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Since the adoption of the Resource Description Framework (RDF) by the

World Wide Web Consortium (W3C), ontologies have become commonplace as a

way to represent both knowledge and data. RDF databases have flexible schemas,

are easy to integrate and allow a semantically rich query language. Unfortunately,

these advantages come at the expense of increased query and application complexity.

Existing RDF systems have attempted to address this problem by representing RDF

data in relational format and translating queries and answers to and from SQL. As

we will show, typical access patterns in RDF are substantially different than those in

relational databases, to the extent that the performance of relational-backed systems

degrades significantly for large datasets or complex queries.

In this dissertation, we propose two solutions to the scalability issue in RDF

databases. First, we introduce Annotated RDF, a representation language that

extends the semantics of RDF by allowing triples to be annotated with partially

ordered information such as temporal validity intervals, probabilities, provenance



and many others. In standard RDF, using such information creates a blowup in the

size of the database and therefore greatly increases the data complexity of queries.

We define a query language for Annotated RDF that extends the RDF query lan-

guage SPARQL and provides query processing and view maintenance algorithms.

Our experimental evaluation shows Annotated RDF can answer queries 1.5 to 3.5

times faster than widely used systems such as Jena2, Sesame2 or Oracle 11g.

Second, we introduce GRIN, to our knowledge the first index structure de-

signed specifically for SPARQL queries. We describe query and update processing

algorithms and a theoretical analysis of index optimization. GRIN is extended to

Annotated RDF and evaluated thoroughly on real-world datasets of up to 26 mil-

lion triples and benchmark synthetic datasets of up to 1 billion triples. Our results

show that for SPARQL queries, GRIN outperforms all relational index structures

at comparable resource expenditure. Moreover, we show GRIN can be integrated

with Annotated RDF, but also with existing systems such as Jena2 or LucidDB.
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Chapter 1

Introduction

1.1 The need for scalable ontology systems

Initially thought of as a language for describing metadata about web pages,

the use of the Resource Description Framework (RDF) has expanded significantly

since its adoption as a standard by the World Wide Web Committee (W3C). RDF

databases are now used in a wide variety of domains ranging from Life Sciences to

personal information management systems. The fast spread of RDF can be traced

to its many attractive features. First, RDF databases have very flexible schemas

that require little maintenance; practically any new item of information can be

added without fear of inconsistencies. Second, the core of the data model is a very

simple construct, the triple. A triple is of the form (subject, property, value). For

instance, the triple (CollegePark, locatedIn, Maryland) states that the real-world

entity labeled College Park is located in Maryland, whereas the triple (Maryland,

hasPopulation, 5615727) states that the population of the state of Maryland is

approximately 5.6 million. Third, RDF databases have a natural graphical repre-

sentation which makes the data model user-friendly. Each triple corresponds to an

edge between the subject and the value of the triple that is labeled with the prop-

erty. Note that the two triples we have shown are “linked” by the common entity,

Maryland. Fourth, RDF supports a very rich query language in which queries are
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provided by the user as graphs where variables can label the nodes and/or edges.

The query graph is then matched against subgraphs of the database to located val-

ues for the query variables. The most popular RDF query language to date is called

SPARQL (Simple Protocol and RDF Query Language).

The exciting features of RDF come at the cost of query and application com-

plexity. The combined complexity1 of answering SPARQL queries has been proved

to be PSPACE-complete [45] and the best subgraph matching algorithms [9] used

to answer such queries have a worst-time complexity of O(N !), where N is the size

of the database. Fortunately, many RDF database systems [25, 49, 63] were de-

veloped to alleviate some of the complexity issues. More recently, RDF databases

have gained commercial support in the Oracle 10g and 11g database servers. The

vast majority of systems2 were designed to take advantage of decades of advances

in relational data storage, indexing and query optimization. The typical approach

stores RDF triples in a relational database, using relational indexing to speed up

queries and translating SPARQL queries to SQL and the resulting relational tu-

ples back to RDF. This type of translation results in a large number of relational

joins to the detriment of scalability. We performed a small comparative analysis

of the scalability of SPARQL and SQL queries for various data sizes and queries

of 15% selectivity3. We used datasets between 10 and 100 million triples for RDF

generated with the Lehigh University Benchmark [20] and from 10 to 100 million

1A complexity measure for databases in which both the data and the query are considered part
of the input.

2We are only aware of one exception, Mulgara www.mulgara.org
3The selectivity of a query is the percentage of data entities – tuples or triples – that are

returned.
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relational records generated according to the TPC-C benchmark [55]. We execute

queries serially and measured the number of successfully executed queries in a 5

minute interval. In a first execution, we used Sesame2 [7] backed by a PostgreSQL

representation for the RDF data and the PostgreSQL 8.0 DBMS for the relational

data. In the second execution we used Oracle 11g for both RDF and relational data;

no indexes were defined. The results are shown in Table 1.1. We notice two critical

aspects:

1. The performance for RDF queries is much lower than that for relational

queries, even at identical selectivities.

2. The performance for RDF queries degrades quickly for large datasets (from

82 queries in 5 minutes for a 10 million records dataset to 15 queries for a 100

million records dataset for Oracle 11g), while it is relatively flat for relational

databases (from 356 queries in five minutes for a 10 million records dataset to

276 queries for a 100 million records dataset).

Table 1.1: Scalability comparison for SPARQL and SQL

Dataset size [millions] 10 30 50 70 90 100

Sesame2/PostgreSQL 8.0 [queries/5 mins] 49 40 31 22 16 8

PostgreSQL 8.0 [queries/5 mins] 134 121 117 106 96 93

Oracle 11g/RDF [queries/5 mins] 82 74 59 41 28 15

Oracle 11g/relational [queries/5 mins] 356 344 321 295 285 276

Many widely used RDF databases are sufficiently large so that we need to

be concerned with scalability issues. For instance, the Universal Protein Resource
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(uniProt) [61] is an RDF dataset with protein information consisting of approxi-

mately 5 billion triples. The website reports approximately 20,000 queries per day.

GovTrack is a non-governmental organization monitoring the US Congress. The

dataset is now at 26 million triples, up 6 million triples from 7 months ago. Approx-

imately 10,000 queries are executed every day by users and an additional 15,000 for

internal research. These are just two examples from a much larger list of databases

currently in use. The catalog at www.rdfdata.org provides a good starting point

for the study of these datasets. At the current rate of expansion of RDF databases,

scalability will undoubtedly be a critical issue in the very near future.

In addition, RDF is the base representation format for richer ontology lan-

guages such as the Web Ontology Language (OWL). A large portion of answering

OWL queries involves processing parts of the query over RDF. As the Semantic

Web gains momentum, efficient RDF data management will play a major part in

enabling the next generation of applications to share and query large amounts of

information quickly.

1.2 Representation and query processing

In Section 1.1, we mentioned model simplicity and flexibility as some of the

RDF data model’s most important advantages. However, the simplicity of the triple-

based data model also brings certain problems. We used the triple (Maryland,

hasPopulation, 5615727) as an example. Such a triple clearly cannot be valid at all
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timepoints4. To express the fact that this triple has been valid in 2006 in RDF, we

can construct the following set of triples:

( , rdf : type, rdf : Statement)

( , rdf : Subject, Maryland)

( , rdf : Predicate, hasPopulation)

( , rdf : Object, 5615727)

( , validT ime, 2006)

The textual representation of these triples in RDF form is given below.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:type="Statement">

<rdf:Subject rdf:about="Maryland"/>

<rdf:Predicate rdf:about="hasPopulation"/>

<rdf:Object rdf:about="5615727"/>

<validTime>2006</validTime>

</rdf:Description>

</rdf:RDF>

Note that we create a new anonymous (or blank) node that represents the

original triple (also called a statement), identified the resources and values that are

the subject, predicate and object of the triple and finally created a new property

called validTime and linked the statement to 2006 through this property. This pro-

cess is known in RDF as reification, which allows us to make statements about other

statements in RDF. Although the concept of expressing metadata about metadata

is very interesting, note that instead of a single triple (or at most two after introduc-

ing the validTime) we now have five triples in the dataset. Since query complexity

depends on the size of the dataset, reification can bring a dramatic increase in the

4In a very strict practical interpretation, it is unlikely to be valid at more than one point in
time, since population numbers are constantly changing. For the sake of the example, we will
assume the triple is valid in the year the census data was collected.
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processing time of queries. Furthermore, even though we introduced validTime as

a property, it does not have any special semantics with respect to the rest of the

dataset (i.e., it does not automatically imply that if we are not in 2006, the original

triple will not be considered). We describe reification, as well as the semantics of

RDF and some of the related work in Chapter 2.

A vast majority (over 99%) of the real-world datasets we studied only use

one level of reification (i.e., there are no blank nodes linked to other blank nodes)

and it was usually for the purpose of adding a fixed type of information to the

triples – for instance, validity times or time intervals, confidence levels or provenance

information. It is therefore much more effective to add the new data as part of the

triple itself and give it semantics at the same time. For instance, the triple about the

population of Maryland could be written (Maryland, hasPopulation: 2006, 5615727)

and interpreted as valid only in the year 2006. To accomplish this, in Chapter 3 we

introduce a new representation language called Annotated RDF that allows triples

to be annotated with members of a partially ordered set. The new representation

language can keep annotated datasets small and therefore process queries more

efficiently than standard RDF database systems. It also introduces the concept of

transitivity for user-defined properties – informally, if a property p is transitive, from

(x, p, y) and (y, p, z) we can infer (x, p, z). We found that many datasets specified

special semantics for transitive properties (for instance, relatedTo properties that

link topics in the RDF representation of Wikipedia) separately from the dataset

because RDF does not provide support for property transitivity.

With the exception of Gutierrez et al. [22], who provided a temporal exten-
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sion to RDF and in-memory algorithms for answering queries, we are not aware of

any query processing algorithms that operate directly on RDF data; existing RDF

systems translate SPARQL queries to SQL. In Chapter 4, we provide several al-

gorithm for answering SPARQL-like queries over Annotated RDF, together with a

theoretical analysis of their complexity and an extensive empirical evaluation. Chap-

ter 4 also describes the first – to our knowledge – view maintenance algorithms for

SPARQL-like queries. Previous work by Hung et al. [29] describes view maintenance

algorithms for RDF aggregate queries only.

1.3 Indexing

One of the principal problems in answering SPARQL queries efficiently was

the lack of an index specialized for RDF. Existing systems typically rely on a com-

bination of relational indices to speed up query processing. Such index structures

are very well adapted to quickly locating values of attributes under a given set of

constraints. However, in SPARQL queries, the structure of the query graph, hence

the relationships between nodes is more important than their individual values. In

Chapter 5 we introduce the first – to our knowledge – RDF index for SPARQL

queries called GRIN. We extend GRIN for Annotated RDF, provide query pro-

cessing and index construction algorithms and conduct a thorough experimental

evaluation. The results show that GRIN can process queries several times faster

than the best existing systems.
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Chapter 2

Overview of RDF database systems

The Resource Description Framework is a W3C standard endorsed by over

500 companies. It is a framework for representing and processing metadata, with

the stated goal of providing interoperability between applications that exchange

data over the Web. Lassila et al. [34] introduced the model for representing RDF

metadata as well as the syntax for encoding it; their work is refined and extended

in the RDF specification [40]. The schema language RDFS (RDF Schema) was

later introduced by Brickley et al. [6] and extended with a complete system of

inference rules by Hayes [26]. The central element of RDF – the triple – is the basis

for describing relationships between resources in terms of properties (attributes)

and values. In contrast to an object-oriented model, RDF is property-centric. Its

schema language, RDFS defines vocabulary to describe classes, properties and their

relationships.

2.1 RDF syntax and semantics

The underlying model of RDF is a labeled directed graph where nodes are

resources or literals. Each edge in the graph corresponds to a triple (subject, pred-

icate, object), where subject is a resource, predicate is the edge label and object is

either a resource or a literal. The basic elements in the data model are:
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• Resources are anything that can be identified by a Uniform Resource Identifier

(URI). We will denote the set of resources by R.

• Literals may be either plain or typed. Plain literals are strings; typed literals

are strings combined with an URI denoting a basic data type. We will denote

the set of literals by L.

• A property is a resource that represents a specific characteristic or relation used

to describe other resources. Note that properties are resources themselves. We

will denote the set of properties by P. Sometimes, it is useful to differentiate

between properties and other resources for reasons of clarity.

• Statements (or triples) are ordered tuples that state a resource (the subject) is

associated with a property and a value for that property (the object). State-

ments are a subset of R×P × (R∪ L).

A simple example RDF database is shown below and its graph representation

is shown in Figure 2.1. In this dataset, 240, 208, etc. are literals and all other

entities are resources.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:lib="http://www.zvon.org/library">

<rdf:Description about="Matilda">

<lib:creator>#RoaldDahl</lib:creator>

<lib:pages>240</lib:pages>

</rdf:Description>

<rdf:Description about="The BFG">

<lib:creator>#RoaldDahl</lib:creator>

<lib:pages>208</lib:pages>

9



</rdf:Description>

<rdf:Description about="Heart of Darkness">

<lib:creator>#JosephConrad</lib:creator>

<lib:pages>110</lib:pages>

</rdf:Description>

<rdf:Description about="Lord Jim">

<lib:creator>#JosephConrad</lib:creator>

<lib:pages>314</lib:pages>

</rdf:Description>

<rdf:Description about="The Secret Agent">

<lib:creator>#JosephConrad</lib:creator>

<lib:pages>249</lib:pages>

</rdf:Description>

</rdf:RDF>

Roald Dahl

Matilda The BFG

Joseph 
Conrad

Heart of 
Darkness

Lord Jim
The Secret 

Agent

lib:creator lib:creator lib:creator
lib:creator

lib:creator

240 208 110 314 249

lib:pages lib:pages lib:pages lib:pages lib:pages

Figure 2.1: Graph representation of an RDF database

RDF supports two types of constructs with special semantics:

1. Blank nodes are not identified by an URI. They are essentially interpreted as

existential variables. For instance, in the triple ( , wrote, Beowful), the blank

node signifies we know there existed someone that wrote Beowulf, but we do

not know who. An RDF graph without blank nodes is called ground.

2. Reification is an alternate way of representing statements. For instance, the

10



triple (Lord Jim, lib:creator, JosephConrad) can be reified as ( , rdf:Subject,

Lord Jim), ( , rdf:Predicate, lib:creator), ( , rdf:Object, JosephConrad). By

using reification, we can link statements with other resources or values.

The RDF semantics are defined through the means of an interpretation, which

maps the resources, properties, literals and even statements to a set of “concrete”

things called the universe of the interpretation. The full details of the RDF model

theory semantics are given in [26]. For our purposes, it is enough to point out that

with the exception of data type clashes, all RDF databases are consistent.

The RDF Schema introduces a class and property hierarchy in RDF:

• rdfs:Resource. Every resource is an instance of this class.

• rdfs:Class. Every class is an instance of this class, including rdfs:Class.

• rdfs:subClassOf is a property that states all instances of a class are instances of

another. For example, (Human, rdfs:subClassOf, Mammal) means all humans

are mammals.

• rdfs:subPropertyOf induces a hierarchy on the set of properties. If (hasFa-

ther, rdfs:subPropertyOf, hasParent) and (Dan, hasFather, Michael) then it

also holds that (Dan, hasParent, Michael). Note that this construct and

rdfs:subClassOf introduce a basic form of inference in RDF.

• rdf:type is used to specify that a resource is an instance of a class. For instance,

(Michael, rdf:type, Human).
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Despite the introduction of basic inference capabilities, these do not suffice for

many real-world datasets we encountered. In Chapter 3, we will extend the RDF

semantics to allow transitivity of user-defined properties (any property other than

the ones outlined above).

2.1.1 The SPARQL query language

Many query languages have been developed for RDF, but the SPARQL lan-

guage is now implemented by almost all RDF APIs. The SPARQL syntax looks a

lot like SQL, with a few modifications. The central element of a SPARQL query is

called a graph pattern.

Example 2.1. Consider the database in Figure 2.1. The following is a slightly

simplified SPARQL query over this database:

SELECT ?w, ?b FROM

{(Matilda lib : Creator ?w) . (?b lib : Creator ?w).

(?b lib : pages ?pn)} FILTER (?pn > 200)

The query informally looks for a writer ?w and a book ?b such that ?w wrote

Matilda, ?w wrote ?b, ?b has a certain number of pages ?pn that must be greater

than 200. The answer to this query is ?w = RoaldDahl and ?b = The BFG.

Despite their apparent simplicity, SPARQL queries can be very complex to

answer. Pérez et al. [45] have shown that the combined complexity of answer-

ing general SPARQL queries is PSPACE-complete. They also show that the data

complexity of answering SPARQL queries is polynomial, but they were unable to

provide a polynomial-time algorithm. The best subgraph matching algorithms [9]
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can answer SPARQL-like queries with a worst-case complexity of O(N !), where N

is the size of the dataset.

An interesting development for SPARQL has been the appearance of SPARQL

endpoints, Web Services that allow users to ask SPARQL queries via HTTP. One

successful example is the Nokia product catalog endpoint.

2.2 Current RDF database systems

In this section we provide a brief overview of some of the current RDF database

systems and relevant research. We will focus primarily on those systems used for

comparisons in our experimental evaluation.

Jena2 [63] is a very popular API and RDF database system developed at

HP Research Labs. One of the first comprehensive toolkits for RDF, it includes

components for RDF I/O, storage, querying and inference. It supports both in-

memory and on-disk handling of RDF data. For the secondary storage, it uses a

variation of a widely used scheme to represent RDF in relational databases called

the triple store. In this approach, each RDF statement is stored as a single row in

a “statements” table. To save space, Jena2 also normalizes some of the long literals

and resources with long URIs. This means the resources and literals are stored

in separate tables and then referenced from the statements table. Jena2 currently

supports all relational databases for which there exists a JDBC (Java DataBase

Connectivity) driver. Jena2 can use relational indexes on the statements table to

speed up query processing.
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Sesame2 [7] is an open-source RDF framework that supports RDF schema

inference. The framework contains its own I/O library for fast access to RDF called

Rio. It supports a wide variety of backend representations, including relational

databases, main memory, filesystems, keyword indexers and its internal flat file

representation. When deployed over a relational databases, Sesame2 creates 6 index

structures on the statements table, one for each of the subject, predicate, object of

the triple and three more for combinations of two of the above. Sesame2 supports

the SPARQL and ReQL query languages.

RDFBroker [49] is an RDF storage system that uses a relational database as

a backend. However, unlike Jena2 and Sesame2, it does not use the standard triple

store approach. Instead, it creates a database schema based on signatures – sets of

properties that are likely to be used together to answer queries. The main drawback

of the approach is that the number of tables in the schema tends to be monotonic

with the size of the RDF dataset. RDFBroker supports a subset of SPARQL queries.

3store [25] is an RDF triple store that has been ported from an older storage

system WebKBC. It supports RDQL and SPARQL queries, but only over HTTP.

3store is backed by MySQL and BerkeleyDB.

Mulgara Semantic Store (www.mulgara.org) is a metadata storage systems

that also supports RDF, but only through its proprietary query language called

iTQL. It provides native RDF support, which means it does not rely on standard

relational-to-RDF mapping.

Oracle has supported RDF since the 10g version of their database server.

Now, as part of the 11g package, they also provide a lightweight platform dedicated
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to RDF called Oracle Spatial 11g. It supports several query languages, including

SPARQL and several proprietary index structures.

2.2.1 Knowledge representation

Most modern knowledge representation systems evolved from Description Log-

ics (DLs) [3, 60], soon followed by corresponding reasoning algorithms [4]. Horrocks

et al. [28] prove that RDF and OWL correspond to description logic from the SHIQ

family. Su and Ilebrekke [53] provide a comprehensive comparison of ontology lan-

guages and tools, some of which we will present briefly here.

CycL [36] was one of the first ontology languages derived directly from first

order predicate logic. It later evolved as part of the Cyc project as an ontology for

commonsense reasoning. Ontolingua [13] evolved from an earlier languages called the

Frame Ontology and provides reasoning support over terms such as class, subclass-of

and instance-of. Because axioms cannot be expressed in this form, Ontolingua adds

another layer on top of frame-based logic and represents ontologies in the Knowledge

Interchange Format (KIF). Frame Logic [32] is a logic language integrated with an

object-oriented programming paradigm. Concepts such as class, methods, types and

inheritance have direct representations in the language. However, frame logic lacks

some of the more powerful characteristics in Ontolingua (such as reification – the

ability to use formulas as terms in meta-formulas). OCML (Operational Concep-

tual Modeling Language) was developed by the Knowledge Media Institute (KMI)

as part of the VITAL [48] project. It provides mechanisms for defining relations,
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functions, classes, instances, rules and procedures and supports internal theorem

proving and function evaluation mechanisms; the primary goal of the language was

to serve in rapid prototyping environments. LOOM [46] is the first knowledge rep-

resentation language based on description logic. One of the primary tasks of the

language is to provide support for computing subsumption relationships between

descriptions and organizing them into taxonomies. Telos [44] is another language

with an object-oriented focus. In addition to the previous languages, it can specify

integrity constraints and it has extensions for temporal specification.

Starting in the 1990s, knowledge representation languages focused on modeling

data from the World Wide Web. RDF was one of the first such languages, soon

followed by special vocabularies for temporal [9], fuzzy, [10, 51] and provenance

information [8]. OIL (Ontology Inference Layer) [14] is both a representation and

an exchange language for ontologies. The language has primitives from frame logic

and reasoning services and formal semantics based on description logic. In parallel

with OIL, DARPA developed their DAML (DARPA Agent Modeling Language),

with similar characteristics. The two finally were merged in DAML+OIL [43]. OWL

was eventually developed from DAML+OIL and then branched into three levels of

complexity: OWL Full (undecidable), OWL DL which covers most of description

logic and OWL Lite which is the most tractable of the three.

There has also been a solid body of work on extending RDF with new features

such as time intervals and uncertainty. Gutierrez et al. [22] have been the first to

propose a model for RDF enhanced with valid-time intervals. They also provide a

model theory semantics for Temporal RDF, as well as a query algorithm; unfortu-
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nately, no empirical evaluation is presented. We have recently extended their model

to handle uncertainty in the temporal annotations [47] – for instance, in cases when

we know the triple holds at some point during the interval, but we do not know

when. Dubois et al. and Straccia et al. [10, 51] have introduced a possibilistic and

fuzzy extension for description logics (and by extension to RDF). Caroll et al. [8]

describes a model for representing named RDF graphs, thus allowing statements

about RDF graphs to be represented in RDF. Gergatsoulis and Lilis [17] define a

model for representing multi-dimensional RDF, where information can be context

dependent; for instance the title of a book may be represented in different languages.

2.2.2 Querying

An excellent survey of RDF query languages and their capabilities is given in

[24]. We will briefly survey a few of the prominent languages.

RQL (The RDF Query Language) is a typed language following a functional

approach. It supports generalized path expressions with variables both on nodes and

edge labels. RQL relies on a formal graph model that captures the RDF modeling

primitives and permits the interpretation of superimposed resource descriptions by

means of one or more schemas. RQL follows an OQL-like syntax: Select Pub from

{Pub} ns3:year {y} where y = “2004”.

SeRQL stands for Sesame RDF Query Language and is a querying and trans-

formation language loosely based on several existing languages, such as RQL, RDQL

and N3. SeRQL syntax is similar to that of RQL though modifications have been
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made to make the language easier to parse. Like RQL, SeRQL is based on a for-

mal interpretation of the RDF graph, but SeRQL’s formal interpretation is based

directly on the RDF Model Theory.

The syntax of RDQL follows an SQL-like select pattern, where a from clause is

omitted. For example, select ?p where (?p, <rdfs:label>, “foo”) collects all resources

with label “foo” in the free variable p. The select clause at the beginning of the

query allows projecting the variables. Namespace abbreviations can be defined in a

query via a separate using clause. RDF Schema information is not interpreted.

Notation3 (N3) provides a text-based syntax for RDF. Therefore the data

model of N3 conforms to the RDF data model. Additionally, N3 allows to define

rules, which are denoted using a special syntax, for example: ?y rdfs:label “foo” ⇒

?y a :QueryResult. Such rules, while not a query language, can be used for the

purpose of querying.

XsRQL (XQuery-style RDF Query Language) derives much of its syntax from

the XQuery language for XML. It is a typed, functional language and provides a

library of built-in functions that can be used in expressing queries.

Work on query and view maintenance algorithms in RDF is relatively minus-

cule. Volz et al. [62] were the first to introduce views into RDF. The required

that the results of queries contain class instances and that the result itself has the

pattern of an RDF statement. Magnaraki et al. [39] proposed RVL – a language for

RDF views. However, they do not address the view maintenance problem. Hung

et al. [29] present a mechanism to handle aggregate queries and update aggregate

views over RDF databases. Very recently, Stocker et al. [50] presented a method
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for optimizing basic graph patterns in SPARQL queries. Their method is based on

gathering statistics about the RDF data beforehand, which allows the query opti-

mizer to better estimate the selectivity of query components. The algorithms have

been implemented as part of the Jena2 ARQ framework.

2.2.3 Indexing

Work in indexing RDF is sparse as well. Previous work was focused primarily

on path queries [37], in which queries are path expressions (akin to regular expres-

sions) or reachability queries [42], in which the purpose is finding out whether a

vertex or set of vertices is reachable from a fixed start vertex. Path queries are

expressible in SPARQL, but form a very small subset of the language. Heiner et

al. [52] propose an architecture for querying distributed RDF repositories, based on

the Sesame system. Graph indexing is also focused on a different type of queries, in

which the goal is to find from a set of graphs the ones that are supergraphs to the

query [2, 64, 56].

Recently, Abadi et al. [1] have proposed a method to speed up SPARQL

queries by vertically partitioning the statements table. Their approach thus avoids

many of the self-join operations that result from translating SPARQL into SQL.

A similar technique is used in column stores, which store data on disk by column

rather than row [11], an optimization that benefits query processing rather than

handling updates.
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Chapter 3

Annotated RDF

In Section 1.1 we presented empirical evidence that shows relational-backed

RDF systems such as Jena2 and Oracle 11g exhibit poor performance for queries

over reified triples. To determine how these queries can be answered more efficiently,

we examined 35 real-world RDF datasets available at www.rdfdata.org, an online

catalog of RDF databases. The datasets span multiple domains from congressional

information to life sciences. They range from 12 thousand – W3C standards dataset

– to over 91 million – Wikipedia3 (note that this is not a footnote, but the actual

name of the dataset), an RDF representation of Wikipedia information triples1. We

looked at the type of data typically associated with reified statements and found

the following:

• With a single exception (the daml.org publication metadata), each dataset

annotates all its reified triples with the same type of information.

• 77% of the datasets attached temporal or fuzzy2 values to their reified state-

ments, 10% used both temporal and fuzzy values, while the remaining datasets

used a discrete set of provenance sources.

• In 85% of the datasets, transitive properties were specified in the attached

1Some datasets were omitted due to their specialization. For instance, uniProt is a dataset of
over 5 billion triples, but is hardly understandable outside life sciences.

2Confidence levels in [0, 1].
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documentation. The semantics of a transitive property p informally state that

from (x, p, y) and (y, p, z) we can infer the triple (x, p, z). Typical examples

of transitive properties include relatedTo that links topics in Wikipedia3 or

friend-of-a-friend (FOAF) relations between persons. Since RDF does not

support transitivity for user-defined properties, the list of such properties is

typically described in the documentation of each dataset and must be imple-

mented in the application logic rather than the database.

The findings of this survey suggest two improvements over the RDF semantics.

First, data used to annotate reified triples can be “moved” inside the triple itself;

this approach eliminates the vast majority of blank nodes (if all triples are reified,

it reduces the data size by 75%), hence reducing query complexity. Second, the

introduction of transitivity for user-defined properties is useful to the large majority

of application domains.

In this chapter, we propose an extension to the standard RDF semantics that

incorporates these two observations. Our Annotated RDF [58] (or aRDF for short)

attaches members from an arbitrary partial order to RDF triples and defines se-

mantics for property transitivity. Annotated RDF builds on top of annotated logic

[33, 35], which has been subsequently used, extended and improved [15] for a wide

range of knowledge representation tasks. aRDF also incorporates probabilistic RDF

[59], an extension we previously defined to represent uncertainty in RDF databases.

In Chapter 4, we show that as anticipated, answering queries using aRDF is 1.5 to

3.5 times faster than systems such as Jena2, Sesame2 or Oracle 11g.
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Other authors have previously recognized the need to extend RDF with new

features. Gutierrez et al. [22] annotate triples with time intervals, by stating that

a triple holds at all points in a given interval, but does not hold at any time point

outside it. Dubois and Prade [10] and Straccia [51] annotate RDF triples with

uncertainty (though these are one page position papers). Carroll et al. [8] describe

a model for representing named RDF graphs, thus allowing statements about RDF

graphs to be represented in RDF. Gergatsoulis and Lilis [17] define a model for

representing multi-dimensional RDF, where information can be context dependent;

for instance the title of a book may be represented in different languages. Our

contributions are different than the above in that:

• aRDF is the first approach that handles many types of annotations — temporal

intervals, fuzzy vales, provenance or combinations of these — under a unified

semantics.

• aRDF is the first approach that handles transitivity of user-defined properties.

• To our knowledge, this is the first approach that proposes a query language

similar to SPARQL and query processing and view maintenance algorithms

for this language.

• None of the previous approaches provides an empirical evaluation on real-

world datasets or on synthetic data of more than 5,000 triples. In Chapter 4,

we provide an extensive evaluation of aRDF on real-world datasets of up to 26

million triples and synthetic datasets of up to 10 million triples.
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3.1 aRDF Syntax

In this section we define the syntax of aRDF triples. We assume the existence

of a partially ordered finite set (A,�) where elements of A are called annotations

and � is a partial ordering on A. We further assume A has a bottom element. For

example, several of the scenarios we found in practice are:

1. Afuzzy is a finite subset of the real numbers in the closed interval [0, 1] with

the usual “less than or equals” ordering.

2. Atime is a finite set of non-negative integers (denoting time points) with the

usual “less than or equals” ordering.

3. Atime−int ⊆ {[x, y] | x, y ∈ N} is a finite set of time intervals. The interval

[x, y] as usual denotes the set of all t ∈ N such that x ≤ t ≤ y. The inclusion

ordering ⊆ is a partial ordering on this set.

4. Aprovenance could be an enumerated set consisting of the names of information

sources with a partial ordering on them. If s1, s2 ∈ Aprovenance, then we could

think of s1 � s2 to mean that s2 is more reliable than s1.

5. Afuztime is a finite set of pairs (x, y) such that x ∈ [0, 1] is a fuzzy value and y

is a time point. The � ordering on Afuztime can be defined as (x, y) � (x′, y′)

iff x ≤ x′ and y ≤ y′.

These are just a few examples of partial orders. All the partial orders above

except Aprovenance are complete lattices. A partially ordered set (X,≤) is a complete

23



lattice iff (i) every subset of X has a unique greatest lower bound and (ii) every

directed subset of X has a unique least upper bound. A set Y ⊆ X is directed iff

for all y1, y2 ∈ Y , there is an x ∈ X such that y1 ≤ x and y2 ≤ x. Note that one can

construct arbitrary combinations of partial orders by taking the Cartesian Product

of two known partial orders and taking the pointwise ordering on the Cartesian

Product as shown in the definition of Afuztime.

Suppose now that (A,�) is an arbitrary but fixed partially ordered set. As in

the case of RDF, we also assume the existence of some arbitrary but fixed set R of

resources (including blank nodes), a set P of property names, and a set dom(p) of

values associated with any property name p.

An annotated RDF database (aRDF-database for short) is a finite set of triples

(r, p : a, v) where r is a resource name, p is a property name, a ∈ A and v is a value

in dom(p) (v could also be a resource name).

This representation also supports RDF Schema triples such as3:

(i) (A, rdfs:subClassOf, B) indicates a subclass relationship between classes (which

are also resources);

(ii) (X, rdf:type, C) indicates that a resource X is an instance of some class C;

(iii) (p, rdfs:subPropertyOf, q) denotes a sub-property relation between p, q ∈

P4. We denote by rdfs : subPropertyOf ∗ the transitive closure of rdfs :

subPropertyOf .

3rdfs : range and rdfs : domain are also possible, as well as any other RDFS construct. How-
ever, for the purpose of answering queries, rdfs : subPropertyOf triples are the most important
schema triples.

4Note we did not require that P ∩R = ∅.

24



Once R,P and dom(·) are fixed, we use the notation Univ to denote the set

of all triples (r, p, v) where s ∈ R, p ∈ P and v ∈ dom(p). Throughout this chapter,

we will assume that R,P,A,�, dom(·) are all arbitrary, but fixed.

people/
B000711

congress/
senate/ca

congress/
house/101/

ca

congress/
house/100/

ca

role [1987, 1988]

role [1989,1990]

campaign/
2004/

S2CA00286

campaign [2004, 2004]

role [1993, 1997]
role [1998, 2010] office

B., Carol

contributed [2004, 2004]

congress/committees/
SenateCommerceSci-

enceAndTransportation

congress/committees/
SenateEnvironmentand

PublicWorks

member [1995, 2007]

member [1995, 2006]
chairperson [2007, 2007]

congress/
106/bills/

s1990

sponsor [1999, 1999]

inCommittee [1999, 1999]

State and 
Local 

Government
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supported [2002, 2002]

subject subject

congress/
committees/

SenateFinance

inCommittee [2002, 2002]

(chairperson, rdfs:subPropertyOf, member)
(sponsor, rdfs:subPropertyOf, supported}

(a) Example aRDF graph annotated with Atime−int.
Extracted from the GovTrack dataset available at
http://www.govtrack.us.

hasComplication, .7

hasComplication, .15

associatedWith, .1

hasComplication,.1

hasComplication, .001
associatedWith, .65

hasComplication, .02

causeOf, 0.5

causeOf, .73

Fatigue

Flu

Acute 
Bronchitis

Pneumonia

Emphysema

Cor 
pulmonale

Middle Ear
Infection

(hasComplication, rdfs:subPropertyOf, associatedWith)
(causeOf, rdfs:subPropertyOf, associatedWith)

(b) Example aRDF graph annotated with Afuzzy.
aRDF constructed based on information from
www.wrongdiagnosis.com.

Figure 3.1: Four aRDF graphs

Definition 3.1. (aRDF graph). Suppose O ⊆ Univ is an aRDF-database. An aRDF
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Reviewer 
#21765

Reviewer 
#16742Grivanti

ItalianCharlie’s

Lincoln

Norfolk

areaReview, (11/03/03, 0.6)

areaReview, (17/01/04, 0.4)

NE/USA
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locatedIn

review, (4/07/04, 0.7)

review, (22/05/03, 0.5)

cuisine

cuisine

review, (9/19/03, 0.55)

(c) Example aRDF graph annotated with Afuztime.
Extracted from the ChefMoz dataset available at
http://chefmoz.org.

hasSupervisor, 
PW

DW = Departmental webpage
FL = Faculty List

GS = Graduate School
PW = Personal Webpage

PW 
� ��

FL 
� ��

hasSupervisor, 
GS

hasSupervisor, 
FL

hasSupervisor, DW

hasAdvisor, FL

Stephen William Mary

Max

(hasAdvisor, rdfs:subPropertyOf, hasSupervisor)

(d) Example aRDF graph annotated with Apedigree. Ex-
ample is purposefully inconsistent to illustrate the aRDF
consistency checking algorithm.

Fig. 3.1 (continued) Four aRDF graphs

graph for O is a labeled graph (V, E, λ) where

(1) V = R ∪ L is the set of vertices.

(2) E = {(r, r′) | there exists a property p such that (r, p : a, r′) ∈ O} is the set of

edges.

(3) λ(r, r′) = {p : a | (r, p : a, r′) ∈ O} is the edge labeling function.

It is easy to see that there is a one-to-one correspondence between aRDF

databases and aRDF graphs. Hence, we will often talk interchangeably talk about
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both aRDF databases and aRDF graphs.

Example 3.2. Figure 3.1 shows four examples of aRDF graphs. Figure 3.1(a), an-

notated with elements of Atime−int, is extracted from the GovTrack dataset. The

dataset consists of approximately 12 million aRDF triples (1.5 GB) containing de-

tailed information about the U.S. Congress and the election campaigns since the early

1980s until the present. The triple (people/B000711, role:[1987,1988], congress/

house/100/ca) denotes the fact that the congressperson identified by people/B00711

was a representative of the state of California in the 100th Congress between 1987

and 1988.

Figure 3.1(b) shows an example aRDF graph constructed manually from infor-

mation available at www.wrongdiagnosis.com, a website that presents medical infor-

mation in an ontology-like fashion. The data is annotated with Afuzzy. The triple

(Flu, causeOf:0.5, Fatigue) says that in 50% of cases of Flu, Fatigue is one of the

symptoms. The size of the full dataset is 4547 triples.

Figure 3.1(c) shows an example extracted from the ChefMoz dataset, which

contains information on and reviews of restaurants throughout the world. The

dataset consists of approximately 550,000 aRDF triples (220 MB). We used the re-

view information (time and score) from the dataset to annotate the triples. The

triple (Reviewer #21765, review: (4/07/04, .7), Grivanti) denotes the fact that the

reviewer with identifier 21765 wrote a review for the Grivanti restaurant on July 4th

2004, giving it a score of .7. In this example, the triples without annotations are

assumed to be annotated with the current time and the value 1.
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Finally, 3.1(d) is an example annotated with pedigree information. The exam-

ple will be used to illustrate the consistency checking algorithm for aRDF in Section

3.2. In this dataset, there are four sources of information (described in the figure),

along with a partial order based on the reliability of the sources. The triple (Max,

hasSupervisor: DW, Stephen) denotes the fact that the department webpage (DW)

lists that Stephen is Max’ supervisor.

As mentioned at the beginning of the chapter, aRDF differentiates between

transitive and non-transitive properties. The lack of support for transitive prop-

erties p in standard RDF means that: (i) Inferences of the type (x,p,y) (y,p,z)
(x,p,z)

are

all computed apriori for the entire database or (ii) inferences are computed as

needed at query time, which places some of the query complexity burden on the

application. In aRDF we assume that all properties in P are marked transitive

or non-transitive. For instance, in Figure 3.1(d), we consider hasSupervisor to

be a transitive property5. In this example, from (Max, hasAdvisor:FL, William)

and (hasAdvisor, rdfs:subPropertyOf, hasSupervisor) we can infer that (Max, has-

Supervisor:FL, William). The example also states that (William, hasSupervisor:GS,

Stephen). According to the semantics of transitive properties, from these two triples

we should be able to infer that (Mas, hasSupervisor, Stephen), but we do not yet

have a method for associating an annotation with this inferred triple. The concept

of a p-Path will be later used to assign an annotation to the inferred triple.

5Although this may not always be the case in the real world, it is the case for synthetic datasets
generated with the Lehigh University Benchmark.
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Given a transitive property p, a p-path intuitively is a path in the aRDF graph

that only consists of edges labeled with the property p. However, in some cases, an

edge might be labeled with a property q which is a sub-property of p. In this case,

the q edge is considered part of the p path because the triple (s, p, o) can be inferred

from (s, q, o) when q is a subproperty of p. This is the intuition behind a p-path

which is defined formally below.

Definition 3.3 (p-Path). Let O be an aRDF graph, p be a transitive property in O,

and suppose r, r′ ∈ O are two vertices. There is a p-path between r and r′ if there

exist triples t1 = (r, p1 : a1, r1), . . . , ti = (ri−1, pi : ai, ri), . . . , tk = (rk−1, pk : ak, r
′) ∈

O such that for all i ∈ [1, k] (pi, rdfs : subPropertyOf ∗, p). We will denote a

p-path Q by the set of triples {t1, . . . , tk} that form the path. We also denote by

AQ = {a1, . . . , ak} the set of annotations of the triples on the p-path Q.

Example 3.4. Consider the aRDF graph shown in Figure 3.1(d) and suppose the

hasSupervisor property is transitive. The triples (Max, hasAdvisor:FL, William) and

(William, hasSupervisor:GS, Stephen) form a hasSupervisor-path (remember that

hasAdvisor is a subproperty of hasSupervisor). For this p-Path, AQ = {FL, GS}.

3.2 aRDF Semantics

In this section, we provide a declarative semantics for aRDF databases and

study the consistency of such databases.

Definition 3.5. An aRDF-interpretation I is a mapping from Univ to A.
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The definition of an aRDF-interpretation follows that in annotated logic [33].

However, there are two differences that we note here. First, annotated logic in

[33] assumes that A is a complete lower semilattice, while we only require that it

be a partial order. Second, our definition of satisfaction must take into account

the difference between properties that are transitive and those that are not. This

induces a more complex definition in our case than that in [33].

Definition 3.6. An aRDF-interpretation I satisfies (r, p : a, v) iff a � I(r, p, v). I

satisfies an aRDF-database O iff:

(S1) I satisfies every (r, p : a, v) ∈ O.

(S2) For all transitive properties p ∈ P and for all p-paths Q = {t1, . . . , tk} in

O, where ti = (ri, pi : ai, ri+1), there exists a ∈ A such that a � ai for all

1 ≤ i ≤ k and for all a ∈ A such that a � ai for all 1 ≤ i ≤ k, it is the case

that a � I(r1, p, rk+1).

O is consistent iff there is at least one aRDF-interpretation that satisfies it. O entails

(r, p : a, v) iff every aRDF-interpretation that satisfies O also satisfies (r, p : a, v).

The definition of satisfaction and the complex definition of case (S2) above are

best illustrated with an example.

Example 3.7. Let O be the aRDF graph in Figure 3.1(b), where A = Afuzzy.

Suppose the associatedWith property is transitive. Let I0(t) = 1 ∀t ∈ Univ. I0

satisfies O and hence O is consistent. Furthermore, O |= (Flu, causeOf: .4, Fatigue)

because for any satisfying interpretation, 0.4 � 0.5 � I(Flu, causeOf, Fatigue).
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The intuition behind item (S2) of Definition 3.6 is related to the notion of

entailment. For instance, in Figure 3.1(b) — with associatedWith transitive —

from the triples (Flu, hasComplication: .7, AcuteBronchitis) and (AcuteBronchitis,

associatedWith: .65, Pneumonia), we can infer that with a confidence level of at

least .65, Flu is associatedWith Pneumonia since ∀ a ∈ Afuzzy s.t. a � .7 and

a � .65 (i.e. ∀ a � .65)), a � I(Flu, associatedWith, Pneumonia).

It follows from Definition 3.6 that unlike RDF databases which are always con-

sistent with the exception of data type clashes, aRDF databases can be inconsistent.

Consider the aRDF graph in Figure 3.1(d) and assume the hasSupervisor property

is transitive. We can identify the following sources of inconsistency:

1. The triples (Mary, hasSupervisor:PW, William) and (Mary, hasSupervisor:FL,

William)6 indicate that for any interpretation I, we cannot have that PW �

I(Mary, hasSupervisor, William) and FL � I(Mary, hasSupervisor, William),

which contradicts item (S1) from Definition 3.6.

2. The presence of the different hasSupervisor -paths {(Max, hasAdvisor:FL, William),

(William, hasSupervisor:GS, Stephen)} and {(Max, hasSupervisor:DW, Stephen)}

means that for any interpretation I, we cannot have that FL � I(Max, has-

Supervisor, Stephen) and DW � I(Max, hasSupervisor, Stephen), thus con-

tradicting item (S2) from Definition 3.6.

We now state a necessary and sufficient condition for checking consistency of

6The presence of such triples is reasonable since it indicates the same information was obtained
from different sources for which we cannot compare the pedigree according to the partial order
given.
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an aRDF database. These conditions are needed because they are more amenable

to constructing a consistency verification algorithm than Definition 3.6.

Algorithm aRDFconsistency(O,A,�)

Input: aRDF database O and annotation (A,�).
Output: True if O is consistent, False otherwise.
1: for (r, p, r′) ∈ {(r, p, r′)|∃ a ∈ A s.t. (r, p : a, r′) ∈ O} do

2: A← {a ∈ A|(r, p : a, r′) ∈ O}
3: if |A| > 1 then

4: if 6 ∃ a ∈ A s.t. ∀a′ ∈ A, a′ � a then

5: return False
6: end if

7: end if

8: end for

9: for p ∈ P transitive do

10: O′ ← O|p
11: P ← {paths Q ⊆ O′| 6 ∃Q′ ⊆ O′ ∧Q′ ⊃ Q}
12: for (r, r′) ∈ N(O′)×N(O′) do

13: P ′ ← {Q ∈ P |r, r′ are the first and last vertex respectively in Q}
14: if |P ′| > 0 then

15: A← {AQ|Q ∈ P ′}
16: B ← {b ∈ A|∃AQ ∈ A s.t. ∀ a ∈ AQ, b � a}
17: if 6 ∃ a ∈ A s.t. ∀b ∈ B, b � a then

18: return False
19: end if

20: end if

21: end for

22: end for

23: return True

Figure 3.2: Consistency checking algorithm for aRDF databases

Theorem 3.8. Let O be an aRDF database. O is consistent iff:

(C1) ∀p ∈ P and ∀ r, r′ ∈ R such that there exist distinct a1, . . . ak ∈ A and for all

i ∈ [1, k] ∃(r, p : ai, r
′) ∈ O, then ∃ a ∈ A s.t. ∀i ∈ [1, k] ai � a AND

(C2) ∀p ∈ P transitive, ∀r, r′ ∈ R, let {Q1, . . . , Qk} be the set of different p-paths

between r and r′ and let {AQ1, . . . , AQk} be the annotations for these p-paths.
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Let BQi = {a ∈ A|a � a′ ∀a′ ∈ AQi}. Then ∃ a ∈ A s.t. ∀b ∈
⋃

i∈[1,k] BQi, b �

a7.

Proof. Let O be an aRDF database that meets conditions (C1) and (C2)

above. Then we can build a satisfying interpretation as follows:

• For any set of triples that match (C1), assign I(r, p, r′) = a. For any other

triple (r, p : a, v) ∈ O, assign I(r, p, v) = a.

• For any transitive property p and pair of resources r, r′ that match (C2), assign

I(r, p, r′) = a.

It is straightforward to show that the above interpretation satisfies Definition 3.6.

Conversely, let O be a consistent aRDF database. Let I be a satisfying inter-

pretation. We need to show that conditions (C1) and (C2) hold.

To see why condition (C1) holds, suppose p, r, r′, a1, . . . , ak are as in (C1) and

suppose (r, p : ai, r
′) ∈ O. Then by condition (S1) in the definition of satisfaction,

ai ≤ I(r, p, v) for all 1 ≤ i ≤ k. In this case, we can take a to be I(r, p, v).

To see why condition (C2) holds, suppose p is transitive, {Q1, . . . , Qk} is the

set of different p-paths between resources r and r′, and {AQ1, . . . , AQk} are the an-

notations for these p-paths. Then, by condition (S2) in the definition of satisfaction,

for each annotation ai
j in path Qi, ai

j � I(r, p, v). Therefore, I(r, p, v) is an upper

bound for the sets BQi and hence can serve as the annotation a in (C2).

The following result states that if we require A to be a partial order with a

top element8, then we are guaranteed consistency.

7Note that (C2) implies (C1) when p is transitive, since paths of length 1 are possible.
8An element ⊤ ∈ A is a “top” element if x � ⊤ for all x ∈ A.
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Corollary 3.9. Let A be a partial order with a top element. Then any aRDF

database O annotated w.r.t. A is consistent.

The justification is immediate, since the interpretation that maps every triple

in Univ to the top element satisfies any aRDF database.

Theorem 3.8 provides an immediate algorithm for checking the consistency of

aRDF databases. We present this algorithm in Figure 3.2. For a property p, we define

SP (p) = {q ∈ P|(q, rdfs : subPropertyOf ∗, p)}. We denote by O|p the restriction

of the aRDF graph O to triples containing properties from SP (p). N(O) denotes

the set of vertices in the aRDF graph O. Algorithm aRDFConsistency (Figure 3.2)

starts by verifying that every set of annotations on triples with identical subject,

property and value have a greatest lower bound (lines 1–8). In lines 9–22, the

algorithm iterates through all p-Paths in the graph and for each p-Path it ensures

that the set of annotations for the triples on that path has a greatest lower bound

(lines 15–19).

Example 3.10. Let O be the aRDF graph in Figure 3.1(d). When we run our con-

sistency check algorithm and execution reaches line 4 with (r, p, r’)=(Mary, hasSu-

pervisor, William), A = {PW, FL} from line 2. Since 6 ∃ a ∈ A s.t. PW, FL � a,

the algorithm will determine that the database is inconsistent.

Now consider the same aRDF database without the triple (Mary, hasSuper-

visor:PW, William). In this case, the algorithm will proceed to the loop starting

on line 9. However, for the iteration for which p = hasSupervisor on line 9

and (r, r′) = (Max, Stephen) on line 12, the set P ′ will contain the two possible
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hasSupervisor-paths from Max to Stephen from Example 3.7. Consequently, on line

15, A ={{DW}, {FL, GS}} and on line 16 B = {DW, FL}. Since 6 ∃ a ∈ A s.t.

DW, FL � a, the algorithm will return False on line 18.

The following result states the correctness of our consistency check algorithm.

Proposition 3.11 (Consistency check correctness). The aRDFconsistency on in-

put (O,A,�) returns True iff O is consistent.

Proof. The loop on lines 1–8 corresponds to condition (C1) in Theorem 3.8;

lines 9–22 correspond to condition (C2) of the same theorem. The algorithm uses

the fact that if property (C2) in Theorem 3.8 holds for maximal p-paths, then it

will also hold for shorter p-paths. This result follows directly from Definition 3.6

and the definition of a partial order.

The consistency check algorithm runs in polynomial time as shown below.

Proposition 3.12 (Consistency check complexity). Let O be an aRDF graph and

let n = |N(O)|, let e = |O| and let p = |P|. Let (A,�) be a partial order and let

a = |A|9.Then aRDFconsistency(O,A,�) is O(p · (n3 · e + n · a2)).

The result follows from the loop on lines 9—22. For any transitive property,

we first compute the set of all maximal paths in O|p (line 11). Since we have to keep

the paths in memory (and not only their cost), this operation can be performed in

at most n3 · e steps in a modified version of Floyd’s algorithm [16] that records the

paths explored. The loop on line 12 iterates through all the maximal paths found

9We assume without loss of generality that a < e, since we can use at most one annotation for
each edge.
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— there can be at most 2n of them. For each such path, we compute the set A (line

12), which takes at most e steps, since any maximal path is of length less than or

equal to e. The size of each set A is bounded by a and the number of maximal paths

for the entire graph is at most O(n), meaning line 15 will be run at most O(n · a2)

times. Line 16 is run at most O(n · a2) times as well, since |B| is bounded by a.

3.3 Annotated RDF with infinite partial orders

So far, we have defined aRDF to use a finite partial order (A,�). In this section,

we show a straightforward extension to infinite partial orders. Let us assume that

A is infinite and let O be a aRDF database. Our goal is to find a finite set of

annotations A∗ ⊆ A such that O is consistent under (A∗,�)10 if and only if O is

consistent under (A,�).

Proposition 3.13. Let O be an inconsistent aRDF database annotated with (A,�).

Then O is inconsistent for any partial order (X,�) with X ⊆ A.

Proof. Assume that there exists an X ⊆ A such that O is consistent under

the annotation (X,�). Then any satisfying interpretation I of O is clearly a valid

interpretation for the superset A as well, hence O would be consistent for (A,�).

Let us assume that O is consistent under (A,�). We build the set A∗ in

the following way. Let I be an arbitrary satisfying interpretation of O. We define

A∗ = {a|∃ u ∈ Univ s.t. I(u) = a}. Then it follows directly that I is a satisfying

interpretation for O under the (A∗,�) annotation. A∗ ⊆ A is clearly finite since

10Here, we assume that � is restricted to the elements of A∗.
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|A∗| ≤ |Univ| and Univ is finite.

Even though we can always reduce an infinite partial order to a finite subset

as shown above, the consistency check algorithm in Figure 3.2 must still be able to

handle computations on lines 4 and 16. This requires that for all infinite partial

orders used, we must be able to compute a finite representation of the sets A�a =

{a′ ∈ A|a′ � a} and Aa� = {a′ ∈ A|a � a′}. This is true of all annotations we found

in practice. For instance, for fuzzy values, let x ∈ [0, 1] be an arbitrary annotation.

Then the set A≤x = [0, x] and the set Ax≤ = [x, 1]; the case of timepoints or time

intervals is analogous. For such cases in which A�a and Aa� can be computed in

constant time, the complexity of the consistency check algorithm becomes O(n3 · e).

3.4 aRDF Query Language

In this section, we define the aRDF Query Language. We start by discussing

simple queries – annotated triples in which any of the subject, property, value or

annotation can be either constant or variable. We then extend these to general

conjunctive queries and discuss their relationship to SPARQL graph patterns for

RDF. Finally, we define the formal semantics of a correct answer to a query and

provide a simple query processing algorithm.

3.4.1 Simple queries

We assume the existence of sets of variables ranging over resources, properties,

values and A. A term over one of these sets is either a member of that set or a
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variable ranging over that set. An aRDF query is a triple (R, P : A, V ) where

R, P, A, V are all terms over resources, properties, annotations and values respec-

tively. An aRDF query of the above form is atomic if at most one term in it is a

variable.

Example 3.14. Consider the aRDF graphs in Figures 3.1(a)–(c). The following

are atomic aRDF queries:

• What committees was people/B000711 a member of between 1997 and 2001?

This is expressed as: (people/B000711,member:[1997, 2001],?v).

• What conditions is Flu associatedWith in at least 10% of cases (assuming

hasComplication, associatedWith are transitive)? This can be expressed as:

(Flu, associatedWith: .1, ?v).

• What reviewers gave the restaurant Grivanti scores of .5 or higher after 01/01/

2004? This can be expressed as: (?s, review: (01/01/2004,.5), Grivanti).

Definition 3.15 (Semi-unifiable aRDF triples). Suppose θ is a substitution. Two

aRDF triples (r, p : a, v), (r′, p′ : a′, v′) are θ semi-unifiable iff rθ = r′θ ∧ pθ =

p′θ ∧ vθ = v′θ.

We call triples following the conditions of Definition 3.15 semi-unifiable since

we are do not require the existence of a substitution from a to a′. Note that this is

particular, tractable case of the general semi-unifiability theory [30]. As usual, rθ

denotes the application of the substitution θ to r. The definition of semi-unifiable

aRDF queries also applies to aRDF triples as they are also simple aRDF queries.

A query consisting of a constant triple will return that triple if it exists in the
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aRDF database or the empty set otherwise. A query that has a least one variable

term will return the set of triples that are semi-unifiable with the query, are entailed

by the aRDF database and have an annotation that is “greater than or equal to”

the annotation in the query under the � order.

Definition 3.16 (Query answer). Let O be a consistent aRDF database and let

q = (rq, pq : aq, vq) be a atomic aRDF query on O. Let AO(q) be the set of triples

(r, p : a, v) such that for any (r, p : a, v) ∈ AO(q) the following hold:

1. (r, p : a, v) contains no variables.

2. (r, p : a, v) is semi-unifiable with q

3. O |= (r, p : a, v)

4. ((aq is a variable) or (aq � a))

The answer to q is defined as AnsO(q) = {(r, p : a, v) ∈ AO(q)| 6 ∃ S ⊆ AnsO(q) −

{(r, p : a, v)} s.t. S |= (r, p : a, v)}. We also define the set of answer substitutions

as ΘO(q) = {θ substitution |∃(r, p : a, v) ∈ AO(q) such that (r, p : a, v) = (rq, pa :

aq, vq)θ}.

AO(q) consists of all ground (i.e. variable-free) instances of q that are entailed

by O. However, AO(q) may contain redundant triples – for example, using our

time − int partial ordering, if (r, p : [1, 100], v) is in AO(q), then there is no point

including redundant triples such as (r, p : [1, 10], v) in it. AnsO(q) eliminates all

such redundant triples from AO(q).
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Example 3.17. Consider the queries in Example 3.14. The answers are:

• AnsO(q) = {(people/B000711, member: [1995, 2006], congress/committees/Senate-

EnvironmentAndPublicWorks), (people/B000711, member: [1995, 2007], congress/

committees/SenateCommerceScienceAndTransportation)}. Note that the an-

swer does not include for instance (people/B000711, member: [1997, 2001],

congress/ committees/Senate-EnvironmentAndPublicWorks) since it is already

entailed by a triple in the answer.

• AnsO(q) = {(Flu, associatedWith: .65, Pneumonia), (Flu, hasComplication:

.1, Emphysema), (Flu, hasComplication: .7, AcuteBronchitis}.

• AnsO(q) = {(Reviewer #21765, review: (4/07/04, .7), Grivanti)}.

Since we are looking for the answer to a query among all triples entailed by a

database, we would like to find a set of conditions of entailment that can be checked

by an algorithm. The interpretation-related conditions in Definition 3.6 do not

directly support a tractable computational approach to entailment. The following

result specifies a set of conditions that must hold when O entails a ground aRDF

triple.

Theorem 3.18. Let O be a consistent aRDF database and let (r, p : a, v) be an

aRDF triple. O |= (r, p : a, v) iff one of the following conditions holds:

(E1) ∃ (r, p : a1, v), . . . , (r, p : ak, v) ∈ O and let A be the set of values a′ such that

ai � a′ ∀i ∈ [1, k] (|A| ≥ 1 since O is consistent). Then ∀ a′ ∈ A, a � a′.

(E2) ∃ p-paths Q1, . . . , Qk between r and v. Let BQi = {b ∈ A|b � a′ ∀a′ ∈ AQi}.

Let A be the set of values a′ such that ∀ b ∈
⋃

i∈[1,k] BQi , b � a′ (|A| ≥ 1 since
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O is consistent). Then ∀ a′ ∈ A, a � a′.

Proof. Assume that none of (E1, E2) holds. Then we are in one of the

following cases:

• There is no edge labeled with p or a subproperty of p or a p-path between r, v.

Then for any satisfying interpretation that has I(r, p, v) 6= ⊥, the interpreta-

tion I ′ s.t. I ′(t) = I(t)∀ t ∈ Univ − {(r, p, v)} and I ′(r, p, v) = ⊥ would also

be a satisfying interpretation that implies O 6|= (r, p : a, v).

• ∃ (r, p : a1, v), . . . , (r, p : ak, v) ∈ O and ∃a′ ∈ A, a′ � a. Then for any

satisfying interpretation I, we can construct I ′ that differs from I in that

I ′(r, p, v) = a′; I ′ is also a satisfying interpretation, that does not satisfy

(r, p : a, v), which implies O 6|= (r, p : a, v).

• The case where there exist p-paths is similar to the case in which there exist

edges between r and v.

Given an database O, we can infer new triples from O using the following two

operators, f1, f2 (we use two operators for the purpose of readability):

1. f1(O) = {(r, p : a, v)|∃ (r, p : a1, v), (r, p′ : a2, v) ∈ O s.t. (p′, rdfs : subPropertyOf ∗,

p) ∧a is a minimal upper bound11 of a1, a2}.

2. f ′
2(O) = {(r, p : a, v)|∃(r, p′ : a1, r

′), (r′, p′′ : a2, v) ∈ O s.t. (p′, rdfs :

subPropertyOf ∗, p) ∧(p′′, rdfs : subPropertyOf ∗, p) ∧ (∀ a′ ∈ A, (a′ � a1 ∧

11a is an minimal upper bound of a1, a2 iff a1 � a and a2 � a and there is no other a′ such that
a′ � a and a1 � a′ and a2 � a′.
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a′ � a2)⇒ (a′ � a))}. We then define f2(O) = {(r, p : a, v) ∈ f ′
2(O)| 6 ∃ (r, p :

a′, v) s.t. a � a′}.

Let µ(O) = f1(O) ∪ f2(O).

Proposition 3.19 (Closure of O). µ is a monotonic operator, i.e. if O1 ⊆ O2

then µ(O1) ⊆ µ(O2). Hence, by the Tarski-Knaster theorem, it has a least fixpoint

denoted by lfp(O) called the closure of O.

Example 3.20. Let O be the aRDF database in Figure 3.1(b). Besides the triples in

O, lfp(O) also contains (F lu, associatedWith : .65, Pneumonia), (F lu, hasComplication :

.1, Emphysema), (F lu, hasComplication : .001, CorPulmonale).

The following result is a necessary and sufficient condition for entailment by

an aRDF database.

Proposition 3.21. Let O be an aRDF database. O |= (r, p : a, v) if and only if at

least one of the following conditions holds:

1. (r, p : a, v) ∈ lfp(O) OR

2. ∃(r′, p′ : a′, v′) ∈ lfp(O) s.t. {(r′, p′ : a′, v′)} |= (r, p : a, v). The second

condition avoids redundancy by requiring that from all annotated triples with

the same subject, property and value, only the one with the maximal (with

respect to �) annotations are present in the closure.

Proof. Follows from Definition 3.19, which corresponds to the conditions

in Theorem 3.18. Here, µ(O) has been defined to be the set of triples that can be
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inferred by conditions (E1),(E2) of Theorem 3.18 in exactly one step (i.e., considering

only pairs of triples). µ(O) is then augmented at every step until any triple entailed

by O is either contained in lfp(O) or trivially entailed by a triple in the fixpoint.

The above proposition provides an immediate algorithm to answer ground

atomic queries to an aRDF database. The next proposition will provide us with a

mechanism to answer atomic queries.

Proposition 3.22. Let O be a consistent aRDF database and q a query on O. Then

the following hold:

1. (Soundness) Ansq(O) ⊆ lfp(O).

2. (Completeness) For all substitutions θ such that qθ is ground and O |= qθ,

Ansq(O) |= qθ.

Proof. From Proposition 3.21, we know that all possible answers to a query

must either be in lfp(O) or entailed by a triple in lfp(O). Therefore, ∀(r, p : a, v) ∈

Ansq(O)− lfp(O), exists (r, p′ : a′, v) ∈ lfp(O) s.t. {(r, p′ : a′, v)} |= (r, p : a, v). On

one hand, (r, p′ : a′, v) 6∈ Ansq(O) since Ansq(O) is maximal w.r.t. entailment. On

the other hand, by Definition 3.16, (r, p : a, v) ∈ Ansq(O)⇒ (r, p′ : a′, v) ∈ Ansq(O)

should also be in the answer. We have a contradiction, therefore, Ansq(O) ⊆ lfp(O).

Intuitively, the closure lfp(O) is minimal set of triples entailed by O w.r.t. entailment

within the set µO.

The completeness of Ansq(O) results directly from the definition of a query

answer. Since O |= qθ, then the ground triple qθ must be in Aq(O) (Definition 3.16).

From the definition of Ansq(O), qθ is either in Ansq(O) or entailed by it.
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The above proposition gives us a very simple algorithm for answering simple

queries (which we will call naiveSimpleAnswer). Recall that simple queries are

atomic queries with at most one variable in it.

1. Consider query q = (r, p : a, v) on aRDF database O. Compute lfp(O).

2. A ← {(r′, p′ : a′, v′) ∈ lfp(O)|(r′, p′ : a′, v′) semi-unifiable with q ∧((a is a

variable ) ∨ (a � a′))}.

3. Eliminate from A triples (r, p : a, v) entailed by subsets of A− {(r, p : a, v)}.

However, we can do much better by avoiding the costly computation of lfp(O),

as we will show in Chapter 4.

3.4.2 Conjunctive queries

Conjunctive queries are simply sets of simple aRDF queries that have common

variables.

Definition 3.23 (Conjunctive query). A conjunctive query Q is a set of simple

queries such that for any simple query q ∈ Q, there exists a variable v in q that also

appears in another simple query q′ ∈ Q, q′ 6= q.

Note that a conjunctive query is basically a partially instantiated aRDF graph.

The condition imposed on the query is that the corresponding query graph is con-

nected. This requirement is best illustrated with an example.

Example 3.24. Consider the aRDF database in Figure 3.1(c). The following is

a conjunctive query over this database: which Italian restaurants located in the NE
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?v2

?v1 ItalianNE/USA locatedIn

review, (1/1/03, 0.5)

cuisine

Figure 3.3: Example aRDF conjunctive query graph

USA had a review with an annotation value a such that (1/1/2003, .5) � a? Since we

are using less-than for the partial order of both dates and review scores, this means we

are looking for Italian restaurants in the NE USA with reviews newer than January

1 2003 and review score higher than .5. The query can be expressed as Q = {(?v1,

cuisine, Italian), (?v1, locatedIn, NE/USA), (?v2, review: (1/1/03, .5), ?v1)}. A

graphical representation of the query is given in Figure 3.3. We remind the reader

that triples not annotated in this example are assumed to be annotated with (now, 1)

and that locatedIn is a transitive property. Note that the natural language version of

the query also asks for a projection operation – we only want the restaurants, hence

the possible substitutions for ?v1. Since projection can be easily performed once the

set of possible substitutions for ?v1 and ?v2 is computed, we do not explicitly define

this operation in this dissertation.

Note that this conjunctive query does meet the restriction in Definition 3.23,

since ?v1 appears in all the simple queries. However, the query {(?v1, cuisine,

Italian), (?v2, cuisine, Italian} is not a valid conjunctive query since the two simple

queries are not linked by any variable. This query can be simply decomposed in two

atomic queries that can be answered independently.
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We also point out that the aRDF conjunctive queries are very similar to

SPARQL query patterns, albeit without the syntactic sugar. The query Q is in

fact a SPARQL graph pattern and can be expressed as (annotations are omitted as

they cannot be expressed in standard SPARQL):

SELECT ?v1, ?v2 FROM ChefMoz WHERE

{(?v1 locatedIn NE/USA) . (?v1 cuisine Italian) .

(?v1 review ?v2)}

The SPARQL query language is based on the concept of graph patterns, which

correspond directly to aRDF conjunctive queries. The following features of SPARQL

are not included in our discussion of aRDF queries.

1. OPTIONAL graph patterns in SPARQL specify parts of the graph pattern

that can provide substitutions for variables in the query, but which need not

be matched for the query to return an answer.

2. UNION queries define a set of patterns that can be answered independently.

The resulting substitutions can then be unioned to give the query answer.

UNION and OPTIONAL patterns appeared in less than 3% of the queries

that were publicly available at www.rdfdata.org.

3. FILTER constructs allow conditions on the range of values the variables take.

Union and optional patterns are easy to treat by decomposing them into conjunctive

queries that can be answered independently. Filter conditions can be applied after

a conjunctive query has been processed.
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Definition 3.25 (Conjunctive query answer). Let Q = {q1, . . . , qn} be a conjunctive

aRDF query. Let ΘO(Q) = {(θ1, . . . , θn) ∈ ΘO(q1) × . . . × ΘO(qn)|θ1 ∪ . . . ∪ θn is

consistent12}. We define AO(Q) = {{e1, . . . , en}|∃ (θ1, . . . , θn) ∈ ΘO(Q) s.t. ∀ i ∈

[1, n], ei = qiθi}. The answer to Q is AnsO(Q) = {{e1, . . . , en} ∈ AO(Q)|(AO(Q) −

{{e1, . . . , en}}) 6|= {e1, . . . , en}}.

For a conjunctive query Q, one element of the answer is a set of aRDF triples

and each element of this latter set is an answer to one of the simple queries in Q.

AnsO(Q) has the same purpose as for simple queries, namely to eliminate redundant

elements from the answer.

Example 3.26. Consider the query Q in Example 3.24. The aRDF database in Fig-

ure 3.1(c) contains two answers to this query (remember that locatedIn is a transitive

property):

• {(Grivanti, locatedIn, NE/USA), (Grivanti, cuisine, Italian), (Reviewer #21765,

review: (4/07/04, .7), Grivanti)}

• {(Charlie’s, locatedIn, NE/USA), (Charlie’s, cuisine, Italian), (Reviewer #16742,

review: (22/05/03, .5), Charlie’s)}

Definition 3.25 also provides a naive method of answering a conjunctive query

Q (which we will call naiveConjunctiveAnswer):

1. Compute the substitutions (answers) ΘO(q) for each of the simple queries

q ∈ Q.

12We assume, as is frequently done in the unification literature [41], that a substitution can be
viewed as a system of equations and that a set of substitutions is compatible iff the union of the
set of equations corresponding to each substitution is a solvable system of equations.
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2. Compute the cartesian product Θ′ = Πq∈QΘQ(q).

3. Select only those elements in (θ1, . . . , θn) for which θ1 ∪ . . . ∪ θn is consistent.

4. Compute the set of answers AO(Q) by applying each remaining substitution

in Θ′ to Q.

5. Eliminate the redundant answers from AO(Q) to obtain AnsO(Q).

3.5 Summary

In this chapter, we have defined the formal syntax and semantics of Annotated

RDF, which allows RDF triples to be annotated with values drawn from a finite or

infinite partial order. We have define the notions of an aRDF database, aRDF inter-

pretation and consistency. We have also identified a set of necessary and sufficient

conditions for an aRDF database to be consistent and provided an algorithm that

checks these conditions. We have shown that aRDF is capable of supporting diverse

forms of reasoning as well as combinations (e.g., via fuztime) and has a rich declar-

ative semantics. Finally, we have defined a language and semantics of queries over

aRDF and showed their relationship to SPARQL graph patterns. In Chapter 4, we

introduce a set of very efficient query algorithms for aRDF.
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Chapter 4

Querying Annotated RDF

In Chapter 3, we have defined the formal syntax and semantics of Anno-

tated RDF. In this chapter, we will introduce algorithms to query aRDF databases.

We provide several algorithms for simple one-variable queries and two methods

for SPARQL-like conjunctive queries. We also address the problem of view mainte-

nance, in which we have to recompute the answer to a query when a triple is inserted

or deleted. We conclude with an extensive evaluation of our query algorithms over

two real-world datasets (ChefMoz and GovTrack) and a set of synthetically gener-

ated data. Our claim that aRDF can answer queries more efficiently than standard

RDF is supported by comparisons with leading systems such as Jena2, Sesame2 and

Oracle 11g. aRDF answers queries 1.5 to 3.5 times faster than these systems and

scales very well for large selectivity queries and large query sizes.

4.1 aRDF Query Processing Algorithms

We develop the aRDF query processing algorithms incrementally, starting with

the problem of atomic queries and generalizing to simple queries with more than

one variable. We then give two distinct methods of answering conjunctive queries.

The first is based on a subgraph matching algorithm, whereas the second answers

each element in the conjunction separately and then heuristically determines a good
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order for the necessary joins. In this chapter, we will continue to assume A is finite

for clarity, but the extension to infinite partial orders in Section 3.3 still applies.

4.1.1 Answering atomic queries

Although the closure of an aRDF database gives a simple method of computing

the answer to queries (as shown in Chapter 3), the computation of lfp(O) is poten-

tially very expensive. In fact, we show that we can do much better by building only

those parts of the closure that are of interest to the given query. We start by focus-

ing on atomic queries – i.e., simple queries with only one variable. The algorithm

for queries of type q = (r, p : a, ?v) is given in Figure 4.1; computing the answers to

atomic queries of type q = (?r, p : a, v) is almost identical (with the proper notation

change) and therefore is omitted.

Algorithm atomicAnswerV starts by analyzing all triples that are semi-unifiable

with the query (lines 3–9) if the property pq in the atomic query is non-transitive.

For all triples with the same subject, property and object (but different annota-

tions), atomicAnswerV determines the greatest lower bound of their annotations

(lines 5–7). If pq is transitive, then atomicAnswerV iterates through all the pq-

paths starting at the subject rq of the query. For each such pq-path, the algorithm

determines the greatest lower bound of the set of annotations on that path and

forms the corresponding answer (lines 12–15).

Example 4.1. Consider the aRDF graph in Figure 3.1(b) and the query (Flu, as-

sociatedWith: 0.1, ?v). Since associatedWith is transitive, the algorithm will go
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Algorithm atomicAnswerV (O,A,�, q)

Input: Consistent aRDF database O, annotation (A,�) and query q = (rq, pq :
aq, ?v).

Output: AnsO(q).
1: O ← O|pq

2: Ans← ∅
3: if pq is non-transitive then

4: for (rq, p
′, v′) ∈ {(rq, p

′ : a′, v′) ∈ O} do

5: A← {a′ ∈ A|(rq, p
′ : a′, v′) ∈ O}

6: B ← {b ∈ A|∀a ∈ A, a � b}
7: C ← {c ∈ B| 6 ∃c′ ∈ B, c′ 6= c s.t. c′ � c}
8: Ans← Ans ∪ {(rq, p

′ : c, v′)|c ∈ C ∧ aq � c}
9: end for

10: else if pq transitive then

11: for all v′ s.t. ∃ Q1, . . . , Qk p-paths from rq to v′ do

12: B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi, b � a′}
13: C ← {c ∈ A|∀b ∈ B, b � c}
14: D ← {d ∈ C| 6 ∃ d′ ∈ C, d′ 6= d s.t. d′ � d}
15: Ans← Ans ∪ {(rq, pq : d, v′)|d ∈ D ∧ aq � d}
16: end for

17: end if

18: return Ans

Figure 4.1: Answering atomic aRDF queries (rq, pq : aq, ?v)

on the second branch, starting at line 10. The loop on line 11 iterates through

all the values reachable through associatedWith-paths from Flu, which are exactly

{AcuteBronchitis, Pneumonia, Emphysema, CorPulmonale}. Let us consider the

second iteration, where v′ = Pneumonia. There are two associatedWith paths

between Flu and Pneumonia. For the first path, going through AcuteBronchitis,

A(Q
1) = {.7, .65}. For the second, direct path, AQ2 = {.15}. Therefore B on line 12

is exactly the interval (0, .65] and C = [.65, 1]. As a result, on line 14, D = {.65}

and the triple (Flu, associatedWith: .65, Pneumonia) is added to the answer.

The following theorem states that atomicAnswerV is correct and runs in

polynomial time.
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Proposition 4.2. Let O be an aRDF graph and let n be the number of vertices in

the graph O, let e = |O| and let p = |P|. Let (A,�) be a partial order and let

a = |A|. Then the following hold:

1. atomicAnswerV (O,A,�, q) returns AnsO(q).

2. atomicAnswerV (O,A,�, q) is O(n2 · e + n · e · a2).

Proof. Algorithm correctness follows directly from Theorem 3.18. Lines 3—9

correspond to condition (E1), whereas lines 10—17 correspond to condition (E2).

The complexity result is given by the loop on lines 10—17. We start by

determining all values reachable by pq-paths from rq and the paths themselves.

This process takes at most O(n2 · e) steps. Since there are at most O(n) pq-paths

originating from rq, each with at most O(e) edges and the annotation for each path

is bounded by a, line 12 will be run at most O(n · e · a2) times. Since the sizes of

B, C, D are all bounded by a, the same result holds for lines 13—15.

Algorithm atomicAnswerP(O,A,�, q)

Input: Consistent aRDF database O, annotation (A,�) and query q = (rq, ?p :
aq, vq).

Output: AnsO(q).
1: Ans← {(rq, p : a, vq)|aq � a}
2: for all p′ such that ∃ Q1, . . . , Qk p′-paths from rq to vq do

3: B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi, b � a′}
4: C ← {c ∈ A|∀b ∈ B, b � c}
5: D ← {d ∈ C| 6 ∃ d′ ∈ C, d′ 6= d s.t. d′ � d}
6: Ans← Ans ∪ {(rq, p

′ : d, vq)|d ∈ D ∧ aq � d}
7: end for

8: return {(r′, p′ : a′, v′) ∈ Ans| 6 ∃ S ⊆ Ans − {(r′, p′ : a′, v′)} s.t. S |= (r′, p′ :
a′, v′)}

Figure 4.2: Answering atomic aRDF queries (rq, ?p : aq, vq)

An even tighter complexity bound holds when the annotation is a complete
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lattice. In this case, after computing the set A on line 11, we can simply compute

the least upper bound of the elements in A and thus obtain set C (on line 13). For

complete lattices such as Atime−int, this can be done in at most a linear number of

steps in |A|. Thus, the overall complexity of the algorithm becomes O(n2 ·e+n·e·a).

Algorithm atomicAnswerP given in Figure 4.2 computes the answer to atomic

queries with an unknown property. The algorithm iterates through all p-paths

between the subject rq and the object vq of the query. For each such p-path, it

computes the set of annotations on the path and determines its greatest lower bound

(lines 3–5). It then uses the property on the p-path, the greatest lower bound

computed and the subject rq and value vq of the query to form an answer (line 6).

Finally, atomicAnswerP eliminates any redundant triples on line 8.

The main difference between atomicAnswerP and atomicAnswerV is that the

graph we need to explore is the one containing all paths between r and v, instead of

the one containing all p-paths starting at r. Depending on the shape of the aRDF

database (e.g., breadth vs. depth), either search space may be larger, but the worst

case complexity is identical.

Proposition 4.3. Let O be an aRDF graph and let n be the number of vertices in

the graph O, let e = |O| and let p = |P|. Let (A,�) be a partial order and let

a = |A|. Then the following hold:

1. atomicAnswerP (O,A,�, q) returns AnsO(q).

2. atomicAnswerP (O,A,�, q) is O(n2 · e + n · e · a2).

Proof. The correctness of the algorithm again follows from Theorem 3.18.
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Algorithm atomicAnswerA(O,A,�, q)

Input: Consistent aRDF database O, annotation (A,�) and query q = (rq, pq :
?a, vq).

Output: AnsO(q).
1: O ← O|pq

2: Ans← ∅
3: if pq is non-transitive then

4: for (rq, p
′, vq) ∈ {(rq, p

′ : a′, vq) ∈ O|p′ ∈ SP (pq)} do

5: A← {a′ ∈ A|(rq, p
′ : a′, vq) ∈ O}

6: B ← {b ∈ A|∀a ∈ A, a � b}
7: C ← {c ∈ B| 6 ∃c′ ∈ B, c′ 6= c s.t. c′ � c}
8: Ans← Ans ∪ {(rq, p

′ : c, vq)|c ∈ C}
9: end for

10: else if pq transitive then

11: {Q1, . . . , Qk} ← {p-paths from rq to vq}
12: B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi, b � a′}
13: C ← {c ∈ A|∀b ∈ B, b � c}
14: D ← {d ∈ C| 6 ∃ d′ ∈ C, d′ 6= d s.t. d′ � d}
15: Ans← Ans ∪ {(rq, pq : d, vq)|d ∈ D}
16: end if

17: return Ans

Figure 4.3: Answering atomic aRDF queries (rq, pq :?a, vq)

The case of non-transitive properties in handled directly in the initialization of Ans

on line 1. Similarly to algorithm atomicAnswerV , lines 2–7 handle case (E2) of

Theorem 3.18.

The complexity follows from the loop in lines 2–7 of the algorithm. Computing

all paths between rq and vq takes O(n2 · e) iterations, and there are at most O(n)

paths (in the worst case, a path that passes through every vertex in the graph

different from rq and vq). Each path has less than O(e) edges, hence we obtain the

same complexity result as for atomicAnswerV .

Algorithm atomicAnswerA given in Figure 4.3 computes the answer to atomic

queries with unknown annotation. Since the subject, property and object of the
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query are all known, atomicAnswerA only needs to determine the greatest lower

bound for the set of annotations on triples with the given subject, property and ob-

ject. It does so for non-transitive properties in lines 3–9 and for transitive properties

on lines 10–16. Since the subject, property and object are all known, the algorithm

has lower complexity than its two counterparts.

Proposition 4.4. Let O be an aRDF graph and let n be the number of vertices in

the graph O, let e = |O| and let p = |P|. Let (A,�) be a partial order and let

a = |A|. Then the following hold:

1. atomicAnswerA(O,A,�, q) returns AnsO(q).

2. atomicAnswerA(O,A,�, q) is O(n · e · a2).

Proof. The correctness of the algorithm also follows from Theorem 3.18 -

the two branches of the conditional on line 3 correspond to cases (E1) and (E2)

respectively. Since we now know the resource, property and value in the query, the

step in which we compute all paths (line 11) can be performed in at most O(n · e)

steps. This means that, similarly to the previous two atomic answer algorithms, the

complexity of atomicAnswerA is O(n · e + n · e · a2) = O(n · e · a2).

4.1.2 Simple non-atomic queries

In the previous section, we have defined algorithms that compute the answer

to atomic queries in polynomial time, by avoiding the expensive computation of

lfp(O). The common trait of all atomicAnswerX (where X is one of V, P, A) is that
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they compute a part of lfp(O) localized to the subset of the database that contains

the answer to the query. We extend this approach to simple non-atomic queries.

Algorithm answerSV (O,A,�, q)

Input: Consistent aRDF database O, annotation (A,�) and query q = (?r, pq :
aq, ?v).

Output: AnsO(q).
1: O ← O|pq

2: Ans← ∅
3: if pq is non-transitive then

4: for (r′, p′, v′) ∈ {(r′, p′ : a, v′) ∈ O} do

5: A← {a ∈ A|(r′, p′ : a, v′) ∈ O}
6: B ← {b ∈ A|∀a ∈ A, a � b}
7: C ← {c ∈ B| 6 ∃c′ ∈ B, c′ 6= c s.t. c′ � c}
8: Ans← Ans ∪ {(r′, p′ : c, v′)|c ∈ C ∧ aq � c}
9: end for

10: else if pq transitive then

11: for all r′, v′ s.t. ∃ Q1, . . . , Qk pq-paths from r′ to v′ do

12: B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi, b � a′}
13: C ← {c ∈ A|∀b ∈ B, b � c}
14: D ← {d ∈ C| 6 ∃ d′ ∈ C, d′ 6= d s.t. d′ � d}
15: Ans← Ans ∪ {(r′, pq : d, v′)|d ∈ D ∧ aq � d}
16: end for

17: end if

18: return Ans

Figure 4.4: Answering simple aRDF query (?r, pq : aq, ?v)

As an example, we show an algorithm for a simple non-atomic query in

which the subject and value are both variables, i.e., a simple query of the form

(?r, p : a, ?v). The algorithm in Figure 4.4 is an adaptation of atomicAnswerS and

atomicAnswerV to answer such queries. There are two main differences between

answerSV and atomicAnswerV :

1. In answerSV , line 4 now iterates through all the (r, p, v) combinations in

O|pq
, whereas in atomicAnswerV it would iterate through all the (rq, p, v)

combinations since rq was a constant.
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2. In answerSV , line 11 iterates through all the pairs r′, v′ that have a pq-path

between them, whereas in atomicAnswerV it only iterates through the vertices

v′ that rq has a pq-path to.

Algorithm answerSV iterates through all subject-object pairs that are con-

nected through the query property pq. If pq is transitive, then these pairs are ob-

tained by iterating through all pq-paths in the database (the loop on line 11). If pq is

non-transitive, these pairs are obtained by looking at all triples containing pq as the

property (loop on line 4). In either case, we consider the set of annotations on the

triples connecting the subject and object values found and determine the greatest

lower bound of this set (lines 5–8 for non-transitive pq and lines 12–15 for transitive

pq).

Proposition 4.5. Let O be an aRDF graph and let n be the number of vertices in

the graph O, let e = |O| and let p = |P|. Let (A,�) be a partial order and let

a = |A|. Then the following hold:

1. answerSV (O,A,�, q) returns AnsO(q).

2. answerSV (O,A,�, q) is O(n3 · e + n2 · e · a2).

Proof The correctness of the algorithm follows from Theorem 3.18. Similarly

to the proof of Proposition 4.2, in lines 4–9 we include in the answer all aRDF triples

on the property pq that match condition (E1) of Theorem 3.18 and on lines 10–16

we analyze all aRDF pq paths in the aRDF database that match condition (E2) of

Theorem 3.18. As seen before, all triples entailed by the aRDF database fall into
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one of the above-mentioned categories, therefore the algorithm returns all possible

answers.

In terms of complexity, note that we need (O)(n3 · e) steps to compute the

paths on line 11. There are now at most n2 pq-paths considered on line 11, which

means line 12 will be run at most O(n2 · e · a2). The overall complexity of the

algorithm will therefore be O(n3 · e + n2 · e · a2). Note that a complexity of this

form is intuitively what we expect, since the difference between atomicAnswerV

and answerSV is that the subject of the query becomes variable. Therefore, we can

obtain answerSV from atomicAnswerV by adding an enclosing loop that iterates

through all possible values for ?r. Indeed, the complexity for answerSV can by

computed by multiplying the complexity value of atomicAnswerV by the number

of resources n. The same process can be applied to answer any simple non-atomic

query. Since the algorithms are very similar to their atomicAnswer counterparts,

we omit their formal descriptions.

4.1.3 Conjunctive queries

For simple queries, we clearly want to avoid the expensive computation of

lfp(O) in naiveSimpleAnswer. For conjunctive queries, it is not immediately clear

which of computing lfp(O) or computing the cartesian product Πq∈QΘQ(q) in step (2)

of naiveConjunctiveAnswer is more computationally intensive. The comparison

depends on both the aRDF database O and on the size of the conjunctive query Q

(the number of variables). Therefore, we propose two distinct methods of answering
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conjunctive queries:

Algorithm conjunctAnswer GraphMatching(O,A,�, Q)

Input: Consistent aRDF database O, annotation (A,�) and query Q = {qi =
(ri, pi : ai, vi)|i ∈ [1, m]}. GQ is the graph representation of the query Q.

Output: AnsO(q).
1: O ← lfp(O)
2: Ans← ∅
3: execute graph matching algorithm on GQ and O
4: for all matchings between GQ and O do

5: ok ← true
6: for i ∈ [1, m] do

7: (r, p : a, v)← the triple in O matched to qi

8: if ¬(ai variable) ∧ ¬(ai � a) then

9: ok ← false
10: break

11: end if

12: end for

13: if ok then

14: Ans← Ans ∪ { set of triples matched to GQ}
15: end if

16: end for

17: return Ans

Figure 4.5: Answering conjunctive aRDF queries through inexact graph matching

1. conjunctAnswer GraphMatching is based on the observation that conjunc-

tive queries are partially instantiated aRDF graphs. Therefore, inexact graph

matching algorithms [27, 9] can be used to match the query graph against the

aRDF graph. To obtain a correct answer, graph matching must be performed

on the closure of the original database — therefore we must compute lfp(O).

2. conjunctAnswer Ordering uses the efficient simple query answering algo-

rithms to derive answers for the elements of the conjunctive query, thus avoid-

ing the fixpoint computation. The algorithm uses a heuristic ordering of the

elements in the conjunctive query to compute the smallest possible part of the
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Algorithm onjunctAnswer Ordering(O,A,�, Q)

Input: Consistent aRDF database O, annotation (A,�) and query Q = {qi =
(ri, pi : ai, vi)|i ∈ [1, m]}. For a simple query q, card(q) represents an estimate
of the cardinality of the answer for q.

Output: AnsO(q).
1: construct graph HQ {Graph HQ has a vertex for each component of the con-

junctive query. The nodes for two components containing the same variable
are linked through an edge labeled with that variable. Figure 4.7 contains an
example graph.}

2: while there exists a cycle in HQ do

3: choose qi with the lowest card(qi) in the cycle
4: qj ← value q that maximizes card(q) over the set {q|∃(q, qi) ∈ HQ}
5: HQ ← HQ − {(qi, qj)}
6: end while

7: L← depth-first traversal of HQ starting with the component q with the smallest
card(q) {L is a FIFO queue}

8: Θ← ∅
9: while L 6= ∅ do

10: q ← dequeue(L)
11: compute ΘO(q)
12: Θ← {(θ, θ′)|θ′ ∈ Θ and θ′ ∈ ΘO(q)}
13: Θ← Θ− {(θ1, . . . , θk)|θ1 ∪ . . . ∪ θk inconsistent }
14: end while

15: compute AO(Q) and AnsO(Q) based on Θ
16: return Ans

Figure 4.6: Answering conjunctive aRDF by heuristic ordering of the component
queries

cartesian product.

Algorithm conjunctAnswer GraphMatching (Figure 4.5) starts by comput-

ing the closure lfp(O) on line 1. After lfp(O) is computed, inexact graph matchings

[27, 9] are used to determine potential answers to the conjunctive query (line 3).

Since graph matching algorithms cannot take the semantics of the aRDF annota-

tions into account, we have to check the potential answer triple by triple against

the query annotation (if constant) on lines 7–11. If all triples have “better” anno-

tations (in terms of the � order) than the corresponding query triples, the answer
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is stored (line 14). The complexity of conjunctAnswer GraphMatching is O(n!)

in the worst case, since graph matching algorithms are factorial in the size of the

graph [9]. However, we have determined experimentally that the average complexity

is close to polynomial in the size of the database and in the size of the query.

q1 = (?v1, locatedIn, NE/USA) q2 = (?v1, cuisine, Italian)

q2 = (?v1, review: (1/1/03, .5), ?v2)

?v1 ?v1

?v1

Figure 4.7: Example HQ graph

Algorithm conjunctAnswer Ordering (Figure 4.6) starts by creating a partial

order of the component queries in the conjunctive query Q (lines 1—6). The partial

order indicates which parts of the cartesian product should be computed first in

order to minimize the number of operations. The process is similar to that of

determining the ordering of joins in a relational databases. To create a partial order

for the component queries, we create an undirected labeled graph HQ (line 1) as

follows:

• Each qi ∈ Q is a vertex in HQ. There are no other vertices in HQ.

• There exists an edge between qi and qj labeled with ?v iff there exists a variable

?v that appears in both qi and qj .
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The resulting HQ graph may contain cycles for certain queries. For instance,

the conjunctive query Q = {q1 = (?v1, associatedWith : .65, ?v2), q2 = (?v2,

associatedWith : .4, ?v1)} results in a graph with two edges, both between q1 and

q2, labeled with ?v1 and ?v2 respectively. In such cases, it is not clear which of q1,

q2 should be executed first. To break cycles, we use an estimate of the cardinality of

each component query based on a very recent method [38] that uses a pattern-based

summarization framework to estimate the cardinality of RDF graph patterns. The

method uses minimal overhead, especially since we only estimate cardinalities for

simple queries. Based on the cardinality estimation, we break cycles as follows:

1. For each cycle, we choose the node qi ∈ HQ with the lowest cardinality.

2. Let qj be the neighbor of qi with the highest estimated cardinality.

3. We remove the edges between qi and qj .

Intuitively, we remove those edges (lines 2—6) that would not allow a query with a

low estimated cardinality to be executed before other queries with higher cardinality

estimates. The cycle-free graph thus obtained is a partial order of the component

queries that minimizes the number of cartesian product operations.

Finally, the algorithm takes the depth-first traversal of HQ (line 8) and incre-

mentally computes the cartesian product of the sets of substitutions for each compo-

nent query (lines 12—14). We use a depth-first traversal rather than a breadth-first

traversal to minimize the number of operations. A breadth-first traversal will com-

pute cartesian products between the ΘO(qi) and ΘO(qj), even if qi and qj have no

variables in common. This will produce a result of size |ΘO(qi)| · |ΘO(qj)| (since
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there are no common variables). However, if we go depth-first, we will favor queries

qi, qj with common variables and thus with a smaller size for the cartesian product

ΘO(qi)×ΘO(qj).

We will illustrate the conjunctAnswer Ordering through an example.

Example 4.6. Consider the query in Figure 3.3 on the aRDF database in Figure

3.1(c). The HQ graph for this conjunctive query is shown in Figure 4.7. Since there

is a cycle, the algorithm will enter the loop on line 2. In this case, the cardinality

estimation method will most likely give lower cardinalities to q1 and q2, which con-

tain a single variable. Let us assume that q2 has the lowest cardinality and q3 the

highest. On line 5, the edge between q2 and q3 will be deleted and the depth-first

traversal on line 8 will yield L = {q2, q1, q3}. On line 11, we will remove q2 from

the queue and compute (line 12) ΘO(q2) = {?v1 ← Charlie′s, ?v1 ← Grivanti}.

Θ = ΘO(q2). At the next step, we will remove q1 from the queue and obtain the same

set of substitutions, which means Θ will not change. Finally, on the third iteration,

ΘO(q3) ={(?v1 ← Charlie’s, ?v2 ← Reviewer #21765), (?v1 ← Grivanti, ?v2 ←

Reviewer #21765), (?v1 ← Charlie’s, ?v2 ← Reviewer #16742)}. After computing

the cartesian product and removing inconsistent substitutions, Θ = ΘO(q3).

Proposition 4.7 (Correctness). The algorithm conjunctAnswer Ordering(O,A,

�, Q) is correct, i.e., it terminates and returns AnsO(Q).

Proof. The loop on lines 2—6 will always terminate since we are removing

at least one edge from HQ at each iteration. This implies that eventually HQ will

be cycle free. The loop on line 10–15 is on the finite set L. Note that lines 10 – 16
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correspond to the process described in Definition 3.25. Since we are computing a

cartesian product, the particular order that we choose in lines 1—6 does not affect

the correctness of the result, only the computation time.

Proposition 4.8 (Complexity). The worst time complexity of conjunctAnswer Ordering

is O((n2 · p)|Q|), where n = |R|, p = |P| and |Q| is the number of simple queries in

Q.

Proof. For each component query, the worst case cardinality of the answer is

O(n2 · p). Since we have p such simple queries, the worst-case cartesian product is

O((n2·p)|Q|). However, our experimental results show that in practice the cardinality

of the answer of each component query is linear in the size of the database (with a

very low factor) even for queries with high selectivity.

4.2 aRDF View Maintenance

In this section, we explore solutions to the aRDF view maintenance problem.

Suppose a query q is often posed by users. It then becomes efficient to store the

results of q and if possible avoid the expensive re-computation of AnsO(q) by incre-

mentally updating the result when the underlying aRDF database changes. Views

are omnipresent in databases, and there is a large literature on them summarized

by Gupta and Mumick [21]. The queries q defining a view can be used to express

conditions that users want to track.

In order to maintain aRDF views, we require that an additional data structure

called the path annotation function be stored with the aRDF database. This new
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data structure exploits the fact that, as seen in the atomic answer algorithms, we are

interested mainly in the annotations on a p-path rather than the actual vertices on

the path. In the following sections, we will explore in detail how the path annotation

function can be computed, and how we can incrementally check consistency on

updates. For the rest of the section, let q = (rq, pq : aq, vq) be a simple query and

let R = AnsO(q) be the stored answer to q. We will present our view maintenance

algorithms for simple queries. Conjunctive queries can be easily maintained in the

following way:

1. Whenever a conjunctive query view is created, create and store an answer set

for all of the simple queries that are part of the conjunction.

2. In case of insertions and deletions, execute the view maintenance algorithms

in this section on each conjunction component.

3. Use conjunctAnswer Ordering to obtain an answer to the conjunctive view

based on the answers of the conjunction components.

There are two main challenges in incrementally updating views:

1. Check the aRDF database consistency incrementally when the database changes

through insertions and/or deletions.

2. Re-compute the answers to the queries incrementally.
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4.2.1 Path Annotation Function

In order to recompute path annotations quickly when the aRDF database

changes, we need to maintain an additional data structure called the path annota-

tion function. We point out that in all the atomicAnswer and answer algorithms,

we are only interested in the sets of annotations on each path and not the actual

resources on the path. Therefore, we only need store subsets of A that annotate p-

paths in the aRDF database to quickly re-compute query answers when the database

changes.

Definition 4.9 (Path annotation function). Let q be a simple query. The path

annotation function δ for q is a function δ : AnsO(q) → 22A such that ∀(r, p :

a, v) ∈ R, P is a p-path between r and v iff AP ∈ δ(r, p : a, v), where AP is the set

of annotations for the triples on the path P .

In short, a path annotation function maps elements of an answer set to a set

containing sets of annotations. Each element (r, p : a, v) is mapped to a set X in

which every element A ∈ X is the set of annotations for a p-path between r and v.

Example 4.10. Consider the aRDF database in Figure 3.1(b) and the query q=(Flu,

associatedWith: .5, ?v). The answer to this query is AnsO(q) ={(Flu, associated-

With : .65, Pneumonia), (Flu, hasComplication: .7, AcuteBronchitis)} and δ(Flu,

associatedWith : .65, Pneumonia)={{(.7, .65),(.15)}}.

We should note a few important properties of the path annotation function:

1. δ(r, p : a, v) does not depend on the annotation a; more precisely, δ(r, p :
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. . . . . . . . .

10. else if p transitive then

11. for all v′ s.t. ∃ Q1, . . . , Qk p-paths from r to v′ do

12’. δ(r, p, v′)← {AQ1 , . . . , AQk};

12. B ← {b ∈ A|∃i ∈ [1, k] s.t. ∀ a′ ∈ AQi , b � a′};

. . . . . . . . .

Figure 4.8: Computing the path annotation function

a, v) = δ(r, p : a′, v), ∀ (r, p : a, v), (r, p : a′, v) ∈ AnsO(q). We will simply

write δ(r, p, v) to denote the value of the path annotation function.

2. δ is a shared data structure. In other words, δ is not dependent on a particular

query q. The path annotation function can be computed and stored either at

system startup or incrementally as queries are being answered.

As an example of how to compute δ incrementally, Figure 4.8 shows how to

do this during the atomicAnswerV algorithm. In the newly inserted line (12’), the

value of δ for a triple that could be in the answer can be simply stored from what

the algorithm has already computed.

4.2.2 Incremental Consistency Checking

In this section, we look at the problem of incremental consistency verification

and answer re-computation when a new triple is inserted into the aRDF database.

Let (ri, pi : ai, vi) be the newly inserted triple. Of course, our goal is to avoid a full

re-computation if possible.

Although the aRDFconsistency algorithm is quite efficient in practice, we
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wonder whether we can do better by analyzing only a part of the aRDF database

which is “close” to the newly inserted triple. Algorithm aRDFconsistencyInsert

(Figure 4.9) accomplishes this in the following way. For a newly inserted triple

(ri, pi : ai, vi), the algorithm recomputes the set of annotations on triples with

subject ri, property pi and object vi (line 1). The algorithm then checks that this

set of annotations has a least upper bound (line 1). Furthermore, for all new p-paths

that are newly created after inserting the triple, aRDFconsistencyInsert computes

the set of annotations for each p-path and checks that the set has a greatest lower

bound (lines 9 –16).

Algorithm aRDFconsistencyInsert(O, (ri, pi : ai, vi))

Input: Consistent aRDF database O, newly inserted triple (ri, pi : ai, vi).
Output: True iff O ∪ {(ri, pi : ai, vi)} is consistent.
1: A← {a ∈ A|∃(ri, pi : a, vi) ∈ O} ∪ {ai}
2: if 6 ∃ a ∈ A s.t. ∀a′ ∈ A, a′ � a then

3: return False
4: end if

5: for p ∈ P transitive do

6: O′ ← O|p
7: O′′ ← (O ∪ {(ri, pi : ai, vi)})|p
8: P ← {paths Q ⊆ O′′| 6 ∃Q′ ⊆ O′′, Q′ ⊃ Q}
9: for r, r′ connected by additional paths in O′′ than in O′ do

10: P ′ ← {Q ∈ P |Q is a path between r, r′}
11: A← {AQ|Q ∈ P ′}
12: B ← {b ∈ A|∃AQ s.t. ∀a ∈ AQ, b � a}
13: if 6 ∃a ∈ A s.t. ∀b ∈ B, b � a then

14: return False
15: end if

16: end for

17: end for

18: return True

Figure 4.9: Incremental consistency verification for insertions

Example 4.11. Consider the example aRDF database in Figure 3.1(b) and let the
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triple to be inserted be (Pneumonia, associatedWith: .25, CorPulmonale). The

algorithm will determine on line 6 that Flu and CorPulmonale, as well as Pneumonia

and CorPulmonale are linked together by new paths. Let us consider the step in

which r = Flu, r’ = CorPulmonale. The path annotations are recomputed in A

to be {{.7, .001}, {.15, .25}}. B will be computed to be the interval [0, .15] and the

condition on line 10 is clearly false. After verifying the remaining pair of newly

connected resources, the algorithm will return True.

Theorem 4.12. Let O be a consistent aRDF database and let (ri, pi : ai, vi) be

an aRDF triple. Then aRDFconsistencyInsert(O, (ri, pi : ai, vi)) returns true iff

O ∪ {(ri, pi : ai, vi)} is a consistent aRDF database.

Proof pi is a non-transitive property. According to condition (C1) of Theorem

3.8, O ∪ {(ri, pi : ai, vi)} is consistent if and only if the set of annotations on triples

(ri, pi, vi) has an upper bound. In lines 1–4, aRDFconsistencyInsert will return

False if and only if the set does not have such a bound, hence the algorithm returns

the correct answer in this case.

pi is a transitive property. Since O is consistent, the only paths that could

cause O ∪ {(ri, pi : ai, vi)} to be inconsistent according to condition (C2) of The-

orem 3.8 are paths that contain the newly inserted (ri, pi : ai, vi). In the loop

on line 9, aRDFconsistencyInsert iterates over all resources that have a new

path between them created by the insertion of (ri, pi : ai, vi). For all such paths,

aRDFconsistencyInsert performs the same checks in lines 10–15 as the aRDFconsistency

algorithm does on lines 12–14. aRDFconsistencyInsert therefore returns False if
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and only if such paths do not verify condition (C2) of Theorem 3.8.

In the worst case, the complexity of the aRDFconsistencyInsert is the same

as aRDFconsistency; however such a scenario requires that every edge in the theory

including (ri, pi : ai, vi) is on a p-path between the same two vertices. In the general

case, aRDFconsistencyInsert looks only at the strongly connected component of

O|pi
that contains the newly inserted triple.

4.2.3 Insertions

In this section we address the problem of incrementally computing R′ =

AnsO∪{(ri,pi:ai,vi)}(q) from R and δ. The algorithm viewMaintenanceInsert show

in Figure 4.10 performs this incremental computation. To keep the formal descrip-

tion as simple as possible, we assume that pq is a constant; the cases in which pq

is variable are a straightforward extension. We will also assume that δ is updated

accordingly after a successful insertion. This can be done while performing the view

maintenance on insertion, in the same way as in Figure 4.8.

The algorithm starts by analyzing the cases in which the property of the triple

to be inserted is non-transitive (lines 5—11). If this is the case, we have to recompute

the sets of annotation on direct edges between ri and vi on the property pi. If pi

is transitive, then we analyze three different cases for each element in the previous

query answer R:

(1) If ri has become connected through pq paths to vertices v 6= vi (lines 16–19)

(2) If vi has become connected through pq paths to vertices r 6= ri (lines 22–25)
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method addResult(Res,A, r,p,v)
1: B ← {b ∈ A|∀a ∈ A, a � b}
2: C ← {b ∈ B| 6 ∃b′ ∈ B, b′ 6= b s.t. b′ � b}
3: Res← Res− {(r, p : a, v) ∈ R}
4: Res← Res ∪ {(r, p : c, v)|c ∈ C}

Algorithm viewMaintenanceInsert(O, q, R, δ,(ri, pi : ai, vi))

Input: Consistent aRDF database O, query q = (rq , pq : aq, vq), answer R, precomputed path
annotation function δ and newly inserted triple (ri, pi : ai, vi).

Output: R′ = AnsO∪{(ri,pi:ai,vi)}(q).
1: R′ ← R

2: if pq is transitive and pi 6∈ SP (pq) then

3: return R

4: end if

5: if pi is not transitive then

6: if ∃a ∈ A s.t. (ri, pi : a, vi) ∈ R then

7: A← {a′ ∈ A|(r, pi : a′, vi) ∈ O} ∪ {ai}
8: B ← {b ∈ A|∀a ∈ A, a � b}
9: C ← {c ∈ B| 6 ∃c′ ∈ B, c′ 6= c s.t. c′ � c}

10: R′ ← R− {(ri, pi : a, vi) ∈ R} ∪ {(ri, pi : c, vi)|c ∈ C ∧ a � c};
11: end if

12: else {pi is transitive}
13: for (r, p : a, v) ∈ R do

14: for p′ ∈ SP (pi) ∩ SP (p) do

15: if (ri, pq, v) semi-unifiable with q then

16: for all p′-paths P from vi to r do

17: A← {b � ai|∃S ∈ δ(r, p, v) s.t. ∀a′ ∈ S ∪AP , b � a′}
18: addResult(R′, A, ri, p

′, v)
19: end for

20: end if

21: if (r, pq, vi) semi-unifiable with q then

22: for all p′-paths P from v to ri do

23: A← {b � ai|∃S ∈ δ(r, p, v) s.t. ∀a′ ∈ S ∪AP , b � a′}
24: addResult(R′, A, r, p′, vi)
25: end for

26: for all p′-paths P1 from r to ri and P2 from vi to v do

27: A← {b � ai|∃S ∈ δ(r, p, v) s.t. ∀a′ ∈ S ∪AP1
∪AP2

, b � a′}
28: addResult(R′, A, r, p′, v)
29: end for

30: end if

31: end for

32: end for

33: for r, v ∈ N(O)×N(O) such that (r, pq, v) semi-unifiable with q do

34: for p′ ∈ SP (pi) ∩ SP (p) do

35: for all p′-paths P1 from r to ri and P2 from vi to v do

36: A← {a � ai|∀a′ ∈ AP1
∪AP2

, a � a′}
37: addResult(R′, A, r, p′, v)
38: end for

39: end for

40: end for

41: end if

42: return R′

Figure 4.10: View maintenance for atomic queries for insertions
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(3) If the new edge between ri and vi creates a new pq path from r to v through

ri and vi – in which case r and v will become pq-connected (lines 26–29)

After this step, we recompute the annotations for the affected (or new) paths and

update the result accordingly. So far, we have only analyzed updates to elements

in the answer. In lines 33–40 we also analyze whether any new triples should be

added to the answer (similar to case (3) above, but for resources r and v that do

not belong to a triple (r, p, v) ∈ R).

Example 4.13. Consider the example aRDF database in Figure 3.1(b) and let the

triple to be inserted be (Pneumonia, associatedWith: .25, CorPulmonale). The query

to be maintained is q=(Flu, associatedWith: .15, ?v) and the answer before inser-

tion is AnsO(q)={(Flu, associatedWith : .65, Pneumonia), (Flu, hasComplication:

.7, AcuteBronchitis)}. Since associatedWith is transitive, the algorithm will follow

the branch starting on line 12. R will not change until we reach line 26, where we

find a new path linking Flu and CorPulomonale through Pneumonia. On line 27,

A = [0, .15] and we will add a new triple to the result: (Flu, associatedWith: .15,

CorPulmonale).

Theorem 4.14. Let O be a consistent aRDF database and let (ri, pi : ai, vi) be an

aRDF triple such that O∪{(ri, pi : ai, vi)} is consistent. If q is a simple query and δ is

the path annotation function, then viewMaintenanceInsert(O, q, AnsO(q), δ, (ri, pi :

ai, vi)) returns AnsO∪{(ri,pi:ai,vi)}(q).

Proof. Let us assume that viewMaintenanceInsert does not return the

correct answer. Then one of the following is true: (i) either the algorithm returns
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a triple (r, p : a, v) that is not an answer to the query or (ii) there exists an answer

to the query that is not in the answer returned by the algorithm. We will examine

each case in turn.

Let us assume that there exists a triple (r, p : a, v) returned by the algorithm

that is not an answer to q. (r, p : a, v) may not be an answer to q for two reasons.

1. (r, p : a, v) is not semi-unifiable with q. For non-transitive properties p, note

that we are only returning triples (ri, pi : c, vi) on line 10 such that (ri, pi : a, vi)

was already in the previous answer R (line 6), hence it was semi-unifiable with

the query. For transitive properties, we only analyze triples that are semi-

unifiable with q (lines 15, 21, 26, 33).

2. For queries with a constant annotation aq, we have that aq 6� a. That cannot

be the case due to the conditions imposed on any triples added to the result

on line 10 and through addResult on lines 17–18, 23–24, 27–28 and 36-37.

We have established that we cannot have a triple returned by the algorithm

that is not an answer to the query. Let us assume that there exists an answer to the

query q that will not be returned. Since we do not change parts of the answer that

are not affected by the inserted triple, the answer we are missing must be related

to (ri, pi : ai, vi). There are several cases in which the inserted triple can affect the

answer:

1. For non-transitive properties, it may either add a new element to the answer

identical to the inserted triple or it may alter the annotation for an existing
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answer with the resource, property and value (ri, pi, vi). Both cases are handled

in lines 5–11.

2. For transitive properties, (ri, pi : ai, vi) can alter the existing paths in the

answer R that are semi-unifiable with the query by pre-pending existing paths

(handled in lines 16–19), appending to existing paths (lines 22–25) or simply

connecting two existing portions of a path that were previously not connected

(handled in lines 26–29). Finally, the newly inserted triple can create new

paths that were not represented by any result in R (handled on lines 33–40).

We point out that the worst-case complexity of the view maintenance algo-

rithms is the same as that of the corresponding query algorithms since in the worst

case, all triples in the answer may be changed. If this happens, for all practical pur-

poses view maintenance will rerun the query algorithm to recompute all answers.

However, we show experimentally that in most cases, performing view maintenance

is much faster than recomputing the entire query answer from scratch.

4.2.4 Deletions

Suppose now that we intend to delete the triple (rd, pd : ad, vd) from O. We

would first like to show that deletions do not affect the consistency of an aRDF

database.

Theorem 4.15. Let O be a consistent aRDF database and let (r, p : a, v) ∈ O be an

arbitrary triple. Then O − {(r, p : a, v)} is aRDF consistent.
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Proof. Let I be a satisfying interpretation for O. We can easily prove that I

satisfies O′:

(i) I satisfies every triple in O implies that I satisfies any triple in O′ = O−{(r, p :

a, v)}.

(ii) For all transitive properties p ∈ P let P be the set of p-paths Q = {t1, . . . , tk}

in O. The set of p-paths in O′ is clearly a subset of the set of paths in O.

We know for all a ∈ A such that a � ai for all 1 ≤ i ≤ k, it is the case that

a � I(r1, p, rk+1). That will clearly hold for a subset of the paths considered

for O, hence it will hold for O′.

O′ has a satisfying interpretation and is thus consistent.

We present an algorithm for computing R′ = AnsO−{(rd,pd:ad,vd)}(q) in Figure

4.11. We again assume that δ is updated accordingly after the deletion. The algo-

rithm starts with a similar procedure as viewMaintenanceInsert for non-transitive

properties (lines 3 –9 ). For transitive properties, we simply look for pq-paths in the

answer that have been interrupted by the deletion (lines 10–13). We compute the

new path annotations by removing from delta the annotations for all the interrupted

paths (line 13) and recompute the values for the remaining path annotations (lines

14 – 16).

Example 4.16. Consider the example aRDF database in Figure 3.1(b) and let the

triple to be deleted be (AcuteBronchitis, associatedWith: .65, Pneumonia). The

query to be maintained is q=(Flu, associatedWith: .25, ?v) and the answer before

insertion is AnsO(q)={(Flu, associatedWith : .65, Pneumonia), (Flu, hasCom-
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Algorithm viewMaintenanceDelete(O, q, R, δ,(rd, pd : ad, vd))

Input: Consistent aRDF database O, query q = (rq, pq : aq, vq), answer R, precom-
puted function δ and deleted triple (rd, pd : ad, vd).

Output: R′ = AnsO∪{(rd,pd:ad,vd)}(q).
1: R′ ← R
2: if pd is not transitive then

3: if ∃a ∈ A s.t. (rd, pd : a, vd) ∈ R then

4: A← {a′ ∈ A|(r, p′ : a′, v′) ∈ O} ∪ {ai}
5: B ← {b ∈ A|∀a ∈ A, a � b}
6: C ← {c ∈ B| 6 ∃c′ ∈ B, c′ 6= c s.t. c′ � c}
7: R′ ← R′ − {(rd, pd : a, vd) ∈ R} ∪ {(r, p′ : c, v′)|c ∈ C ∧ a � c}
8: end if

9: else {pd is transitive}
10: for (r, p : a, v) ∈ R do

11: if ∃S ∈ δ(r, p, v) s.t. pd ∈ S then

12: for P1, P2 p-paths between r, rd and vd, v respectively do

13: T ← δ(r, p : a, v)− {AP1
∪AP2

∪ {pd}}
14: A← {a′ ∈ A|∃S ∈ T s.t. ∀a′′ ∈ S, a′ � a′′}
15: B ← {b ∈ A|∀a′ ∈ A, a′ � b}
16: C ← {c ∈ B|( 6 ∃c′ ∈ B, c′ 6= c s.t. c′ � c) ∧ ((aq � c) ∨ (aq variable))}
17: R′ ← R′ − {(r, p : a, v)} ∪ {(r, p : c, v)|c ∈ C}
18: end for

19: end if

20: end for

21: end if

22: return R′

Figure 4.11: View maintenance for atomic queries for deletions

plication: .7, AcuteBronchitis)}. Since associatedWith is transitive, the algorithm

will follow the branch starting on line 9. We find that one of the paths between

Flu and Pneumonia was interrupted, hence T = {{.15}} on line 13. We recompute

A = [0, .15], B = [.15, 1] and C = ∅. As a result, the triple (Flu, associatedWith :

.65, Pneumonia) will be removed from the answer.

Theorem 4.17. Let O be a consistent aRDF database and let (rd, pd : ad, vd) be

an aRDF triple. If q is a simple query and δ is the path annotation function, then

viewMaintenanceDelete(O, q, AnsO(q), δ, (rd, pd : ad, vd)) returns AnsO−{(ri,pi:ai,vi)}(q).
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Proof. Let us assume that viewMaintenanceDelete does not return the

correct answer. This means that either (i) the algorithm returns a triple that is not

an answer to q or (ii) there exists a triple that is an answer to q that is not returned.

Let (r, p : a, v) be a triple returned by the algorithm that is not an answer to

q. Then we are in one of the following cases:

1. (r, p : a, v) is not semi-unifiable with q. Note that due to the conditions on

lines 3 and 12, the triples we are adding to the answer will have a resource,

property and value that are already in a triple in R. Therefore, (r, p : a, v)

must be semi-unifiable with q.

2. If aq is constant, aq 6� a. This cannot be the case due to the annotation

recomputation in lines 4–7 and 13–17.

Let us assume that there exists a triple that is an answer to q that is not

returned by the algorithm. Clearly, all answers that are unaffected by (rd, pd : ad, vd)

will still be returned. In lines 2–8 we will re-compute the annotation (or remove any

answers) if pd is non-transitive. If pd is transitive, we re-compute the annotations

and remove all answers corresponding to paths “disconnected” by the deleted triple

in lines 13–17.

As was the case with insertion view maintenance, the complexity of viewMain-

tenanceDelete is also the same as that of the algorithm to compute AnsO(q) since

in the worst case we may have to update the entire answer.
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4.3 Experimental evaluation

The aRDF query, consistency check and view maintenance algorithms were

implemented in 5,300 lines of Java code. The experiments were performed on an

Intel Core2 Duo 3.0 GHz machine with 3GB of RAM, running openSuse 10.2.

The aRDF datasets were stored in flat binary files on disk; running time for all

algorithms includes disk I/O. We experimented on three distinct datasets. The

GovTrack (http://www.govtrack.us) dataset consists of approximately 26 million

RDF triples (1.5 GB), annotated with temporal intervals that specify the period of

time during which a triple is considered “valid.” Converting reified triples resulted

in 12,340,576 aRDF triples. The ChefMoz (http://chefmoz.org) dataset consists

of 802,371 RDF triples (approximately 220 MB) describing restaurant information,

including review scores dates. We used the review information to annotate the

dataset with Afuztime. This resulted in 549,781 aRDF triples.

Finally, to study the dependence of the query processing time on various fea-

tures of the aRDF database, we also generated a synthetic dataset ranging from

10,000 to 10,000,000 aRDF triples. The number of corresponding RDF triples after

reification is on average 1.65 times that of aRDF triples1. For each database size,

we generated 15 independent random datasets using uniform distributions for the

random generator. To make the dataset as close to real-world datasets as possible

– based on our study of the previous two and other RDF datasets – we maintained

the following characteristics constant during the generation process:

1We remind the reader that two additional vertices (a blank node for the statement and a vertex
for the annotation) are added to the RDF graph after reification.
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1. The number of properties |P| follows a Gaussian distribution around 0.5% of

the size of the dataset, with a standard deviation of no more than 0.01% of

the size of the dataset.

2. The number of transitive properties was held constant at 5% of the total

number of properties.

3. The number of rdfs : subPropertyOf relations was uniformly distributed

between 10 and 20% of the number of properties.

Approximately 15 of the 35 datasets available at www.rdfdata.org, includ-

ing GovTrack, provide access to logs of their most frequent queries. We chose 50

GovTrack queries with selectivity factors2 between 3 and 25% uniformly at ran-

dom. 91% of the frequent queries for GovTrack are within this interval. Unless

otherwise specified, the running times reported are an average over all queries. We

have also investigated all available query logs to determine typical query sizes and

variables/constants ratios. The average query size was 25.6 query components, with

a standard deviation of 7.4. Variable/constants ratio was typically between 15%

and 25%. Based on this information, we generated random queries for the Chef-

Moz and synthetic datasets (50 atomic and 50 conjunctive queries each) using the

following criteria: (i) varied selectivity (uniformly distributed) between 3 and 25%;

(ii) for conjunctive queries, the number of components in the conjunction was varied

between 5 and 50 elements; (iii) the number of variables in the query was varied

between 10 and 35% of the total number of subject, property, object and annotation

2The selectivity factor of a query is the percentage of triples it returns as an answer.
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elements in each query.

In our experimental evaluation, we were interested in studying the following:

1. The consistency checking time on the GovTrack and ChefMoz datasets and

its variation with the size of the synthetic dataset.

2. A comparison of the query processing time (including the naive algorithm) for

all types of atomic queries and its variation with the size of the aRDF database.

3. The comparison between the running times of conjunctAnswer GraphMatching,

conjunctAnswer Ordering and the naive algorithm and their variations with

the size of the query and that of the database.

4. A comparative evaluation of view maintenance time versus re-running the

entire query.

5. A comparison between aRDF, Jena2, Sesame2 and Oracle 11g in terms of query

performance at various data sizes and query selectivity factors.

Table 4.1: Summary of consistency checking and atomic query algorithms
Dataset Synthetic [ms] ChefMoz [ms] GovTrack [ms]

No. aRDF triples x 1,000 10 50 250 1,250 6,250 10,000 549 12,340

Consistency checking 2.1 23.5 103.4 346.1 1047.1 1438.1 187.1 1754.1

Naive atomic query 1.2 27.6 487.2 976.1 2781.3 4231.5 1076.1 4891.3

atomicAnswerP 0.5 2.4 14.5 34.1 50.9 60.3 19.9 68.1

atomicAnswerS 1.1 18.5 45.1 49.1 114.3 157.6 47.5 190.8

atomicAnswerV 1 17.6 48.1 56.7 102.4 145.6 51 176.1

atomicAnswerA 0.2 1 9.8 13.1 15.4 23.6 10.4 34.1

As a first step, we measured the running time of the consistency checking,

naive atomic answer and the four atomic answer algorithms on all three datasets.
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Figure 4.12: Consistency checking and atomic query answers

For the query answer algorithms, the results are averaged over 50 separate queries

over each dataset. A summary of the results is shown in Table 4.1 and a graphical

depiction of the variation of the running time with the size of the synthetic dataset
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is shown in Figure 4.12(a) and (b) (in quasi-logscale). We point out that the most

time consuming operation is by far the fixpoint computation, as seen from the data

for the naive query answer algorithm. Given the logscale plot, the data suggests a

nearly double exponential rise for the naive query algorithms. We can see that the

consistency checking algorithm is much faster than the naive atomic query algorithm,

primarily due to the fact that it avoids the fixpoint computation. Finally, from

the atomic query answer algorithms, atomicAnswerS and atomicAnswerV take

the longest. The motivation follows from the formal description of the algorithms:

atomicAnswerS and atomicAnswerV search for pq − paths originating at a known

vertex r or ending in a known vertex v. On the other hand, for atomicAnswerP

and atomicAnswerA, both r and v are known, which narrows the search space

considerably.

Table 4.2: Summary of conjunctive answer algorithms
Dataset Query size Synthetic [ms] ChefMoz [ms] GovTrack [ms]

No. aRDF triples x 1000 10 50 250 1,250 6,250 10,000 549 12,340

Graph Matching 5 5 21 88 288 892 1146 124 1567

10 8 38 150 543 1684 1955 220 2945

20 14 71 274 1006 3121 3540 403 5254

30 25 130 491 1877 5435 6289 745 9155

40 47 231 846 3525 9316 10715 1366 17221

50 87 438 1601 6213 16936 19535 2501 31100

Ordering 5 5 25 105 313 896 1341 134 1771

10 10 41 176 544 1941 1962 255 3006

20 10 54 267 913 2746 2788 283 4905

30 24 113 335 1644 4132 5988 567 8017

40 41 158 783 2458 8374 7023 989 10456

50 84 389 1290 5925 13596 19130 2227 16758

In the next step, we analyzed the two conjunctive query algorithms, with

naiveConjunctAnswer as a baseline. We varied the size of the conjunctive queries
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Figure 4.13: Conjunctive queries and view maintenance

from 5 to 50 component queries, while maintaining the number of variables in the

graph patterns at 25%. This was done to ensure that the selectivity of the graph

patterns remains stable (approximately 7%, with a standard deviation of .12%).
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The experimental results are summarized in Table 4.2. The naiveConjunctAnswer

(not shown in the table) ran out of memory at 1,250K triples for queries with 5,10

and 20 components, at 250K for queries with 30 and 40 components and at 50K

triples for queries with 50 components. The running time for naiveConjunctAnswer

algorithm was overwhelmingly larger than the other two algorithms (for instance,

taking 789ms at 250K triples with 5 components compared to 88 and 105 ms for the

graph matching and ordering algorithms respectively). In Figure 4.13(a) we can also

see that the ordering algorithm does slightly better than the graph matching variant

in terms of running time. We also notice that both algorithms have an average-case

complexity much lower than the worst case complexity (which was factorial in the

size of the data for the graph matching variant).

Table 4.3: Summary of view maintenance algorithms
Dataset Query size Synthetic [ms] ChefMoz [ms] GovTrack [ms]

No aRDF triples x 1000 9 45 225 1,125 5,625 9,000 495 111,060

View maintenance Insert 5 1 4 43 114 287 453 55 427

10 2 13 44 246 771 808 47 509

20 3 33 107 260 1280 1382 67 2225

30 12 39 108 795 1000 1226 347 4310

40 7 92 254 1123 3974 3422 557 5326

50 35 204 546 1897 5681 2959 576 12950

View maintenance delete 5 0 1 11 25 78 94 7 105

10 1 3 39 36 101 110 19 447

20 1 11 17 69 239 275 21 271

30 2 9 32 250 305 619 67 960

40 3 25 197 438 759 2647 88 1670

50 9 26 45 693 2145 2134 218 3440

Next, we studied the performance of the view maintenance algorithms. We

considered the same set of conjunctive queries as in the previous step and selected

uniformly at random 10% of the triples in each set to insert and respectively delete.
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Figure 4.14: Comparison between aRDF and competing systems

We measured the running time of the view maintenance algorithms and give a

summary of the results in Table 4.3. Note that the size of dataset is the size

before any insert operation and respectively after all the deletion operations. The

cells in the table represent the average running time of the corresponding view
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maintenance algorithm after each insertion or deletion. The data in Figure 4.13

clearly indicates that maintaining a conjunctive query can be done much faster that

re-running the entire query. We also noticed that consistently, view maintenance

when deleting a triple is much faster than view maintenance when inserting the

same triple. This trend is also clear in Figure 4.13(b) for the average insertion

and deletion maintenance times. The fact that deletion maintenance is much faster

than insertion maintenance is explained by the fact that the branching factor in

viewMaintenanceDelete is much lower than that of viewMaintenanceInsert.

Finally, we evaluated the performance of aRDF by comparing it to that of

Jena2, Sesame2 and Oracle 11g on the GovTrack dataset. Since the three systems

do not support transitivity for user-defined properties, we considered all properties

in the dataset to be non-transitive. In the case of Jena2, we used the optimized

query planner optARQ recently proposed by Stocker et al [50]. From the set of

GovTrack frequent queries, we selected at random an evaluation set comprised of

20 queries for selectivity factors of 5, 10, 15, 20 and 25% 3. The results are shown

in Figure 4.14(a). We observed that the aRDF-Ordering algorithm outperformed

all three systems (an average 10% improvement over Jena2-optARQ, the next best

system) and its performance scales better for higher selectivity queries than the

other systems. We selected a second evaluation set, also at random comprised of 20

queries each for conjunctions of size 5 through 50 in increments of 5. The results

shown in Figure 4.14(b) also confirm that aRDF-Ordering outperforms the other

3Since these were existing queries, the selectivity cannot be always pinpointed to a multiple of
5%. Each query was assigned to the closest multiple of 5% from its actual selectivity

86



systems both in terms of query time and in terms of scalability.

4.4 Summary

In this chapter we described the query framework for Annotated RDF. We

defined algorithms for simple and SPARQL-like conjunctive queries, as well as view

maintenance techniques for aRDF databases. All the algorithms presented were

proved to be correct and analyzed from the point of view of worst-case data com-

plexity. To our knowledge, the only other algorithm for RDF annotated with time

intervals was given by Gutierrez et al. [22], without empirical evaluation. We have

performed a thorough series of experiments on two real-world and one synthetic

dataset, as well as comparisons with leading RDF storage systems. Our results show

that: (i) aRDF query processing is much faster than answering queries over reified

RDF; (ii) decomposing conjunctive queries and joining the results yields significant

performance improvements over graph matching algorithms and (iii) recomputing

query results incrementally is always more efficient for aRDF than reprocessing the

query.
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Chapter 5

Indexing RDF

One of RDF’s major strengths over the relational data model is the expres-

siveness of its query language. A RDF query expressed in SPARQL is essentially

a labeled graph with zero or more variables labeling either the vertices and/or the

edges. The problem is to find “matches” for this pattern in the RDF graph. Past

work on RDF indexing [54] does not provide any index specialized to handle such

queries. In this chapter, we describe our approach to indexing RDF and aRDF data

and provide a thorough experimental evaluation showing our index structure scales

very well for massive real-world and synthetic datasets. In the first part of the chap-

ter, we propose a Graph-based RDF INdex (GRIN for short) [57] that improve the

response time to SPARQL queries and can be used in conjunction with a variety

of backend systems. In the second part, we extend GRIN to aRDF and show ex-

perimentally that using both the index and the aRDF query processing algorithms

improves query processing time for a billion triple dataset by up to 24% compared

to the best existing systems. Specifically, our contributions are the following.

1. The key problem in processing RDF queries is that we do not have any index

supporting subgraph matching. Such an index structure should preserve the

proximity of vertices in the RDF graph. We do this by identifying certain

center vertices in a graph (think of these as vertices that occupy strategic
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positions in the graph) and by proposing a notion of radius from those center

vertices. All vertices within the stated radius of a center vertex are associated

with that center.

2. We then define GRIN – an efficient tree data structure to store the regions

defined by these center vertices (together with their associated radii).

3. Subsequently, we develop algorithms to answer graphical queries efficiently by

using the GRIN data structure. The algorithms are proved correct, and their

worst case computational complexity is stated.

4. We identify and theoretically analyze the GRIN characteristics that have

impact on query performance and propose a framework for optimizing GRIN

index structures.

5. We then show how GRIN can be extended to handle aRDF triples and how

aRDF query algorithms can be used in conjunction with the index structure.

6. Finally, we conduct a detailed series of experiments on the GovTrack (26

million triples) and a set of synthetic datasets generated with the Lehigh

University Benchmark (LUBM) up to a billion triples. We compare against

Jena2, Sesame2, RDFBroker, Oracle 11g and the column store LucidDB. We

measure the effectiveness of GRIN along three dimensions: (i) how large is the

index – we show that GRIN is the smallest compared to the other systems; (ii)

how long does it take to answer queries – our results indicate using GRIN over

a relational database store is already faster than the other systems, especially
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so when combined with the aRDF query algorithms; (iii) how long does it

take to build the index – the time taken by GRIN is comparable to the best

competing systems.

5.1 SPARQL graph patterns

Conjunctive queries are formulated in SPARQL through graph patterns. Since

we do not discuss rarely used SPARQL constructs such as UNION or OPTIONAL,

we will refer to SPARQL graph patterns as RDF queries. In this section, we intro-

duce a formal syntax for an RDF query and provide its semantics by defining what

constitutes a correct answer. We employ the same notation as before, R for the set

of resources and blank nodes, P for the set of properties and L for the set of literals.

For most of this chapter, we will assume that all inferences on transitive properties,

rdfs:subClassOf and rdfs:subPropertyOf have already been computed and the cor-

responding triples added to the database. In Section 5.6.2 we will show how GRIN

can process queries without precomputing transitivity inferences. Furthermore, we

will assume the RDF graph O is connected; if that is not the case, we can build

separate GRIN index structures for every connected component.

Definition 5.1 (RDF query). A RDF query is a 4-tuple (N, E, V, λn) where:

• N is a set of vertices.

• V is a set of variables.

• E ⊆ N ×N × (V ∪ P) is a set of edges.

• λn : N → R∪ L ∪ V is a vertex labeling function.
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Figure 5.1: A RDF graph from the ChefMoz dataset

?v1NE/USA

?v2Norfolk Italian

?v3

location

location cuisine

cuisine
attire

attire

Figure 5.2: RDF query example

We refer to each edge in the query graph pattern as a query atom.

Example 5.2. Figure 5.1 contains an example graphical depiction of an RDF graph

extracted from the ChefMoz dataset 1. The RDF data contains six restaurants (bold

vertices) in two locations in NE, USA (underlined vertices) for three different cui-

1Some URIs were shortened for readability.
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sine styles (italicized vertices); in addition, the data contains the type of attire re-

quired, as well as two restaurant reviews. We will use this RDF graph as a running

example for presenting GRIN.

The query graph in Figure 5.2 informally says: find restaurants ?v1, ?v2 with

the same attire ?v3, such that both restaurants serve Italian food and ?v2 is in

Norfolk, which is located in NE, USA The query can be expressed in SPARQL as:

SELECT ?v1 ?v2 ?v3

WHERE {{(?v1 attire ?v3) . (?v1 cuisine Italian)}

{(?v2 attire ?v3) . (?v2 cuisine Italian) .

(?v2 location Norfolk)}

{(Norfolk locatedIn NE/USA)}}

To answer an RDF query over a database O, we are looking for all possible

substitutions for the query variables in V such as the query graph after the proper

substitutions is entailed by O. As in the case of aRDF, an RDF graph O′ is entailed

by O if and only if any satisfying interpretation of O is a satisfying interpretation to

O′. In addition to the entailment conditions in RDF, aRDF semantics also requires

that paths on transitive properties and the corresponding annotations be taken into

account when deciding if a database entails a given triple (Definition 3.6).

Definition 5.3 (RDF query answer). The answer to an RDF query q = (N, E, V, λn)

w.r.t. a database O, denoted Ansq(O), is a set of variable substitutions {θ1, . . . ,

θk}, with θi : V →R∪L such that the following conditions hold:

1. (Soundness). For all i ∈ [1, k] and for all query atoms qj ∈ q, O |= qjθi, where

qjθi denotes the application of the substitution θi to query atom qj.
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2. (Completeness). For all substitutions θ such that O |= qjθ for all query atoms

qj, there is a substitution θj ∈ Ansq(O) that is more general than θ.2

Note that the query operations we specified are akin to relational selection.

We have not defined anything that is equivalent to projection over RDF databases

(i.e., we do not select a subset of variables we are interested in). Experimentally, we

have determined that unlike the relational case, projection does not help much with

the query running time (which is dominated by searching for subgraphs matching

the query). Projection can be therefore applied after finding Ansq(O) in linear time

in the size of the answer.

Example 5.4. Consider the query in Example 5.2 w.r.t. the RDF graph in Figure

5.1. The possible substitutions are: (?v1 ← Grivanti , ?v2 ← Charlie’s, ?v3 ←

businessCasual) and (?v1← Fazoli, ?v2← Charlie’s, ?v3← casual).

A naive algorithm for answering the RDF query q on a database O is:

1. For each query atom qj ∈ q, compute the set Θj of substitutions where O

entails qjΘj .

2. Consider all possible elements of Θ1 × · · · × Θn and select those elements

(θ1, . . . , θn) for which all substitutions θi with i ∈ [1, n] are compatible. Two

substitutions are compatible if and only if they do not assign different constant

(resource or literal) values to the same variable.

2In the case of RDF, a substitution that maps a variable to a blank node is more general than a

substitution that maps the same variable to a resource or literal. The “generality” of a substitution

was first defined in [41].

93



The clear disadvantage of this algorithm is that it has to compute a Carte-

sian product (essentially a join of n relations), which is prohibitively expensive for

complex queries. In fact, we show experimentally in Section 5.7 that some of the

current RDF database systems do not scale well to large or high selectivity queries.

Instead, let us look at Example 5.4 again. The entire ChefMoz dataset this

example is extracted from contains over 800,000 triples, and yet the answer to our

query can be found in a very small portion of the entire database. Therefore, a better

strategy is to (i) identify the smallest portion of the database that is guaranteed

to contain the answer and (ii) perform subgraph matching on that portion. To

accomplish this, we define the GRIN index structure for RDF.

5.2 The GRIN index

GRIN is based on the intuition that vertices that are “close” together in the

RDF graph are more likely to appear together in the answer to an arbitrary query,

and therefore should be stored on the same page (in the same index node). Moreover,

we want a way of quickly determining whether a given neighborhood contains the

answer to the query q. To accomplish both goals, let us assume d : (R∪L)× (R∪

L)→ IN is a metric3 defined on the set of resources and literals in the RDF graph.

Since d is a metric, it has the triangle property, i.e., d(x, y) ≤ d(x, z) + d(y, z).

There are many such metrics, the typical examples being the length of the shortest

or longest cycle-free path between two resources or literals in the RDF graph. For

3A metric over a space X is a function d : X ×X → ℜ that is non-negative (d(x) ≥ 0 for all
x ∈ X), has the identity of indiscernibles property (d(x) = d(y) if and only if x = y), is symmetric
(d(x, y) = d(y, x)) and has the triangle property (d(x, z) ≤ d(x, y) + d(y, z)).
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simplicity, we will assume for the rest of the chapter that d is the minimum path

length between two resources. For instance, the minimum distance between Fazoli

and NE/USA is 2 in Figure 5.1.

(Review #16472, date, 12/
15/06)

(Review #16472, rating, 8)

(Grivanti, cuisine, Italian)
(Grivanti, attire, 

businessCasual )

(Charlie’s. location , 
Norfolk)

(Review #21765, date, 11/
08/03)

(Review #21765, rating, 6)

(Lincoln , locatedIn , NE/
USA)

(Fazoli , attire, casual )

(DairyQueen , cuisine, 
FastFood)

(Arby’s, cuisine, FastFood)

(Coldstone , cuisine, 
Dessert )

Center: 
Charlie’s

Distance : 2

Center: 
Norfolk

Distance : 2

Center: 
FastFood
Distance : 2

Center: 
Grivanti

Distance : 3

Center: 
Italian

Distance : 3

Center: 
DairyQueen
Distance : 3

ROOT

Figure 5.3: GRIN index example

Definition 5.5 (GRIN index). A GRIN index is a balanced tree such that:

• Each leaf node ℓ contains a set Nℓ ⊆ R of vertices s.t. for all leaf nodes ℓ′ 6= ℓ,

Nℓ ∩Nℓ′ = ∅, and ∪ℓ∈LNℓ = R;

• Each non-leaf node t is represented as a pair (c, r), with c ∈ R and r ∈ IN .

Intuitively, this is a very succinct representation of the set of resources in the

graph at distance at most r of the resource c according to the metric d. We say

each non-leaf node t contains the set of resources Nt = {c′ ∈ R|d(c, c′) ≤ r}.

• For any nodes x, y in the tree such that x is a parent of y, Nx ⊇ Ny.

• Any non-leaf node t except for the root has at most M and at least M
2

children,

where M is a constant fixed apriori.
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The set of leaf nodes in the GRIN tree form a partition of the set of triples

in the RDF graph O. Interior nodes are constructed by finding a “center” triple,

denoted c, and a radius value, denoted r. An interior node in the binary tree

implicitly represents the set of all vertices in the RDF graph that are within r

units of distance (i.e., less than or equal to r links) from the center. The condition

requiring that each non-leaf node has between m and M children is typical of index

tree structures such as B-trees [5] or R-trees [23]. The condition requires that a

node is always at least “half full” (has at least M
2

children). It also implies that

two half-full nodes can be joined to make a legal node and a full node can be split

into two half-full nodes (potentially the split requires one child be pushed up to the

parent). The limitations imposed on inner nodes allow resources to be inserted or

deleted from the tree in linear time in the height of the tree in most cases.

Example 5.6. Figure 5.3 shows an example GRIN index structure for the RDF

graph in Figure 5.1, for m = M = 2. Note that the leaf nodes consist of clusters of

resources – for this example, there is more than one possible GRIN structure, since

membership of a resource to a cluster or another is often tied. The intermediate

node (Grivanti, 3) signifies the set of resources in the graph with a minimum path

less than or equal to three from the vertex Grivanti.

Assuming resources are stored as URIs4, storing a circle requires approximately

the same amount of space as storing a resource (in addition to its center, a GRIN

circle also has to store a radius and children addresses). Let Max be the maximum

number of RDF graph vertices that can be stored on a single page. Note that Max

4Uniform Resource Identifiers are the usual way to uniquely identify resources in RDF.
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can be easily computed since we know the page size and can compute the maximum

amount of space required by a resource. We found empirically that, reserving space

for radii and children pointers, we can store approximately 3
4
Max circles per page.

We can therefore choose M = ⌊3
4
Max⌋ to ensure that all the children of a given

circle are stored on the same page, therefore minimizing the number of page faults.

Next, we will determine the number of leaf nodes of the tree in the following

way. Let us denote the number of leaf nodes by C. Since we would like to build a

balanced tree, C must be a power of M . We know that |R|
C
≤ 3

4
Max, hence C ≥ |R|

Max
.

The smallest power of M for which this inequality holds is C = M ⌈logM
R

Max
⌉.

We use dc : 2(R∪L) × 2R∪L → IN to denote an arbitrary, but fixed, inter-

cluster distance function based on the metric d. dc takes two sets of resources and

returns a numeric value. Three well-known inter-cluster distances are often used

in clustering algorithms: (i) Single link defines dc(S, S ′) = min
x∈S,y∈S′

(d(x, y)); (ii)

Complete link defines dc(S, S ′) = max
x∈S,y∈S′

(d(x, y)) and (iii) Average link defines

dc(S, S ′) =

∑

x∈S,y∈S′

(d(x,y))

|S|×|S′|
. Experimentally we have found that average link provides

the best query processing time.

The algorithm that builds the GRIN index is shown in Figure 5.4. The

algorithm builds the index structure bottom up. Initially, we cluster the vertices in

the graph into C disjoint sets using a modification of the partitioning around medoids

(PAM) clustering algorithm [31] (line 1). PAM starts by choosing C random vertices

from the graph as cluster centroids. It then assigns all vertices in the graph to one

cluster, based on their distances to the chosen cluster centroids. After C clusters
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have been formed, the centroids are re-computed and the process is repeated until

an equilibrium is reached. We modified the original algorithm to ensure no cluster

contains more than M vertices. Ties (cases when a vertex could be assigned to more

than one cluster) are broken uniformly at random.

For each intermediate level in the tree, GRINBuild chooses a random node

u from the available nodes and computes the “closest” k = M
2
− 1 nodes to u in

terms of the inter-cluster distance dc (lines 7–8). Let these nodes be v1, . . . , vk. u

and v1, . . . , vk are then assigned a new parent node (c, r). The values of the center c

and radius r are computed based on the set of vertices
⋃

i∈[1,k] Nvi
∪Nu (lines 9–10).

The process is repeated until we build the root of the tree, which corresponds to a

set of resources encompassing the entire graph (loop condition on line 3).

We point out that GRIN does not commit to a particular representation of the

data. In fact, in Section 5.7 we will show that GRIN works well over PostgresSQL,

Jena2 and LucidDB. Also, the index structure can be constructed to contain the

actual resources in the database, or alternatively let the resources be represented in

a relational database and store pointers to the actual data. We have implemented

both approaches, but chose the latter variant to have a fair comparison to database-

backed RDF systems.

Complexity of building the GRIN Index. The set of vertices represented by

a GRIN node is at most |R|. For a level of the GRIN tree containing k nodes, the

most time-consuming operation is the computation of inter-cluster distance, which

can be done in parallel for the entire level in time O(|R|2 · k2). The number of leaf

nodes C is O(|R|) and the height of the tree is O(logM(|R|)). This leads to a worst
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Algorithm GRINBuild(C, Max, O)

Input: C is the number of leaf nodes, Max is the maximum number of vertices on
a page, O is the RDF database.

Output: The GRIN index structure G.
1: L0 ← PAM(O, C, Max)
2: Create leaf nodes in G from clusters in L0

3: for i ∈ [0, ⌈logM C − 1⌉] do

4: F ← Li

5: Li+1 ← ∅
6: while F 6= ∅ do

7: Pick a random node u ∈ F
8: Find v1, . . . , vk ∈ F with k = M

2
− 1 that minimize dc(Nu, Nvi

)
9: Compute centroid c and radius r for

⋃

i∈[1,k] Nvi
∪Nu

10: Create node p = (c, r) in G as a parent of u and v1, . . . , vk

11: Li+1 ← Li+1 ∪ {p}
12: F ← F − {u, v1, . . . , vk}
13: end while

14: Add level Li+1 to G
15: end for

16: return G

Figure 5.4: An algorithm to build the GRIN index

case complexity for building the index of O(|R|4 logM(|R|)). However, we will show

experimentally that building the index is generally much faster than the worst case.

5.3 Answering queries with GRIN

In this section, we show how to evaluate an RDF query q = (N, V, E, λn)

against the GRIN structure. We start by showing how to derive a set of inequality

constraints cons(q) from the query. The constraints will be evaluated against the

nodes of the GRIN index to identify the smallest subgraph that contains answers

to q. We derive cons(q) in the following way. Let Gq be the graph corresponding

to query q. For any path (not necessarily a p-path) of length l in Gq between a

resource c (constant) and a variable v, we add the constraint d(c, v) ≤ l to cons(q).
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The same rule applies for paths from v to c.

Example 5.7. Consider the example query in Figure 5.2. The query leads to the

following set of constraints: d(?v1, NE/USA) ≤ 4, d(?v2, NE/USA) ≤ 2, d(?v2,

Norfolk) ≤ 1), d(?v1, Norfolk) ≤ 3, d(?v1, Italian) ≤ 1, d(?v2, Italian) ≤ 1, d(?v3,

NE/USA) ≤ 3, d(?v3, Norfolk) ≤ 2, d(?v3, Italian) ≤ 2.

Algorithm GRINAnswer(O, G, q, nI)

Input: RDF database O, GRIN index G and query q = (N, V, E, λn), GRIN node
nI . subgraphMatch is a subgraph matching method that finds an isomorphism
between the query graph q and a graph H and returns a set of substitutions Θ
for the variables in q.

Output: A set of answers Θ.
1: Θ← 0
2: if nI is a leaf node then

3: H ← the subgraph of O containing the resources in NnI

4: return subgraphMatch(q,H)
5: else if ni is not rejected by checking rules (R1), (R2) against cons(q) then

6: Θ←
⋃

m child of nI
GRINAnswer(O, G, q, m)

7: if Θ = ∅ then

8: H ← the subgraph of O containing the resources in NnI

9: return subgraphMatch(q,H)
10: else

11: return Θ
12: end if

13: else

14: return ∅
15: end if

Figure 5.5: An algorithm to answer queries over the GRIN index

We use the constraints generated from the query to identify nodes in the

GRIN structure that may contain answers to the query. On any GRIN node, we

have the option of accepting the node (which means it may contain answers to the

query) or rejecting the node (which means it is guaranteed not to contain answers

to the query). Consider a GRIN node corresponding to the circle (c, r). We will
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define two rules to decide whether (c, r) should be rejected.

The first rule is straightforward: for any constant (resource) x in q, reject

(c, r) if d(c, x) > z (R1). Intuitively, we are rejecting the circle represented by the

GRIN node if any constant factors in the query are outside it.

Let’s consider the case of a constraint d(x, v) ≤ l involving variable v and

resource x. Since d is a metric, d(c, v) ≤ d(c, x) + d(x, v) ≤ d(c, x) + l. Note that

d(c, x) is a constant. If d(c, x) + l ≤ z, we are sure that v is inside the circle (c, r).

If this case, we say (c, r) definitely satisfies v. Also from the fact that d is a metric

we can write d(c, x) − l ≤ d(c, x) − d(x, v) ≤ d(c, v). If z ≤ d(r, c)− l then we are

sure v is outside the circle (c, r). In this case, we say (c, r) does not satisfy v. If any

variable is not satisfied, then we cannot find an answer to the query within (c, r).

We may also have situations in which neither of the two cases hold – we do not

know for certain whether v is inside or outside the circle solely on the constraints

derived from the query. We will take a conservative approach and only look for so-

lutions in nodes that definitely satisfy all variables. This has the potential downside

of stopping at circles that are larger than necessary, but we have found experimen-

tally that this policy is very effective. The second rule is: if there exists v ∈ V

such that (c, r) does not definitely satisfy v, then reject (c, r) (R2). Intuitively,

we want to find the smallest sets of vertices that definitely satisfy all variables – or

the equivalent, nodes lowest in the GRINtree that satisfy all variables. Note that

only one constraint per variable needs to be satisfied in order for the variable to be

satisfied.
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Example 5.8. Consider the node (Grivanti, 2) in the index in Figure 5.3 and the

constraint that says d(?v2, Norfolk) ≤ 1. This constraint is trivially not satisfied,

since Norfolk is not in the circle specified by the node. However, the variable ?v1 is

satisfied from d(Grivanti,?v1) ≤ d(Grivanti, Italian) + d(?v1, Italian) ≤ 2,

Figure 5.5 contains the query evaluation algorithm. Given a query q and a

node nI of a GRIN index G, GRINAnswer evaluates q over the subtree rooted

in nI . Answering a query over the database O is equivalent to calling GRINAn-

swer(q,root(G)).

The GRINAnswer algorithm locates the smallest index node that is guaran-

teed to contain the answers to the query and calls subgraphMatch to answer the

query over the resources in the index node. subgraphMatch can be any method of

answering conjunctive queries over RDF graphs. We experimented with two such

methods: the subgraph matching algorithm by Cordella et al. [9] and the Jena2

ARQ package. Experimentally, we found that the new Jena2 ARQ algorithms were

more efficient in practice.

If GRINAnswer is invoked for a leaf node, it will simply match the query graph

q with the subgraph of O contained in nI (lines 2–4). Otherwise, if nI is a potential

candidate (line 5 checks (R1), (R2)), we will attempt a recursive call on children of

nI (line 6). Given that we stop only when all variables are definitely satisfied, we

are guaranteed one of two outcomes.

(i) One of the recursive calls will return a non-empty answer. This implies

that there exists a descendant (c, r) of nI that passes both rules (R1) and (R2). In
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turn, this implies that all answers to the query are guaranteed to be inside the (c, r).

All we need to do is return the answer found by subgraph matching while analyzing

(c, r) (line 11).

(ii) We have not found an answer for any descendant, in which case we will

attempt to run the subgraph matching on nI itself and return the results (line 8–9).

Cordella et al. [9] show the memory complexity of the subgraph matching

algorithm to be Θ(N) (with a small constant factor), where N is the total number

of vertices in the graphs to be matched, whereas time complexity ranges from O(N)

in the best case to O(N !) in the worst case. The ARQ algorithm has the same worst

case complexity. The GRINAnswer algorithm therefore has a worst-time complexity

of O(|R|!). However, we have discovered in practice that GRINAnswer is able to

identify very small circles on which to match very efficiently. This makes the value

of N very small compared to |R| in practice. Our experimental results show that

GRINAnswer is significantly faster than Jena2, Sesame2, Oracle 11g and LucidDB.

Example 5.9. To better understand how query evaluation works, consider the query

in Figure 5.2 without the node NE/USA. We start off at the root of the tree.

We recursively call the evaluation for the nodes (Italian, 3) and (DairyQueen, 3).

(DairyQueen, 3) can be quickly eliminated since we cannot determine whether ?v1

and ?v2 are definitely satisfied; this follows from d(DairyQueen, Italian) = 3, d(?v1,

Italian) ≤ 1 and the fact that the radius of the current circle is 3. On the other

hand, (Italian, 3) definitely satisfies all variables, but its children do not. This

means (Italian, 3) is the GRIN node the algorithm is looking for, namely the node
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that definitely satisfies all variables and is at the lowest possible level in the tree.

When we match the query graph against the circle (Italian, 3), we obtain the two

substitutions in Example 5.4, namely (?v1, ?v2, ?v3) = (Grivanti, Charlie’s, busi-

nessCasual) and (?v1, ?v2, ?v3) = (Fazoli, Charlie’s, casual).

5.4 GRIN optimization

In this section we analyze two structural features of the GRIN index that

impact query performance. We define the notions of coverage and overlap and

provide a theoretical analysis of the complexity of optimizing these measures. We

then define a new heuristic index construction algorithm that constructs a near-

optimal index tree. Throughout the section, we will refer often to the level of a

GRIN index tree. By convention, the leaf nodes of the index are on level 0, whereas

the root is on level h, where h is the height of the index.

5.4.1 Coverage and overlap

Definition 5.10 (Coverage and overlap). Let G be a GRIN index tree and let

0 < l < h be an arbitrary but fixed level in G. Let C1 = (c1, r1), . . . Cm = (cm, rm)

be the circle nodes on level l.

• The set of overlapped nodes for level l is defined as L = {r ∈ R|∃Ci, Cj, Ci 6=

Cj s.t. d(r, ci) ≤ ri and d(r, cj) ≤ rj}. Intuitively, L is the set of nodes that

are implicitly part of more than one circle on level l.

• The set of uncovered edges for level l is defined as U = {(r, p, v) ∈ O| 6 ∃Ci s.t.
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d(r, ci) ≤ ri and d(v, ci) ≤ ri)}. Intuitively, U is the set of edges that do not

have both the subject and the value in the same circle.

• The overlap for level l is defined as overlap(l) = |L|
|N(O)|

, where N(O) is the set

of vertices in the database O.

• The coverage for level l is defined as coverage(l) = |O|−|U |
|O|

, where |O| is the

number of triples in the database O.

The concepts of coverage and overlap are conceptually related to their coun-

terparts in R-trees [23], but will be used quite differently in GRIN.

Example 5.11. Consider the GRIN index in Figure 5.3. At level 2 of the index, all

vertices except 8 and 12/15/06 are not overlapped, hence overlap(2) = 18
20

= 9
10

. The

only edges that are not covered are (Review#16742, rating, 8) and (Review#16742,

date, 12/15/06). Therefore coverage(2) = 27
29

.

The following two results show that index structures with high coverage and

low overlap can process queries faster. Intuitively, high coverage means there is a

greater chance that an arbitrary query will “hit” inside a single circle on a given

level l. Similarly, low overlap leads to larger circles, hence to less efficient queries.

Proposition 5.12. Let G1, G2 be two GRIN index trees of equal heights h over the

same database O, such that for all levels 0 < l < h, coverageG1
(l) < coverageG2

(l),

where coverageGi
denotes the coverage in the index Gi. Let q be an arbitrary but

fixed query over O. Then the probability that q executes faster on G2 is higher than

0.5.
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Proof. Let l be an arbitrary level. The probability that an edge in query q

will match one of the uncovered edges on level l in Gi is equal to the number of edges

in the query |q| divided by the number of uncovered edges, |O| − coverageGi
(l) ∗

|O|. Hence the probability that the query q will be answered at a level l′ > l is

|q|
|O|−coverageGi

∗|O|
. Since coverageG1

(l) < coverageG2
(l) for all levels l except the root

and leaf nodes, for any arbitrary l it is more likely that the query q will be answered

at level l in G2 than in G1.

Proposition 5.13. Let G1, G2 be two GRIN index trees of equal heights h over the

same database O, such that for all levels 0 < l < h, overlapG1
(l) < overlapG2

(l),

where overlapGi
denotes the overlap in the index Gi. Let q be an arbitrary but fixed

query over O such that the smallest circle containing the answer to the query is on

level j in both G1 and G2. Then the probability that q is executes faster on G1 is

higher than 0.5.

Proof. Let l be an arbitrary level and let Ci be an arbitrary but fixed circle on

level l of Gi. Let ml be the number of circles on level l. The probability that a ran-

dom vertex belongs to the circle C is p(x ∈ C) ≥ 1
ml

+ 1
coverageGi

(l)
· 1

ml−1
. Intuitively,

the larger the overlap, the higher the probability p(x ∈ C). As a consequence, an

arbitrary circle in G1 is less likely to contain more vertices than an arbitrary circle

in G2. Therefore, it is likely that q’s smallest circle is larger in G2 than in G1. Since

query execution time is monotonic with the size of the smallest circle, q is likely to

execute faster on G1. .

Since high coverage and low overlap are desirable, we investigated the possibil-
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ity of optimizing either one when building the index bottom up. Let us assume that

C1, . . . , Cm are the circles at level l. We would like to build the parent circles on

level l + 1 such that we maximize coverage and/or minimize overlap. The following

result states that minimizing overlap is NP-complete.

Theorem 5.14. Let C = {C1, . . . , Cm} be a set of circles at level l in the index.

The problem of finding 2m
M

parent circles at level l + 1 such that overlap(l + 1) is

minimal is NP-complete.

Proof. We will prove the theorem through reduction from the known NP-

complete problem of maximal cut through a weighted graph. For simplicity, we will

assume we must find only two parent circles. The general case of 2m
M

parent circles

can be solved by applying the two parent-circle problem repeatedly.

Let H = (V, E, λ) be a connected weighted graph, where V is the set of

vertices and |V | = m, E is the set of edges and λ : E → ℜ+ is the edge labeling

function. The mincut problem is that of finding a set of edges E ′ ⊆ E such that after

removing E ′ from H , H contains exactly two connected components and
∑

e∈E′ λ(e)

is maximal. We reduce maximal cut to our theorem in the following way. We want to

associate a circle to each vertex in H , such that ∀v1, v2 ∈ V , λ(v1, v2) is the overlap

between the circles corresponding to v1 and v2 respectively. Let C(v) denote the

circle associated with a vertex v ∈ V . For each (v1, v2) ∈ E, we write the constraints

|NC(v1)| ≥ λ(v1, v2) and |NC(v1)| ≥ λ(v1, v2). The set of inequations has an infinity

of solutions, hence we can associate circles to each vertex in H , which completes our

reduction.
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Since optimizing overlap is NP-complete, the best we can hope to do is a

near-optimal solution. We empirically observed the following:

1. Overlap is almost always high near the root of the tree, where there are fewer

but larger circles.

2. Coverage will always be low near the bottom of the tree, where there are many

circles. Since we assumed O is connected (otherwise we can build separate

index structures for its connected components), then the number of uncovered

edges on level l is at least equal to the number of circles on l minus 1. For

a fully balanced GRIN tree, level l contains
(

M
2

)l
circles, hence there are at

least
(

M
2

)l
− 1 uncovered edges.

These observations suggest that we should focus on improving overlap where

it is possible, i.e., near the leaves and emphasize coverage near the root of the index

tree. We accomplish this by optimizing a linear combination of coverage and overlap

called a signature. Let C1, C2 be two circles on level l of a index of height h. We

overload notation and denote by overlap(C1, C2) = |C1∩C2|
|C1∪C2|

and by coverage(C1, C2)

the percentage of covered edges between C1 and C2. The signature is defined as

signature(C1, C2) = l
h
· 1

overlap(C1,C2)
+ h−l

h
· coverage(C1, C2). Note that near the

leaf level, the signature almost entirely depends on overlap, whereas near the root

it almost entirely depends on coverage. Our goal is the minimize the signature of a

level as much as possible. We introduce an updated index construction algorithm

in Figure 5.6.

The GRINBuildOptimized algorithm is very similar in concept to GRINBuild.
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Algorithm GRINBuildOptimized(C, Max, O)

Input: C is the number of leaf nodes, Max is the maximum number of vertices on
a page, O is the RDF database.

Output: The GRIN index structure G.
1: L0 ← PAM(O, C, Max)
2: Create leaf nodes in G from clusters in L0

3: for i ∈ [0, ⌈logM C − 1⌉] do

4: Li+1 ← ∅
5: Create a new labeled undirected graph H = (V, V × V, λ)
6: V ← Li

7: for m, n ∈ V , m 6= n do

8: λ(m, n)← signatureLi

9: end for

10: Eliminate any edges from H labeled with 0.
11: Compute the maximum ⌊M

2
⌋-cut through H using Goemans-Williamson

12: for each Vj ⊆ Li connected component do

13: Create node p = (c, r) in G as a parent of the circles Ck ∈ Vj

14: Li+1 ← Li+1 ∪ {p}
15: end for

16: Add level Li+1 to G
17: end for

18: return G

Figure 5.6: An algorithm to build the optimized GRIN index

Instead of using the inter-cluster distance to find the closest neighbors of a randomly

selected circle, the new algorithm builds a graph in which each vertex is a circle on

the current level and each edge between two circles is labeled with the signature of

the two circles. In order to minimize the signatures on the next level, we should

compute a number of maximum cuts through the graph that create a number of

connected components. The circles in each of the connected components will have a

common parent. Since maximal cut is a NP-complete algorithm, we use the approx-

imation algorithm discovered by Goemans and Williamson [18]. The approximation

factor of the algorithm is 0.872, which was the best approximation factor for the

maxcut problem we have found available.
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5.5 Handling updates

Suppose now that the RDF database O is updated by inserting a new triple

(r, p, v). Since we are only considering connected graphs, this means at least one of

r or v should already be in the database. Since both cases are identical from the

point of view of the distance metric, we will assume r is already in O. To maintain

the properties of the GRIN index tree, we would like to insert v into the cluster C

such that
∑

x∈C d(x,v)

|C|
is minimized, i.e., C is on the average the cluster “closest” to

v. We can do this by simply traversing the graph in a depth-first fashion, at each

step choosing the child circle whose center is closest to v.

Once the desired cluster has been located, if there is space for v, we simply

insert it into the cluster and then adjust the radii for all circles from C to the root of

the index. However, in case cluster C is full, then we have to split C into two distinct

clusters. This may cause the parent of C to split, if it already has M children. The

split can propagate all the way to the root, but it cannot go further since the root

can have more than M children. The insertion maintenance algorithm for GRIN is

presented in Figure 5.7. Note that when an inner node must be split, the simplest

what to ensure the maintenance of child/parent containment property is to simply

erase the inner node and allow its child nodes to form two new parents.

In case of a deleted triple (r, p, v), let us assume that r will be the resource

that will remain in O (if no resource remains in O, the graph was disconnected). If

the cluster containing v is now empty, we must propagate a notification to its parent

that the cluster has disappeared. If the parent remains with less than M
2

children
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method adjustUpwards(nI)

Input: Index node nI

1: if nI is the root then

2: return

3: else

4: recompute the radius of nI

5: adjustUpwards(parent(nI ))
6: end if

method splitUpwards(nI , X)

Input: Index node nI , newly created child X
1: if nI is the root then

2: add X to the children of nI

3: else

4: if |children(nI)| < M then

5: Add X to the children of nI

6: adjustUpwards(nI)
7: else {This node should be split as well}
8: Re-cluster children(nI) ∪ {X} into two parent nodes n′

I , n
′′
I

9: Add n′
I to children(parent(nI))

10: end if

11: adjustUpwards(parent(nI))
12: end if

Algorithm GRINMaintainInsert(O, G, (r, p, v))

Input: RDF database O, GRIN index G and newly inserted triple (r, p, v)
Output: An updated index G.
1: X ← root(G)
2: while X is not a leaf node do

3: if the children of X are leaves then

4: X ← the child C of X that minimizes
∑

x∈C d(x,v)

|C|

5: else

6: X ← the child (c, r) of X that minimizes d(c, v)
7: end if

8: end while{We have found the desired cluster}
9: if |X| ≤Max then

10: Add v to X
11: adjustUpwards(parent(X))
12: else

13: Add v to X
14: Split X into two equal clusters X ′, X ′′ such that signature(X ′, X ′′) is mini-

mized
15: Add X ′ to the children(parent(X))
16: splitUpwards(parent(X), X ′)
17: end if

Figure 5.7: GRIN insert maintenance
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method adjustUpwards(nI)

Input: Index node nI

1: if nI is the root then

2: return

3: else

4: recompute the radius of nI

5: adjustUpwards(parent(nI ))
6: end if

method coalesceUpwards(nI, X)

Input: Index node nI , newly deleted child X
1: if nI is the root then

2: remove X from children(nI)
3: else

4: remove X from children(nI)
5: if |children(nI)| = 0 then

6: coalesceUpwards(parent(nI), X)
7: else if |children(nI)| <

M
2

then

8: Let n′
I be the circle that maximizes signature(nI , n

′
I)

9: Merge n′
I into nI

10: for Y ∈ children(n′
I) do

11: splitUpwards(nI , Y )
12: end for

13: else

14: adjustUpwards(parent(nI))
15: end if

16: end if

Algorithm GRINMaintainDelete(O, G, (r, p, v))

Input: RDF database O, GRIN index G and deleted (r, p, v)
Output: An updated index G.
1: X ← leaf node containing v
2: if |X| > 1 then

3: remove v from X
4: adjustUpwards(parent(X))
5: else

6: remove v from X
7: coalesceUpwards(X)
8: end if

Figure 5.8: GRIN delete maintenance
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clusters, then it must also seek to coalesce with another node on the same level.

The deletion maintenance algorithm for GRIN is depicted in Figure 5.8. In case

two inner nodes have to coalesce (according to the signature minimization rules), it

might be the case that the total number of children after the merge is greater than

M . When we merge nI and n′
I , we simply add the children of n′

I to nI one by one.

One nI is full, adding the next child will trigger a new split.

5.6 Extending GRIN to aRDF

In this section, we show how GRIN can be extended to aRDF datasets. The

GRIN index structure was built on the idea that resources that are “close” in the

graph are more likely to appear together in a query answer and therefore should

be stored on the same page (preferable in the same index node). However, in an

aRDF triple, “close” can have two meanings: close in terms of the distance in the

aRDF graph or “close” in terms of the the annotation values. For instance, when

using Atime−int, intuitively triples whose validity intervals are close would be more

likely to appear together in the same answer than two triples who are temporally

far apart. When handling aRDF, we must take into account both the graph-based

distance metric and the distance between the annotations on the edges.

5.6.1 Distance metrics for aRDF

Graph distance metric. We can use either the shortest or the longest path

in the undirected RDF graph as the graph distance metric dG(·, ·). We observed
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empirically that the shortest path gives better performance for queries and therefore

omit the longest path from the rest of the discussion.

Annotation distance metric. The annotation distance metrics combine the

distance between consecutive annotations path between two resources. First, we

need to characterize the distance, δ(a, a′), between two annotation values a, a′ ∈ A.

We require that δ satisfies the following axioms:

1. δ(a, a) = 0.

2. δ(a, a′) = δ(a′, a).

3. δ(a, a′) ≤ δ(b, b′) if b � b, b′ � a′

A B

CD

E F

G

H

I J K

L M N

Q: {1,3} Q:{1,5}P: {1,3}

Q:{2,4}

P:{3,5}

P:{1,7} P:{2,8}

P:{3,5} Q:{5,7}

Q:{2,4} P{4,6} Q:{2,6}P:{1,9}

P:{3,5} P:{3,7}

Q:{2,6}P:{4,8}

A

B

C

D

GE

F H

I

J

K

L

M

N

(A,1) (B,1) (C,1) (E,1) (I,1) (K,3) (L,4)

(B,2) (F,4) (M,1) (K,3)

(D,5) (N,4)

ALL

?v1 B

?v2 ?v3

?p: {1,3} Q: {1,3}
P: {1,3}

?v1 ?v2

J ?v3

?p: {4,6} Q: {2,6}
P: {1,9}

E

?p: {3,5}

Q: {5,7}

(a) (b) (d)

(c)

Figure 5.9: (a) Synthetic aRDF database with Atime−int; (b) Example GRIN index;

(c), (d) Example aRDF queries.

There are numerous distance functions that satisfy these properties. For in-

stance, in the case of Atime−int, if Ti and Tj are temporal intervals, any of the

following are acceptable δ functions (Ti.s is the start point of interval Ti and Ti.e is

its end timepoint):
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1. δ(Ti, Tj) =
∣

∣

∣

Ti.e−Ti.s
2
−

Tj .e−Tj .s

2

∣

∣

∣
(interval centers).

2. δ(Ti, Tj) = |Ti.s− Tj .s| (start points).

3. δ(Ti, Tj) = |Ti.e− Tj.e| (end points).

4. δ(Ti, Tj) = |Ti.s− Tj.e| if Ti � Tj , otherwise δ(Ti, Tj) = |Tj.s− Ti.e| (leftmost

and rightmost point).

In the general case of a lattice (A,�), a possible δ(a, a′) can be defined as the

distance between a and a′ in the lattice if a is comparable to a′ or the sum of the

distances from a and a′ to their least upper bound otherwise. Given a δ, we can

then define an annotation metric as follows.

Definition 5.15 (Annotation distance metric). Let O be a aRDF database, x, y ∈ R,

p = (e1, . . . , en) be a path between x and y in the undirected aRDF graph, and aj be

the annotation on the edge ej. If n = 1, then we define dp
a(x, y) = 0. Otherwise,

we define dp
a(x, y) =

∑

j∈[2,n] δ(aj , aj−1). Finally, the annotation distance between x

and y is the minimum over all the possible paths da(x, y) = minp(d
p
a(x, y)).

GRIN distance metric. Since both dG(·, ·) and da(·, ·) are metrics, we can

use a norm function to produce a single metric d(·, ·). For GRIN, we use the k-norm

d(x, y) = [(dG(x, y))k + (da(x, y))k]
1

k . We will discuss the choice of k in Section 5.7.

Once we defined the distance metric, we can use GRINBuild and GRINAnswer

in the same way we did for standard GRIN. We illustrate the process through an

example.

Example 5.16. Consider the graph in Figure 5.9(a). Let δ be defined as the distance

between interval center points, dG be the shortest path distance and k = 1. Clearly,
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dG(B, F ) = 3. There are two different paths between B and F : {B, D, E, F} and

{B, C, H, F}. On the first path, da(B, F ) = 2 and on the second da(B, F ) = 3. We

take the minimum and obtain d(B, F ) = 4.

Consider the example query in Figure 5.9(c). To the following set of con-

straints can be derived from the query: d(?v1, B) ≤ 2), d(?v2, B) ≤ 1, d(?v3, B) ≤ 1.

For the query in Figure 5.9(d), we can deduce the following (not a complete list):

d(?v1, E) ≤ 1, d(?v2, J) ≤ 1 and d(?v3, J) ≤ 3.

We will now show how how query processing works for aRDF on the data and

queries in Figure 5.9. For the query in Figure 5.9(c), we start at the root node and

recursively call GRINAnswer on the child index nodes until we reach (B, 2). From

cons(q) we already know that d(?v1, B) ≤ 2), d(?v2, B) ≤ 1 and d(?v3, B) ≤ 1,

hence all variables are in the circle centered in B of radius 2. By running the

subgraph matching algorithm on this portion of the graph (which contains vertices

{A, B, C, D, G}), we obtain the answer to the query: ?v1← A, ?v2← D, ?v3← C

and ?p← P .

The processing of the query in Figure 5.9(d) is similar – once we recursively

reach the analysis for the node (F, 4), we see that none of the children satisfies the

constraints for all the variables. From d(?v1, E) ≤ 1 and d(E, F ) = 1 we have

d(?v1, F ) ≤ 2, from d(?v2, J) ≤ 1 and d(F, J) = 1 we deduce that d(?v2, F ) ≤ 2

and from d(?v3, J) ≤ 3 and d(J, F ) = 1 we obtain that d(?v3, F ) ≤ 4. Since ?v1,

?v2, ?v3 are all in (F, 4), we can apply the subgraph matching step of the algorithm

on (F, 4) and obtain ?v1← F , ?v2← H, ?v3← K and ?p← P .
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5.6.2 Queries with transitive properties

So far, we have assumed that all the transitive inferences in the database O

had been performed apriori. In this section, we show how to extend GRINAnswer

to handle transitivity inferences while it is processing a query. Let q be the query

that refers to a transitive properties. For simplicity, we will assume that only one

atom qt of q involves a transitive property. qt can be one of the following (x, y, z are

constants).

qt = (x, y, z). In this case, since y is transitive we simply perform all transitive

inferences on y starting at x. If z is reached, then this query atom is already entailed

by the RDF graph. Otherwise, qt cannot be entailed by the RDF graph and thus

the answer to q is ∅.

qt = (x, ?v, z). In this case, we simply perform all transitive inferences starting

at x on all its adjacent transitive properties. If for any such property p, we infer

(x, p, z), then p is a possible substitution for the variable ?v.

qt = (x, y, ?v) (this case is symmetrical to qt = (?v, y, z)). In this case, we

simply perform all the transitive inferences starting from x on property y until

there are no more inferences to be performed. Any resources r that is reachable

from x via y − paths is a possible substitution for ?v.

qt = (x, ?v, ?v′) (symmetrical to qt = (?v, ?v′, z)). In this case,

1. For any triple (x, p, r) ∈ O, p is a possible substitution for ?v and r a possible

substitution for ?v′.

2. Perform one transitive inference for any transitive property adjacent to x.
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Repeat from 1.

5.7 Experimental evaluation

GRIN was implemented in Java and on a Core2 Duo 2.8Ghz processor ma-

chine with 3GB of RAM running the openSuse 10.2 operating system. All running

times reported in this section are averaged over three independent executions using

warm caches. We compared the performance of GRIN against some of the leading

RDF storage systems: Jena2, Sesame2, Oracle 11g, RDFBroker, 3store5 and the

column store LucidDB. Besides the standard version of GRIN, we also evaluated

an implementation for data annotated with temporal validity intervals (we labeled

this approach tGRIN [47]). tGRIN uses the aRDF-Ordering algorithm to find the

answers to queries.

We evaluated our approach on the real-world dataset GovTrack consisting of

approximately 26 million triples and a series of datasets generated with the Lehigh

University Benchmark (LUBM) up to 1 million triples. For tGRIN, we converted

the GovTrack dataset to an aRDF database using the Atime−int annotation in the

same way as in Chapter 4. When comparing tGRIN to some of the competing

systems, we enhanced their relational database backend with a set of temporal index

structures including R-trees, SR-trees, the ST-index and finally the simple reified

format of data. For each system, we report the variant that performed the best.

In all our experiments, GRIN keeps references to RDF resources and triples

53store was not particularly efficient for standard RDF queries and hence its results are only
included for the aRDF dataset.
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Figure 5.10: GRIN load time

that are stored in a PostgreSQL 8.0 database using the same schema as Jena2.

The index itself is stored on disk in a set of separate files; reported running times

include disk I/O. We chose our queries for GovTrack from the list of frequent queries

available at www.govtrack.us depending on the requirements of each experiment.
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Figure 5.11: GRIN query processing time

The queries for the LUBM dataset are generated at random to match the selectivity

and/or query complexity criteria of the evaluation.

In our first set of experiments we measured the index load time for increasingly

larger subsets of both the GovTrack dataset (Figure 5.10(a)) and the LUBM dataset
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Figure 5.12: GRIN peak memory usage

(Figure 5.10(b)). We notice that in both cases, GRIN creates the index faster than

the other systems. RDFBroker was not able to load datasets above 200MB for the

LUBM benchmark and is therefore omitted. GRIN was able to create the index

for the entire 1 billion triple dataset in approximately 415 seconds.
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Figure 5.13: Selectivity and number of constraints analysis

Next, we selected 50 queries of selectivities between 10 and 20% (5–10 vari-

ables) for the LUBM dataset and 50 queries of the same selectivities, but with an

increasing number of variables up to 25. We show the dependence of the query pro-

cessing time on the complexity of the query (number of variables) and data size are
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given in Figure 5.11(a) and (b) respectively. We observed that GRIN outperformed

all the other systems, but the difference in processing time seems to remain relatively

constant for larger database sizes. On the other hand, when we increase the num-

ber of variables from 5 to 25 for a relatively smaller dataset (Figure 5.11(a)), some

systems such as Jena2 and Sesame2 unexpectedly crash for more than 10 variables.

Moreover, their scalability in terms of increased query complexity is much poorer

than that of GRIN. We should also point out that, as we described in Section 4.3,

queries with 25 variables are quite common among the existing datasets. We ob-

serve similar trends for LUBM as in the case of query processing time. However, an

increase in the number of variables seems to have a much greater effect on memory

requirements than the increase in database size. At this stage, we also measured

the peak memory consumption and plotted its dependence on the query complexity

(number of variables) for GovTrack and on the data size for LUBM. The results are

shown in Figure 5.12(a) and (b). GRIN uses slightly more memory than the other

systems for queries of increased complexity. This is due to the fact that we keep

intermediate results in memory, whereas RDFBroker stores intermediate results in

the database.

In the next set of experiments we chose a set of 20 queries for GovTrack and

20 queries for each selectivity level between 5 and 40% in 5% increments for LUBM.

The purpose of the GovTrack experiment was to keep the number of the variables in

the query constant, but vary the number of constraints – i.e., the number of edges in

the query. As the number of constraints increases, we expect the query processing

time to decrease. However, as Figure 5.13(a) shows, this is not case for Sesame2.
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Figure 5.14: tGRIN memory requirements and query processing time

The other relational-backed systems exhibited the same trends. This unexpected

behavior can be traced to the SPARQL-to-SQL translation. Figure 5.13(b) shows

the dependence of the query processing time on the selectivity of the query. Most

systems were relatively stable; GRIN in particular seems to be affected the least

by query selectivity.

In the next experiment, we measure the memory requirements, query process-

ing time, dependence on query size and on the variable/constant ratio for tGRIN
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Figure 5.15: tGRIN performance for complex queries

(GRIN for aRDF annotated with temporal intervals). The results are shown in

Figure 5.14 and Figure 5.15. We observed that tGRIN gives a significantly better

response time than any of the other systems; we traced this back to the use of the

aRDF-Ordering algorithm to answer conjunctive queries. Figure 5.14(b) shows the

scalability of tGRIN with respect to database size, whereas Figure 5.15(a) and

(b) show its scalability when query complexity increases. We used two measures of

query complexity. In Figure 5.15(a), we increase the query size, whereas in Figure
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5.15(b) we maintain the query size constant, but we gradually increase the number

of variables in the query. As in the previous experiments, tGRIN is not very much

affected by the increase in query size. The increased complexity of larger queries is

offset by the fact that these queries have more edges, hence more constraints can

be derived from the query. The same observation applies to the dependence on

the variable/constants ratio. We remind the reader that only a few constants can

be sufficient for tGRIN to quickly locate a small portion of the database that is

guaranteed to contain the answers.
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Chapter 6

Conclusions and future work

In the previous chapters, we have identified some of the critical factors that

affect scalability in RDF databases. We presented significant contributions at three

different levels of a scalable RDF database system.

At the knowledge representation level, we have empirically identified reification

as a technique that causes the degradation of query performance in existing RDF

database systems. Studying several real-world datasets led to the conclusion that

reification can be avoided by allowing triples to be annotated with values from

a partial order. We introduced a new representation language, Annotated RDF,

which generalizes the RDF syntax and model theoretic semantics to allow triple

annotations and transitive properties in the database. We developed a SPARQL-

like query language for Annotated RDF and defined its formal semantics.

At the query processing level, we defined an extensive set of query algorithms

covering atomic and general conjunctive queries; all our algorithms were proved

to be correct and their worst-case complexity analyzed. Many of the real-world

datasets we encountered had a large set of frequent queries; for such scenarios,

it is often preferable to store the answer to a frequent query and recompute its

answer incrementally when the database is updated. This led to the development

of view maintenance algorithms that can handle insertions into and deletions from
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the database. Last, we evaluated our algorithms and compared to the leading RDF

database systems on both real-world and benchmark datasets. Annotated RDF

proved to be more efficient in answering queries than Oracle 11g, Jena2 and Sesame2.

At the indexing level, we introduced the GRIN index structure, an innovative

way to reduce the search space when answering SPARQL queries. We provided

algorithms for index construction and query processing and presented a theoretical

analysis of index optimization, as well as an algorithm for building coverage and

overlap-optimized index structures. GRIN was easily extensible to the Annotated

RDF semantics. The empirical evaluation of our methods on both of real-world and

benchmark datasets showed that GRIN scales well to massive amounts of data and

to queries of high complexity.

6.1 Future work

In this dissertation, we have layed the groundwork for making Semantic Web

databases scalable. However, to achieve the same success as relational databases,

this research should be the starting point of a larger effort. Furthermore, our tech-

niques need to be extended to distributed RDF database systems and to OWL

ontologies.

The first problem that has to be addressed is that of RDF and OWL ontology

design and quality. Unlike the relational systems, where the normal forms used in

database normalization provide an indicator of the quality of the database, ontol-

ogy systems do not have a technique for estimating the quality of a database. Also,
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there is no established community practice on how ontologies should be designed.

Guarino and Welty [19] were the first to give a methodology for establishing which

real-world concepts should be classes and which should be properties. This duality is

quite problematic in many ontologies because it may impede inference capabilities.

The main issue with providing guidelines on designing ontologies is that ontology

quality can only be expressed in terms of their intended semantics. There are two

possible avenues of investigation. First, the possibility of designing an upper on-

tology (such as DOLCE – www.loa-cnr.it/ontologies) that encompasses those

general concepts and properties that span many domains. Such an ontology can

be designed with care by a group of experts, in the hope that domain specific on-

tologies that import it will be more inclined to use the same good design practices.

Although it is unlikely that a single such ontology will exist, having several ontolo-

gies representing different views of the world is achievable. The second avenue of

investigation is that of looking at the structural properties of class and property

taxonomies in ontologies and suggest a set of good design practices, similar to good

coding practices. This can only be done with a community-wide effort. One design

practice we can suggest at this time refers to datasets that are represented in RDF

or OWL although they are very well suited for a direct relational representation.

Examples abound, but we will mention just a few:

• The CIA World Factbook1 is essentially a relational dataset. However, it is of-

ten transformed to RDF and queried via SPARQL for research and application

demonstrations.

1http://www.aktors.org/interns/2005/cia/index.php
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• www.rdfdata.org contains a list of bibliographical RDF datasets. However,

the large majority of these have a simple structure that is easily representable

in a relational database. Entries generally list a paper, linked to a set of

values containing its authors, title, and so on. The author names themselves

are literals, which means papers will generally not be connected in the graph

representation of the dataset.

The second issue we see in the near future is that of RDF query optimization.

In this dissertation, we have shown that the solutions for RDF scalability are gener-

ally very different than the methods for the relational model. The same observation

applies to query optimization, which has two essential problems. The first problem

is that of data partitioning. Unlike relations, which can be partitioned horizontally

or vertically, partitioning RDF graphs is more complex. One way of doing this is to

split the set of properties in the database and then take the subgraphs on each set

of properties as a partition. Finding the split of the set of properties has to be done

in a principled way that accounts for the potential costs of the split. This leads

into the second problem of query optimization, which is finding good cost estimate

functions for queries. A cost function should allow us to estimate both the cost

of running query components – for instance, by estimating their selectivity – and

to estimate the cost of joining the results. Good cost functions should be based

on probabilistic models of RDF graph neighborhoods that take into account the

estimated values of resource in- and out-degrees, the density of triples and possibly

historical information about previous queries. The cost modeling framework we just
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described should also be coupled with low-level access estimates such as disk access

cost and number of page faults. Very recently, Stocker et al. [50] made the first steps

in this direction by proposing very recently a query optimization model than builds

on traditional relational optimization techniques to take into account the structure

of RDF data. Unlike relations, which can be partitioned horizontally or vertically,

partitioning RDF graphs is more complex. One way of doing this is to split the set

of properties in the database and then take the subgraphs on each set of proper-

ties as a partition. Finding the split of the set of properties has to be done in a

principled way that accounts for the potential costs of the split. This leads into the

second problem of query optimization, which is finding good cost estimate functions

for queries. A cost function should allow us to estimate both the cost of running

query components – for instance, by estimating their selectivity – and to estimate

the cost of joining the results. Good cost functions should be based on probabilistic

models of RDF graph neighborhoods that take into account the estimated values of

resource in- and out-degrees, the density of triples and possibly historical informa-

tion about previous queries. The cost modeling framework we just described should

also be coupled with low-level access estimates such as disk access cost and number

of page faults. Very recently, Stocker et al. [50] made the first steps in this direction

by proposing very recently a query optimization model than builds on traditional

relational optimization techniques to take into account the structure of RDF data.

The third item of future work is related to the types of RDF databases that

will develop over time. We hypothesize that in the near future we will see a pattern

of development similar to that of relational databases. Specifically, we will see a

131



combination of large RDF databases deployed in production environments, as well

as a number of smaller, distributed RDF databases. While we have shown successful

approaches for the former, we have yet to discuss the latter. A distributed RDF

database systems poses two important challenges:

1. Schema mapping. Although any merge of two RDF databases is consistent

(with the exception of potential data type clashes), it is still helpful to merge

resources from the two databases if they refer to the same real-world entity.

This has the clear advantage of improving query recall. So far, RDF and

OWL schema mapping algorithms have very high complexity, taking minutes,

even hours to complete. Such complexity impedes them from being used in

a distributed system setting. A clearer framework that provides quality and

running time guarantees for RDF and OWL mapping is a definite requirement.

2. Query re-writing. Assuming good schema mapping has been achieved, queries

will have to be re-written once they are transmitted from one processing node

to another. Query re-writing has to take into account the cost models we

previously discussed to minimize the computational costs of the re-written

query.

Last, but not least, our techniques will have to be extended to the richer rep-

resentation language OWL. A similar summarization approach as the one used in

GRIN was recently used by Dolby et al. [12] in their SHER project to summa-

rize the semantics of OWL ontologies and to efficiently answer membership queries

(which classes is a given resources an instance of?) over very large OWL ontologies.
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GRIN and SHER can be used together for a wider class of queries over OWL ontolo-

gies. This is especially important given the high complexity of OWL queries – for

instance, we know that the complexity of queries over OWL-Lite (the simpler of the

OWL family of languages) is EXPTIME-complete. The complexity of conjunctive

queries over OWL-DL (the intermediate level language) is still open.
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