted convolution between two functions f, g is

(f ♮ g) (x) ∶= ∫
R2
f(x − y)g(y)e

ib
2

Ω(x,y) dy, (3.8)

and the “complex conjugate” ♮̄ is defined as

(f ♮̄g) (x) ∶= ∫
R2
f(x − y)g(y)e−

ib
2

Ω(x,y) dy. (3.9)

The Fourier-Wigner transform V is defined as the matrix coefficient of the Heisen-

berg representation

V (f, g)(p, q) ∶ = ⟨β(p, q)f, g⟩L2(R)
(3.10)

= ∫
R
eiqx+

ibpq
2 f(x + pb)ḡ(x)dx (3.11)

where p, q ∈ R and the Wigner transform W is the Fourier transform of V

W (f, g)(ξ, x) ∶=
1

2π ∫R2
V (f, g)(p, q)e−iξp−ixq dpdq ξ, x ∈ R. (3.12)
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Remark 3.1. All these concepts can be defined similarly in higher dimensions.

3.2 Properties of H

In this section, we discuss the one parameter unitary subgroup e−iHt generated

by −iH, where

H =D∗D = −∂2
x1 − ∂

2
x2 − ib (x

2∂x1 − x1∂x2) +
b2

4
(∣x1∣2 + ∣x2∣2) − b, (3.13)

b > 0 and the spectral structure of H. They are crucial ingredients for the collapsing

estimate. The formula for e−iHt is derived by applying the metaplectic representa-

tion.

Theorem 3.2. Given the Schrödinger equation

i ∂tf(t, x) =Hf(t, x), f(0, x) = f0(x), (3.14)

where f0(x) ∈ S(R2), the formula for the solution is

(e−iHtf0) (x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

b eibt

4πi sin(bt) ∫R2
exp(

ib(x − y)2

4 tan(bt)
−
ib

2
Ω(x, y)) f0(y)dy, t ≠ π

b k

f0(x), t = π
b k

(3.15)

where k ∈ Z.

Proof. Consider the metaplectic representation µ [Fol89, Chapter 4] from the meta-

plectic group Mp(4,R) to the unitary group U (L2(R2)). The corresponding in-
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finitesimal representation dµ is

dµ ∶ sp(4,R) → u (L2(R2)) (3.16)

A =

⎛
⎜
⎜
⎜
⎝

A B

C −AT

⎞
⎟
⎟
⎟
⎠

↦ −
1

2i
(Q̂ P̂)

⎛
⎜
⎜
⎜
⎝

A B

C −AT

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 I

−I 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Q̂

P̂

⎞
⎟
⎟
⎟
⎠

, (3.17)

where Q̂ =

⎛
⎜
⎜
⎜
⎝

x1

x2

⎞
⎟
⎟
⎟
⎠

, P̂ =

⎛
⎜
⎜
⎜
⎝

−i∂x1

−i∂x2

⎞
⎟
⎟
⎟
⎠

and At denotes the transpose matrix of A. Under

dµ, −i (H + b) ∈ u (L2(R2)) corresponds to

A =

⎛
⎜
⎜
⎜
⎝

bJ b2

2 I

−2 I bJ

⎞
⎟
⎟
⎟
⎠

∈ sp(4,R).

In order to apply Theorem 3.28 from the appendix to get the integral Formula

(3.15), we need to compute the explicit form for the one parameter subgroup exp(At)

in the symplectic group Sp(4,R). Since A can be written as a sum of two commuting

matrices
⎛
⎜
⎜
⎜
⎝

J 0

0 J

⎞
⎟
⎟
⎟
⎠

and
⎛
⎜
⎜
⎜
⎝

0 b2

2 I

−2 I 0

⎞
⎟
⎟
⎟
⎠

,
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then

exp(At)

= exp

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

J 0

0 J

⎞
⎟
⎟
⎟
⎠

bt

⎞
⎟
⎟
⎟
⎠

⋅ exp

⎛
⎜
⎜
⎜
⎝

0 b2t
2 I

−2t I 0

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

exp (Jbt) 0

0 exp (Jbt)

⎞
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎝

cos(bt) I b
2 sin(bt) I

−2
b sin(bt) I cos(bt) I

⎞
⎟
⎟
⎟
⎠

.

Using Theorem 3.28, we have the expression

(µ(exp(At))f0) (x) =
1

2π cos(bt) ∫R2
exp (−iS(t, x, ξ)) f̂0(−ξ)dξ, (3.18)

where the phase function S is

S(t, x, ξ) =
tan(bt)

b
∣ξ∣

2
+ xξ + tan(bt)Ω(x, ξ) +

b tan(bt)

4
∣x∣2
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and ξ = (ξ1, ξ2), x = (x1, x2). To obtain Formula (3.15),

(µ(exp(At))f0) (x)

=
1

(2π)2 cos(bt) ∫R2
f0(y)dy∫

R2
exp (−iS(x, ξ) + iyξ) dξ

=
1

(2π)2 cos(bt) ∫R2
f0(y)dy∫

R2
exp(

bi

4 tan(bt)
(x − tan(bt)Jx − y)

2
)

⋅ exp
⎛

⎝
−i

⎡
⎢
⎢
⎢
⎢
⎣

b tan(bt)

4
∣x∣2 +

tan(bt)

b
(ξ +

b

2 tan(bt)
(x − tan(bt)Jx − y))

2⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
dξ

=
b

4πi sin(bt) ∫R2
exp(

ib

4 tan(bt)
(x − y)2 −

ib

2
Ω(x, y)) f0(y)dy. (3.19)

Let us denote (3.19) by sol(t)f0.

Theorem 3.28 is valid as long as the matrix cos(bt)I is not degenerate. Since

cos(bt) vanishes at
π

2b
, we only obtain the Formula (3.15) for t ∈ [0,

π

2b
). Next we

show that Formula (3.19) is valid on R. Formula (3.19) is defined when t ∈ (0, π/b).

By direct computation,

sol(t + s)f0 = sol(t)sol(s)f0, for t > 0, s > 0, t + s <
π

b
,

i.e. sol(t) is a semigroup when t ∈ (0, π/b). Besides sol(t) is also continuous with

respect to the strong operator topology when t ∈ [0, π/b). This is because when

t ∈ [0, π/2b), we obtain Formula (3.19) by the metaplectic representation; when

t ∈ [π/2b, π/b), sol(t) = sol(π/2b)sol(t − π/2b). Therefore, by the uniqueness of the

one parameter unitary subgroup generated by dµ(A), e−i(H+b)t = sol(t) is true for

t ∈ [0, π/b). As t → π/b, from (3.18), we see that the phase function S(t, x, ξ) → xξ
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and µ (exp(At)) f0 → −f0 pointwise. By the dominant convergence theorem, sol(t)f0

also converges to −f0 in L2(R2). In summary, we have obtained Formula (3.15) for

t ∈ [0, π/b] and showed that e−iHt is of period π/b. Therefore e−i(H+b)t = sol(t) holds

for t ∈ R.

Remark 3.3. According to the metaplectic representation µ, one can also conclude

that e−i(H+b)π/b = −1 by the observation that exp(At) ∶ [0, π/b] → Sp(4,R) is the

generator of the fundamental group π1 (Sp(4,R)) of Sp(4,R) and the metapletic

group is the double cover of Sp(4,R).

Based on the formula (3.15) and the machinery in [GV92], we obtain the

Strichartz estimate to arbitrary finite time.

Corollary 3.4. Fix any time T ∈ R,

∥e−iHtf∥
LqtL

r
x([0,T ]×R2)

≲q,r,T ∥f∥L2(R2)
, (3.20)

where (q, r) satisfies (2.25).

Proof. For the time being, let T be a fixed time. There is a positive integer n such

that Tε = T
n ≤ π

10b . According to Theorem 3.2, for t < Tε,

∥e−iHtf∥
L∞(R2)

≲
1

t
∥f∥L1(R2)

.

Since e−iHt is unitary, by [GV92], ∥e−iHtf∥LqtLrx([0,Tε]×R2)
≲q,r ∥f∥L2(R2), where (q, r)

satisfies (2.25). For any integer j, 1 ≤ j ≤ n, repeat the above argument on the time
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interval [(j − 1)Tε, jTε],

∥e−iHtf∥
LqtL

2
x([(j−1)Tε,jTε]×R2)

≲q,r ∥e
−iH(j−1)Tεf∥

L2(R2)
= ∥f∥L2(R2).

By virtue of the Minkowski inequality

∥e−iHtf∥
LqtL

r
x([0,nTε]×R2)

≤
n

∑
j=1

∥e−iHtf∥
LqtL

2
x([(j−1)Tε,jTε]×R2)

≲q,r n∥f∥L2(R2).

The spectrum of H is well-known in the physics literature. Here we give a

discussion of its spectral structure and some formulas based on the Fourier-Wigner

transform. H is a semi-positive self-adjoint operator on L2(R2). Since for any

f ∈ D(D),

Df = (−2∂z̄ −
b

2
z) f = e−b∣z∣

2/4 (−2∂z̄) (e
b∣z∣2/4f) ,

and ∂z̄ is elliptic, the null space H0 of H consists of all functions in the form

g(z)e−b∣z∣
2/4, where g(z) is an entire function. To rephrase it, eb∣z∣2/4H0 is a Fock-

Bargmann space [Fol89, Section 1.6] with probability measure b e−b∣z∣2/2dµ/2π, where

dµ is the Lebesgue measure on C. Thus, with respect to the canonical Hermitian

inner product on L2(R2), H0 has an orthonormal basis

e0j(z) ∶=
zj

√
πj!(2/b)j+1

exp(−
b∣z∣2

4
) , (3.21)

where z ∈ C ≃ R2, j ∈ N, and the integral kernel P0(x, y) associated to the projection
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P0 ∶ L2(R2) → H0 is

P0(x, y) =
b

2π
exp(−

b∣x − y∣2

4
−
ib

2
Ω(x, y)) (3.22)

=
b

2π
exp(−

b

4
(∣zx∣

2 + ∣zy ∣
2) +

b

2
zxz̄y) ,

where zx = x1 + ix2, x = (x1, x2) ∈ R2, zy = y1 + iy2 and y = (y1, y2) ∈ R2.

Using the commutation relation [D, (D∗)k] = 2bk(D∗)k−1, we obtain other

eigenspaces Hk = (D∗)k(H0) associated to eigenvalue 2bk and orthonormal bases of

Hk for k ∈ N,

ekj(z) ∶=
(D∗)k

√
(2b)kk!

e0j(z), j ∈ N. (3.23)

On the level of eigenspaces, H has a ladder operator structure D∗Hk = Hk+1 and

D(Hk) = Hk−1. Therefore we call D and D∗ annihilation and creation operators

respectively. Furthermore,

Lemma 3.5. The space L2(R2) is decomposed orthogonally as follows

L2(R2) =⊕
k∈N
Hk,

which implies that H has a discrete spectrum σ(H) = {2bk}
∞

k=0 with corresponding

eigenspaces Hk.

Proof. Consider the related Hermite operator Hh, x = (x1, x2) ∈ R2, and associated
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creation and annihilation operators

a†
j = ∂xj −

b

2
xj, aj = −∂xj −

b

2
xj, j ∈ {1,2}.

{(a†
1)
j
(a†

2)
l
e−b∣x∣

2/4}
j,l∈N

is a basis for L2(R2). Since

(a†
1)
j
(a†

2)
l
e−b∣x∣

2/4 = eb∣x∣
2/4(∂x1)j(∂x2)le−b∣x∣

2/2

= il eb∣x∣
2/4(∂z + ∂z̄)

j(∂z − ∂z̄)
le−b∣x∣

2/2,

and bases of Hk are in the form

(D∗)k (zje−b∣z∣
2/4) = eb∣z∣

2/4(2∂z)
k (−

2

b
∂z̄)

j

e−b∣z∣
2/2,

(a†
1)
j
(a†

2)
l
e−b∣x∣

2/4 can be written as a linear combination of bases of Hk. Therefore

the L2-closure of ⊕k∈NHk is L2(R2).

We can also derive the spectrum of H by first decomposing H as a sum of

three operators: the constant operator −b, the Hermite operator Hh and the rotation

vector field Hr = −ib(x2∂x1 − x1∂x2) = z̄∂z̄ − z∂z, i.e.

H =Hh +Hr − b. (3.24)

The three operators all commute with each other and they all share same eigenvec-
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tors. More precisely,

Hhekj = (k + j + 1)b ekj, Hrekj = (k − j)b ekj.

ThenHekj = (Hh + z̄∂z̄ − z∂z − b) ekj = 2kb ekj. Displaying all eigenvectors ekj schemat-

ically in Figure 3.1, all rows correspond to different eigenspaces of H, all columns

correspond to different eigenspaces of the complex conjugate H̄, all lines with slope

equal to −1 correspond to different eigenspaces of Hh and all lines slope equal to 1

correspond to different eigenspaces of Hr.

e00 e01 e02 e03 e04

e10

e20

e30

e11 e12 e13

e21 e22

e31

H0

H1

H̄1H̄1 eigenspace associated to 4b of Hh

eigenspace associated to − 2b of Hr

ekj are in the form: ekj(z) =
⎧⎪⎪
⎨
⎪⎪⎩

zj−kp ( b∣z∣
2

2 ) j ≥ k,

z̄k−jp ( b∣z∣
2

2 ) k > j,
where p is a polynomial of

degree min{j, k}.

Figure 3.1: Canonical Eigenfunctions of H

Next we find projection kernels for Pk using P0(x, y) and the ladder structure

Hk = (D∗)
k
H0. They can be expressed in terms of the Fourier-Wigner transform.

Lemma 3.6. The projection Pk associated to the eigenspace Hk can be expressed as

Pkf =
b

2π
V (hk, hk)♮̄f, (3.25)
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where f ∈ L2 (R2). More explicitly, the integral kernel Pk(x, y) of Pk is

Pk(x, y) =
b

2π
Lk (

b∣x − y∣2

2
) exp(−

b∣x − y∣2

4
−
ib

2
Ω(x, y)) , (3.26)

where x, y ∈ R2 and Lk(λ) =
k

∑
j=0

(
k

j
)
(−λ)j

j!
, (λ ∈ R) are Laguerre polynomials.

Proof. Suppose g ∈ S(R), the Fourier-Wigner transform of g and e−λ2/2b is

V (g, e−λ
2/2b) (x1, x2) = ∫

R
eix

2λ+ibx1x2/2g(λ + bx1)e−λ
2/2b dλ

= e−b∣z∣
2/4
∫
R
eλz−λ

2/2b−bz2/4g(λ)dλ,

where z = x1 + i x2. The following map

(g ↦ ∫
R
eλz−λ

2/2b−bz2/4g(λ)dλ)

defines a Bargmann transform from L2(R) to the Fock-Bargmann space with weight

e−b∣z∣
2/2dµ. Since the correspondence is isomorphic, we identify L2(R) with H0. Note

that D∗ and the creation operator a† are connected through the identity

D∗

√
2
V (g, e−λ

2/2b) = V (g, a†e−λ
2/2b) . (3.27)

Then L2(R) corresponds to Hk = (D∗)kH0 through

(g ↦ V (g, (a†)
k
e−λ

2/2b)) .
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Therefore for any f ∈ L2(R2), there is a sequence {fk}k∈N ⊂ L2(R) such that

f(x) =
∞

∑
k=0

V
⎛

⎝
fk,

(a†)
k

(πb)1/4
√
k!(2b)k

e−λ
2/2b

⎞

⎠
=

∞

∑
k=0

V (fk, hk) .

Using Lemma 3.25 and Theorem 3.26 from the appendix 3.6,

V (hj, hj) ♮ f(x) =
∞

∑
k=0

2π

b
⟨hk, hj⟩V (fk, hj)

=
2π

b

∞

∑
k=0

δjkV (fk, hj) =
2π

b
V (fj, hj)

Ô⇒

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Pk =
b

2π
V (hk, hk) ♮ or

Pk(x, y) =
b

2π
Lk (

b

2
∣x − y∣2) exp(−

b∣x − y∣2

4
−
ibΩ(x, y)

2
) .

Remark 3.7. Similarly for H̄, the projection P̄k onto the k-th eigenspace of H̄ is

P̄kf =
b

2π
V (hk, hk) ♮ f, f ∈ L2(R2), (3.28)

and the integral kernel of P̄k is simply the complex conjugation of Pk(x, y).

Remark 3.8. D commutes with complex conjugates D̄ and D̄∗.

At the end of this section, we list some results about H for later use.

The difference between H1/2 and D can be analogous to the difference between

(−∆)1/2 and ∇. Generally for any f ∈ D (H1/2), H1/2f is not the same as Df . It is
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apparent when decompose f as f = ∑
∞
k=0Pkf and apply H1/2 and D to f separately

H1/2f =
∞

∑
k=1

(2bk)1/2Pkf, Df =
∞

∑
k=1

DPkf,

where (2bk)1/2Pkf and DPkf are in Hk and Hk−1 respectively. However, they have

the same L2 norms

⟨H1/2f,H1/2f⟩
L2(R2)

= ⟨Hf, f⟩L2(R2)
= ⟨D∗Df, f⟩L2(R2)

= ⟨Df,Df⟩L2(R2)
. (3.29)

More generally, for 1 < p < ∞,

∥(H + b)1/2f∥Lp(R2) ∼p ∥Df∥Lp(R2) + ∥D∗f∥Lp(R2)
. (3.30)

Remark 3.9. To see why (3.30) is true, note that our vector field potential A satisfies

A ∈ L2
loc(R3)3 and the magnetic field B = (0,0, b) is constant. Then by [BA10,

Theorem 1.3, 1.6], for 1 < p < ∞,

∥Lf∥Lp(R3)
∼p ∥(H − ∂2

x3 + b)
1/2
f∥

Lp(R3)
,

where L = (−i∂x1 + b
2x

2,−i∂x2 − b
2x

1,−i∂x3) and x = (x1, x2, x3). Since in the third

dimension it is known that ∥∂x3g∥Lp(R) ∼p ∥(−∂2
x3)

1/2g∥Lp(R) and

∥(−i∂x1 +
b

2
x2,−i∂x2 −

b

2
x1) f∥

Lp(R2)

∼ ∥Df∥Lp(R2)
+ ∥D∗f∥Lp(R2)

,
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we obtain (3.30).

Unlike (−∆)1/2 and ∇, where they both commute with ∆, [D,H] = 2bD.

There is no comparison between ∥∇f∥L2 and ∥Df∥L2 . For example,

∥De0k∥L2(R2)
= 0,

for any k ∈ N. But

∥∇e0k∥L2(R2)
= ∥2∂z̄e0k∥L2(R2)

=

√
(k + 1)b
√

2
∥e0k+1∥L2(R2)

=

√
(k + 1)b
√

2

blows up as k approaches infinity. On the other hand, taking f ∈ C∞
c (R2), consider

the translation fx̃ = f(x − x̃), then ∥∇fx̃∥L2(R2)
= ∥∇f∥L2(R2)

. But

∥Dfx̃∥L2(R2)
→∞ as x̃→∞.

However there is a pointwise identity, for f, g ∈ S(R2),

−2∂z̄(fḡ) = (Df)ḡ − fD∗g,

which implies

∣∂z̄ ∣f ∣∣ =
RRRRRRRRRRR

∂z̄ (ff̄)

2∣f ∣

RRRRRRRRRRR

≤
∣(Df) f̄ ∣

∣2f ∣
+

∣fD∗f ∣

2∣f ∣
=

1

2
(∣Df ∣ + ∣D∗f ∣) , (3.31)

i.e. ∣∂z̄ ∣f ∣∣ ≲ ∣Df ∣ + ∣D∗f ∣. Based on this pointwise inequality, we generalize the
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Sobolev inequality to cases involving H.

Lemma 3.10. For 2 ≤ q < ∞,

∥f∥Lq(R2) ≲q ∥⟨H⟩1/2f∥
L2(R2)

. (3.32)

Proof. Use the pointwise inequality (3.31),

∥∇∣f ∣∥L2(R2)
= ∥−2∂z̄ ∣f ∣∥L2(R2)

≤ ∥Df∥L2(R2) + ∥D∗f∥L2(R2)

≲ ∥Df∥L2(R2) + ∥f∥L2(R2),

and apply the usual n-endpoint Sobolev inequality,

∥f∥Lq(R2) = ∥∣f ∣∥Lq(R2)
≲q ∥f∥L2(R2) + ∥∇∣f ∣∥L2(R2)

≲ ∥f∥L2(R2) + ∥Df∥L2(R2).

3.3 Strichartz and Collapsing Estimates

In this section, we study the linear equation i ∂tγ(t) = [H,γ(t)]. The formula

of the propagator e−iHt and the spectral structure of H from Section 3.2 are the

basic tools for our discussion. Similar to Corollary 3.4, for any finite time T , we

obtain the Strichartz estimate for e−iHtγ0eiHt = e
−i(Hx−H̄y)tγ0.

Proposition 3.11. Let γ(t, x, y) = e−i(Hx−H̄y)tγ0(x, y) be the solution to Equation
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(2.27), then for any T > 0 and s ≥ 0,

∥⟨Hx⟩
s/2⟨H̄y⟩

s/2γ(t, x, y)∥
LqtL

r
xL

2
y([0,T ]×R2×R2)

≲q,r,T ∥⟨Hx⟩
s/2⟨H̄y⟩

s/2γ0(x, y)∥L2
x,y
,

(3.33)

and

∥⟨Hx⟩
s/2⟨H̄y⟩

s/2γ(t, x, y)∥
LqtL

r
yL

2
x([0,T ]×R2×R2)

≲q,r,T ∥⟨Hx⟩
s/2⟨H̄y⟩

s/2γ0(x, y)∥L2
x,y

where (q, r) satisfies (2.25) and x, y ∈ R2. Furthermore, by duality, the following

dual estimate holds

∥∫

T

0
ei(H̄x−Hy)tF (t, x, y)dt∥

L2
x,y

≲q′,r′,T ∥F (t, x, y)∥
Lq

′

t L
r′
x L

2
y([0,T ]×R2×R2)

, (3.34)

and

∥∫

T

0
ei(H̄x−Hy)tF (t, x, y)dt∥

L2
x,y

≲q′,r′,T ∥F (t, x, y)∥
Lq

′

t L
r′
y L

2
x([0,T ]×R2×R2)

,

where

1

q
+

1

q′
= 1,

1

r
+

1

r′
= 1.

Proof. The two linear estimates are symmetric with respect to x and y, we show

the estimate for one of them and the other one is obtained by swapping roles of x
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and y. Apply ⟨Hx⟩
s/2⟨H̄y⟩

s/2 to Equation (2.27),

i ∂t⟨Hx⟩
s/2⟨H̄y⟩

s/2γ(t, x, y) = (Hx − H̄y) ⟨Hx⟩
s/2⟨H̄y⟩

s/2γ(t, x, y).

View e−i(Hx−H̄y)t as a map on the Hilbert space of L2(R2)-valued functions. It

is unitary since the Hilbert space {f ∣f ∶ R2 → L2 (R2)} is canonically isometric to

L2 (R2 ×R2). Besides, using Formula (3.15), for t < Tε ≤ π
10b ,

∥e−i(Hx−H̄y)t⟨Hx⟩
s/2⟨H̄y⟩

s/2γ0∥
L∞x L

2
y

≲
1

t
∥eiH̄yt⟨Hx⟩

s/2⟨H̄y⟩
s/2γ0∥L1

xL
2
y

=
1

t
∥⟨Hx⟩

s/2⟨H̄y⟩
s/2γ0∥L1

xL
2
y
.

Then using the Strichartz estimate [KT98],

∥⟨Hx⟩
s/2⟨H̄y⟩

s/2γ(t, x, y)∥
LqtL

r
xL

2
y([0,Tε]×R2×R2)

≲q,r ∥⟨Hx⟩
s/2⟨H̄y⟩

s/2γ0(x, y)∥L2
x,y
.

Following the same patching argument as Corollary 3.4, we obtain the linear esti-

mate.

In order to show Theorem 2.6, we will decompose the initial data γ0(x, y)

based on the spectral structures of Hx and H̄y. According to Lemma 3.6, denote

γjk(x, y) ∶= PxjP̄ykγ0 = V (hj, hj)♮xV (hk, hk) ♮
y
γ0, (3.35)
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and we obtain the decomposition

γ0(x, y)

= ∑
j,k∈N

γjk(x, y)

= ∑
j,k∈N

∫
R2×R2

V (hj, hj)(x − x̃)V (hk, hk)(y − ỹ)e
−ib[Ω(x,x̃)−Ω(y,ỹ)]/2γjk(x̃, ỹ)dx̃dỹ,

(3.36)

where Pxj(P̄yk) means the projection of γ0(x, y) onto Hj(H̄k) with respect to the

x(y) variable. Then in the kernel form, the evolution of γ0 under Equation (2.27)

can be expressed as

(e−(Hx−H̄y)itγ0) (x, y) = ∑
j,k∈N

e−2b(j−k)itγjk(x, y). (3.37)

When we compute the space Fourier transform of (3.36), associated Laguerre

polynomials Lαn(λ) appear in the collapsing term

Lαn(λ) =
n

∑
j=0

(
n + α

n − j
)
(−λ)j

j!
, λ ∈ R, n ∈ N, α > −1. (3.38)

Let us discuss properties of associated Laguerre polynomials, which are needed for

the collapsing estimate.

Lemma 3.12. For j, n, c ∈ N,

n!

(n + j)!
max
λ≥0

λj+c (Ljn)
2
(λ)e−λ ≤ 4c(j + 2n + c)c. (3.39)
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Furthermore, since associated Laguerre polynomials are related to V (hj, hk) by The-

orem 3.26 in Appendix 3.6.3, (3.39) is equivalent to

∥w̄cV (hj, hk) (p, q)∥L∞(R2)
≤ (

2
√
b
)

c

(j + k + c)
c/2
, (3.40)

where j, k, c ∈ N, and w = p + iq ∈ C.

Proof. We prove (3.40) by induction on c. Consider the basic case c = 0, by Cauchy-

Schwartz inequality, for j, k ∈ N,

∣V (hj, hk)∣ = ∣⟨β(p, q)hj, hk⟩∣ ≤ ∥β(p, q)hj∥L2 ∥hk∥L2

=∥hj∥L2 ∥hk∥L2 = 1.

Assume (3.40) holds for c = n ∈ N. When c = n+ 1, using the following commutation

relations,

[a, a†] = b, [a, β(p, q)] = −
b

√
2
w̄β(p, q),

we obtain

w̄n+1V (hj, hk) (p, q)

= −

√
2

b
w̄n ⟨[a, β(p, q)]hj, hk⟩

= −

√
2

b
(
√

(k + 1)b w̄nV (hj, hk+1) −
√
jb w̄nV (hj−1, hk)) (p, q).
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Using the induction assumption, ∣w̄n+1V (hj, hk) (p, q)∣

≤
2n+1/2

b(n+1)/2
(
√
k + 1(j + k + 1 + n)n/2 +

√
j(j + k + n − 1)n/2)

≤ (
2
√
b
)

n+1

(j + k + n + 1)(n+1)/2.

Therefore (3.40) holds for all c ∈ N.

There is a more refined estimate than Lemma 3.12 when c = 1,

Theorem 3.13. [Kra05,Kra07] Let n ≥ 1, α > −1, then

n!

G(n + α + 1)
max
λ≥0

(λα+1e−λ (Lαn)
2
(λ)) < 6n1/6

√
n + α + 1,

where G denotes the gamma function

G(z) ∶= ∫
∞

0
λz−1e−λ dλ, R(z) > 0.

In the case c = 1, the upper bound in (3.39) is essentially (j + n) for large n

and j. When we consider the asymptotic behavior of n!
(n+j)! maxλ≥0 λj+1 (Ljn)

2
(λ)e−λ

in terms of j and n, Krasikov’s result is sharper. If we interpolate Krasikov’s result

with Lemma 3.12, we improve (3.39) a little bit.

Lemma 3.14. Let 1 ≤ c ≤ 2,

n!

(n + j)!
max
λ≥0

(λj+ce−λ (Ljn)
2
(λ)) ≲ (1 + n)(2−c)/6(n + j + 1)(3c−2)/2, j, n ∈ N, (3.41)
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or equivalently,

∥∣w∣cV (hj, hk) (p, q)∥L∞(R2)
≲

1

bc/2
(1 + k)(2−c)/12(j + 1)(3c−2)/4, (3.42)

where j, k ∈ N, j ≥ k and w = p + iq ∈ C.

Proof. Two endpoint cases of (3.41) are c = 1 and c = 2.

The case c = 2 is given by taking c = 2 in (3.39).

The case c = 1 is almost in Theorem 3.13 except for n = 0. When n = 0, by

Stirling formula,

1

(j)!
max
λ≥0

(λj+1e−λ (Lj0)
2
(λ)) =

(j + 1)j+1e−(j+1)

j!
≲
√
j + 1.

Combining it with Theorem 3.13,

n!

(n + j)!
max
λ≥0

(λj+1e−λ (Ljn)
2
(λ)) ≲ (1 + n)1/6

√
n + j + 1, j, n ∈ N.

For any fixed λ > 0, vary the exponent α in λj+1+αe−λ (Ljn)
2
(λ), where 0 ≤

R(α) ≤ 1. Interpolating the two endpoint cases, (3.41) holds.

Remark 3.15. Lemma 3.14 is stated for 1 ≤ c ≤ 2. Because this is what we need in

the present case. Nevertheless, using Krasikov’s result, we can improve (3.39) for

any c ≥ 1.

Remark 3.16. The upper bound in Lemma 3.14 is not optimal. Consider two extreme
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cases j = 0 and n = 0 of

√
n!

√
(n + j)!

max
λ≥0

e−λ/2λ(c+j)/2 ∣Ljn∣ (λ) ∼ ∥∣w∣cV (hn, hn+j)(w)∥L∞ , c ≥
1

2
. (3.43)

[Sze75, Theorem 8.91.2, p. 241] says for any a > 0 and any fixed j ∈ N,

sup
λ≥a

e−λ/2∣λ∣(c+j)/2 ∣Ljn∣ (λ) ∼j ⟨n⟩
j/2+c/2−1/3, c ≥ 1/2.

Taking j = 0, one can remove the constraint λ ≥ a > 0 and show that maxλ≥0 e−λ/2∣λ∣c/2 ∣Ln∣ (λ) ∼

⟨n⟩c/2−1/3, c ≥ 1/2. It gives a precise description of the asymptotic behavior of (3.43)

for case j = 0.

For the case n = 0 of (3.43), by Stirling formula,

1
√
j!

max
λ≥0

e−λ/2λ(c+j)/2 ∣Lj0∣ (λ) =
e−(c+j)/2(c + j)(c+j)/2

√
j!

≲c ⟨j⟩
c/2−1/4.

“Interpolating” the two cases, we conjecture

∥∣w∣cV (hn, hn+j)(w)∥L∞ ≲c ⟨n⟩
−1/12⟨n + j⟩c/2−1/4, c ≥ 1/2, j, n ∈ N. (3.44)

When c = 1, n ≥ 50 and j ≥ 11, by [KZ10, Theorem 2], (3.44) holds. For other cases,

our numerical data, for example Figure 3.2, strongly suggests that (3.44) might hold.

Now we are ready to establish the collapsing estimate Theorem 2.6.
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In (A), to confirm the case c = 1, y = log ( n!
(n+j)! maxλ≥0 e

−λλ1+j ∣Lj0∣
2
(λ)) and

x = log(j +n+ 1), where n = 20, the data almost lies on a line. For a larger range of j, the

slope is close to 0.5. In (B), y = n!(1+n)1/6

(n+j)!(n+j+1)c−1/2 e
−λλ(c+j) ∣Ljn∣

2
(λ). For fixed c, when we

vary n and j, from our numerical observation, y is uniformly bounded. If we increase c,
the bound increases.

Figure 3.2: Numerical Calculations

Proof. By the Parseval’s theorem on L2([0, π/b]),

∥∣∇x∣
cγ(t, x, x)∥

2
L2
tL

2
x([0,π/b]×R2)

=

XXXXXXXXXXX

∣∇x∣
c
∑
j,k∈N

e−2b(j−k)itγjk(x,x)
XXXXXXXXXXX

2

L2
tL

2
x([0,π/b]×R2)

=
π

b
∑
m∈Z

XXXXXXXXXXXXXXXX

∣∇x∣
c
∑

j−k=m
j,k∈N

γjk(x,x)

XXXXXXXXXXXXXXXX

2

L2
x

. (3.45)

We will express (3.45) by the Fourier transform of ∣∇x∣
cγjk(x,x). Using the expres-
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sion (3.36),

( ̂∣∇x∣
cγjk(x,x)) (ξ)

=
1

2π ∫R4
dx̃dỹ ∣ξ∣cγjk(x̃, ỹ) (e

−iξx̃W (hj)(ξ)) ∗ (e−iξỹW (hk)(ξ))

∗ δ (ξ +
b

2
J(x̃ − ỹ)) ,

where W (hj) = W (hj, hj). To compute (e−iξx̃W (hj)(ξ)) ∗ (e−iξỹW (hk)(ξ)), using

tools from Appendix 3.6.3

(e−iξx̃W (hj)(ξ)) ∗ (e−iξỹW (hk)(ξ))

=∫
R2
dξ̃ e−i(ξ−ξ̃)x̃W (hj) (ξ − ξ̃) e

−iξ̃ỹW (hk) (ξ̃)

=∫
R2
dξ̃ e−i(ξ−ξ̃)x̃W (hj) (ξ̃ − ξ) e

−iξ̃ỹW (hk) (ξ̃)

=e−iξx̃/2∫
R2
dξ̃ W (β (

x̃

2
−
Jξ

b
)hj, β (−

x̃

2
−
Jξ

b
)hj) (ξ̃)W (β (

ỹ

2
)hk, β (−

ỹ

2
)hk)(ξ̃)

=
2πe−iξx̃/2

b
⟨β (

x̃

2
−
Jξ

b
)hj, β (

ỹ

2
)hk⟩ ⟨β (−

ỹ

2
)hk, β (−

x̃

2
−
Jξ

b
)hj⟩

=
2πe−iξx̃/2

b
⟨β (−

ỹ

2
)β (

x̃

2
−
Jξ

b
)hj, hk⟩ ⟨β (

x̃

2
+
Jξ

b
)β (−

ỹ

2
)hk, hj⟩

=
2πe−i(x̃+ỹ)ξ

b
V (hj, hk) (

x̃ − ỹ

2
−
Jξ

b
)V (hk, hj) (

x̃ − ỹ

2
+
Jξ

b
) .

Then

( ̂∣∇x∣
cγjk(x,x)) (ξ)

=
1

b ∫R4
dx̃dỹ ∣ξ∣cγjk(x̃, ỹ) exp(−

i

2
[(x̃ + ỹ)ξ +

b

2
Ω(x̃ + ỹ, x̃ − ỹ)])×

V (hj, hk) (x̃ − ỹ −
Jξ

b
)V (hk, hj) (

Jξ

b
) .

56



Next estimate (3.45), using the Fourier transform on x̃+ ỹ and the Minkowski

inequality,

(3.45) ≲ b−3
∑
m∈Z

⎛
⎜
⎜
⎝

∑
j−k=m
j,k∈N

∥∫
R2
d(x̃ − ỹ) ∣ξ∣cFx̃+ỹ (γjk) (

1

2
(ξ +

bJ(x̃ − ỹ)

2
) , x̃ − ỹ)×

V (hj, hk) (x̃ − ỹ −
Jξ

b
)V (hk, hj) (

Jξ

b
)∥

L2
ξ

⎞

⎠

2

≲ b−3
∑
m∈Z

⎛
⎜
⎜
⎝

∑
j−k=m
j,k∈N

∥V (hj, hk)∥L2 ∥γjk∥L2 sup
ξ∈R2

∣ξ∣c ∣V (hk, hj)∣ (
Jξ

b
)

⎞
⎟
⎟
⎠

2

(Cauchy-Schwartz inequality)

≲ b−4 sup
m∈Z

⎛
⎜
⎜
⎝

∑
j−k=m
j,k∈N

1

⟨2bj⟩s⟨2bk⟩s
sup
ξ∈R2

∣ξ∣2c ∣V (hj, hk)∣
2
(
Jξ

b
)

⎞
⎟
⎟
⎠

⋅ ∑
j,k∈N

⟨2bj⟩s⟨2bk⟩s∥γjk∥
2
L2 .

(since ∥V (hj, hk)∥
2
L2 =

2π

b
⟨hk, hk⟩⟨hj, hj⟩ =

2π

b
)

The estimate (2.29) reduces to show

b−4 sup
m∈N

⎛
⎜
⎜
⎝

∑
j−k=m
j,k∈N

1

⟨2bj⟩s⟨2bk⟩s
sup
ξ∈R2

∣ξ∣2c ∣V (hj, hk)∣
2
(
Jξ

b
)

⎞
⎟
⎟
⎠

< ∞.

Taking c = 0, by Lemma 3.12, for any m ∈ N,

∑
j−k=m
j,k∈N

1

⟨2bj⟩s⟨2bk⟩s
∥V (hj, hk) (

Jξ

b
)∥

2

L∞
≤ ∑
j−k=m
k∈N

1

⟨2bj⟩s⟨2bk⟩s
≤ ∑
k∈N

1

⟨2bk⟩2s
,
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which is finite if s > 1/2. Taking 1 ≤ c ≤ 2, by Lemma 3.14,

∑
j−k=m
j,k∈N

1

⟨2bj⟩s⟨2bk⟩s
∥∣ξ∣cV (hj, hk) (

Jξ

b
)∥

2

L∞
≲ ∑
j−k=m
k∈N

bc⟨k⟩(2−c)/6⟨j⟩(3c−2)/2

⟨2bj⟩s⟨2bk⟩s

≲
1

b2s−c ∑
k∈N

1

⟨k⟩2s−4c/3+2/3
,

which is finite if 2s − 4c/3 + 2/3 > 1. Setting s = 1, we get 1 ≤ c < 5/4.

Combining the low frequency case c = 0 and the high frequency case 1 ≤ c < 5/4

yields the estimate (2.29).

3.4 Well-Posedness of the System

Before showing the local well-posedness result Theorem 2.3, we discuss Equa-

tion (2.12) in a case other than Equation (2.15) to demonstrate that [ρQ ∗ v,φ ] in

Equation (2.15) is a trouble term. Equation (2.12) is well-posed in several spaces.

The possible low regularity for the initial data when we can obtain a local well-

posedness result is

∥H
1/8+ε
hx H

1/8+ε
hy γ0(x, y)∥

L2
x,y

< ∞, x, y ∈ R2, for arbitrary ε > 0, (3.46)

where the norm is

∥H
s/2
h f∥

L2
= ∥∣∇∣sf∥L2 + ∥∣x∣sf∥L2 , s ≥ 0, f ∈ L2(R2).

For the initial data (3.46), we acquire the following result.
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Theorem 3.17. Consider Equation (2.12) and suppose the initial condition γ0 sat-

isfies (3.46). Then Equation (2.12) has a mild solution for sufficiently short time T

in the Banach NHT , where the norm is defined as

∥γ∥NHT
∶= ∥H

1/8+ε
hx H

1/8+ε
hy γ(t, x, y)∥

L∞t L
2
x,y([0,T ]×R4)

(3.47)

+ ∥∣∇∣1/2+2εργ(t, x)∥L2
tL

2
x([0,T ]×R2)

,

where ε is the same in (3.46).

Remark 3.18. Notice that the initial condition only requires that γ0 is a Hilbert-

Schmidt operator. It is not necessarily of trace class.

In order to use the technique in [GM17, Section 5, Section 6] 1 to prove The-

orem 3.17, we need another version of the collapsing estimate

Proposition 3.19. Suppose γ(t, x, y) = e−i(Hx−H̄y)γ0(x, y) is the solution to the lin-

ear equation

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tγ(t) = [H,γ(t)] ,

γ(0, x, y) = γ0(x, y) ∈ L2
x,y,

(3.48)

where x, y ∈ R2, the collapsing term ργ(t, x) = γ(t, x, x) satisfies

∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2εργ(t, x)∥L2

tL
2
x([−π/2b,π/2b]×R2)

≲ε ∥⟨∇x⟩
1/4+ε⟨∇y⟩

1/4+εγ0(x, y)∥L2
x,y
,

(3.49)
1The case studied in [GM17] is in three dimension. However we can modify the argument for

our two dimensional problem Equation (2.12). Some steps in [GM17] need minor modification, yet
the main idea is the same.
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where ε is any arbitrary small positive number.

Proof. The operator H is decomposed as (3.24) and [Hh,Hr] = 0. Since the rotation

generated by the vector field −iHr satisfies

∣∣∇∣se−iHrtf ∣ (x) = ∣∣∇∣sf ∣ (e−iHrtx) , x ∈ R2

and e−i(Hrx−H̄ry)tγ0(x, y) = e−i(Hrx+Hry)tγ0(x, y),

∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2εργ(t, x)∥L2

tL
2
x([−π/2b,π/2b]×R2)

=∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2ε (e−i(Hrx−H̄ry)te−i(Hhx−H̄hy)tγ0) (x,x)∥

L2
tL

2
x([−π/2b,π/2b]×R2)

=∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2ε (e−i(Hhx−H̄hy)tγ0) (x,x)∥L2

tL
2
x([−π/2b,π/2b]×R2)

.

Then the estimate (3.49) reduces to

∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2ε (e−i(Hhx−H̄hy)tγ0) (x,x)∥L2

tL
2
x([−π/2b,π/2b]×R2)

≲ε ∥⟨∇x⟩
1/4+ε⟨∇y⟩

1/4+εγ0(x, y)∥L2
x,y
,

where the collapsing term corresponds to the equation i ∂tγ = [Hh, γ]. By the Lens

transform [Tao09]

Ł(u)(t, x) ∶=
1

cos bt
u(

tan bt

b
,

x

cos bt
) e−(ib∣x∣

2 tan bt)/4, t ∈ R, x ∈ R2, (3.50)

which maps the solution u(t, x) of i ∂tu = −∆u to the solution of i ∂tŁ(u) =HhŁ(u),
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we obtain the identity

∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2ε (e−i(Hhx−H̄hy)tγ0) (x,x)∥L2

tL
2
x([−π/2b,π/2b]×R2)

=∥∣∇x∣
1/2+2ε (ei(∆x−∆y)tγ0) (x,x)∥L2

tL
2
x
.

Finally, the estimate (3.49) reduces to the Laplacian case

∥∣∇x∣
1/2+2ε (ei(∆x−∆y)tγ0) (x,x)∥L2

tL
2
x
≲ε ∥⟨∇x⟩

1/4+ε⟨∇y⟩
1/4+εγ0(x, y)∥L2

x,y
,

which is proved in [GM17,CHP17].

Since the Hermite operator Hh dominates −∆ + 1 in the sense ∥⟨−∆⟩s/2f∥L2 ≲

∥H
s/2
h f∥

L2
for s ≥ 0, as a corollary of Proposition 3.19

∥⟨tan bt⟩−1/2−ε∣∇x∣
1/2+2εργ(t, x)∥L2

tL
2
x([−π/2b,π/2b]×R2)

≲ε ∥H
1/8+ε
hx H

1/8+ε
hy γ0(x, y)∥

L2
x,y

.

(3.51)

using this estimate (3.51) and the scheme in [GM17], Theorem 3.17 follows.

When it comes to Equation (2.15), if we expect to establish a local well-

posedness result when

∥H
s/2
hx H

s/2
hy Q0(x, y)∥

L2
x,y

< ∞,

we need to deal with terms, for example ∥∣∇x∣
s
(ρQ ∗ v)H

s/2
hy Π̄φ(x, y)∥

L2
x,y

. However

H
s/2
hy Π̄φ is not translation invariant. After integrating over y, we are faced with

∥∣x∣s ∣∇x∣
s
(ρQ ∗ v)∥L2 . For the linear equation i ∂tQ = [H + ρQ ∗ v,Q] and Q(t = 0) =
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Q0, ∥∣x∣s ∣∇x∣
s
(ρQ ∗ v)∥L2

IT
L2 is controlled by ∥H

s/2
hx H

s/2
hy Q0(x, y)∥

tr
. But it may not

be controlled by ∥H
s/2
hx H

s/2
hy Q0(x, y)∥

L2
x,y

. Therefore we can not close the argument

to obtain a local well-posedness result of Equation (2.15). That is why we stick to

the structure of Equation (2.15) and use norms arising from H, i.e. Definition 2.1.

The operator H is more compatible with the stationary solution Π̄φ than Hh. Hence

we can deal with ⟨Hx⟩
1/2⟨H̄y⟩

1/2[ρQ ∗ v, Π̄φ].

Next we prove Theorem 2.3 the local wellposedness result of Equation (2.15).

Proof. By Duhamel’s formulation, we define the solution map Φ and the solution

ball solT for the contraction mapping principle,

Φ(Q)(t, x, y) ∶= e−i(Hx−H̄y)tQ0 − i∫
t

0
e−i(Hx−H̄y)(t−τ)[v ∗ ρQ,Q + Π̄φ](τ)dτ, (3.52)

solT ∶= {Q(t, x, y) ∣∥Q(t, x, y)∥NH
T
≤ C ∥⟨Hx⟩

1/2⟨H̄y⟩
1/2Q0(x, y)∥L2

x,y
} , (3.53)

where parameters T and C > 1 are to be determined later.

1. Show Φ maps solT to itself.

Suppose Q ∈ solT . By Theorem 2.6 and Proposition 3.11,

∥e−i(Hx−H̄y)tQ0∥NH
T
≲T ∥⟨Hx⟩

1/2⟨H̄y⟩
1/2Q0∥L2

x,y
.

Choosing T = π/4b, then C is the constant such that

∥e−i(Hx−H̄y)tQ0∥NH
T
≤ C ∥⟨Hx⟩

1/2⟨H̄y⟩
1/2Q0∥L2

x,y
/2.
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For the nonlinear part, claim the estimate

∥∫

t

0
e−i(Hx−H̄y)(t−τ)[v ∗ ρQ,Q + Π̄φ](τ)dτ∥

NH
T

≲∥⟨Hx⟩
1/2⟨H̄y⟩

1/2[v ∗ ρQ,Q + Π̄φ]∥L1
IT
L2
x,y
. (3.54)

The proof of (3.54) is twofold. On one hand, to control the Strichartz norm,

XXXXXXXXXXXXXXXX

∫

t

0
e−i(Hx−H̄y)(t−τ) ⟨Hx⟩

1/2⟨H̄y⟩
1/2[v ∗ ρQ,Q + Π̄φ](τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F1(τ,x,y)

dτ

XXXXXXXXXXXXXXXXLqIT L
r
xL

2
y

,

suppose G(t, x, y) is in the dual Strichartz space Lq
′

IT
Lr

′

x L
2
y, where

1

q
+

1

q′
= 1,

1

r
+

1

r′
= 1.

Using the dual characterization of Lp spaces

∫
IT
∫
R2×R2

dtdxdy Ḡ(t, x, y)∫
t

0
e−i(Hx−H̄y)(t−τ)F1(τ, x, y)dτ

=∫
IT
∫
R2×R2

dτdxdy F1(τ, x, y)∫
T

τ
e−i(Hx−H̄y)(τ−t)G(t, x, y)dt

≤∫
IT
dτ ∥F1(τ, x, y)∥L2

xL
2
y
∥∫

T

τ
e−i(Hx−H̄y)(τ−t)G(t, x, y)dt∥

L∞IT
L2
x,y

≲∫
IT
dτ ∥F1(τ, x, y)∥L2

xL
2
y
∥G(t, x, y)∥

Lq
′

IT
Lr′x L

2
y
,

(by Proposition 3.11 the dual Strichartz estimate (3.34))
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we obtain,

∥∫

t

0
e−i(Hx−H̄y)(t−τ)F1(τ, x, y)dτ∥

LqIT
LrxL

2
y

≲ ∥F1(t, x, y)∥L1
tL

2
x,y([0,T ]×R4)

.

The argument for the norm LqITL
r
yL

2
x is the same. On the other hand, to control the

collapsing term

XXXXXXXXXXXXXXXX

⟨∇x⟩
9/8

⎛
⎜
⎜
⎝
∫

t

0
e−i(Hx−H̄y)(t−τ) [v ∗ ρQ,Q + Π̄φ](τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2(τ,x,y)

dτ

⎞
⎟
⎟
⎠

(t, x, x)

XXXXXXXXXXXXXXXXL2
IT
L2
x

,

applying Theorem 2.6 and the Minkowski inequality,

∥⟨∇x⟩
9/8 (∫

t

0
e−i(Hx−H̄y)(t−τ)F2(τ, x, y)dτ) (t, x, x)∥

L2
IT
L2
x

≤∥∫

T

0
∥⟨∇x⟩

9/8 (e−i(Hx−H̄y)(t−τ)F2(τ, x, y)) (t, x, x)∥L2
x
dτ∥

L2
IT

≤∫

T

0
dτ ∥⟨∇x⟩

9/8 (e−i(Hx−H̄y)(t−τ)F2(τ, x, y)) (t, x, x)∥L2
IT
L2
x

≲∫

T

0
dτ ∥⟨Hx⟩

1/2⟨H̄y⟩
1/2F2(τ, x, y)∥L2

x,y
(by Theorem 2.6).

According to the estimate (3.54), the problem is reduced to estimate quantities

1. ∥⟨Hx⟩
1/2⟨H̄y⟩

1/2[v ∗ ρQ,Q]∥
L1
tL

2
x,y([0,T ]×R4)

,

2. ∥⟨Hx⟩
1/2⟨H̄y⟩

1/2[v ∗ ρQ, Π̄φ]∥L1
tL

2
x,y([0,T ]×R4)

.

Since the commutation relation does not play a role of our analysis, it suffices to

prove one of the two terms in the commutation relation. The other one is handled

similarly.
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Considering ∥⟨Hx⟩
1/2⟨H̄y⟩

1/2 ((v ∗ ρQ) (t, x)Q(t, x, y))∥
L1
tL

2
x,y([0,T ]×R4)

, based on

the observation (3.29), we have

≲ ∥Dx⟨H̄y⟩
1/2 (v ∗ ρQ) (t, x)Q(t, x, y)∥

L1
tL

2
x,y([0,T ]×R4)

+ ∥⟨H̄y⟩
1/2 (v ∗ ρQ) (t, x)Q(t, x, y)∥

L1
tL

2
x,y([0,T ]×R4)

≲ ∥2∂zx (v ∗ ρQ) (t, x) ⟨H̄y⟩
1/2Q(t, x, y)∥

L1
tL

2
x,y([0,T ]×R4)

+ ∥(v ∗ ρQ) (t, x)⟨Hx⟩
1/2⟨H̄y⟩

1/2Q(t, x, y)∥
L1
tL

2
x,y([0,T ]×R4)

,

and by the virtue of Hölder inequality, Sobolev inequality, Lemma 3.10 and Young’s

convolution inequality, we obtain

∥2∂zx (v ∗ ρQ) (t, x) ⟨H̄y⟩
1/2Q(t, x, y)∥

L1
tL

2
x,y([0,T ]×R4)

≲T 1/2 ∥∣∇x∣(v ∗ ρQ)(t, x)∥
L2
tL

16
7
x ([0,T ]×R2)

∥⟨H̄y⟩
1/2Q(t, x, y)∥

L∞t L
16
x L

2
y([0,T ]×R2×R2)

≲T 1/2 ∥∣∇x∣
9/8ρQ(t, x)∥L2

tL
2
x([0,T ]×R2)

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2Q(t, x, y)∥L∞t L2
x,y([0,T ]×R4)

≲T 1/2 ∥Q(t)∥NH
T
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and

∥(v ∗ ρQ) (t, x)⟨Hx⟩
1/2⟨H̄y⟩

1/2Q(t, x, y)∥
L1
tL

2
x,y([0,T ]×R4)

≲T 1/4 ∥(v ∗ ρQ) (t, x)∥L2
tL

4
x([0,T ]×R2)

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2Q(t, x, y)∥
L4
tL

4
xL

2
y([0,T ]×R2×R2)

≲T 1/4 ∥∣∇x∣
1/2ρQ(t, x)∥L2

tL
2
x([0,T ]×R2)

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2Q(t, x, y)∥
L4
tL

4
xL

2
y([0,T ]×R2×R2)

≲T 1/4 ∥Q(t)∥
2
NH
T
.

Next we consider ∥⟨Hx⟩
1/2⟨H̄y⟩

1/2[v ∗ ρQ, Π̄φ]∥L1
tL

2
x,y([0,T ]×R4)

, by direct computation

D̄yΠ̄φ(x, y) = (2∂zφ(x − y) +
b

2
(z̄x − z̄y)φ(x − y)) e

−ibΩ(x,y)/2,

DxΠ̄φ(x, y) = (−2∂z̄φ(x − y) −
b

2
(zx − zy)φ(x − y)) e

−ibΩ(x,y)/2,

DxD̄yΠ̄φ(x, y) = (−4∂z̄∂zφ(x − y) − b(zx − zy)∂zφ(x − y)

−b(z̄x − z̄y)∂z̄φ(x − y) −
b2

4
∣x − y∣2φ(x − y)) e−ibΩ(x,y)/2,

integrating over x or y, we obtain

∥D̄yΠ̄φ(x, y)∥L2
x(y)

= ∥D̄φ∥
L2 ≲ ∥⟨H̄⟩1/2φ∥

L2

∥DxΠ̄φ(x, y)∥L2
x(y)

= ∥Dφ∥L2 ≲ ∥⟨H⟩1/2φ∥
L2 ,

∥DxD̄yΠ̄φ(x, y)∥L2
x(y)

= ∥DD̄φ∥
L2 ≲ ∥⟨H⟩1/2⟨H̄⟩1/2φ∥

L2 .
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Combining the above estimates,

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2[v ∗ ρQ, Π̄φ]∥L1
tL

2
x,y([0,T ]×R4)

≲∥⟨∇x⟩ρQ(t, x)∥L1
tL

2
x([0,T ]×R2)

∥⟨H⟩1/2⟨H̄⟩1/2φ∥
L2

≲T 1/2 ∥⟨Hx⟩
1/2⟨H̄y⟩

1/2Q0(x, y)∥L2
x,y

∥⟨H⟩1/2⟨H̄⟩1/2φ∥
L2

If necessary, shrink the interval IT such that

∥∫

t

0
e−i(Hx−H̄y)(t−τ)[v ∗ ρQ,Q + Π̄φ](τ)dτ∥

NH
T

≤
C

2
∥⟨Hx⟩

1/2⟨H̄y⟩
1/2Q0(x, y)∥L2

x,y
.

Thus Φ maps solT to itself.

2. Show Φ is a contraction map.

For any Q1, Q2 ∈ solT , similarly as step 1,

∥Φ(Q1) −Φ(Q2)∥NH
T

≤∥∫

t

0
dτ e−i(Hx−H̄y)(t−τ)[v ∗ ρQ1 − v ∗ ρQ2 , Π̄φ]∥

NH
T

+ ∥∫

t

0
dτ e−i(Hx−H̄y)(t−τ)[v ∗ ρQ1 − v ∗ ρQ2 ,Q1]∥

NH
T

+ ∥∫

t

0
dτ e−i(Hx−H̄y)(t−τ)[v ∗ ρQ2 ,Q1 −Q2]∥

NH
T

≲T 1/2∥⟨∇x⟩(ρQ1 − ρQ2)∥L2
IT
L2
x
∥⟨H⟩1/2⟨H̄⟩1/2φ∥

L2

+max{T 1/2, T 1/4}∥Q1 −Q2∥NH
T
(∥Q1∥NH

T
+ ∥Q2∥NH

T
)

≲max{T 1/2, T 1/4}∥Q1 −Q2∥NH
T
∥⟨Hx⟩

1/2⟨H̄y⟩
1/2Q0(x, y)∥L2

x,y
.
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If needed, choose a smaller T such that ∥Φ(Q1) −Φ(Q2)∥NH
T
≤ ∥Q1 −Q2∥NH

T
/2.

Then by the contraction mapping principle, Φ has a fixed point in solT , i.e.

Equation (2.15) is locally well-posed.

Remark 3.20. There are two families of stationary solutions Πφ and Π̄φ (see Section

3.6.2). The reason for only Π̄φ is used in our pertubation problem is twofold. On

one hand, Π̄φ recovers the Fermi-Dirac distribution. On the other hand, suppose we

use the stationary solution Πφ instead of Π̄φ. By the product rule of the covariant

derivative D, D(fg) = (Df)g − 2f∂z̄g,

DxD̄y (ρu ∗ v(x)Πφ(x, y))

=Dx (ρu ∗ v) (x)D̄yΠφ(x, y) + (ρu ∗ v) (x) (−2∂z̄x) D̄yΠφ(x, y)

or DxD̄y (ρu ∗ v(x)Πφ(x, y))

=(−2∂z̄x) (ρu ∗ v) (x)D̄yΠφ(x, y) + (ρu ∗ v) (x)DxD̄yΠφ(x, y). (3.55)

Since we do not have an estimate for Dxρu(t, x), we use the form (3.55) to continue

our argument. A direct computation shows

D̄yΠφ(x, y) = (2∂zφ(x − y) −
b

2
(z̄x + z̄y)φ(x − y)) e

ibΩ(x,y)/2.

∣D̄yΠφ(x, y)∣ is not translation invariant. Therefore in order to estimate

∥−2∂z̄x(ρu ∗ v)(t, x)D̄yΠφ(x, y)∥L2
x,y
,
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we need to control ∥x∣∇x∣ρu(t, x)∥L2
x
, which is not possible by using NH

T .

3.5 Conclusion

In this chapter, we obtained a local well-posed result of Equation (2.15) and

a new collapsing estimate Theorem 2.6. However the estimate is not sharp since

we do not have an optimal control of associated Laguerre polynomials (see Remark

3.16).

The ultimate goal of Theorem 2.3 is to acquire a low regularity result, for

example a local well-posedness result for the initial data

∥⟨Hx⟩
s/2⟨H̄y⟩

s/2Q0(x, y)∥L2
x,y

< ∞, s < 1,

According to Remark 3.16 and the proof of Theorem 2.6, we have a little gain of

derivatives for the collapsing term when s > 1/3. We conjecture that the best case

might be s = 1/3 + ε. However it requires a fractional Leibniz rule for ⟨H⟩s/2(fg),

which currently is beyond our ability.

Another direction is to establish a global well-posedness result when

∥⟨Hx⟩
1/2⟨H̄y⟩

1/2Q0(x, y)∥Tr < ∞.

A formal computation shows that the total energy (3.56) of Equation (2.15) is

conserved

E(Q) = Tr (H1/2QH1/2) +
1

2 ∫R2
(v ∗ ρQ) (x)ρQ(x)dx, (3.56)
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which brings hope for the global well-posedness result at the energy level. In order

to establish the global well-posedness result, we need to control the trace norm of

the forcing term ρQΠ̄φ, which is a composition of multiplication operator ρQ and

a non-compact operator Π̄φ. However, the operator H is no longer the Laplace

operator, so the Birman-Solomjak inequality [Sim05, Theorem 4.5], for 1 ≤ p ≤ 2,

∥f(x)g (−i∇)∥
Lp
≲p ∥f∥lpL2 ∥g∥lpL2 , (3.57)

where Lp is the p-th Schatten norm, can not be applied. Besides, due to the special

spectral structure of H, it is challenging to develop a corresponding version of this

inequality (3.57) for H, which, to the author’s knowledge, is not available in the

existing literature. The author is working on obtaining the essential estimates.

3.6 Appendix

3.6.1 Heisenberg Group

[Fol89, Chapter 1]Let us review the Heisenberg group H1 with the group law

(p1, q1, t1) ⋅ (p2, q2, t2) = (p1 + p2, q1 + q2, t1 + t2 + b
Ω ((p1, q1), (p2, q2))

2
) ,

where pi, qi ∈ R, ti ∈ R, and impose a complex structure on R2, z = p + q i.

Identify the tangent space TH1 with R3×R3 and its basis by {∂p, ∂q, ∂t}. Then
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the differential of the left multiplication Lg, where g = (pg, qg, tg), is

DLg (∂p, ∂q, ∂t) = (∂p, ∂q, ∂t)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 1 0

−bqg/2 bpg/2 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The Lie algebra h1 consisting of left invariant vector fields is

h1 = R-span{∂p − b
q

2
∂t, ∂q + b

p

2
∂t, ∂t} ,

and the corresponding complexified space is

hC1 = C-span{2∂z̄ + i
bz

2
∂t, 2∂z − i

bz̄

2
∂t, ∂t} .

We will think of D and D∗ as vector fields of hC1 in the following way. Denote

DH1 = −2∂z̄ − i
bz

2
∂t, D∗

H1
= 2∂z − i

bz̄

2
∂t.

Suppose f̃ ∈ S(H1) and apply the inverse Fourier transform on t variable,

ĎH1

ˇ̃f =
1

√
2π
∫
R
(−2∂z̄ −

bzτ

2
) f̃(q, p, t)eitτ dt.

On the piece τ = 1, DH1 and D∗
H1

correspond to D and D∗ respectively.
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To make this correspondence rigorous, consider a quotient group Hred
1 of H1

Hred
1 ∶=H1/ {(0,0, t)∣ t ∈ 2πZ} , {(0,0, t)∣ t ∈ 2πZ} ⊂ C(H1).

For a f on R2, it is lifted to H1 by defining

f̃(p, q, t) ∶=
√

2π exp(−ti)f(p, q). (3.58)

Through the definition (3.58), the correspondence between D(D∗) and DH1
(D∗

H1
)

is

Df̃(p, q, t) =D∗
H1
f̃(p, q, t), D∗f̃(p, q, t) =D∗

H1
f̃(p, q, t). (3.59)

We can also relate the twisted convolution defined in (3.8) to the group convolution

on H1,

(f̃ ∗ g̃) (p, q, t) = ∫
Hred

1

f̃ ((p, q, t) ⋅ (p̃, q̃, t̃)−1) g̃(p̃, q̃, t̃)dp̃dq̃dt̃

= ∫
Hred

1

f̃ (p − p̃, q − q̃, t − t̃ − b
Ω ((p, q), (p̃, q̃))

2
) g̃(p̃, q̃, t̃)dp̃dq̃dt̃

= 2π exp(−ti)∫
R2
f(p − p̃, q − q̃)g(p̃, q̃) exp(ib

Ω ((p, q), (p̃, q̃))

2
) dp̃dq̃

= 2π exp(−ti) (f ♮ g) (p, q),

i.e. f̃ ∗ g̃ =
√

2πf̃ ♮ g.

Lemma 3.21. Let G be a Lie group endowed with a left invariant Haar measure
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dµ, then

LX (f ∗ g) = f ∗LXg, X ∈ g (3.60)

where LX denotes the Lie derivative by X and ∗ denotes the convolution on G

(f ∗ g) (x) ∶= ∫
G
f(xy−1)g(y)dy, x ∈ G.

Furthermore, (3.60) holds for the complexified Lie algebra gC.

Proof. Suppose X ∈ g, let exp(tX) denote the one parameter subgroup generated

by X and exp(tX).x denote the action of exp(tX) on G, i.e. x ∈ G travels along

the flow generated by X. Then

∫
G
f ((exp(tX).x)y−1) g(y)dy = ∫

G
f (x exp(tX)y−1) g(y)dy

= ∫
G
f (x (y exp(−tX))

−1
) g(y)dy

= ∫
G
f (xy−1) g (exp(tX).y) L∗exp(tX)

dy

= ∫
G
f (xy−1) g (exp(tX).y) dy

which implies the identity (3.60).

3.6.2 Stationary Solutions

We use relations (3.59) to find two families of stationary solutions to Equation

(2.12).

Proposition 3.22. Suppose v ∈ L1 (R2), there are two families of stationary solu-
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tions to Equation (2.12),

(i) Πφ(x, y) = φ(x − y) exp(ib
Ω(x, y)

2
), for arbitrary φ on R2,

(ii) Π̄φ(x, y) = φ(x−y) exp(−ib
Ω(x, y)

2
), where φ is of radial symmetry, i.e. φ(x) =

φ(∣x∣).

Proof. By the correspondence (3.59), we regard D and D∗ as vector fields of H1.

Since the Lebesgue measure on Hred
1 is bi-invariant and the group convolution on

H1 is related to the twisted convolution by f̃ ∗ g̃ =
√

2πf̃ ♮ g, using Lemma 3.21, we

conclude that the Hamiltonian H =D∗D commutes with the twisted convolution ♮.

As a result,

[D∗D,Πφ] =D
∗[D,Πφ] + [D∗,Πφ]D = 0

Ô⇒Hx∫
R2

Πφ(x, y)f(y)dy − ∫
R2

Πφ(x, y)Hyf(y)dy

= ∫
R2

(HxΠφ(x, y) − H̄yΠφ(x, y)) f(y)dy = 0, ∀f ∈ S(R2)

Besides Πφ(x,x) = φ(0) and v∗φ(0) = φ(0) ∫ v(x)dx are constant, Πφ is a stationary

solution to (2.12).

Meanwhile, if we calculate (Hx − H̄y) Π̄φ directly,

(Hx − H̄y) Π̄φ = (Hx − H̄x − H̄y +Hy) Π̄φ + (H̄x −Hy) Π̄φ

= 2ib (xJ∇x + yJ∇y) Π̄φ

= 2ib(x − y)TJ (∇xφ̄(x − y)) exp(−
ibΩ(x, y)

2
) ,
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which vanishes if φ is a function of radial symmetry.

3.6.3 Transform

We list some important results about the Fourier-Wigner transform V and the

Wigner transform W from [Fol89, Chapter 1]. In the paper, we choose the reduced

Planck constant h̵ in [Fol89, Chapter 1] to be b and use the following results when

the dimension d = 1.

Proposition 3.23. [Fol89, Proposition 1.42]

⟨V (f1, g1), V (f2, g2)⟩ = (
2π

b
)
d

⟨f1, f2⟩ ⟨g2, g1⟩ , fj, gj ∈ L
2(Rd), j = 1,2.

Proposition 3.24. [Fol89, Proposition 1.47] Suppose fj, gj ∈ L2(Rd),

V (f1, g1) ♮V (f2, g2) = (
2π

b
)
d

⟨g2, f1⟩V (f2, g1).

Proposition 3.25. [Fol89, Proposition 1.94]

W (β(a, e)f, β(c, d)g) (ξ, x) = exp(−
ib

2
Ω ((a, e), (c, d)) + i ⟨(a, e) − (c, d), (ξ, x)⟩)

⋅W (f, g) (ξ −
b(e + d)

2
, x +

b(a + c)

2
) .

where a, e, c, d, x, ξ ∈ Rd.

Hermite functions and associated Laguerre polynomials are related by the

following two theorems.
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Theorem 3.26. [Fol89, Theorem 1.104] Suppose p, q ∈ R, and w = p + iq. Then

V (hj, hk)(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
k!

j!

⎛

⎝

√
b

2
w
⎞

⎠

j−k

e−b∣w∣2/4Lj−kk (
b∣w∣2

2
) , j ≥ k

(−1)j+k

√
j!

k!

⎛

⎝

√
b

2
w̄
⎞

⎠

k−j

e−b∣w∣2/4Lk−jj (
b∣w∣2

2
) , j ≤ k

Theorem 3.27. [Fol89, Theorem 1.105] Suppose x, ξ ∈ R and z = x + iξ. Then

W (hj, hk)(ξ, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k
2

b

√
k!

j!

⎛

⎝

√
2

b
z̄
⎞

⎠

j−k

Lj−kk (
2∣z∣2

b
) e−∣z∣

2/b, j ≥ k

(−1)j
2

b

√
j!

k!

⎛

⎝

√
2

b
z
⎞

⎠

k−j

Lk−jj (
2∣z∣2

b
) e−∣z∣

2/b, j ≤ k

Let µ be the Metaplectic representation from Mp(2d,R) to U (L2(Rd)), with

infinitesimal representation

dµ ∶ A =

⎛
⎜
⎜
⎜
⎝

A B

C −AT

⎞
⎟
⎟
⎟
⎠

∈ sp(2d,R) ↦ −
1

2i
(Q̂ P̂)

⎛
⎜
⎜
⎜
⎝

A B

C −AT

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 id

−id 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Q̂

P̂

⎞
⎟
⎟
⎟
⎠

,

where Q̂ = x, P̂ = −i∇x, x ∈ Rd and id is the identity matrix on Rd.

Theorem 3.28. [Fol89, Theorem 4.51] Suppose

⎛
⎜
⎜
⎜
⎝

A(t) B(t)

C(t) D(t)

⎞
⎟
⎟
⎟
⎠

= exp

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

A B

C −AT

⎞
⎟
⎟
⎟
⎠

t

⎞
⎟
⎟
⎟
⎠

,

where
⎛
⎜
⎜
⎜
⎝

A B

C −AT

⎞
⎟
⎟
⎟
⎠

∈ sp(2d,R). For any time T > 0 such that when t ∈ [0, T ],
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det(D(t)) > 0, then

µ

⎛
⎜
⎜
⎜
⎝

A(t) B(t)

C(t) D(t)

⎞
⎟
⎟
⎟
⎠

f(x) (3.61)

=
1

det (D(t))
1/2

(2π)n/2
∫
Rn

exp (−iS(x, ξ)) f̂(−ξ)dξ, x ∈ Rn, t ∈ [0, T ]

where

S(x, ξ) =
−ξD(t)−1C(t)ξ

2
+ ξD(t)−1x +

xB(t)D(t)−1x

2
, x, ξ ∈ Rd.

3.6.4 Global Well-posedness

We establish a global well-posedness result for Equation (2.9) when

∥h1/2Γ0h
1/2∥

tr
< ∞, Γ∗

0 = Γ0, Γ0 ≥ 0 and w(x) =
1

∣x∣
.

The associated total energy is

EHF (Γ(t)) = Tr (h1/2Γ(t)h1/2) +
1

2 ∫R3
(ρΓ ∗ V ) (t, x)ρΓ(t, x)dx. (3.62)

The outline of the proof is that we first establish two local well-posedness results

for Equation (2.9): one is at the energy level and another one is for smooth data.

Then we verify the conservation law of the total energy for smooth data and use

a limiting argument to pass the law to the energy level. Finally, the global well-
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posedness follows from the conservation of energy. All estimates involved are based

on time-independent arguments.

Note that h = L∗L, where

L = (−i∂x1 +
b

2
x2,−i∂x2 −

b

2
x1,−i∂x3)

and x = (x1, x2, x3), and the covariant derivative L is metric. The pointwise Kato’s

inequality holds

∣∇∣f ∣∣ ≲ ∣Lf ∣ . (3.63)

In addition

∥h1/2f∥
2

L2(R3)
= ∥Lf∥

2
L2(R3)

= ∥Df∥
2
L2(R3)

+ ∥∂x3f∥
2
L2(R3)

+ b ∥f∥
2
L2(R3)

.

Let us define the following operator norms for the discussion

∥Γ∥
L
s,p
h
∶= ∥hs/2Γhs/2∥

Lp
= (Tr ∣hs/2Γhs/2∣

p
)

1/p
(3.64)

where s ≥ 0, 1 ≤ p ≤ ∞ and Lp is the p-th Schatten norm.

1. The local well-posedness at the energy level.

To deal with the nonlinear term in Equation (2.9), we first show a bilinear

estimate for functions, then generalize it to operators.
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Proposition 3.29.

∥h1/2 ((∣φ1∣
2 ∗ V )φ2)∥L2 ≲ ∥h1/2φ1∥

2

L2 ∥h
1/2φ2∥L2 . (3.65)

Proof. Applying the Hölder inequality,

∥h1/2 ((∣φ1∣
2 ∗ V )φ2)∥L2 ≲ ∥∣φ1∣

2 ∗ V ∥
L∞

∥h1/2φ2∥L2 + ∥∣∇x∣ (∣φ1∣
2 ∗ V )∥

L3 ∥φ2∥L6 ,

while

(∣φ1∣
2 ∗ V ) (x) = ∫

R3
∣φ1∣

2(x − y)V (y)dy

≲ ∫
R3

∣∣∇y ∣
1/2∣φ1∣(x − y)∣

2
dy (by the Hardy’s inequality)

≤ ∫
R3

(∣∣∇∣∣φ1∣∣
2
(x) + ∣φ1∣

2(x)) dx

≲ ∥h1/2φ1∥
2

L2 , (by the inequality (3.63))

and by the inequality (3.63), the Sobolev inequality and the Hardy-Littlewood-

Sobolev inequality,

∥φ2∥L6 ≲ ∥∣φ2∣∥H1 ≲ ∥h1/2φ2∥L2 ,

∥∣∇x∣ (∣φ1∣
2 ∗ V )∥

L3 = ∥∣φ1∣
2 ∗ (∣∇∣V )∥

L3 ≲ ∥∣φ1∣
2∥
L3/2 = ∥φ1∥

2
L3 ≲ ∥h1/2φ1∥

2

L2 ,

we obtain the desired estimate,

∥h1/2 ((∣φ1∣
2 ∗ V )φ2)∥L2 ≲ ∥h1/2φ1∥

2

L2 ∥h
1/2φ2∥L2 .
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Proposition 3.30. Suppose Γ1 and Γ2 are self-adjoint,

∥[ρΓ1 ∗ V,Γ2]∥L1,1
h
≲ ∥Γ1∥L1,1

h
∥Γ2∥L1,1

hh
(3.66)

Proof. Since Γj is self-adjoint and ∥Γj∥L1,1
h

< ∞ for j = 1,2, there are orthonormal

bases {fk,j}∞k=1 j = 1,2, such that

(h1/2Γjh
1/2) (x, y) =

∞

∑
k=1

λk,jfk,j(x)f̄k,j(y).

Then

Γj(x, y) =
∞

∑
k=1

λk,j (h
−1/2fk,j) (x) (h−1/2fk,j) (y),

and by the Minkowski’s inequality,

∥(ρΓ1 ∗ V )Γ2∥L1,1
h

= ∥h
1/2
x ((ρΓ1 ∗ V ) (x)

∞

∑
k=1

λk,2 (h
−1/2fk,2) (x) (f̄k,2) (y))∥

tr

≤
∞

∑
k=1

∣λk,2∣ ∥h
1/2
x ((ρΓ1 ∗ V ) (x) (h−1/2fk,2) (x) (f̄k,2) (y))∥

tr

≤
∞

∑
k=1

∣λk,2∣ ∥h
1/2
x ((ρΓ1 ∗ V ) (x) (h−1/2fk,2) (x))∥

L2
x

≤
∞

∑
k=1

∣λk,2∣
∞

∑
l=1

∣λl,1∣ ∥h
1/2 ((∣h−1/2fl,1∣

2
∗ V )h−1/2fk,2)∥

L2

≲
∞

∑
k=1

∣λk,2∣
∞

∑
l=1

∣λl,1∣ ∥fl,1∥
2
L2 ∥fk,2∥L2 (by Proposition 3.29)

≤
∞

∑
k=1

∣λk,2∣
∞

∑
l=1

∣λl,1∣.

The other term ∥Γ2 (ρΓ1 ∗ V )∥
L

1,1
h

can be estimated in the same way.
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Based on Proposition 3.30, we obtain the following local well-posedness result

as an application of the contraction mapping principle.

Theorem 3.31. For any initial data ∥Γ0∥L1,1
h

< ∞ and Γ∗
0 = Γ0, Equation (2.9) has

a mild solution in the Banach space N1T , where the norm N1T is defined as

∥Γ(t)∥N1T
∶= ∥Γ(t)∥

L∞([0,T ];L1,1
h

)
, (3.67)

while the existence time T depends on ∥h1/2Γ0h1/2∥tr. To be more precise, the solution

Γ(t) ∈ C0 ([0, T ];L1,1
h ).

2. The local well-posedness for smooth data.

Similarly as Step 1, we first show a bilinear estimate for functions, then gen-

eralize it to operators.

Proposition 3.32.

∥h ((∣φ1∣
2 ∗ V )φ2)∥L2 ≲ ∥h1/2φ1∥

2

L2 ∥hφ2∥L2 (3.68)

Proof. A direct computation shows

h ((∣φ1∣
2 ∗ V )φ2)

= −∆ (∣φ1∣
2 ∗ V )φ2 + (∣φ1∣

2 ∗ V )hφ2

+ (−2∂z̄ (∣φ1∣
2 ∗ V ))D∗φ2 + (2∂z (∣φ1∣

2 ∗ V ))Dφ2 − 2∂x3 (∣φ1∣
2 ∗ V )∂x3φ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
first-order terms

.
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By the proof of Proposition 3.29,

∥(∣φ1∣
2 ∗ V )hφ2∥L2 ≤ ∥∣φ1∣

2 ∗ V ∥
L∞

∥hφ2∥L2 ≲ ∥h1/2φ1∥
2

L2 ∥hφ2∥L2 ,

and

∥first-order terms∥L2 ≲ ∥∣∇∣ (∣φ1∣
2 ∗ V )∥

L3 (∥D
∗φ2∥L6 + ∥Dφ2∥L6 + ∥∂x3φ2∥L6)

≲ ∥h1/2φ1∥
2

L2 ∥hφ2∥L2 .

Analyzing −∆ (∣φ1∣
2 ∗ V )φ2, by the Hardy-Littlewood-Sobolev inequality and the

Sobolev inequality,

∥−∆ (∣φ1∣
2 ∗ V )φ2∥L2 ≤ ∥(∣∇∣∣φ1∣

2) ∗ (∣∇∣w)∥
L3 ∥φ2∥L6

≲ ∥∇∣φ1∣
2∥
L3/2 ∥φ2∥L6

≲ ∥∇ ∣φ1∣∥L2 ∥φ1∥L6 ∥φ2∥L6

≲ ∥h1/2φ1∥
2

L2 ∥h
1/2φ2∥L2 .

Using the same argument in Proposition 3.30, we generalize Proposition 3.32

to operators.

Proposition 3.33. Suppose Γ1 and Γ2 are self-adjoint,

∥[ρΓ1 ∗ V,Γ2]∥L2,1
h
≲ ∥Γ1∥L1,1

h
∥Γ2∥L2,1

h
. (3.69)
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Theorem 3.34. For any initial data ∥Γ0∥L2,1 < ∞ and Γ∗
0 = Γ0, Equation (2.9) has

a mild solution in the Banach space N2T , where the norm N2T is defined as

∥Γ(t)∥N2T
∶= ∥Γ(t)∥L∞([0,T ];L2,1)

, (3.70)

while IT = [0, T ] and the existence time T depends on ∥Γ0∥L1,1
h
. More precisely, the

solution Γ(t) ∈ C0 ([0, T ],L2,1
h ) ∩C1 ([0, T ],L1)

Proof. Based on Proposition 3.33, we use the contraction mapping principle to ob-

tain the local well-posedness result.

To show the existence time T depends on ∥Γ0∥L1,1
h
, consider the integral form

of the solution Γ(t)

Γ(t) = e−i htΓ0e
i ht − i∫

t

0
e−i h(t−τ) [ρΓ(τ) ∗ V,Γ(τ)] ei h(t−τ) dτ,

then by the Minkowski’s inequality,

∥Γ(t)∥
L

2,1
h

≤ ∥e−i htΓ0e
i ht∥

L
2,1
h

+ ∫

t

0
∥[ρΓ(τ) ∗ V,Γ(τ)]∥

L
2,1
h

dτ

≤ ∥Γ0∥L2,1
h
+C (sup

τ∈IT

∥Γ(τ)∥
L

1,1
h

)∫

t

0
∥Γ(τ)∥

L
2,1
h
dτ (Proposition 3.33),

where C is a constant. Using the Grönwall’s inequality, for 0 ≤ t ≤ T ,

∥Γ(t)∥
L

2,1
h

≤ ∥Γ0∥L2,1
h

exp(Ct sup
τ∈IT

∥Γ(τ)∥
L

1,1
h

) .

Since Theorem 3.31 says that the existence T depends on ∥Γ0∥L1,1
h
, with the above
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estimate, so is the case for Theorem 3.34. By the semi-group theory, the solution

Γ(t) ∈ C0 ([0, T ],L2,1
h ) ∩C1 ([0, T ],L1).

3. The conservation law.

We first verify the conservation law of energy for smooth data, then pass it to

the energy level by the limiting argument.

Proposition 3.35. Suppose that Γ(t) ∈ C0 ([0, T ],L2,1
h )∩C1 ([0, T ],L1) is a solution

to Equation (2.9), then the total energy (3.62) EHF (Γ(t)) is conserved for t ∈ [0, T ].

Proof. The trick is to express (3.62) in the following way

EHF (Γ) = Tr (hΓ) +
1

2
Tr ((ρΓ ∗ V )Γ) = Tr (Γh) +

1

2
Tr (Γ (ρΓ ∗ V )) ,

and use the mild formulation

Γ(t) = e−ihtΓ0e
iht − i∫

t

0
e−ih(t−τ) [ρΓ(τ) ∗ V,Γ(τ)] eih(t−τ) dτ.
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Taking the time derivative

dEHF (Γ(t))

dt

= − i T r (he−ihtΓ0e
ihth) − ∫

t

0
dτ Tr (he−ih(t−τ) [ρΓ(τ) ∗ V,Γ(τ)] eih(t−τ)h)

+ i T r (he−ihtΓ0e
ihth) + ∫

t

0
dτ Tr (he−ih(t−τ) [ρΓ(τ) ∗ V,Γ(τ)] eih(t−τ)h)

− i T r ([ρΓ(t) ∗ V,Γ(t)]h) + Tr (Γ̇(t) (ρΓ(t) ∗ V ))

= − i T r ([ρΓ(t) ∗ V,Γ(t)]h) − i T r ([h + ρΓ(t) ∗ V,Γ(t)] (ρΓ(t) ∗ V ))

=0 (cyclicity of Tr).

By the fundamental theorem of calculus, EHF (Γ(t)) = EHF (Γ0) for 0 ≤ t ≤ T .

For any initial data Γ0 at the energy level, i.e.

∥Γ0∥L1,1
h

< ∞, Γ∗
0 = Γ0,

there exists a sequence {Γ0,k}
∞
k=1 ⊂ L

2,1
h such that

lim
k→∞

∥Γ0,k − Γ0∥L1,1
h

= 0.

Denote the solution of Equation (2.9) associated to the initial data Γ0,k by Γk(t).

Since the existence time of Γk(t) depends on ∥Γ0,k∥L1,1
h

(Theorem 3.34), there is a

uniform time T such that all solutions Γk(t) exist in the sense of Theorem 3.34. By
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the continuous dependence on initial data (from Theorem 3.31), for any 0 ≤ t ≤ T ,

lim
k→∞

∥Γk(t) − Γ(t)∥
L

1,1
h

= 0.

While the total energy EHF is continuous with respect to the norm L1,1
h , by Propo-

sition 3.35,

EHF (Γ(t)) = lim
k→∞
EHF (Γk(t)) = lim

k→∞
EHF (Γ0,k) = EHF (Γ0) . (3.71)

4. The global well-posedness at the energy level.

Note that when the initial data Γ0 is non-negative, i.e. it satisfies the operator

inequality Γ0 ≥ 0, the condition of being non-negative is preserved under Equation

(2.9). Thus Tr (h1/2Γ(t)h1/2) = ∥Γ(t)∥
L

1,1
h

and the energy EHF (Γ(t)) ∼ ∥Γ(t)∥
L

1,1
h
.

Using the conservation law (3.71), we improve the local well-posedness result The-

orem 3.31 to the following global statement.

Theorem 3.36. Suppose that the initial data Γ0 satisfies

∥Γ0∥L1,1
h

< ∞, Γ∗
0 = Γ0, Γ0 ≥ 0,

then Equation (2.9) has a global mild solution Γ(t) ∈ C0 ([0,∞),L1,1
h ).

86



Chapter 4: Global Well-Posedness for Bogoliubov-de Gennes Equations

The chapter is organized as: In Section 3, we prove the local well-posedness

result Theorem 2.15. In Section 4, we consider the Bogoliubov-de Gennes equations

with smooth and compactly supported potential. The regularity of initial data can

be preserved by smooth potential case. We prove the smooth potential version

Theorem 4.18 of Theorem 2.16. In Section 5, we assemble results for the smooth

potential case and the local case, and use a limiting argument to prove the global

result Theorem 2.16. In the appendix, we prove two propositions which are used in

Section 3 and Section 4 respectively: the Morrey’s inequality for Banach spaces and

the property of the Bogoliubov-de Gennes equations with smooth potential that the

spectrum of the generalized one-particle density matrix does not change along the

time evolution.

4.1 Preliminary

Note that the nonlinear terms in Equation (2.39) and (2.40) are quadratic

maps of Γ(t) and Λ(t). For simplicity of notations, we define two bilinear maps

based on F1(t; v) and F2(t; v) and use a state ω(t) to refer to a pair of functions
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(Γ(t),Λ(t)),

B1(ω1, ω2; v) ∶= [v ∗ ρΓ1 ,Γ2] − [Γ1,Γ2]v + [Λ1,Λ
∗
2]v (4.1)

B2(ω1, ω2; v) ∶= [v ∗ ρΓ1 ,Λ2] − [Γ1,Λ2]v,+ − [Λ1, Γ̄2]v,+. (4.2)

where (Γj,Λj) is associated with state ωj, j = 1,2. (Γj,Λj)may not satisfy Condition

(2.37) and the two bilinear maps are defined for pairs of general functions.

4.2 Derivation of Equations

In this section, we consider a pure quasi-free state and derive the Bogoliubov-

de Gennes equations as an effective dynamics of the Many-body problem. The

derivation is in the same spirit of [GM13,GM17]. Let e−B0 ∣0⟩ be in the Fock space

Fa, where e−B0 denotes the unitary implementation of a Bogoliubov transform. This

state is quasi-free and all pure quasi-free states with finite expected number of

particles are in this form [Sol14]. Consider the Schrödinger equation of state e−B0 ∣0⟩

in the Fock space Fa,

i ∂tΨt = ĤΨt, Ψ0 = e−B0 ∣0⟩ , (4.3)

The solution to the Schrödinger equation is e−i tĤe−B0 ∣0⟩. Our goal is to derive an

equation to describe the solution e−i tĤe−B0 ∣0⟩ effectively local in time. An approach

is to find e−Bt ∣0⟩ such that

∥e−i tĤe−B0 ∣0⟩ − e−Bt ∣0⟩∥
Fa

= ∥eBte−i tĤe−B0 ∣0⟩ − ∣0⟩∥
Fa
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is minimal, which is equivalent to study ψt = eBte−i tĤe−B0 ∣0⟩. ψt satisfies the evolu-

tion equation

i ∂tψt = i (∂te
Bte−Bt)ψt + e

BtĤe−Btψt, ψ0 = ∣0⟩ . (4.4)

Denote the reduced Hamiltonian Ĥred = i (∂teBte−Bt) + eBtĤe−Bt . For short time, ψt

is controlled by

Ĥred ∣0⟩ = (X0,X1,X2,X3,X4,0,0, . . .), (4.5)

where X1 = 0. The correlation functions of e−Bt ∣0⟩ are

Lm,n ∶= ⟨ay1⋯ayme
−Bt ∣0⟩ , ax1⋯axne

−Bt ∣0⟩⟩
Fa

= ⟨∣0⟩ , eBtPm,ne
−Bt ∣0⟩⟩

Fa
, (4.6)

where Pm,n = a†
y1⋯a

†
ym ⋅ ax1⋯axn . A Fock state is determined by its correlation

functions and we will derive time evolution equations for correlation functions.

e−Bt is an unitary implementable Bogoliubov transform and corresponds to a

matrix
⎛
⎜
⎜
⎜
⎝

Pt(x, y) Qt(x, y)

Q̄t(x, y) P̄t(x, y)

⎞
⎟
⎟
⎟
⎠

(4.7)

and an adjoint action on L2 (R3) ×L2 (R3)

eBta†
xe

−Bt = ∫ dy (Pt(y, [x])a
†
y + Q̄t(y, [x])ay) (4.8)

eBtaxe
−Bt = ∫ dy (P̄t(y, [x])ay +Qt(y, [x])a

†
y) . (4.9)
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Then correlation functions are

Lm,n(y1, . . . , ym;x1, x2 . . . , xn)

= ⟨∣0⟩ , eBtPm,ne
−Bt ∣0⟩⟩

Fa

=⟨∣0⟩ ,
m

∏
j=1
∫ dzj (Pt(zj, [yj])a

†
zj
+ Q̄t(zj, [yj])azj)

n

∏
l=1
∫ dzl (P̄t(zl, [zl])azl +Qt(zl, [xl])a

†
xl
) ∣0⟩⟩

Fa

.

Lemma 4.1. Impose the assumption X2 = 0 and Ĥ∗ = Ĥ, then

⟨∣0⟩ , [Ĥred, e
BtPm,ne

−Bt] ∣0⟩⟩
Fa

= 0

where (m,n) = (2,0), (0,2), (1,1).

Proof. Compute directly

⟨∣0⟩ , [Ĥred, e
BtPm,ne

−Bt] ∣0⟩⟩
Fa

= ⟨Ĥred ∣0⟩ , e
BtPm,ne

−Bt ∣0⟩⟩
Fa
− ⟨∣0⟩ , eBtPm,ne

−BtĤred ∣0⟩⟩Fa

= ⟨X3 +X4, e
BtPm,ne

−Bt ∣0⟩⟩
Fa
− ⟨∣0⟩ , eBtPm,ne

−Bt(X3 +X4)⟩Fa
.

When (m,n) = (2,0), (0,2), (1,1), eBtPm,ne−Bt can at most create or annihilate two

particles. The above quantity must vanish.

In the end, we derive the Bogoliubov-de Gennes equations by imposing the

condition that X2 of Ĥred ∣0⟩ is zero.
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Proposition 4.2. Let X2 = 0 in (4.5), Γ(t, x, y) = L1,1(t, y, x) and Λ(t, x, y) =

L0,2(t, y, x), the Bogoliubov-de Gennes equations are

(i ∂t +∆x +∆y − v(x − y))Λ(t, x, y)

=∫ dz (v(x − z) + v(y − z)) (Γ(t, z, z)Λ(x, y) −Λ(t, x, z)Γ(t, y, z)

+Γ(t, x, z)Λ(t, y, z))

(i ∂t +∆x −∆y)Γ(t, x, y)

=∫ dx (v(x − z) − v(y − z)) (Γ(t, x, x)Γ(t, x, y) +Λ∗(t, z, y)Λ(t, x, z)

−Γ(t, z, y)Γ(t, x, z)) .

Proof. Recall that

L0,2(t, x1, x2) = ⟨∣0⟩ ,(∫ dy1dy2 P̄t(y1, [x1])ay1Qt(y2, [x2])a
†
y2
) ∣0⟩⟩

Fa

,

and

L1,1(t, x1;x2) = ⟨∣0⟩ ,(∫ dy1dy2 Q̄t(y1, [x1])ay1Qt(y2, [x2])a
†
y2
) ∣0⟩⟩

Fa

.
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Compute commutators

[V , a†
x1
]

=∫ dxdy v(x − y)a†
xa

†
yayaxa

†
x1
− a†

x1 ∫ dxdy v(x − y)a†
xa

†
yayax

=∫ dxdy v(x − y)a†
xa

†
yay (−a

†
x1
ax + δ(x − x1)) − a

†
x1 ∫ dxdy vN(x − y)a†

xa
†
yayax

=∫ dy v(y − x1)a
†
x1
a†
yay − ∫ dxdy v(x − y)a†

xa
†
y (−a

†
x1
ay + δ(x1 − y))ax

− a†
x1 ∫ dxdy v(x − y)a†

xa
†
yayax

=∫ dy v(y − x1)a
†
x1
a†
yax − ∫ dxv(x − x1)a

†
xa

†
x1
ax + a

†
x1 ∫ dxdy v(x − y)a†

xa
†
yayax

− a†
x1 ∫ dxdy v(x − y)a†

xa
†
yayax

=2a†
x1 ∫ dxv(x − x1)a

†
xax,

apply the adjoint operator

[V , ax1] = −∫ dxv(x − x1)a
†
xaxax1 .

Using the identities

[XY,Z] =X[Y,Z] + [X,Z]Y, [X,Y Z] = [X,Y ]Z + Y [X,Z],
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we have

[V , a†
x1
ax2]

=[V , a†
x1
]ax2 + a

†
x1
[V , ax2]

=a†
x1 ∫ dxv(x − x1)a

†
xaxax2 − a

†
x1 ∫ dxv(x − x2)a

†
xaxax2 ,

and

[V , ax1ax2]

=[V , ax1]ax2 + ax1[V , ax2]

= − ∫ dxv(x − x1)a
†
xaxax1ax2 − ax1 ∫ dxv(x − x2)a

†
xaxax2

= − v(x1 − x2)ax1ax2 − ∫ dxv(x − x1)a
†
xaxax1ax2 − ∫ dxv(x − x2)a

†
xaxax1ax2 .

Compute time derivatives

∂t (e
BtPm,ne

−Bt)

= (∂te
Bte−Bt) eBtPm,ne

−Bt + eBtPm,ne
−Bt (eBt∂te

−Bt)

= (∂te
Bte−Bt) eBtPm,ne

−Bt − eBtPm,ne
−Bt (∂te

Bte−Bt)

= [∂te
Bte−Bt , eBtPm,ne

−Bt]

= [−i Ĥred + i e
BtĤe−Bt , eBtPm,ne

−Bt]

= − i [Ĥred, e
BtPm,ne

−Bt] + i eBt [Ĥ,Pm,n] e
−Bt .
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Using Lemma 4.1,

i
∂L0,2

∂t
(t, x1, x2)

= − ⟨∣0⟩ , eBt [−∆, P0,2] e
−Bt ∣0⟩⟩

Fa
− ⟨∣0⟩ , eBt [V , P0,2] e

−Bt ∣0⟩⟩
Fa

= ⟨∣0⟩ , eBt (ax1ax2(−∆)∗x2
+ ax1(−∆)∗x1

ax2
) e−Bt ∣0⟩⟩

Fa
− ⟨∣0⟩ , eBt [V , P0,2] e

−Bt ∣0⟩⟩
Fa
,

where

⟨∣0⟩ , eBt (ax1ax2(−∆)∗x2
+ ax1(−∆)∗x1

ax2
) e−Bt ∣0⟩⟩

Fa

= ⟨∣0⟩ ,∫ dy1dy2 (P̄t(y1, [x1])ay1Qt(y2, [x2])a
†
y2
(−∆)∗x2

+P̄t(y1, [x1])ay1(−∆)∗x1
Qt(y2, [x2])a

†
y2
) ∣0⟩⟩

Fa

= ⟨∣0⟩ ,∫ dy1dy2 (P̄t(y1, [x1])ay1(−∆)x2Qt(y2, [x2])a
†
y2

+(−∆)x1P̄t(y1, [x1])ay1Qt(y2, [x2])a
†
y2
) ∣0⟩⟩

Fa
,

and

⟨∣0⟩ , eBt [V , P0,2] e
−Bt ∣0⟩⟩

Fa

= − v(x1 − x2)L0,2(t, x1, x2) − ∫ dx (v(x − x1) + v(x − x2))L1,3(t, x;x,x1, x2)
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We obtain the equation

(i
∂

∂t
+∆x1 +∆x2 − v(x1 − x2))L0,2(t, x1, x2)

=∫ dx (v(x − x1) + v(x − x2))L1,3(t, x;x,x1, x2).

Similarly,

i
∂L1,1

∂t
(t, x1;x2)

= ⟨∣0⟩ , eBt (a†
x1
ax2(−∆)∗x2

− a†
x1
Hx1ax2

) e−Bt ∣0⟩⟩
Fa
− ⟨∣0⟩ , eBt [V , P1,1] e

−Bt ∣0⟩⟩
Fa

where

⟨∣0⟩ , eBt (a†
x1
ax2(−∆)∗x2

− a†
x1
(−∆)x1ax2

) e−Bt ∣0⟩⟩
Fa

=⟨∣0⟩ ,∫ dy1dy2 (Q̄t(y1, [x1])ay1Qt(y2, [x2])a
†
y2
(−∆)∗x2

−Q̄t(y1, [x1])ay1(−∆)x1Qt(y2, [x2])a
†
y2
) ∣0⟩⟩

Fa

=⟨∣0⟩ ,∫ dy1dy2 (Q̄t(y1, [x1])ay1(−∆)x2Qt(y2, [x2])a
†
y2

−(−∆)∗x1
Q̄t(y1, [x1])ay1Qt(y2, [x2])a

†
y2
) ∣0⟩⟩

Fa

and

⟨∣0⟩ , eBt [V , P1,1] e
−Bt ∣0⟩⟩

Fa

=∫ dx (v(x − x1) − v(x − x2))L2,2(t, x1, x;x,x2).
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We obtain the second equation

(i ∂t −∆x1 +∆x2)L1,1(t, x1, x2) = −∫ dx (v(x − x1) − v(x − x2))L2,2(t, x1, x, x;x2).

(4.10)

Compute four-particle correlation functions,

L1,3(t, x1;x2, x3, x4)

= ⟨∣0⟩ ,∫ dy1dy2dy3dy4 Q̄t(y1, [x1])ay1Qt(y2, [x2])a
†
y2

P̄t(y3, [x3])ay3Qt(y4, [x4])a
†
y4

∣0⟩⟩
Fa

+ ⟨∣0⟩ ,∫ dy1dy2dy3dy4 Q̄t(y1, [x1])ay1P̄t(y2, [x2])ay2

Qt(y3, [x3])a
†
y3
Qt(y4, [x4])a

†
y4

∣0⟩⟩
Fa

=L1,1(t, x1;x2)L0,2(t, x3, x4) −L1,1(t, x1;x3)L0,2(t, x2, x4)

+L1,1(t, x1;x4)L0,2(t, x2, x3)
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and

L2,2(t, x1, x2;x3, x4)

= ⟨∣0⟩ ,∫ dy1dy2dy3dy4 Q̄t(y1, [x1])ay1Pt(y2, [x2])a
†
y2

P̄t(y3, [x3])ay3Qt(y4, [x4])a
†
y4

∣0⟩⟩
Fa

+ ⟨∣0⟩ ,∫ dy1dy2dy3dy4 Q̄t(y1, [x1])ay1Q̄t(y2, [x2])ay2

Qt(y3, [x3])a
†
y3
Qt(y4, [x4])a

†
y4

∣0⟩⟩
Fa

=L∗0,2(t, x1, x2)L0,2(t, x3, x4) −L1,1(t, x1;x3)L1,1(t, x2;x4)

+L1,1(t, x1;x4)L1,1(t, x2;x3).

4.3 Local Well-Posedness Theory

In this section, we prove the local well-posedness Theorem 2.15 by showing

that the Duhamel’s formulation (2.51) has a fixed point in the solution space (2.49)

for sufficiently small T . Our strategy is to arrange quantities in (2.49) into three

groups

∥Γ(t)∥L∞t ([0,T ],L1) + ∥ρΓ(t)(x)∥L1
tL

3
x([0,T ]×R3), ∥Γ(t, x, y)∥ST 1

T
and ∥Λ(t, x, y)∥ST 1

εT
,

and consider the linear part ei∆tΓ0e−i∆t or ei∆tΛ0ei∆t, vΛ and the nonlinear part F1

or F2 in (2.51) for each case.
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I To estimate ∥Γ(t)∥L∞t ([0,T ],L1) + ∥ρΓ(t)(x)∥L1
tL

3
x([0,T ]×R3): Based on the obser-

vation that the linear propagator ei∆tΓ0e−i∆t preserves the spectrum of Γ0

and ρΓ(t) can be written as a sum of products of two functions if Γ(t) is

of trace class, using the Strichartz estimate for functions, the linear part

ei∆tΓ0e−i∆t is controlled by ∥Γ0∥L1 . Similarly, the nonlinear part is majorized

by ∥F1(t; v)∥L1
t ([0,T ],L1).

II To estimate ∥Γ(t, x, y)∥ST 1
T
: We apply the Strichartz estimate for functions

valued in a Hilbert space, estimate the linear part by ∥Γ0∥H1 and the nonlinear

part by ∥F1(t, x, y; v)∥L1
tH

1([0,T ]×R6).

III To estimate ∥Λ(t, x, y)∥ST 1
εT
: We could still control the nonlinear part by

∥F2(t, x, y; v)∥L1
tH

1([0,T ]×R6) and the linear part ei∆tΛ0ei∆t by ∥Λ0∥H1 as Step II.

The singular term (vΛ)(t) is treated as a forcing term and we put ⟨∇x,y⟩ ((vΛ)(t))

in the dual Strichartz space L2
tL

6/5
x−yL2

x+y. Since Λ(t, x, x) vanishes for all t and

x, using Proposition 4.19 the Morrey’s inequality for Banach spaces1, the sin-

gularity x = 0 of ∣∇x∣v(x) is mitigated by Λ(t, x, x).

Next we elaborate each step in details in the rest of the section. Case I is

based on the following lemma.

Lemma 4.3. Let Γ(t) be the solution to the linear equation

i ∂tΓ(t) = [−∆,Γ(t)], Γ(t = 0) = Γ0 and Γ∗
0 = Γ0.

1The proof of Proposition 4.19 is essentially the same as the classic case and we prove it in
appendix.
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Then Γ(t)∗ = Γ(t) and the following estimate holds

∥Γ(t)∥L∞t (R,L1) + ∥ρΓ(t)(x)∥L1
tL

3
x
≲ ∥Γ0∥L1 . (4.11)

Furthermore, if Γ(t) is the solution to the inhomogenous equation

i ∂tΓ(t) = [−∆,Γ(t)] + F (t), Γ(t = 0) = Γ0 and Γ∗
0 = Γ0,

where F ∗(t) = −F (t), then for any T ∈ R,

∥Γ(t)∥L∞t ([0,T ],L1) + ∥ρΓ(t)∥L1
tL

3
x([0,T ]×R3)

≲ ∥Γ0∥L1 + ∥F (t)∥L1
t ([0,T ],L1). (4.12)

Proof. Let Γ(t) be the solution to the linear equation, then Γ(t) = ei∆tΓ0e−i∆t. Since

the linear propagator ei∆tΓ0e−i∆t preserves the spectrum of Γ0, ∥ei∆tΓ0e−i∆t∥L1 =

∥Γ0∥L1 . To derive the estimate for ρΓ(t), note that Γ0 is of trace class and self-

adjoint. Then there is an orthonormal basis {φj}∞j=1 of L2(R3) such that

Γ0(x, y) =
∞

∑
j=1

λjφj(x)φ̄j(y),

where λj are singular values of Γ0 and ∑∞
j=1 ∣λj ∣ = ∥Γ0∥L1 . Express the solution

Γ(t) = ei∆tΓ0e−i∆t in terms of the basis

ei(∆x−∆y)tΓ0 =
∞

∑
j=1

λje
i∆xtφj(x)ei∆ytφj(y),
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and the collapsing term is ρΓ(t) = ∑
∞
j=1 λj ∣e

i∆xtφj ∣
2
(x). Applying the Endpoint

Strichartz estimate and the Hölder inequality,

∥ρΓ(t)∥L1
tL

3
x
≤

∞

∑
j=1

∣λj ∣ ∥e
i∆xtφj∥

2

L2
tL

6
x
≲

∞

∑
j=1

∣λj ∣ ∥φj∥
2
L2
x
= ∥Γ0∥L1 .

Besides, the operator ei∆t is unitary and we obtain the estimate (trace theorem)

∥ρΓ(t)∥L∞t L1
x
≤

∞

∑
j=1

∣λj ∣ = ∥Γ0∥L1 .

When Γ(t) is the solution to the inhomogeneous equation, applying the linear

estimate (4.11) and the Minkowski inequality to the Duhamel’s formulation,

Γ(t) = ei∆tΓ0e
−i∆t − ∫

t

0
ds ei∆(t−s)iF (s)e−i∆(t−s),

we obtain (4.12).

After applying Lemma 4.3 to the Γ Equation (2.39) and treating F1(t; v) as

a forcing term, in order to close the fixed point argument, we need to estimate

∥F1(t; v)∥L1
[0,T ]

L1 by ∥Γ(t)∥N1T
and ∥Λ(t)∥N2T

. Since F1(t; v) can be considered as a

bilinear map (4.1), the corresponding estimate is stated as follows

Lemma 4.4. Let ωj(t) be states associated with correlation functions (Γj(t),Λj(t))

j = 1,2, for any T ∈ R,

∥B1 (ω1(t), ω2(t); v)∥L1
t ([0,T ],L1)

≲ (T
ε
4 + T ) ∥v∥M∥ω1(t)∥NT ∥ω2(t)∥NT . (4.13)
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Proof. The estimate (4.13) is the summary of the following results

(a) ∥[ρΓ1(t) ∗ v,Γ2(t)]∥L1
t ([0,T ],L1)

≲ (∥vχ1∥
L

3
2−ε/2

T
ε
4 + ∥vχ2∥L∞ T) ∥Γ1(t)∥N1T

∥Γ2(t)∥N1T
;

(b) ∥[Γ1(t),Γ2(t)]v∥L∞t ([0,T ],L1)
≲ (∥(vχ1)(x)∣x∣∥L3 + ∥vχ2∥L∞) ∥Γ1(t)∥N1T

∥Γ2(t)∥N1T
;

(c) ∥[Λ1(t),Λ∗
2(t)]v∥L∞t ([0,T ],L1)

≲ (∥(vχ1)(x)∣x∣∥L3 + ∥vχ2∥L∞) ∥Λ1(t)∥N2T
∥Λ2(t)∥N2T

.

To show (a), using the operator inequality,

∥[ρΓ1(t) ∗ v,Γ2(t)]∥L1
t ([0,T ],L1)

≤ 2∥ρΓ1(t) ∗ v∥L1
t ([0,T ],op)∥Γ2(t)∥L∞t ([0,T ],L1)

≤ 2∥ρΓ1(t) ∗ v∥L1
tL

∞
x ([0,T ]×R3)∥Γ2(t)∥L∞t ([0,T ],L1).

Then estimate ∥ρΓ1(t)∗v∥L1
tL

∞
x ([0,T ]×R3) by decomposing v as vχ1 and vχ2. For ρΓ1(t)∗

(vχ2),

∥ρΓ1(t) ∗ (vχ2)∥L1
tL

∞
x ([0,T ]×R3)

≤ ∥vχ2∥L∞∥ρΓ1(t)∥L1
tL

1
x([0,T ]×R3)

≤ ∥vχ2∥L∞T ∥Γ1(t)∥L∞t ([0,T ],L1).

For ρΓ1(t) ∗ (vχ1), by the Young’s convolution inequality and the Hölder inequality

∥ρΓ1(t) ∗ (vχ1)∥L1
tL

∞
x ([0,T ]×R3)

≤ ∥vχ1∥
L

3
2−ε/2

T
ε
4 ∥ρΓ1(t)∥

L

1
1−ε/4
t L

3
1+ε/2
x ([0,T ]×R3)

.
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Combining above two estimates by the triangle inequality, we obtain

∥[ρΓ1(t) ∗ v,Γ2(t)]∥L1
t ([0,T ],L1)

≲∥vχ1∥
L

3
2−ε/2

T
ε
4 ∥ρΓ1(t)∥

L

1
1−ε/4
t L

3
1+ε/2
x ([0,T ]×R3)

∥Γ2(t)∥L∞t ([0,T ],L1)

+ ∥vχ2∥L∞T ∥Γ2(t)∥
2
L∞t ([0,T ],L1)

,

which implies (a).

As for estimates (b) and (c), we adopt a fixed time argument. Since they are

treated in the same way, for simplicity, we only state the proof of (b). At a fixed

time,

∥(vΓ1)Γ2∥L1 = ∥(vΓ1)⟨∇⟩−1⟨∇⟩Γ2∥L1 ≤ ∥(vΓ1)⟨∇⟩−1∥
L2 ∥⟨∇⟩Γ2∥L2 .

Similar as the proof of estimate (a), we decompose v into vχ1 and vχ2. The part

consisting of vχ2 is estimated trivially,

∥((vχ2)Γ1)⟨∇⟩−1∥
L2 ∥⟨∇⟩Γ2∥L2 ≤ ∥vχ2∥L∞∥Γ1(x, y)∥L2

x,y
∥⟨∇⟩Γ2∥L2 .
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Using the Hardy’s inequality to deal with the part containing vχ1, we obtain

∥((vχ1)Γ1)⟨∇⟩−1∥
L2 ∥⟨∇⟩Γ2∥L2

≲∥⟨∇⟩Γ2∥L2 ∥(vχ1)(x − y)∣x − y∣Γ1(x, y)∥L2
x,y

(Hardy’s inequality)

≤ ∥⟨∇⟩Γ2∥L2 ∥(vχ1)(x)∣x∣∥L3∥Γ1(x, y)∥L6
x−yL

2
x+y

(Hölder’s inequality)

≲ ∥⟨∇⟩Γ2∥L2 ∥(vχ1)(x)∣x∣∥L3∥⟨∇x−y⟩Γ1(x, y)∥L2
x−yL

2
x+y

(Sobolev inequality).

Case II and III involve Strichartz norms defined in Definition 2.11, which are

basically derived from estimates of the linear parts for Equation (2.39) and (2.40),

where vΛ is excluded from the linear part of Equation (2.40). In order to handle

the singular term vΛ in Equation (2.40), we do not include the endpoint case of the

Strichartz norms for Λ. For the application to the local well-posed result Theorem

2.15, it suffices to put the forcing terms F1(t, x, y; v) and F2(t, x, y; v) in L1
tH

1, and

⟨∇x,y⟩(vΛ) in the dual Strichartz space L2
tL

6/5
x−yL2

x+y. The involved estimates are

summarized as

Lemma 4.5. Let Γ(t, x, y) and Λ(t, x, y) be solutions to the linear equations

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tΓ(t, x, y) = (−∆x +∆y)Γ(t, x, y)

i ∂tΛ(t, x, y) = (−∆x −∆y)Λ(t, x, y)

, t ∈ R, x, y ∈ R3,
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with the initial data

Γ(0, x, y) = Γ0(x, y) and Λ(0, x, y) = Λ0(x, y),

then for any s ∈ R, the following Strichartz estimates hold

∥Γ(t, x, y)∥ST s∞ ≲ ∥Γ0(x, y)∥Hs and ∥Λ(t, x, y)∥ST sε∞ ≲ ∥Λ0(x, y)∥Hs . (4.14)

Furthermore, if Γ(t, x, y) and Λ(t, x, y) are solutions to the inhomogeneous equations

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tΓ(t, x, y) = (−∆x +∆y)Γ(t, x, y) + F (t, x, y)

i ∂tΛ(t, x, y) = (−∆x −∆y)Λ(t, x, y) +G(t, x, y)

,

where t ∈ R, x, y ∈ R3, then for any s, T ∈ R,

∥Γ(t, x, y)∥ST sT ≲ ∥Γ0(x, y)∥Hs + ∥⟨∇x,y⟩
sF (t, x, y)∥L1

tH
1([0,T ]×R6)

and

∥Λ(t, x, y)∥ST sεT ≲ ∥Λ0(x, y)∥Hs + ∥⟨∇x,y⟩
sG(t, x, y)∥L1

tH
1([0,T ]×R6).

or

∥Λ(t, x, y)∥ST sεT ≲ ∥Λ0(x, y)∥Hs + ∥⟨∇x,y⟩
sF2(t, x, y)∥L2

tL
6/5
x−yL

2
x+y([0,T ]×R3×R3)

.

Proof. Since ⟨∇x⟩
s⟨∇y⟩

s commutes with operators in the linear equations, using for-
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mulas for the solutions of the linear equations and the Strichartz estimates [KT98],

we obtain the estimates (4.14). Then the inhomogeneous estimates follow from the

Christ-Kiselev lemma [Tao06, Lemma 2.4].

As an application of Lemma 4.5 to Equation (2.40) and Proposition 4.19 the

Morrey’s inequality for Banach spaces, we have

Lemma 4.6. Consider the equation

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

i ∂tΛ(t, x, y) = (−∆x −∆y)Λ(t, x, y) + v(x − y)Λ(t, x, y) + F (t, x, y)

Λ(t, y, x) = −Λ(t, x, y)

,

where t ∈ R, x, y ∈ R3, and the initial condition Λ(0, x, y) = Λ0(x, y), for sufficiently

short time T such that

Cmax{T,T ε/4}∥v∥M ≤
1

2
,

where C is a universal constant, then the solution Λ(t, x, y) satisfies the estimate

∥Λ(t, x, y)∥N2T
≲ ∥Λ0(x, y)∥H1 + ∥F (t, x, y)∥L1

tH
1([0,T ]×R6). (4.15)

Proof. Treat v(x − y)Λ(t, x, y) as a forcing term and apply Lemma 4.5,

∥Λ(t, x, y)∥N2T
≲ ∥Λ0(x, y)∥H1 + ∥⟨∇x,y⟩ (v(x − y)Λ(t, x, y))∥

L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

+ ∥F (t, x, y)∥L1
tH

1([0,T ]×R6),

and the goal is to absorb ∥⟨∇x,y⟩ (v(x − y)Λ(t, x, y))∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

to the left
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hand side.

Note that ∥⟨∇x,y⟩ (v(x − y)Λ(t, x, y))∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

is majorized by

∥v(x − y)Λ(t, x, y)∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

+ ∥(∇v(x − y))Λ(t, x, y)∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

+ ∥v(x − y)∇xΛ(t, x, y)∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

+ ∥v(x − y)∇yΛ(t, x, y)∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

,

where ∥(∇v(x − y))Λ(t, x, y)∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

is the most singular term. For

simplicity, we only state the argument for (∇v(x − y))Λ(t, x, y). Considering the

decomposition of v as vχ1 and vχ2, terms involving vχ2 are essentially bounded by

∥⟨∇⟩(vχ2)∥L3T ∥Λ(t, x, y)∥L∞t H1([0,T ]×R6),

and the terms involving vχ1 can be estimated as follows,

∥∇(vχ1)(x − y)Λ(t, x, y)∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

=∥∇(vχ1)(x − y)∣x − y∣
(1−ε)/2

∥Λ(t, x, y)∥L2
x+y

∣x − y∣(1−ε)/2
∥
L2
tL

6/5
x−y([0,T ]×R3)

≲∥∇(vχ1)(x − y)∣x − y∣
(1−ε)/2∥⟨∇x−y⟩Λ(t, x, y)∥

L
6/(1+ε)
x−y L2

x+y
∥
L2
tL

6/5
x−y([0,T ]×R3)

(by Proposition 4.19 and ∥Λ(t, x, x)∥L2
x
= 0)

≤ ∥∇(vχ1)∣x∣
(1−ε)/2∥

L6/5 T
ε/4∥⟨∇x−y⟩Λ(t, x, y)∥

L
4/(2−ε)
t L

(6/(1+ε))
x−y L2

x+y([0,T ]×R3×R3)

(Hölder inequality in t).
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Therefore, for sufficiently small T such that Cmax{T,T ε/4}∥v∥M ≤ 1/2, where

C is essentially the constant shown in Morrey’s inequality,

∥⟨∇x,y⟩ (v(x − y)Λ(t, x, y))∥
L2
tL

6/5
x−yL

2
x+y([0,T ]×R3×R3)

is absorbed to the left hand side.

According to Lemma 4.5 and 4.6 , for Case II and III, it remains to esti-

mate ∥F1(t, x, y; v)∥L1
tH

1([0,T ]×R6) and ∥F2(t, x, y; v)∥L1
tH

1([0,T ]×R6) by ∥Γ(t)∥N1T
and

∥Λ(t)∥N2T
. Similar to Lemma 4.4, the result is still stated in terms of corresponding

bilinear maps B1 and B2.

Lemma 4.7. Let ωj(t) be states associated with correlation functions (Γj(t),Λj(t))

j = 1,2, for any T ∈ R,

∥Bj (ω1(t), ω2(t); v)∥L1
tH

1([0,T ]×R6)
≲ (T

ε
4 + T ) ∥v∥M∥ω1(t)∥NT ∥ω2(t)∥NT , j = 1,2.

(4.16)

Proof. For simplicity, we omit the notation t of Γj(t) and Λj(t), j = 1,2 for the time

being. The estimates (4.16) are the summaries of the following results

(a) Estimates involving ρΓ ∗ v:

(a.1) ∥[ρΓ1 ∗ v,Γ2]∥L1
tH

1([0,T ]×R6)
and (a.2) ∥[ρΓ1 ∗ v,Λ2]+∥L1

tH
1([0,T ]×R6)

≲((∥χ1∇v∥
L

3
3−ε/2

+ ∥vχ1∥
L

3
2−ε/2

)T
ε
4 + (∥χ2∇v∥L∞ + ∥vχ2∥L∞)T)

⋅ ∥Γ1∥N1T
∥Γ2∥N1T

.
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(b) Estimates involving v:

(b.1) ∥[Γ1,Γ2]v∥L1
tH

1([0,T ]×R6)
, (b.2) ∥[Λ1,Λ∗

2]v∥L1
tH

1([0,T ]×R6)
,

(b.3) ∥[Γ1,Λ2]v,+∥L1
tH

1([0,T ]×R6)
and ∥[Λ1, Γ̄2]v,+∥L1

tH
1([0,T ]×R6)

≲ (∥vχ1∥
L

3
2+ε/2

T 1/4 + ∥vχ1∥
L

12
8−ε
T

4+ε
8 + ∥vχ2∥L∞T) ∥Γ1∥N1T

∥Γ2∥N1T
.

Since the proof of (a.2) is essentially the same as (a.1), we demonstrate the

argument for (a.1) only. Considering two typical terms

∥∇ ○ (ρΓ1 ∗ v) ○ Γ2∥L1
t ([0,T ],L2)

and ∥ (ρΓ1 ∗ v)Γ2∥L1
t ([0,T ],L2)

in (a.1), we have estimates

∥∇ ○ (ρΓ1 ∗ v) ○ Γ2∥L1
t ([0,T ],L2)

≤ ∥∇(ρΓ1 ∗ v)Γ2∥L1
tL

2([0,T ]×R6)
+ ∥(ρΓ1 ∗ v)(x)∇xΓ2(x, y)∥L1

tL
2([0,T ]×R6)

≤ ∥∇(ρΓ1 ∗ v)Γ2∥L1
tL

2([0,T ]×R6)
+ ∥ρΓ1 ∗ v∥L1

tL
∞
x ([0,T ]×R3)

∥Γ2(x, y)∥L∞t H1([0,T ]×R6)
,

and

∥(ρΓ1 ∗ v)Γ2∥L1
t ([0,T ],L2) ≤ ∥ρΓ1 ∗ v∥L1

t ([0,T ],op)∥Γ2∥L∞t ([0,T ],L2)

≤ ∥ρΓ1 ∗ v∥L1
tL

∞
x ([0,T ]×R3)∥Γ2∥L∞t H1([0,T ]×R6),
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where the potential v is handled as in the proof of Lemma 4.4,

∥ρΓ1 ∗ v∥L1
tL

∞
x ([0,T ]×R3)

≤∥vχ1∥
L

3
2−ε/2

T
ε
4 ∥ρΓ1∥

L

1
1−ε/4
t L

3
1+ε/2
x ([0,T ]×R3)

+ ∥vχ2∥L∞T ∥Γ1∥L∞t ([0,T ],L1),

and

∥∇(ρΓ1 ∗ v)Γ2∥L1
tL

2([0,T ]×R6)

≤ ∥(ρΓ1 ∗ (χ1∇v))Γ2∥L1
tL

2([0,T ]×R6)
+ ∥(ρΓ1 ∗ (χ2∇v))Γ2∥L1

tL
2([0,T ]×R6)

. (4.17)

In (4.17), we estimate ∥(ρΓ1 ∗ (χ1∇v))Γ2∥L1
tL

2([0,T ]×R6)
using the functional inequal-

ity,

∥(ρΓ1 ∗ (χ2∇v))Γ2∥L1
tL

2([0,T ]×R6)
≤ ∥χ2∇v∥L∞T ∥Γ1∥L∞t ([0,T ],L1)∥Γ2∥L∞t H1([0,T ]×R6),
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and estimate ∥(ρΓ1 ∗ (χ1∇v))Γ2∥L1
tL

2([0,T ]×R6)
as follows,

∥(ρΓ1 ∗ (χ1∇v))Γ2∥L1
tL

2([0,T ]×R6)

≤∥ρΓ1 ∗ (χ1∇v)∥L1
tL

3
x([0,T ]×R3)

∥Γ2(x, y)∥L∞t L6
xL

2
y([0,T ]×R3×R3)

(Hölder inequality in x and t)

≲ ∥χ1∇v∥
L

3
3−ε/2

T
ε
4 ∥ρΓ1∥

L

1
1−ε/4
t L

3
1+ε/2
x ([0,T ]×R3)

∥⟨∇x⟩Γ(x, y)∥L∞t L2([0,T ]×R6)

(by Young’s inequality and Sobolev inequality)

≤∥χ1∇v∥
L

3
3−ε/2

T
ε
4 ∥ρΓ1∥

L

1
1−ε/4
t L

3
1+ε/2
x ([0,T ]×R3)

∥Γ2∥L∞t H1([0,T ]×R6).

Assembling above estimates,

∥[ρΓ1 ∗ v,Γ2]∥L1
tH

1([0,T ]×R6)

≲(∥χ1∇v∥
L

3
3−ε/2

+ ∥vχ1∥
L

3
2−ε/2

)T
ε
4 ∥ρΓ1∥

L

1
1−ε/4
t L

3
1+ε/2
x ([0,T ]×R3)

∥Γ2∥L∞t H1([0,T ]×R6)

+ (∥χ2∇v∥L∞ + ∥vχ2∥L∞)T ∥Γ1∥L∞t ([0,T ],L1)∥Γ2∥L∞t H1([0,T ]×R6)

which implies (a.1).

Considering all terms in group (b), they share similar structures and can be

handled in the same method. For simplicity, we only show the proof for

∥(vΓ1)Γ2∥L1
tH

1([0,T ]×R6)
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in (b.1). Note that

∥(vΓ1)Γ2∥L1
tH

1([0,T ]×R6)

∼∥(vΓ1)Γ2∥L1
t ([0,T ],L2)

+ ∥∇ ○ (vΓ1)Γ2∥L1
t ([0,T ],L2)

+ ∥(vΓ1)Γ2 ○ ∇∥L1
t ([0,T ],L2)

and ∥(vΓ1)Γ2∥L1
t ([0,T ],L2)

is majorized by ∥(vΓ1)Γ2∥L1
t ([0,T ],L1), whose estimate is

shown in Lemma 4.4. It remains to estimate ∇ ○ (vΓ1)Γ2 and (vΓ1)Γ2 ○ ∇.

Based on the observation that for an operator k,

[∇, vk] = ∇(vk) − (vk)∇

= ∇x (v(x − y)k(x, y)) + ∇y (v(x − y)k(x, y))

= v(x − y) (∇xk(x, y) + ∇yk(x, y)) ,

the estimate for ∇(vΓ1)Γ2 reduces to

∥(vΓ1)∇Γ2∥L1
t ([0,T ],L2)

+ ∥∫
R3
dz (v(x − z) (∇xΓ1(x, z) + ∇zΓ1(x, z)))Γ2(z, y)∥

L1
tL

2([0,T ]×R6)

. (4.18)

Next decompose the potential v as vχ1 and vχ2. By the triangle inequality, there

are four terms in (4.18) to estimate. The terms involving vχ2 are relatively easier

to handle and we have estimates

∥(vχ2Γ1)∇Γ2∥L1
t ([0,T ],L2)

≤ ∥vχ2∥L∞T ∥Γ1∥
2
L∞t H

1([0,T ]×R6)
∥Γ2∥

2
L∞t H

1([0,T ]×R6)
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and

∥∫
R3
dz (vχ2)(x − z)∇xΓ1(x, z)Γ2(z, y)∥

L1
tL

2([0,T ]×R6)

≤∥vχ2∥L∞T ∥Γ1∥
2
L∞t H

1([0,T ]×R6)
∥Γ2∥

2
L∞t H

1([0,T ]×R6)
.

For the other two terms involving vχ1,

∥∫
R3
dz (vχ1)(x − z)Γ1(x, z)∇zΓ2(z, y)∥

L1
tL

2([0,T ]×R6)

≤∥∫
R3
dz ∣vχ1∣(z)∥Γ1(x,x − z)∇zΓ2(x − z, y)∥L2

xL
2
y
∥
L1
t ([0,T ])

(Minkowski inequality)

≤∥∫
R3
dz ∣vχ1∣(z)∥Γ1(x,x − z)∥

L

3
1−ε/2
x

∥∇zΓ2(x − z, y)∥
L

6
1+ε
x L2

y

∥
L1
t ([0,T ])

(Hölder inequality in x)

≤∥vχ1∥
L

3
2+ε/2

T 1/4∥Γ1(x,x − z)∥
L

4
1+ε
t L

3
1−ε/2
z L

3
1−ε/2
x ([0,T ]×R3×R3)

∥∇xΓ2(x, y)∥
L

4
2−ε
t L

6
1+ε
x L2

y([0,T ]×R3×R3)

(Hölder inequality in z and t)

=∥vχ1∥
L

3
2+ε/2

T 1/4∥Γ1(x, z)∥
L

4
1+ε
t L

3
1−ε/2
x L

3
1−ε/2
z ([0,T ]×R3×R3)

∥∇xΓ2(x, y)∥
L

4
2−ε
t L

6
1+ε
x L2

y([0,T ]×R3×R3)

(by Fubini’s theorem)

≲∥vχ1∥
L

3
2+ε/2

T 1/4∥⟨∇z⟩Γ1(x, z)∥
L

4
1+ε
t L

3
1−ε/2
x L2

z([0,T ]×R3×R3)

∥∇xΓ2(x, y)∥
L

4
2−ε
t L

6
1+ε
x L2

y([0,T ]×R3×R3)

(Sobolev inequality),
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and similarly,

∥∫
R3
dz (vχ1)(x − z)∇xΓ1(x, z)Γ2(z, y)∥

L1
tL

2([0,T ]×R6)

≤∥∫
R3
dz ∣vχ1∣(z)∥∇xΓ1(x,x − z)Γ2(x − z, y)∥L2

x,y
∥
L1
t ([0,T ])

(Minkowski inequality)

≤∥∫
R3
dz ∣vχ1∣(z)∥∇xΓ1(x,x − z)∥

L
12
4+ε
x

∥Γ2(x − z, y)∥
L

12
2−ε
x L2

y

∥
L1
t ([0,T ])

(Hölder inequality in x)

≲∥∫
R3
dz ∣vχ1∣(z)∥∇xΓ1(x,x − z)∥

L
12
4+ε
x

∥∇xΓ2(x, y)∥
L

12
6−ε
x L2

y

∥
L1
[0,T ]

(Sobolev inequality)

≤∥vχ1∥
L

12
8−ε
T

4+ε
8 ∥∇xΓ1(x,x − z)∥

L
4

2−ε
t L

12
4+ε
z L

12
4+ε
x ([0,T ]×R3×R3)

∥∇xΓ2(x, y)∥
L

8
ε
t L

12
6−ε
x L2

y([0,T ]×R3×R3)

(Hölder inequality in z and t)

≤∥vχ1∥
L

12
8−ε
T

4+ε
8 (∥∇xΓ1(x, z)∥

L
4

2−ε
t L

12
4+ε ([0,T ]×R6)

+ ∥∇zΓ1(x, z)∥
L

4
2−ε
t L

12
4+ε ([0,T ]×R6)

)

⋅ ∥∇xΓ2(x, y)∥
L

8
ε
t L

12
6−ε
x L2

y([0,T ]×R3×R3)
(Fubini’s theorem).

With all the ingredients, the proof of the local well-posedness Theorem 2.15 is

as follows

Proof. Given Γ∗
0 = Γ0 and Λ∗

0 = −Λ̄, if Γ̃∗(t) = Γ̃(t) and Λ̃∗(t) = − ¯̃Λ(t), after applying

the Duhamel’s formulation (2.51) to (Γ̃(t), Λ̃(t)), the result (Γ(t),Λ(t)) still satisfies

Γ∗(t) = Γ(t) and Λ∗(t) = −Λ̄(t), and F ∗
1 (t; v) = −F1(t; v). By Lemma 4.3, 4.5 and
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4.6, for sufficiently short time T , we have that

∥Γ(t)∥N1T
+ ∥Λ(t)∥N2T

≲ ∥Γ0∥L1 + ∥F1(t; v)∥L1
[0,T ]

L1

+ ∥F1(t, x, y; v)∥L1
tH

1([0,T ]×R6) + ∥F2(t, x, y; v)∥L1
tH

1([0,T ]×R6).

Then employ Lemma 4.4 and 4.7,

∥F1(t; v)∥L1
[0,T ]

L1 ≲ (T
ε
4 + T) ∥v∥M (∥Γ̃(t)∥N1T

+ ∥Λ̃(t)∥N2T
)

2

∥Fj(t, x, y; v)∥L1
tH

1([0,T ]×R6) ≲ (T
ε
4 + T ) ∥v∥M (∥Γ̃(t)∥N1T

+ ∥Λ̃(t)∥N2T
)

2
, j = 1,2.

If necessary, choose a smaller T such that

(T
ε
4 + T ) ∥v∥M (∥Γ̃(t)∥N1T

+ ∥Λ̃(t)∥N2T
)

2

is small enough and the local well-posedness result follows from the standard Banach

fixed point argument.

4.4 Smooth Potential Case

Given any smooth initial data, if we can always obtain a smooth solution of

Bogoliubov-de Gennes equations (2.43) and (2.44), it is straightforward to show the

conservation of trace of and the conservation of energy. However when the potential

v is not smooth, due to the singular term v(x − y)Λ(t, x, y) of Equation (2.44), the

high regularity of initial data may not be preserved by Equation (2.43) and (2.44).
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Therefore in this section, we assume the potential ṽ in the Bogoliubov-de Gennes

equations is smooth, i.e.

ṽ ∈ C∞
c (R3), ṽ(x) = ṽ(−x) and v(x) ∈ R for x ∈ R3,

and recall that the equations are

i ∂tΓ(t) = [−∆,Γ(t)] + [ṽ ∗ ρΓ(t),Γ(t)] − [Γ(t),Γ(t)]ṽ + [Λ(t),Λ∗(t)]ṽ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F1(t;ṽ)

, (4.19)

i ∂tΛ(t) = [−∆,Λ(t)]+ + (ṽΛ)(t) + [ṽ ∗ ρΓ(t),Λ(t)]+ − [Γ(t),Λ(t)]ṽ,+ − [Λ(t), Γ̄(t)]ṽ,+
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F2(t;ṽ)

.

(4.20)

The corresponding integral equations are

Γ(t) = ei∆tΓ0e
−i∆t − i∫

t

0
ds ei∆(t−s)F1(s; ṽ) e

−i∆(t−s) (4.21)

Λ(t) = ei∆tΛ0e
i∆t − i∫

t

0
ds ei∆(t−s) ((ṽΛ)(s) + F2(s; ṽ)) e

i∆(t−s). (4.22)

In the smooth potential case, we are able to prove the regularity of initial data is

preserved by Equation (4.19) and (4.20), and the conservation of trace and energy

by using smooth solutions.

The outline of our proofs is as follows: we first establish the local well-

posedness result Proposition 4.9 of Equation (4.19) and (4.20), and show that the

quasi-free conditions of the initial data are preserved along the evolution (Lemma

4.12). Based on Proposition 4.9 and Lemma 4.12, using a Grönwall argument, it
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follows that the existence time of local solutions depend on the trace norm of Γ(t):

as long as ∥Γ(t)∥L1 is finite, Equation (4.19) and (4.20) with initial data in Sad

are well-posed. While the conservation of trace basically follows from applying the

cyclicity property of the trace functional to the Duhamel’s formulation. Besides if

(Γ(t),Λ(t)) ∈ Sad , Γ(t) is self-adjoint and positive , then Tr(Γ(t)) = ∥Γ(t)∥L1 and

we can extend our local solutions globally. In the end, we use the smooth solution

(Γ(t),Λ(t)) of Equation (4.19) and (4.20) and compute explicitly the time deriva-

tive of the energy functional. The time derivative vanishes identically. Therefore

the energy is preserved.

The local theory (Proposition 4.9) of Equation (4.19) and (4.20) is established

as an application of the standard Banach fixed point argument to the Duhamel’s

formulation (4.21) and (4.22) together with the auxiliary Lemma 4.8.

Lemma 4.8. Let ωj be states associated with correlation functions (Γj,Λj), j = 1,2,

for any s ≥ 0,

∥Bj(ω1, ω2; ṽ)∥
Ls,1

≲ ∥ṽ∥W s,∞ (∥Γ1∥Ls,1 + ∥Λ1∥Hs) (∥Γ2∥Ls,1 + ∥Λ2∥Hs) , j = 1,2.

For any Λ ∈Hs(R6),

∥ṽΛ∥Hs ≲ ∥⟨∇⟩sṽ∥L∞∥Λ∥Hs .

Proof. For simplicity, we only argue for the terms ṽ ∗ ρΓ1Γ2 and (ṽΛ1)Λ∗
2. Other

terms in the bilinear maps B1 and B2 can be handled similarly. Using the operator
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inequality, the trace theorem and the Hölder inequality for Schatten norms,

∥⟨∇⟩s (ṽ ∗ ρΓ1Γ2) ⟨∇⟩s∥
L1 ≤ ∥⟨∇⟩s (ṽ ∗ ρΓ1) ⟨∇⟩−s∥op ∥⟨∇⟩sΓ2⟨∇⟩s∥

L1

≤ ∥⟨∇⟩s (ṽ ∗ ρΓ1)∥L∞ ∥⟨∇⟩sΓ2⟨∇⟩s∥
L1

≤ ∥⟨∇⟩sṽ∥L∞∥ρΓ1∥L1 ∥⟨∇⟩sΓ2⟨∇⟩s∥
L1

≤ ∥⟨∇⟩sṽ∥L∞∥Γ1∥L1 ∥⟨∇⟩sΓ2⟨∇⟩s∥
L1 .

and

∥⟨∇⟩s ((ṽΛ1)Λ∗
2) ⟨∇⟩s∥

L1 ≤ ∥⟨∇⟩s(ṽΛ1)∥L2∥Λ∗
2⟨∇⟩s∥L2

≤ ∥ṽ∥W s,∞∥Λ1∥Hs∥Λ2∥Hs (by the fractional Leibniz rule).

Notice that ∥B2(ω1, ω2; ṽ)∥Ls,1 majorizes ∥B2(ω1, ω2; ṽ)∥Hs , which needs to be

controlled when applying the Banach fixed point argument to Equation (4.20).

Proposition 4.9. Let s ≥ 0 and assume the initial data of the Bogoliubov-de Gennes

equations (4.19) and (4.20) satisfy

Γ0 ∈ L
s,1 and Λ0 ∈H

s.

For sufficiently small time T , there is a unique mild solution (Γ(t),Λ(t)) of (4.19)
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and (4.20) such that

Γ(t) ∈ C ([0, T ],Ls,1) , Λ(t) ∈ C ([0, T ],Hs) .

Furthermore, if s ≥ 2,

Γ(t) ∈ C ([0, T ],Ls,1)∩C1 ([0, T ],Ls−2,1) , Λ(t) ∈ C ([0, T ],Hs)∩C1 ([0, T ],Hs−2) .

The space Sad has a nice structure and any matrix in Sad can be approximated

by smooth matrices

Lemma 4.10. Let

Sω =

⎛
⎜
⎜
⎜
⎝

Γ Λ

Λ∗ 1 − Γ̄

⎞
⎟
⎟
⎟
⎠

∈ Sad,

then there is a sequence of modified quasi-free states ωn with

Sωn =

⎛
⎜
⎜
⎜
⎝

PnΓPn PnΛPn

PnΛ∗Pn 1 − PnΓ̄Pn

⎞
⎟
⎟
⎟
⎠

where Pn = 1∣∇∣≤n is the truncation of frequency, converging to ω in the sense Sωn Ð→

Sω in the strong operator topology. If Γ ∈ Ls,1, Λ ∈ Hs and s ≥ 0, PnΓPn
Ls,1

ÐÐ→ Γ and

PnΛPn
Hs

Ð→ Λ.

Proof. To verify that Sωn satisfies Condition (2.37), since P̄n = Pn and P ∗
n = Pn, it

is straightforward to check Sωn + J SωnJ = 1 and S∗ωn = Sωn . As for 0 ≤ Sωn ≤ 1,
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choosing f, g ∈ L2 (R3),

⟨Sωn

⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

⟩ = ⟨Sω

⎛
⎜
⎜
⎜
⎝

Pnf

Png

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

Pnf

Png

⎞
⎟
⎟
⎟
⎠

⟩ + ⟨(1 − Pn)g, (1 − Pn)g⟩ ≤ ∥Pnf∥L2 + ∥g∥L2 .

The convergence follows from the property Pnf
L2

Ð→ f , f ∈ L2 (R3).

Remark 4.11. In the subspace of Sad where S2 = S, one can approximate S using

matrices within the subspace. However the approximation is not linear and depends

on the Pin group representation (Proposition 6.20).

For any

Sω =

⎛
⎜
⎜
⎜
⎝

Γ Λ

Λ∗ 1 − Γ̄

⎞
⎟
⎟
⎟
⎠

∈ Sad,

the functional inequality 1 ≥ Sω ≥ 0 is equivalent to Sω − S2
ω ≥ 0, which implies

Γ − Γ2 −ΛΛ∗ ≥ 0. (4.23)

Following the same idea as [BSS18, Section 5.7.1.], if Γ(t) ∈ L2,1 and Λ(t) ∈H2,

along Equation (4.19) and (4.20), the spectrum of the generalized one particle matrix

Sω(t) is preserved, where the state ω(t) is associated to (Γ(t),Λ(t)). Therefore if

the initial state ω0 is quasi-free, then ω(t) remains quasi-free as long as Equation

(4.19) and (4.20) are well-posed. The statement is summarized in Lemma 4.12 and

the proof is given in the appendix.

Lemma 4.12. Let (Γ(t),Λ(t)) be the solution to the Bogoliubov-de Gennes equa-

119



tions (4.19) and (4.20) such that

Γ(t) ∈ C ([0, T ],L2,1) ∩C1 ([0, T ],L1) , Λ(t) ∈ C ([0, T ],H2) ∩C1 ([0, T ], L2) ,

where T > 0. The spectrum of

Sω(t) =

⎛
⎜
⎜
⎜
⎝

Γ(t) Λ(t)

Λ∗(t) 1 − Γ̄(t)

⎞
⎟
⎟
⎟
⎠

does not change on t ∈ [0, T ]. Furthermore if (Γ(0),Λ(0)) ∈ Sad, (Γ(t),Λ(t)) ∈ Sad

for t ∈ [0, T ].

Once (Γ,Λ) ∈ Sad, Γ must be a non-negative operator and the trace norm of Γ

is related to the Hilbert-Schmidt norms of Γ and Λ as shown in Lemma 4.13. The

fact is crucial in our global theory.

Lemma 4.13. Suppose (Γ,Λ) satisfies (4.23), Γ∗ = Γ and Λ∗ = −Λ̄, then

∥Λ∥2
Hs + ∥Γ∥2

Hs ≲ ∥Γ∥Ls,1 .

Proof. Let Λ ∈ Hs, Γ ∈ Ls,1, according to the functional inequality (4.23), we have

the following functional inequality on L2 (R3),

⟨∇⟩sΓ⟨∇⟩s − (⟨∇⟩sΓ) ○ (⟨∇⟩sΓ)
∗
− (⟨∇⟩sΛ) ○ (⟨∇⟩sΛ)

∗
≥ 0.
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Besides,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Γ∗ = Γ

Λ∗ = −Λ̄

Ô⇒ ∥Γ∥Hs ∼ ∥⟨∇⟩
s
Γ∥
L2 , and ∥Λ∥Hs ∼ ∥⟨∇⟩

s
Λ∥
L2 ,

we obtain the desired result.

As shown in Lemma 4.13, if a solution (Γ(t),Λ(t)) of the Bogoliubov-de

Gennes equations (4.19) and (4.20) is quasi-free, to study how ∥Γ(t)∥Ls,1 and ∥Λ(t)∥Hs

grow in time, it suffices to consider ∥Γ(t)∥Ls,1 only. By a Grönwall argument, it fur-

ther reduces to the problem of studying the growth of ∥Γ(t)∥L1 .

Proposition 4.14. Let s ≥ 0 and for t ∈ [0, T ], (Γ(t),Λ(t)) ∈ Sad be a solution to

the integral equations (4.21) and (4.22), then

∥Γ(t)∥
Ls,1

≤ ∥Γ0∥Ls,1 exp (Cs∥ṽ∥W s,∞ (1 + ∥Γ(t)∥
L1) t) .

where Cs is a constant depending on s.

Proof. Applying the Minkowski inequality and the fact that ei∆t is a unitary operator

to (4.21)

∥Γ(t)∥
Ls,1

≤ ∥Γ0∥Ls,1 + ∫

t

0
dτ ∥F1(τ ; ṽ)∥

Ls,1
. (4.24)

To obtain a fixed time estimate for F1(t; ṽ), using the same proof of Lemma 4.8, we
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have

∥(ṽΛ)(t)Λ̄(t)∥
Ls,1

≲ ∥ṽ∥W s,∞ ∥Λ(t)∥
2
Hs ,

∥(ṽΓ)(t)Γ(t)∥
Ls,1

≲ ∥ṽ∥W s,∞ ∥Γ(t)∥
2
Hs ,

∥(v ∗ ρΓ(t))Γ(t)∥Ls,1 ≤ ∥ṽ∥W s,∞∥Γ(t)∥L1∥Γ(t)∥Ls,1 .

Majorizing ∥Λ(t)∥2
Hs and ∥Λ(t)∥2

Hs by ∥Γ(t)∥Ls,1 (Lemma 4.13), we obtain the esti-

mate for F1(t; ṽ),

∥F1(t; ṽ)∥Ls,1 ≤ Cs∥ṽ∥W s,∞ (1 + ∥Γ(t)∥
L1) ∥Γ(t)∥Ls,1 ,

and apply it to (4.24)

∥Γ(t)∥Ls,1 ≤ ∥Γ0∥Ls,1 + ∫

t

0
dτ Cs∥ṽ∥W s,∞ (1 + ∥Γ(τ)∥

L1) ∥Γ(τ)∥Ls,1 .

Then the result is an application of the Grönwall’s inequality.

The trace of Γ(t) is preserved, which follows from the application of the cyclic-

ity property to the Duhamel’s formulation.

Proposition 4.15. Suppose for t ∈ [0, T ], (Γ(t),Λ(t)) is a solution to the integral

equations (4.21) and (4.22) and

Γ(t) ∈ C ([0, T ],L1) , Λ(t) ∈ C ([0, T ], L2) ,
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then the trace of Γ(t) does not change on t ∈ [0, T ].

Proof. At any fixed time t ∈ [0, T ],

Tr (Γ(t)) = Tr(ei∆tΓ0e
−i∆t − i∫

t

0
ds ei∆(t−s)F1(s, ṽ) e

−i∆(t−s))

= Tr(Γ0) − i∫
t

0
dsTr (F1(s, ṽ)) (cyclicity of trace),

where

Tr ([ṽ ∗ ρΓ(t) − ṽΓ(t),Γ(t)]) = 0, (cyclicity of trace)

and

Tr ([Λ(t),Λ∗(t)]ṽ)

=∫
R3
dx ∫

R3
dz (ṽ(x − z)Λ(t, x, z)Λ∗(t, z, x) − ṽ(z − x)Λ(t, x, z)Λ∗(t, z, x))

=0.

Therefore for any t ∈ [0, T ], Tr (Γ(t)) = Tr(Γ0).

Combing all the above results, if we assume the initial data (Γ0,Λ0) ∈ Sad

and sufficient regularity of Γ0 and Λ0, ∥Γ(t)∥Ls,1 does not blow up at finite time.

Therefore the solution (Γ(t),Λ(t)) to Equation (4.19) and (4.20) is global. The

exact statement is

Proposition 4.16. Consider the Bogoliubov-de Gennes equations (4.19) and (4.20)

with the initial conditions Γ(t = 0) = Γ0 and Λ(t = 0) = Λ0, where (Γ0,Λ0) ∈ Sad.

Let s ≥ 2, for arbitrary finite time T ∈ R, there is a global mild solution (Γ(t),Λ(t))
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existing on [0, T ] such that it satisfies all following properties

(i) Γ(t) ∈ C ([0, T ],Ls,1) ∩C1 ([0, T ],Ls−2,1),

(ii) Λ(t) ∈ C ([0, T ],Hs) ∩C1 ([0, T ],Hs−2),

(iii) (Γ(t),Λ(t)) ∈ Sad for t ∈ [0, T ],

(iv) Tr (Γ(t)) = Tr (Γ0) for t ∈ [0, T ].

Next we establish the conservation law of energy.

Proposition 4.17. Let t ∈ [0, T ], T ∈ R, Γ∗(t) = Γ(t) and Λ∗(t) = −Λ̄(t),

Γ(t) ∈ C ([0, T ],L4,1) ∩C1 ([0, T ],L2,1) and Λ(t) ∈ C ([0, T ],H4) ∩C1 ([0, T ],H2) ,

and Γ(t) and Λ(t) satisfy the Bogoliubov-de Gennes equations (4.19) and (4.20),

then

EBG(ω(t); ṽ) = EBG(ω(0); ṽ), t ∈ [0, T ].

Proof. Differentiating the energy functional EBG(ω(t); ṽ) with respect to time t, for

simplicity, we omit the notation t and the result is the constant −i times the sum of

the following expressions, which are arranged in three groups

(a) Tr(−∆[−∆,Γ]) +Tr((ρΓ ∗ ṽ)[ρΓ ∗ ṽ,Γ]) +Tr((ṽΓ)[ṽΓ,Γ]);

(b)(b.1) Tr(−∆[ρΓ ∗ ṽ,Γ]) +Tr((ρΓ ∗ ṽ)[−∆,Γ]),

(b.2) −Tr(−∆[ṽΓ,Γ]) −Tr((ṽΓ)[−∆,Γ]),

(b.3) −Tr((ρΓ ∗ ṽ)[ṽΓ,Γ]) −Tr((ṽΓ)[ρΓ ∗ ṽ,Γ]);
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(c) (c.1) Tr(−∆[Λ,Λ∗]ṽ) +
1
2Tr([−∆,Λ]+(ṽΛ∗)) − 1

2Tr((ṽΛ)[−∆,Λ]∗+),

(c.2) Tr((ρΓ ∗ v)[Λ,Λ∗]ṽ),

(c.3) 1
2Tr((ṽΛ)(ṽΛ∗)) − 1

2Tr((ṽΛ)(ṽΛ∗)),

(c.4) 1
2Tr([ρΓ ∗ ṽ,Λ]+(ṽΛ∗)) − 1

2Tr((ṽΛ)[ρΓ ∗ ṽ,Λ]∗+),

(c.5) −Tr((ṽΓ)[Λ,Λ∗]ṽ) −
1
2Tr([Γ,Λ]ṽ,+(ṽΛ∗)) − 1

2Tr([Λ, Γ̄]ṽ,+(ṽΛ∗))

+1
2Tr((ṽΛ)[Γ,Λ]∗ṽ,+) +

1
2Tr((ṽΛ)[Λ, Γ̄]ṽ,+).

In the calculation, we used the observation that for two operators k1 and k2,

Tr((ρk1 ∗ ṽ)k2) = Tr(k1(ρk2 ∗ ṽ)) and Tr((ṽk1)k2) = Tr(k1(ṽk2)).

Even though −∆ is not a bounded operator, by a limiting argument, as long as

Γ ∈ L4,1, the cyclicity of trace holds for every term in (a) and we are able to move

−∆ around. Then every term in (a) vanishes. Each pair in (b) is zero, because of

the cyclicity of trace and the formal identity

Tr(A[B,C]) +Tr(B[A,C]) = 0.

To show that every subgroup in (c) vanishes, we simply expand the expression and

do cancellation. After cancelling duplicate terms and expressing results in integral

forms, we are able to see that (c.2) (c.3) and (c.4) are zero. As for (c.1), we need

to further use integration by parts. For (c.5), we need to further use the conditions

that Γ = Γ∗ and Λ∗ = −Λ.
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Therefore the time derivative of the energy functional E(ω(t); ṽ) vanishes

identically and we obtain the conservation law of energy.

Finally, we are able to prove the main theorem about the smooth potential

case.

Theorem 4.18. Suppose ṽ ∈ C∞
c (R3) and ṽ(x) = ṽ(−x) for x ∈ R3, and the initial

data (Γ0,Λ0) ∈ Sad (the associated state is ω0) satisfies

Γ0 ∈ L
1,1 and Λ0 ∈H

1,

there is a global solution (Γ(t),Λ(t)) (the associated state is ω(t)) to the Bogoliubov-

de Gennes equations (4.19) and (4.20) such that

(i) Γ(t) ∈ C (R,L1,1) and Λ(t) ∈ C (R,H1);

(ii) (Γ(t),Λ(t)) ∈ Sad for t ∈ R;

(iii) Tr(Γ(t)) = Tr(Γ0) for t ∈ R (conservation of trace);

(iv) EBG(ω(t); ṽ) = EBG(ω0; ṽ) for t ∈ R (conservation of energy).

Proof. According to Lemma 4.10, let {(Γk0,Λk0)}k∈N be a sequence in Sad converging

to (Γ0,Λ0) in the sense

Γk0 ∈ L
4,1, Λk0 ∈H

4, Γk0
L1,1

ÐÐ→
k→∞

Γ0, Λk0
H1

ÐÐ→
k→∞

Λ0.

By Proposition 4.16, there is a sequence of global solutions (Γk(t),Λk(t)) to Equa-

tion (4.19) and (4.20) satisfying Γk(t = 0) = Γk0 and Λk(t = 0) = Γk0. By Proposition
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4.15, 4.16 and 4.17, solutions (Γk(t),Λk(t)) satisfy all conditions (i) ∼ (iv).

Using the local existence result Proposition 4.9, the solution (Γ(t),Λ(t)) exists

on [0, T ] for some T . Next we show

Γk(t)
L1,1

ÐÐ→
k→∞

Γ(t), Λk(t)
H1

ÐÐ→
k→∞

Λ(t), t ∈ [0, T ]

uniformly. Applying Lemma 4.8 to the difference of the Duhamel’s formulation

(4.21) and (4.22) for (Γk(t),Λk(t)) and (Γ(t),Λ(t)), we have

∥Γk(t) − Γ(t)∥L1,1 + ∥Λk(t) −Λ(t)∥H1

≲∥Γk0 − Γ0∥L1,1 + ∥Λk0 −Λ0∥H1

+ ∥ṽ∥W 1,∞ ∫

t

0
ds ((∥Γk(s) − Γ(s)∥L1,1 + ∥Λk(s) −Λ(s)∥H1) (∥Γ(s)∥L1,1 + ∥Λ(s)∥H1)

+ (∥Γk(s)∥L1,1 + ∥Λk(s)∥H1) (∥Γk(s) − Γ(s)∥L1,1 + ∥Λk(s) −Λ(s)∥H1)) .

By (ii) and (iv), ∥Γk(t)∥L1,1 + ∥Λk(t)∥H1 are uniformly bounded by the energy and

the trace on t ∈ R. Thus for t ∈ [0, T ],

∥Γk(t) − Γ(t)∥L1,1 + ∥Λk(t) −Λ(t)∥H1

≤C1 (∥Γk0 − Γ0∥L1,1 + ∥Λk0 −Λ0∥H1)

+C2∫

t

0
ds (∥Γk(s) − Γ(s)∥L1,1 + ∥Λk(s) −Λ(s)∥H1)

where C1 and C2 are constants. After applying the the Grönwall’s inequality, we

obtain the uniform convergence of (Γk(t),Λk(t)) to (Γ(t),Λ(t)) on t ∈ [0, T ], in the
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sense

Γk(t)
L1,1

ÐÐ→
k→∞

Γ(t), Λk(t)
H1

ÐÐ→
k→∞

Λ(t).

Since all conditions (i) ∼ (iv) are continuous with respect to the norm L1,1 on Γ

and the norm H1 on Λ, over the interval t ∈ [0, T ], (Γ(t),Λ(t)) satisfy all of the

conditions. In addition, the trace and the energy majorize the L1,1 norm of Γ(t).

Therefore conditions (iii) and (iv) imply that ∥Γ(t)∥L1,1 stays bounded in time and

we extend the unique mild solution (Γ(t),Λ(t)) globally.

4.5 Global Result.

In this section, we prove the main theorem 2.16.

Proof. Let {vj} be a sequence of potentials in C∞
c (R3) such that vj(x) = vj(−x) and

vj(x) ≥ 0 for x ∈ R3 and the sequence converges to v with respect to the norm ∥ ⋅ ∥M .

Such sequence can be obtained by truncating and mollifying v. We evolve the initial

data (Γ0,Λ0) by the Bogoliubov-de Gennes equations with potential vj, i.e.

i ∂tΓ(t) = [−∆,Γ(t)] + [vj ∗ ρΓ(t),Γ(t)] − [Γ(t),Γ(t)]vj + [Λ(t),Λ∗(t)]vj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F1(t;vj)

,

i ∂tΛ(t) = [−∆,Λ(t)]+ + (vjΛ)(t)

+ [vj ∗ ρΓ(t),Λ(t)]+ − [Γ(t),Λ(t)]vj ,+ − [Λ(t), Γ̄(t)]
vj ,+

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F2(t;vj)

,

and denote corresponding solutions by (Γj(t),Λj(t)) (the associated state is ωj(t)).

By Theorem 4.18, (Γj(t),Λj(t)) exist globally and satisfies (i) ∼ (iv).
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Using the local well-posedness result Theorem 2.15, (Γ(t),Λ(t)) exists over

[0, T ] for some T . Applying Lemma 4.4 and Lemma 4.7 to the difference of the

Duhamel’s formulations for (Γj(t),Λj(t)) and (Γ(t),Λ(t))

∥ωj(t) − ω(t)∥NT ≲ (T
ε
4 + T ) (∥ωj(t) − ω(t)∥NT ∥ωj∥NT ∥vj∥M

+∥ω(t)∥NT ∥ωj(t) − ω(t)∥NT ∥vj∥M + ∥ω(t)∥2
NT

∥vj − v∥M)

Since ∥ωj∥NT and ∥vj∥M are uniformly bounded, for sufficiently small T , we can

absorb the first two terms on the right hand side of the last inequality to the left

hand side and obtain

1

2
∥ωj(t) − ω(t)∥NT ≤ C∥vj − v∥M for small T,

which implies that ωj(t)
NT
ÐÐ→
j→∞

ω(t).

The condition of a state being quasi-free is on the level of operator norms.

While the norm NT includes the Hilbert-Schmidt norms

∥Γ(t)∥L∞t ([0,T ],L2) and ∥Λ(t)∥L∞t ([0,T ],L2)

which are stronger than the operator norms. As ωj(t) converges to ω(t) in NT , the

quasi-free condition passes to the (Γ(t),Λ(t)).

The trace is continuous to the trace norm of Γ(t), which is included in the
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norm NT . Therefore

Tr(Γ0) = lim
k→∞

Tr(Γj(t)) = Tr(Γ(t)), t ∈ [0, T ].

At the initial time, since Γ0 ∈ L
1,1 and Λ0 ∈H1, it is clear that

lim
j→∞
EBG(ω0; vj) = EBG(ω0; v).

However it requires extra work to show the convergence of energy for other times.

By Lemma 4.13, if (Γ(t),Λ(t)) ∈ Sad, ∥Λ∥2
H1 + ∥Γ∥2

H1 ≲ ∥Γ∥L1,1 , but the reverse

inequality ∥Γ∥L1,1 ≲ ∥Λ∥2
H1+∥Γ∥2

H1 is not necessarily true for general quasi-free states.

Therefore the convergence of ωk(t) to ω(t) in NT does not imply the convergence

∥Γj(t) − Γ(t)∥L∞t ([0,T ],L1,1) → 0. In order to show that the property (iv) holds for

ω(t) and Γ(t) ∈ L1,1 for t ∈ [0, T ], we split the total energy E(ω; v) into E1(ω(t); v)

and E2(ω(t)):

E1(ω(t); v) ∶=
1

2
{−Tr ((vΓ)(t)Γ∗(t)) +Tr ((vΛ)(t)Λ∗(t))}

E2(ω(t); v) ∶= Tr(∣∆∣1/2Γ(t)∣∆∣1/2) +
1

2 ∫R6
dxdy v(x − y)ρΓ(t)(x)ρΓ(t)(y).

Employing the fixed time estimate for ∥(vΓ)(t)Γ∗(t)∥L1 and ∥(vΛ)(t)Λ∗(t)∥L1 (see

the proof of Lemma 4.4),

∥(vΓ)(t)Γ∗(t)∥L1 ≲ ∥v∥M∥ω(t)∥2
NT

and ∥(vΛ)(t)Λ∗(t)∥L1 ≲ ∥v∥M∥ω(t)∥2
NT
,

130



we obtain the convergence for the E1 part

lim
j→0

E1(ωj(t); vj) = E1(ω(t); v).

The proof of the convergence of the E2 part and Γ(t) ∈ L1,1 depends on the observa-

tions that Γ(t) is positive, vj(x) ≥ 0, v(x) ≥ 0 for x ∈ R3 and ρΓ(t)(x) ≥ 0. It consists

of the following two steps

Step 1 ∣∆∣1/2Γ(t)∣∆∣1/2 is well defined. Since Γj(t) converges to Γ(t) in operator norm,

for any f, g ∈H1 (R3) with ∥f∥L2 = ∥g∥L2 = 1

lim
j→∞

⟨∣∆∣1/2Γj(t)∣∆∣1/2f, g⟩ = lim
j→∞

⟨Γj(t)∣∆∣1/2f, ∣∆∣1/2g⟩ = ⟨Γ(t)∣∆∣1/2f, ∣∆∣1/2g⟩ .

And we have the estimate

∣⟨∣∆∣1/2Γj(t)∣∆∣1/2f, g⟩∣

≤∥∣∆∣1/2Γj(t)∣∆∣1/2∥L1 = Tr (∣∆∣1/2Γj(t)∣∆∣1/2)

≤EBG(ωj(t); vj) −E1(ωj; vj) = EBG(ω0; vj) −E1(ωj(t); vj)

Therefore as j →∞,

∣⟨Γ(t)∣∆∣1/2f, ∣∆∣1/2g⟩∣ ≤ E(ω0; v) −E1(ω(t); v) (4.25)
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Since ∥ω(t)∥NT < ∞, ∣∆∣1/2Γ(t) is well-defined,

⟨Γ(t)∣∆∣1/2f, ∣∆∣1/2g⟩ = ⟨∣∆∣1/2Γ(t)∣∆∣1/2f, g⟩

Because g is arbitrary and H1 (R3) is dense in L2 (R3), the boundedness (4.25)

implies that ∣∆∣1/2Γ(t)∣∆∣1/2f is well-defined and bounded. Furthermore f is

arbitrary, ∣∆∣1/2Γ(t)∣∆∣1/2 is a well-defined bounded positive operator.

Step 2 E2(ω(t); v) = EBG(ω0; v)−E1(ω(t); v) and Γ(t) ∈ L1,1. Let {fi}i∈N ⊂H1 (R3) be

an orthonormal basis of L2 (R3). Since vj(x−y)ρΓj(t)(x)ρΓj(t)(y) converges to

v(x−y)ρΓ(t)(x)ρΓ(t)(y) pointwise (at least there is a sub-sequence of {ωj(t)}j∈N

satisfies the requirement), using the Fatou’s lemma,

lim sup
j→∞

E2(ωj(t); vj)

= lim sup
j→∞

(∑
i∈N

⟨∣∆∣1/2Γj(t)∣∆∣1/2fi, fi⟩ +
1

2 ∫R6
dxdy vj(x − y)ρΓj(t)(x)ρΓj(t)(y))

≤∑
i∈N

lim sup
j→∞

⟨Γj(t)∣∆∣1/2fi, ∣∆∣1/2fi⟩

+
1

2 ∫R6
dxdy lim sup

j→∞
vj(x − y)ρΓj(t)(x)ρΓj(t)(y)

=∑
i∈N

⟨∣∆∣1/2Γ(t)∣∆∣1/2fi, fi⟩ +
1

2 ∫R6
dxdy v(x − y)ρΓ(t)(x)ρΓ(t)(y),

and similarly,

lim inf
j→∞

E2(ωj(t); vj) ≥∑
i∈N

⟨∣∆∣1/2Γ(t)∣∆∣1/2fi, fi⟩

+
1

2 ∫R6
dxdy v(x − y)ρΓ(t)(x)ρΓ(t)(y).
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Therefore

∑
i∈N

⟨∣∆∣1/2Γ(t)∣∆∣1/2fi, fi⟩ +
1

2 ∫R6
dxdy v(x − y)ρΓ(t)(x)ρΓ(t)(y)

=EBG(ω0; v) −E2(ω(t); v),

and ∣∆∣1/2Γ(t)∣∆∣1/2 ∈ L1 using the property of bounded positive operators

[Sim05, Theorem 2.14].

The total energy E(ω(t); t) bounds ∥∣∆∣1/2Γ(t)∣∆∣1/2∥L1 since the potential

energy part is non-negative. Given fixed time t, if Γ(t) is of trace class and positive,

it can be written as Γ(t, x, y) = ∑i∈N λifi(x)f̄i(y) for some orthonormal basis {fi}i∈N

of L2 (R3) and λi ≥ 0, and we have the pointwise inequality

ρΓ(t)(x)ρΓ(t)(y)

=(∑
i∈N
λi∣fi∣

2(x))(∑
i∈N
λi∣fi∣

2(y)) ≥ (∑
i∈N
λi∣fi∣(x)∣fi∣(y))

2

≥∣Γ∣2(t, x, y).

Thus the sum

∫
R6
dxdy v(x − y) (ρΓ(t)(x)ρΓ(t)(y) − ∣Γ∣2(t, x, y)) ≥ 0,

and the potential energy part of the total energy is non-negative. Therefore we can

bound ∥Γ(t)∥L1,1

∥Γ(t)∥L1,1 ≤ Tr(Γ(t)) + EBG(ω(t); v).
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So far we have shown that (Γ(t),Λ(t)) satisfies (i) ∼ (iv) over the interval

[0, T ]. Using the uniform boundedness of ∥Γ(t)∥L1,1 , we can extend the solution

to an larger interval and repeat the same argument. Furthermore ∥Γ(t)∥L1,1 stays

bounded in time, repeating the process, we extend the solution (Γ(t),Λ(t)) over

R.

4.6 Appendix

The proof of the Morrey’s inequality for Banach spaces is based on the classical

argument for the scalar case [Eva10, Chapter 5, Theorem 4].

Proposition 4.19 (Morrey’s inequality). Let u ∈ C1 (Rn ×Rn) and p > n. For every

x ∈ Rn, u(x, ⋅) is valued in a Banach space with norm B. Then

∥u∥C0,γ(Rn,B) ≲n,p ∥u∥W 1,p(Rn,B), (4.26)

where γ = 1 − n/p.

Proof. 1. Control the oscillation of u in a neighborhood by Du, i.e. for any x, y ∈ Rn

⨏
Br(0)

∥u(x + y, x̃) − u(x, x̃)∥B dy ≤
1

α(n) ∫Br(0)

∥Du(x + y, x̃)∥B
∣y∣n−1

dy, (4.27)

where α(n) is the area of the unit sphere in Rn. To show (4.27), by the fundamental

theorem of calculus,

u(x + y, x̃) − u(x, x̃) = ∫
1

0
Du(x + sy, x̃) ⋅ y ds.
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Using the Minkowski inequality for a Banach space, we have

∥u(x + y, x̃) − u(x, x̃)∥B ≤ ∫

1

0
∥Du(x + sy, x̃) ⋅ y∥B ds ≤ ∫

1

0
∥Du(x + sy, x̃)∥B ∣y∣ds.

Integrating the inequality over the sphere ∂Bρ(0), where 0 < ρ ≤ r,

∫
∂Bρ(0)

∥u(x +w, x̃) − u(x, x̃)∥Bdw

≤∫
∂Bρ(0)

dw∫
1

0
∥Du(x + sw, x̃)∥B ∣w∣ds

=∫
∂B1(0)

dw∫
1

0
∥Du(x + sρw, x̃)∥B ρ

n ds

=ρn−1
∫
∂B1(0)

dw∫
1

0
∥Du(x + sρw, x̃)∥B (sρ)n−1 1

(sρ)n−1
ρds

=ρn−1
∫
Bρ(0)

∥Du(x + y, x̃)∥B
∣y∣n−1

dy

≤ρn−1
∫
Br(0)

∥Du(x + y, x̃)∥B
∣y∣n−1

dy,

then over the ball Br(0),

∫
Br(0)

∥u(x + y, x̃) − u(x, x̃)∥B dy

≤∫

r

0
ρn−1 dρ∫

Br(0)

∥Du(x + y, x̃)∥B
∣y∣n−1

dy

=
Vol (Br(0))

α(n) ∫
Br(0)

∥Du(x + y, x̃)∥B
∣y∣n−1

dy.

2. Notice that ∥u(x, , x̃)∥B ≤ ∣∥u(y, , x̃)∥B − ∥u(x, x̃)∥B ∣ + ∥u(y, x̃)∥B and take
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the averages with respect to y over the ball Br(x),

∥u(x, x̃)∥B

≤⨏
Br(x)

∣∥u(y, x̃)∥B − ∥u(x, x̃)∥B ∣ dy + ⨏
Br(x)

∥u(y, x̃)∥B dy

≤
1

α(n) ∫Br(0)

∥Du(x + y, x̃)∥B
∣y∣n−1

dy + ⨏
Br(x)

∥u(y, x̃)∥B dy (by (4.27))

≤
rγ

α(n)1/p
(
p − n

p − 1
)

1−1/p

∥Du∥Lp(Br(x),B)
+

1

Vol (Br(x))
1/p

∥u∥Lp(Br(x),B)

(by Hölder inequality).

Therefore ∥u∥L∞(R∞,B) ≲n,p ∥u∥W 1,p(Rn,B).

3. Control the semi-Hölder norm [u]C0,γ(Rn,B) by ∥Du∥Lp(Rn,B), i.e.

∥u(y, x̃) − u(x, x̃)∥B
∣y − x∣γ

≤
aγ

α(n)1/pCa
(
p − n

p − 1
)

1−1/p

∥Du∥Lp(B2r(x),B)
, (4.28)

where r = ∣y − x∣, a is a fixed ratio 0 < a < 1 and Ca is a constant to be defined later.

Let U(a) be the intersection of two balls Bar(y) and Bar(x). To show the estimate,

for any z ∈ Ua, by the triangle inequality,

∥u(y) − u(x)∥B ≤ ∥u(y) − u(z)∥B + ∥u(z) − u(x)∥B.
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Integrating the inequality with respect to variable z over Ua,

Vol (Ua) ∥u(y, x̃) − u(x, x̃)∥B

≤ ∫
Ua
dz ∥u(y, x̃) − u(z, x̃)∥B + ∫

Ua
dz ∥u(z, x̃) − u(x, x̃)∥B

≤ ∫
Br(y)

dz ∥u(y, x̃) − u(z, x̃)∥B + ∫
Br(x)

dz ∥u(z, x̃) − u(x, x̃)∥B

≤
Vol (Bar(0))

α(n)
(∫

Bar(y)
dz

∥Du(z, x̃)∥B
∣z − y∣n−1

+ ∫
Bar(x)

dz
∥Du(z, x̃)∥B
∣z − x∣n−1

) (by (4.27))

≤
Vol (Bar(0))

α(n)
∥

1

∣x∣n−1
∥
L

p
p−1 (Bar(0,B))

(∥Du∥Lp(Bar(y)) + ∥Du∥Lp(Bar(x),B))

=
Vol (Bar(0))a1−n/p

α(n)1/p
(
p − n

p − 1
)

1−1/p

r1−n/p∥Du∥Lp(B2r(x),B).

The volume of the intersection Ua = Bar(x) ∩ Bar(y) has a fixed ratio with

respect to Vol (Bar(0)) and denote it by Ca, i.e. Ca =
Vol(Ua)

Vol(Bar(0)) .

Next we prove Lemma 4.12.

Proof. Let Γ(t) ∈ L2,1 and Λ(t) ∈ H2 for t ∈ [−T,T ], and (Γ(t),Λ(t)) be solution to

the Equations (4.19) and (4.20), the associated generalized one particle matrix be

Sω(t). Following the same computation in [BSS18, Section 5.7.1.], Sω(t) satisfies the

time evolution equation

i∂tSω(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

−∆ 0

0 ∆

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

ṽ ∗ ρΓ(t) − (ṽΓ)(t) (ṽΛ)(t)

(ṽΛ∗)(t) ṽ ∗ ρΓ(t) − (ṽΓ̄)(t)

⎞
⎟
⎟
⎟
⎠

, Sω(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.29)

where t ∈ [−T,T ]. Split the linear operator in Equation (4.29) into an unbounded
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time-independent and a bounded time-dependent part as

A ∶=

⎛
⎜
⎜
⎜
⎝

−∆ 0

0 ∆

⎞
⎟
⎟
⎟
⎠

and Vω(t) ∶=

⎛
⎜
⎜
⎜
⎝

ṽ ∗ ρΓ(t) − (ṽΓ)(t) (ṽΛ)(t)

(ṽΛ∗)(t) ṽ ∗ ρΓ(t) − (ṽΓ̄)(t)

⎞
⎟
⎟
⎟
⎠

Then apply the classical Kato-Yosida result [Kat53] to the equation

i∂tU(t, s) = (A + Vω(t))U(t, s), U(s, s) = 1,

and show the existence of one parameter unitary subgroup U(t, s). We need to

verify

1. Given a fixed t ∈ [−T,T ], −i (A + Vω(t)) and i (A + Vω(t)) are generators of

contraction semigroups on L2 (R3)×L2 (R3). Since A is essentially self-adjoint

and Vω(t) is a bounded self-adjoint operator. Given fixed time t, using the

Kato-Rellich theorem, A + Vω(t) is also essentially self-adjoint.

2. The domain D(A + Vω(t)) is independent of t. It follows from D(A + Vω(t)) =

D(A).

3. The regularity assumptions C2,C3,C4 [Kat53] on t↦ (A + Vω(t)). According to

the recent characterization [SG14], the regularity assumptions are equivalent

to the condition that for every x ∈ D(A), t ↦ (A + Vω(t))x is continuously
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differentiable. The condition is straightforward to verify since

Γ(t) ∈ C([−T,T ],L2,1) ∩C1([−T,T ],L1),

Λ(t) ∈ C([−T,T ],H2) ∩C1([−T,T ], L2),

and ṽ ∈ C∞
c (R3).

Therefore Sω(t) = U(t,0)Sω0U(−t,0) and the spectrum of Sω(t) is preserved.

Following [Ara71], the lifting procedure is summarized in the proof of the next

Lemma,

Lemma 4.20. Let S ∈ Sad, there is a quasi-free state ω such that its generalized

one-particle matrix Sω = S.

Proof. Let S ∈ Sad. For simplicity, let HC denote the Hilbert space L2(R3)×L2(R3)

with the complex conjugation J . Consider the C∗-algebra UCAR generated by

a†(f) + a(g), where (f, g) ∈ L2(R3) × L2(R3), and denote its completion with re-

spect to the C∗-norm [SS64, Proposition 1] by UCAR(HC).

1. When S is a matrix such that S2 = S, by virtue of [Ara71, Lemma 4.3] and

Fa being the irreducible representation of UCAR(HC) [Coo53], there is a Fock

state ψ ∈ Fa such that ω = ∣ψ⟩ ⟨ψ∣ and Sω = S. Every non-trivial Fock state

of Fa is cyclic and the collection of all correlation functions is equivalent to a

positive functional u ↦ ⟨ψ,uψ⟩
Fa
, u ∈ UCAR(HC). Using a classical result in

C∗-algebra, ψ is uniquely up to phases and ω is uniquely determined as a pure

state.
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2. When S does not satisfies the equation S2 = S, by [Ara71, Lemma 4.5, 4.6],

we lift S to

PS =

⎛
⎜
⎜
⎜
⎝

S S1/2(id − S)1/2

S1/2(id − S)1/2 id − S

⎞
⎟
⎟
⎟
⎠

over the space ĤC = HC⊕HC with complex conjugation Ĵ = J ⊕(−J ), where id

is the identity onHC. Note that S1/2(id−S)1/2 commutes with J , PS+ĴPSĴ =

id
ĤC

, P ∗
S = PS = P 2

S . We reduce to Case 1. Now the Fock representation of ĤC

is over F̂a, which is generated by L2(R3) ⊕L2(R3). Using the standard result

in Clifford algebras [LM89, Proposition 1.5], F̂a can be regarded as

F̂a = Fa1⊗̂Fa2,

where ⊗̂ is a Z2-graded tensor product. The splitting is orthogonal. Fa1 and

Fa1 are identical copies of Fa. We use subscripts 1 and 2 just to specify which

copy we refer to. Since the complex conjugation of ĤC is Ĵ and note the

compatibility condition [Ara71, Section 2 Notations], we realize

(f1, g1) ⊕ (f2, g2) ↦ a†
1(f1) + a1(g1) + ia2(f2) + ia

†
2(g2)

where (f1, g1) ⊕ (f2, g2) ∈ ĤC. Let π1 denote the projection of F̂a onto Fa1.

Apply the result for Case 1, there is a unique Fock state ψ̂ ∈ F̂a up to a phase,

∥ψ̂∥F̂a = 1 whose generalized one-particle matrix is PS. Project ψ̂j to Fa1,
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which acts on any f ∈ Fa1 in the way

⟨ψ̂j, f ⊗̂1⟩
F̂a
π1 (ψ̂j) .

This action correspond to a quasi-free state ω on Fa. More precisely, decom-

pose ψ̂

ψ̂ =
∞

∑
j=1

λjψj⊗̂φj,

where ψj⊗̂φj are in the form ej⊗̂fk, ej and fk are orthonormal in Fa. Then ω

assumes the form

ω =
∞

∑
j=1

∣λj ∣
2 ∣ψj⟩ ⟨ψj ∣

where ∑∞
j=1 ∣λj ∣

2 = 1.
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Chapter 5: Conclusion and Discussion

The Hartree equation as a reduced version of the Hartree-Fock equation demon-

strates distinct properties: it admits stationary solutions, which serve as formal

Fermi sea of the system. We studied the Hartree equation for the perturbation of

the stationary solution when there is a constant background magnetic field in the

many-body system. To the best of my knowledge, in the presence of a constant

magnetic field, we are the first one to consider the Hartree equation for the per-

turbation of the stationary solution. The formulation is a mathematical model for

a many-body system with infinitely many electrons, while the main part is at low

energy state and the other part is highly excited.

The problem was originally addressed in dimension three

i ∂tΓ(t) = [h + ρΓ(t) ∗ V,Γ(t)] .

As a first step to attack the problem, we considered a two-dimensional version of

the Hartree equation, which captures the discrete feature of the original problem.

Since the stationary solution is not of trace class and the forcing term is not small a

priori, we introduced the Fourier-Wigner transform and derived an estimate on the

asymptotic behavior of associated Laguerre polynomials to obtain a collapsing esti-
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mate for the density term. Using the estimate, we proved that the two-dimensional

version is locally well-posed for the perturbation of the stationary solution.

The next goal is to consider the original three-dimensional Hartree equation.

The one-particle Hamiltonian h of the equation has a mixed feature: the Hamilto-

nian h has discrete spectrum when it is restricted to the first two dimension and

has continuous spectrum when it is restricted to the third dimension. Since the

discrete and continuous part of the one-particle Hamiltonian h can not be analyzed

independently when we consider the density term of the pertubation, it requires to

develop further machinery to obtain the corresponding collapsing estimate and the

well-posedness theory for the equation.

Another interesting direction of the problem is to study the many-body system

under local magnetic field or perturbation to constant magnetic field. The local

magnetic field case could be considered as perturbation of the Laplace case and the

other one could be considered as perturbation of the constant magnetic field case.

They are more general than the original settings and might have interesting physics

applications.

Recently, the Bogoliubov-de Gennes equations were derived as an application

of the Dirac-Frenkel approximation principle to pure quasi-free states by Benedikter-

Sok-Solovej [BSS18]. The evolution of two-particle correlation functions for mixed

quasi-free states is also described by the Bogoliubov-de Gennes equations. They

provide an approximation scheme to the dynamics of the Fermionic many-body

system when the initial state of the system is quasi-free. [BSS18]The existing global

well-posedness theory of the Bogoliubov-de Gennes equations is for the Coulomb
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potential. The result is based on the semi-group theory. We employed the dispersive

PDE techniques and the observation that the pairing function is anti-symmetric to

extend the global well-posedness theory for more singular potentials such as 1
∣x∣2−ε ,

for any 0 ≤ ε < 2. The future work is to compare the dynamics governed by the

Bogoliubov-de Gennes equations with the dynamics governed by the many-body

Schrödinger equation in the mean field regime. Not all mixed states will be taken

into consideration. Inspired by [GM13,GM17], we may expect to start with pure

quasi-free states generated by pair excitations or mixed quasi-free states which are

derived by projecting pure quasi-free states generated by pair excitations in the

double-Fock representation.
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Chapter 6: Appendix

There has been a long history of studying the C∗-algebra CAR. Nowadays, it

has been a standard content in quantum physics and mathematics. We intend to

focus on the standard Fock representation of CAR and the Pin group representa-

tion instead of reviewing the vast literature. The spinor representations of infinite

orthogonal groups was constructed by Shale-Stinespring [SS65]. In the appendix,

we presented the result and obtained some analysis approximation results.

The Pin group representation is closely related to pure quasi-free states, whose

expected number of particles are finite. Even though unitary implementable Bogoli-

ubov transforms corresponds to all such pure quasi-free states, the Pin group rep-

resentation forms an important subspace of the space of unitary implementable Bo-

goliubov transforms. And they provide ideas to approximate unitary implementable

Bogoliubov transforms. We refer interested readers to [LM89] for the background

of Clifford algebras and [SS64,BV68,Seg47,Ara71,Ara69,PSr70] for the discussion

of CAR and states.
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6.1 Fock Space

In quantum physics, the state space of a single particle is a Hilbert space H

with inner product ⟨⋅, ⋅⟩H. When we study many-body problems, the state space is

then the tensor products of Hilbert spaces. Following the construction in [Coo53],

the Fock space F over H is the complete tensor algebra

F ∶=
∞

⊕
n=0

H⊗n, (6.1)

where H⊗n denotes the tensor product of n copies of H and it is the state space of

n quantum particles. The vacuum of the Fock space F is a state

∣0⟩ ∶= (1,0,0, . . .), (6.2)

where 1 is the constant in C. The Fock space F derives the inner product structures

from H⊗n. Let ϕ = (ϕ0, ϕ1, . . .) and φ = (φ0, φ1, . . .) be Fock states, i.e. ϕ,φ ∈ F , the

inner product on F is defined as

⟨ϕ,φ⟩F ∶=
∞

∑
j=0

⟨ϕj, φj⟩H⊗n . (6.3)

We introduce creation and annihilation operators to the Fock space F , which connect

subspaces of F with different grades. The operators are defined on decomposable

tensors in the following way and extend linearly to F : the annihilation operator
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a ∶ H ×H⊗(n+1) →H⊗n, i.e. lowering the grade

a(f) ∶ f1 ⊗⋯⊗ fn+1 ↦ ⟨f, f1⟩Hf2 ⊗⋯⊗ fn+1, f, fj ∈ H,

and the creation operator a† ∶ H ×H⊗(n−1) →H⊗n, i.e. raising the grade

a†(f) ∶ f1 ⊗⋯⊗ fn−1 ↦ f ⊗ f1 ⊗⋯⊗ fn−1, f, fj ∈ H.

There are two types of particles in quantum physics: Fermions and Bosons.

Mathematically, they correspond to two types of symmetry: anti-symmetry and

symmetry respectively, and are modeled by two quotient spaces of F . Fermions are

modeled by anti-symmetric tensors

Fa ∶= F/I ({f ⊗ g + g ⊗ f ∶ f, g ∈ H}) , (6.4)

where I ({f ⊗ g + g ⊗ f ∶ f, g ∈ H}) denotes the ideal of F generated by {f⊗g+g⊗f ∶

f, g ∈ H}. Bosons are modeled by symmetric tensors

Fs ∶= F/I ({f ⊗ g − g ⊗ f ∶ f, g ∈ H}) , (6.5)

where I ({f ⊗ g − g ⊗ f ∶ f, g ∈ H}) denotes the ideal of F generated by {f⊗g−g⊗f ∶

f, g ∈ H}. Since Fs and Fa are quotient algebras of F . They inherit multiplication

structure from F directly. The multiplication structures are called symmetric tensor

product and wedge product respectively. We can also regard Fa as a subspace of F
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through the embedding

ιa ∶ f1 ∧⋯ ∧ fn ↦
√
n!Asym(f1 ⊗⋯⊗ fn)

∶=
1

√
n!
∑
σ∈Sn

(−1)π(σ)fσ(1) ⊗⋯⊗ fσ(n),

and Fs as a subspace of F through the embedding

ιs ∶ f1 ⊗s⋯⊗s fn ↦
√
n!Sym(f1 ⊗⋯⊗ fn)

∶=
1

√
n!
∑
σ∈Sn

fσ(1) ⊗⋯⊗ fσ(n),

where Sn is the symmetric group of d elements and sgn(σ) denotes the sign of σ.

Let {ek} be an orthonormal basis of H. Through the embeddings, the pull back

inner product on Fa is characterized by the orthonormal basis

{ek1 ∧⋯ ∧ ekn}k1<⋯<kn ,

and the pull back inner product on Fs is characterized by the orthonormal basis

⎧⎪⎪
⎨
⎪⎪⎩

1
√
n1!

⋯
1

√
nj!

e⊗sn1

k1
⊗s⋯⊗s e

⊗snj
kj

⎫⎪⎪
⎬
⎪⎪⎭k1<⋯<kj

.

The above identification of Fa and Fs as subspaces of F are not sections from Fa

and Fa to F , namely the composition

Fs
ιs
Ð→ F → Fs
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is not an identity on Fs. The induced creation and annihilation operators on Fa

a†(f)(f1 ∧⋯ ∧ fn−1) = f ∧ f1 ∧⋯ ∧ fn−1,

a(f)(f1 ∧⋯ ∧ fn+1) =
n+1

∑
j=1

(−1)j+1⟨f, fj⟩Hf1 ∧⋯ ∧ f̂j ∧⋯ ∧ fn+1,

where f, fj ∈ H, on Fs

a†(f)(f1 ⊗s⋯⊗s fn−1) = f ⊗s f1 ⊗s⋯⊗s fn−1

a(f)(f1 ⊗s⋯⊗s fn+1) =
n+1

∑
j=1

⟨f, fj⟩Hf1 ⊗s⋯⊗s f̂j ⊗s⋯⊗s fn+1.

where f̂j means the fj is omitted. In both cases, a†(f) is adjoint to a(f), i.e.

(a†(f))
∗
= a(f).

In the Fermionic case, a†(f) is a bounded operator, where f ∈ H. Since let

φn ∈ ⋀nH,

∥a†(f)(φn)∥
Fa

≤ ∥f∥
H
∥φn∥

Fa
,

∥a†(f)∥op ≤ ∥f∥H. However in the Bosonic case, a†(f) is not a bounded operator.

Because if φn ∈ H⊗sn,

∥a†(f)(φn)∥
Fs

≤
√
n + 1 ∥f∥

H
∥φn∥

Fs
.

In some sense, that a†(f) is not bounded for Fs is due to the condensation of

particles.
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In Fa, the canonical anticommutation relations (CAR) are

[a(f), a(g)]
+
= 0, [a†(f), a†(g)]

+
= 0, [a(f), a†(g)] = ⟨f, g⟩H. (6.6)

In Fs, the canonical commutation relations (CCR) are

[a(f), a(g)] = 0, [a†(f), a†(g)] = 0, [a(f), a†(g)] = ⟨f, g⟩H. (6.7)

Let T ∶ H → H be a linear operator (bounded or unbounded), the second

quantization T̂ is an extension of T over F such that it acts a slice of tensor

T̂ (f1 ⊗⋯⊗ fn) =
n

∑
j=1

f1 ⊗⋯⊗ T (fj) ⊗⋯⊗ fn.

The action T̂ over Fa or Fs is defined by replacing the tensor product of the last

expression with the corresponding multiplication structure.

Lemma 6.1. Let T ∶ H → H be a linear operator (bounded or unbounded) and T̂ be

the second quantization of T , in Fs or Fa

[a†(f), T̂ ] = −a† (Tf) , [a(f), T̂ ] = a (T ∗f) . (6.8)

Proof. It suffices to show the commutation relations for a decomposable Fock state
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of degree n. Consider a Fock state ∧nj=1fj ∈ Fa and f ∈ H, we have

[a†(f), T̂ ]
n

⋀
j=1

fj

=
n

∑
j=1

f ∧ f1 ∧⋯ ∧ T (fj) ∧⋯ ∧ fn − T̂ (f ∧
n

⋀
j=1

fj)

= − T (f) ∧
n

⋀
j=1

fj,

and

[a(f), T̂ ]
n

⋀
j=1

fj

=
n

∑
j=1

a(f) f1 ∧⋯ ∧ T (fj) ∧⋯ ∧ fn − T̂
n

∑
j=1

(−1)j+1⟨f, fj⟩ ⋀
k≠j

fk

=
n

∑
j=1

(−1)j+1⟨f, T (fj)⟩ ⋀
k≠j

fk

=
n

∑
j=1

(−1)j+1 ⟨T ∗(f), fj⟩ ⋀
k≠j

fk.

Consider a Fock state f1 ⊗s f2 ⊗s⋯⊗s fn ∈ Fs and f ∈ H, we have

[a†(f), T̂ ] f1 ⊗s⋯⊗s fn

=
n

∑
j=1

f ⊗s f1 ⊗s⋯⊗s T (fj) ⊗s⋯⊗s fn − T̂ f1 ⊗s f1 ⊗s⋯⊗s fn

= − T (f) ⊗s f1 ⊗s⋯⊗s fn,
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and

[a(f), T̂ ] f1 ⊗s⋯⊗s fn

=a(f)
n

∑
j=1

f1 ⊗s⋯⊗s T (fj) ⊗s⋯⊗s fn − T̂
n

∑
j=1

⟨f, fj⟩Hf1 ⊗s⋯⊗s f̂j ⊗s⋯⊗s fn

=
n

∑
j=1

⟨f, T (fj)⟩ f1 ⊗s⋯⊗s f̂j ⊗s⋯⊗s fn.

A mixed state ω of Fa (or Fs) is a semi-positive self-adjoint trace class operator

such that TrFa(ω) = 1. Correlation functions of ω are defined as

(f1, . . . , fn) ↦ TrFa (a#(f1)⋯a
#(fn)ω) , (6.9)

where fj ∈ H and a# denotes an operator without specifying whether it is a creation

or annihilation operator. A mixed state ω of Fa is quasi-free if it satisfies the Wick’s

theorem, i.e. any of its correlation functions can be determined by the two-particle

correlation functions in the way

TrFa (a#(f1)a
#(f2)⋯a

#(f2n+1)ω) = 0 (6.10)

TrFa (a#(f1)⋯a
#(fn)ω) = ∑

σ∈Sad

sgn(σ)TrFa (a#(fσ(1))a
#(fσ(2))ω)

⋯TrFa (a#(fσ(2n−1))a
#(fσ(2n))ω) (6.11)

where sgn(σ) denotes the sign of permutation σ and Sad is a subset of the symmetric

152



group S2n such that

σ(1) < σ(3) < ⋯ < σ(2n − 1), σ(2k − 1) < σ(2k).

6.2 Spin Representation

6.2.1 Finite Dimensional Case

In this section, we study the Clifford action µ, the skew adjoint representation

Ãd and the relations to quasi-free states

Cl(VC, qC) GL (Cl(VC, qC))
Ãd

µ

⋀
∗ (V, ⟨⋅, ⋅⟩V )

For a thorough exposition of finite-dimensional Clifford algebras, we refer to [LM89].

Let us explain all notations in the diagram. V is a 2d-dimensional real vector

space endowed with a non-degenerate positive quadratic form q. V is also endowed

with a compatible complex structure J such that

q (Jv1, Jv2) = q(v1, v2),

where v1, v2 ∈ V . Therefore V can regarded as a complex space with inner product

⟨v1, v2⟩V ∶= q(v1, v2) + iq(Jv1, v2).

When the pair (V, q) is used, we consider V as a real vector space. When the pair
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(V, ⟨⋅, ⋅⟩V ) is used, we consider V as a complex vector space. Otherwise we specify

which structure of V is used. VC ∶= C⊗RV and qC ∶= id⊗q. Cl(VC, qC) is the Clifford

algebra

Cl(VC, qC) ∶=
∞

⊕
j=0

V ⊗j
C / {v ⊗ v − qC(v) ∶ v ∈ VC} (6.12)

where {v ⊗ v − qC(v) ∶ v ∈ VC} denotes the ideal of⊕∞
j=0 V

⊗j
C generated by v⊗v−qC(v).

VC is endowed with inner product

⟨u, v⟩VC ∶= 2qC(ū, v)

where u, v ∈ VC. Cl(VC, qC) is a 22d-dimensional complex vector space and it is

isomorphic to the matrix algebra algebra Mat(2d,C). Since the matrix algebra is

simple, Cl(VC, qC) has a unique finite-dimensional irreducible representation. The

representation is given by µ. ⋀∗ (V, ⟨⋅, ⋅⟩V ) is the Fermionic Fock space Fa defined in

Section 6.1, when the Hilbert space (H, ⟨⋅, ⋅⟩H) is (V, ⟨⋅, ⋅⟩V ). Next we define µ using

a special basis of (V, q). Let {∂xj , ∂yj}
d
j=1 be orthonormal basis of (V, q) such that

J∂xj = ∂yj , q =
d

∑
j=1

(dxj ⊗ dxj + dyj ⊗ dyj)

Then there is a natural basis for VC,

∂zj ∶=
1

2
(∂xj − i∂yj), ∂z̄j ∶=

1

2
(∂xj + i∂yj), (6.13)
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where j = 1, . . . , d and qC is

qC =
1

2

d

∑
j=1

(dzj ⊗ dz̄j + dz̄j ⊗ dzj) .

{∂zj}
d
j=1 is also the orthonormal basis of (V, ⟨⋅, ⋅⟩V ). Finally, the representation µ is

defined as wedge products and contraction

µ (∂zj)u ∶= ∂zj ∧ u, u ∈ ∧
∗(V, ⟨⋅, ⋅⟩V ), (6.14)

µ (∂z̄k)(
l

⋀
j=1

uj) ∶=
l

∑
j=1

(−1)j+1⟨∂zk , uj⟩V ⋀
i≠j

ui, uj ∈ (V, ⟨⋅, ⋅⟩V ). (6.15)

Since the definition preserves the quadratic form qC in the sense

µ (v1)µ (v2) + µ (v2)µ (v1) = 2qC(v1, v2)

where v1, v2 ∈ VC, by the universal property of Clifford algebras, µ defines a Clifford

representation of Cl(VC, qC). The transpose (⋅)t on Cl(VC, qC) is a map

()t ∶ v1v2 . . . vj−1vj ↦ vjvj−1 . . . v2v1, v1, . . . , vj ∈ VC.

Then VC is endowed with an ∗ involution: u∗ = ūt. In addition, the ∗-structure of

operators corresponds to the ∗-structure on VC

(µ(v))
∗
= µ(v̄t), v ∈ Cl(VC, qC). (6.16)
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Using the identities ∂xj = ∂zj + ∂z̄j and ∂yj = i∂zj − i∂z̄j , the restriction µ∣Cl(V,q) is a

real representation for Cl(V, q). Since V is of finite dimension, let us define creation

and annihilation operators as

a†
j ∶= µ (∂j) , aj ∶= µ (∂z̄j) . (6.17)

In order to define the skew adjoint representation Ãd, consider the involution

α ∶ v ↦ −v, for v ∈ (V, q). Extending α linearly to Cl(V, q), we obtain an involution

on Cl(V, q), i.e. α2 = idCl(V,q) and a decomposition of Cl(V, q)

Cl(V, q) = Cl0(V, q)⊕Cl1(V, q),

where Clj(V, q) = {u ∈ Cl(V, q)∣α(u) = (−1)ju}. In the end, the skewed adjoint

representation Ãd is

Ãdu(w) ∶= α(u)wu−1, u ∈ Cl×(V, q), w ∈ (V, q) (6.18)

where Cl×(V, q) denotes the Clifford group of Cl(V, q), i.e. the collection of invert-

ible elements of Cl(V, q). Ãd coincides with the usual adjoint representation on

Cl×(V, q) ∩Cl0(V, q).

Pure quasi-free states are closely related to the Pin subgroup of Cl×(V, q). The

Pin group Pin(V, q) ⊂ Cl(V, q) is generated by elements

{v ∈ V ∣ q(v) = 1} (6.19)
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and the Spin group Spin(V, q) is a subgroup of Pin(V, q)

Spin(V, q) ∶= Pin(V, q) ∩Cl0(V, q).

Lemma 6.2. The restriction of the Clifford action µ on Pin(V, q) is a unitary

representation, i.e.

⟨µ(v)u,µ(v)u⟩V = ⟨u,u⟩V ,

for any v ∈ (V, q) and u ∈ (V, ⟨⋅, ⋅⟩V ).

Proof. For any v ∈ V such that q(v) = 1 and u ∈ (V, ⟨⋅, ⋅⟩V ),

⟨µ(v)u,µ(v)u⟩V = ⟨µ∗(v)µ(v)u,u⟩V = ⟨µ(v̄v)u,u⟩V = ⟨µ(v2)u,u⟩V = ⟨u,u⟩V .

Since Pin(V, q) ⊂ Cl(V, q) is generated by {v ∈ V ∣ q(v) = 1}, the restriction of µ on

Pin(V, q) is unitary.

Consider the restriction Ãd on Pin(V, q) ( or (Spin(V, q)),

Theorem 6.3. [LM89, Theorem 2.9.] There are short exact sequences

0→ {1,−1} → Pin(V, q)
Ãd
Ð→ O(V, q) → 1

0→ {1,−1} → Spin(V, q)
Ãd
Ð→ SO(V, q) → 1.

where 1 is the identity map on (V, q). Furthermore, Ãd is the covering map for

SO(V, q) (O(V, q)).
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Since Spin(V, q) is the double cover of SO(V, q), Lie algebras spin(V, q) and

so(V, q) are isomorphic. A coordinate-independent description of spin(V, q) and the

infinitesimal representation dÃd is

Lemma 6.4. The Lie algebra spin(V, q) of Spin(V, q) is generated by

{v1v2 − q(v1, v2)∣ v1, v2 ∈ (V, q)} .

Proof. Note that {v1v2 − q(v1, v2)∣ v1, v2 ∈ (V, q)} is in the Lie algebra spin(V, q).

Because for any v1, v2 ∈ (V, q),

exp (v1v2 − q(v1, v2))

=1 −
c2

2!
+
c4

4!
+⋯ + (v1v2 − q(v1, v2)) (1 −

c2

3!
+
c4

5!
+⋯)

= cos c +
sin c

c
(v1v2 − q(v1, v2)) ,

where c2 = q(v1)q(v2) − q2(v1, v2), and

exp (v1v2 − q(v1, v2)) exp (v1v2 − q(v1, v2))
t
= 1.

Since Spin(V, q) is the double cover of SO(V, q), Spin(V, q) is a Lie group of dimen-

sion (
2d
2
). While the linear space spanned by {v1v2 − q(v1, v2)∣ v1, v2 ∈ V } is also of

dimension (
2d
2
). Therefore spin(V, q) is generated by {v1v2 − q(v1, v2)∣ v1, v2 ∈ V }.

Lemma 6.5. For any v1, v2 ∈ (V, q), the infinitesimal representation dÃd ∶ spin(V, q) →
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so(V, q) maps

dÃd ∶ v1v2 − q(v1, v2) ↦ (v ↦ 2q(v2, v)v1 − 2q(v1, v)v2) . (6.20)

Proof. dÃd is derived by differentiating Ãd,

lim
t→0

exp ((v1v2 − q(v1, v2)) t) v exp (− (v1v2 − q(v1, v2)) t)

t

=2q(v2, v)v1 − 2q(v1, v)v2.

Next we give expressions for the Lie algebras and the correspondence in terms

of specific bases and work on the expressions.

Lemma 6.6. Let T ∈ GL(V,R), in terms of the basis {∂xj , ∂yj}
d

j=1
of (V, q), the

matrix representation of T is

T =

⎛
⎜
⎜
⎜
⎝

A B

C D

⎞
⎟
⎟
⎟
⎠

.

T ∈ O(V, q) if and only if

AtA +CtC = BtB +CtC = idd, AtB = −CtD, (6.21)

or

AAt +BBt = CCt +DDt = idd, ACt = −BDt, (6.22)

where idd is the identity matrix of dimension d × d.
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Let T ∈ GL(V,R), with respective to the basis {∂xj , ∂yj}
d
j=1, T is

⎛
⎜
⎜
⎜
⎝

A B

C D

⎞
⎟
⎟
⎟
⎠

. We

extend T complex linearly to VC and express it using the basis {∂zj , ∂z̄j}
d
j=1. The

matrix representation is
⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

. The two matrix representations are similar, i.e.

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

=W

⎛
⎜
⎜
⎜
⎝

A B

C D

⎞
⎟
⎟
⎟
⎠

W −1 (6.23)

where

W =

⎛
⎜
⎜
⎜
⎝

idd i idd

idd −i idd

⎞
⎟
⎟
⎟
⎠

, W −1 =
1

2

⎛
⎜
⎜
⎜
⎝

idd idd

−i idd i idd

⎞
⎟
⎟
⎟
⎠

,

and idd is the identity matrix of dimension d × d, P = (A + D − i(B − C))/2 and

Q = (A −D + i(B +C))/2.

Lemma 6.7. Let T ∈ GL(V,R) ⊂ GL(VC,C), in terms of the basis {∂zj , ∂z̄j}
d
j=1 of

VC,

T =

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

.

All the following statements are equivalent

1. T ∈ O(V, q);

2. Q̄tQ + P tP̄ = idd and Q̄tP + P tQ̄ = 0;

3. PP̄ t +QQ̄t = idd and PQt +QP t = 0
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4. T t
⎛
⎜
⎜
⎜
⎝

0 idd

idd 0

⎞
⎟
⎟
⎟
⎠

T =

⎛
⎜
⎜
⎜
⎝

0 idd

idd 0

⎞
⎟
⎟
⎟
⎠

where idd is the identity matrix of dimension d × d.

Lemma 6.8. Let T ∈ gl(V,R) ⊂ gl(VC,C), in terms of the basis {∂zj , ∂z̄j}
d
j=1 of VC,

T =

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

.

T ∈ o(V, q) if and only if

P ∗ = −P, Qt = −Q, (6.24)

or

T t
⎛
⎜
⎜
⎜
⎝

0 idd

idd 0

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

0 idd

idd 0

⎞
⎟
⎟
⎟
⎠

T = 0

where idd is the identity matrix of dimension d × d.

Using the basis {∂zj∂zk , ∂zj∂z̄k , ∂z̄j∂z̄k}1≤j<k≤d
of spin(VC, qC) and and the basis
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{∂zj , ∂z̄j}1≤j≤d of VC, the infinitesimal representation Ãd,

dÃd ∶ ∂zj∂zk ↦

⎛
⎜
⎜
⎜
⎝

0 ejk − ekj

0 0

⎞
⎟
⎟
⎟
⎠

,

∂z̄j∂z̄k ↦

⎛
⎜
⎜
⎜
⎝

0 0

ejk − ekj 0

⎞
⎟
⎟
⎟
⎠

,

∂zj∂z̄k −
1

2
δjk ↦

⎛
⎜
⎜
⎜
⎝

ejk 0

0 −ekj

⎞
⎟
⎟
⎟
⎠

,

where ejk is the d × d matrix which is 1 at the entry in j-th row and k-th column

and 0 elsewhere. Putting above expressions into a concise form over spin(V, q)

dÃd ∶
1

2
(∂tz ∂tz̄)

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

∂z

∂z̄

⎞
⎟
⎟
⎟
⎠

↦

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

, (6.25)

where ∂z = (∂z1 , . . . , ∂zd)
t, ∂z̄ = ∂z and

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

satisfies (6.24). Similarly, the in-

finitesimal action dµ,

dµ ∶ spin(V, q) → u (∧∗V ) (6.26)

1

2

⎛
⎜
⎜
⎜
⎝

∂z

∂z̄

⎞
⎟
⎟
⎟
⎠

t

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

∂z

∂z̄

⎞
⎟
⎟
⎟
⎠

↦
1

2

⎛
⎜
⎜
⎜
⎝

a†

a

⎞
⎟
⎟
⎟
⎠

t

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a†

a

⎞
⎟
⎟
⎟
⎠

, (6.27)
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where

a† = (a†
1, a

†
2, . . . , a

†
d)
t
, a = (a1, a2, . . . , ad)

t
.

Observe that with respective to the basis {∂zj , ∂z̄j}1≤j≤d,

⎛
⎜
⎜
⎜
⎝

P 0

0 P̄

⎞
⎟
⎟
⎟
⎠

∈ O(V, q) if and only if P ∈ U(d),

which yields an embedding of U(d) into O(V, q). According to (6.25), elements in

Ãd
−1

(U(d)) can be written as

exp
⎛

⎝
∑

1≤j,k≤d

ajk (∂zj∂z̄k −
1

2
δjk)

⎞

⎠
, (ajk) ∈ u(d).

Applying the action of Ãd
−1

(U(d)) to the ∣0⟩ of ⋀∗ (V, ⟨⋅, ⋅⟩V )

µ
⎛

⎝
exp

⎛

⎝
∑

1≤j,k≤d

ajk (∂zj∂z̄k −
1

2
δjk)

⎞

⎠

⎞

⎠
∣0⟩

= exp
⎛

⎝
−

1

2
∑

1≤j≤d

ajj
⎞

⎠
∣0⟩

= exp(−
1

2
Tr ((ajk))) ∣0⟩ (ajk) ∈ u(d).

Therefore the stabilizer of ∣0⟩ under the Spin(V, q) action contains

⎧⎪⎪
⎨
⎪⎪⎩

exp
⎛

⎝
∑

1≤j,k≤n

ajk (∂zj∂z̄k −
1

2
δjk)

⎞

⎠

RRRRRRRRRRR

Tr ((ajk)) = 0, (ajk) ∈ u(d)

⎫⎪⎪
⎬
⎪⎪⎭

. (6.28)

We will show that the stabilizer of ∣0⟩ is exactly this set.
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In the last part of this section, we discuss the relation between the Pin group

representation and pure quasi-free states. Let ω be state of Fa, i.e. a semi-definite

linear transform with trace 1. Correlation functions associated to the state ω are

defined as

(x1, x2, . . . , xk) ↦ TrFa ((x1a
#
j1
) (x2a

#
j2
)⋯(xka

#
jk
)ω) (6.29)

where xl ∈ C, 1 ≤ jl ≤ d, k ∈ N and # means that it is either an annihilation operator

or a creation operator. For simplicity,

⟨a#
j1
a#
j2
⋯a#

jk
⟩
ω
∶= TrFa (ω, a

#
j1
a#
j2
⋯a#

jk
ω) , (6.30)

where 1 ≤ jl ≤ d, k ∈ N. Claim that the collection of correlation functions determines

the Fock state up to phases. To prove the claim, through the Clifford action µ, the

collection of all correlation functions amounts to a function defined on Cl(VC, qC)

fω ∶ T ∈ Cl(VC, qC) ↦ TrFa (µ(T )ω) . (6.31)

⋀
∗ V can be identified as C2d with inner metric q̃, since Cl(VC, qC) is isomorphic to

the matrix algebra Mat(2d,C) and ⋀∗ V is its finite dimensional irreducible repre-

sentation. If fω vanishes, one can find T ∈ Mat(2d,C) such that µ(T ) = ω∗, then

TrFa (ω∗ω) = 0 implies that ω = 0.
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The state ω is quasi-free if

⟨a#
j1
a#
j2
⋯a#

j2n+1
⟩
ω
= 0, (6.32)

⟨a#
j1
a#
j2
⋯a#

j2n
⟩
ω
= ∑
σ∈Sad

sgn(σ) ⟨a#
jσ(1)

a#
jσ(2)

⟩
ω
⋯⟨a#

jσ(2n−1)
a#
jσ(2n)

⟩
ω
, (6.33)

where sgn(σ) denotes the sign of permutation σ and Sad is a subset of the permu-

tation group S2n such that

σ(1) < σ(3) < ⋯ < σ(2n − 1), σ(2k − 1) < σ(2k).

Another characterization of ω being quasi-free is given based on the generalized

one-particle density matrix, which is defined

Definition 6.9. Let ω be a state of ⋀∗ (V, ⟨⋅, ⋅⟩V ), the associated generalized one-

particle density matrix Sω is a complex linear transform on VC such that

2qC (Sωu, v) = TrFa (µ(u)µ(v)ω) , (6.34)

or equivalently ⟨v,Sωu⟩VC = TrFa (µ(u)µ∗(v)ω), where u, v ∈ VC.

ω is quasi-free if and only if the generalized one-particle density matrix Sω

satisfies

1 ≥ S∗ω = Sω ≥ 0, S2
ω = Sω. (6.35)

Let ω = id, the generalized one-particle density matrix Sid is the identity map on

the subspace spanned by {∂z̄j}
d
j=1. For short, when ω is pure, we may use associated
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the Fock state to denote ω.

Let T ∈ Pin(V, q) and ∣0⟩ be the vacuum of ⋀∗ (V, ⟨⋅, ⋅⟩V ), the generalized one

particle matrix Sµ(T−1)∣0⟩ for µ(T −1) ∣0⟩ is then Ãd
∗

TSidÃdT . Specifically, in terms of

the basis {∂zj , ∂z̄j}
d
j=1, if

ÃdT =

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

,

then

Sµ(T−1)∣0⟩ =

⎛
⎜
⎜
⎜
⎝

QtQ̄ QtP̄

P tQ̄ P tP̄

⎞
⎟
⎟
⎟
⎠

.

Besides, regarding a† and a as row vectors, two-particle correlation functions are

a†a ∶ gtΓf ∶= ⟨µ(T −1) ∣0⟩ , (a†f t)(agt)µ(T −1) ∣0⟩⟩
Fa

= fQ∗Qgt,

aa ∶ gtΛf ∶= ⟨µ(T −1) ∣0⟩ , (af t)(agt)µ(T −1) ∣0⟩⟩
Fa

= fP ∗Qgt,

where f, g ∈ C2d . For short,

⟨a†a⟩µ(T−1)∣0⟩ = Γ = QtQ̄, ⟨aa⟩µ(T−1)∣0⟩ = Γ = QtP̄

then Sµ(T−1)∣0⟩

Sµ(T−1)∣0⟩ =

⎛
⎜
⎜
⎜
⎝

Γ Λ

Λ∗ idd − Γ̄

⎞
⎟
⎟
⎟
⎠

.

Finally we give the characterization of pure quasi-free states by the Clifford

action µ of Pin(V, q)
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Theorem 6.10. Let ω be a pure state on ⋀∗ (V, ⟨⋅, ⋅⟩V ). ω is quasi-free if and only

if there is T ∈ Pin(V, q), such that ω = ∣µ(T −1) ∣0⟩⟩ ⟨µ(T −1) ∣0⟩∣, where ∣0⟩ = 1 is the

vacuum of Fa.

Proof. The “if” part follows from the above discussion. If there is T ∈ Pin(V, q) and

ω = µ(T −1) ∣0⟩, then the generalized one-particle density matrix is ST = Ãd
∗

TSidÃdT

and it satisfies Condition (6.35).

To show the “only if” part, we need to construct a ÃdT from the generalized

one-particle density matrix

Sω =

⎛
⎜
⎜
⎜
⎝

Γ Λ

Λ∗ 1 − Γ̄

⎞
⎟
⎟
⎟
⎠

,

where Γ∗ = Γ, Λt = −Λ and S2
ω = Sω. Observe that

(Sω −
1

2
)

2

=
1

4
,

which implies eigenvalues of Sω − 1/2 are either 1/2 or −1/2. Since

Tr(Sω − 1/2) = Tr(Γ) +Tr(1 − Γ̄) − d = Tr(Γ) −Tr(Γt) = 0,

the multiplicity of 1/2 is the same as the multiplicity of −1/2. Let V1/2 and V−1/2

denote the eigenspace associated to 1/2 and −1/2 respectively. Suppose u is an

eigenvector for 1/2, then

(Sω −
1

2
)u = −(Sω −

1

2
) ū =

1

2
ū.
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It means that the complex conjugation is an isomorphism from V1/2 to V−1/2. There-

fore there is a unitary matrix U on VC such that U ∈ O(V, q) and

Sω = U

⎛
⎜
⎜
⎜
⎝

−1
2id 0

0 +1
2id

⎞
⎟
⎟
⎟
⎠

U∗ +
1

2
= U

⎛
⎜
⎜
⎜
⎝

0 0

0 id

⎞
⎟
⎟
⎟
⎠

U∗

where id is the d × d identity matrix. Choosing ÃdT̃ = U∗ and Ť ∈ Ãd
−1

(T̃ ), ω and

µ (Ť )Ω have the same generalized one-particle density matrix. Since both states

are quasi-free states, all correlation functions of them coincide. The collection of

correlation functions determines a state up to a phase. Therefore there is θ ∈ R such

that ω = eθiµ (Ť )Ω and T can be chosen as

T = exp
⎛

⎝
−

2θi

d
∑

1≤j,k≤d

(∂zj∂z̄k −
1

2
δjk)

⎞

⎠
Ť .

At this moment, we are able to show the stabilizer of Ω under the Pin(V, q)

action. Suppose T ∈ Pin(V, q) and µ(T −1)Ω = Ω, then Sµ(T−1)Ω = SΩ. With respect

to the basis {∂zj , ∂z̄j}
n
j=1,

ÃdT =

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

,

then QtQ̄ = 0 and P tP̄ = id. Thus ÃdT ∈ U(d) and the stabilizer of Ω is (6.28).

Example 6.11. Let d = 1, i.e. dimR(V ) = 2. {∂x, ∂y} is the canonical basis of (V, q)

and q = dx ⊗ dx + dy ⊗ dy. Then the canonical basis of Cl(V, q) is {1, ∂x, ∂y, ∂x∂y}
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and

∂2
x = 1, ∂2

y = 1, ∂x∂y = −∂y∂x.

The real algebra Cl(V, q) is isomorphic to the matrix algebra Mat(R,2) and the

isomorphism is given by

1←→

⎛
⎜
⎜
⎜
⎝

1 0

0 1

⎞
⎟
⎟
⎟
⎠

, ∂x ←→

⎛
⎜
⎜
⎜
⎝

1 0

0 −1

⎞
⎟
⎟
⎟
⎠

, ∂y ←→

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

.

In this case, Pin(V, q) is generated by {cos θ∂x + sin θ∂y ∣ θ ∈ [0,2π]} and

Spin(V, q) = {cos θ + sin θ∂x∂y ∣ θ ∈ [0,2π]} .

The multiplication law in Pin(V, q) is

(cos θ1∂x + sin θ1∂y) (cos θ2∂x + sin θ2∂y) = cos(θ2 − θ1) + sin(θ2 − θ1)∂x∂y.

The explicit expression for the skewed adjoint representation Ãd, for x, y ∈ R,

Ãdcos θ∂x+sin θ∂y(x∂x + y∂y) = −((x cos 2θ + y sin 2θ)∂x + (x sin 2θ − y cos 2θ)∂y) ,

Ãdcos θ+sin θ∂x∂y (x∂x + y∂y) = (x cos 2θ + y sin 2θ)∂x + (y cos 2θ − x sin 2θ)∂y.
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With respect to the basis {∂z, ∂z̄} of VC,

Ãd ∶ cos θ∂x + sin θ∂y = e
θi∂z + e

−θi∂z̄ ↦ −

⎛
⎜
⎜
⎜
⎝

0 e2θi

e−2θi 0

⎞
⎟
⎟
⎟
⎠

cos θ + sin θ∂x∂y = e
θi − 2i sin θ∂z∂z̄ ↦

⎛
⎜
⎜
⎜
⎝

e−2θi 0

0 e2θi

⎞
⎟
⎟
⎟
⎠

.

To compute the infinitesimal representation dÃd, notice that cos θ + sin θ∂x∂y

is generated by θ∂x∂y = iθ(1 − 2∂z∂z̄), i.e. exp(θ∂x∂y) = cos θ + sin θ∂x∂y. Then with

respect to the basis {∂z, ∂z̄} of VC,

dÃd ∶ iθ(1 − 2∂z∂z̄) =
1

2
(∂z ∂z̄)

⎛
⎜
⎜
⎜
⎝

−2θi 0

0 2θi

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

∂z

∂z̄

⎞
⎟
⎟
⎟
⎠

↦

⎛
⎜
⎜
⎜
⎝

−2θi 0

0 2θi

⎞
⎟
⎟
⎟
⎠

.

There are essentially two pure quasi-free states

(eθi∂z + e
−θi∂z̄)Ω = eθi∂z and (eθi − 2i sin θ∂z∂z̄)Ω = eθi.

Furthermore, to find all quasi-free states, consider all candidates

cos2(θ) ∣a + b∂z⟩ ⟨a + b∂z ∣ + sin2(θ) ∣c + d∂z⟩ ⟨c + d∂z ∣ ,

where ∣a∣2+∣b∣2 = 1, ∣c∣2+∣d∣2 = 1 and ac̄+bd̄ = 0. Testing the candidates for conditions
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(6.32)(6.33), we only need to consider ⟨a#
j1
⟩
ω
, which amounts to the equation

cos2 θab̄ + sin2 θcd̄ = 0.

The equation has only one family of solutions: a = d = 1, b = d = 0, θ ∈ [0, π/2]. To

show the uniqueness, based on conditions ∣a∣2 + ∣b∣2 = 1 and ∣c∣2 + ∣d∣2 = 1, a, b, c, d are

expressed as

a = cosϕ1e
θai, b = sinϕ1e

θbi, c = cosϕ2e
θci, d = sinϕ2e

θdi.

Using the condition ac̄ + bd̄ = 0, we obtain

cosϕ1 cosϕ2 + sinϕ1 sinϕ2e
(θc+θb−θa−θd)i = 0.

It leads to two cases

1. e(θc+θb−θa−θd)i = 1, ϕ1 − ϕ2 =
π
2 + kπ or e(θc+θb−θa−θd)i = −1, ϕ1 + ϕ2 =

π
2 + kπ.

2. e(θc+θb−θa−θd)i ≠ ±1, sinϕ1 sinϕ2 = 0 and cosϕ1 cosϕ2 = 0.

Case 2. is contained in the solutions with a = d = 1, b = d = 0. Combining Case 1.

with the equation cos2 θab̄ + sin2 θcd̄ = 0, we still obtain the solutions with a = d =

1, b = d = 0. Therefore all quasi-free states are

cos2 θ ∣1⟩ ⟨1∣ + sin2 θ ∣∂z⟩ ⟨∂z ∣ .
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6.2.2 Abstract Theory

Let H be a real Hilbert space endowed with inner product q and compatible

complex structure J , i.e. for u, v ∈ H

J2u = −u, q (Ju, Jv) = q(u, v).

Then H can be viewed as a complex Hilbert space with the following Hermitian

form

⟨u, v⟩H ∶= q(u, v) + i q (Ju, v) , for any u, v ∈ H. (6.36)

To distinguish which structure is used, we denote the space and its bilinear form

together, i.e. using (H, q) for the underlying real structure and using (H, ⟨⋅, ⋅⟩H) for

the complex structure.

Complexify H: HC = C⊗R H and extend q complex linearly: qC = id⊗ q. The

Clifford algebra Cl(HC, qC) is defined as

Cl(HC, qC) ∶= ⊕
n≥0

H⊗n

C /I ({u⊗ u − qC(u)∣u ∈ HC}) (6.37)

where qC(u) ∶= qC(u,u) and I ({u⊗ u − qC(u)∣u ∈ HC}) denotes the ideal generated

by elements in the form u⊗u−qC(u). The complex conjugation on HC is c⊗ u = c̄⊗u,

where c ∈ C and u ∈ (H, q), and it is extended linearly to Cl(HC, qC). The transpose

is defined as

(u1u2 . . . un)
t
∶= unun−1 . . . u2u1, (6.38)
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where uj ∈ HC. We also define a Hermitian form on HC, for u, v ∈ HC,

⟨u, v⟩HC ∶= 2qC(ū, v). (6.39)

Using the complex conjugation and the transpose, an ∗ structure on Cl(HC, qC) is

u∗ ∶= ūt (6.40)

where u ∈ Cl(HC, qC). Cl(HC, qC) can also be endowed with a maximum C∗-norm

∥ ⋅ ∥C∗ [SS64] and its C∗-completion is denoted by Cl(HC, qC).

Any element in HC can be decomposed as a sum of terms in the forms

u − iJu

2
,

u + iJu

2
, u ∈ (H, q). (6.41)

Each form yields an identification of (H, ⟨⋅, ⋅⟩H):

u − iJu

2
→ u

is complex linear and

u + iJu

2
→ u

is complex conjugate linear. Let H1,0
C denote the subspace spanned by u−iJu

2 and

H
0,1
C denote the subspace spanned by u+iJu

2 . Then

HC = H
1,0
C ⊕H

0,1
C and H

1,0
C = H

0,1
C
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where the bar means the complex conjugation over HC.

Definition 6.12. Let T be an operator on HC, the complex conjugation T̄ of T is

defined as

T̄ u ∶= T ū, u ∈ HC. (6.42)

T is real if T̄ = T .

If T̄ = T , for any u ∈ (H, q), Tu = T̄ ū = Tu, i.e. Tu is real and Tu ∈ (H, q). The

space (H, q) is an invariant subspace of T . Therefore T is of the form id⊗ T ∣(H,q).

In the abstract setting, all the constructions are defined as word-to-word trans-

lation of the finite-dimensional case except that we will take care of two different

topology: C∗ topology and the strong topology.

Cl(HC, qC) GL (Cl(HC, qC))
Ãd

µ

⋀
∗(H, ⟨⋅, ⋅⟩H)

where we abuse the notation and ⋀
∗(H, ⟨⋅, ⋅⟩H) means the norm completion of

⊕n≥0⋀
n(H, ⟨⋅, ⋅⟩H). ⋀∗(H, ⟨⋅, ⋅⟩H) is the Fock space Fa defined in Section 6.1. The

representation µ is first defined on the two subspaces H1,0
C and H0,1

C

µ ∶
u − iJu

2
↦ a†(u),

u + iJu

2
↦ a(u), u ∈ (H, q), (6.43)

where a†(u) and a(u) denote creation and annihilation operators, and it is extended

to Cl(HC, qC) using the universal property of Clifford algebras. Pin(H, q) is a group
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generated by

{u ∈ (H, q)∣q(u) = 1},

and its C∗-completion is denoted by Pin(H, q).

Proposition 6.13. µ defines a Cl(HC, qC)-module structure on ⋀∗(H, ⟨⋅, ⋅⟩H) and

it satisfies

1. µ(u)∗ = µ(u∗), u ∈ Cl(HC, qC).

2. µ ∶ Pin(H, q) → U(⋀
∗(H, ⟨⋅, ⋅⟩H)).

where U(⋀
∗(H, ⟨⋅, ⋅⟩H)) denotes the unitary group of ⋀∗(H, ⟨⋅, ⋅⟩H).

Proof. To extend the definition of µ, since HC is a direct sum of H1,0
C and H0,1

C , if µ

is complex linear on the two subspaces, then it can be extended to a complex linear

map on HC. Furthermore, if µ satisfies

µ(u)µ(v) + µ(v)µ(u) = 2qC(u, v), u, v ∈ HC, (6.44)

by the universality of Clifford algebra, µ extends to Cl(HC, qC). Thus ⋀∗(H, ⟨⋅, ⋅⟩H)

is a Cl(HC, qC)-module.

To verify µ is complex linear on the two subspaces, it suffices to check for
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u ∈ (H, q) and Ψ ∈ ⋀
∗(H, ⟨⋅, ⋅⟩H),

µ(i(
u − iJu

2
))Ψ

=µ(
Ju − iJJu

2
)Ψ = (Ju) ∧Ψ = iuΨ

=iµ(
u − iJu

2
)Ψ,

and suppose Ψ = ψ1 ∧⋯ ∧ ψn for ψ ∈ (H, ⟨⋅, ⋅⟩H),

µ(i(
u + iJu

2
))Ψ

=µ(
−Ju + iJ(−Ju)

2
)Ψ

=
n

∑
j=1

(−1)j+1⟨−Ju,ψj⟩ψ1 ∧⋯ ∧ ψ̂j ∧⋯ ∧ ψn

=i
n

∑
j=1

(−1)j+1⟨u,ψj⟩ψ1 ∧⋯ ∧ ψ̂j ∧⋯ ∧ ψn

=iµ(
u + iJu

2
)Ψ.

To show that µ satisfies identity (6.44) for HC, we check all combinations of elements

from H1,0
C and H0,1

C . For example, for u, v ∈ (H, q),

µ(
u − iJu

2
)µ(

v + iJv

2
) + µ(

v + iJv

2
)µ(

u − iJu

2
) = ⟨v, u⟩H

and

qC (
u − iJu

2
,
v + iJv

2
) =

1

2
(q(v, u) + iq(Jv, u)) =

1

2
⟨v, u⟩H.
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Other cases are computed similarly.

To show Property (1), it suffices to consider u ∈ (HC, qC), since Cl(HC, qC) is

generated by (HC, qC) and µ defines a Clifford module action. It further reduces to,

for u ∈ (H, q)

µ∗ (
u − iJu

2
) = (a†(u))

∗
= a(u) = µ(

u + iJu

2
) .

To show Property (2), it suffices to consider generators u ∈ (H, q) such that

q(u) = 1. For any v ∈ (H, ⟨⋅, ⋅⟩H),

⟨µ(u)v, µ(u)v⟩
H
= ⟨µ∗(u)µ(u)v, v⟩

H
= ⟨µ(ū)µ(u)v, v⟩

H
= ⟨µ(u2)v, v⟩

H
= ⟨v, v⟩

H
.

Proposition 6.14. The image of Ãd ∶ Pin(H, q) → U (HC, ⟨⋅, ⋅⟩HC) contains the

subset

{id + T ∣T ∈ L1(HC, ⟨⋅, ⋅⟩HC) and T̄ = T } ,

where id is the identity map on (HC, ⟨⋅, ⋅⟩HC).

Proof. Given an operator id + T ∈ U(HC, ⟨⋅, ⋅⟩HC), where T ∈ L1(HC, ⟨⋅, ⋅⟩HC), we will

approximate it by Ãd(hn) where hn ∈ Pin(H, q), such that as n→∞, hn → h and

Ãd(hn)
L1(HC,⟨⋅,⋅⟩HC)

ÐÐÐÐÐÐÐ→ id + T.

The idea is to construct finite-rank truncation id + Tn of id + T , and then realize

id + Tn through Ãd by some hn ∈ Pin(H, q).
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Since id+T ∈ U(HC, ⟨⋅, ⋅⟩HC) and T is compact, T is normal and diagonalizable.

Denote eigenvalues of T by λj, j ∈ N. They satisfy ∣1 + λj ∣ = 1. Without loss of

generality, assume that

∣λ0∣ ≥ ∣λ1∣ ≥ ∣λ2∣ ≥ . . . , and λ0 = −2.

Because T is real, a complex value and its complex conjugate appear as a pair as

eigenvalues of T . We further suppose λ2j = λ̄2j−1 for j > 0, mj is the multiplicity of

λ2j and

λ2j = e
−2θji − 1 λ2j−1 = e

2θji − 1.

The eigenvectors associated to λ2j and λ̄2j−1 may not belong to H1,0
C and H0,1

C re-

spectively. This statement is true for all j > 0 if and only if T commutes with the

complex structure on J on H. Let VnC denote the complex subspace of HC spanned

by eigenvectors corresponding to λ0, λ1, . . . , λ2n. VnC is invariant under complex

conjugation. Then the finite-rank truncation id + Tn is defined as

id + Tn ∶= id + T ∣VnC .

Next we show

1. id + Tn ∈ U(HC, ⟨⋅, ⋅⟩HC) and Tn is real;

2. id + Tn is realized by hn.

Let u ∈ (HC, ⟨⋅, ⋅⟩HC) and it is decomposed as u = v + v⊥, where v ∈ VnC, v⊥ ∈ V ⊥nC and

178



V ⊥nC denotes the orthogonal complement of VnC. Then

⟨(id + Tn)u, (id + Tn)u⟩HC

= ⟨(id + Tn)v, (id + Tn)v⟩HC
+ ⟨(id + Tn)v

⊥, (id + Tn)v
⊥⟩
HC

+ ⟨(id + Tn)v, (id + Tn)v
⊥⟩
HC

+ ⟨(id + Tn)v
⊥, (id + Tn)v⟩HC

= ⟨(id + T )v, (id + T )v⟩
HC

+ ⟨v⊥, v⊥⟩
HC

+ ⟨(id + T )v, v⊥⟩
HC

+ ⟨v⊥, (id + T )v⟩
HC

= ⟨v, v⟩
HC

+ ⟨v⊥, v⊥⟩
HC
.

That Tn is real follows from the observation that VnC is invariant under complex

conjugation. Let Vn = VnC ∩ (H, q). (Vn, q) is finite-dimensional real Hilbert space.

Since Tn is real and recall the definition of ⟨⋅, ⋅⟩HC , Vn is invariant under Tn and

id + Tn∣Vn ∈ O(Vn, q). By Theorem 6.3, Ãd ∶ Pin(Vn, q) → O(Vn, q) is a double

covering. Then there is hn ∈ Pin(Vn, q) ⊂ Cl(Vn, q) such that

id + Tn∣VnC = Ãd(hn).

id + Tn and Ãd(hn) also coincide on (HC, ⟨⋅, ⋅⟩HC), because Ãd(hn) is an identity map

on V ⊥nC. However in order to show the convergence of hn, we will construct hn

inductively and explicitly. The construction of h0 is not important and we use the

covering map to find a candidate. Suppose hn−1 is constructed and consider a pair
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of eigenvalues λ2n and λ2n−1, and corresponding orthonormal eigenvector pair

(un1 , ūn1), . . . , (unmn , ūnmn)

and denote

xnl =
unl + ūnl

2
, ynl = i

unl − ūnl
2

where l = n1, . . . , nmn . Based on the computation of Example 6.11, T ∣(unl ,ūnl) corre-

sponds to

cos θn + sin θnxnlynl

and its infinitesimal generator is θnxnlynl . Since xnlynl commutes with each other,

hn = hn−1 exp(

nmn

∑
l=n1

θnxlyl) = h0 exp
⎛

⎝

n

∑
j=1

jmj

∑
l=j1

θjxlyl
⎞

⎠

The C∗-norm of cos θn + sin θnxnlynl − id is

∥cos θn + sin θnxnlynl − id∥C∗ = ∣sin(
θn
2
)∣

Therefore hn converges if
n

∑
j=1

mj ∣sin(
θj
2
)∣

has a limit. Note that the trace norm of T is

∥T ∥L1(HC) = 2m0 + 2
∞

∑
j=1

mj ∣λ2j ∣ = 2m0 + 4
∞

∑
j=1

mj ∣ sin(θj)∣
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Therefore hn converges and the sequence of infinitesimal generators also converges.

Due to the construction of Ãd(hn), Ãd(hn) − id converges to T in L1(HC, ⟨⋅, ⋅⟩HC).

The inverse of Proposition 6.14 is also true, see [SS65, Corollary] [Ara71, The-

orem 5.]1. The images are called inner Bogoliubov transforms. If we consider the

strong topology limits of the finite approximations in Proposition 6.14 under the

representation µ, they correspond to elements T in U (HC, ⟨⋅, ⋅⟩HC) such that T̄ = T ,

P
H

1,0
C
TP

H
0,1
C

is Hilbert-Schmidt, (6.45)

where P
H

1,0
C

and P
H

0,1
C

are projections onto H1,0
C and H0,1

C respectively. The condition

is called the Shale-Stinespring condition [SS65, Theorem] and the elements T are

called unitary implementable Bogoliubov transformations. Specifically in terms of

Cl(HC, qC) and ⋀∗(H, ⟨⋅, ⋅⟩H), since T is in U (HC, ⟨⋅, ⋅⟩HC) and it is real, it can lift to

an automorphism over Cl(HC, qC). The existence of a unitary implementation, i.e.

a unitary realization π(T ) ∈ U (⋀
∗(H, ⟨⋅, ⋅⟩H)) which satisfies the adjoint relation

π(T )µ(u)π∗(T ) = µ (T (u)) ,

where u ∈ Cl(HC, qC), is equivalent to Condition (6.45) [Ara71, Theorem 7]. Any

unitary map U on H1,0
C is extended to U + Ū on HC. The extension has an invariant

subspace (H, q) and is unitary implementable. In a word, the space of unitary

1Note that in this section we use the skewed adjoint representation Ãd, then the image of
Pin(H, q) does not contain the case −id + T . If we use the usual adjoint representation, −id + T
will be included
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implementable Bogoliubov transformations contains the unitary group U(H
1,0
C ). Let

T be a real unitary map in U (HC, ⟨⋅, ⋅⟩HC). Loosely speaking, it is in the form

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

and the form is based on the splitting HC = H
1,0
C ⊕H

0,1
C . After we modulo U (HC),

P = ∣P ∣ is self-adjoint and positive. In this case, T is unitary implementable if and

only if T − id is Hilbert-Schmidt and the construction in Proposition 6.14 yields an

approximation to T .

Quasi-free states ω are related to their generalized one-particle density matri-

ces, which are defined linear operators Sω on (HC, ⟨⋅, ⋅⟩HC) such that

⟨v,Sωu⟩HC = TrFa (µ(u)µ∗(v)ω) , (6.46)

where u, v ∈ (HC, ⟨⋅, ⋅⟩HC). There is an implementable Bogoliubov transform T such

that ω = π(T )Ω if and only if the generalized one-particle density matrix satisfies

[Sol14, Theorem 10.4]

S∗ω = Sω, S2
ω = Sω, P

H
1,0
C
SωPH1,0

C
∈ L1.

where P
H

1,0
C

is the projection on H1,0
C .

Let explore the relation in special cases. If ω = µ(T −1) ∣0⟩ for T ∈ Pin(H, q),
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then

⟨v,Sµ(T−1)∣0⟩u⟩HC

= ⟨∣0⟩ , µ (ÃdT (u))µ (ÃdT (v̄)) ∣0⟩⟩Fa

= ⟨ÃdT (v), SidÃdT (u)⟩HC

and Sµ(T−1)∣0⟩ = Ãd
∗

TSidÃdT , where Sid is the projection on H0,1
C . Note that S̄id is the

projection onto H1,0
C . Therefore Sµ(T−1)∣0⟩ satisfies identities

S∗µ(T−1)∣0⟩ = Sµ(T−1)∣0⟩, S2
µ(T−1)∣0⟩ = Sµ(T−1)∣0⟩ and Sµ(T−1)∣0⟩ + S̄µ(T−1)∣0⟩ = id.

Conversely, we have

Lemma 6.15. Let L be a bounded operator on HC and it satisfies

L∗ = L, L2 = L and L + L̄ = id, (6.47)

then there is a real unitary operator U ∈ U(HC, ⟨⋅, ⋅⟩HC) such that L = U∗SidU .

Proof. Consider L − id/2,

(L −
id

2
)

2

=
id

4
,

and the polar decomposition of L − id/2,

L −
id

2
= UL

id

2
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where UL ∈ U(HC, ⟨⋅, ⋅⟩HC). For any u ∈ HC, we have the decomposition

u =
u +ULu

2
+
u −ULu

2
.

By direction computation,

(L −
id

2
) (u +ULu) =

1

2
(u +ULu) ,

(L −
id

2
) (u −ULu) = −

1

2
(u −ULu) .

It means that HC can be decomposed as a sum of two eigenspaces V1/2 and V−1/2 of

L−id/2. Since L+L̄ = id, the two eigenspaces are related by the complex conjugation,

i.e. V̄1/2 = V−1/2. This decomposition is similar to H1,0
C and H0,1

C .

Next we extend a unitary map U from

HC = V−1/2 ⊕ V1/2 to HC = H
1,0
C ⊕H

0,1
C

as follows: construct a unitary map U1 from V−1/2 to H1,0
C , then extend it to V1/2

using the complex conjugation, i.e.

U2u ∶= U1ū, u ∈ V1/2.

U is the sum of U1 and U2. Due to the construction of U , U is real and

L −
id

2
= U∗

⎛

⎝
−
id∣
H

1,0
C

2
+
id∣
H

0,1
C

2

⎞

⎠
U.
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Slater determinants are states in ⋀n(H, ⟨⋅, ⋅⟩H) in the form

u1 ∧ u2 ∧ . . . ∧ un,

where uj are orthonormal ∥uj∥H = q(uj) = 1. In physics, they are state functions of

n Fermions.

Corollary 6.16. Slater determinants are pure quasi-free states.

Proof. Consider the state u1∧u2∧ . . .∧un, where uj are orthonormal ∥uj∥H = q(uj) =

1. Then u1⋯un ∈ Pin(H, q). Recall the decomposition of uj in HC,

uj =
uj − iJuj

2
+
uj + iJuj

2
,

and µ(uj) = a†(uj)+a(uj). Therefore u1∧u2∧ . . .∧un = µ(u1)µ(u2) . . . µ(un) ∣0⟩ and

it is a pure quasi-free state.

We show an approximation result on the skewed adjoint representation, which

is used in Section 6.2.3.

Lemma 6.17. Consider Ãd(u1u2...un) and Ãd(ũ1ũ2...ũn) with uj, ũj ∈ (H, q) and ∥uj∥H =

∥ũj∥H = 1 for 1 ≤ j ≤ n, then

∥Ãd(u1u2...un) − Ãd(ũ1ũ2...ũn)∥L1 ≤ 4
n

∑
j=1

∥uj − ũj∥H.
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Proof. Consider the basic case n = 1,

(Ãd(u) − Ãd(ũ)) (v) = −2qC(v, u)u + 2qC(v, ũ)ũ, v ∈ (HC, ⟨⋅, ⋅⟩HC),

and

∥Ãd(u) − Ãd(ũ)∥L1

≤∥(h↦ 2qC(h,u)(u − ũ))∥tr + ∥(h↦ 2qC(h,u − ũ))ũ∥tr

=4∥u − ũ∥

To prove the general case, use the observation for h1, h2 ∈ Cl×(HC, qC),

∥Ãd(h1uh2) − Ãd(h1ũh2)∥L1

=∥Ãd(h1) (Ãd(u) − Ãd(ũ)) Ãd(h2)∥L1

≤∥Ãd(h1)∥op
∥Ãd(u) − Ãd(ũ)∥L1 ∥Ãd(h2)∥op .

6.2.3 Infinite Dimensional Case

In this section, we consider a special case when H = L2(Rd,C) and study

smooth approximation of pure quasi-free states.

The real structure of H can be viewed as L2(Rd,R2), i.e. elements are written
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in the form
⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

, f, g ∈ L2(Rd,R). Then the quadratic form q is

q

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

f1

g1

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

f2

g2

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

∶= ∫
Rd
dx (f1(x)f2(x) + g1(x)g2(x)) ,

where fj, gj ∈ L2(Rn,R), j = 1,2, and the complex structure J is

J

⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

−g

f

⎞
⎟
⎟
⎟
⎠

,

where f, g ∈ L2(Rd,R). The Hermitian form ⟨⋅, ⋅⟩H is

⟨f, g⟩H = ∫
Rd
dx f̄(x)g(x)

where f, g ∈ L2((Rd,C)). (HC, ⟨⋅, ⋅⟩HC) is identified with H ×H in the way: H1,0
C is

identified with (H, J), i.e. H with complex structure J ,

u − iJu

2
↦ u ∈ (H, J) ∼ f + ig

and H0,1
C is identified with (H,−J), i.e. H with complex structure −J

u + iJu

2
↦ u ∈ (H,−J) ∼ f − ig,
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where u =

⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

, f, g ∈ L2(Rd,R). This identification is complex linear. Under

the identification the complex conjugation on HC corresponds to J on L2(Rd,C) ×

L2(Rd,C),

J

⎛
⎜
⎜
⎜
⎝

F

G

⎞
⎟
⎟
⎟
⎠

∶=

⎛
⎜
⎜
⎜
⎝

Ḡ

F̄

⎞
⎟
⎟
⎟
⎠

, (6.48)

where F,G ∈ L2(Rd,C). qC on L2(Rd,C) ×L2(Rd,C) assumes the form

qC

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

F1

G1

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

F2

G2

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

=
1

2 ∫Rd
dxF1(x)G2(x) +G1(x)F2(x), (6.49)

where Fj,Gj ∈ L2(Rd,C), j = 1,2, and the Hermitian form on L2(Rd,C) ×L2(Rd,C)

is

⟨

⎛
⎜
⎜
⎜
⎝

F1

G1

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

F2

G2

⎞
⎟
⎟
⎟
⎠

⟩

H×H

= ∫
Rd
dxF̄1(x)F2(x) + Ḡ1(x)G2(x). (6.50)

The action µ is

µ

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

F

G

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

= ∫
Rd
dx (F (x)a†

x +G(x)ax) . (6.51)

(H, q) corresponds to elements in the form
⎛
⎜
⎜
⎜
⎝

F

F̄

⎞
⎟
⎟
⎟
⎠

, F ∈ L2(Rd,C), which form an

invariant subspace of L2(Rd,C) × L2(Rd,C) under J . Besides q
⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

F

F̄

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

= 1 is then

equivalent to ∥F ∥L2(Rd) = 1.

Example 6.18. We compute integral kernels explicitly in two basic cases
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1. Ãd(u), where u =
⎛
⎜
⎜
⎜
⎝

F

F̄

⎞
⎟
⎟
⎟
⎠

, F ∈ L2(Rd,C) and ∥F ∥L2(Rd) = 1 .

2. dÃd(u1u2−qC(u1,u2)), where uj =
⎛
⎜
⎜
⎜
⎝

Fj

F̄j

⎞
⎟
⎟
⎟
⎠

, Fj ∈ L2(Rd,C) and ∥Fj∥L2(Rd) = 1, j = 1,2.

Let h =
⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

∈ L2(Rd,C) ×L2(Rd,C). For case 1.

Ãd(u)(h)

=h − 2qC(u,h)u

=

⎛
⎜
⎜
⎜
⎝

f

g

⎞
⎟
⎟
⎟
⎠

− (∫
Rn
dy f(y)F̄ (y) + F (y)g(y))

⎛
⎜
⎜
⎜
⎝

F

F̄

⎞
⎟
⎟
⎟
⎠

,

then its integral kernel KÃd(u)
is

KÃd(u)
(x, y) =

⎛
⎜
⎜
⎜
⎝

δ(x − y) 0

0 δ(x − y)

⎞
⎟
⎟
⎟
⎠

−

⎛
⎜
⎜
⎜
⎝

F (x)F̄ (y) F (x)F (y)

F̄ (x)F̄ (y) F̄ (x)F (y)

⎞
⎟
⎟
⎟
⎠

.

For case 2.

dÃd(u1u2−qC(u1,u2))(u)

=2qC(u2, u)u1 − 2qC(u1, u)u2

=(∫
Rn
dy f(y)F̄2(y) + g(y)F2(y))

⎛
⎜
⎜
⎜
⎝

F1

F̄1

⎞
⎟
⎟
⎟
⎠

− (∫
Rn
dy f(y)F̄1(y) + g(y)F1(y))

⎛
⎜
⎜
⎜
⎝

F2

F̄2

⎞
⎟
⎟
⎟
⎠

,
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then its integral kernel KdÃd(u1u2−qC(u1,u2))
is

KdÃd(u1u2−qC(u1,u2))
(x, y) =

⎛
⎜
⎜
⎜
⎝

F1(x)F̄2(y) − F2(x)F̄1(y) F1(x)F2(y) − F2(x)F1(y)

F̄1(x)F̄2(y) − F̄2(x)F̄1(y) F̄1(x)F2(y) − F̄2(x)F1(y)

⎞
⎟
⎟
⎟
⎠

.

Meanwhile the infinitesimal representation dµ

µ (u1u2 − qC(u1, u2))

=∫ dxdy (a†
x ax)

⎛
⎜
⎜
⎜
⎝

F1(x)F̄2(y) F1(x)F2(y)

F̄1(x)F̄2(y) F̄1(x)F2(y)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a†
y

ay

⎞
⎟
⎟
⎟
⎠

−
1

2 ∫Rn
dy F1(y)F̄2(y) + F̄1(y)F2(y)

=
1

2 ∫
dxdy (a†

x ax)KdÃd(u1u2−qC(u1,u2))
(x, y)

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a†
y

ay

⎞
⎟
⎟
⎟
⎠

.

Let T be an operator on L2(Rd,C)×L2(Rd,C). If T commutes with the action

J , i.e. TJ = J T , it is in the form

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

, P,Q ∈ B (L2(Rd,C) ×L2(Rd,C)) ,

where P̄ u ∶= Pū, u ∈ L2(Rd,C). If P has an integral kernel, P̄ means taking the

complex conjugation of its integral kernel. Formally, the infinitesimal representation
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dµ

dµ ∶spin (H, q) → u (Fa)

⎛
⎜
⎜
⎜
⎝

P (x, y) Q(x, y)

Q̄(x, y) P̄ (x, y)

⎞
⎟
⎟
⎟
⎠

↦
1

2 ∫
dxdy (a†

x ax)

⎛
⎜
⎜
⎜
⎝

P (x, y) Q(x, y)

Q̄(x, y) P̄ (x, y)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

0 1

1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a†
y

ay

⎞
⎟
⎟
⎟
⎠

where P̄ (y, x) = −P (x, y) and Q(y, x) = −Q(x, y).

In the end, we study the smooth approximation of pure quasi-free states.

Lemma 6.19. Consider Ãd(u1u2...un) and Ãd(ũ1ũ2...ũn) with uj =
⎛
⎜
⎜
⎜
⎝

fj

f̄j

⎞
⎟
⎟
⎟
⎠

, ũj =

⎛
⎜
⎜
⎜
⎝

f̃j

¯̃fj

⎞
⎟
⎟
⎟
⎠

and

∥fj∥L2(Rd) = ∥f̃j∥L2(Rd) = 1 for 1 ≤ j ≤ n, then

∥(Ãd(u1u2...un) − Ãd(ũ1ũ2...ũn)) ⟨∇⟩∥
L1(L2(Rd,C)×L2(Rd,C))

≤ C
n

∑
j=1

∥fj − f̃j∥H1(Rd) ,

where C is a constant depending on n, ∥fj∥H1(Rd) and the differential operator ⟨∇⟩

acts on L2(Rd,C) ×L2(Rd,C) diagonally.

Proof. Consider the simplest case, n = 1,

∥(Ãd(u1) − Ãd(ũ1)) ⟨∇⟩∥
L1

≤∥(h↦ 2qC(u1 − ũ1, h)ũ1) ⟨∇⟩∥
L1

+ ∥(h↦ 2qC(u1, h)(u1 − ũ1)) ⟨∇⟩∥
L1

=2 ∥f1 − f̃1∥H1(Rd) + 2∥f1∥H1(Rd) ∥f1 − f̃1∥L2(Rd)
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In order to show the general case, note that for h1, h2 ∈ Pin(H, q),

∥(Ãd(h1u1h2) − Ãd(h1ũ1h2)) ⟨∇⟩∥
L1

≤∥Ãd(h1)∥op
∥(Ãd(u1) − Ãd(ũ1)) ⟨∇⟩∥

L1

+ ∥Ãd(h1)∥op
∥Ãd(u1) − Ãd(ũ1)∥L1 ∥(Ãd(h2) − id) ⟨∇⟩∥

op

≤∥Ãd(h1)∥op (2 ∥f1 − f̃1∥H1(Rd) + 2∥f1∥H1 ∥f1 − f̃1∥L2(Rd))

+ 4 ∥Ãd(h1)∥op
∥f1 − f̃1∥L2(Rd) ∥(Ãd(h2) − id) ⟨∇⟩∥

op
(Lemma 6.17).

Then

∥(Ãd(u1u2...un) − Ãd(ũ1ũ2...ũn)) ⟨∇⟩∥
L1

≤
n

∑
j=1

∥(Ãd(ũ1...ũj−1uj ...un) − Ãd(ũ1...ũjuj+1...un)) ⟨∇⟩∥
L1

≤C
n

∑
j=1

∥fj − f̃j∥H1(Rd) ,

where C is a constant depending on n and ∥fj∥H1(Rd).

Proposition 6.20. Let T be a unitary implementable Bogoliubov transform on

L2(Rd,C) × L2(Rd,C) such that T − id is a Hilbert-Schmidt operator, there is a

sequence of smooth operators T̃n ∈ Pin(H, q), such that the integral kernels of

ÃdT̃n −

⎛
⎜
⎜
⎜
⎝

idL2(Rd,C) 0

0 idL2(Rd,C)

⎞
⎟
⎟
⎟
⎠
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are smooth compactly supported functions and

∥(T − ÃdT̃n) ⟨∇⟩∥
L2(L2(Rd,C)×L2(Rd,C))

→ 0.

where the differential operator ⟨∇⟩ acts on L2(Rd,C) ×L2(Rd,C) diagonally.

Proof. Apply the finite-rank approximation in Proposition 6.14 to ÃdT and denote

the approximation operator by ÃdTn , where Tn = u1u2 . . . um and uj ∈ (H, q). Use

the definition of the Hilbert-Schmidt norm,

∥(T − ÃdTn) ⟨∇⟩∥
2

L2(L2(Rd,C)×L2(Rd,C))

=Tr ((T − ÃdTn) ⟨∇⟩2 (T − ÃdTn)
∗
)

=TrVnC ((T − ÃdTn) ⟨∇⟩2 (T − ÃdTn)
∗
)

+TrV ⊥nC ((T − ÃdTn) ⟨∇⟩2 (T − ÃdTn)
∗
)

=TrV ⊥
nC

((T − id)⟨∇⟩2(T − id)∗) ,

where TrV ⊥
nC

((T − id)⟨∇⟩2(T − id)∗) approaches zero, as n→∞.

Next we modify the finite-rank approximation ÃdTn . Approximate uj by com-

pactly supported smooth functions ũj ∈ (H, q) with respect to H1 (Rd,C). The

resulting operator

ÃdT̃n − idL2(Rd,C)×L2(Rd,C)

has a compactly supported smooth kernel, where T̃n = ũ1ũ2 . . . ũm, and by Lemma
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6.19,

∥(ÃdT̃n − ÃdTn) ⟨∇⟩∥
L2(L2(Rd,C)×L2(Rd,C))

→ 0.

Let ω = ∣µ (T −1) ∣0⟩⟩ ⟨µ (T −1) ∣0⟩∣ be a quasi-free state and its generalized one-

particle density matrix is

Sω =

⎛
⎜
⎜
⎜
⎝

Γ Λ

Λ∗ 1 − Γ̄

⎞
⎟
⎟
⎟
⎠

Now we fix the generalized one-particle density matrix. Without loss of generality,

ÃdT =

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

,

where P is semi-positive, i.e. P = ∣P ∣. If P is not equal to ∣P ∣, consider its polar

decomposition P = U ∣P ∣

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

U−1 0

0 Ū−1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

∗

Sid

⎛
⎜
⎜
⎜
⎝

U−1 0

0 Ū−1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

∗

Sid

⎛
⎜
⎜
⎜
⎝

P Q

Q̄ P̄

⎞
⎟
⎟
⎟
⎠

i.e.
⎛
⎜
⎜
⎜
⎝

∣P ∣ U−1Q

Ū−1Q̄ ¯∣P ∣

⎞
⎟
⎟
⎟
⎠

has the same generalized one-particle density matrix and it

responds to the same quasi-free state up to a phase. Recall Sω = Ãd
∗

TSidÃdT ,
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Γ = Q̄∗Q̄ and Λ = Q̄∗P̄ , where Sid is the identity on H0,1
C . Suppose the generalized

one-particle density matrix satisfies

Γ ∈ L1,1 (L2(Rd,C)) and Λ ∈H1 (Rd ×Rd,C) .

The conditions pass to Q and P

⟨∇⟩Q̄∗Q̄⟨∇⟩ ∈ L1 (L2(Rd,C) and Q̄∗P̄ ∈H1 (Rd ×Rd,C) .

Then Q⟨∇⟩ ∈ L2 (L2(R3,C)) and (P − id)⟨∇⟩ ∈ L1 (L2(R3,C)), since

id − P ∗P = Q̄∗Q̄ Ô⇒ (P − id)⟨∇⟩ = −(P + id)−1Q̄∗Q̄⟨∇⟩.

Therefore

(ÃdT − idL2(Rd,C)×L2(Rd,C)) ⟨∇⟩ =

⎛
⎜
⎜
⎜
⎝

P − id Q

Q̄ P̄ − id

⎞
⎟
⎟
⎟
⎠

⟨∇⟩ ∈ L2(L2(Rd,C) ×L2(Rd,C)).

Use Proposition 6.20, ÃdT̃n converges to ÃdT and Sµ(T̃−1
n )∣0⟩ converges to Sω in the

sense that, the convergence of the first entry is in the trace norm and the convergence

of the second entry is in the Hilbert-Schmidt norm.
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