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The development of an autonomous and internally-controlled technoecological hybrid is 

explored. The technoecosystem is based on an algal turf scrubber (ATS) system that 

combines engineered feedback control programming with internal feedback patterns 

within the ecosystem. An ATS is an engineered, high-turbulent aquatic system to 

cultivate benthic filamentous algae for the removal of pollutants from an overlying water 

stream. This research focuses on designing a feedback control system to control the 

primary production of algae in an ATS through monitoring of the algal turf metabolism 

and manipulation of the turbulence regime experienced by the algae. The primary 

production of algae in an ATS, and thus the potential of the waste treatment process, is 

known to be directly related to the level of turbulence in the flowing water stream 

resulting from the amplitude and frequency of the wave surge. Experiments are 



  

performed to understand the influence of turbulence on the biomass production rate of 

algae in an ATS. These results show that biomass production is correlated with wave 

surge amplitude at a constant frequency. Further, the influence of turbulence on the net 

ecosystem metabolism of an algal turf in an ATS was investigated. Results showed that 

both net primary production and respiration, measured through the diurnal change of 

inorganic carbon, follow a subsidy-stress relationship with increasing wave surge 

frequency, although some of this trend may be explained by the transfer of metabolic 

gases across the air-water interface. A feedback control algorithm, developed to monitor 

the net primary production and manipulate a controlling parameter, was found to 

converge quickly on the state of maximum primary production when the variance of the 

input data was low, but the convergence rate was slow at only moderate levels of input 

variance. The elements were assembled into a physical system in which the feedback 

control algorithm manipulated the turbulence of the flow in an ATS system in response to 

measured shifts in ecosystem metabolism. Results from this testing show that the system 

can converge on the maximum algal productivity at the lowest level of turbulence—the 

most efficient state from an engineering perspective—but in practice the system was 

often confounded by measurement noise. Investigation into the species composition of 

the dominant algae showed shifting relative abundance for those units under automated 

control, suggesting that certain species are more suited for utilizing the technological 

feedback pathways for manipulating the energy signature of their environment. 
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Chapter 1: Introduction—Towards the Algal Turf 

Technoecosystem  

Introduction 

The engineering of complex self-organizing biosystems is in its infancy, having 

advanced from early concepts of ecological engineering centered on wetlands for 

wastewater treatment in the 1960‘s to the design and constructions of complex systems 

that hybridize ecological entities within or coupled to a technological envelope. The 

research pursued here supports the development of an autonomous and internally-

controlled technoecological hybrid, based on an algal turf ecosystem that combines 

engineered feedback control programming with internal feedback patterns within the 

ecosystem. Algal turfs—communities of benthic attached filamentous algae and 

associated heterotrophic organisms—have been studied and employed for over two 

decades in an engineered stream microcosm called an algal turf scrubber (ATS) as a 

wastewater treatment technology to absorb nutrients from the wastewater stream flow. 

Not only is the development of feedback control technology for the algal turf scrubber 

process a potentially important development stage towards remotely deployable self-

optimizing wastewater treatment technologies, but the combination of automated 

feedback control technology with self-organizing ecological systems is an important 

milestone in the advancement of autonomous ecologically-engineered systems. The 

combined technological-ecological system, or technoecosystem, that results from pairing 

ecological systems with technologically-derived feedback control pathways is a new type 

of self-organizing system, the dynamics of and theoretical underpinnings for which are 

not fully understood, but which have profound implications for the future of 
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understanding the emerging landscape-scale technoecosystems that combine large-scale 

ecological processes with human-dominated systems. The research undertaken here is 

intended to understand the basic principles of technoecosystem design, development, and 

the resulting behavioral and organizational characteristics. This research seeks to explore 

the ATS as an ecological system that can be engineered into a technoecological hybrid 

through the design of key information feedback control pathways. To do this, this 

research pursues through experimentation in the laboratory an understanding of the 

growth and development of the algal turf in response to various limiting factors that can 

be precisely controlled on the ATS in the laboratory.  Based on this understanding of 

incident limiting factors on the algal turf ecosystem and the associated effects on 

systems-level metrics of algal productivity, the second stage of the research aims to 

design an appropriate technological envelope that automatically monitors the algal turf 

ecosystem primary productivity and affords automatic feedback control to optimize one 

of the limiting factors for maximum algal productivity. Exploratory experimentation with 

the combined ecological and technological systems leads to analysis of the behavior of 

the hybrid system for signatures of autonomy. 

Importance of topic 

Technoecosystems form an important subclass of ecologically-engineered 

systems (Kangas 2004). Most technoecosystems have been constructed at the laboratory 

bench scale (Beyers 1974, Petersen 2001, Cai 2002), although some ecologically-

engineered systems such as living machines (Todd and Josephson 1996) or enclosed 

biospheres (Nelson et al. 1993) have been implemented at the greenhouse-scale and 

employ monitoring and control elements that make them, by definition, 
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technoecosystems.  Technoecosystem engineering is at the forefront of the field of 

ecological engineering, yet their development thus far has been rudimentary, as most 

systems that have been built as technoecosystems (Myers and Clark 1944, Beyers 1974, 

Petersen 2001, Cai 2002) attain a minimal level of complexity and autonomy. Indeed, in 

a classification system of technoecosystems has been proposed (Blersch and Kangas 

2006), in which categorization is based upon the existence and direction of flow of 

information and/or energy between living and non-living components, most of these 

systems would attain classification ―b‖ (Figure 1. 1) representing a simple feedback 

control system.  One of the goals of this research is to advance the understanding of 

technoecosystem engineering to increase levels of autonomy and complexity (classes ―c‖ 

to ―e‖, Figure 1. 1). The taxonomy suggests a pathway to autonomy through the coupling 

of energy signatures such that the technological and ecological components are co-

dependent upon each other.  

 

Figure 1. 1. A taxonomy of technoecosystems for a range of different kinds of systems, including 

some that exist and some that are theoretically possible (Blersch and Kangas 2006).   
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Additionally, with the advancement of artificial intelligence programming and the 

advent of distributed wireless networks of sensors for data acquisition (Broad 2005, 

Porter et al. 2005), the engineering of technoecosystems of increasing complexity and of 

large scales is possible. The understanding of the organizational processes of ecosystems 

in response to autonomous technological feedback is limited, however. Self-organization 

has been identified as a major component process in the design of ecologically-

engineered systems (Kangas 2004, Mitsch and Jorgensen 2004), as it is inherent in 

biological systems (Camazine et al. 2001). This research is intended to contribute to the 

understanding of self-organization in systems that are hybrids of technological systems 

and ecosystems and exhibit system-level autonomy. The question posed in this research 

is thus: Does the addition of autonomous behavior in technoecosystems provide a subsidy 

to the self-organizing processes of the associated biosystem? 

The topic of this research also has specific importance to the development of the 

algal turf scrubber (ATS) technology. The ATS is an ecologically-engineered system that 

is designed for the recovery of pollutants (typically nutrients or metals) from wastewater. 

The rate of recovery is dependent upon the productivity of the algal turf ecosystem, 

which in turn is dependent upon the balance of factors that can be limiting to the algal 

growth (Adey and Loveland 2007). Technological components can be strategically added 

for information feedback to the algal turf ecosystem, allowing the ecosystem to control its 

own energy inputs based upon the monitoring of a system-level metric (Blersch 2004, 

Blersch and Kangas 2006). It is possible to use this construct together with a self-

organizing control program to allow the ecosystem to maximize its own productivity by 

optimizing the delivery of limiting factors. In this configuration, it would be expected 
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that the entire technoecosystem can self-design, in effect experimenting on itself to find 

the ideal conditions for productivity. From an engineering sense, it is desirable to 

optimize the ATS process by maximizing algal productivity while minimizing the 

delivery of some limiting factors (for example, light or turbulent enery) which equates 

directly to the cost of operation. Empirical investigation can help to answer this question. 

But, can an autonomous ATS answer the question for itself? 

Research Questions and Objectives 

There has been much interest in the construction of autonomous 

technoecosystems, hybrid combinations of ecological and technological components 

(Odum 1993, Blersch and Kangas 2006). Indeed, many ecologically-engineered systems 

often entail technological control networks superimposed or, sometimes, paired with 

ecological components for the performance of some function. Understanding how to 

engineer these hybrid systems for autonomous behavior is a key question for the 

furthering of ecological engineering. Related guiding questions for this research can be 

expressed. For example, can autonomy be exhibited by a combined technological-

ecological system? Might autonomous operation help to increase the performance of an 

ecologically-engineered system?  

A more specific research statement based upon these guiding questions is that an 

algal turf scrubber (ATS) technoecosystem can be engineered using a feedback control 

mechanism that monitors ecosystem productivity in realtime and influences the wave 

surge turbulence as the manipulated variable. Through the employment of computer-

based control programming and actuating hardware, the system will organize such that it 

will autonomously determine the optimum level of turbulence at a given nutrient loading 
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rate and light level. The internal structure of the algal community in the ATS will change 

such that those metabolic pathways that are able to harness the additional energy input 

through the feedback control system will selectively persist. 

Objectives 

In this research, the following objectives were pursued:  

1. The first objective was to investigate the effects of wave surge turbulence on algal 

biomass production and ecosystem metabolism in the ATS within the context of 

limiting factor theory via laboratory experimentation.  

2. The second objective was to develop a feedback control algorithm that continuously 

monitors the pH level in the ATS system and calculates the metabolism of the algal 

turf ecosystem from the pH diurnal curve.  

3. The third objective was to combine the concepts from the first and second objectives 

to develop a feedback control system that allows an ATS to optimize its own bed 

turbulence for maximum algal productivity by changing the wave surge frequency by 

manipulating the volumetric flow rate.  

4. The final objective was to perform exploratory experimentation with the autonomous 

ATS system to seek signatures of autonomy. The idea is that, with such a control 

system, an algal turf in an ATS will automatically seek over the subsidy-stress curve 

of net primary productivity versus wave surge frequency to find the maximum 

productivity in the range.  
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Background 

The technoecosystem 

It is now possible to add artificial feedback mechanisms to ecological systems 

using human-created technology at a variety of scales, thereby creating new systems that 

are hybrids of biological and technological components (Blersch 2004). Electronic 

sensors and computers with control programming can be used for artificial information 

feedback loops to an ecosystem, possibly allowing new pathways for energy utilization 

within the ecosystem. Systems that combinine technological and ecological components 

have been called technoecosystems (Odum 1993) or, alternately, ecocyborgs (Clark et al. 

1999). Odum (1993) specifically defines a technoecosystem as those systems in which 

―formerly wild components of ecosystems are incorporated into technological systems as 

hybrids of living units and hardware homeostatically coupled‖. The term 

―technoecosystem‖ is, however, much older, having been defined in a publication on 

large-scale industrial landscapes to define ―large, complex, spatially or functionally 

distinguishable…industrial systems under conscious human control viewed as 

ecosystems‖ (Duffield 1976). This definition, important as one of the earliest published 

definitions of technoecosystem, was developed from concepts of systems ecology (Odum 

1971) and is more akin to what is currently called industrial ecology. Key to the Odum 

(1993) definition, however, is the concept of homeostatic coupling, where homeostasis 

refers to the internal self-regulation of a system to maintain a quasi-steady-state despite 

external perturbations, and coupling implies a tightly-linked interdependence between 

internal components of the system. Thus a technoecosystem takes the form of a combined 

system of ecological and technological components that has internal systemic regulation 
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through the partial or full interdependence of its components. A way to conceptualize the 

technoecosystem is to recognize the necessity of internal feedback loops that affect the 

various sub-components, both ecological and technological, and their access to external 

energy sources. This perspective leads naturally to the field of feedback control 

engineering to inform technoecosystem design.  

Another interesting permutation on the concept of the technoecosystem was 

provided by Clark, et al. (1999), who defined the ecocyborg as a system that ―consist[s] 

of both biological and technological components that interact at the scale of an 

ecosystem…‖ (Clark et al. 1999). This definition seems to allow the possibility of 

technological components interacting with biological components at similar hierarchical 

levels and more subject to the organization and energy utilization of the entire system. 

Common to these definitions is the concept of some combination of technological and 

biological components interacting together, and thus organizing, as a whole system. In 

this research, the term technoecosystem will be used to descibe a system that combines 

technological and biological components such that the technology provides novel 

feedback mechanisms to the biosystems, resulting in autonomous homeostasis. 

Autonomy in general systems 

The concept of autonomy implies the ability for self-determination and self-

perpetuation, possessing some measure of independence (Pulliam and Johnson 2002). 

Ruiz-Mirazo et al. (2004) use the concept of autonomy as one of two key characteristics 

in a universal definition of a living system. They define an autonomous system as one 

that ―constitutes and maintains itself‖ in a state ―far from equilibrium‖ by means of  
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“establishing an organizational identity of its own, a functionally integrated (homeostatic 

and active) unit based upon a set of endergonic-exergonic couplings between internal 

self-construction processes, as well as with other process of interaction with its 

environment.”(Ruiz-Mirazo et al. 2004) 

Homeostasis is again a key point of this definition. Developing these ideas further, a 

definition of ‗basic autonomy‘ was proposed as occurring when an entity ―is capable of 

recursively generating stable novel functional constraints‖, where the constraint is 

functional if it increases the probability of system persistence in the face of external 

perturbations, and stable if it can be re-created in, say, successive generations (Fernando 

and Penn 2006). Additionally, a hierarchy of autonomy has been proposed (Vernon and 

Furlong 1992) in which a scale of autonomous systems is delineated into four basic types: 

(1) self-renewing systems; (2) self-reproducing systems; (3) self-regulating systems; and 

(4) self-directing systems. These ideas have been applied to living systems as well as 

technical systems, particularly those constructed as robots in the pursuit of research in 

artificial life (Brooks 2002). 

Autonomy of ecosystems is a relatively new concept in ecology. In suggesting 

ecosystem autonomy as a key concept to be understood by ecosystem designers and 

managers, Pulliam and Johnson (2002) suggest that the autonomy of an ecosystem is 

scaled to the independence of that ecosystem from its surroundings and the inputs derived 

from such. No ecosystem is completely independent from its surroundings, receiving 

energy and matter as inputs, but the amount of autonomy of an ecosystem is established 

by the ―relative magnitude of inputs and outputs in relationship to the size of the systems 

under consideration‖ (Pulliam and Johnson 2002). It is suggested that increased 

autonomy of ecosystems is sometimes desirable, for example, to limit the impacts from 



 

10 

 

external pollution sources on species within an ecosystem. It is also suggested that 

managers can manipulate the autonomy of ecosystems either by influencing the 

magnitudes of inputs and outputs to the system, or by manipulating the internal state of 

the system (Pulliam and Johnson 2002). Examples of naturally autonomous ecosystems 

are rare, but ice-covered arctic lakes have been studied and suggested as reference 

autonomous ecosystems (Vanriel and Johnson 1995). The authors of this study suggest 

that, in autonomous ecosystems, there is ―a trend towards maximum energy acquisition‖ 

and conservation of that energy ―in the biomass for the longest time possible‖. Focusing 

on these ideas, they deduce hypotheses concerning the determination of ecosystem 

autonomy that are potentially testable via observation of ecosystem properties such as 

species abundance, individual organism size, and energy density of organism tissues 

(Vanriel and Johnson 1995). 

Autonomous technological systems are currently at the forefront of engineering, 

particularly in the fields of computer and robotic engineering, artificial intelligence, and 

artificial life. Many of the concepts and definitions of autonomy come from the literature 

regarding artificial life (Vernon and Furlong 1992, Fernando and Penn 2006) and focus 

on the replication of life-like properties in technical, computationally-based systems. The 

potential for novel autonomous systems arises at the intersection of engineering and 

ecology. Although few autonomous ecosystems appear in nature, many natural analogs 

have been engineered and studied in the form of ecological microcosms (Beyers and 

Odum 1993, Kangas 2004). These ecosystems have varying degree of energetic and 

material closure and thus fulfill the ecological conception of ―autonomy‖. Clark et al. 

(1999) discuss the creation of technoecosystem hybrids in which autonomous goal 
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seeking is engineered in biosystems via control networks, where autonomy is understood 

to imply the pursuit of self-derived goals in a dynamically changing environment. Many 

researchers have attempted to engineer robotic systems that are powered by ―food‖—

typically reduced organic waste products—that is digested in microbial reaction 

chambers (Wilkinson 2001) or supply a microbial fuel cell (Ieropoulos et al. 2009). 

Indeed, these researchers define the concept of ―artificial symbiosis‖ to describe the 

coupling between the ecological and technological components. 

Autonomous Technoecosystems 

Theoretical work on the engineering and design of autonomous technoecosystems 

(Kok and Lacroix 1993, Clark and Kok 1998, Clark et al. 1999, Clark and Kok 1999) 

resulted in suggestion for a more extreme possibility for technoecosystems: the 

combination of ecological components with technological feedback networks exhibited 

as an autonomous, artificially-intelligent biosystem. An intelligent technoecosystem 

could process information about its internal state and take appropriate and necessary 

action to maintain internal homeostasis, for example, by accessing additional sources of 

energy or nutrients or mitigate infestations of unwanted species. The authors have 

proposed this type of system at the greenhouse scale for the production of agricultural 

crops for space exploration applications (Kok and Lacroix 1993, Clark et al. 1999). The 

researchers suggest parameters of complex engineered technoecosystems that might be 

measured to characterize a system‘s level of autonomy (Table 1. 1). These measures rely 

upon the observation of patterns and correlation between the actions of components of a 

system and of the entire system itself. 
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Table 1. 1. System properties of technoecosystems that might be used to measure the degree of 

system autonomy (Clark and Kok 1999). 

Parameter to be 

Measured 

Description 

Order The degree of correlation between features of the system. 

 

Disorder The variation in a system, either random or in a pattern. 

 

Complexity The variation associated with pattern, gauging the difficulty in describing the pattern. 

 

Emergence The degree to which global phenomena are influenced by local structure. 

 

One of the earliest published papers on an autonomous technoecosystem 

(although it was not called such by the authors) was on the apparatus known as the 

turbidostat (Myers and Clark 1944). This apparatus was developed for the continuous 

growth of a suspended algal culture of Chlorella where the population density is 

automatically maintained at or near a steady state by the addition of fresh growth 

medium. A typical setup of the turbidostat employs an algal culture in a chamber 

constructed of concentric glass tubes illuminated by external lights. Fresh nutrient 

medium is automatically added by a solenoid valve controlled by a photocell that 

monitors the light transmittance of the algal culture density. As the algal culture grows 

denser, illumination to the photocell is blocked, creating an off-balance current in a 

circuit that opens the solenoid valve to allow fresh growth medium into the growth 

chamber. The fresh medium dilutes the suspension, restoring illumination to the photocell 

and closing the solenoid. The apparatus allows for the continuous culture of suspended 

algae at constant cell density and uniform photosynthetic rate over many months (Myers 

and Clark 1944). Because all sources of energy are in excess and not limiting, algal 

growth becomes limited only by factors internal to the alga. The rudimentary autonomy 

of the turbidostat is evidenced by the fact that the growth of the culture is controlled by 
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feedback control based upon a parameter internal to the biosystem (that is, the population 

density), as opposed to external control, as employed in a chemostat, in which the growth 

rate of a culture of microorganisms is set by the flow rate of a continuous nutrient feed 

into a bioreactor (Premazzi et al. 1978). 

A technoecosystem was constructed using an aquatic photosynthetic microcosm 

in which the lights were controlled by measurement of the pH level of the solution (Kania 

and Beyers 1974). Dissolved carbon dioxide rises or falls because of release or uptake 

during respiration or photosynthesis, respectively, affecting the pH of the solution. In the 

technoecosystem microcosms, the level of pH was used to automatically switch on and 

off a light source to keep the pH within the bounds of low and high setpoints. The 

researchers reported that the system exhibited oscillatory behavior, alternating between 

periods of light and dark. In two of three replicate systems of this configuration, the light 

phase of the light-dark cycle was longer than the dark phase and gradually increased over 

time until, eventually, the light remained on constantly. Odum (1993) contends that this 

indicates the systems gradually organized to maximize photosynthetic power.  

Another photosynthetic technoecosystem was constructed in which an artificial 

feedback loop was added to aquatic planktonic microcosms using dissolved oxygen 

sensors and a data-logging computer (Petersen 1998, 2001). When dissolved oxygen in 

the water column fell below a lower set point because of ecosystem respiration, a light 

was turned on to stimulate photosynthesis. The oxygen created in community 

photosynthesis increased the dissolved oxygen content of the water until it reached an 

upper set point, at which time the light was turned off. The nutrient uptake, primary 

productivity, and duration of light and dark periods were measured for all microcosms. 
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While the overall development of the microcosms were not seen to change much 

compared to fixed lighting conditions, similar patterns in energy demand and oscillatory 

primary productivity patterns were observed between replicate microcosms. It was found 

that the artificial feedback induced a partial decoupling between productivity and 

respiration in the planktonic community. Petersen (2001) also suggested that the novel 

character of the oscillations between the light and dark period was a result of the 

feedback structure and amounted to emergent behavior at the level of the system.  

Another technoecosystem was constructed out of  planktonic microcosms in 

which the photoperiods of experimental replicates were controlled by feedback control of 

pH, turning on the light when the pH level fell to a lower threshold and turning off the 

light at a higher threshold (Cai 2002, Cai et al. 2006). The researchers compared the 

behavior and internal structure of experimental replicates (that had developed under 

feedback control) with those of other replicates that had developed without feedback 

control. The researchers found that, after both types of replicates were tested under 

feedback control for a time, both types increased the daily light duration via that 

feedback, but the increase in duration was greater (506 versus 412 minutes) for those 

units initially developed under feedback control. Also, the increased abundance of acid-

secreting blue-green algae was observed in these units, and this was suggested as the 

explanation for the greater photoperiod and thus greater power acquisition for these units. 

The authors suggest that these results demonstrate the selective persistence of power-

maximizing system designs (Odum 1975) as derived from the Maximum Power Principle 

(Lotka 1922, Odum and Pinkerton 1955). 
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The design and operational dynamics of a technoecosystem investigated for a 

technoecosystem that consisted of a wetland soil microcosm in which redox potential was 

controlled by feedback (Blersch 2004, Blersch and Kangas 2006). The researchers 

compared microcosms with feedback control to those without it. Using platinum-tipped 

electrodes to measure redox potential in the microcosms, the control system could add 

nutrient solution to the microcosms to maintain redox potential within a defined range. A 

redox value greater than an upper threshold setpoint triggered the addition of a carbon 

solution, whereas a redox value less than a lower threshold triggered the addition of a 

nitrate solution. Experimental trials exhibited an oscillatory trend in redox potential over 

time, compared to steady decline in redox potential in the control trials. The feedback 

transformed the microcosms from a reduced state into an alternative state of oxidation. 

The researchers suggest practical applications in the optimization of denitrification rates 

in wastewater treatment wetlands by automatically adding the limiting nutrient. They also 

propose a taxonomic classification of emerging possible technoecosystems based upon 

the types of interactions (information exchange versus energy exchange) between living 

and nonliving system components (Figure 1. 1). 

Algal Turf Scrubbers and the Role of Turbulence 

The algal turf scrubber (ATS) has been developed as a mechanism for cultivating 

benthic filamentous algae under conditions of high productivity for the purpose of 

pollutant removal from a wastewater stream(Adey and Loveland 2007). The ATS was 

originally patented by Walter Adey of the Smithsonian Institution, an algae ecologist who 

realized that by separating out the photosynthetic component of a coral reef, the factors 

limiting to productivity could be managed to drive algal productivity to a maximum, 
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thereby providing oxygen production and nutrient uptake for coral reef microcosms 

(Adey 1982, Adey 1987). A typical laboratory-scale recirculating ATS is shown in Figure 

1. 2. A turf of filamentous algae is grown on the screen in the shallow bed under a light 

source. An algal turf consists of a complex community of filamentous algae and 

microorganisms and is known to be among the most productive photosynthetic 

ecosystems in nature (Lewis 1977). When employed for wastewater treatment, pollutant-

laden water is added to the reservoir of the system in batch form. Water is pumped from 

the reservoir to the wave surge bucket, the action of which causes wave action and 

turbulence in the bed. The turbulence of the flow regime selects for the benthic 

filamentous algae over other morphologies and contributes to the overall algal 

productivity (Adey and Loveland 2007). As the algal turf grows, it uptakes nutrients or 

adsorbs other pollutants in its biomass, and periodic harvesting of this biomass removes 

those pollutants from the water stream. ATS units  have been examined for nitrogren and 

phosphorus removal from municipal wastewaters (Craggs et al. 1996), aquaria 

(Anonymous 1995), and dairy manure (Mulbry and Wilkie 2001, Wilkie and Mulbry 

2002, Kebede-Westhead et al. 2003, Mulbry et al. 2005); metals and organics removal 

from industrial waters (Adey et al. 1996); and phosphorus removal from natural waters 

receiving agricultural runoff (Adey et al. 1993).  ATS units have been employed at a 

variety of scales ranging from the home aquarium (Anonymous 1995) to multi-hectare 

facilities (Hydromentia 2005). When employed for nutrient uptake from polluted waters, 

the ATS technology is scaled for a particular application using estimates of algal 

production (in grams of biomass produced per area per unit time) and of the component 

biomass fraction of the nutrient of interest. The ease with which the various potential 
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limiting factors (most importantly, light, carbon, nitrogen, phosphorus) can be 

manipulated and controlled in the laboratory and the celerity of the resulting response in 

algal community productivity makes the ATS an ideal ecological system for research in 

technoecosystem engineering. 

 

Figure 1. 2. Schematic drawing of a recirculating laboratory-scale algal turf scrubber (Adey et al. 

1993). 

The growth response of algae in an ATS can be described by limiting factor 

theory of ecology, which states that the success of an organism or community depends 

upon a combination of conditions, whereupon any one of which exceeds a limit of 

tolerance (maximum or minimum) becomes the factor that is limiting to the growth of 

that organism or community (Odum and Barrett 2005). Limiting factor theory extends 

from Liebig‘s Law of the Minimum (Liebig 1840), which states that the success of an 

organism cannot exceed the level set by the availability of the weakest component in its 

set of requirements. An important corollary in the consideration of algal growth in an 

ATS is the concept of the interaction of factors, in which the action of some factor other 

than the minimum may affect the utilization of the limiting factor (Odum and Barrett 
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2005).  It is important to note that the limits of tolerance of any one factor can be in the 

maximum as well as the minimum, in either case causing stress in the organism or 

community. The classic subsidy-stress response (Odum et al. 1979) of a community to 

the varying availability of a factor describes that a factor low in concentration may be 

limiting; increasing availability of that factor may increase growth and productivity up to 

a maximum; and further increase may become a stressor (e.g., via toxicity interactions) 

which again limits productivity in some way (Figure 1. 3). 

 

Figure 1. 3. The subsidy-stress concept in ecology, where the increase in a perturbation can initially 

subsidize some characteristic of system performance (being a limiting factor for that metric), but 

beyond a certain optimum level, the perturbation may cause increased stress effect and reduce the 

overall characteristic of performance (Odum and Barrett 2005). 

The relationship of productivity of the benthic algal turf or periphyton to 

increasing velocity of the overlying fluid flow generally exhibits a subsidy-stress 

relationship (Odum et al. 1979, Odum and Barrett 2005) as a result of opposing 

mechanisms of increased availability of light and nutrient delivery to cells and increased 

biomass export rates due to drag forces (Stevenson 1996). Flowing water is considered to 

stimulate productivity of a benthic algal community for a variety of reasons (Saravia et 

al. 1998), including increased delivery and replenishment of nutrients from upstream; 

increased flushing of growth-inhibiting waste products and metabolites; and increased 
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import of new algal cells to open sites. Deleterious effects do exist, however, as water 

flow creates a drag force on cells and filaments in the periphyton matrix, increasing the 

scour and export of cells from a periphyton mat as a result of sloughing (Stevenson 

1996). A conceptual model was developed (Whitford 1960) for understanding the general 

stimulatory effect of current on periphyton growth. In stagnant or non-flowing water 

containing a nutrient concentration, an algal cell will have surrounding it a diffusive 

boundary layer in which the concentration of the nutrient is lowest at the surface of the 

cell (because of uptake and use by cell mechanisms) and increases outward from the cell 

surface to equal the ambient concentration of the surrounding fluid at some defined 

distance away from the surface. Within this shell, diffusion kinetics dominate, and the 

steepness of the diffusion gradient is determined by the physical relationship between the 

solute (nutrients) and the solvent (water). For an attached cell in a flow environment, 

low-concentration water within the surrounding shell is swept away and replaced with 

incoming water of ambient concentration, shortening the thickness of the diffusion shell 

and causing the gradient to be steeper (Whitford 1960). In such a situation, the overall 

exchange rates of nutrients between the surface of the cell and the ambient fluid flow are 

increased. In a linear flowing system such as a stream, the diffusion shell is envisioned as 

a boundary layer overlying the base substrate in which the velocity varies from zero at 

the surface to the stream velocity some distance above the surface, defining the limit of 

the boundary layer (Silvester and Sleigh 1985). An attached periphyton community 

modifies the roughness of the substrate surface and, for any given flow, affects the 

thickness of this diffusive boundary layer.  
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There have been numerous attempts to model periphyton growth in flowing water 

which help to conceptualize the interaction of the turbulence of the flow field with the 

diffusive boundary layer. Many of these simulations focus on the interactions of the 

benthic periphyton layer with the flowing water overhead, and especially on the transport 

dynamics of nutrients at this interface. A simple mechanistic model was proposed (Momo 

1995) that describes the growth of periphyton in streams as unstable above a critical flow 

velocity, resulting from the tradeoff between stimulatory and scour effects. Another 

model (DeAngelis et al. 1995) investigated nutrient uptake by periphyton in streams by 

suggesting a static diffusive boundary layer surrounding the benthic periphyton 

community, with nutrient availability in this layer controlled by the properties of a 

transient layer at its periphery. This model was improved (Nikora et al. 1998) by adding 

different flow conditions defined by the amount of penetration of the flow into the 

periphyton biomass. Further development of this model (Larned et al. 2004) showed that 

the height of the periphyton canopy (formed by algal filaments) in relation to the height 

of the boundary layer of the stream bottom was a major determinant of the controlling 

dynamics of nutrient uptake. That is, if the periphyton canopy extended beyond the 

boundary layer of the substrate, diffusive effects surrounding each algal filament 

controlled nutrient uptake. In general, these simulations indicate that the diffusive 

boundary layer can be the strongest determinant of nutrient uptake dynamics and thus 

periphyton productivity in flowing water. Whether the diffusive boundary layer is located 

at the surface of the periphyton mat (DeAngelis et al. 1995) or along the surface of algal 

filaments as they extend above the boundary layer of the substrate (Larned et al. 2004) is 

directly related to the velocity and turbulence of the overlying flow as transferred to the 
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forces acting upon the individual algal filaments (Son and Fujino 2003).  At higher flow 

rates, the thickness of the diffusive boundary layer is decreased and the diffusive gradient 

between the uptake surface and the ambient flow becomes steeper. 

Numerous empirical studies have been undertaken to verify the hypothesized 

effects of flow velocity on the productivity of periphyton communities. Many studies 

have reported an increase in the biomass accumulation rate as velocity increased, both in 

the laboratory (Odum 1956, Mcintire 1966a) and in the field (Horner and Welch 1981, 

Biggs and Hickey 1994), for flow velocities ranging from 10 to 150 cm s
-1

. Many of these 

same studies also found the stimulation of metabolic measures such as primary 

productivity and respiration by increasing velocity levels (Odum 1956, McIntire 1966b, 

Marsh 1970, Biggs and Hickey 1994). Still others, however, found reduced levels of 

biomass accumulation at the highest levels of velocity (Antoine and Benson-Evans 1982, 

Horner et al. 1990, Lau and Liu 1993). These results suggest that benthic algal production 

in general is stimulated by increasing velocity of flow, due to the reduction of the 

diffusive boundary layer surrounding the benthic matrix, but that greater velocity 

increased rates of scour and thus export of biomass.  Because of the evident impact of 

high flow velocities on community export rates (Antoine and Benson-Evans 1982), it can 

be generalized that periphyton community biomass is highest in intermediate flows. 

Adding complexity to the relationship, however, is the effect of other potential limiting 

factors (e.g., nutrient concentration, light availability) that may interact with the 

productivity response of periphyton communities to increasing velocity (Stevenson 

1996). 
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These studies provide guidance as to the role of flow velocity and turbulence in 

stimulating the productivity of the photosynthetic benthic community it might impact. 

The turbulence in an ATS, however, is delivered more from the wave surge action of its 

design rather than the velocity of the bulk flow. Indeed, with a slope typically of 1 to 2 

percent, velocities of the base flow in an ATS typically does not exceed 20 cm s
-1

, and 

Reynold‘s numbers (an indication of the turbulent energy of a flowing fluid) are typically 

low (Streeter and Wylie 1975). Algal turfs in environments of periodic wave surge have 

been shown to be substantially more productive than the same turfs at comparable base 

flow velocities (Adey and Hackney 1989). An oscillatory wave flow regime was found to 

stimulate the primary productivity of algal turfs over 20% compared to a vortex field 

flow of similar velocity (Carpenter et al. 1991), and oscillatory flow was shown to have 

similar stimulatory effects on nitrogenase activity in an algal turf compared to 

unidirectional flow (Williams and Carpenter 1998).  Subsequent research indicated that 

mass transfer of dissolved inorganic carbon (Carpenter and Williams 2007) and nutrients 

(Thomas and Cornelisen 2003, Barr et al. 2008) into seagrass and algal turfs can be 

diffusion limited at low flow velocities, and oscillatory flow plays a role in overcoming 

diffusive limitation caused by flow turbulence attenuation by high-canopy algal turfs 

(Carpenter and Williams 1993). Oscillatory flow has been shown to increase mass 

transfer of dissolving plaster forms up to 1.6 times over bulk flow velocities of less than 

10 cm s
-1

, although this effect was less pronounced for increased velocities beyond that 

(Falter et al. 2005). It is this effect which has led to the rapid development of the algal 

turf scrubber as an engineering system for the cultivation of a filamentous algal turf for 
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wastewater and pollution treatment (Adey 1982, Adey et al. 1993, Adey et al. 1996, 

Craggs et al. 1996). 

Ecosystem Metabolism and the pH Diurnal 

The measurement of ecosystem metabolism in aquatic systems entails the 

determination of primary production and respiration based upon the changes of gas 

concentrations in the overlying water. Measurement is typically performed by measuring 

the flux of gases dissolved in the water that are important to production and respiration, 

namely, oxygen and carbon dioxide. The relative rate of uptake or evolution of either of 

these gases (generally expressed as grams per square meter per day for the gas in 

question) throughout a diurnal light cycle gives an indication of the overall production of 

the ecosystem (Ryther 1956). For example, if carbon dioxide changes were being 

measured for a diurnal cycle, gross primary productivity is represented by the decline of 

carbon dioxide (as grams of carbon per square meter per day, or g C m
-2

 d
-1

) during the 

light period; respiration is represented by the increase of carbon dioxide during the dark 

period; and the net primary productivity (also called the net daily metabolism) is equal to 

the gross primary production minus respiration (Bott 1996). The ratio of gross primary 

production to respiration (the P/R ratio) is often used as a functional index of the relative 

maturity of an ecosystem; in the successional development and maturation of ecosystems, 

it is generally found that the ratio of the gross primary productivity to respiration (the P/R 

ratio) is greater than 1 (Odum and Barrett 2005). As the ecosystem matures, the P/R ratio 

approaches 1 as more energy is used in respiration for the maintenance of the biomass.  

Direct measurement of the metabolically important gases in aquatic systems has 

been performed and investigated by various researchers. A method was developed (Odum 
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1956) that employes the diurnal pattern of dissolved oxygen, using saturation deficits and 

kinetic transfer coefficients to account for the diffusion of the gas across the air-water 

interface. This method has since been standardized for aquatic systems (APHA 1995). 

Early on, this method was developed employing a Winkler titration to measure the 

concentration of dissolved oxygen (Odum and Hoskin 1957), and the advance of 

electronic probes has allowed for the automatic measurement and datalogging of 

metabolic gases. For example, to measure the metabolism of a natural and microcosm 

Caribbean coral reef flat over a number of days, researchers built and tested a computer-

based data-logging system that employed oxygen sensors, current meters, light meters, 

and a tide gauge (Griffith et al. 1987). Continuously recorded measurements of the rise in 

oxygen during the day and the fall in oxygen during the night allowed calculation of the 

daytime net production, nighttime respiration, and total excess production. Other 

instruments and systems have been developed for continuous and automatic measurement 

of carbon dioxide concentrations in freshwater (Sellers et al. 1995, Carignan 1998) and 

marine systems (DeGrandpre et al. 1995). 

Another method for measuring the ecosystem metabolism in aquatic systems is to 

track the change in carbon dioxide concentration indirectly through the measurement of 

pH through a diurnal cycle. Carbon dioxide dissolves in water as a weak acid via the 

carbonate system (Masters 1991). Thus, as the CO2 concentration decreases during the 

day because of photosynthesis, pH levels increase; conversely, as the CO2 concentration 

increases during the night because of respiration, pH values decrease. The method 

therefore requires calibration of the pH to the concentration of CO2 in the water through 

analytical or empirical means (Beyers and Odum 1959).  The empirical method relies 
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upon the construction of a pH-CO2 curve for the water of interest to allow conversion of 

the pH results to CO2 concentrations (Beyers and Odum 1959, Beyers et al. 1963, Beyers 

1964). The analysis is performed by the incremental titration of distilled water saturated 

with CO2 into a sample of known volume from the water body of interest from which all 

CO2 has been stripped. The pH is recorded at each titration increment, and titration of 

precise amounts of water allows the calculation of the amount of CO2 added at each 

titration step, allowing the construction of the characteristic pH-CO2 curve for the water 

of interest. This method has been used to measure the metabolism of natural systems 

(Park et al. 1958), individual organisms (Beyers and Warwick 1968) and laboratory 

microcosm ecosystems (Beyers 1965). The advantage of the pH diurnal method over 

others results from the low cost of the near-ubiquitous pH probe, compared to other 

available electronic probes. Additionally, the pH method may be more appropriate for use 

in more turbulent environments compared to the oxygen method; because of the low 

partial pressure of carbon dioxide in the atmosphere, diffusion from the atmosphere into 

the water body is usually an insignificant component of the overall carbon budget of a 

productive aquatic ecosystem and thus can often be ignored in calculations of ecosystem 

metabolism (Park et al. 1958). 

An alternate method of measuring community production is by the sacrificial 

harvesting of standing biomass from a substrate and measuring its ash-free dry mass 

(Steinman and Lamberti 1996). Calculation of production, generally expressed as grams 

of biomass per area per unit time, is performed by dividing the ash-free dry mass of 

harvested biomass by the harvest area and by the time required for the accumulation of 

the biomass from a barren substrate. Harvest of the standing biomass includes both 
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autotrophic and hetereotrophic components of the community, and no information can be 

determined about the partitioning of the photosynthetic and respiratory components 

(Steinman and Lamberti 1996). This method is fundamentally different from the gas-flux 

approach, inasmuch as it gives no information about the community diurnal metabolism, 

rather serving as an integrative index of metabolism over a of time period usually longer 

than 24 hours. While the method has been used for measuring productivity in natural 

streams (Bothwell 1988), this method has also been employed extensively for measuring 

the overall productivity of the algal community in algal turf scrubbers (Adey et al. 1993, 

Adey et al. 1996, Mulbry and Wilkie 2001, Kebede-Westhead et al. 2003). 

Research Approach 

Technoecosystems: The view through Odum’s “Macroscope” 

While the reductionist perspective is predominant in scientific inquiry, a holistic 

synthesizing view has value in understanding the organization of complex systems. 

Odum (1971, 2007) expresses the value of the holistic view through the suggestion of 

viewing systems through the ―macroscope‖ of systems analysis. While details and 

internal mechanisms of a system are first surveyed and identified, the complexity of 

detail is mitigated through aggregation and classification to yield a systems-level 

understanding of organizational principles of the system. Principles of general systems 

theory translate through all real physical systems, as they are emergent from the laws of 

thermodynamics (Odum 2007). The macroscopic perspective guides the approach of this 

research. As the technological and ecological components of the ATS system under study 

are interpreted to be component parts of the overall ATS technoecosystem, the 

characteristics of each component system are investigated in isolation, yet with the 
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objective to understand the interaction at their interface through emergent characteristics 

at the systems level (Figure 1. 4). First, investigation into the response of an algal turf in 

an ATS to the intensity of turbulent energy is pursued. Next, based on those results, a 

seeking algorithm is developed and tested to serve as the core of a feedback control 

system. Finally, the elements are combined into a technoecosystem configuration that is 

tested and evaluated for efficiency of performance.  

 

Figure 1. 4. The view through Odum’s macroscope as a method of analysis for investigating the 

systems-level characteristics of a technoecosystem that incorporates feedback between ecological and 

technological components (based on Odum (2007)). 

Preliminary Investigations: Pushing and Pulling the Periphyton 

Following the assumption that the turbulence of a flow field overlying a benthic 

algal turf is a key limiting factor to the productivity of that algal community, the 

preliminary experiments were designed to explore the role of turbulence as a limiting 

factor to the productivity of the algal turf in a range of nutrient-loading environments. 

Volumetric flow rate and wave surge frequency were independently manipulated on a set 

of ATS units to establish a range of turbulence conditions. The resulting effect of 
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turbulence on the overall biomass production rate of algal biomass over a range of 

nitrogen loading rates was measured through periodic sacrificial harvesting of the algal 

turf. To accompany these production measures, an independent measure of turbulence 

intensity at the scale of the turf thickness was developed using the dissolution rate of 

gypsum blocks placed in the flowing water.  

Investigating the Ecological: Seeking the subsidy-stress curve 

The effect of turbulence on the algal turf ecosystem metabolism was investigated, 

with the expectation that algal net primary production and respiration should follow a 

subsidy-stress relationship as a function of flow turbulence. This set of experiments was 

undertaken to explore the possibility of using continuous monitoring of the pH diurnal to 

determine the ecosystem metabolism of the algal turf and measure its response to changes 

in levels of flow turbulence. The correlation between the metabolic measurements and 

overall rate of biomass production was also investigated, under the interpretation that the 

latter results from a integration over time of the former. Examination into the 

organization of the algal turf at the species level was investigated to determine the effect 

of interacting limiting factors on the competition between the dominant species of algae.  

Investigating the Technological: Building a seeking algorithm 

The research continued with the design and implementation of the supervisory 

control algorithm, the set of instructions that influence the technological components in 

response to the metabolic conditions in the ecological components. The algorithm was 

designed as a simple seeking algorithm that finds the maximum net primary productivity 

over the range of variation of volumetric flow rate, based on the results of the previous 

chapter. Virtual testing of the algorithm was performed by exploring its response to 
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hypothetical, stochastic data sets that form idealized distributions of ecosystem 

productivity versus flow turbulence. The convergence behavior of the algorithm—that is, 

the accuracy and rate of approach to the expected solution—emerged from a large 

number of repeated, multi-cycle trials. The results helped to inform the expected response 

of the system during implementation of the physical technoecosystem configuration. 

Investigating the Technoecosystem: The ghost in the living machine 

The engineered ATS technoecosystem was assembled and run through a series of 

tests for debugging and for determining the operational parameters, constraints, and 

protocols. Tests were performed allowing the control system to automatically change the 

volumetric flow rate delivered to an ATS bed in response to the changes in the algal turf 

net primary productivity. The resulting trace of flow rate over time and primary 

productivity over time were analyzed for metrics of convergence using the methods 

developed in virtual testing of the algorithm. The distribution of the relative abundance of 

the various dominant species was also analyzed for signature changes related to the 

presence or absence of the automated control system. These data sets together offered 

evidence for the self-organizational trajectory of the overall technological-ecological 

hybrid that was fundamentally different from the standard mode of operation for the ATS 

system.  
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Chapter 2: Preliminary Investigations—Exploring Turbulence as a 

Limiting Factor 

Introduction 

Bed turbulence, as determined by flow velocity, can be a limiting factor to the 

productivity of a benthic algal community (Whitford 1960, Mcintire 1966a, Horner and 

Welch 1981, Antoine and Benson-Evans 1982, Biggs et al. 1998). In an algal turf 

scrubber (ATS), the bed turbulence and thus the algal productivity is strongly determined 

by the amplitude (that is, the volume) and the frequency of the wave surge (Adey 1982, 

Carpenter et al. 1991, Adey et al. 1993, Craggs et al. 1996, Adey and Loveland 2007). It 

has been observed that too low of a flow rate in an ATS results in lower productivity 

(Adey 1982, Adey and Hackney 1989). The exact controlling mechanism is unclear, but 

possible candidates are decreased nutrient availability because of diffusion limitation, 

decreased light availability because of self-shading, or a combination of both. It is also 

known that a highly turbulent environment can damage and increase export of existing 

algal biomass (Mcintire 1966a, Horner et al. 1990). Therefore, there must be a range of 

turbulence levels in an ATS in which biomass production is maximized. Further, this 

range might shift for different light intensities and nitrogen loading rates. 

Preliminary investigations were undertaken to understand the role of bed 

turbulence as a limiting factor to the productivity of an algal turf in an ATS. Volumetric 

flow rate and wave surge frequency were manipulated on an algal turf scrubber operating 

under a range of nitrogen loading rates. The turbulent environment of the resulting flow 

regimes were characterized via various measurements, and the resulting effects on algal 

biomass production rate were measured via regular periodic biomass harvest. 



 

31 

 

The expected results of these experiments are a series of subsidy-stress curves of 

biomass production rate versus nitrogen loading rate for a range of turbulence conditions 

established by a combination of volumetric flow rate and wave surge frequency. 

Information yielded from this research is intended to contribute to the understanding of 

the subsidy-stress relationship between algal biomass production and bed flow turbulence 

in an ATS.  

Objectives and Hypotheses 

The objective of this experiment is to examine the role of turbulence as a limiting 

factor that controls the biomass production of an algal turf community in an algal turf 

scrubber operating over a range of nutrient loading rates and in a high light environment.  

The hypothesis for this series of experiments can be stated as such: biomass 

production in an ATS is a function of the turbulence regime when other limiting factors 

are in excess. Under these conditions, the biomass production rate, as measured by 

sacrificial harvest, will first increase and then decrease as the flow turbulence, set by a 

combination of wave frequency and amplitude, increases.  

Research Approach 

In an algal turf scrubber, the turbulence in the algal bed is controlled by a 

combination of volumetric flow rate, average water velocity, and wave frequency created 

by the wave surge bucket. Because of the wave surge bucket mechanism, the frequency 

of wave surge is coupled to the flow rate; that is, for a given wave surge bucket volume, 

an increase in the volumetric flow rate increases the wave surge frequency. This series of 

experiments was designed to decouple the turbulence generated by the wave surge 
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frequency from that generated by the increased volumetric flow rate and investigate the 

effects of each on algal biomass production.  

Using a set of four algal turf scrubbers operating at ambient temperature and near-

continuous light in the laboratory, various combinations of operating conditions were 

examined for their resulting effect on algal biomass production. All experiments had dual 

independent variables, the primary of which is nitrogen loading rate (NLR), supplied by 

daily additions of digested dairy manure. By changing the effective volume of the wave 

surge bucket through the addition of foam baffles, different combinations of wave surge 

frequency and volume were tested. One set of experiments had volumetric flow rate as its 

independent variable, holding wave surge frequency constant; another set of experiments 

had the wave surge frequency as its independent variable, holding the flow rate constant. 

All other environmental variables (light, temperature, pH level) were held constant. The 

independent variables were increased incrementally for different NLRs. Algal biomass 

was harvested weekly, dried and weighed, and used to calculate average daily biomass 

production rates. The relationships between biomass production rate, turbulence level (set 

by a combination of flow rate and wave surge frequency), and nitrogen loading rate was 

analyzed. Flow turbulence was measured independently by measuring the rate of 

dissolution of gypsum blocks deployed in the ATS units. 

Equipment 

Overview 

The main equipment features of this set of experiments were the algal turf 

scrubber (ATS) units, the lights under which the ATS units operated, and the nutrients 

supplied to the ATS units. In addition, gypsum blocks (hereafter called clods) were 
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manufactured in the lab for deployment in the ATS beds to provide an independent 

measure of flow turbulence. 

ATS Units 

Four separate ATS units were employed throughout all experiments, were 

identical in construction to each other and are described in (Mulbry and Wilkie 2001) and 

(Kebede-Westhead et al. 2003). Each ATS bed was constructed out of white molded 

fiberglass with dimensions of 130 cm long by 101 cm wide by 15 cm deep. Two drain 

holes of 5 cm diameter were installed at one end of the ATS bed, and small segments of 

PVC pipe could be installed in these drains to set the depth of water in the ATS bed. A 

wave surge bucket with trapezoidal cross-section was mounted on pivots at the bed end 

opposite of the drains. Polyethylene mesh (3mm by 4mm spacing) was installed on the 

bottom of the bed (Mulbry and Wilkie 2001) to serve as a substrate on which the benthic 

filamentous algal turf grows. The effective growth area in the bed for the algal turf was 

that in between the wave surge bucket and drain holes at the opposite end, with an area of 

1 m
2
. 

All units were operated in recirculation mode in which process water was 

continuously pumped from a reservoir into the wave surge bucket, flowing through the 

ATS bed and returning via the drain holes back into the reservoir (see Figure 1.2). The 

wave surge bucket tips when filled with a nominal 11 liters of water, creating a wave 

surge in the ATS bed with a frequency that depends on the volumetric flow rate of the 

recirculation pump and the effective volume of the wave surge bucket. Each ATS was 

paired with its own reservoir, a white semi-translucent polyethylene 200 liter drum open 

to the atmosphere at the top. The total volume of water in the entire ATS-reservoir 
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system was maintained at 150 liters through daily additions of fresh distilled water to 

replace evaporative losses, typically around 5 liters. 

Lights 

Each ATS unit was operated under its own set of two 400W metal halide lights. 

For all trials, the height of the lights above the ATS bed (typically around 50 cm) was 

adjusted to yield a light intensity of approximately equivalent intensity at the center of the 

ATS bed. Incident light averaged 390 (range 240–633) µmol photons m
-2

 s
-1

 over the 

entire ATS bed measured with a quantum flux meter and probe (LI-250 Light Meter and 

LI-190 Quantum Sensor, LI-COR Biosciences, Lincoln, Nebraska). All units were 

operated under nearly continuous light (23:1 h light-dark cycle) to maximize production. 

Water temperature was controlled and maintained within 2°C of ambient (23–26 °C) by 

activating cooling fans when high. 

Nutrient Supply 

All tests were run using digested dairy manure as the nutrient source. The dairy 

manure was collected periodically as needed from an anaerobic digester at the USDA 

ARS Beltsville (Maryland) dairy. The manure was collected approximately monthly in 5-

gallon closed plastic containers and stored in a cold room (at approximately 4 C) until 

used. Upon collection, a sample of the manure was analyzed for nitrogen and N and P 

content. Total Kjeldahl nitrogen (TKN) and total phosphorus (TP) were determined using 

flow injection analysis (Model 8000, Lachat Instruments, Milwaukee, WI) after acid 

persulfate digestion (APHA 1995).  The characteristics of Beltsville dairy manure 

effluent have been described (Wilkie and Mulbry, 2002) and are included (Table 2. 1). 

The mean manure effluent nutrient values were 1600 mg L
-1

 total N (TN) and 230 mg L
-1

 



 

35 

 

total P (TP). The carbon content of the manure effluents was not measured routinely, but 

varied with manure. The C/N ratios of raw solid-separated and anaerobically digested 

dairy manure effluents ranged from 9 to 12 and 4 to 6.5, respectively. The variation 

observed in the manure characteristics was due to the water content of the manure as a 

result of the water use in the dairy. Typically, 0.5 to 1.5 L of manure effluent (containing 

500–2300 mg L
-1

 TN and 85–300 mg L
-1

 TP) were added each day to each ATS to 

achieve loading rates corresponding to 0.3–2.5 g TN and 0.08–0.42 g TP m
-2

 d
-1

.   
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Table 2. 1. Typical characteristics of the USDA dairy manure (undigested and digested), as reported 

by (Wilkie and Mulbry 2002). 

Characteristics 

Manure Source 

USDA Undigested USDA Digested 

Manure management Scraped and separated 
Scraped, separated and 

anaerobically digested 

Type of anaerobic digester -- Full-scale suspended growth 

Digester retention time (d) -- 23 

Digester operating temperature (°C) -- 35 

TS (mg L
-1

) 53200 (±116) 31600 (±195) 

VS (mg L
-1

) 40300 (±84) 20900 (±154) 

SS (mg L
-1

) 39300 (±1430) 23700 (±579) 

CODt (mg L
-1

) 71800 (±1240) 32700 (±1990) 

CODs (mg L
-1

) 19300 (±913) 4900 (±45) 

TN (mg L
-1

) 1210 (±194) 2370 (±123) 

TKN (mg L
-1

) 1210 (±194) 2370 (±123) 

NH4-N (mg L
-1

) 306 (±49) 1620 (±341) 

NO3-N (mg L
-1

) < 1 < 1 

TP (mg L
-1

) 303 (±55) 240 

COD:N:P ratio 237:4:1 136:10:1 

pH 6.95 7.83 

Conductivity (mS cm
-1

) 15.60 16.20 

Note: values in parentheses represent standard deviations of triplicate subsamples. 

Gypsum clods 

A relative measure of turbulence for each flow condition was performed via the 

gypsum clod dissolution technique (Doty 1971, Jokiel 1993, Sanford 1997, Porter et al. 

2000). Clods were constructed using a mixture of 104 g of laboratory-grade Plaster of 

Paris (calcium sulfate hemihydrate, Fisher Scientific) with 75 ml of distilled water. The 

solution was stirred continuously as a 50-mL pipette was used to measure 8.0 ml of the 

solution into the cups of a miniature muffin pan. After drying, the clods decanted from 

the muffin pan, and 1/16‖ holes were drilled into the center. A schematic of the typical 

clod geometry is shown in Figure 2. 1. 
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Figure 2. 1. Plan and elevation view of plaster of Paris clods designed for deployment in the ATS bed 

to characterize the magnitude of turbulent energy in the bed flow. 

Methods 

ATS Operation 

Each laboratory-scale ATS unit was operated in recirculation mode with regular 

periodic harvest of biomass. The ATS units were previously seeded with algal consortia 

from a nearby stream in Beltsville, Maryland. Digested dairy manure was added daily in 

the morning according to the nitrogen loading rate (NLR). Over the course of the 

experiments the NLR ranged from 0.2 to 2.4 g TN m
-2

 d
-1

. For all ATS units, CO2 gas 

was bubbled in excess in the drum reservoir, maintaining the pH level near neutral and 

providing carbon in excess of photosynthetic requirements. 

A series of experiments were performed on four ATS units in which the bed 

turbulence was manipulated via two methods: (1) through manipulation of the volumetric 

flow rate (ranging from 26 to 95 lpm) while the wave surge frequency was held constant; 

and (2) varying the wave surge frequency (from 6 to 30 min
-1

) while the flow rate was 

held constant. Volumetric flow rate was measured by observing the displacement of 

water from a graduated reservoir. Wave surge frequency was modulated by filling the 

interior volume of the wave surge bucket with polystyrene foam blocks cut from 

commercially-available 2‖ closed polystyrene foam wall insulation. This reduced the 
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working volume of the bucket to yield the desired tipping frequency for a given 

volumetric flow rate. Flow rate/wave surge frequency combinations tested in this series 

of experiments are given in Table 2. 2. For any given volumetric flow rate, the wave 

surge frequency (or, inversely, the wave surge period in seconds) was a function of the 

wave surge bucket volume. Practical realities (such as wave surge bucket travel time) 

presented a constraint that prevented wave surge frequencies greater than 30 min
-1

. 

Table 2. 2. Combinations of flow rate and wave surge frequency (alternately, surge period) tested in 

the series of experiments. 

Wave Surge Frequency 

(min
-1

) 

Wave Surge Period 

(sec) 

Flow Rate (lpm) 

25 60 95 

5 12  X  

8 7 X X X 

17 3.5  X  

30 2  X  

Note: ―X‖ = combination tested; blank implies that combination was not tested 

 

Algal turf biomass was harvested from each ATS approximately weekly using a 

commercially-available shop vacuum. Harvest was performed by first powering off all 

recirculation pumps and allowing the water to drain from the ATS. Algal turf biomass 

was scraped from the ATS screen and vacuumed up immediately. The algal biomass and 

accompanying water were decanted from the vacuum into a 1-mm mesh polypropylene 

filter bag. The biomass in the bag was squeezed until no more water came through the 

bag. The biomass was spread out flat to air dry on a mesh screen in front of a fan. Once 

air dry (after approximately 48 hours), the biomass for each ATS unit was weighed using 

a laboratory balance. A subsample of each biomass sample was placed in a drying oven 

and dried for 24 hours at 50 C to determine the residual water content. Biomass 
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production rate was calculated as dry weight (DW) per unit time by correcting the air dry 

weight by the water content and dividing by the time (in days) between harvest events. 

Experimental Design and Data Analysis 

The ATS units were operated typically as described above with each set at a 

particular flow condition (Table 2. 2) and NLR. Conditions on each ATS unit were kept 

constant for multiple harvests until data were collected. The data collected included the 

weekly ATS biomass harvests for each ATS under a particular operating condition. Flow 

turbulence characterization included measuring the particulars about the wave 

environment (period of wave surge, persistence of wave front, average velocity of wave 

front, slope of ATS, and depth of water in ATS bed) and measuring the dissolution rate of 

clods strategically arranged in the bed of each ATS under a particular operating 

condition.  

The gypsum block dissolution technique (Doty 1971, Jokiel 1993, Sanford 1997, 

Porter et al. 2000) was used for the determination of a relative measure of turbulence for 

each flow condition. This method employs the dissolution rate of standardized gypsum 

(plaster of Paris) blocks as an integrative measure of turbulence as it affects mass transfer 

across a boundary layer (Porter et al. 2000). During the operation of each ATS flow 

condition (that is, the combination of volumetric flow rate and wave surge frequency), 

gypsum blocks were deployed from 3 to 24 hours in thirteen locations regularly spaced in 

the ATS bed (Figure 2. 2). Clods were attached to the ATS screen using small-gage wire 

looped through the central hole in the clod and were placed such that they were 

completely submerged at all times. Upon removal from the ATS bed, all clods were 

rinsed with distilled water to remove any algal filaments that might be on the clod 
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surface. Wet weights of the clods before and after deployment, and the length of time of 

deployment, were measured and recorded and used to calculate the rate of dissolution. 

Multiple deployments (at least three) of the gypsum blocks were performed in each 

location in each scrubber. 

 

Figure 2. 2. Gypsum block deployment for measuring the turbulence in a lab-scale ATS. 

Flow conditions were measured using a stopwatch and through observation. 

Volumetric flow rate was measured by observing the displacement of water from a 

graduated reservoir. Wave surge period was measured with a stopwatch as the amount of 

time between surge events. Wave travel time was measured with the stopwatch as the 

length of time for one wave surge to travel from the surge bucket to the opposite end wall 

of the ATS bed. Length of wave dissipation was measured as the number of lengths for 

the observed elevation change in the surface of the water as a result of the wave to 

dissipate.  

For algal production measurements, comparisons were made of algal biomass 

production rate for each scrubber replicated in time. Algal biomass production rates were 

normalized as a daily production rate averaged over the harvest time period (typically 5 

to 7 days). Mean values for productivity for replicate conditions were calculated. Where 

Dump Bucket

Drain

Gypsum

Blocks (13x)

Dump Bucket

Drain

Gypsum

Blocks (13x)Direction of 

water flow 
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independent variable conditions between individual ATS units overlap, comparisons were 

made across the ATS units. Gypsum clod dissolution rates were calculated as the mean of 

clod replicates at each location in each scrubber under each flow condition. A global 

mean dissolution rate for each flow condition was calculated by employing a Thiessen 

polygon computation (Ward and Trimble 2004), which was used to calculate a global 

weighted average for the entire algal growth area in an ATS. Linear regression analysis 

of algal productivity versus global mean dissolution rate was performed. 

Results 

Flow regime characterization 

The flow in each ATS operating condition was characterized by baseline 

measurements and wave patterns of the flow, and by aggregating the clod dissolution rate 

measurements to produce maps of turbulence levels based on clod dissolution rates.The 

flow regime was characterized for the six combinations of volumetric flow rates and 

wave surge frequencies (Table 2. 3). It is notable that the greatest variation that 

accompanies the change in wave surge frequency is the approximate volume per tip, 

which ranges from 1.8 to 10.9 liters. This has implications for determining the amount of 

turbulent energy that is imparted to the base flow by the wave front. Global average 

gypsum clod dissolution rates are provided for each flow condition and provide a 

measure of average turbulence experienced in the flow regime under those conditions. 

Biomass production rates are also reported; the maximum production rate (30.9±1.8 g 

DW m
-2

 d
-1

) is seen at the left-most flow combination (60 lpm/16 min
-1

 surge frequency), 

whereas the minimum biomass production rate (17.0±0.7 g DW m
-2

 d
-1

) is listed at the 

right-most flow combination (60 lpm/5 min
-1

 surge frequency).  
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Table 2. 3. Selected measures to characterize the flow regime in the various flow rate/wave surge 

period combinations tested in the ATS units. 

Parameter 
Flow combination (Flow in lpm/Surge freq. in min

-1
) 

60/17 95/8 60/30 60/8 25/8 60/5 

ATS No. 4 7 4 5 5 7 

Nom. Flow Rate (gpm) 15 25 15 15 7 15 

Nom. Wave Surge Period (sec.) 3.5 7 2 7 7 11 

Measured Flow Rate (gpm) 14 22 14 15 7 15 

Measured Flow Rate (lpm) 51 84 51 58 27 55 

Measured Surge Period (sec) 3.5 7.8 2.1 7.8 8.1 10.9 

Wave Surge Frequency (min
-1

) 17.0 7.7 28.7 7.7 7.4 5.5 

Appx. volume per surge (L) 3.0 10.9 1.8 7.5 3.7 10.0 

Wave travel time 1st length (sec) 2.1 1.2 2.2 1.3 1.6 1.3 

Wave velocity (cm/s) 51 91 50 82 66 86 

No. of wave reflections 1 1 1 3 1 1 

Length of wave dissipation (no. of lengths) 1.5 1.5 1.25 3.5 1.5 1.5 

Slope 0.015 0.009 0.015 0.006 0.006 0.009 

Avg. depth of water (mm) 10 16 10 22 13 16 

Volume remaining after drainage (L) 4.8 6.6 4.8 6.9 6.9 6.6 

Global Avg Clod Dissolution Rate* (g hr
-1

) 0.34 0.29 0.27 0.25 0.20 0.30 

Clod Dissolution Rate SEM (g hr
-1

) 0.03 0.01 0.02 0.02 0.02 0.01 

Clod Dissolution Rate n 40 52 52 40 39 40 

Biomass Production Rate (g DW m
-2

 d
-1

) 30.9 29.8 25.9 22.1 21.7 17 

Biomass Prod. Rate SEM (g DW m
-2 

d
-1

) 1.8 1.7 1.3 1.3 0.4 0.7 

Biomass Prod. Rate no. of samples 8 5 4 5 3 2 

NLR (g TN m
-2

 d
-1

) 1.4 1.6 1.7 1.3 1.7 1.4 

*calculated via Thiessen weighted averaging of clods at 13 locations in three separate deployments for each 

ATS unit. 

 

Gypsum clod dissolution rates were used to produce maps of turbulence within 

each of the ATS operating conditions, and to investigate the role of changing 

combinations of conditions (volumetric flow rate and wave surge frequency) on the 

relative turbulence level experienced in each flow regime. For the turbulence maps, 

gypsum clod dissolution rates were averaged for each of the 13 locations in the ATS bed 

under each set of flow conditions. These values were used to create interpolated contour 

maps of dissolution rate (Figure 2. 3 to Figure 2. 8) using MatLab version 7.10 
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(Mathworks, Natick, Massachusetts). These results show that, in general, all operating 

conditions are well-mixed laterally (perpendicular to the direction of flow) yet show a 

gradient of turbulence longitudinally (parallel to the direction of flow), with the greatest 

levels of turbulence generally closer to the wave surge bucket. The flow conditions of 60 

lpm/17 min
-1

 frequency (Figure 2. 3) exhibited the greatest and most varied rates of 

gypsum dissolution. Most other conditions (Figure 2. 4 to Figure 2. 7) showed similar 

rates of clod dissolution with a similar decreasing gradient pattern from the wave surge 

bucket end to the drain end. An exception to this pattern is the condition for 60 lpm/5 

min
-1

 frequency (Figure 2. 8), where no gradient pattern was evident, and the clod 

dissolution rate showed very little variation across the entire area except for a slight rise 

near the drain holes in the ATS bed. 

 

Figure 2. 3. Contour map of gypsum clod dissolution rate for flow conditions of 60 lpm/17 min
-1

 surge 

frequency in an ATS, expressed in g hr
-1

. 
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Figure 2. 4. Contour map of gypsum clod dissolution rate for flow conditions of 95 lpm/8 min
-1

 surge 

frequency in an ATS, expressed in g hr
-1

. 

 

Figure 2. 5. Contour map of gypsum clod dissolution rate for flow conditions of 60 lpm/30 min
-1

 surge 

frequency in an ATS, expressed in g hr
-1

. 
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Figure 2. 6. Contour map of gypsum clod dissolution rate for flow conditions of 30 lpm/8 min
-1

 surge 

frequency in an ATS,  expressed in g hr
-1

. 

 

Figure 2. 7. Contour map of gypsum clod dissolution rate for flow conditions of 25 lpm/8 min
-1

 surge 

frequency in an ATS, expressed in g hr
-1

. 
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Figure 2. 8. Contour map of gypsum clod dissolution rate for flow conditions of 60 lpm/5 min
-1

 surge 

frequency in an ATS, expressed in g hr
-1

. 

The relationship between flow condition and clod dissolution rate was explored 

by analyzing the data for the clod dissolution rate as a function of wave surge tip 

frequency (flow rate held constant) and as a function of flow rate (wave surge frequency 

held constant). It was recognized that an increase in volumetric flow rate at a constant 

wave surge frequency increased the amplitude of the wave surge, defined by the volume 

per tip of the wave surge bucket.  For clod dissolution rate versus wave amplitude at a 

constant wave surge frequency of 8 min
-1

, a linear trend upwards is evident (Figure 2. 9). 

A linear regression on the relationship exhibits strong correlation (r
2
 = 0.999, Sy-x = 

0.00204) between clod dissolution rate and wave surge volume, and the slope of the 

regression line is significantly different than zero (P=0.0204).  
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Figure 2. 9. Clod dissolution rate versus wave surge volume with wave surge frequency held constant 

at 8 min
-1

. 

For clod dissolution as a function of wave surge frequency, with the flow rate 

constant at 60 lpm (Figure 2. 10), the maximum clod dissolution rate is exhibited at a 

wave surge frequency of 17 min
-1

 (corresponding to a surge period of 3.5 sec), whereas 

the minimum dissolution rate is exhibited at a surge frequency of 8 min
-1

 (corresponding 

to a wave surge period of 8 sec). Clod dissolution rates at the extremes of wave surge 

frequency are in the middle of the range. A one-way analysis of variance (ANOVA), the 

null hypothesis, that there is no significant difference between the means, can be rejected 

at the 0.05 level of significance (F=3.023, P=0.0312). 
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Figure 2. 10. Clod dissolution rate versus wave surge frequency, with flow constant at 60 lpm. 
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Biomass production for various flow conditions and NLRs 

Results are shown for the series of experiments where the ATS nitrogen loading 

rate (NLR) and bed turbulence regime (as determined by flow rate and wave surge 

frequency) were manipulated and the resultant average daily algal productivity recorded. 

Results for four different wave surge frequencies (ranging from 5 to 30 min
-1

) over a 

range of NLRs (0.25 to 2.4 g N m
-2

 d
-1

) while holding flow rate constant at 60 lpm were 

generated using data collected over time (Figure 2. 11). The results trace a series of 

saturation-type curves, where productivity is generally lowest for all wave surge 

frequencies for lower NLRs (less than 1 g N d
-1

), increases at moderate NLRs, and levels 

out at the highest NLR. The highest biomass production rate for all NLRs was seen 

consistently at a surge frequency of 17 min
-1

 with the greatest production rate (26.7 g DW 

m
-2

 d
-1

) at a moderate NLR (1.4 g N m
-2

 d
-1

), although the highest NLR was not tested at 

this frequency. 
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Figure 2. 11. Algal biomass production rate versus nitrogen loading rate for a range of wave surge 

frequencies for a flow rate of 60 lpm in an ATS. 

Results of biomass production for three different wave surge volumes (4, 7.5, and 

11 L, set by different volumetric flow rates) over a range of NLRs (from 0.25 to 2.4 g N 
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m
-2

 d
-1

), holding wave surge frequency constant at 8.5 min
-1

, were generated using data 

collected over time on another ATS. The results generally trace a series of saturation-type 

curves (Figure 2. 12). The pattern it shows is similar to the previous results: at a low 

NLR, the biomass production rate is similarly low across all wave surge volumes; it 

increases for all wave surge volumes at moderate NLRs; and it levels out at the highest 

NLRs. The highest biomass production rate is seen at a moderate NLR (1.0 to 1.5 g TN 

m
-2

 d
-1

) at the highest wave surge volume of 11 L. 
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Figure 2. 12. Algal biomass production rate versus nitrogen loading rate for a range of wave surge 

volumes for a wave surge frequency of 8.5 min
-1

. 

These data presented above can be analyzed differently by plotting the biomass 

production as a function of wave surge frequency (volumetric flow rate held constant) or 

as a function of flow rate (surge frequency held constant) for select levels of NLR. 

Results for this type of analysis for biomass production versus wave surge frequency at a 

flow rate of 60 lpm for a range of NLRs are shown (Figure 2. 13). For all NLRs, the 

biomass production shows a hump-shaped pattern with increasing wave surge frequency. 

Biomass production is lowest at lower and higher frequencies, and is highest in the 

middle of the frequency range. The overall average biomass production rate at each wave 

surge frequency increases with increasing NLR. 
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Figure 2. 13. Algal biomass productivity versus wave surge frequency for a 60 lpm flow rate for 

various nitrogen loading rates. 

Results for this type of analysis for biomass production versus wave surge volume 

(as a result of changing flow rate) at a constant wave surge frequency of 8 min
-1

 for a 

range of NLRs are shown (Figure 2. 14). For the two lowest NLRs (0.4 and 0.7 g N d
-1

), 

the biomass production rate shows almost no variation across the range of wave surge 

volume. For the two highest NLRs (1.6 and 2.4 g N d
-1

), the biomass production shows 

an increase with increasing wave surge volume. Increasing NLR increases the overall 

average biomass production at each wave surge volume. 
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Figure 2. 14. Algal biomass productivity versus wave surge volume for a wave surge frequency of 8 

min
-1

 for various nitrogen loading rates. 



 

51 

 

All the data can be pooled and analyzed for biomass production rate as a function 

of the mean clod dissolution rate for various NLRs. These results are presented (Figure 2. 

15) and show that, for each NLR, a general increase in the biomass production rate is 

observed for increasing clod dissolution rate. The biomass production rate increases for 

each increase in NLR at each clod dissolution rate up to 1.6 g N d
-1

, whereas no further 

increases in biomass production rate are seen at the highest NLR of 2.4 g N d
-1

. The 

highest biomass production rate was observed at the highest NLR and the highest clod 

dissolution rate. 
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Figure 2. 15. Algal biomass production rate versus mean gypsum clod dissolution rate for various 

nitrogen loading rates. 

Discussion 

The role of turbulence as a limiting factor 

Turbulence was observed to be a limiting factor to algal growth in most 

conditions tested in this series of experiments. From the baseline measurements on flow 

condition (Table 2. 3, page 42), the maximum biomass production of 30.9±1.8 g DW m
-2

 

d
-1

 was observed at the flow rate/wave surge frequency combination of 60 lpm/17 min
-1

 

(first column, Table 2. 3). The minimum biomass production of 17.0±0.7 g DW m
-2

 d
-1

 

was observed at 60 lpm/5.5 min
-1

 (last column, Table 2. 3).  The next lowest biomass 
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production of 21.7±0.4 g DW m
-2

 d
-1

 was observed at 25 lpm/8 min
-1

 (second last 

column, Table 2. 3). The volume per wave surge was similar for both of these conditions 

(3.0 and 3.7 liters for 60 lpm/17 min
-1

 and 25 lpm/7 min
-1

, respectively). Hence, given 

that the volume per surge is the same, the increased wave surge frequency yields 

increased biomass production, indicating that the wave surge was limiting to production. 

Additionally, it was observed that biomass production was maximized through the 

optimization of the combination of the wave surge frequency and the volume per surge. 

The two highest biomass productivities, 30.9±1.8 and 29.8±1.7 g DW m
-2

 d
-1

, were 

observed at 60 lpm/17 min
-1

 and 95 lpm/8 min
-1

, respectively (Table 2. 3, first two 

columns). The volume per surge for each of these conditions was significantly different, 

however, at 3.0 and 11 liters, respectively. This suggests that the lower wave surge 

frequency of the latter condition is offset by the increased volume per surge. That is, the 

combination of lower surge frequency and higher surge volume creates similar levels of 

turbulent energy over time, as experienced by the algal turf community, as the 

combination of the higher surge frequency and lower surge volume.  

Increases in wave surge frequency at a given flow rate can yield gains in biomass 

production only up to a certain point. That is, there is an optimum surge frequency for a 

given flow rate outside of which the turbulent energy imparted to the algal turf is not as 

great. This was observed by comparing the biomass production at three surge frequency 

conditions (8, 17, and 29 min
-1

) all at the same flow rate of 60 lpm (Table 2. 3, columns 

1, 3, and 4). The biomass production was lower (22.1±1.3 g DW m
-2

 d
-1

) for the lowest 

surge frequency (8 min
-1

), was higher (30.9±1.8 g DW m
-2

 d
-1

) for an increased surge 

frequency (17 min
-1

), and was lower again (25.9±1.3 g DW m
-2

 d
-1

) for an even further 
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increase in surge frequency (30 min
-1

). This can be explained by the volume per surge, 

which, because there was no change in volumetric flow rate, decreased from 7.5 to 3.0 to 

1.8 liters for the respective surge frequencies. The lower volume per surge lowered the 

mass of water injected into the flowing water in the ATS bed at each surge event. Thus 

there is lower energy imparted to the wavefront, which then dissipates more quickly as a 

function of the water depth. The maximum turbulence is thus experienced at a middle 

combination of surge frequency and volume per surge, and the effects of this are 

consequently reflected in algal biomass production. 

Many of these trends were again observed in the analysis of the data in more 

detail (Figure 2. 11 to Figure 2. 15), providing evidence that turbulence can be a limiting 

factor when other potential limiting factors are in excess. When biomass production is 

plotted as a function of nitrogen loading rate (NLR) for different wave surge frequencies 

and a constant flow rate (Figure 2. 11, page 48), it displays the subsidy that increasing 

turbulence levels can have under conditions of increasing nitrogen availability. At low 

NLRs less than 1.0 g TN m
-2

 d
-1

, the biomass production rate is similar for all wave surge 

frequencies, suggesting that nitrogen is limiting to algal growth. At higher NLRs, the 

biomass production rate diverges for different wave surge frequencies, finding a 

maximum at the frequency of 17 min
-1

. A similar relationship is seen for the biomass 

production rate plotted as a function of NLR for different wave surge volumes at a 

constant wave surge frequency (Figure 2. 12, page 49), where the biomass production 

rate is different for different flow rates only at high NLRs, with a maximum exhibited for 

the highest surge volume of 11 L. This phenomenon suggests that, when nitrogen 

availability is no longer the limiting factor, transport of nitrogen in the bulk flow to the 
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algal turf and algal filaments may become limiting, and this transport is enhanced by 

increased turbulence.  

A hump-shaped pattern emerges for the relationship of biomass production rate to 

wave surge frequency at a constant volumetric flow rate for different NLRs (Figure 2. 13, 

page 50). It cannot be interpreted here, however, as a true subsidy-stress curve. Rather, it 

reflects that, at a given volumetric flow rate, there is a wave surge frequency at which 

turbulent energy is maximized through the combination of wave surge frequency and 

volume of surge (the wave amplitude). Support for this interpretation comes from the 

similarity of the shape of these curves to the results for gypsum clod dissolution rate as a 

function of the wave surge frequency (Figure 2. 10, page 47).  Indeed, both the maximum 

biomass production rates at all NLRs and the maximum clod dissolution rate were 

observed at a surge frequency of 17 min
-1

. This suggests that there is a combination of 

wave surge frequency and surge volume that is optimum for algal growth in an ATS at a 

given NLR. This relationship holds for all NLR levels (Figure 2. 13), where increasing 

the NLR increases the overall biomass production at each wave surge frequency. The 

parallel relationship between biomass production and clod dissolution to wave surge 

frequency suggests that diffusion-limited mass transfer is at least part of the mechanism 

that controls algal production in the ATS environment.  

The interaction of turbulence and NLR as limiting factors is again displayed by 

the results of biomass production rate plotted as a function of wave surge volume with 

frequency held constant for different NLRs (Figure 2. 14, page 50). For lower NLRs, an 

increase in flow rate has no effect on biomass production, and the relationship is flat, 

indicating that nitrogen availability is limiting. For higher nitrogen loading rates (1.6 g N 
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m
-2

 d
-1

 and greater), however, the increase in flow rate increases biomass production, 

indicating that the limiting process is not longer nitrogen concentration but transport of 

nitrogen to the algal cells, as moderated by flow turbulence. 

Finally, the biomass production rate was seen to correlate reasonably well with 

clod dissolution rate (Figure 2. 15, page 51). At most NLRs, the biomass production rate 

increased with increasing clod dissolution rate, especially for very low (0.4 g N m
-2

 d
-1

) 

and high (1.6 g N m
-2

 d
-1

 and greater) NLRs. An exception to this relationship was seen 

for the NLR of 0.7 g N m
-2

 d
-1

; this may be due in part to some error in the construction 

or measurement of the submerged gypsum clods employed in those flow events. In all 

NLRs, however, the highest biomass production is seen at the highest gypsum clod 

dissolution rate. This again suggests the mass transfer interpretation of the role of 

turbulence as a limiting factor to the growth process of algae in an ATS. 

Measurement of turbulence with the gypsum clod technique 

The method using the dissolution of gypsum clods proved to be a fairly successful 

method as a predictor of turbulence in the ATS bed. The correlation between the clod 

dissolution rate and the flow turbulence was strong, as demonstrated by the clod 

dissolution rate as a function of wave surge amplitude with the frequency held constant 

(Figure 2. 9, page 47). The turbulence would be expected to increase with increasing 

wave amplitude at a constant frequency, as more mixing energy is imparted by a greater 

mass of the wave front. In this series of experiments, the clod dissolution rate increased 

linearly with increased wave amplitude (r
2
=0.999), demonstrating that the clod 

dissolution method can provide a relative measure of turbulence in an ATS. Further 

experimentation would be required to adapt the method to provide a more absolute, 
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quantitative measure of turbulence that can be compared to other measures. The clod 

dissolution rate as a function of wave surge frequency with the flow rate held constant 

(Figure 2. 10, page 47) follows a curve that might be expected where the maximum bed 

turbulence is found at a combination of volume per surge and surge frequency. That is, 

the maximum turbulence, and thus the maximum rate of dissolution of gypsum, was 

found at a medium surge frequency, where any further increase in frequency reduced the 

volume per surge, and thus the wave amplitude, below a critical amount to create 

maximum turbulence. Indeed, the energy density of a wave can be described as being a 

function of the square of the wave amplitude (Phillips 1977), suggesting that wave 

amplitude is the dominant mechanism in creating the turbulence in an ATS bed. 

The clod dissolution rate method was demonstrated to be useful in investigating 

the heterogeneity of turbulence within the bed of the ATS unit. The spatial contour maps 

show the distribution of turbulent energy within the ATS beds (Figure 2. 3 to Figure 2. 

8). In almost all conditions of volumetric flow rate/ wave surge frequency, the turbulence 

regime in the ATS bed was shown to be highly zoned, exhibiting the highest levels 

turbulence in a zone near the wave surge bucket and dissipating rapidly in the direction of 

flow. The condition with the most heterogeneous distribution of clod dissolution rate was 

the flow rate/surge frequency combination of 60 lpm/17 min
-1

 (Figure 2. 3, page 43), the 

condition which also exhibited the highest average biomass production of 30.9 ± 1.8 g 

DW m
-2

 d
-1

 (Table 2. 3, page 36). The conditions with the most homogeneous distribution 

of clod dissolution rate was the flow rate/surge frequency combination of 25 lpm/7 min
-1

 

(Figure 2. 7, page 45), the condition which also exhibited lower biomass production of 

21.7 ± 0.4 g DW m
-2

 d
-1

 (Table 2. 3, column 5, page 42). An exception to this trend was 
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observed for the flow rate/tip frequency combination of 60 lpm/5.5 min
-1

 (Figure 2. 8, 

page 46), which showed a high amount of turbulence (a global average clod dissolution 

rate of 0.30 ± 0.01 g hr
-1

; see Table 2. 3, last column) but a low biomass production of 

17.0 ± 0.7 g DW m
-2

 d
-1

. It is interesting to note that, despite the high level of turbulence, 

this flow condition exhibited a low amount of zonation and heterogeneity in the spatial 

distribution of turbulence. Could the zonation and heterogeneity found in other flow 

conditions be an important factor in the overall production of algal biomass? It is possible 

that the heterogeneity of turbulent environments within the ATS bed allows for locations 

of refugia characterized by lower turbulence that allow less-resilient algal species to 

persist, thus increasing the overall diversity of algal species that in some way translates to 

increased biomass production. More experimentation is required to answer this question. 

The intersecting limiting factors of light, nutrients, and turbulence 

A conceptual model was developed to describe the relationship between 

intersecting limiting factors in the production of algae in an ATS. This model can be used 

to explore the relationship of limiting factors (especially light, nitrogen, carbon dioxide, 

and turbulence) on the productivity of algae in an ATS. Some variables of importance to 

the productivity of algae and their relationship to each other can be described by a causal 

relationship model (Figure 2. 16). In this model, a pathway with a ―+‖ indicates a direct 

relationship; a pathway with a ―-― indicates an inverse relationship; and a pathway with a 

―+/-― indicates a relationship that is direct at low levels of interaction but is inverse at 

high levels of interaction, representative of a subsidy-stress relationship. Omitted but 

possibly important factors include the CO2 concentration, temperature, frequency of 

nutrient feeding, frequency of harvest, and competition with suspended algal species.  
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In this model, the parameters that are directly controlled by the ATS operator 

include the wave surge bucket volume; volumetric flow rate; the water depth; light 

intensity; and nitrogen loading rate. The bed turbulence per unit time is directly 

influenced by the amplitude and frequency of the wave surge, functions of the wave 

surge bucket volume and volumetric flow rate. Turbulence may also be inversely affected 

by water depth, where deeper water may dampen the effect of the wave surge by 

increasing the rate of dispersion of the wave surge energy. Increased bed turbulence 

decreases the diffusive boundary layer at both the turf and filament scale. The decreased 

boundary layer increases the rate of nitrogen diffusion for a given nitrogen concentration 

(itself established by the user-defined nitrogen loading rate). Nitrogen diffusion rate then 

directly influences algal productivity, which is directly reflected in the algal biomass 

production. Bed turbulence directly influences light availability through increased 

exposure of the algal filament surface area to unidirectional light by reduction of self-

shading because of increased mixing motion. Bed turbulence also directly influences 

scour, however, which inversely affects algal productivity by removing productive 

biomass from the ATS bed. While some of these relationships might better be represented 

by a saturation relationship or a subsidy-stress relationship, within the bounds of typical 

ATS operation it is assumed here that these direct or inverse relationships hold. 
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Figure 2. 16. Some causal relationships that affect algal productivity in an algal turf scrubber, 

showing the role of turbulence on diffusion rates and scour.  

An energy systems model (Odum 1993) was developed based on the relationships 

outlined in the causal relationship model (Figure 2. 17 and Figure 2. 18). Processes 

modeled include algal community production and respiration, the associated uptake of 

carbon dioxide and nutrients, and the generation of turbulence by the combined action of 

flow rate and periodic dumping of the ATS wave surge bucket (Figure 2. 17). The energy 

signature of an ATS is clearly delineated by this model, which postulates that turbulent 

energy, as moderated by wave surge frequency and amplitude, is an important part of the 

energy signature. The productivity of algae in an ATS is dependent upon the availability 

of the primary limiting factors of light, nitrogen, and carbon dioxide, with turbulence 

moderating the access to all of these. Maximization of the algal production is achieved by 
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optimizing the availability of these limiting factors, each of which might be modeled as a 

subsidy-stress curve. The relative contribution of turbulence to the availability of each of 

these in an ATS has yet to be fully understood, however, a direction for future research. 
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Figure 2. 17. Preliminary energy systems diagram of an algal turf scrubber, showing the effect of 

turbulence on the productivity of algae through moderation of the availability to other limiting 

factors.  

Submodels of various components of the main model can further elucidate the 

relationship between factors and elements in the ATS ecosystem. A submodel was 

developed to understand the effect of turbulence on the diffusive boundary layer that 

surrounds the algal cell and the algal turf (Figure 2. 18). The model shows the role of 

engineering decisions in the design and operation of an ATS, such as drain height and 

volumetric flow rate, in determining the turbulent energy in the flow and resultant effect 

on the diffusive boundary layers surrounding the algal cells and the algal turf.  
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Figure 2. 18. Energy circuit diagram submodel of the effect of turbulent energy on the diffusive 

boundary layer (DBL) surrounding an algal turf and individual algal cell and various engineering 

and operational parameters that affect the turbulence regime in an ATS. 

Conclusions and Implications 

The following conclusions may be made for this set of experiments: 

 Turbulence acts as a limiting factor to the algal biomass production in an ATS when 

other factors are provided in abundance.  
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 Wave amplitude (volume for wave surge) is a stronger factor than wave frequency on 

determining the biomass production of algae in an ATS. Biomass production is 

maximized, however, when the combination of wave surge amplitude and frequency 

is optimized. 

 Increased turbulence affects the mass transfer at the scale of the algal turf thickness, 

as shown by the clod dissolution measurements. However, it cannot be concluded that 

this is the only mechanism that contributes to the stimulation of algal biomass 

production in an ATS. Further investigation is necessary to confirm the mechanism 

by which turbulence increases overall algal production.  

 

Overall, the results of these experiments suggest that, coincident with biomass 

production, the ecosystem metabolic measures of net primary productivity and 

community respiration of the algal turf in an ATS as a function of flow turbulence would 

follow a limiting-factor relationship. Further, it is hypothesized that that relationship 

might have the shape of a subsidy-stress curve. This question is addressed further in 

subsequent sections of this research. 
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Chapter 3: The Ecosystem—Searching for the Subsidy-Stress 

Curve 

Introduction 

The role of turbulence in stimulating the algal biomass production in an algal turf 

scrubber (ATS) has been shown to be as a limiting factor when other potential limiting 

factors are supplied in abundance. Is this relationship reflected in the metabolic 

signatures of the algal turf? Can this be measured by the change in the concentration of 

the reactant gases (carbon dioxide or oxygen) in the ATS aquatic environment? This set 

of experiments was undertaken to explore these questions so that this information might 

inform the design of an automated process in a feedback control scenario. Measurements 

were designed to measure the net primary production and respiration of the ATS 

ecosystem and investigate responses to changes in turbulence levels. Respiration (R) is 

defined as the net community respiration, that is, the sum total of all respiratory processes 

within the ATS ecosystem. It is generally assumed to be relatively constant in light or 

dark (Beyers 1963). Gross primary production (GPP) is defined as the sum total of all 

photosynthetic processes that result in the storage of light energy as reduced organic 

material (Beyers 1963). In a growing ecosystem, GPP exceeds R, and the amount of 

excess is the net primary production (NPP); thus, 

 

Also, in an early successional photosynthetic system, the ratio of NPP/R is greater 

than one, indicative of an autotrophic system (Odum 1956), although over the long term 

this ratio should approach 1 as more structure is built and system maintenance costs 

increase overall respiration (Odum 1969). These signatures are examined in this series of 
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investigations. The measurement of the metabolism of an aquatic ecosystem typically 

relies on monitoring the diurnal variation of the concentration of metabolically active 

gasses (oxygen or carbon dioxide).  This necessitated the creation of a light diurnal 

variation, and the operation of the ATS units were changed from the continuous light 

environment of previous experiments to a 16 hour light/8 hour dark diurnal cycle. While 

this lowered the overall expected biomass production from possible light limitation, it 

brought the experimental setup into closer analog of typical ATS operating conditions.  

Experiments were designed in which the wave surge frequency was manipulated 

on a set of ATS units by adjusting the volumetric flow rate to establish a range of 

frequencies of over two orders of magnitude.  A monitoring system was designed to 

record the pH diurnal in each ATS unit. Monitoring the pH level of an aquatic system 

over a diurnal light cycle can give information about the ecosystem metabolism of the 

aquatic system, as pH level fluctuates inversely to the concentration of carbon dioxide 

(which itself fluctuates diurnally with photosynthesis and respiration). The method for 

determining primary production in aquatic systems is done by tracking diurnal pH 

fluctuations, requiring calibration by measurement of incremental changes in the pH with 

known incremental additions of carbon dioxide via titration (Park et al. 1958, Beyers et 

al. 1963, Beyers 1964). This calibration curve becomes the basis for the system to 

monitor net primary productivity and respiration automatically. These metrics, their ratio, 

and biomass production rate were measured as time replicates for each flow condition 

under two different light regimes and under increasing levels of nitrogen availability. 

Data were analyzed as a function of wave surge frequency of the ATS, with the expected 

result of a subsidy-stress curve evident for each. Additionally, the data were used to 
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investigate the relationship between the metabolic measures (NPP, R, and NPP/R ratio) 

and biomass production rate, under the interpretation that they should roughly correlate. 

Examination was performed to test the assumptions of the methodology by investigating 

the transfer rate of gas (oxygen and carbon dioxide) across the air-water interface in an 

ATS at a range of wave surge frequencies. Finally, repeated samples of algae from the 

growth bed of each ATS were examined and keyed for relative abundance of the 

dominant algal species for a preliminary investigation into their relative competitiveness 

under various combinations of operating conditions. 

Objectives and hypothesis 

The objectives of this set of experiments were as follows: 

1. The first objective of this component of the research was to develop a system to 

monitor the metabolism of the algal ecosystem in an ATS, thereby providing 

information about the growth of the algal community in response to various operating 

conditions.  

2. The second objective of this set of experiments was to determine the effect of flow 

turbulence, as controlled by the wave surge frequency, on the ecosystem metabolism, 

as evidenced by net primary productivity (NPP) and respiration (R), and biomass 

production rate of the algal turf community in an algal turf scrubber.  

The hypothesis investigated in this set of experiments may be expressed as 

follows: Flow turbulence is a limiting factor to the primary productivity of an algal turf 

community in an algal turf scrubber when other possible limiting factors are in 

abundance. Algal turf metabolism, as made up of net primary production and respiration, 

and biomass production will follow a subsidy-stress relationship over a range of 
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turbulence regimes, being greatest somewhere in the middle of the range and least near 

the upper and lower bounds of the range, and where the turbulence regime is defined by 

the wave surge frequency as set by the overall volumetric flow rate in an ATS. 

Research Approach 

The research approach followed for investigating the subsidy-stress relationship 

between turbulence and algal turf productivity was performed by testing different flow 

rates using multiple laboratory-scale algal turf scrubbers in a laboratory. All ATS units 

were identical units with 1-m
2
 growth area and were operated under ambient temperature 

conditions in the laboratory and under 16-hour light/8-hour dark diurnal light cycles. For 

each combination of operating conditions of light and nitrogen loading rate (NLR), a 

different wave surge frequency was established on each scrubber, holding wave surge 

volume constant. Replicates (between 4 and 8) were made in time for each surge 

frequency treatment. During each treatment, measurements were made of the algal turf 

metabolism, using the pH diurnal method, and biomass production rate through sacrificial 

harvesting. The measurements were analyzed for differences in these parameters between 

turbulence conditions under each set of operating conditions. Different combinations of 

light intensity and NLR operating conditions were performed to find where flow 

turbulence becomes limiting. Assumptions of the pH diurnal method for aquatic 

ecosystem metabolism were tested through investigations on the gas transfer kinetics for 

different turbulence conditions in the ATS units. Finally, preliminary investigation into 

the competition ecology of the algal consortia was performed by examining the relative 

abundance of dominant genera of algae under the various combinations of operating 

conditions. 
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Materials and Methods 

Equipment Overview 

The equipment used for this research included a data acquisition computer that 

monitored the pH level in the reservoir of an ATS via a pH probe and meter. Up to five 

separate ATS units were used in the lab to perform the experiments, and a data 

acquisition signal line was established for each one.  The volumetric flow rate in each 

ATS was established by installing a combination of centrifugal pond pumps of various 

volumetric flow rate capacities in parallel. The overall configuration of these elements is 

shown in the schematic (Figure 3. 1), and the elements are described in more detail 

below. 

 

Figure 3. 1. Schematic for a PC setup for pH monitoring of an ATS operating in recirculation mode. 

Algal Turf Scrubber (ATS) Units 

The algal turf scrubber units used for this research were described previously in 

Chapter 2. The five separate ATS units employed throughout all experiments were 
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identical in construction and are described in (Mulbry and Wilkie 2001) and (Kebede-

Westhead et al. 2003). All units were operated as previous described: they were operated 

in recirculation mode, each was paired with its own reservoir, and the total water volume 

in each system was maintained at a nominal 150 liters through daily additions of distilled 

water. The units were harvested regularly with a shop vacuum; after each harvest, small 5 

cm square shuttle screens from each ATS unit were randomly reassigned to every other 

ATS unit to ensure that all units had access to the same mix of algal species types. 

Lights 

As described previously (Chapter 2), each ATS unit was operated under its own 

set of two 400W metal halide lights, except for one ATS unit for which one 1000W metal 

halide light was used. The height of the lights above the ATS bed was adjusted to yield a 

light intensity of approximately equivalent intensity at the center of the ATS bed. For this 

set of experiments, light intensity was measured periodically at 25 locations equally 

distributed across the growth area of the ATS with a quantum flux meter and probe (LI-

250 Light Meter and LI-190 Quantum Sensor, LI-COR Biosciences, Lincoln, Nebraska). 

Near the end of one set of experiments, it was discovered that light intensity was lower 

than had been originally expected; presumably because of bulb age and wear, and the 

bulbs in all lights were replaced with new ones. This resulted in a measurable increase in 

light levels. Light levels were measured and checked periodically throughout all sets of 

experiments. 

Nutrient Supply 

Throughout the course of all testing and experimentation, four different types of 

nutrient supply were employed. For all nutrient supply types, solutions were mixed with 
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known nitrogen and phosphorus concentrations; aliquots of nutrient solutions were added 

daily to the ATS reservoir in known volumes during operation to yield the desired 

nitrogen loading rate (NLR). The four types of feed solution used were dairy manure, 

urea salt, plant-food based (Miracle Gro
®
 solution), and modified Bristol‘s solution. 

Manure (M) 

A majority of all trials were run using undigested raw dairy manure as the nutrient 

source. The dairy manure was collected periodically as needed from a holding pond at the 

USDA ARS Beltsville (Maryland) dairy. The manure was collected approximately 

monthly in 5-gallon closed plastic containers and stored in a cold room (at approximately 

4 C) until used. Upon collection, a sample of the manure was analyzed. A description of 

the results of this analysis was given in Chapter 2, Table 2.1. The manure was typically 

fed daily into each ATS by pouring a measured volume into the ATS reservoir to yield 

the intended NLR. 

Urea (U) salt solution 

A small number of trials were run using a urea solution as the nitrogen source and 

a phosphate solution for the phosphorus source. A significant die-off of algae was 

observed throughout these feed conditions, however, and no reportable data were 

collected.  

Miracle Gro
®
 solution (MG) 

 A number of trials were run using a solution mixed from a commercially-

available chemical plant food (Miracle Gro
®
 Water Soluble All-Purpose Plant Food, 

Scotts Company, Marysville, Ohio). The solution was created by dissolving 24.0 g of dry 
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Miracle Gro
®
 granules in 10.5 L of distilled water, yielding a solution to yield 1.0 g N for 

every 50 ml of solution. The MG solution was administered to the ATS daily by 

decanting a measured volume of solution into the ATS reservoir. The pH level of the 

process water was highly unstable, however, often leading to die-off of algae, and no 

reportable data was collected for these feed conditions. 

Modified Bristol‘s Solution 

A number of trials were run using a solution derived from algal culture medium 

recipes. A modified Bristol‘s medium (Trainor and Shubert 1974, Lin et al. 2007) was 

made by dissolving known masses of inorganic salts into known volumes of distilled 

water (Table 3. 1). The medium was made as three separate component solutions: a 

nitrate solution (solution A), a phosphate solution (solution B), and a micronutrient 

solution (solution C). Solutions were administered to the ATS simultaneously each day 

by decanting measured volumes of each solution in the ratios of 25:10:10 by volume into 

the ATS reservoir. 

Table 3. 1. Recipe for modified Bristol's solution, as the sum of three component solutions, used as an 

inorganic nutrient feed for some ATS operations. 

Component Solution Chemical Mass (g) Vol. of DI Water (ml) 

A 

NaNO3 

or 

KNO3 

60.7 

 

72.2 

1000 

B 
K2HPO4 18.2 

1000 
KH2PO4 42.5 

C 

CaCl2 6.05 

1000 

NaCl 6.05 

MgSO4 7H2O 18.2 

FeCl3 0.08 

MnSO4 4H2O 0.09 

ZnSO4 7H2O 0.05 

H3BO4 0.10 

CuSO4 5H2O 0.02 

Feed proportions: A:B:C = 25:10:10 ml 
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Monitoring System for pH diurnal 

A system to monitor the pH level was constructed using a data acquisition 

computer connected to a pH probe and meter. For data acquisition of pH level, a custom-

built Pentium 75-MHz personal computer was used with an installed National 

Instruments (NI) AT-MIO-16X (National Instruments Corp., Austin, Texas) data 

acquisition card and an external NI CB-50 I/O connector block. For all experiments 

involving monitoring of pH level, a pH probe (36‖ single junction pH electrode, Cole 

Parmer, catalog number c-05993-80) was installed in each ATS reservoir.  Each probe 

was connected to a Jenco 3672 pH controller (Jenco Electronics Ltd., San Diego, 

California) with a 4-20 mA analog output terminal across which a 1000-Ω resistor was 

installed. These terminals were then connected to the respective analog input channel 

connectors on the CB-50 connector block. The voltage across the 1000-Ω resistor would 

vary directly with the pH level in a range between approximately 0 and 2.5 V. The 

calibration of each pH probe and controller was checked approximately every two harvest 

periods of their respective ATS unit. 

For the pH monitoring system, LabView version 4.1 (National Instruments Corp., 

Austin, Texas) was used as the data acquisition software.   Hardware constraints allowed 

recording of up to four voltage signals simultaneously, each of which was converted into 

pH values manually in data analysis using calibration constants determined at each 

recalibration event. For all trials, sampling was set at once every 5 minutes with no 

physical signal filtering; filtering of the pH signal was done manually during data 

analysis. 
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Titration for pH-IC conversion 

 The relationship between the pH level and inorganic carbon (IC) concentration 

for each ATS reservoir was determined through titration. Generally, this analysis was 

performed once each harvest period on samples taken from each ATS reservoir on the 

day that was the midpoint of the harvest period. Results of this analysis were applied to 

the pH curve for that entire harvest period, based on the assumption that the water 

chemistry in the reservoir did not significantly change throughout any one harvest period. 

Two methods were used for determining the relationship between pH and IC, 

summarized in the following sections. 

IC analysis method 

This method was used for the set of trials for the ―Low light/Low NLR‖ operating 

conditions. On the day of sampling, water samples were taken from each ATS reservoir 

in 50-ml sample vials. Samples were taken by submerging and filling vials in the ATS 

reservoirs. For each ATS, the first sample was taken just before the end of the dark time 

period of the diel light cycle (when the pH was expected to be lowest). The time and pH 

of the reservoir at the time of sampling were recorded. Repeated samples were taken 

approximately every hour after the lights were turned on throughout the light cycle as pH 

continued to rise; again, the time of sample and pH were recorded for every sample. 

Samples were stored in the dark at 4°C until they could be analyzed (typically done at the 

end of the day of sampling). Samples were analyzed for total inorganic carbon (TIC), 

which includes carbonate, bicarbonate, and dissolved carbon dioxide, using a Phoenix 

8000 TOC analyzer Tekmar Dohrman (Cincinnati, OH). Plots were made of TIC (in 
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ppm) versus pH. A linear regression was performed to yield an equation used to predict 

TIC when the pH was known for a water sample (Figure 3. 2). 

 

Figure 3. 2. Sample results of the relationship between total inorganic carbon (IC) and pH from the 

IC analysis method. A linear regression applied to sample data points relating IC to measured pH. 

Titration method 

The pH-CO2 titration method was used for all remaining trial conditions and 

follows procedures developed in Beyers et al. (1963) and summarized in Beyers (1964). 

On the day of sampling, a 500 ml sample was taken from the process water in each ATS 

reservoir near the end of the light segment of the diel light cycle (when the pH level in 

the reservoir was expected to be highest).  Each sample was placed in a 1-L Erlenmeyer 

flask and immediately sparged with nitrogen gas to remove all other dissolved gases. 

Sparging of samples was performed for at least 1 hour until the pH generally increased 

above 9.0. A titrant was prepared using HPLC distilled water in a separate Erlenmeyer 

flask into which compressed CO2 gas was bubbled using an airstone, creating a titrant 

that was saturated with CO2 gas.  At the time of titration, the atmospheric pressure and 

temperature of the sample water were recorded. For the titration, the samples were gently 
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and continuously stirred with a magnetic stir bar. Just prior to the start of the titration of a 

sample, a 50-ml subsample was taken in a vial and stored in the dark at 4°C for later IC 

analysis. The main sample was then titrated with the titrant in which a known volume 

was injected below the surface of the sample using a piston-driven air displacement 

micropipette. The change in pH level, measured using a calibrated Jenco model 3672 pH 

controller (described previously) and a Corning Gel Combo pH probe (Pinnacle 

Electrochemistry, Woburn, Massachusetts), was recorded along with the volume of titrant 

added. Titration continued until the pH of the sample was below 7.0. At the end of the 

titration, additional 50-ml subsamples of the process water and of the titrant were taken 

for IC measurement. The subsamples were analyzed for inorganic carbon using a Phoenix 

8000 TOC analyzer Tekmar Dohrman (Cincinnati, Ohio). The theoretical concentration 

of aqueous CO2 in the titrant was determined using tables in (Beyers et al. 1963) for 

dissolved CO2 concentration in water at a known barometric pressure and temperature. 

The beginning and ending IC concentrations were checked with those expected by the 

total addition of titrant. For each sample, information, a chart of IC versus pH was 

developed and used to convert pH to IC for that harvest period (Figure 3. 3). The curve of 

IC versus pH was generally described by a third order polynomial regression, and linear 

regression was used to extrapolate beyond the pH range measured in the titration, 

assumed for its ease of calculation. 
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Figure 3. 3. Sample results of the pH-IC titration trial for ATS process water, which can be described 

by a third-order polynomial regression analysis (r
2
 = 0.998) and linear regression to extrapolate 

beyond the upper and lower bounds of the titration.  

System Calibration 

The pH diurnal changes in an aquatic system represent an ecosystem-level 

parameter, the diurnal metabolism of the entire algal turf. In applying it to an ATS, the 

magnitude of the diurnal pH fluctuation is a function of the relationship between the area 

of the turf screen in an ATS and the total system volume. Thus, the calibration must be 

performed for different physical ATS configurations (that is, different combinations of 

turf area and reservoir volumes). Full calibration of the pH diurnal monitoring system 

required translation of the pH probe voltage to pH level using standard buffer solutions, 

translation of the pH level to IC concentration using the CO2 titration method, and 

determination of the algal productivity by accounting for total changes in IC 

concentration over time. A schematic diagram of the information needed for complete 

calibration of the pH monitoring system for ATS productivity is given in Figure 3. 4. 
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Figure 3. 4. Calibration information needed for the monitoring system to convert voltage from the 

pH probe to algal productivity in an ATS. 

As the research progressed, it became clear that the inorganic carbon titration method was 

a surrogate for the net primary production, rather than serving as a measurement of the absolute 

value of it. The pH diurnal was clear in all trials, however, and the method was pursued assuming 

that it yielded a reliable and easy-to-measure parameter that was closely correlated with 

ecosystem metabolism.  For the purposes of this research, these measurements are termed ―net 

carbon production‖ (NCP).   

Operating Conditions 

Various combinations of light intensity, nitrogen loading rate (NLR), and wave 

surge frequency were tested in trials on the ATS units. The operating conditions for these 

parameters are summarized as follows. 

Light Regimes 

Measurements of the light intensity on each ATS unit were made periodically 

throughout all experiments. In October 2007, it was observed that the intensity of the 

lights was lower than had been measured previously, thought to be the result of bulb age 

and wear. The bulbs were replaced with new bulbs at this time, resulting in a step-wise 

increase in the overall light intensity incident on the algal turf. Thus, there is a division of 

experiments between low light and high light conditions.  
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To confirm light intensity levels, measurements of the light intensity were made 

on each ATS unit at 25 locations evenly spaced in the growth area. These were averaged 

for each ATS for each date of measurement using Theissen polygon weighting (Ward and 

Trimble 2004), the results of which are shown  in Table 3. 2. A two-way ANOVA 

analysis  (see Appendix C for ANOVA table) on ATS units 1 through 5 for April, 

October, and November 2007 measurements of light intensity showed that ―Date‖ 

accounts for 13.5% of the variation in light intensity (F=23.5, Dfn=2, Dfd=288, 

P<0.0001), and that variation for ―ATS no.‖ or their interaction were not significant 

(P>0.05). A student‘s t-test shows that the means between April and October 2007 (Table 

3. 2) were not significantly different (P=0.0688), but the means between October and 

November 2007 (after the new bulbs were installed) were significantly different 

(P=0.0053). 

Table 3. 2. Weighted mean and standard deviation of light intensities for the set of ATS units in the 

lab measured at various times throughout the set of experiments. Means and standard deviations are 

calculated using Theissen polygon areal weighting of 25 measurements evenly distributed as a grid 

over the ATS growth area.  

ATS 

No. 

Light Intensity (µmol m
-2

 s
-1

) at Date of Measurement 

April 2007 Oct. 2007 Nov. 2007 July 2008 

1 216 ± 107 186 ± 80 244 ± 129 227 ± 113 

2 188 ± 84 167 ± 75 297 ± 143 -- 

4 259 ± 143 206 ± 108 326 ± 176 -- 

5 224 ± 104 169 ± 77 322 ± 166 -- 

7 231 ± 43 -- -- 184 ± 40 

 

The maximum light intensity levels, measured in the center of each ATS bed, are 

also reported (Table 3. 3). A two-way ANOVA analysis (see Appendix C for ANOVA 

table) on the five different ATS units for April, October, and November 2007 

measurements of maximum light intensity showed that ―Date‖ accounts for 60.95% of 
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the variation (F=22.0, Dfn=2, Dfd=6, P=0.0017), while ―ATS no.‖ accounts for 30.74% of 

the variation (F=7.40, Dfn=3, Dfd=6, P=0.0193). A student‘s t-test shows that the means 

between April and October 2007 (Table 3. 3) were not significantly different (P=0.1113), 

but the means between October and November 2007 (after the new bulbs were installed) 

were significantly different (P=0.0133). 

Table 3. 3. Maximum light intensity, measured at the center of the ATS growth area, for each ATS 

unit in the lab measured at various times throughout the set of experiments.  

ATS No. Light Intensity (µmol m
-2

 s
-1

) at Date of Measurement 

April 2007 Oct. 2007 Nov. 2007 July 2008 

1 357 277 378 416 

2 316 270 464 -- 

4 477 385 553 -- 

5 392 265 527 -- 

7 272 -- -- 255 

 

Flow Regimes 

Wave surge frequency in each ATS was manipulated as the independent variable 

by establishing different volumetric flow rates for a constant wave surge bucket volume 

through the use of combinations of pumps of various capacities (Table 3. 4). The pumps 

were submersible centrifugal pond pumps (Danner Manufacturing, Islandia, NY) and 

were installed in the reservoir of each ATS with flexible tubing as the conduit. Gate vales 

on the pump outlet were used to fine-tune the volumetric flow rate to the desired level. 

Table 3. 4. Nominal pump flow rate at 2 m of head and manufacturer model number.  

Pump Nominal  

Flow Rate 

Pump Model  

Number* 

20 lpm MD9 

40 lpm MD12 

75 lpm MD18 

*All pumps manufactured by Danner Mfg. (Islandia, NY). 
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For an ATS, volumetric flow rate directly influenced the wave surge frequency 

for a constant wave surge bucket volume. It was assumed in this set of experiments that 

the level of turbulence experienced by the algal turf in an ATS was directly proportional 

to the combination of wave surge frequency and surge volume, as indicated by previous 

research (Chapter 2). For this set of experiments, the wave surge volume (set by the 

volume of the wave surge bucket) was held constant, and wave surge frequency was 

manipulated by changing the overall volumetric flow rate. The lowest volumetric flow 

rate tested followed from equipment constraints, and larger flow rates were chosen to be 

approximately 5 times greater than the next lowest rate (Table 3. 5). Hence the flow rates 

ranged approximately two orders of magnitude. The volumetric flow rate in each trial 

was measured by timing the displacement of water from a graduated reservoir. 

Table 3. 5. Measured flow rate (lpm) and wave surge frequency (min
-1

) for the nominal flow rate 

conditions tested. 

Nominal Flow Rate 

(lpm) 

Measured Flow 

Rate (gpm) 

Measured Tipping 

Frequency (min
-1

) 

No. of 

measurements (n) 

1 0.61 ± 0.34 0.06 ± 0.04 19 

5 3.8 ±  0.8 0.35 ± 0.05 10 

25 29 ± 1 2.7 ± 0.1 19 

125 124 ± 11 11.0 ± 1.0 19 

 

Nitrogen Loading Rates and Feed types 

The various nitrogen feed types were used throughout all the trials. While 

undigested dairy manure was used for a majority of the testing, the other feed types made 

from recipes of inorganic chemicals were experimented with in attempts to more closely 

control the alkalinity of the process water. These inorganic feed types included a urea 

solution, a solution made from a commercially-available plant fertilizer (Miracle Gro
®

), 

and a modified Bristol‘s solution. Appreciable die-off of algae was observed for the urea 
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and Miracle-Gro solutions, and it was not possible to obtain meaningful biomass or 

metabolic data for these trials; they are hence not reported here.  

Various nitrogen loading rates (NLRs) were attempted as well. The NLR was 

manipulated for each feed type until the maximum NLR for the set of operating 

conditions (light and turbulence level) was achieved. The maximum NLR was defined as 

that NLR just under the rate at which the daily nitrate measurements in the water column 

exhibited an increase. It was assumed that at rates higher than this threshold NLR, there 

was not enough algal growth for complete uptake of the nitrogen being supplied daily, 

and the nitrogen would then accumulate in the reservoir as nitrate. The NLRs are reported 

here as arbitrary designations ―Low‖, ―Medium‖, and ―High‖ (Table 3. 6). 

Table 3. 6. Feed type and nitrogen loading rate (NLR) for different nutrient feed conditions tested 

throughout the set of experiments. 

NLR Designation Feed Type
* 

NLR (g N m
-2

d
-1

) 

Low M 0.6 ± 0.0 (n=17) 

Medium M 1.7 ± 0.3 (n=9) 

Hi M 2.5 ± 0.0 (n=6) 

Low B 0.6 ± 0.3 (n=18) 
*
Note: For ―Feed Type‖, ―M‖ = raw dairy manure; ―B‖ = modified Bristol‘s solution. 

 

Experimental Design: Subsidy-stress experiments 

Replication of each treatment (defined as a turbulence level at a particular light 

level and NLR combination) was performed on individual ATS units in time. Between 

five and eight replicate trials of each treatment were performed. Five sets of operating 

conditions were tested as follows: 

 Low light/Low NLR/Manure 

 High light/Low NLR/Manure 
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 High light/Medium NLR/Manure 

 High light/High NLR/Manure 

 High light/Low NLR/Bristol‘s solution 

For each condition, data were collected from 5 to 8 harvest periods. Harvest 

periods ranged from 7 days at Low Light/Low NLR conditions to 4 days at High 

Light/High NLR. Following the collection of sufficient data points at each condition, new 

treatments of turbulence level were randomly assigned to each ATS unit and tested under 

a new NLR. The scrubbers were not moved from their original and respective bank of 

lights. In one event, the ATS screens were cut into strips, which were then assigned 

randomly to a new ATS bed and reassembled. This was done to eliminate bias that might 

result from a history or memory of previous operating conditions experienced by each 

algal mat community. A time line of tests performed according to ATS number, treatment 

conditions, NLR designation, and light condition is shown in Figure 3. 5. 

 



 

 

 

 

 

Notes: (1) Light regime was applied to all ATS units at once; other parameters (feed type and NLR) are detailed per ATS unit. (2) Experiments were started on 

18 June 2007 (Day 0) and proceeded for 430 days. (3) ―Screens cut‖ indicates when the turf screens in each bed were cut into strips and reassembled randomly in 

other ATS units. 

Figure 3. 5. Timeline for operation of algal turf scrubber units for experiments in subsidy-stress and for autonomous experimentation. 
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Data Collection 

During all trials, water temperature and level were monitored daily in all ATS 

units. Once a NLR was established, nitrate in the reservoir water was measured prior to 

each harvest for each ATS unit. Dried biomass from the weekly harvest event for each 

ATS unit was weighed using a laboratory balance to determine dry weight of biomass 

production per unit time. Biomass fraction was tracked for that collected from the ATS 

screen and that collected in the water in the vacuum accompanying each harvest. A 

record of the pH diurnal was collected for each scrubber for each harvest period 

automatically with the data acquisition computer, with data sample taken every 5 

minutes. A pH-IC titration curve was performed for each ATS unit at least once each 

harvest period. 

Data Analysis and Statistical Approach 

The data collected by the computer were an analog voltage varying between 0 and 

2.5 V, correlating to a pH level between 4 and 11, respectively, and a timestamp of the 

voltage reading for each ATS unit. The data for each ATS unit for each harvest period 

were imported into a spreadsheet program for processing. Processing of data included 

converting the timestamp to date and time, and converting the voltage to pH using the 

calibration values for each respective pH controller. The data were filtered and smoothed 

using spreadsheet software. Noise in the pH signal was reduced by eliminating 

unrealistically high (greater than 11) or low (less than 5) pH values assuming these 

resulted from electrical spikes or noise, and curve smoothing was performed by 

averaging every twelve pH readings to yield one averaged pH reading per hour.  
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The pH diurnal was translated to an IC diurnal by using the pH-IC titration curve 

for that respective ATS unit and harvest period. The rate of change of IC was then 

calculated for each hour timestep by the following relationship: 

 

 

      

where (IC)i is the IC concentration at time ti, and (ti – ti-1) is the timestep of 1 hour. For 

each timestep, the value of (∆IC/∆t) was evaluated and categorized: if greater than zero, it 

was considered net community respiration (as the amount of IC given off); if less than 

zero, it was considered net primary production (as the amount of carbon taken up). These 

were summed for every 24-hour period to yield total production and respiration for every 

day. These were averaged for all days of the harvest period to yield the average net 

carbon production and respiration, expressed as g C m
-2

 d
-1

. For each set of conditions, 

measured data from each harvest period was taken as one sample data point. 

In the analysis of the data, the following statistical tests were applied: 

 Summary of mean and variance of biomass production rate, production, and 

respiration for each treatment (that is, flow rate for an established light and NLR 

regime); 

 Significance testing using ANOVA analysis applied to the following three 

relationships for significance: (a) biomass production rate versus wave surge 

frequency; (b) respiration versus wave surge frequency; (3) net primary 

production versus wave surge frequency, with the null hypothesis in each case 
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stated  that there is no effect of wave surge frequency on these dependent 

variables; 

 Linear regression analyses of each of net carbon production (NCP), respiration 

(R), and ratio of NCP to R, versus biomass production rate for each set of 

treatments to test if the measured biomass production rate is a predictor of the 

ecosystem metabolism. 

The following operational assumptions were made for the experimental design: 

 All scrubbers are considered equivalent. Potential differences were eliminated or 

minimized by locating all ATS units in the same laboratory at similar light and 

temperature regimes. Nutrient loads were created in batches and applied at the 

same time to all ATS units. 

 The turbulence level experienced by the algal turf community is directly 

proportional to the average wave surge frequency. 

The following statistical assumptions were made and incorporated into the analysis: 

 Samples are independent, random, and continuous for each sample set; 

 The sample means and residuals are normally distributed; 

 The data are not influenced by any outlier (no censored data was assumed). 

Gas Diffusion Measurements 

An investigation was made into the kinetic transfer dynamics of gas diffusion 

across the air-water interface in an ATS system. This information is fundamental to the 

assumption underlying the pH-diurnal method employed in this research, in that, in 

operation of the ATS, it is assumed that the pH diurnal is affected solely by the biological 

metabolism occurring in the aquatic environment and that the effect of gas transfer of 
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CO2 across the air-water interface is insignificant. This assumption is based on those 

originally suggested by (Park et al. 1958) in development of the method for 

environmental applications. Because of the high-turbulence environment of the ATS, 

however, the question arises: what is the effect of the turbulence level in an ATS on the 

transfer of gases, especially CO2, across the air-water interface? To address this, 

experiments were performed to investigate gas transfer into and out of the water column 

in an ATS. 

An ATS unit and reservoir were scrubbed clean of all algae and biofilm, and the 

polypropylene screen mesh was removed from the ATS bed. A solution of chlorine 

bleach cleanser was pumped through the ATS systems to sterilize it. The reservoir was 

filled with water (typically 90 to110 liters). Water chemistries approximating those 

employed in the subsidy-stress experiments were tested (Table 3. 7). These include 

distilled water (6 trials), distilled water with Bristol‘s solution added (4 trials), and 

process water from an active ATS unit (1 trial). With the ATS pumps inactive, water in 

the reservoir was sparged with compressed gas using air stones to remove dissolved gases 

from the water column. Sparging typically lasted between ½ to 1 hour until the dissolved 

oxygen, measured with a YSI-85 Handheld Dissolved Oxygen/Conductivity meter (YSI 

Corporation, Yellow Springs, Ohio), stabilized at or close to zero. Two different sparge 

gases were employed in separate trials for measurements on two different gas transfer 

scenarios: 

 Compressed carbon dioxide gas (CO2) was used as the sparge gas to supersaturate 

the water with CO2 (thus lowering the pH level), yet remove oxygen from 
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solution, allowing measurement of dissolved CO2 loss to the atmosphere and 

dissolved O2 gain from the atmosphere; 

 Compressed nitrogen gas (N2) was used as the spare gas to remove both CO2 (thus 

raising the pH level) and O2 from solution, allowing measurement of both CO2 

and O2 gain from the atmosphere. 

Following the gas sparge, the ATS pumps were activated at a known volumetric 

flow rate, and dissolved oxygen concentration, pH level and time elapsed were measured 

periodically, with a time of zero established when the pumps were activated. 

Measurements of dissolved oxygen and pH level continued until they stabilized, taking 

from approximately 15 minutes to a few hours, depending upon the turbulence level. The 

trial was repeated for different wave surge frequencies as set by volumetric flow rate. 

Eleven trials were performed overall (Table 3. 7), each trial representing a different 

combination of sparge gas, wave surge frequency, and water chemistry type. Samples of 

water for each water type were taken from the ATS reservoir, and a pH-IC titration was 

performed to allow conversion of the pH readings to IC concentration values. 

Table 3. 7. Operating conditions (consisting of different combinations of sparge gas, water chemistry 

type, volumetric flow rate, and wave surge frequency) for experimental trials for investigation of gas 

transfer dynamics in an ATS. 

Trial No. Sparge Gas Total Water 

Volume (liters) 

Water Type* Vol. Flow rate 

(lpm) 

Surge Freq. 

(min
-1

) 

1 CO2 110 D 5 0.3 

2 CO2 110 D 25 1.7 

3 CO2 110 D 60 5.0 

4 CO2 110 D 125 12 

5 CO2 110 D 125 12 

6 CO2 90 B 5 0.3 

7 CO2 90 B 125 12 

8 N2 110 D 125 12 

9 N2 110 P 125 12 

10 N2 90 B 5 0.3 

11 N2 90 B 125 12 

*Water type designations: D – distilled water; B – distilled water with Bristol‘s solution; P – process water 
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Analysis of the data from the gas transfer experiment trials was performed by 

plotting the measured parameter versus time and fitting relevant regression curves to the 

data to yield the first-order gas diffusion coefficients, described by Odum (1956) as the 

coefficient (K) that solved the first-order ordinary differential equation 

      (3-1) 

where D is the diffusion rate per unit area, C is the concentration of the gas in solution 

(typically expressed as mass per unit volume), S is the saturation deficit for the gas, and K 

is the first-order gas transfer coefficient defined on an area basis (units are, for example, 

in g O2 m
-2

 d
-1

). The saturation deficit, S, may be defined as  

      (3-2) 

where CH is the saturation concentration of the gas at the temperature and atmospheric 

partial pressure of the solution, as predicted by Henry‘s Law. Combining equations (3-1) 

and (3-2) and solving the differential equations yields an equation for the concentration C 

of the gas at any time t: 

     (3-3) 

where C0 is the concentration of the gas at time t = 0. Equation (3-3) is the general form 

of the equation that describes the concentration of gas as mitigated by the degree of 

saturation of the water. Non-linear regression was thus performed on the data to fit the 

curve to this general equation form. Data for different sets of measured values were 

analyzed differently, depending upon whether gas diffusion was into or out of the water 

column. The methods of analysis were as follows: 
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Oxygen: In all trials (1 to 11; see Table 3. 7), O2 transfer across the air-water 

interface was into the water from the atmosphere. The data were expected to follow the 

form of an exponential saturation function (Figure 3. 6) with the ideal form as 

      (3-4) 

where S is the span; B is the base; x is time; Y is the concentration of the gas at time x; 

and k is the first-order transfer coefficient. Equating equation (3-4) with equation (3-3), it 

can be shown that B is equal to C0 (the concentration of gas at time zero); S is equal to 

(CH – C0) (the equilibrium concentration of the gas predicted by Henry‘s Law minus the 

initial gas concentration); and the transfer coefficient K (with dimensions of 

[Mass]/[Length]
3
/[Time]) is equal to kCH. The data were thus fit to equation (3-4) using 

non-linear regression, and the relevant transfer coefficients were determined. 

 

Figure 3. 6. General form of the exponential saturation function used for non-linear regression on 

aquatic gas concentrations over time as a result of gas diffusion into an aquatic environment with a 

saturation deficit, where “B” is the base or initial concentration of the gas and “S” is the span over 

which the gas concentration increases over time. 

Carbon Dioxide: Transfer of carbon dioxide across the air-water interface was 

either out of or into the water to or from the atmosphere, depending upon whether the 

sparge gas for a trial was carbon dioxide (trials 1 through 7,Table 3. 7) or nitrogen (trials 

8 through 11,Table 3. 7), respectively. Carbon dioxide concentrations were determined 

by converting pH measurements using the ph-IC titration data taken for each water type. 

B

S
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For trials in which transfer of carbon dioxide was into the water from the air (trials 8 

through 11), analysis of the data was performed similarly to that used for oxygen, where 

non-linear regression was used to fit the data to an exponential saturation curve of the 

form of equation (3-4). For the trials in which transfer of carbon dioxide was out of the 

water to the air (trials 1 through 7), the data in most cases were close to linear, and linear 

regression was performed, where the slope of the linear regression equation represented 

the diffusion rate of carbon dioxide out to the atmosphere. In one case (Trial 7), enough 

data points were collected such that the carbon dioxide concentration over time followed 

the form of an exponential decay function (Figure 3. 7). The general form of exponential 

decay can be described as 

      (3-5) 

where S is the span; P is the ―plateau‖ to which Y trends; x is time; Y is the concentration 

of the gas at time x; and k is the first-order transfer coefficient. Equating equation (3-5) 

with equation (3-3), it can be shown that P is equal to CH (the equilibrium concentration 

of the gas predicted by Henry‘s Law); S is equal to (C0 – CH) (the initial concentration of 

the gas minus the equilibrium concentration of the gas predicted by Henry‘s Law); and 

the transfer coefficient K (with dimensions of [Mass]/[Length]
3
/[Time]) is equal to kCH. 

The data for trial 7 were thus fit to equation (3-5) using non-linear regression, and the 

relevant transfer coefficients were determined.  
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Figure 3. 7. General form of the exponential decay function used for non-linear regression of aquatic 

gas concentrations over time as a result of gas diffusion out of an aquatic environment with a 

negative saturation deficit (super-saturation), where “P” is the plateau or long-term equilibrium 

concentration, and “S” is the span over which the gas concentration decreases over time. 

pH: Measurements of pH were taken in all trials as an indirect measure of transfer 

of carbon dioxide across the air-water interface. The pH level was expected to increase or 

decrease linearly depending upon whether carbon dioxide was transferring out of or into 

the water to or from the air, respectively. Thus, pH was expected to increase depending 

upon whether the sparge gas for a trial was carbon dioxide (trials 1 through 7, Table 3. 7) 

or nitrogen (trials 8 through 11,Table 3. 7), respectively. For all trials, the change in pH 

was expected to be approximately linear over a short interval of time. The data were thus 

analyzed using linear regression, and the slope of the regression function, indicating the 

average rate of change of pH level, were determined. 

Species abundance measurements 

It was observed in prior experimentation with the ATS units that certain species 

of algae would be dominant under certain combinations of operating conditions 

(turbulence level, nutrient feed type, nitrogen loading rate, etc.). To characterize this 

dynamic, algae were sampled periodically from each of the ATS units throughout the 

experiments to determine the relative abundance of the various species in the ATS bed. 

All sampling occurred after establishment of the high-light regime; no sampling was 

P

S
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performed under low-light conditions. Algae were sampled with tweezers from the screen 

mesh of each ATS unit in three places, typically near the center of the growth area of the 

ATS bed, although the specific location of sampling was haphazardly selected. Sampling 

occurred just prior to a harvest and was performed numerous times throughout the term 

of operation of the ATS units. These samples were combined in a sample vial. The vial 

was shaken vigorously by hand to homogenize and was sub-sampled three times with 

tweezers; each subsample was then mounted on a microscope slide. Using a microscope, 

algae was keyed to the genus level for each subsample. It was known from prior studies 

(Mulbry and Wilkie 2001) that the ATS units were typically dominated by benthic 

filamentous algae from the Rhizoclonium, Microspora, and Oscillatoria genera. For each 

subsample, an indication of the relative abundance of each of these genera of algae was 

made according to the following designations: (0) = Absent; (1) = Rare; (2) = Common; 

(3) = Abundant. Unknown genera of algae (typically one of many planktonic forms) were 

categorized as ―Other‖ and ascribed an abundance designation.  

Analyses of these data were performed as follows: for each sample date, the 

subsample mean and standard deviation were calculated for the abundance number 

designations for each algal genus in each ATS unit. The mean was divided by the sum of 

all abundance means (across all genus designations) for that ATS unit and sample day to 

yield a percent abundance for each genus. The recorded data included sample date, 

nitrogen loading rate (NLR) and feed type (i.e., manure, Miracle Gro
®
, urea solution, or 

Bristol‘s solution) for the harvest period, average flow rate and wave surge frequency for 

two weeks prior to sample date, and the relative abundance for each algal genus. Analysis 

included the plotting of relative abundance for each algal genus versus experiment day 
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for each ATS unit. The mean and the standard error were calculated for each algal genus 

for each ATS unit across time, and these are compared to look for trends characteristic to 

each ATS unit. The relative abundance for each genus was also plotted against other 

independent variables of interest, including feed type, nitrogen loading rate, wave surge 

frequency, and nitrate concentration of the ATS process water, to investigate for trends in 

relative abundance in response to these variables. 

Results 

Summary of Subsidy-Stress Data 

Data are reported for five sets of operating conditions, as tested: 

 Low Light/Low NLR/Manure (two separate trials); 

 High Light/Low NLR/Manure; 

 High Light/Medium NLR/Manure; 

 High Light/High NLR/Manure; 

 High Light/Low NLR/Bristol‘s Solution. 

The data collected and used for analysis are presented in Tables B.1 to B.6 in 

Appendix B. For each set of operating conditions, data are reported for each of the 

nominal flow rate treatments, expressed in the tables as the measured wave surge 

frequency (in min
-1

) and the standard deviation of those measured frequencies. At each 

nominal flow rate, replicate values are reported for net carbon production (NCP) and 

respiration (R), expressed in grams of carbon per square meter per day, the ratio of NCP 

to R (unitless), and the biomass production rate, expressed in grams dry weight per 

square meter per day. The mean, standard deviation, and number of measurements for 

each flow condition treatment under each set of operating conditions are reported as well. 



 

94 

All data were included in the statistical analyses, including no-data points (as 

indicated in the tables in Appendix B with a dash). These data were included to show that 

tests were run but that some error occasionally occurred during the data collection. 

Typical errors resulted from disruption of the pH diurnal record because of power 

outages or excessive electrical noise. For each set of operating conditions, the mean 

values and standard deviations for each of the measured parameters (NCP, R, NCP/R, 

and biomass) are plotted versus the wave surge frequency on a semi-log plot to determine 

if these measurements follow the expected subsidy-stress relationship to wave surge 

frequency. ANOVA analyses are performed on each set of data for each operating 

condition to test the significance of the subsidy-stress relationship. Plots are also made of 

NCP, R, and NCP/R versus biomass to assess the correlation between metabolic 

measurements and biomass measurements. 

Effects of turbulence on metabolic and biomass production measurements 

Results are presented for the metabolic and biomass measurements for the five 

sets of operating conditions in the following order: 

 Low Light/Low NLR/Manure (two times); 

 High Light/Low NLR/Manure; 

 High Light/Medium NLR/Manure; 

 High Light/High NLR/Manure; 

 High Light/Low NLR/Bristol‘s Solution. 

Low Light, Low NLR, Manure 

The results for Low Light/Low NLR/Manure operating conditions are shown in 

Figure 3. 8. Both net carbon productivity and respiration showed first an increase and 
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then a decrease in magnitude as the wave surge frequency increased (Figure 3. 8-A). A 

steady increase in magnitude of both NCP and R was seen from the lowest wave surge 

frequency to a peak (-1.82 ± 0.40 and +1.93 ± 0.41 g C m
-2

 d
-1

, for NCP and R, 

respectively) at a frequency of 2.7 min
-1

. These metabolic measures were depressed at the 

highest level of turbulence (surge frequency of 11.5 min
-1

). The metabolic measures 

exhibited a large standard deviation at all surge frequencies except the highest, where the 

error was smaller. 

The NCP/R ratio followed a relationship opposite to the individual NCP or R 

measurements (Figure 3. 8-B), where its lowest value of 0.94±0.03 was seen at a surge 

frequency of 2.7 min
-1

. Also, the mean NCP/R ratio was greater than 1 at the lowest and 

highest wave surge frequencies, and less than one at the two middle frequencies.  

The biomass production rate followed a relationship (Figure 3. 8-C) similar to that 

seen in the metabolic measurements, with a peak in the middle of the range of wave surge 

frequency. The minimum mean production of 7.1 ± 3.1 g DW m
-2

 d
-1

 (n=7) occured at the 

highest wave surge frequency of 11.5 min
-1

, whereas the maximum production of 11.0 ± 

2.4 g DW m
-2

 d
-1

 (n=8) occured at the middle wave surge frequency of 2.7 min
-1

. A two-

tailed student‘s t-test on these values indicates that the means were significantly different 

(t=2.768, Df=13, P=0.0160). The measurements of biomass production rate have a high 

standard deviation as shown by the large error bars. 

An analysis of variance was conducted to test whether the means of the various 

measures for at least one wave surge frequency was significantly different from the 

others. Results of this analysis are presented in Table 3. 8. In reviewing the results of the 

ANOVA analysis, the null hypothesis (that there is no significant difference between the 



 

96 

means) can be rejected at a 0.05 level of significance for all measures, including 

productivity (F=13.52, P<0.0001), respiration (F=17.36, P<0.0001), NCP/R ratio 

(F=4.035, P=0.0176), and biomass production rate (F=4.491, P=0.0111).  

Table 3. 8. Results of ANOVA analysis for Low Light/Low NLR/Manure for (A) net carbon 

productivity (NCP); (B) respiration (R); (C) NCP/R ratio; and (D) biomass production rate. 

 SS Df MS F value P value 

(A) Carbon Productivity (n=8)      

Treatment (flow rate) 5.995 3 1.998 13.52 <0.0001 

Residuals 3.843 26 0.147   

Total 9.838 29    

(B) Respiration (n=8)      

Treatment (flow rate) 7.455 3 2.485 17.36 <0.0001 

Residuals 3.723 26 0.1432   

Total 11.18 29    

(C) NCP/R ratio (n=8)      

Treatment (flow rate) 0.04274 3 0.01425 4.035 0.0176 

Residuals 0.09181 26 0.003531   

Total 0.1345 29    

(D) Biomass Prod. Rate (n=8)      

Treatment (flow rate) 61.47 3 20.49 4.491 0.0111 

Residuals 123.2 27 4.562   

Total 184.7 30    

Note: ―SS‖ = sum of squares; ―Df‖ = degrees of freedom; ―MS‖ = mean square 
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Figure 3. 8. Metabolic and biomass production rate measurements versus wave surge frequency for 

(Low light, Low NLR, Manure) operating conditions for an ATS: (A) net carbon productivity (NCP) 

and respiration (R), in g C m
-2

 d
-1

; (B) NCP/R ratio; (C) biomass production rate, in g DW m
-2

 d
-1

. 
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Low Light, Low NLR, Manure (redo) 

The results for the re-testing of the Low Light/Low NLR/Manure operating 

conditions following the random mixing of ATS screen pieces are shown in Figure 3. 9. 

Both net carbon productivity (NCP) and respiration (R) showed first an increase, then a 

decrease over increasing wave surge frequency, although this was less pronounced than 

in prior tests (Figure 3. 9-A). There was a slight peak at a frequency of 2.7 min
-1

 (-0.82 ± 

0.09 and +0.71 ± 0.06 g C m
-2

 d
-1

, for NCP and R, respectively). At the highest surge 

frequency (11.5 min
-1

) the metabolic measures were again depressed (-0.21 ± 0.03 and 

+0.19 ± 0.03 g C m
-2

 d
-1

, for NCP and R, respectively). The metabolic measures exhibited 

a large standard deviation at all frequencies except the highest, where the variance 

appears minimized. 

The ratio of NCP to R followed a slight subsidy-stress relationship (Figure 3. 9-

B), showing a maximum value in the middle ranges of the wave surge frequency. The 

error bars representing the standard deviations of the means are, however, large compared 

to the previous series of tests, and the relationship does not appear significant. The mean 

NCP/R ratio was greater than 1 at all wave surge frequencies.  

The biomass production rate showed a flat relationship (Figure 3. 9-C) for all but 

the highest wave surge frequency, where a drop in production was exhibited from its 

highest at 12.0 ± 0.9 g DW m
-2

 d
-1

 (n=5) at a frequency of 2.7 min
-1

 to 8.3 ± 1.4 g DW  

m
-2

 d
-1

 (n=5) at a frequency of 11.5 min
-1

. A two-tailed student‘s t-test on these values 

indicates that the means were significantly different (t=5.087, Df=8, P=0.0009). These 

measurements had a high standard deviation as shown by the large error bars. 



 

99 

An analysis of variance was conducted to test whether the means in the various 

measures for at least one wave surge frequency were significantly different from the 

others. Results of this analysis are presented in Table 3. 9. In reviewing the results of the 

ANOVA analysis, the null hypothesis (that there is no significant difference between the 

means) can be rejected at a 0.05 level of significance for three of the measures, including 

net carbon productivity (F=21.66, P<0.0001), respiration (F=28.10, P<0.0001), and 

biomass (F=3.711, P=0.0336). The null hypothesis is accepted, however, for the NCP/R 

ratio (F=0.7666, P=0.5315). 

Table 3. 9. Results of ANOVA analysis for the retesting of Low Light/Low NLR/Manure for (A) net 

carbon productivity (NCP); (B) respiration (R); (C) NCP/R ratio; and (D) biomass production rate. 

 SS Df MS F value P value 

(A) Carbon Productivity (n=5)      

Treatment (flow rate) 1.206 3 0.4022 21.66 <0.0001 

Residuals 0.2600 14 0.01857   

Total 1.466 17    

(B) Respiration (n=5)      

Treatment (flow rate) 0.7870 3 0.2623 28.10 <0.0001 

Residuals 0.1307 14 0.009334   

Total 0.9176 17    

(C) NCP/R ratio (n=5)      

Treatment (flow rate) 0.08720 3 0.02907 0.7666 0.5315 

Residuals 0.5308 14 0.03792   

Total 0.6180 17    

(D) Biomass Prod. Rate (n=5)      

Treatment (flow rate) 35.01 3 11.67 3.711 0.0336 

Residuals 50.31 16 3.145   

Total 85.32 19    

Note: ―SS‖ = sum of squares; ―Df‖ = degrees of freedom; ―MS‖ = mean square 
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Figure 3. 9. Metabolic and biomass production measurements versus wave surge frequency for the 

retesting of Low Light/Low NLR/Manure operating conditions for an ATS: (A) net carbon 

productivity (NCP) and respiration (R), in g C m
-2

 d
-1

; (B) NCP/R ratio; (C) biomass production rate, 

in g DW m
-2

 d
-1

. 
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High Light, Low NLR, Manure 

The results for High Light/Low NLR/Manure operating conditions are shown in 

Figure 3. 10. Both the net carbon productivity and respiration (Figure 3. 10-A) first 

increased and then decreased with increasing wave surge frequency. However, the large 

variance on the measurements, as represented by the error bars, makes this relationship 

flat. The maximum values for both NCP and R were seen at a wave surge frequency of 

0.3 min
-1

 (with values of -1.77 ± 0.48 and +1.49 ± 0.41 g C m
-2

 d
-1

, for NCP and R, 

respectively). These metabolic measures were depressed (with values of -0.63 ± 0.23 and 

+0.67 ± 0.26 g C m
-2

 d
-1

, for NCP and R, respectively) at the highest wave surge 

frequency of frequency of 11.5 min
-1

. The metabolic measures exhibited a large standard 

deviation at all frequencies except the highest. 

The NCP/R ratio showed a steady decline from 1.35 ± 0.09 at the lowest wave 

surge frequency to 0.95 ± 0.10 at the highest frequency (Figure 3. 10-B). The mean 

NCP/R ratio was greater than 1 at all frequencies except the highest.  

The mean biomass production rate showed no trend over the range of wave surge 

frequencies (Figure 3. 10-C) because of the high variance on the measurements. The 

minimum mean production rate was 12.7 ± 2.0 g DW m
-2

 d
-1

 (n=4) at the lowest surge 

frequency (0.04 min
-1

), and the maximum mean production rate was 14.4 ± 2.3 g DW m
-2

 

d
-1

 (n=4) at a frequency of 0.3 min
-1

. A two-tailed student‘s t-test on these values 

indicates that the means were not significantly different (t=1.096, Df=6, P=0.3153). 

An analysis of variance was conducted to test whether the means in the various 

measures for at least one wave surge frequency were significantly different from the 

others. Results of this analysis are presented in Table 3. 10. In reviewing the results of the 
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ANOVA analysis, the null hypothesis (that there is no significant difference between the 

means) can be rejected at a 0.05 level of significance for two of the measures, including 

net carbon productivity (F=3.720, P=0.0422), and NCP/R ratio (F=13.78; P=0.0003). The 

null hypothesis is accepted, however, for respiration (F=2.993, P=0.0732) and for 

biomass production rate (F=0.5529, P=0.6559). 

Table 3. 10. Results of ANOVA analysis for the testing of High Light/Low NLR/Manure for (A) net 

carbon productivity (NCP); (B) respiration (R); (C) NCP/R ratio; and (D) biomass production rate. 

 SS Df MS F value P value 

(A) Carbon Productivity (n=4)      

Treatment (flow rate) 2.853 3 0.9509 3.720 0.0422 

Residuals 3.068 12 0.2556   

Total 5.920 15    

(B) Respiration (n=4)      

Treatment (flow rate) 1.548 3 0.5158 2.993 0.0732 

Residuals 2.068 12 0.1723   

Total 3.616 15    

(C) NCP/R ratio (n=4)      

Treatment (flow rate) 0.3226 3 0.1075 13.78 0.0003 

Residuals 0.09367 12 0.007806   

Total 0.4163 15    

(D) Biomass Prod. Rate (n=4)      

Treatment (flow rate) 7.375 3 2.458 0.5529 0.6559 

Residuals 53.36 12 4.446   

Total 60.73 15    

Note: ―SS‖ = sum of squares; ―Df‖ = degrees of freedom; ―MS‖ = mean square. 
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Figure 3. 10. Metabolic and biomass production measurements versus wave surge frequency for the 

testing of High Light/Low NLR/Manure operating conditions for an ATS: (A) net carbon 

productivity and respiration, in g C m
-2

 d
-1

; (B) NCP/R ratio; (C) biomass production rate, in g DW 

m
-2

 d
-1

. 
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High Light, Medium NLR, Manure 

The results for High Light/Medium NLR/Manure operating conditions are shown 

in Figure 3. 11. Both net carbon productivity and respiration (Figure 3. 11-A) first 

increased and then decreased with increasing wave surge frequency. The maximum 

values for both NCP and R were seen at a wave surge frequency of 2.7 min
-1

 (with values 

of -1.25 ± 0.27 and +1.25 ± 0.23 g C m
-2

 d
-1

, for NCP and R, respectively). These 

metabolic measures were depressed significantly at the lowest (-0.63 ± 0.20 and +0.64 ± 

0.19 g C m
-2

 d
-1

, for NCP and R, respectively) and the highest (-1.01 ± 0.19 and +0.92 ± 

0.15 g C m
-2

 d
-1

, for NCP and R, respectively) wave surge frequencies. The metabolic 

measures exhibited a moderate standard deviation at all surge frequencies. 

The NCP/R ratio was nearly flat with a slight rise to 1.10 ± 0.14 at the highest 

wave surge frequency (Figure 3. 11-B). The mean NCP/R ratio was near 1 at all 

frequencies.  

The mean biomass production rate showed a steady increase from lowest to 

highest wave surge frequency (Figure 3. 11-C), with a minimum mean production of 19.4 

± 2.5 g DW m
-2

 d
-1

 (n=8) at the lowest frequency, and a maximum mean production of 

27.4 ± 5.1 g DW m
-2

 d
-1

 (n=8) at the highest frequency. A two-tailed student‘s t-test on 

these values indicates that the means were significantly different (t=4.019, Df=14, 

P=0.0013).These measurements had high standard deviations at the highest two 

frequencies.  

An analysis of variance was conducted to test whether the means of the various 

measures of at least one wave surge frequency were significantly different from the 

others. Results of this analysis are presented in Table 3. 11. In reviewing the results of the 
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ANOVA analysis, the null hypothesis (that there was no significant difference between 

the means) can be rejected at a 0.05 level of significance for three of the measures, 

including net carbon productivity (F=15.75, P<0.0001), respiration (F=19.04, P<0.0001), 

and biomass production rate (F=5.874, P=0.0094). The null hypothesis is accepted, 

however, for the NCP/R ratio (F=2.677, P=0.0933). 

Table 3. 11. Results of ANOVA analysis for the testing of High Light/Medium NLR/Manure for (A) 

net carbon productivity (NCP); (B) respiration (R); (C) NCP/R ratio; and (D) biomass production 

rate. 

 SS Df MS F value P value 

(A) Carbon Productivity (n=8)      

Treatment (flow rate) 1.513 2 0.7565 15.75 <0.0001 

Residuals 0.9605 20 0.04803   

Total 2.474 22    

(B) Respiration (n=8)      

Treatment (flow rate) 1.376 2 0.6881 19.04 <0.0001 

Residuals 0.7229 20 0.03614   

Total 2.099 22    

(C) NCP/R ratio (n=8)      

Treatment (flow rate) 0.06782 2 0.03391 2.677 0.0933 

Residuals 0.2534 20 0.01267   

Total 0.3212 22    

(D) Biomass Prod. Rate (n=8)      

Treatment (flow rate) 255.3 2 127.6 5.874 0.0094 

Residuals 456.3 21 21.73   

Total 711.5 23    

Note: ―SS‖ = sum of squares; ―Df‖ = degrees of freedom; ―MS‖ = mean square. 
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Figure 3. 11. Metabolic and biomass production measurements versus wave surge frequency for the 

testing of High Light/Medium NLR/Manure operating conditions for an ATS: (A) net carbon 

productivity (NCP) and respiration (R), in g C m
-2

 d
-1

; (B) NCP/R ratio; (C) biomass production rate, 

in g DW m
-2

 d
-1

. 
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High Light, High NLR, Manure 

The results for High Light/High NLR/Manure operating conditions are shown in 

Figure 3. 12. Both net carbon productivity (NCP) and respiration (R) (Figure 3. 12-A) 

increased and then decreased with increasing wave surge frequency. The maximum 

values for both NCP and R were seen, as before, at a wave surge frequency of 2.7 min
-1

 

(with values of -0.90 ± 0.20 and +0.90 ± 0.20 g C m
-2

 d
-1

, for NCP and R, respectively). 

These metabolic measures were depressed at the lowest (-0.77 ± 0.53 and +0.75 ± 0.55 g 

C m
-2

 d
-1

, for NCP and R, respectively) and highest (-0.77 ± 0.30 and +0.72 ± 0.33  g C 

m
-2

 d
-1

, for NCP and R, respectively) surge frequencies of 0.04 and 11 min
-1

, 

respectively. However, the metabolic measures exhibited a moderate standard deviation 

at all frequencies, and the relationship appears relatively flat. 

As before, the NCP/R ratio was flat with a slight decline to 0.99 ± 0.09 at the 

middle surge frequency of 2.7 min
-1

 (Figure 3. 12-B). The mean NCP/R ratio is near 1 at 

all frequencies.  

The mean biomass production rate showed a steady increase from lowest to 

highest wave surge frequency (Figure 3. 12-C), with a minimum mean production rate of 

23.2 ± 4.6 g DW m
-2

 d
-1

 (n=6) at the lowest frequency, and a maximum mean production 

rate of 36.6 ± 5.6 g DW m
-2

 d
-1

 (n=5) at the highest frequency; this was the highest mean 

biomass production rate observed throughout all tests. A two-tailed student‘s t-test on 

these values indicates that the means were significantly different (t=4.375, Df=9, 

P=0.0018). The measurements of the biomass production rate have a relatively high 

standard deviation at all frequencies.  
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An analysis of variance was conducted to test whether the means of the various 

measures of at least one wave surge frequency were significantly different from the 

others. Results of this analysis are presented in Table 3. 12. In reviewing the results of the 

ANOVA analysis, the null hypothesis (that there was no significant difference between 

the means) can be rejected at a 0.05 level of significance only for biomass production rate 

(F=8.178; P=0.0044). The null hypothesis is accepted, however, for all other measures, 

including net carbon productivity (F=0.2291, P=0.7980), respiration (F=0.3907, 

P=0.6833), and the NCP/R ratio (F=0.6893, P=0.5171). 

Table 3. 12. Results of ANOVA analysis for the testing of High Light/High NLR/Manure for (A) net 

carbon productivity (NCP); (B) respiration (R); (C) NCP/R ratio; and (D) biomass production rate.  

 SS Df MS F value P value 

(A) Net Carbon Productivity (n=6)      

Treatment (flow rate) 0.06188 2 0.03094 0.2291 0.7980 

Residuals 2.026 15 0.1351   

Total 2.088 17    

(B) Respiration (n=6)      

Treatment (flow rate) 0.1177 2 0.05887 0.3907 0.6833 

Residuals 2.260 15 0.1507   

Total 2.378 17    

(C) NCP/R ratio (n=6)      

Treatment (flow rate) 0.02843 2 0.01422 0.6893 0.5171 

Residuals 0.3094 15 0.02062   

Total 0.3378 17    

(D) Biomass Prod. Rate (n=6)      

Treatment (flow rate) 492.7 2 246.4 8.178 0.0044 

Residuals 421.7 14 30.12   

Total 914.5 16    

Note: SS = sum of squares; Df = degrees of freedom; MS = mean square. 
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Figure 3. 12. Metabolic and biomass production measurements versus wave surge frequency for the 

testing of High Light/High NLR/Manure operating conditions for an ATS: (A) net carbon 

productivity (NCP) and respiration (R), in g C m
-2

 d
-1

; (B) NCP/R ratio; (C) biomass production rate, 

in g DW m
-2

 d
-1

. 



 

110 

High Light, Low NLR, Bristol‘s  

The results for High Light/Low NLR/Bristol‘s operating conditions are shown in 

Figure 3. 13. Both the net carbon productivity (NCP) and respiration (R) (Figure 3. 13-A) 

increased and then decreased with increasing wave surge frequency. The maximum 

values for both NCP and R were seen at a wave surge frequency of 2.7 min
-1

 (with values 

of -0.65 ± 0.29 and +0.60 ± 0.25 g C m
-2

 d
-1

, for NCP and R, respectively). These 

metabolic measures were depressed at the lowest (-0.44 ± 0.13 and +0.42 ± 0.12 g C m
-2

 

d
-1

, for NCP and R, respectively) and highest (-0.22 ± 0.06 and +0.20 ± 0.05 g C m
-2

 d
-1

, 

for NCP and R, respectively) surge frequencies of 0.04 and 11 min
-1

, respectively. 

However, the metabolic measures exhibited a large standard deviation at the middle 

frequency, and the relationship appeared relatively flat. Also, these measurements were 

the lowest overall metabolic measurements observed in all the tests. 

As before, the mean NCP/R ratio was flat with a slight increase from the lowest to 

the highest wave surge frequencies (Figure 3. 13-B), ranging from 1.03 ± 0.06 to 1.11 ± 

0.07. A two-tailed student‘s t-test on these values indicates that the means were not 

significantly different (t=2.194, Df=10, P=0.0530).  

The mean biomass production rate showed a slight increase from lowest to 

highest wave surge frequency (Figure 3. 13-C), with a minimum mean production rate of 

5.9 ± 2.3 g DW m
-2

 d
-1

 (n=6) at the lowest  frequency, and a maximum mean production 

rate of 8.1 ± 1.2 g DW m
-2

 d
-1

 (n=6) at the highest frequency. A two-tailed student‘s t-test 

on these values indicates that the means were not significantly different (t=2.190, Df=10, 

P=0.0533). The measurements of biomass production rate had a relatively high standard 

deviation at all frequencies.  
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An analysis of variance was conducted to test whether the means of the various 

measures of at least one wave surge frequency were significantly different from the 

others. Results of this analysis are presented in Table 3. 13. In reviewing the results of the 

ANOVA analysis, the null hypothesis (that there was no significant difference between 

the means) can be rejected at a 0.05 level of significance for two of the measures, 

including net carbon productivity (F=8.597, P=0.0042), and respiration (F=9.759, 

P=0.0026). The null hypothesis is accepted, however, for the NCP/R ratio (F=2.670, 

P=0.1068) and biomass production rate (F=2.705, P=0.0993). 

Table 3. 13. Results of ANOVA analysis for the testing of High Light/Low NLR/Bristol’s solution for 

(A) net carbon productivity (NCP); (B) respiration (R); (C) NCP/R ratio; and (D) biomass 

production rate.  

 SS Df MS F value P value 

(A) Net Carbon Productivity (n=6)      

Treatment (flow rate) 0.4599 2 0.2299 8.597 0.0042 

Residuals 0.3477 13 0.02675   

Total 0.8076 15    

(B) Respiration (n=6)      

Treatment (flow rate) 0.3992 2 0.1996 9.759 0.0026 

Residuals 0.2659 13 0.02045   

Total 0.6651 15    

(C) NCP/R ratio (n=6)      

Treatment (flow rate) 0.02181 2 0.01090 2.670 0.1068 

Residuals 0.05309 13 0.004084   

Total 0.07490 15    

(D) Biomass Prod. Rate (n=6)      

Treatment (flow rate) 17.00 2 8.502 2.705 0.0993 

Residuals 47.14 15 3.143   

Total 64.15 17    

Note: SS = sum of squares; Df = degrees of freedom; MS = mean square. 
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Figure 3. 13. Metabolic and biomass production measurements versus wave surge frequency for the 

testing of High Light/Low NLR/Bristol’s operating conditions for an ATS: (A) net carbon 

productivity (NCP) and respiration (R), in g C m
-2

 d
-1

; (B) NCP/R ratio; (C) biomass production rate, 

in g DW m
-2

 d
-1

. 
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Correlation between metabolic measurements and biomass 

An analysis was performed to investigate the relationship between the metabolic 

measurements and the biomass production rate in the ATS units. The three metabolic 

measures (NCP, R, and NCP/R ratio) were each plotted versus biomass production rate 

(B) for all flow rates at each set of operating conditions. A linear regression was 

performed to indicate how well the biomass production rate predicted each of the 

metabolic measures at that operating condition. Typical results for these regression 

analyses are shown in Figure 3. 14 for one set of operating conditions; graphical results 

for all operating conditions are given in Appendix B. 

The best-fit values for the linear regression coefficients and the goodness-of-fit 

characteristics (coefficient of determination (r
2
) and standard error of the estimate (Sy.x)), 

as well hypothesis testing on the significance of the slope of the regression line for each 

of these analyses are given in Table 3. 14. These results show that the coefficient of 

determination (r
2
) was greater than 0.5 in only the redo trial of Low Light/Low 

NLR/Manure (for NCP versus B, r
2
 = 0.792, and Sy-x = 0.138; for R versus B, r

2
 = 0.623, 

Sy-x = 0.147). The same trial exhibited the largest percent in variation of the NCP/R ratio 

that was explained by B (r
2
 = 0.309, Sy-x = 0.164). Only one other trial condition (number 

4, High Light/Medium NLR/Manure) had any appreciable variation in NCP (r
2
 = 0.342) 

and R (r
2
 = 0.282) that was explained by B. All remaining trial conditions had 

coefficients of determination that were quite low (less than 0.2), indicating that any 

variation in the metabolic measure is not explained by biomass production. Also, 

hypothesis tests on the slopes of the regression lines shows that, for NCP and R versus B, 

the slope differs from zero in only three of the trial series (Low Light/Low NLR/Manure, 
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retrial of Low Light/Low NLR/Manure and High Light/Medium NLR/Manure). For the 

NCP/R ratio, this significance occurred in only two trial conditions (Low Light/Low 

NLR/Manure and its retrial). For all other trial conditions, the slope of the regression line 

was not significantly different than zero.   



 

115 

2.5 5.0 7.5 10.0 12.5 15.0

-3

-2

-1

0

y = -0.0885x - 0.561

r2 = 0.194

A. Biomass Production Rate

(g DW m-2 d-1)

N
C

P
 (

g
C

 m
-2

 d
-1

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3
y = 0.0994x + 0.486

r
2
 = 0.215

B.

Biomass Production Rate

(g DW m-2 d-1)

R
 (

g
C

 m
-2

 d
-1

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.50

0.75

1.00

1.25

1.50

y = -0.00870x + 1.073

r
2
 = 0.1375

C.

Biomass Production Rate

(g DW m-2 d-1)

N
C

P
/R

 

Figure 3. 14. Linear regression analysis for operating conditions of (Low light, Low NLR, Manure), 

showing the following metabolic measurements versus biomass production rate: (A) net carbon 

productivity (NCP); (B) respiration (R); (C) NCP/R ratio. 

Table 3. 14. Results of linear regression analyses, including best-fit values, goodness-of-fit metrics, 

and hypothesis testing on the significance of the slope,  on metabolic measurements versus biomass 

production rate (B) for all trials: (a) net carbon productivity (NCP) vs. B; (b) respiration (R) vs. B; 

(c) NCP/R ratio vs. B.  

(a)  Trial Number* 

Analysis: NCP vs B 1 2 3 4 5 6 
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Best-fit values 

Slope -0.085 

±0.0341 

-0.130 

±0.0166 

-0.00447 

±0.0826 

-0.0400 

±0.0127 

-0.0112 

±0.00979 

0.041185 

±0.0282 

Y-Int. -0.561 

±0.0320 

-0.750 

±0.178 

-0.709 

±1.15 

0.0137 

±0.301 

-0.434 

±0.296 

-0.701 

±0.208 

Goodness 

of fit 

R
2 0.194 0.792 0.0205 0.342 0.0799 0.132 

Sy.x 0.532 0.138 0.644 0.270 0.285 0.224 

Significance of slope 

F 6.73 60.8 0.294 9.88 1.30 2.12 

Dfn, Dfd 1,28 1,16 1,14 1,19 1,15 1,14 

P 0.0149 <0.0001 0.5965 0.0054 0.2716 0.1674 

Significantly ≠ 0? Yes Yes No Yes No No 

n 30 18 16 21 17 16 

 

(b)  Trial Number* 

Analysis: R vs B 1 2 3 4 5 6 

Best-fit values 

Slope 0.0994 

±0.0359 

-0.0911 

±0.0177 

0.0629 

±0.0630 

-0.0340 

±0.0124 

-0.00735 

±0.0107 

-0.0442 

±0.0248 

Y-Int. 0.486 

±0.337 

-0.434 

±0.190 

0.273 

±0.877 

0.113 

±0.294 

-0.521 

±0.323 

0.697 

±0.183 

Goodness 

of fit 

R
2 0.215 0.623 0.0664 0.282 0.0305 0.185 

Sy.x 0.560 0.147 0.491 0.264 0.311 0.197 

Significance of slope 

F 7.66 26.4 0.996 7.46 0.473 3.17 

Dfn, Dfd 1,28 1,16 1,14 1,19 1,15 1,14 

P 0.0099 <0.0001 0.3352 0.0132 0.5023 0.0968 

Significantly ≠ 0? Yes Yes No Yes No No 

n 30 18 16 21 17 16 

 

(c)  Trial Number* 

Analysis: NCP/R vs B 1 2 3 4 5 6 

Best-fit values 

Slope -0.009 

±0.004 

0.0529 

±0.0198 

-0.0141 

±0.0218 

0.00836 

±0.00415 

0.00667 

±0.00470 

0.01257 

±0.007534 

Y-Int. 1.073 

±0.0386 

0.606 

±0.212 

1.344 

±0.303 

0.815 

±0.0982 

0.855 

±0.142 

0.9782 

±0.0556 

Goodness 

of fit 

R
2 0.138 0.309 0.0291 0.176 0.118 0.1658 

Sy.x 0.0642 0.164 0.1696 0.0882 0.137 0.05974 

Significance of slope 

F 4.463 7.152 0.4196 4.082 2.014 2.782 

Dfn, Dfd 1,28 1,16 1,14 1,19 1,15 1,14 

P 0.0437 0.0166 0.5276 0.0582 0.1763 0.1175 

Significantly ≠0? Yes Yes No No No No 

n 30 18 16 21 17 16 

*Trial Number refers to the trial conditions as follows: 1: Low light/Low NLR/Manure; 2: retest of Low light/Low 

NLR/Manure; 3: High light/Low NLR/Manure; 4: High light/Medium NLR/Manure; 5: High light/High NLR/Manure; 

6: High light/Low NLR/Bristol‘s. 

Results of Gas Diffusion Measurements 

Results for the non-linear regression parameters for oxygen transfer into the water 

across the air-water interface are shown (Table 3. 15). The first-order gas diffusion 

constant (K) is calculated for per-volume and per-area bases, using the total system 

volume reported for each trial (Table 3. 7) and assuming a water surface area of 1.25 m
2
. 
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Values for K ranged from 0.47 g O2 m
-2

 hr
-1

 (Trial 6) for the lowest wave surge frequency 

(0.3 min
-1

) to 23.8 g O2 m
-2

 hr
-1

 (Trial 8) for the highest surge frequency (12 min
-1

). 

Table 3. 15. Results for non-linear regression on oxygen concentration over time describing gas 

transfer into the water column from the atmosphere for various trials defined by wave surge 

frequency.  

Trial 

No. 

Surge Freq. 

(min-1) 

 

k  

(hr-1) 

S  

(mg O2  

L-1) 

B  

(mg O2  

L-1) 

CH  

(mg O2  

L-1) 

K  

(mg O2  

L-1 hr-1) 

K  

(g O2 m
-2  

hr-1) 

 

r2 

1 0.3 0.887 8.57 0.040 8.61 7.64 0.69 0.997 

2 1.7 2.62 7.54 0.481 8.02 21.0 1.91 0.999 

3 5.0 8.23 7.49 0.608 8.10 66.6 6.05 0.999 

4 12 17.2 7.87 0.216 8.09 139 12.7 0.999 

5 12 19.9 7.20 0.418 7.61 152 13.8 1.000 

6 0.3 0.935 6.19 0.444 6.63 6.20 0.47 0.958 

7 12 20.5 6.35 0.363 6.72 138 10.4 0.997 

8 12 33.3 7.52 0.337 7.85 262 23.8 0.991 

9 12 33.1 6.63 0.301 6.93 230 20.9 0.981 

10 0.3 1.56 5.98 0.016 5.99 9.34 0.71 0.995 

11 12 43.7 7.17 -0.082 7.08 309 23.4 0.986 

Note: Parameters are as follows: ―k‖ is the first-order parameter; ―S‖ is the span of the change in oxygen 

concentration; ―B‖ is the base or initial oxygen concentration; ―CH‖ is the equilibrium concentration of 

oxygen predicted by Henry‘s Law, and is calculated as the sum of S and B; ―K‖ is the first-order transfer 

coefficient for oxygen into the water, expressed both on a per-volume basis and a per-area basis 

(assuming a reactive surface area of 1.25 m2); and r2 is the coefficient of determination for the non-linear 

regression analysis. 

 

Results for the non-linear regression parameters for carbon dioxide transfer into 

the water across the air-water interface are shown (Table 3. 16). The first-order gas 

diffusion constant (K) is calculated for per-volume and per-area bases, using the total 

system volume reported for each trial (Table 3. 7) and assuming a water surface area of 

1.25 m
-2

. Values for K ranged from 0.048 g CO2 m
-2

 hr
-1

 (Trial 10) for the lowest wave 

surge frequency (0.3 min
-1

) to 2.55 g CO2 m
-2

 hr
-1

 (Trial 11) for the highest frequency (12 

min
-1

). 

Table 3. 16. Results for non-linear regression on carbon dioxide concentration over time describing 

gas transfer into the water column from the atmosphere for various trials defined by wave surge 

frequency.  

Trial 

No. 

Surge Freq. 

(min-1) 

 

k (hr-

1) 

S  

(mmol 

CO2 L
-1) 

B  

(mmol 

CO2 L
-1) 

CH  

(mmol 

CO2 L
-1) 

K  

(mmol CO2 

L-1 hr-1) 

K  

(g CO2 m
-

2 hr-1) 

 

r2 
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8 12 45.6 0.081 0.000 0.081 3.7 0.134 0.989 

9 12 1.99 0.086 0.622 0.707 1.4 0.051 0.975 

10 0.3 0.84 0.390 1.162 1.552 1.3 0.048 0.982 

11 12 54.1 0.184 1.111 1.295 70.1 2.549 0.982 

Note: Parameters are as follows: ―k‖ is the first-order parameter; ―S‖ is the span of the change in carbon dioxide 

concentration; ―B‖ is the base or initial carbon dioxide concentration; ―CH‖ is the equilibrium concentration of carbon 

dioxide predicted by Henry‘s Law, and is calculated as the sum of S and B; ―K‖ is the first-order transfer coefficient for 

carbon dioxide into the water, expressed both on a per-volume basis and a per-area basis (assuming a reactive surface 

area of 1.25 m2); and r2 is the coefficient of determination for the non-linear regression analysis. 

 

Results for the linear regression parameters for decreasing change in pH level, 

representing carbon dioxide transfer into the water across the air-water interface, for 

these same trials are shown (Table 3. 17). Values for this slope (―M‖) were negative, 

indicating a drop in pH over time, and ranged from -0.22 pH units hr
-1

 (Trial 10) for the 

lowest wave surge frequency (0.3 min
-1

) to -12.0 pH units hr
-1

 (Trial 8) for the highest 

frequency (12 min
-1

). Also, differences were seen between water chemistries operating at 

the same surge frequency; for example, the slope of the pH change varied from -0.82 pH 

units hr
-1

 for process water (Trial 9) to -12.0 pH units hr
-1

 for distilled water, both 

operating at a surge frequency of 12 min
-1

. 

 

 

Table 3. 17. Results for linear regression on pH level over time as a result of carbon dioxide gas 

transfer into the water column from the atmosphere for various trials defined by wave surge 

frequency.  

Trial No. Surge Freq. 

(min-1) 

 

M (hr-1) 

 

r2 

8 12 -12.00 0.937 

9 12 -0.82 0.851 

10 0.3 -0.22 0.909 

11 12 -10.20 0.878 

Note: Parameters are as follows: ―M‖ is the slope of the regression equation, in 

pH units per hour, and r2 is the coefficient of determination for the non-linear 

regression analysis. 
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Results for the linear and non-linear regression parameters for carbon dioxide 

transfer out of the water across the air-water interface are shown (Table 3. 18). The first-

order gas diffusion constant (K) is calculated for per-volume and per-area bases, using the 

total system volume reported for each trial (Table 3. 7) and assuming a water surface area 

of 1.25 m
-2

. Values for K ranged from 0.020 g CO2 m
-2

 hr
-1

 (Trial 6) for the lowest wave 

surge frequency (0.3 min
-1

) to 0.42 g CO2 m
-2

 hr
-1

 (Trial 5) for the highest surge 

frequency (12 min
-1

). 

Table 3. 18. Results for linear and non-linear regression on carbon dioxide concentration over time 

describing gas transfer out of the water column to the atmosphere for various trials defined by wave 

surge frequency.  

Trial 

No. 

Surge 

Freq. 

(min-1) 

Type of 

Regress. 

M  

(mM CO2 

hr-1) 

 

k  

(hr-1) 

S  

(mM 

CO2) 

P  

(mM 

CO2) 

K  

(mM CO2 

hr-1) 

K*  

(g CO2 m
-2 

hr-1) 

 

r2 

1 0.3 No measurements made 

2 1.7 Lin 3.1 -- -- -- -- 0.113 0.988 

3 5.0 Lin 5.3 -- -- -- -- 0.193 0.983 

4 12 Lin 9.8 -- -- -- -- 0.355 0.985 

5 12 Lin 11.4 -- -- -- -- 0.416 0.991 

6 0.3 Lin 0.5 -- -- -- -- 0.020 0.987 

7 12 Non-lin -- 3.03 3.509 0.4543 1.4 0.050 0.975 

Note: Parameters are as follows: For the trials for which linear regression was used, ―M‖ is the slope of the linear 

regression equation. For the trials in which non-linear regression is used, ―k‖ is the first-order parameter for non-linear 

regression; ―S‖ is the span of the change in CO2 concentration; ―P‖ is the plateau to which CO2 concentration trends; 

―K‖ is the first-order transfer coefficient for CO2 out of the water, expressed on a per-volume basis. For all trials, the 

effective transfer coefficient ―K*‖ is calculated on a per-area basis (assuming a reactive surface area of 1.25 m2), and 

r2 is the coefficient of determination for the regression analysis. 

 

Results for the linear regression parameters for increasing change in pH level, 

representing carbon dioxide transfer out of the water across the air-water interface, for 

these same trials are shown (Table 3. 19). Values for this slope (―M‖) ranged from 0.54 

pH units hr
-1

 (Trial 6) for the lowest wave surge frequency (0.3 min
-1

) to 6.85 pH units  

hr
-1

 (Trial 5) for the highest frequency (12 min
-1

). 
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Table 3. 19. Results for linear regression on pH level over time as a result of carbon dioxide gas 

transfer out the water column from the atmosphere for various trials defined by wave surge 

frequency.  

Trial No. Surge 

Freq. 

(min-1) 

 

M (hr-1) 

 

r2 

1 0.3 No data 

2 1.7 1.74 0.988 

3 5.0 2.98 0.983 

4 12 5.48 0.985 

5 12 6.85 0.996 

6 0.3 0.54 0.985 

7 12 5.70 0.930 

Note: Parameters are as follows: ―M‖ is the slope of the 

regression equation, in pH units per hour, and r2 is the 

coefficient of determination for the regression analysis. 

 

The data results from the gas transfer experiments as summarized in the tables 

(Table 3. 15 to Table 3. 19) can be analyzed graphically to show relationships and trends. 

The results for the first-order gas diffusion constant for oxygen transfer into the water 

across the air-water interface (Table 3. 15) are plotted as a function of wave surge 

frequency (Figure 3. 15). The diffusion constant follows a strong log-log relationship to 

the surge frequency, increasing directly with increasing wave surge frequency. Values for 

the first-order transfer coefficient and their relationship to frequency were observed to be 

similar for all water chemistry types.  
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Figure 3. 15. First-order transfer coefficients for diffusion of oxygen into an ATS operating at 

different wave surge frequencies for different water types. 
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The results for the first-order gas diffusion constant for transfer of carbon dioxide 

into the water across the air-water interface (Table 3. 16) are plotted as a function of 

wave surge frequency (Figure 3. 16). The diffusion constant follows a log-log 

relationship to the frequency, increasing directly with an increase in frequency for the 

Bristol‘s water chemistry. Values for the first-order transfer coefficient and its 

relationship to wave surge frequency were observed to be dissimilar for different water 

chemistry types, with a decreased value exhibited for distilled water and process water as 

compared to Bristol‘s water. 
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Figure 3. 16. First-order transfer coefficients for diffusion of carbon dioxide into an ATS operating at 

different wave surge frequencies for different water types. 

The results for the rate of change of pH level representing the transfer of carbon 

dioxide into the water across the air-water interface (Table 3. 17) are plotted as a function 

of wave surge frequency (Figure 3. 17). The rate of change of pH follows a log-log 

relationship to the frequency, increasing directly with an increase in frequency for the 

Bristol‘s water chemistry. Values for the rate of change in pH level and its relationship to 

wave surge frequency were observed to be dissimilar for different water chemistry types, 

with similar values observed for distilled and Bristol‘s water and process water having a 

lower value. 
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Figure 3. 17. Rate of change of pH reflecting the diffusion of carbon dioxide into an ATS operating at 

different wave surge frequencies for different water chemistry types. 

The results for the first-order gas diffusion constant for transfer of carbon dioxide 

out of the water across the air-water interface (Table 3. 18) are plotted as a function of 

wave surge frequency (Figure 3. 18). The diffusion constant follows a log-log 

relationship to the frequency, increasing directly with an increase in frequency for both 

the distilled and the Bristol‘s water chemistry types. Values for the first-order transfer 

coefficient and its relationship to wave surge frequency were observed to be dissimilar 

for different water chemistry types, with a reduced effect of increasing frequency 

observed for Bristol‘s compared to distilled water types. 
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Figure 3. 18.  First-order transfer coefficients for diffusion of carbon dioxide out of an ATS operating 

at different wave surge frequencies for different water chemistry types. 
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The results for the rate of change of pH level representing the transfer of carbon 

dioxide out of the water across the air-water interface (Table 3. 19) are plotted as a 

function of wave surge frequency (Figure 3. 19). The rate of change of pH level follows a 

log-log relationship to the frequency, increasing directly with an increase in frequency for 

both the distilled and the Bristol‘s water chemistry types. Values for the rate of change in 

pH and its relationship to wave surge frequency were observed to be similar for different 

water chemistry types, with similar values observed for distilled and Bristol‘s water. 
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Figure 3. 19. Rate of change of pH level reflecting the diffusion of carbon dioxide out of an ATS 

operating at different wave surge frequencies for different water chemistry types. 

Results of Species Abundance Measurements 

Filamentous algal types were keyed to the genus level. In most operating 

conditions, benthic species from Rhizoclonium, Microspora, or Oscillatoria were 

dominant or co-dominant. The occasional presence of other species was noted; these 

species were typically of a planktonic morphology, and they were not identified or keyed. 

Micrographs of the representative algal genera are shown in Figure 3. 20. Relative 

abundances of the various genera of algae and the operating conditions under which they 

were found are reported in Table D.1 in Appendix D. 
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Figure 3. 20. Micrographs of representative algal genera observed in ATS units during operation. (A) 

Microspora spp. (in foreground) in ATS unit 1; (B) Rhizoclonium spp. in ATS unit 1; (C) Oscillatoria 

spp. (foreground) in ATS unit 5; (D) unidentified planktonic species categorized as “Other” in ATS 

unit 4. All micrographs taken at 40x magnification from samples collected on 16 December 2007. 

Results of the species abundance measurements for each of ATS units throughout 

the length of the experiment are shown in Figure 3. 21. For all ATS units, the relative 

abundance of each of the algal genera fluctuated through time; however, some general 

trends are evident. For ATS unit 1, Rhizoclonium and Microspora genera were 

predominant throughout most of the time of operation, although Oscillatoria and other 

genera showed increasing abundances at various times. ATS unit 2 likewise showed 

dominance by Rhizoclonium and Microspora as well as a greater overall predominance of 

Oscillatoria. ATS unit 4 showed a much greater dominance of other planktonic species of 

algae. It also showed a strong dominance of Oscillatoria and almost no presence of 

Rhizoclonium in earlier days of operation, a situation that shifted in later days of 
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operation when Rhizoclonium and Microspora were more dominant and Oscillatoria was 

nearly absent. ATS unit 5 showed a fairly even distribution between Microspora and 

Rhizoclonium throughout latter days of operation and a strong dominance of Oscillatoria 

throughout most operation. ATS unit 7 seemed to be dominated by Rhizoclonium 

throughout much of its operation, with occasional shifts to dominance by Oscillatoria at 

times. 

 

Figure 3. 21. Relative abundance of algal genera versus day of operation for each ATS unit. 
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The means of the relative abundance for each algal genus for each ATS unit 

throughout the time of operation are shown in Figure 3. 22. Although all ATS units 

showed similar mean abundances for most genera, some general observations may be 

made about trends in certain genera. ATS unit 4 generally showed a low mean abundance 

of Rhizoclonium and a high mean abundance of Microspora.  This is a different pattern 

than was seen in other ATS units, which generally had a more balanced ratio between the 

two genera. In addition, ATS unit 4 generally had a higher mean abundance of ―Other‖ 

algal genera, typically represented by planktonic algae. ATS unit 5 exhibited the highest 

mean proportion of Oscillatoria algal species. ATS unit 7 exhibited the highest 

proportion of Rhizoclonium compared to other ATS units. 
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Figure 3. 22. Mean relative abundance of the various genera of algae found in each ATS unit. 

The relative abundances of all algae can be plotted versus each of the independent 

variables of the operating conditions (Figure 3. 23) to show trends in the relative 

abundance of various algal genera. In relation to the type of nutrient feed (Figure 3. 23A), 

Rhizoclonium was the most abundant relative to Bristol‘s medium, whereas Oscillatoria 

had nearly equivalent abundance for all feed types except Bristol‘s medium, where it was 

least abundant. In relation to the nitrogen loading rate (Figure 3. 23B), only Rhizoclonium 
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was seen to have a trend that was nearly linear and significant (r
2
 = 0.6632; P = 0.0075); 

it was the only genus seen to drop in relative abundance as NLR is increased. In relation 

to the wave surge frequency (Figure 3. 23C), Rhizoclonium showed first an increase, up 

to a frequency of approximately 5.5 min
-1

, and then a decrease as surge frequency 

increases beyond this. Microspora and Oscillatoria both exhibited the opposite trend, 

decreasing to a minimum near a frequency of 5.5 min
-1

 and then increasing beyond this. 

No trends were seen for ‗Other‘ algal genera.  
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Figure 3. 23. Relative abundance of algal genera in relation to various predictor variables: (A) 

relative abundance versus feed type; (B) relative abundance versus nitrogen loading rate (NLR); (C) 

relative abundance versus wave surge frequency. 
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Discussion 

Subsidy-stress relationships reflected in the metabolic measurements 

Subsidy-stress relationships were hypothesized for the effect of flow turbulence 

(as set by nominal volumetric flow rate and as expressed as the wave surge frequency) on 

the metabolic measures of productivity and respiration, and on the ratio of these two 

measures. The interpretation of these results will be discussed separately. 

Production and respiration measurements 

A subsidy-stress relationship of flow turbulence on metabolic measurements was 

observed in some form for all trials. This relationship was found to be significant in most 

cases, but especially for Low Light/Low NLR/Manure, where the stress effect of the 

highest turbulence level (11.5 min
-1

) is obvious in the NCP and R measurements. The 

relationship was the strongest for this case (Figure 3. 8-A, page 97). The subsidy of 

increasing turbulence is seen in the increase of NCP and R from the lowest wave surge 

frequency to the middle range, where the peak, for all cases, was typically measured at 

the next to highest frequency of 2.7 min
-1

. This subsidy relationship was quite flat, 

however, for the retrial of these conditions (Figure 3. 9-A, page 100), a feature that is 

possibly indicative of light limitation of the algal growth. Also, while the peaks in NCP 

and R are observed in most cases at the wave surge frequency of 2.7 min
-1

, it is possible 

that the true peak would be seen somewhere in the range of 5 min
-1

, a surge frequency not 

tested in this series of experiments but one that was used for extensive prior 

experimentation with the ATS units in this lab. The ―stress‖ of the highest surge 

frequency (11.5 min
-1

) is exhibited by the depressed value of NCP and R for almost all 

operating conditions (Figure 3. 8 to Figure 3. 13). This was observed in all trials, 
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although the effect was reduced somewhat at the higher nitrogen loading rates (NLR), as 

evidenced in Figure 3. 11-A (page 106) and Figure 3. 12-A (page 109). This could imply 

that the algal community is better able to compensate for the stress of high turbulent 

conditions when nutrients are more available for growth and maintenance, that is, when 

nutrients are not limiting. 

It was also noted that the variance on the NCP and R measurements for the High 

light/High NLR/Manure conditions (Figure 3. 12, page 109) is quite large. The ANOVA 

analysis (Table 3. 12, page 108) did not find any significance in the difference of the 

means, and a student‘s t-test on the lowest (NCP: -0.77 ± 0.53; R: 0.72 ± 0.33) and 

highest (NCP: -0.92 ± 0.20; R: 0.90 ± 0.20) of these values indicates that there is not 

significant difference between the means (for NCP, t=0.557, Df=6, P=0.598; for R, 

t=1.173, Df=8, P=0.275). The large error in this set of conditions may result from the 

high loading rate effect on the constancy of the water chemistry throughout the series of 

tests, introducing error in the pH-IC titration and thus into the CO2 diurnal measurements. 

This is supported by the fact that the relative error appears to increase as the NLR is 

increased through subsequent trial conditions.  

Ratio of NCP/R 

Analyzing results from all trial conditions (Figure 3. 8-B to Figure 3. 13-B), the 

ratio of NCP to R had no clear trend. In some cases it showed a trend similar to the 

subsidy-stress curve seen in the individual NCP and R measurements for that set of trial 

conditions (for example, the retesting of Low Light/Low NLR/Manure conditions; Figure 

3. 9-B, page 100). In many cases, the trend in the NCP/R ratio showed the inverse of the 

subsidy-stress curve, showing the lowest value at the middle turbulence level (for 
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example, in the original Low Light/Low NLR/Manure conditions; Figure 3. 8-B, page 

97). In one case (High Light/Low NLR/Manure conditions; Figure 3. 10-B, page 103), 

the trend in the NCP/R ratio over the range of surge frequencies showed a steady and 

near linear trend downward with increasing turbulence level. The error in the mean 

NCP/R ratio was typically large, however, in most trial conditions, due to the fact that it 

is the ratio of two measured quantities with significant measurement error already. Given 

this, for most trials, any pattern or trend in the NCP/R ratio over the range of wave surge 

frequencies was not significant, with the ANOVA analyses indicating a significance only 

for the test conditions of Low Light/Low NLR/Manure (Figure 3. 8-B and Table 3. 8, 

pages 96 and 97) and High Light/Low NLR/Manure (Figure 3. 10-B and Table 3. 10, 

pages 102 and 103). In the latter case, the trend in the NCP/R ratio was a steady decrease 

with increasing turbulence level, decreasing from 1.35 ± 0.09 at a wave surge frequency 

of 0.04 min
-1

 to 0.95 ± 0.10 at a frequency of 11.5 min
-1

. The interpretation of this is that 

NCP strongly exceeded R at the low turbulence levels. It is important to note that the four 

trials comprised by this set of conditions occurred immediately following the increase in 

light levels after the bulbs were replaced. Could this be a signature of a pulse of net 

productivity following a prolonged period of operation in light-limited conditions? If this 

is the case, might the lower levels of turbulence favor the photosynthetic components of 

the ATS system, whereas the higher levels of turbulence favor the heterotrophic 

components?  

Overall, the values for the ratio of NCP/R ranged from a maximum of 1.35 to a 

minimum of 0.9.  These were unexpectedly low for what is presumed to be a system 

dominated by an autotrophic community. Odum (1956) discusses autotrophic 
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communities with NPP:R ratios ranging from 1 (the windward coral reef at Eniwetok) to 

3.2 (the polluted White River in Indiana), with gross primary production ranging from 9 

to 21 g C m
-2

 d
-1

 (24 to 57 g O2 m
-2

 d
-1

) and net primary production ranging from 0 to 

14.6 g C m
-2

 d
-1

 (0 to 39 g O2 m
-2

 d
-1

),  respectively. The order of magnitude difference 

between the metabolic values reported here and those in the literature suggests some 

amount of error in the measurement of ecosystem metabolism that has not been 

accounted for in these analyses. 

Linking metabolic measurements to biomass accrual 

The subsidy-stress relationship was evident in the biomass production rate 

measurements at both Low Light/Low NLR/Manure conditions (Figure 3. 8-C and Figure 

3. 9-C, pages 97 and 100). In both cases, the trend was relatively flat at the low end of the 

turbulence range, but a drop in biomass production rate was observed at the highest 

turbulence levels that were determined to be significant.  The increase in light levels with 

the next series of trials (High light/Low NLR/Manure; Figure 3. 10-C, page 103) showed 

a flattening of this relationship, where the difference in means at all turbulence levels was 

not significant. Considering biomass production rate, one possible interpretation is that 

there was not enough light at low light levels for the algal community to build structure 

that could withstand the high levels of turbulence at the highest wave surge frequency. 

Only when the light levels were higher could the structure be maintained in the biomass 

to withstand the pounding at this flow rate. Anecdotal observations on algal species type 

throughout the various operating conditions supports this interpretation; at low light 

levels, the algal community at the highest turbulence levels was dominated by 

cyanobacteria (Oscillatoria sp.) that grew in compressed, mucilaginous form. At high 
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light levels, the algal community was dominated by the green filamentous forms 

(Rhizoclonium and Microspora spp.) typically found in other ATS operating conditions. 

Another way to interpret this phenomenon is to see the algal turf as light-limited for the 

low-light conditions; at that light level and NLR, the turbulence was a limiting factor and 

biomass production rate followed a subsidy-stress curve over its range (Figure 3. 8-C and 

Figure 3. 9-C, pages 97 and 100). At the high light levels in the next series of tests, 

biomass production rate became flat over the range of turbulence levels (Figure 3. 10-C, 

page 103) as nitrogen became the limiting factor.  

This interpretation is then supported by the observed immediate increase in 

average biomass production rate with subsequent increase in NLR at the higher light 

levels. For the High Light/Medium NLR/Manure condition, the average biomass 

production rate ranged from 19.4 ± 2.5 to 27.4 ± 5.1 g DW m
-2

 d
-1

 (Figure 3. 11-C, page 

106), whereas, for the High Light/Low NLR/Manure condition, the average biomass 

production rate ranged from 12.7 ± 2.0 to 14.4 ± 2.3 g DW m
-2

 d
-1

 (Figure 3. 10-C, page 

103). The maximum average biomass production rate recorded throughout all tests was 

observed at even higher NLR levels under high light (Figure 3. 12-C, page 109), ranging 

from 23.2 ± 4.6 to 36.6 ± 5.6 g DW m
-2

 d
-1

 (the maximum individual biomass production 

rate measurement of 43.2 g DW m
-2

 d
-1

 was recorded for one trial under these conditions 

as well). At the medium and high NLR under high light, biomass production rate 

increased log-linearly with increasing wave surge frequency; that is, the maximum 

biomass production rate was seen at the highest turbulence levels (a surge frequency of 

11.5 min
-1

). In the conditions of enrichment with an abundance of light and nutrients, 
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turbulence was evinced to be a limiting factor. Under these conditions of plenty, the full 

subsidy-stress curve was not observed within the bounds of turbulence tested.
1
  

For the series of tests employing Bristol‘s solution, the biomass production rate 

was observed to be flat (Figure 3. 13-C, page 112) as in other trials under a lower NLR. It 

should be noted that the nitrogen in Bristol‘s solution is primarily in the form of a nitrate 

salt, thus having a lower energetic return and bioavailability for the algal cells than the 

ammonium form found in the manure feed. 

In general, summarizing the results over all test conditions, the biomass 

production rate followed a trend opposite of that observed for the metabolic 

measurements on NCP and R. That is, when NCP and R exhibited a strong subsidy-stress 

relationship with turbulence level, biomass production was fairly flat across the range of 

turbulence (see especially the results for High Light/Low NLR/Manure conditions in 

Figure 3. 10, page 103). Also, the trends in NCP and R over increasing turbulence levels 

did not match the steadily increasing trend in biomass production rate over the same 

range in the medium (Figure 3. 11, page 106) and high (Figure 3. 12, page 109) NLR 

conditions under high light. This lack of agreement was further observed in the low 

correlation calculated between individual measurements of biomass and corresponding 

metabolic measurements (Table 3. 14, page 115, and Figures B.1 to B.7 in Appendix B). 

The strongest correlation was seen in the retest of Low Light/Low NLR/Manure 

conditions, where the coefficients of determination (r
2
) of the regression equation of NCP 

or R versus biomass were 0.792 and 0.623, respectively. All other coefficients of 

determination for all other conditions were low (less than 0.3), indicating a lack of 

                                                      
1
 Indeed, at the maximum volumetric flow rate tested, the surge frequency of the ATS wave surge bucket 

was near the maximum possible for the mechanics of the surge bucket mechanism. 



 

135 

correlation between the metabolic measures and the biomass measures. This correlation 

was even lower for NCP/R ratio versus B, which was generally less than 0.2 for most 

conditions and exhibited a maximum of 0.309 for the retest of Low Light/Low 

NLR/Manure. One might expect, however, that a strong correlation would exist between 

one or some of these measures based upon the interpretation that the integration of 

diurnal production over time should yield the standing biomass of the ecosystem (Odum 

1969). There are multiple possible reasons for this apparent decoupling between biomass 

production and the metabolic measurements: (a) it represents, and is the result of, a real 

phenomenon inherent in ecological measurements made at different time scales; (b) it is 

the result of methodological errors in the implementation in the carbon titration; (c) it 

reflects an error in the underlying assumption that carbon exchange to and from the 

atmosphere is insignificant. These are discussed in greater detail. 

Ecological explanation 

It is possible that biomass accrual rate and the metabolic measurements are indeed 

inherently decoupled, as they are measurements of ecological processes that are occurring 

at fundamentally different time scales. For example, primary production is a diurnal 

measurement and reflects the rate of carbon uptake and fixation into the various 

molecules that compose and maintain the tissues of the algal turf community. It is the 

difference between the anabolic and catabolic processes occurring daily in response to the 

light incident upon the ecosystem. Biomass production is the sum of the growth processes 

over a length of time (multiple days to a week) that is up to an order of magnitude greater 

than that for the metabolic measurements (up to 24 hours). It is the sum of the net 

anabolic processes fixed in tissue (driven by the catabolic processes that release energy), 
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plus the net import of material minus the net export. In the ATS units, import might 

include the adsorption of inert organic material from the manure feed to the algal turf 

biomass, or the entrainment of secondary heterotrophic production material from the 

reservoir. Export might include the sloughing off of algal biomass that then remains in 

suspension in the reservoir and not counted in the regular biomass harvests. Because of 

these differences, it may be that the productivity and biomass production measurements 

should not be expected to correlate strongly. Evidence of this is supplied by the fact that 

the NCP measurements do not add up to the measured biomass if both are expressed in 

units of carbon fixed per unit time. For example, for the Low Light/Low NLR/Manure 

conditions (Figure 3. 8, page 97), at a turbulence level of 2.7 min
-1

, mean biomass 

production rate was reported at 12.0 ± 0.9 g DW m
-2

 d
-1

. Assuming that this biomass is 

10% ash, and the remainder is 40% carbon by weight, yields an expected value for NCP 

of 4.3 g C m
-2

 d
-1

. The measured NCP, however, is reported as 0.82 ± 0.9 g C m
-2

 d
-1

, an 

approximate five-fold difference. This difference is more pronounced at High Light/High 

NLR/Manure conditions (Figure 3. 12, page 109), where the expected NCP calculated 

from the mean biomass production rate (29.0 ± 6.2 g DW m
-2

 d
-1

) is 10.4 g C m
-2

 d
-1

, yet 

the measured NCP is 0.90 ± 0.2 g C m
-2

 d
-1

; an order of magnitude difference. 

Methodological errors   

It is possible that there were methodological errors in the measurement of 

metabolism or in biomass production rate. Error in measuring biomass production rate, 

however, is unlikely, as increasing fidelity in measurement of total biomass is assumed 

throughout all trial conditions as harvest methods and procedures were refined to account 

for all biomass components in various fractions of the harvest. It is more likely that errors 
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were made in measurements of net productivity and respiration; if so, the most likely 

source of error is in the pH-IC titration method. One source of error might be the fact that 

often, in the titration, it was difficult to replicate the upper extremes of the pH range seen 

in normal ATS operation; that is the highest pH level attained via sparging water samples 

with nitrogen gas was typically around 9.0, whereas, in operation of the ATS units, a pH 

level in excess of 9.5 was often observed. The attempt to compensate for this was to 

assume a linear model for the change in inorganic carbon concentration with a change in 

pH value. This assumption of linear ends on the titration curve could lead to 

underprediction of the change in CO2 for an associated change in pH level near the 

margins of maximum pH observed in the experiments. It is also possible that other 

aquatic chemistry is not being accounted for in the titration but that occurs in the 

reservoir. For example, an excess of organic carbon in the manure feed may dampen the 

dynamics of the titration; this is a possibility, as the method was originally developed and 

applied in natural waters that typically were more oligotrophic (Park et al. 1958). 

Error in underlying assumptions 

The pH diurnal method for determining the metabolism of an aquatic ecosystem 

rests on the assumption that the exchange of carbon dioxide to or from the atmosphere is 

minimal and thus an insignificant contribution to the overall metabolic measurements. 

This is communicated in much of the literature summarizing this method (Park et al. 

1958, Beyers et al. 1963), and is based on fact that atmospheric partial pressure of CO2 is 

low (on the order of 350 ppm, three orders of magnitude lower than that for oxygen). In 

the operation of the ATS, this assumption may be valid only for lower turbulence levels, 

and increasing divergence from accuracy may occur at higher levels. The increased 



 

138 

mixing at higher turbulence levels could increase the transfer of CO2 across the air-water 

interface. What effect might be expected from this increased rate of transfer? In the dark, 

when lights are off, CO2 is produced and released into solution through community 

respiration. One would expect the concentration of CO2 to build up and be lost to the 

atmosphere at increasingly greater rates with greater turbulence levels. Thus, at higher 

turbulence levels, less CO2 remains in solution as carbonic acid, and the corresponding 

drop in the pH value is not as great as in the lower turbulence regime. Thus the measured 

change in pH may not reflect the full quantity of respiration occurring. During the day in 

the light, the CO2 in solution is taken up rapidly by the autotrophic community, especially 

in high light conditions. In low turbulence conditions, carbon availability for algal 

photosynthesis is limited by diffusion across the air-water interface. One complexity of 

the low turbulence regime is the relative decoupling between the reservoir (where the pH 

measurements are taken) and the ATS bed. Any CO2 produced by respiration in the 

reservoir and remaining in solution, once delivered to the algal turf bed by the periodic 

pulse of the wave surge bucket, is available to the algal turf and is immediately taken up. 

At the higher turbulence levels, any CO2 molecule produced in respiration in the reservoir 

is more likely to offgas as to be taken up by an algal cell. This could possibly limit the 

growth of the algae (which might be reflected in biomass as well, not necessarily 

observed in the high NLR loading conditions). Another possibility is that the high 

turbulence at the air-water interface causes the entrainment of more atmospheric CO2 

than would otherwise happen at lower turbulence levels. This could help to overcome the 

natural carbon limitation inherent in the system at high light conditions (thus showing 

increased biomass production levels) but is not necessarily seen as an increase in pH 
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value. The ready supply of CO2 from the atmosphere dampens the pH increase that might 

otherwise be seen. 

Thus it is possible that, for increasing turbulence levels, a correction to the pH 

diurnal method, similar to the method employed for oxygen measurements (Odum 1956), 

should be employed, accounting for increased transfer of CO2 across the air-water 

interface. Although this is typically not necessary for most environmental waters, there is 

likely an increasing necessity for it under conditions of increasing surface turbulence. 

The measurements of gas diffusion rates across the air-water interface bear out 

this conclusion. The first-order gas diffusion rates measured for oxygen are strongly 

influenced by the turbulence of the flow regime, as evidenced by the log-log increase in 

value with increased wave surge frequency (Figure 3. 15, page 120). The values observed 

for oxygen transfer across the air-water interface are typical and on the same order as 

those reported in the literature. For example, Odum (1956) reports values ranging from 

0.03 to 34 g O2 m
-2

 hr
-1

 for water types ranging from still water to water drops, 

respectively (Table 3. 20, below), whereas values found in this research range from 0.67 

to 23.8 g O2 m
-2

 d
-1

 for lowest to highest wave surge frequencies, respectively. It is 

notable that the gas transfer rate for oxygen measured for the most turbulent flow 

condition in the ATS is significantly greater than that reported by Odum (1956) for small 

rivers (with a value ranging from 0.6 to 4.3 g O2 m
-2

 d
-1

; see Table 3. 20), an indication as 

to the magnitude of the turbulence possible in the ATS system in excess of that normally 

found in natural waters. 
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Table 3. 20. First-order gas diffusion constants for oxygen as reported by Odum (1956). 

 

 

 

 

The first-order gas diffusion constants for the transport of carbon dioxide into the 

water column from the atmosphere follow a similar trend as the constants for oxygen, 

increasing in a log-log relationship with increasing wave surge frequency (Figure 3. 16, 

page 121). The magnitude of the diffusion constants for carbon dioxide is on average an 

order of magnitude lower than for oxygen. One would expect these to be similar, 

considering the similar diffusivities of the two molecules. Differences may be attributed 

to measurement error, possibly stemming from the pH-IC conversion. The significant 

dissimilarity between the carbon dioxide diffusion constants for different water 

chemistries at the highest wave surge frequency is possibly caused by the different base 

alkalinity of the water. It was expected, however, that the greatest rate of CO2 transfer 

would be observed for distilled water, given that there would be no chemical buffering. 

The fact that this was not observed suggests possible measurement noise resulting from 

the pH-IC titration method; further development and refinement of this method is 

recommended. The first-order gas diffusion constants for the transport of carbon dioxide 

out of the water column to the atmosphere (Table 3. 18 and Figure 3. 18, page 122) 

follow an expected trend as being strongly correlated to the wave surge frequency. The 

magnitudes of the values of the constants for diffusion of carbon dioxide out of the 

Water type K (g O2 m
-2

 hr
-1

) 

Still water 0.03 – 0.08 

Stirred water 0.09 – 0.74 

Stream and ponds 0.08 

Tank with a wave machine 0.31 

Ocean surface 1.1-5.2 

Small rivers 0.6-4.3 

Air bubbles 2.8-28 

Water drops 22-34 
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system are on the same order of magnitude as those for diffusion of carbon dioxide into 

the water column. The diffusion constants were lower for Bristol‘s than for distilled 

water, but remain on the same order of magnitude as those seen in the subsidy stress 

experiments. 

The rate of pH changes as a result of carbon dioxide diffusing into or out of the 

water column were on the order of or greater than the magnitude of those rates observed 

in the subsidy-stress experiments. For example, for CO2 diffusion into the water column, 

rates for decrease in the pH level were observed to range from 0.2 pH units hr
-1

 to 12.0 

pH units hr
-1

 for the lowest and highest wave surge frequencies, respectively (Table 3. 17 

and Figure 3. 17, pages 118 and 122), whereas rates of pH change observed in the 

subsidy-stress experiments were typically on the order of -0.1 pH units hr
-1

. A similar 

range was observed for pH increase due to carbon dioxide diffusion out of the water 

(Table 3. 19 and Figure 3. 19, pages 120 and 123). This suggests the possibility that gas 

transfer to or from the atmosphere could affect the pH measurements in a way that is not 

accounted for in the metabolic measurements. The difference between water types is as 

expected, where the process water exhibited a smaller overall rate of pH change as a 

result of a greater chemical buffering. 

The rate of change in pH, and thus in the concentration of carbon dioxide, was on 

the order of magnitude of that seen in the metabolic measurements, which raises the 

possibility that the accuracy of these measurements was affected by this gas exchange 

with the atmosphere. The differences observed between the various water chemistry types 

may be an artifact of the pH-IC titration method, as suggested by the inconsistency 

observed between the relative rates of change of pH and CO2. An alternate way to find 
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the diffusion transfer rates would be to calculate those for carbon dioxide using  the 

diffusion coefficients or molecular piston velocity for oxygen, arguably more reliably 

measured in this set of experiments, following an assumption that the gas transfer of 

inorganic gases across the air-water interface is a function primarily of the flow regime 

rather than of the property of the gases themselves (Stumm and Morgan 1995).  

Should the atmospheric diffusion of carbon dioxide into or out of the water 

column be affecting the pH measurements in the subsidy-stress experiments, what does 

this mean for the metabolic measures determined in these experiments? During night-

time measurements of respiration, carbon dioxide is produced by biological respiratory 

processes and is dissolved in the aqueous environment, increasing the overall inorganic 

carbon concentration and thus decreasing the pH value. Some of this inorganic carbon 

dissolved as carbon dioxide may be lost to the atmosphere, especially as aquatic 

concentrations increase after a few hours of darkness. This loss is shown to be greater at 

higher turbulence levels because of the increased gas transfer rates across the air-water 

interface. Thus, one might deduce that there is not as much dissolved inorganic carbon 

remaining in solution as was produced by biological processes, some having been lost to 

the atmosphere. The magnitude of the fall of pH level is therefore not as great as if all 

CO2 remained in solution, and pH measurements would increasingly underpredict 

nighttime respiration for increasing levels of turbulence.  

A similar analysis for daytime net primary production yields similar results. 

Assuming that daytime net primary production is positive, that is, gross primary 

production exceeds daytime respiration; carbon dioxide is being taken up by 

photosynthetic biomass and thus removed from the water column. As the concentration 
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of aquatic inorganic carbon decreases, the pH increases. At the higher levels of pH, the 

water is in extreme saturation deficit for inorganic carbon, and some carbon dioxide may 

be gained from the atmosphere at an order of magnitude that might be reflected in pH 

measurements. This gain of carbon dioxide from the atmosphere is greater at higher 

turbulence levels because of the increase in the diffusion across the air-water interface. 

Thus, more carbon dioxide is in solution than is taken up by the photosynthetic biomass, 

and the pH is measured to be more acidic than might be expected. The magnitude rise in 

pH during the light period, then, is not as great as possible, and the pH measurements 

may increasingly underpredict daytime net primary production at increasing levels of 

turbulence. 

Therefore, the magnitude of the gas transfer across the air-water interface in an 

ATS leaves open the possibility that the loss or accrual of carbon dioxide to or from the 

atmosphere, respectively, is a factor that should be accounted for in the measurements of 

primary productivity and respiration using the pH diurnal method. The lack of this 

accounting is a possible explanation for the difference between the metabolic 

measurements and the biomass accrual measurements for conditions of highest light and 

nitrogen loading rate (Figure 3. 12, page 109), where the metabolic measurements 

exhibited a subsidy-stress relationship not reflected in the biomass measurements. Odum 

(1956) presents a method developed for oxygen measurements of aquatic ecosystem 

metabolism that amends the measured aquatic concentrations with values of air-water 

interface gas diffusion derived from the saturation deficit for that gas for the given 

atmospheric pressure and temperature. Extension of this method for use on carbon 

dioxide measurements here is a possible direction of future analysis. 
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The subsidy of hydraulic residence time 

A dynamic not accounted for in conceptual models of this set of experiments is 

the effect on algal turf metabolism and growth of different hydraulic residence times of 

the ATS bed under different flow rates. The volume of the ATS bed was estimated to be 

approximately 25 liters, and different volumetric flow rates yield different hydraulic 

residence times in the ATS bed based upon the rate of displacement of water volume 

(Table 3. 21). It is apparent that the hydraulic residence time spans over two orders of 

magnitude. An increased hydraulic residence time allows the ATS process to act more as 

a batch reactor, as nutrient-laden water is introduced to the ATS bed periodically 

(displacing an equivalent volume of nutrient-poor water from the ATS bed) and allowed 

to remain quiescently in contact with the algal cells for a longer period of time. This 

could allow the partial overcoming of the limitations of material diffusion across the 

diffusive boundary layer surrounding the algal turf or cell. It is unclear whether or not 

this increased contact time can act as a subsidy partially offsetting the lower turbulence 

levels. Also, at low flow rates, the ATS bed and reservoir become partially decoupled, 

compared to the higher flow rate conditions, with the ATS bed acting as the 

photosynthetic component and the reservoir acting as the respiratory unit. Transport 

modeling of this process can help to elucidate the effect of this artifact on the overall 

uptake dynamics and the consequent effects on metabolic measures and on biomass 

production. 
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Table 3. 21. Hydraulic residence time for the ATS bed for different flow rates and dump bucket tip 

frequencies. 

Nominal Flow Rate (lpm) Dump Bucket  

Tip Frequency (min
-1

) 

ATS Bed Hydraulic  

Residence Time (min) 

1 0.04 28 

5 0.3 7 

25 2.7 1 

125 11.5 0.2 

  

Competition between algal genera in the ATS bed 

The relative abundance of the various algal genera under different operating 

conditions in the ATS showed some interesting trends which expand the perspective on 

some of the results obtained in the metabolic and biomass subsidy-stress analyses. While 

the ATS units were expected to be dominated by Rhizoclonium species based upon prior 

experience and research with these particular units, it was observed that this was not 

always the case. Rather, the shifting dominance between different algal genera, based on 

the relative abundance numbers, was observed as a function of various combinations of 

operational parameters.  

It might be expected that the relative abundance for each algal genus would be 

independent of the ATS unit. Indeed, it was assumed that the ATS units were operational 

replicates of each other in terms of physical configuration and light regime. Upon 

analysis of the relative abundance of algal genera versus scrubber unit (Figure 3. 21 and 

Figure 3. 22, pages 125 and 126), the data show otherwise when considering the species-

level organization. For example, compared to all other units, ATS unit 4 had a high 

abundance of Microspora, while ATS unit 7 had a high abundance of Rhizoclonium. 

These inconsistencies may be explained by the fact that different ATS units were 

operated under different conditions at different times, and recognition of these conditions 
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can help elucidate some of the ecological characteristics of the various algal genera. For 

example, most of the ATS units generally exhibited a balance between the abundance of 

Rhizoclonium and Microspora. ATS unit 4, however, showed an increased dominance of 

Microspora, and ―Other‖ algal species had a higher relative abundance in ATS unit 4 

than in all other ATS units. This may be related to the predominant flow rates of ATS4, 

which was operated under conditions of extremely low flow (generally 4 lpm or less) for 

most of the time of the experiments. ATS unit 5 was operated for most of the time of the 

experiment at a higher flow rate than average; it was observed that Oscillatoria had a 

higher than average abundance as well. ATS unit 7 had a light source that was different 

than the other units (a single 1000W bulb compared to two 400-W bulbs). Although the 

height of the light source was adjusted such that the light intensity at the ATS growth bed 

matched that of the others (Table 3. 2, page 77), it is possible that there was enough of a 

difference in intensity or spectrum to favor one type of algal species over another. Also, 

ATS unit 7 had the most homogeneous turbulence pattern (Chapter 2). Could this have 

contributed to an increased abundance of Rhizoclonium in this unit? 

Trends observed in the results of abundance plotted versus each of the operating 

parameters as a predictor variable (Figure 3. 23, page 128) can yield some generalizations 

about the relative competitiveness of the algal species in the ATS system. The results 

showing the effects of flow turbulence on the competitive relationships of the algae 

species in the ATS units (Figure 3. 23C) support many of the generalizations suggested 

by the total means of relative abundance for each ATS unit discussed previously. For 

example, at low turbulence levels, Microspora was more dominant over Rhizoclonium. 

The dominance relationship changed as turbulence level increased, as Rhizoclonium was 
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most dominant in medium turbulence levels, and Oscillatoria was most dominant in the 

highest turbulence levels. This may be related to the morphology of each algal species in 

relation to the turbulence regime inasmuch as how the diffusive boundary layer around 

the algal filament or the entire turf is moderated. In low flow and low turbulence 

conditions (as seen most often in ATS unit 4, for example), the planktonic species labeled 

as ―Other‖ can be more competitive than at higher flow conditions. The longer-period 

quiescent conditions between wave surge events allow the planktonic algae more access 

to the light in the ATS bed, as compared to higher flow-rate conditions when the 

individual cells are easily swept away from the bed. Microspora may be more 

competitive in low turbulence conditions because of its larger overall filament diameter, 

which allows more chloroplasts per cell compared to the smaller Rhizoclonium and thus 

allows Microspora overall to be more productive at a given light level. At medium flow 

and turbulence levels, the branched design of Rhizoclonium may give it a competitive 

edge over Microspora, as various branches protrude at all angles in relation to the 

dominant flow field, thus intercepting more turbulent energy and reducing the overall 

diffusive boundary layer. Additionally, the smooth, cylindrical form of Microspora may 

result in its filaments aligning in parallel with the flow, encouraging clumping of the 

filaments (Figure 3. 24) and reducing the overall exposure of Microspora cells to 

turbulent energy.  
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Figure 3. 24. Clumping of Microspora filaments observed in a sample taken from ATS unit 5 on Dec. 

16, 2007. The ATS unit was operating under medium flow rate (60 lpm) conditions. Micrograph 

taken at 40x magnification. 

In highly turbulent conditions (Figure 3. 23C), Oscillatoria seemed to dominate, 

possibly because the turf formed by Oscillatoria is lower and more mucilaginous than the 

other green algal species. In high turbulence conditions, greater breakage of the filaments 

of the green forms is possible; observational evidence supports this, where Rhizoclonium 

samples identified from high turbulence operating conditions were observed to have a 

shorter, more bifurcated branching pattern than those samples from lower turbulence 

operating conditions (see Figure 3. 20B, page 124), indicating the possibility of more 

breakage and regrowth. These relative abundance numbers may relate to the metabolic 

measurements or the biomass production measurements as well; for example, a lower 

biomass production rate was generally measured when Oscillatoria was dominant. 

A similar pattern is observed again when investigating the relative abundance of 

the various algal species in relation to changes in the other operational parameters. The 

proportion of relative abundance among the various algal types (Figure 3. 23, page 128) 

seemed to fluctuate in relation to nutrient feed type (Figure 3. 23A) and nitrogen loading 

rate (Figure 3. 23B). For example, Rhizoclonium was especially dominant over 
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Microspora and Oscillatoria in conditions when Bristol‘s medium was used (Figure 3. 

23A). In Bristol‘s medium, nitrogen is in its oxidized form of nitrate, as opposed to its 

reduced ammonia form for the other feed types; Rhizoclonium may be more adapted to 

the use of nitrate as its nitrogen source as compared to the other algal genera. In relation 

to nitrogen loading rate (Figure 3. 23B), Rhizoclonium was the only algal type for which 

the relationship was significant, showing a greater competitiveness at lower loading rate 

and becoming less so at higher loading rates. This implies higher nitrogen uptake 

efficiency at a lower NLR compared to the other algal genera. This may also be related to 

the branching morphology of Rhizoclonium and its smaller cell diameter than 

Microspora; these two morphological characteristics of Rhizoclonium may result in a 

greater cell surface area, and thus more sites for nitrogen uptake per unit volume of algal 

cell. The possibility exists that there is some cross-correlation of many of these variables, 

for example, NLR and feed type, as the NLR for Bristol‘s medium was always lower than 

the other feed types (possibly because of the lower uptake efficiency of the algae to use 

the nitrate in Bristol‘s). Additional analyses such as multivariate analysis are necessary to 

determine the strength of these cross-correlation relationships. 

In all, the relative abundance of competing species of algae in the ATS display 

shifting patterns of dominance over the range of the independent variable of interest. This 

pattern is strongest for turbulence but is evident for nitrogen loading rate and even feed 

type. The shift in competitiveness of a species over the range of a changing variable is a 

classic pattern of competitive species interaction, where different species have the peak 

of their success at different levels of a resource over a range of that resource (Krebs 

1994). In ecosystems in general, this pattern of development is seen in time in patterns of 
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temporal succession (Odum and Barrett 2005), or, in a stream, in a pattern of longitudinal 

succession (Kangas 2004) in which a species or assemblage of species is adapted and 

thus most competitive at a location defined by a certain distance downstream of a 

disturbance, pollution, or energy source. Indeed, one can imagine an algal turf scrubber 

raceway long enough, such as those employed in the field for nutrient recovery in 

waterways (Hydromentia 2005), where the energetic and nutrient regimes differ 

significantly downstream as compared to the upstream because of dissipation of turbulent 

energy and nutrient uptake. This would result in a successional pattern of species along 

the length of the raceway, with each species the most competitive in that location where 

conditions are most favorable for it
2
. The analysis presented here is merely preliminary, 

however, and further analysis is warranted to determine the relationship of the abundance 

of these algal species to the independent variables of the operating conditions and to 

identify cross-correlation among these parameters. This analysis has helped to indicate 

those operational parameters for which a strong correlation with relative abundance is 

expected—for example, the wave surge frequency—versus those for which little or no 

correlation is expected—for example, nitrate concentration of the process water.  

Additionally, this analysis has given an indication as to which of those relationships 

might be linear—for example, relative abundance versus nitrogen loading rate—and 

which of those might be non-linear—for example, relative abundance versus wave surge 

frequency. Finally, this analysis provides some context for the consideration of the role of 

species-level interactions at the interface of the technological components in the ATS 

technoecosystem, a subject to be addressed in Chapter 5. 

                                                      
2
 This is a good argument for ecologically-engineering such systems through initial seeding and repeated 

additions of as many species of algae as possible to provide the genetic diversity that allows the system to 

self-organize along its length to  the energy signature characteristic for each location along its length. 
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Conclusions 

The following conclusions can be made for this set of experiments: 

 Turbulence of the flow is a limiting factor to the biomass production rate of algae in 

an ATS, and this effect becomes more pronounced as light and nutrient loading rate 

are greater.  

 Measurements of net carbon production (NCP) and respiration (R) are also shown to 

follow a subsidy stress relationship in relation to flow turbulence, although the effect 

is more pronounced at lower light and nutrient loading conditions. 

 The metabolic measurements become more decoupled from the biomass production 

rate measurements as light and nutrient loading rates are increased.  

 The accuracy of the metabolic measurements can be refined to account for gas 

transfer across the air-water interface, an improvement to the analysis that could bring 

values of NCP and R more in line with those expected from the measured biomass 

production rates. 

 The ratio of NCP to R showed no response to increasing level of turbulence in an 

ATS, exhibiting significant decoupling from the biomass production rate with lower 

values than expected. 

 The relative abundance of the dominant genera of algae where shown to be a function 

of the level of turbulence, with each of the main genera most dominant within a 

characteristic zone of flow rate. 

Implications  

The effects of turbulence as a limiting factor on the metabolism and biomass 

production of the algae in an algal turf scrubber have been shown for conditions of high 
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light and nutrient availability. The information in these data contribute to the further 

development of the components necessary for engineering a technoecosystem based on 

ATS technology. The subsidy-stresss relationship to turbulence observed in the metabolic 

measurements help to inform parameters for design of a feedback control algorithm that 

can automatically control the level of turbulence to seek a range for maximum 

productivity. The development of this system is presented in subsequent chapters.  
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Chapter 4: The Technosystem—Examining the Control Algorithm 

Introduction 

In the design of techno-ecological hybrids, understanding the characteristics of 

the technological components is as important as understanding those of the ecological 

components. While the systems perspective of the whole technoecosystem is most 

desirable for understanding its behavior, the reductionist perspective is useful for 

understanding the expected behavior of the components in isolation from other parts of 

the system. That reductionist perspective is employed here to investigate the action of the  

control algorithm, the set of instructions that directly control the technological 

components in response to variation in the ecological components. The control algorithm 

is presented as a simple seeking algorithm designed to find the maximum of a dependent 

variable over the range of an independent variable subject to feedback control. The 

algorithm was tested virtually in response to hypothetical data sets that form idealized 

characteristic distributions of ecosystem productivity versus flow turbulence. These 

productivity-turbulence distributions are modeled as stochastic entities with different 

levels of variance. Virtual testing allows a brute-force approach of running the algorithm 

through a large number of multi-cycle trials. The convergence behavior of the 

algorithm—that is, accuracy and rate of algorithm convergence on the expected 

solution—in response to the various productivity-turbulence input distributions at three 

different levels of variance was analyzed. The results present implications for the rate of 

algorithm convergence that can help characterize the system response during 

implementation of the physical technoecosystem configuration.  
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Objectives 

The objectives of this series of experiments were as follows 

1. The first objective was to develop a feedback control algorithm to find the maximum 

of a dependent variable in an algal turf scrubber (ATS) ecosystem, such as 

productivity, in response to the changes in an independent variable over a range of 

values. 

2. The second objective was to explore the dynamics and behavior of the control 

algorithm designed for the autonomous control experiments through virtual testing 

employing pre-determined data sets representing the relationship of ecosystem 

productivity to turbulence level in an ATS.  

Research Approach 

The approach for this series of experiments is to explore the activity of the control 

algorithm virtually and in isolation from the physical ecosystem for which it was 

designed. Virtual testing consists of employing a pre-determined data set in place of input 

monitoring data, upon which the algorithm is designed to make control decisions. The 

virtual data, representing idealized relationships between Pump State (a proxy for 

turbulence intensity) and resulting net primary productivity, is constructed in various 

profiles (such as step up, step down, ramp up, and ramp down) intended to test the 

algorithm activity at its extremes.  
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Methods 

Control Algorithm Design 

A control program was developed for the autonomous control experiments using 

the LabView 7 graphical programming platform (National Instruments Corp., Austin, 

Texas). The modular construction of the control program allows modification of the core 

algorithm according to data acquisition and control needs. The core algorithm used for all 

autonomous control experiments was designed as a basic seeking algorithm, intended to 

seek out the maximum or minimum of a measured parameter within an expected range 

via incremental change of the controlled parameter. In the case of the experiments 

pursued in this research, the algorithm is designed to seek out the volumetric flow rate at 

which net primary productivity, as measured by the pH diurnal method for ecosystem 

metabolism (Chapter 3), is maximized within a possible range of flow rates, assuming 

that productivity follows a subsidy-stress curve in relation to flow turbulence (as set by 

volumetric flow rate) in an ATS. Because of the design of the physical ATS systems for 

autonomous testing (Chapter 5), flow rate can be incremented or decremented only at 

discrete intervals of 5gpm over the entire range that is available (0 to 35 gpm), and each 

Pump State is designated a characteristic flow rate (Table 4. 1). A simplified flow chart 

schematic of the core algorithm is shown (Figure 4. 1), and a more detailed flow chart of 

the entire data acquisition and control program is provided in Appendix A. 
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Table 4. 1. Pump State designations and representative flow rate intended at each Pump State, based 

on the design of the physical system for testing autonomous behavior in an ATS. 

Pump State Intended Flow Rate 

(gpm) 

0 0* 

1 20 

2 40 

3 60 

4 80 

5 100 

6 120 

7 140 
*In practice in the physical systems, a small flow rate (approximately 

100 ml min-1) is maintained via a peristaltic pump. 

 

 

Figure 4. 1. Simplified flow chart showing the logic that underlies the basis of the control algorithm 

for optimizing flow for maximum net primary productivity (NPP) over time (t). 
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A description of the core control algorithm, as diagrammed in the simple flow 

chart (Figure 4. 1) follows. At the start, the user initializes parameters for the control 

program operation, such as the pH-IC conversion information (determined empirically 

from pH-CO2 titrations in the laboratory, as described in Chapter 3), sample rates, and the 

initial Pump State (defining the initial flow rate). The pH is measured at a specified 

sample rate (typically every 15 minutes) throughout the entire harvest period (typically 

96 hours); at each sampling event the pH is immediately converted to inorganic carbon 

(IC) concentration (using the pH-IC conversion) and stored in the computer memory. 

Each time the IC concentration at a sampling event is seen to decrease compared to the 

previous sampling event, the decrease is assumed to be the result of net primary 

productivity; hence the cumulative net primary production (NPP) for one harvest period 

is the summation of the amounts of all negative changes in IC concentration throughout 

the duration of the harvest period. Thus, in the algorithm, the net primary productivity 

(NPPi) at any time ti is 

iii ICNPPNPP 1  , 
)0( iIC

 

where 

1iii ICICIC
 

for each measurement of IC. Also, for each harvest period,  

n

i

itotal NPPNPP
1  
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At the end of the harvest period, and following harvesting, the control program 

changes the flow rate for the new harvest period by incrementing or decrementing the 

Pump State.  The cumulative NPP is again and similarly monitored and calculated again 

for the new harvest period. At the end of this harvest period, the newly calculated NPP is 

compared to that of the previous harvest period. If the NPP has increased, the Pump 

State, and thus the flow rate, is changed again in the same direction as the last change 

was made; for example, if the Pump State was increased last time, it is increased again 

this time by one step change, increasing the flow rate accordingly. If the NPP has 

decreased, the Pump State is changed in the opposite direction as the previous change. If 

the NPP is in effect equivalent to the previous NPP (within a tolerance set by the user), 

the Pump State is decreased as a default setting. This allows the system to trend towards 

the energetic minimum (that is, the lowest Pump State) for the maximum productivity, 

presumably trending the system towards the highest engineering efficiency (that is, 

maximum productivity for the least amount of pumping energy). Also, if the current 

Pump State is at one of the extremes of its range (state 0 or state 7), the subsequent 

change in Pump State is always in the direction towards the center of the Pump State 

range, thus forcing the algorithm to continue seeking rather than becoming ―pegged‖ in 

an absorbing state at the extremes of its range. All pH and IC data, and actions taken (that 

is, pumps activated or deactivated based on the Pump State) are recorded to a data-

logging file. At the end of the user-specified time period for data collection (roughly 

corresponding and slightly shorter than the harvest period), all data collection is paused 

until manual user intervention following physical harvest of the algal turf, after which the 

data collection cycle begins again.  
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Virtual Testing of the algorithm 

Extensive virtual testing of the algorithm was performed using preprogrammed 

data sets of total change of inorganic carbon (IC) concentration, representing primary 

productivity, in place of those calculated from real-time pH measurements. The use of 

virtual data allowed rapid testing of the program algorithm over many different 

hypothetical conditions with extensive replication via multiple cycles and trials.  

The preprogrammed data sets used for virtual testing were in the form of 

hypothetical profiles of primary productivity (P), expressed in units of ppm IC, as a 

function of Pump State (S) that represent the discrete, incremental set points of 

volumetric flow rate over the anticipated available range in the physical systems (0 to 140 

lpm; see Table 4. 1). These P versus S profiles were constructed in hypothetical 

configurations to explore the distribution of behaviors of the algorithm. The six profiles 

tested (Figure 4. 2) may be described as follows: 

 A subsidy-stress profile (Figure 4. 2-A), based upon empirically-derived results 

determined in the physical subsidy-stress experiments (Chapter 3), that exhibits a 

peak of productivity at a moderate flow rate and reduced productivity at the extremes 

(both low and high) of flow rate; 

 A flat profile (Figure 4. 2-B) exhibiting no change in productivity over the entire 

range of flow rate; 

 A step-down profile (Figure 4. 2-C) exhibiting higher productivity in lower flow rates 

and lower productivity in higher flow rates; 

 A continuous ramp-down profile (Figure 4. 2-D) exhibiting a productivity that 

decreases linearly with increasing flow rate; 
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 A continuous ramp-up profile (Figure 4. 2-E) exhibiting a productivity that increases 

linearly with increasing flow rate; 

 A bifurcated profile (Figure 4. 2-F) exhibiting a minimum productivity at moderate 

flow rates and maximum productivity at the high and low extremes of flow rate. 

Except for the subsidy-stress profile (Figure 4. 2-A), which was empirically determined 

from physical subsidy-stress experiments in the laboratory (Chapter 3), each of these 

profiles is entirely hypothetical, contrived to represent a possible distribution of P over S 

and expected to result in a unique response of the control algorithm. 
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Figure 4. 2. Hypothetical profiles of productivity (P) versus Pump State (S) used as preprogrammed 

data sets to perform virtual testing of the optimization algorithm: (A) subsidy-stress distribution 

based upon prior experiments; (B) flat profile; (C) step change profile; (D) continuous ramp down 

profile; (E) continuous ramp up profile; (F) bifurcated maximum profile. 
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In addition, to simulate the variance that might be seen in physical 

experimentation, these hypothetical P-S profiles were applied as stochastic entities with 

values for P at each Pump State setpoint normally distributed about a mean. For example, 

in Figure 4. 2-A, the value of P at Pump State 2 might be modeled as a value normally-

distributed about a mean of 93 ppm IC with a standard deviation of ±25 ppm IC (Figure 

4. 3). For the virtual testing experiments reported here, the standard deviation was set at 

three different levels of low, medium, and high stochasticity (Table 4. 2) for each P-S 

profile, relative to the base mean value of the productivity P at that point, to investigate 

the effects of different levels of variance in productivity measurements on algorithm 

behavior.  

Table 4. 2. Variance conditions, described as a standard deviation, tested for each of the virtual 

productivity/pump-state (P-S) profiles presented in Figure 4. 2. 

Profile Description of Profile Standard Dev. % of Max.* 

Low Med High 

A Subsidy-stress 1.0 11 36 

B Flat 2.0 20 100 

C Step-change down 2.5 25 50 

D Continuous ramp down 1.0 13 50 

E Continuous ramp up 1.0 13 50 

F Bifurcated maximum 1.0 25 63 

*The percentage value of the standard deviation tested compared to 

the maximum value of the P-S function.  
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Figure 4. 3. Sample of input P-S profile A from Figure 4. 2 showing variance imposed on values for 

testing. Error bars represent a standard deviation of 25 ppm IC. 

Testing was performed as follows: for each hypothetical P-S profile in Figure 4. 

2, the profile was preprogrammed into the control program as if it were the real time 

primary productivity data as derived from pH measurements. The control program was 

allowed to make pump activation decisions based upon these preprogrammed data. For 

each of the profiles, the variance was set to either low, medium, or high values of 

standard deviation, as given in Table 4. 2. At each standard deviation for each profile, the 

algorithm was run 1000 times for 1000 Pump State decision cycles each run. At the start 

of each run, the initial Pump State (from 0 through 7) and Pump State increment (+1 or –

1) were selected randomly by a random number generator in Labview. For each run of 

1000 cycles, the algorithm counted the number of times each Pump State was visited and 

recorded the relative frequency (number of times visited per 1000 cycles) for each. Data 

analysis consisted of calculating the mean and standard error of relative frequency for 

each Pump State for all 1000 runs and representing the data as frequency distribution 

plots for Pump State.  
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In addition, the algorithm was run 15 separate times (five for each initial Pump 

State of 0, 3, and 7) for each P-S profile at each input variance level, and the average 

cumulative mean and cumulative standard deviation was calculated for all. The relative 

rate of convergence of each of these was determined by calculating the percent difference 

between the cumulative mean or standard deviation at each cycle and the ultimate value 

at the limit of infinity. The cycle at which this percent difference reached less than 5% 

was recorded as a metric of the rate of convergence of algorithm on a solution (the 

ultimate cumulative average Pump State). 

Results 

Frequency distribution of the expected states 

Virtual testing of the control program algorithm resulted in movement to multiple 

Pump States over time. The operation of the algorithm of the systems can be visualized 

by representing the changes in the Pump State on a trace of Pump State versus cycle 

(Figure 4. 4). The figure shows the Pump State for the first 100 cycles for hypothetical P-

S profile A (see Figure 4. 2-A) for two separate runs: one with a low standard deviation 

(±1.0 ppm IC) and one with a high standard deviation (±32 ppm IC) on the input P-S 

profile data points. Results for the run with a low input standard deviation showed 

immediate convergence of the algorithm on Pump State 2, with continued cyclic seeking 

from Pump States 1 to 3. Results for the run with a high input standard deviation showed 

a trend towards convergence on Pump State 2 but with considerably more noise, often 

visiting Pump States that were higher (3-7) or lower (0) than in the case with a low input 

standard deviation. 
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Figure 4. 4. Pump State vs. cycle for virtual testing of the control algorithm using a subsidy-stress P-

S profile (Figure 4. 2-A) as input data with low and high standard deviations applied to the points on 

the input profile.  

Results of the virtual testing experiments are summarized in the frequency 

distribution plots of Pump State for all six P-S input profiles each set at the three variance 

levels (Figure 4. 5). These distributions show the mean relative frequency of the 

occurrence of Pump State for 1000 runs of 1000 Pump State decision cycles each. 

Generally, these results show that the seeking algorithm had a strong tendency for finding 

the maximum of a P-S profile, although the tendency for convergence was not as definite 

for increasing input variance. Specific comments may be made about the results for each 

input distribution: 

 For input P-S profile A (based upon empirical data and with a maximum at Pump 

State 2) with a low input standard deviation (SD), the algorithm spent a majority of its 

time either at State 2 (48%) or at adjacent States 1 (24%) and 3 (27%); these were 

reduced for higher values of input SD (for example, 33% and 25% for Pump State 2 
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at middle and high input SDs, respectively), and the algorithm visited all other 

possible Pump States more often; 

 For input P-S profile B (a flat profile with no maximum) with a low input SD, the 

algorithm spent a majority of time at Pump State 0 (25%), 1 (39%), or 2 (19%) with 

lower frequencies for visiting higher Pump States; for higher values of input SD, 

however, the algorithm spent a near identical percent of the time (approximately 

14%) at all Pump States except those at the ends of the range (0 and 7 at 

approximately 7%) with slightly greater percentages, on average, for the lower end of 

the range; 

 For input P-S profile C (a step-change profile with Pump States 0-3 higher than Pump 

States 4-7) with a low input SD, the algorithm spent a majority of its time at State 0 

(36%), 1 (46%), or 2 (14%), with lower frequencies (less than 5%) for higher Pump 

States; for higher values of input SD, the algorithm visited higher states more often, 

reducing the overall frequency for the lower states (for example, for Pump State 1, 

32% and 27% at middle and high input SDs, respectively); 

 For input P-S profile D (a linear ramp-down profile for higher Pump States) with a 

low input SD, the algorithm spent an overwhelming majority of time at Pump States 0 

(49.5%) or 1 (49.5%); these were reduced (38% and 18% for state 0, and 48% and 

30% for State 1 for middle and high input SDs, respectively) for higher values of 

input SD as the algorithm visited higher states more often; 

 For input P-S profile E (a linear ramp-up profile for higher Pump States) with a low 

input SD, the algorithm spent an overwhelming majority of time at Pump States 6 
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(49.5%) or 7 (49.5%); these were reduced (35% and 15% for state 7, and 47% and 

27% for state 6 for middle and high input SDs, respectively) for higher values of 

input SD as the algorithm visited the lower Pump States more often;  

 For input P-S profile F (a bifurcated maximum profile, with maxima at Pump States 0 

and 7 and minima at Pump States 3 and 4) with a low input SD, the algorithm spent a 

majority of time either at Pump States 0 and 1 (28% each), or slightly less at Pump 

States 6 and 7 (23%), with almost no visitation to the middle Pump States 2-5; these 

local maxima were reduced (for example, 21% and 14% for Pump State 0 for middle 

and high input SDs, respectively) as the algorithm visited the middle Pump States 

more often. 
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Figure 4. 5. Frequency distribution plots for results of virtual testing of the seeking control algorithm 

for various hypothetical preprogrammed productivity (P) vs. Pump State (S) profiles as input data.  

Individual distribution plots correspond to P versus S profiles as given in Figure 4. 2 as follows: (A) 

distribution profile based upon data collected in subsidy-stress experiments; (B) flat profile; (C) step 

change profile; (D) continuous ramp down profile; (E) continuous ramp up profile; (F) bifurcated 

maximum profile. Testing was performed at low, medium, and high standard deviation (SD) of the 

input profile. Frequency is expressed as a mean relative frequency of Pump State for 1000 runs of 

1000 Pump State decision cycles each. Error bars represent standard error of the mean. 
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Rates of convergence on a solution 

The cumulative mean of the Pump State over successive cycles was calculated for 

15 runs of each of the input P-S profiles (Figure 4. 2) at the three levels of input variance 

(Table 4. 2). The general response of the cumulative mean for different levels of input 

variance for each of the input P-S profiles is exhibited in Figure 4. 6. In general, at low 

input variance levels, the cumulative mean converged quickly on the expected solution. 

As the input variance level increased, the cumulative mean converged on a Pump State 

closer to the middle of the range of Pump States (replicating the situation of complete 

random input with a flat P-S distribution) with a greater uncertainty, as indicated by the 

greater variance of the cumulative mean. 

The cumulative mean of Pump State is summarized for all P-S input distribution 

profiles (Figure 4. 2) for the three input variance levels (Figure 4. 7). For low input 

variance levels, on all input profiles, the limit of the cumulative mean of the Pump State 

was nearly equivalent to the expected value. As the input variance level was increased, 

the cumulative mean of the Pump State at the limit moved towards the middle of the 

range of possible Pump States, more closely resembling a response to a completely flat 

input profile with high input variance. 
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Figure 4. 6. Cumulative mean of Pump State for P-S input profiles (Figure 4. 2) for low and high 

levels of input variance.  

Cumulative mean is calculated for 15 runs of 1000 cycles each, and error bars at each cycle are 

standard deviation. When the input variance is low, the cumulative mean converges quickly on the 

expected state. When input variance is higher, the cumulative mean converges quickly on a value 

closer towards the middle of the possible range of Pump States.  
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Figure 4. 7. Cumulative means of Pump State for the various P-S input distributions (Figure 4. 2), 

after 1000 cycles run 15 times with various starting Pump States. Error bars represent a standard 

error on the expected value of the mean resulting from variance by different initial Pump States at 

cycle 0. 

The number of cycles to convergence (defined arbitrarily as within 5% of the total 

distance from the starting value of the cumulative mean to its value at the limit) for the 

cumulative mean of Pump State is summarized for all P-S input distribution profiles 

(Figure 4. 2) for the three input variance levels (Figure 4. 8). This metric can be 

considered as an indication of the rate of convergence of the algorithm on the expected 

state. For low input variance levels, most input profiles (all except profile B) exhibited 

rapid convergence (owing typically to a strong relationship, that is, comparatively steeper 

slope, between productivity (P) and Pump State (S)). As the input variance was increased, 

all input profiles showed a direct increase in the number of cycles to convergence. Those 

profiles that had no clear single maximum in the range of Pump States (Profile B, which 

was flat, and Profile F, which had dual peaks) exhibited the greatest number of cycles, 

and thus the slowest rates of convergence, at the higher levels of input variance.  
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Figure 4. 8. Number of cycles to convergence (defined as within 5% of the expected value) for the 

cumulative mean of the Pump State for the various P-S input distributions (Figure 4. 2) after 1000 

cycles run 15 times with various starting Pump States. 

The cumulative standard error (the standard deviation of the Pump State, σ, 

divided by the square root of the cycle, n) of Pump State is summarized for all P-S input 

distribution profiles (Figure 4. 2) for low and high input variances (Figure 4. 9), showing 

that this standard error converges more rapidly for lower input variance. The overall 

cumulative standard error is summarized for all three input variance levels (Figure 4. 10). 

For low input variance levels, on all input profiles, the cumulative standard error of the 

Pump State at the limit was low for most cases. As the input variance level was increased, 

in all cases, the cumulative standard deviation of the Pump State at the limit increased.   
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Figure 4. 9. Cumulative standard error of Pump State for P-S input profiles (Figure 4. 2) for low and 

high levels of input variance.  

Cumulative standard error is calculated for 15 runs of 1000 cycles each, and error bars at each cycle 

are standard deviation. When the input variance is low, the cumulative standard error converges 

more quickly than when high.  
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Figure 4. 10. Cumulative standard error of Pump State for the various P-S input distributions 

(Figure 4. 2) after 1000 cycles run 15 times with various starting Pump States. Error bars represent a 

standard deviation on the expected value of the standard error resulting from variance caused by 

different initial Pump States at cycle 0. 
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by a higher variance on the input functions. An example of the additional noise in the 

output of the system as a result of increased input variance is shown in the comparison of 
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and on average, clearly exhibited by the probability distribution functions of Pump State 

(Figure 4. 5, page 168). For example, for input function A (Figure 4. 5-A), the algorithm 

most frequently visited Pump State 2 for the entire range of input variance. For low input 

variance, in which the algorithm regularly alternated only between states 1, 2, and 3 (an 

expected consequence due to the convention in the algorithm in which it is always 

seeking), the frequency distribution showed overwhelming favor to these states. At 

higher input variances, however, the frequency of Pump State 2 was lessened as visitation 

to other Pump States became more frequent, although even at the highest input variance, 

Pump State 2 was still favored. Convergence of the algorithm behavior on the peak 

productivity of the input P-S curve was also demonstrated by the ramp input functions D 

and E (Figure 4. 5-D and E), exhibiting a strong convergence on the peak states at low 

input variance and a dampening of this effect at higher input variances. This behavior 

was opposed to what might be expected for completely random behavior, for which one 

would expect, in the long term, a flat probability distribution function, in which Pump 

States 1 to 6 were visited equally and Pump States 0 and 7 (the end states) half as much, a 

condition most closely approximated by the flat P-S input profile B with high input 

variance conditions (Figure 4. 5-B). 

Another observed and expected characteristic of the algorithm behavior is the 

seeking of the highest productivity in a P-S distribution at the lowest possible Pump 

State. This was an intentional convention programmed into the algorithm, where, should 

the measured productivity be equal (within a user-prescribed tolerance, typically set at 

0.5 ppm IC for these experiments) at adjacent Pump States, movement towards the lower 

Pump State was favored. Given that a lower Pump State corresponds directly to lower 
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flow rate, this convention results in the algorithm seeking out the greatest mechanical 

efficiency for the algal production process. The effect of this convention was most clearly 

seen for input P-S profiles that were flat for part or all of their range, such as input 

profiles B and C (Figure 4. 2, page 161). The frequency distribution plots for input P-S 

profiles B and C (Figure 4. 5-B and C) showed that the lowest Pump States were favored 

overwhelmingly at the lowest values of input variance. Interestingly, for input profile B, 

the algorithm exhibited near complete randomness not only for the high level of input 

variance, as one might expect, but for the middle level of input variance as well. This is 

evidenced by the near flat frequency distribution (Figure 4. 5-B), indicating that an input 

variance of only 20% of the expected value can cause near-random behavior in the 

algorithm should the input P-S profile be generally flat. This may have implications for 

implementation of the algorithm in physical systems; given that some noise is expected in 

the measurement of productivity of a system, and that the productivity-flow rate 

relationship may be flat over a certain range, the system can be expected in the long term 

to visit all Pump States within that range equally and with a random trace of Pump State 

versus cycle, never truly converging on a maximally-efficient state. 

The influence of the minimization convention on overall algorithm behavior is 

also exhibited by the frequency distribution for Pump State for input P-S profile E 

(Figure 4. 5-E). In this case, the minimization convention is in complete opposition to the 

prevailing P-S profile (Figure 4. 2-E), a continuous ramp-up of productivity with 

increasing Pump State with a maximum at Pump State 7. Without the minimization 

convention in the algorithm, it would be expected that the frequency distribution of 

profile E is a mirror image of that for profile D. Indeed, this is the case for low input 
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variance, where the frequencies for Pump States 6 and 7 for profile E, at 0.499 and 0.498, 

respectively, were equivalent to those for Pump States 1 and 0 for profile D, respectively. 

These frequencies dropped for profile E, however, relative to profile D for mid- and high 

values of input variance. For example, at high input variance, profile E had a frequency 

of 0.266 and 0.152 for Pump States 6 and 7, respectively, whereas profile D had a 

frequency of 0.296 and 0.173 for Pump States 1 and 0, respectively. The difference was 

evident but slight—only 3 to 4 percent—showing that the action of the algorithm is 

dominated in most cases by the goal to find the maximum peak of productivity over the 

range of the flow, with minimization of the flow rate only a secondary consideration.  

The action of the minimization convention is also evident in frequency 

distribution F (Figure 4. 5-F), which had a bifurcated maximum with equal peak values 

on the input P-S profile (Figure 4. 2-F, page 161). The frequency distribution plot for this 

shows that, at all standard deviation levels, the algorithm favored the peak at the lowest 

Pump States, although this trend was dampened at a higher input variance. In this case, 

the higher input variance contributed to the success of the algorithm in finding the most 

efficient Pump State, spending more time at the lower peak of the P-S profile. This is 

because at the lower input variances, when the initial value for the Pump State for a run is 

4 or greater, the algorithm strongly tended towards the upper peak at Pump State 7, which 

then, together with Pump State 6, became an absorbing state. Periodic destabilization of 

the seeking trends by high input variances at times allowed the algorithm to ―climb 

down‖ the P-S profile to find the lower peak. However, because the higher input variance 

would occasionally destabilize the algorithm from the lower peak as well, one can say 

that, generally, some uncertainty on the productivity measurements can serve to 
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destabilize the seeking algorithm from absorbing states at local maxima on the P-S curve, 

potentially yielding opportunity to seek out and find other localized maxima. 

In general, the control algorithm can be expected to find the maximum 

productivity for a distribution over flow rate—or any other controlled variable, for that 

matter. Even in most cases of relatively high uncertainty of input measurement, the 

algorithm can be expected to spend a majority of its time at or near the localized maxima 

of a productivity distribution, favoring those maxima that have lower input energies. 

Behavior approaching random seeking is evident when the productivity distribution is flat 

and uncertainty on its measurement is high (that is, standard deviations are on the order 

of the base value of the measurements). 

Rate of convergence on the expected state 

The cumulative mean gives an indication of how well the seeking algorithm 

converges on the expected solution. The cumulative mean of the Pump State (Figure 4. 6 

and Figure 4. 7, pages 170 and 171) approached the expected value throughout many 

cycles of operation when input variance was low, where the expected value was the 

lowest Pump State where productivity (P) is maximized. Increasing the input variance 

moved the cumulative mean toward the middle of the range (that is, 3.5), as seen in the 

results for the flat P-S profile (profile B, Figure 4. 2, page 161) with a high input 

variance. This condition represents the state that most closely replicates a completely 

random input P-S profile. This activity holds for all P-S distributions. It is interesting to 

note that under certain conditions the ability of the algorithm to find the expected state 

was fairly robust. For example, the action in response to profile A (Figure 4. 2-A) with a 
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high input variance of 36% of the peak value of the distribution has a cumulative average 

of 2.55, only 20% off from the expected state of 2.  

The cumulative standard error (Figure 4. 9 and Figure 4. 10, pages 173 and 174) 

gives an indication as to the spread of activity of the Pump State over the number of 

cycles. A larger cumulative standard error indicates that the program visited more Pump 

States outside the expected values over time. Its maximum should be found at high input 

variance conditions on a flat or bifurcated profile where there is a near equivalent chance 

to visit all possible states within the range of Pump State. In all cases, an increase in the 

input variance significantly increased the cumulative standard error; for example, for 

input profile A, the cumulative standard error increased from 0.023 to 0.046 for low to 

high input variance, respectively (Figure 4. 10). The greatest cumulative standard errors 

were seen for input profile B, because of its flat uniform profile, and for profile F, which, 

because of its bifurcated profile, resulted in the algorithm spending nearly equal numbers 

of cycles near the lower or higher ends of the Pump State range when input variance was 

of medium or high value. 

Taken together, the cumulative means and cumulative standard errors give an 

indication on the convergence behavior of the algorithm. These values are summarized 

(Table 4. 3) for each profile for low and high input variance only. Low variance on the 

input profiles produced more efficient seeking results as the algorithm spent very little 

time at Pump States extraneous to the expected state or its adjacent states. The higher 

input variance significantly increased the standard errors on the output and thus skewed 

the cumulative mean; the distribution of states visited was broader under the higher input 

variance.  
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Table 4. 3. Cumulative mean and standard error of Pump State for various input P-S profiles (Figure 

4. 2) for low and high input variance conditions. 

Profile Expected State Low Input Var. High Input 

Var. 

A 2 2.01±0.023 2.55±0.046 

B 0 1.34±0.039 3.48±0.065 

C 0 0.84±0.025 2.19±0.052 

D 0 0.51±0.017 2.01±0.052 

E 7 6.49±0.017 4.57±0.059 

F 0 2.90±0.016 3.29±0.078 

 

The number of cycles to convergence can give an indication as to the rate of 

convergence of the algorithm on the expected solution. In most cases, convergence 

occurred rapidly (in less than 100 cycles) for input profiles of low variance. Only input 

profile B (a flat profile, Figure 4. 2, page 161) exhibited a slow rate of convergence, 

likely due to its flat shape which increases the likelihood that other Pump States further 

from the expected state would be visited over time. An increase in the input variance 

significantly increased the number of cycles to convergence in all cases. Those profiles 

which exhibited a well-defined maximum (A, C, D, and E, Figure 4. 2, page 161) showed 

convergence within the 1000 cycles at higher input variances. Profiles B and F showed 

slow convergence even at medium levels of input variance. With a flat or indeterminate 

P-S profile, the algorithm tended to wander over the entire range of possible Pump States. 

The level of variability on input data affected the variability of the output behavior of the 

algorithm. 

One important implication of these results is the scale of the number of cycles 

appropriate for an experiment in the physical systems. Even at low input variance 

conditions, using the metrics employed here, the number of cycles required to 

demonstrate behavior of the control algorithm is on the order of 60 to 100. Conditions of 
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higher input variance would require considerably more cycles (500 to 1000) to fully 

characterize the activity of the algorithm with these methods of analysis. Within the 

context of physical testing, in which one cycle is defined by the harvest period that 

typically ranges from 4 to 7 days, a minimum experiment of 100 cycles would range on 

the order of a year, a prohibitive length of time. Other metrics are sought to adequately 

characterize the convergence power of the algorithm. One possibility may come from the 

field of Markov chain analysis, where a Markov chain or ―random walk‖ is defined as a 

stochastic process where the probability of entering a state at time t+1 is determined only 

by the state at time t (Kemeny and Snell 1960). Application of Markov chain analysis to 

the algorithm employed here would rely upon computation of the probabilities of at each 

Pump State of movement to each of the adjoining states. This could be done for the 

virtual simulation scenarios tested here, where a stochastic measure of primary 

productivity is defined for each Pump State. Markov chain modeling of the 

implementation of the algorithm with the physical ATS units would require defining the 

same transition probabilities for each Pump State. These might be computed based on 

empirical subsidy-stress investigations as described in Chapter 3. In addition, given that 

Markov chain analysis has been used to simulate social situations such as competing 

technologies or dissemination of culture (Izquierdo et al. 2009), the mathematics used to 

analyze the behavior of Markov chains may be suitable for understanding dynamics of 

ecological systems, where subsequent states are determined solely by prior states. This is 

a recommendation for further analysis of these results, and development in general for a 

possible avenue for characterization of technoecosystem behavior. 
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Conclusions and Implications 

The following conclusions can be made for this set of experiments: 

 Analysis of the control algorithm in isolation using virtual simulation shows that the 

algorithm has the ability to seek for and find the maximum of a parameter at the 

lowest possible Pump State over a range of distribution relationships.  

 The actions and effectiveness of the algorithm, as measured by the rate of 

convergence, are strongly influenced by the variance of the input data to which it 

responds and by the strength of the relationship between the controlled parameter and 

the measured variable. Refinement of the control process, in this scenario, would 

depend more on improving the fidelity of the capabilities of the system to measure the 

response of the ecological system.  

 

The analysis presented here provides a procedural map for investigations into 

technosystem dynamics that only increases in importance as the complexity of the control 

algorithm is increased. This analysis also provides perspective on the expectation for the 

operation of the algorithm in physical testing experiments described in the next chapter. 

The expected action of the algorithm in response to the ecological components is 

inherently variable, and the measurements upon which the algorithm operates can be 

inherently noisy; these issues are addressed in further research effort employing the 

algorithm in physical ATS units. 
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Chapter 5: The Technoecosystem—Putting it all together 

Introduction 

The component systems were assembled into the full algal turf scrubber 

technoecosystem, and the system was tested through multiple trials using different 

nutrient feed recipes. Testing of the technoecosystem consisted of allowing the system to 

run through numerous harvest cycles and tracking the Pump State and net primary 

productivity through time. The expected behavior of the system was for it to track the 

pump state to converge over a number of cycles on the maximum productivity of the 

algal turf, the peak of the subsidy-stress curve of production to flow turbulence. Analysis 

of the system behavior consisted of examining the time-trace of Pump State and 

productivity for metrics of convergence that can be compared to the expected behavior as 

determined by the virtual experiments on the algorithm. The relative abundances of the 

dominant algal species were tracked throughout the operation of the system and are 

compared to those measured for ATS units operating in a standard mode without 

feedback control. 

Objectives and Hypothesis 

The objective of this set of experiments was to test the operational dynamics of an 

autonomous algal turf scrubber (ATS) that uses feedback control circuits to optimize the 

turbulence in the bed for maximum algal productivity through control of the volumetric 

flow rate. The hypothesis was that, given control circuitry (via computer) and a program 

algorithm, the autonomous ATS system will selectively activate pumps to modify flow 

rate in such a way as to follow the trajectory of a subsidy-stress curve of productivity 
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versus turbulence level, finding the maximum productivity while minimizing the level of 

turbulence. 

Research Approach 

An automated monitoring system was designed to measure the metabolism of an 

algal turf ecosystem in an ATS. The ATS water reservoir was monitored continuously 

using a pH meter connected to a datalogging control computer. A control program 

algorithm on the computer calculated then net carbon productivity and respiration (see 

Chapter 3) from the pH diurnal curves and changed flow rate accordingly to maximize 

net carbon productivity, following the assumption that, all other factors in excess, flow 

turbulence (as modulated by volumetric flow rate) was limiting to algal turf metabolism. 

Flow rate was manipulated via control circuitry that provided power to a bank of three 

pumps of various flow rate capacities. By activating different combinations of the three 

pumps, up to eight flow rate setpoints (―Pump States‖) across a range (from zero to 140 

lpm) were attainable. In multiple trials, the system was allowed to automatically 

manipulate flow rate over multiple harvest periods until the optimum flow rate was 

converged upon for maximum algal productivity. The Pump State, net carbon 

productivity, and biomass production rate were converted to power acquisition, and 

traces of production power versus flow rate power were generated and analyzed for 

signatures of convergence.  
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Equipment 

System overview 

The equipment used for this research included a data acquisition computer that 

monitored the pH level in the reservoir of an ATS via a pH probe and meter. Digital 

output signal lines on the control computer activated relay-switched outlets that powered 

centrifugal pumps of various volumetric flow rate capacities. The overall configuration of 

these elements for the data acquisition mode has been shown previously (Chapter 3); the 

configuration for the autonomous control system mode are shown in the system 

schematic (Figure 5. 1), and the elements are described in more detail below. 

 

Figure 5. 1. Schematic diagram of a computer setup for feedback control of flow rate in an ATS.  
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ATS units 

The algal turf scrubber units used for this research were nominally 1-m
2
 

laboratory-scale units. The five separate ATS units employed throughout all experiments 

were identical in construction and are described previously (Chapter 2). As described in 

previous experiments (Chapters 2 and 3), all units were operated in a recirculation mode 

in which process water was continuously pumped from a 200 liter drum reservoir into the 

wave surge bucket. As before, each ATS was paired with its own reservoir, and the total 

volume of water in the entire ATS reservoir system was maintained at a nominal 150 

liters through daily additions of fresh distilled water to replace evaporative losses. 

Lights 

As reported previously (Chapter 3), each ATS unit was operated under two 400W 

metal halide lights, although one trial unit (ATS unit 7), however, operated under one 

1000W metal halide light. For all autonomous experiment trials, the height of the lights 

above the ATS bed was adjusted to yield a light intensity of approximately 350 mol 

photons m
-2

 s
-1

 measured at the center of the ATS bed area with a quantum flux meter 

and probe (LI-250 Light Meter and LI-190 Quantum Sensor, LI-COR Biosciences, 

Lincoln, Nebraska). Lights were operated under a 16 hour light/8 hour dark diurnal.  

Nutrient supply 

The various nutrient supply types employed in the ATS units have been described 

previously (Chapter 3). Throughout the course of the autonomous experiments, all four 

types of nutrient supply were attempted. For each of the nutrient supply types, solutions 

were mixed with known nitrogen and phosphorus concentrations, and aliquot volumes of 

nutrient solutions were added during scrubber operation to yield desired nitrogen loading 
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rates. The four types of feed solution used were dairy manure, urea salt, plant-food based 

(Miracle Gro
®
 solution), and modified Bristol‘s solution (see Chapter 3 for descriptions). 

Data acquisition and control system 

A separate data acquisition computer was used for the autonomous control 

experiments than was used for data acquisition in the subsidy-stress experiments (Chapter 

3). For the autonomous control experiments, a Dell Inspiron laptop computer with an 

installed NI DAQ-700 PCMCIA multifunction I/O card (National Instruments 

Corporation, Austin, Texas) and an external NI CB-50 I/O connector block was used. As 

in the subsidy-stress experiments that involved the monitoring of pH (Chapter 3), each 

ATS had a pH probe (36‖ single junction pH electrode, Cole Parmer) installed in its 

reservoir connected to a Jenco 3672 pH controller (Jenco Electronics Ltd., San Diego, 

California), the analog output terminals of which were then connected to the respective 

analog input channel connectors on the CB-50 connector block. Through this 

configuration, the voltage across the terminals would vary directly between 0 and 2.5 

volts with the measured pH. As before, throughout the experiments, each probe and Jenco 

controller combination were recalibrated approximately every two ATS harvest periods.  

For the autonomous control experiments, the pH monitoring system configuration 

used in the subsidy-stress experiments (Chapter 3) was amended with control circuitries 

that activated pumps on demand to establish the flow rate in each ATS (see Figure 5. 1). 

Three pumps of different flow rate capacities were installed in the reservoir of each ATS 

unit. Each pump was connected to a relay-controlled outlet, which in turn was connected 

to a digital output port on the computer‘s data acquisition card. Pumps were submersible 

centrifugal magnetic-drive pond pumps (Danner Manufacturing, Islandia, N.Y.), and each 
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was installed with a gate valve on the outlet piping to allow fine-tuning adjustment of the 

volumetric flow rate (Table 5. 1).  

Table 5. 1. Nominal pump flow rate at 2 m of head and manufacturer model number. Pumps were 

generally of larger flow capacity than required and were scaled back using gate valves on the outlet. 

Pump Nominal 

Flow Rate 

Pump Model 

Number* 

20 lpm MD9 

40 lpm MD12 

80 lpm MD18 

*All pumps manufactured by Danner Mfg. (Islandia, NY). 

 

Activation of multiple pumps in different combinations allowed the total flow rate 

delivered to the ATS bed to be set at eight discrete flow rate set points (here called Pump 

States) at increments of 20 lpm over the total possible range from zero to 140 lpm (Table 

5. 2). Wave surge volume was held constant at approximately 11 liters for all flow rates, 

resulting in a different wave surge frequency at each Pump State. A low-flow peristaltic 

pump was installed on each experimental unit such that when all pond pumps were 

deactivated (Pump State 0), a small trickle-flow of typically less than 2 lpm was 

maintained. When the control algorithm (next section) required a pump to be activated, 

the computer activated a 5-V digital signal to the appropriate control line, closing the 

relay and activating the outlet to switch on the pump.  

  



 

189 

Table 5. 2. Pump designations, nominal flow rates, and truth table showing activation states of 

individual pumps and total flow rate for a given flow rate state. 

Pump No. → 1 2 3 

Total Flow Rate 

(lpm) 

Wave surge 

frequency 

(min
-1

) 

Nom. Pump 

Flow Rate (gpm) → 

 

 

20 

 

 

40 

 

 

80 

 

Pump State ↓ 

 

Activation State (0 = off, 1 = on) 

0 0 0 0 >2** 0.1 

1 1 0 0 20 1.7 

2 0 1 0 40 3.3 

3 1 1 0 60 5.0 

4 0 0 1 80 6.7 

5 1 0 1 100 8.3 

6 0 1 1 120 10 

7 1 1 1 140 12 

** A peristaltic pump provided constant low flow at less than 2 lpm.  

 

Just as two separate hardware configurations were used for the subsidy-stress 

experiments and the autonomous control experiments, separate monitoring and control 

programs were used. Whereas the subsidy-stress experiments (Chapter 3) used a program 

that was strictly for monitoring and data logging of the pH diurnal, the control program 

developed for the autonomous control experiments calculated incremental changes in 

metabolism in real-time based upon the pH diurnal, and subsequently took control actions 

(in the form of switching on or off pumps) based upon the values of those changes. The 

control algorithm was the basic seeking algorithm described previously (Chapter 4, 

Section 4.1). The algorithm seeks out the maximum or minimum of a variable within an 

expected range via incremental change of the controlled parameter. A simplified flow 

chart schematic of the core algorithm and description of operation was previously given 

(Chapter 4, Figure 4.1, page 156), and a more detailed flow chart of the entire data 

acquisition and control program is provided in Appendix A.  
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Conversion of the monitored pH diurnal to the concentration of inorganic carbon 

(IC) is central to the control system operation. This information was determined by 

subjecting periodic samples of process water to a pH-IC titration (described in Chapter 

3). This titration yielded a pH versus IC concentration curve that was described by a 

third-order polynomial function within the upper and lower limits of pH measured 

(Figure 5. 2). The algorithm assumed this polynomial representation and the user has the 

opportunity to enter the polynomial coefficients at the beginning of each harvest cycle. 

For pH values above and below the limits in the titration, a linear function, based upon a 

linear regression of the last three points on the tail of the pH-IC relationship, was used for 

extrapolation.  

 

Figure 5. 2. Sample of polynomial description of an empirical pH-IC titration trial for ATS process 

water.  

As discovered in previous experiments, it became clear that the inorganic carbon 

titration method as employed here was a surrogate for the net primary production, rather 

than serving as a measurement of the absolute value of it. The pH diurnal was clear in all 
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trials, however, and the method was pursued as a reliable parameter that was closely 

correlated with ecosystem metabolism and that could be automatically monitored for use 

in the feedback control system. As before, for the purposes of this research, these 

measurements are here referred to as ―net carbon production‖ (NCP). 

Methods 

The general procedure for the physical testing of the automated control system 

was as follows. The control program was initialized with the user-input operational 

parameters, which included the following: 

 File path for data logging on the computer; 

 Sample rate (in Hz); 

 Number of samples to average for each pH data point; 

 Sample period (in minutes) for each pH data point; 

 Harvest period (in hours), the length of time to integrate the pH-derived IC 

concentration data; 

 Titration data to convert pH to IC concentration, entailing the regression 

coefficients for the third-order regression polynomial describing the 

titration curve, the upper and lower bounds of pH for which the 

polynomial was valid, and the constants for linear extrapolation of the pH-

IC titration curve beyond the range of the titration; 

 Starting Pump State for the algorithm, corresponding to the flow rate for 

cycle 0 (see Table 5.2) and designated as low (Pump State 0), medium 

(Pump State 3), and high (Pump State 7). 
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Typical values for many of these parameters are given in Table 5. 3. 

Table 5. 3. Typical parameter values used for operation of the autonomous algorithm on physical 

systems. 

Parameter Value 

Initial Pump State 0, 4, or 7 

Pump State increment +1 or -1 

Sample Rate 1000 Hz 

No. of Samples to average 3000 

Data collected every 60 minutes 

IC Tolerance 5 ppm 

Evaluate NCP for 92 hours 

 

For at least two harvest periods prior to the initialization of an automated run, the 

ATS was run at the flow rate corresponding to the starting Pump State to allow the algal 

community to become conditioned to the flow regime. After all parameters were input 

into the algorithm, and following harvest of the scrubber and calibration of the pH probe, 

the control algorithm was started immediately. Typically, the algorithm was started 

during the dark period of the diurnal light cycle. The control algorithm was allowed to 

run uninterrupted for the extent of the designated harvest period, typically established 

from 92 to 96 hours (four complete day/night cycles), the minimum amount of time and 

number of diurnal cycles estimated as necessary for adequate sampling of the ATS 

metabolism for any single operating condition. The data collection of the control 

algorithm automatically paused at the end of the harvest period time awaiting operator 

intervention and instructing the operator to harvest. During this pause, the ATS was 

harvested by the operator. Typically the harvest was performed within 12 hours of the 

initiation of the pause in data acquisition.  
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ATS Operation 

For all automated ATS trials, the light diurnal was set via timer to 16 hour light/8 

hour dark cycle. Also, each ATS was operated as previously described (Chapters 2 and 

3), with daily nutrient feed additions and distilled water additions as necessary to make 

up for evaporative losses. For each ATS, the nutrient feed addition was automated using a 

peristaltic pump on a timer, set to activate daily approximately 1 hour before the end of 

the dark period of the diurnal light cycle. For this, the necessary volume of feed solution 

for the following day‘s feeding requirement was placed into a plastic jug into which a 

tube from the feed pump was inserted, and the other end of this feed tube was placed 

inside the ATS reservoir just above the water surface.  

Harvest Procedures 

For each harvest performed at the end of each harvest cycle, the following 

procedures were followed in this order. First, samples of algae were taken from three 

places haphazardly chosen on the ATS bed; these samples were placed in process water 

in 50-ml plastic vials and placed in cold (4 C) storage for later taxonomic analysis. All 

pumps were then turned off and the ATS bed was allowed to drain. Water samples were 

taken from the reservoir, some of which were used for immediate nitrate analyses and 

some were placed in cold storage for later pH-IC titration analyses. Nitrate analysis was 

performed with Reflectoquant nitrate strips (EM Science, Gibbstown, NJ). Algae biomass 

was then harvested by first scraping all algal biofilm from the dump bucket, and then 

removing all algal biomass and dump bucket scrapings from the ATS bed and screen 

using a wet-dry vacuum. 
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Following harvest of the algal biomass from the ATS bed, approximately one-

third of the water in the reservoir was wasted and replaced with fresh distilled water. This 

was performed to maintain relatively constant water chemistry over time and to prevent 

the excessive buildup of constituents in the water to levels potentially deleterious to algal 

growth. On the day of harvest for that harvest period, the nutrient feed was input into the 

reservoir at the time of distilled water addition. Following this, the calibration of the pH 

probe in the ATS reservoir was checked. Power was reactivated to the bank of pumps, 

and the data acquisition and control program was reinitialized, whereupon any automated 

changes in pump activation state were performed.  

Algae processing 

After harvest, the algae/water suspension in the vacuum was decanted into a 1.5-

mm polyethylene mesh filter bag inside a bucket; the water was allowed to pass through 

the filter mesh, retaining a majority of the algae filaments in the bag. The algal biomass 

in the bag was gently squeezed and pressed by hand to remove excess water (which was 

collected into the bucket), and spread flat on a rack in front of a fan for air-drying. The 

water was kept in the bucket for 24 to 48 hours to allow floating particulates to settle. 

After settling, the supernatant water was siphoned off the top, and the remaining sludge 

was spread out in a shallow pan, placed in front of the fan, and allowed to air dry. Drying 

typically required between 24 to 48 hours. Upon air drying, the biomass harvested from 

the screen and from the harvest water were combined and weighed with a balance. 

Numbers were reported as the total biomass produced for that harvest period. Samples 

were taken periodically from the biomass harvests for oven-drying to calculate the 
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average per cent moisture for all samples. Samples were also taken periodically for 

ashing to calculate the average per cent ash for all samples. 

Recorded data 

The data collected for all trials and recorded to the data logging computer 

comprised the following: 

 Timestamp (indicating date and time); 

 Time elapsed since program start (in seconds); 

 Harvest cycle elapsed since program start; 

 Measured pH level; 

 Calculated IC concentration (in ppm); 

 Average rate of change in IC concentration in past timestep; 

 Calculated change in IC concentration based on average rate of change; 

 Cumulative negative change in IC concentration this harvest period; 

 On/off state of pump 1 in most recent time step; 

 On/off state of pump 2 in most recent time step; 

 On/off state of pump 3 in most recent time step; 

 Pump State of most recent time step. 

Data Analysis 

Analysis of the data entailed plotting the Pump State and the net carbon 

productivity (NCP) associated with that Pump State versus harvest cycle. The trend in 
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Pump State over repeated cycles and NCP were qualitatively assessed for directional 

trends for finding the expected state. The expected state was derived from the predicted 

maximum NCP within the range of flow rates (that is, Pump States) as determined in the 

subsidy stress experiments (Chapter 3). For both types of nutrient feed used (undigested 

dairy manure and Bristol‘s medium), the maximum NCP was expected to be seen at a 

flow rate between 5 and 25 lpm (wave surge frequencies of 0.3 and 2.7 min
-1

, 

respectively; see Figure 3.10, page 103), corresponding to a Pump State between 0 and 2, 

respectively (see Table 5. 2, page 189). Also, for all trials, the NCP was plotted versus 

biomass production rate; linear regression analysis was performed on NCP versus 

biomass production rate to examine the correlation between the two. One might expect 

the NCP and biomass production rate to correlate, as the integration of NCP (the total 

amount of carbon fixed by the photosynthetic community minus that respired by 

heterotrophic community) over the harvest period should predict the biomass yield. 

The algae samples were identified and keyed to the genus level. The relative 

abundance of the three major genera of algae (Rhizoclonium, Microspora, and 

Oscillatoria) were calculated and plotted versus day of operation for the autonomously 

controlled ATS units. Mean relative abundance was calculated for each of the 

autonomously controlled ATS units and compared to the mean relative abundance 

calculated for ATS units similarly operated but not on autonomous control. 

Trials 

Each automated scrubber trial was allowed to operate as long as possible to 

ensure the completion of as many harvest cycles as possible. A harvest cycle was defined 

as the time period from one harvest to the next, as set by the user-delineated ―Harvest 
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Period‖ parameter in the control program. A trial is defined here as a set of harvest cycles 

on one individual automated ATS for which all operating conditions (light, nitrogen 

loading rate) are constant except the flow rate being changed by the automated program. 

Three different ATS units were used to perform a total of 16 different trials of the 

automated control system. The trials were conducted as exploratory investigation to 

elucidate the operating parameters of the system, establish the operational protocols for 

the system, and experiment with different nutrient feed sources. The parameters that were 

modified through this exploration included the nutrient feed type, the nitrogen loading 

rate, the harvest period, the measurement tolerance on productivity, and the starting 

Pump State. A summation of trials and their defining parameter values are shown in 

Table 5. 4. 



 

 

Table 5. 4. List of physical tests of the automated ATS system.   

ATS 

No. 
Test No. Dates Feeda 

Mean 

NLRb  (g 

N d-1) 

Harvest 

period (d) 

Toler-

ancec 

Starting Pump 

State/Flow 

rate (lpm) 

 

Notes 

1 

1-1 11/20/07 - 12/1/07 M 0.7±0.0 7 5 7/140 Initiating test of system 

1-2 12/1/07 - 2/2/08 M 0.8±0.2 5 5 7/140 System reprogrammed with signal filtering 

1-3 2/3/08 - 3/3/08 U 1.2±0.3 4 5 3/60 Test of alternate feed solution 

1-4 3/4/08 - 3/18/08 MG 0.7±0.3 4 5 3/60 

Test of second alternate feed solution 

1-5 3/29/08 - 4/18/08 MG 0.9±0.2 4 5 3/60 

1-6 5/30/08 - 6/23/08 B 0.7±0.1 4 1 7/140 Test of third alternate feed solution 

1-7 6/25/08 – 9/3/08 B  0.6±0.1 4 1 3/60 
Continuation of prior run with minimization convention 

reprogrammed 

5 

5-1 4/18/08 - 4/23/08 MG 0.8±0.0 4 5 7/140 

Test of alternate feed solution at high flow initiating Pump 

State. 
5-2 4/23/08 - 5/2/08 MG 0.8±0.2 4 5 7/140 

5-3 5/2/08 - 6/3/08 MG 0.8±0.3 4 5 7/140 

7 

7-1 4/18/08 - 4/23/08 B 0.4±0.0 4 5 0/2 Test of third alternate feed solution at low flow rate 

7-2 4/23/08 - 5/2/08 B 0.4±0.03 4 5 0/2 Restart of prior trial. 

7-3 5/2/08 - 6/23/08 B 0.8±0.2 4 5 1/20 Continuation of prior trial 

7-4 6/25/08 – 9/3/08 B  0.6±0.1 4 0.5 4/80 
Continuation of prior trial with minimization convention 

reprogrammed 

Notes: (a) Feedstocks used: ―M‖, raw dairy manure; ―U‖, urea-phosphate solution mix; ―MG‖, Miracle-Gro solution; ―B‖, modified Bristol‘s solution; (b) ―NLR‖ is the nitrogen 

loading rate (mean ± standard deviation); (c) ―Tolerance‖ is the equivalence tolerance for successive measurements of productivity; that is, the algorithm assumes P i = Pi-1 when 

|Pi – Pi-1| < T, where Pi is the productivity measured at time ti, and T is the tolerance (in ppm IC). 
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Results 

Overview 

Results of all the trials performed in the physical testing of the control algorithm are 

shown in Table 5. 5. Most trials were run for only a few cycles because of various failure 

reasons, yielding a catalog of possible failure scenarios and pitfalls for operation of such a 

system. The high number of trials that ended in failure is reflective of the exploratory nature of 

this set of experimental trials. The failure scenarios can be categorized into three types: 

programming errors (trials 1-1, 1-6, and 7-3), power failures or mechanical errors (trials 5-1, 7-1, 

and 7-2), and feedstock ―instability‖ errors (trials 1-3 to 1-5, 5-1 to 5-3). The programming errors 

were generally expected as part of the debugging process for new programs and amounted to the 

incorrect application of the minimization convention (trial 1-6) or running of the algorithm from 

a saved set of data rather than real-time monitoring data (trial 7-3). Power or mechanical errors 

were typically the result of power spikes or failures, due to laboratory electrical problems, that 

would cause errant pH measurements (for example, in Trials 1-1 and 7-2). Nutrient feed errors 

were particular to the individual feed type. When manure was used as the nutrient feed, there was 

concern that the feed was variable through time and thus affecting the veracity of the pH-IC 

titration curves (e.g., Trials 1-1 and 1-2). When urea was the nutrient feed, the main concern was 

that the algae were not growing, exhibiting very low biomass production numbers for this trial 

(Trial 1-3). When Miracle Gro
®
 was the nutrient feed (Trials 1-4, 1-5, and 5-1 to 5-3), the pH 

level in the ATS reservoir often showed considerable instability, often dropping below 7.0 and 

seeming to impact the growth of the algae. It was observed that this would often happen if excess 

nitrogen was supplied, following which an increase in nitrate concentration in the reservoir was 

noted. 



 

 

Table 5. 5. List of physical tests and results of the automated ATS system.   

ATS and  

Test No. Dates Feeda 

Mean 

NLRb  (g 

N d-1) 

Harvest 

period 

(d) 

Toler-

ancec 

Starting 

Pump 

State 

Cycles 

com-

pleted 

Success or 

Failure? 

 

Notes 

1 

1-1 11/20/07 - 12/1/07 M 0.7±0.0 7 5 7 5 F 
Errant pH signals from electrical noise; some 

measurement cycles only 1 day long. 

1-2 12/1/07 - 2/2/08 M 0.8±0.2 5 5 7 10 S 
New program eliminating errant pH signal, but no 

minimization convention. 

1-3 2/3/08 - 3/3/08 U 1.2±0.3 4 5 3 5 F Algae did not grow with this feedstock. 

1-4 3/4/08 - 3/18/08 MG 0.7±0.3 4 5 3 3 F 
Instability in pH with this feedstock; low pH 

necessitated amendment with NaOH. 

1-5 3/29/08 - 4/18/08 MG 0.9±0.2 4 5 3 5 F 
Instability in pH with this feedstock; low pH 

necessitated amendment with NaOH. 

1-6 5/30/08 - 6/23/08 B 0.7±0.1 4 1 7 5 S 
Adequate run, although minimization convention 

not applied correctly. 

1-7 6/25/08 – 9/3/08 B  0.6±0.1 4 1 3 11 S 
Successful continuation of previous run with 

minimization convention applied correctly. 

5 

5-1 4/18/08 - 4/23/08 MG 0.8±0.0 4 5 7 1 F 
Two-day power outage shut off lights and 

compromised pH diurnal. 

5-2 4/23/08 - 5/2/08 MG 0.8±0.2 4 5 7 2 F 
Instability in pH with this feedstock; low pH 

necessitated amendment with NaOH. 

5-3 5/2/08 - 6/3/08 MG 0.8±0.3 4 5 7 6 F 
Instability in pH with this feedstock; low pH 

necessitated amendment with NaOH. 

7 

7-1 4/18/08 - 4/23/08 B 0.4±0.0 4 5 0 1 F 
Two-day power outage shut off lights and 

compromised pH diurnal. 

7-2 4/23/08 - 5/2/08 B 0.4±0.03 4 5 0 2 F Power outage invalidated second half of data. 

7-3 5/2/08 - 6/23/08 B 0.8±0.2 4 5 1 10 S/F 
Continuation of previous file; decisions being made 

from saved data rather than real-time. 

7-4 6/25/08 – 9/3/08 B  0.6±0.1 4 0.5 4 11 S 
Successful test of new algorithm with corrected 

minimization convention. 

Notes: (a) Feedstocks used: ―M‖, raw dairy manure; ―U‖, urea-phosphate solution mix; ―MG‖, Miracle-Gro solution; ―B‖, modified Bristol‘s solution; (b) ―NLR‖ is the nitrogen 

loading rate; error is standard deviation; (c) ―Tolerance‖ is the equivalence tolerance for successive measurements of productivity; that is, the algorithm assumes Pi = Pi-1 when |Pi 

– Pi-1| < T, where Pi is the productivity measured at time ti, and T is the tolerance in ppm IC. 



 

201 

 

Results by individual trial 

The trials discussed here are representative of those that exhibited dynamic 

behavior in a way that was expected and thus can be considered as having moderate 

success, or they are representative of a typical failure situation. Not all the trials are 

discussed, as some were failures because of bugs in the program or because of 

mechanical failures of the ATS units in the lab.  

Trial 1-2: The Launch 

Trial 1-2 can be considered as the inaugural trial that first exhibited the dynamics 

of the control algorithm in response to a physical system. The trial was performed from 

12/1/07 to 2/2/08, using undigested dairy manure as the nutrient feed at a nitrogen 

loading rate of 0.8±0.2 g N m
-2

 d
-1

. It was operated using a harvest period of 5 days, and 

completed a total of 10 cycles starting from a Pump State of 7 (Figure 5. 3). During its 

operation, the Pump State decreased steadily through 7 cycles to Pump State 0, and the 

measured net carbon productivity (NCP) at each cycle was either the same or greater than 

the prior cycle. Overall, the Pump State was directed to and remained in lower values (0 

or 1) by the end of the trial.  

An excessive value for the NCP was measured at cycle 6 (Figure 5. 3), likely due 

to errant pH measurements because of signal noise. The trial, however, exhibited an error 

or ―bug‖ in the program: whereas the NCP at cycle 7 was less than that at cycle 6, the 

Pump State did not change in the other direction in cycle 8, as would be expected. Also, 

when the Pump State was at 0, it should have increased to 1 by the default ―rebound‖ 

convention included in the algorithm with the intention to always destabilize the 
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algorithm from possible attractor states. This exhibits that there were errors in the 

algorithm programming that was corrected in later versions of the control program. 
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Figure 5. 3. Pump State and average net carbon productivity (NCP) versus cycle from Trial 1-2. 

A comparison of the measured average NCP versus the biomass production rate, 

with the errant NCP at cycle 6 removed because of measurement error (Figure 5. 4), 

showed no correlation (R
2 

= 0.0115) with a slope that was not significantly different than 

zero (F(1,9) = 0.105, p = 0.753).  

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

y = 0.0078x+0.5821

R2 = 0.0115

Biomass Production Rate (g DW m
-2

 d
-1

)

N
C

P
(g

 C
 m

-2
 d

-1
)

 

Figure 5. 4. Net carbon productivity (NCP) versus biomass production rate for Trial 1-2, showing no 

correlation between productivity and biomass production. 
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Trials 1-6 and 1-7: A new recipe 

Trial 1-6 was stopped for algorithm and system maintenance, and trial 1-7 was 

started at the Pump State where trial 1-6 left off; hence, results from trials 1-6 and 1-7 can 

be combined and treated as the same trial run. Trial 1-6 was performed from 5/30/08 to 

6/23/08, and trial 1-7 was performed from 6/25/08 to 9/3/08, using modified Bristol‘s 

solution as the nutrient feed at a nitrogen loading rate of 0.6 ± 0.1 g N m
-2

 d
-1

. The trials 

were operated at a harvest period of 4 days, and completed a total of 16 cycles (5 for 

Trial 1-6 and 11 for Trial 1-7) starting in Trial 1-6 from a Pump State of 7 (Figure 5. 5). 

During its operation, the Pump State decreased steadily through 4 cycles as measured 

NCP increased at each subsequent cycle. As a demonstration of the minimization 

convention, the Pump State continued to decrease from cycle 4 to cycle 5 as the NCP for 

cycle 4 was approximately the same as the previous cycle. A significant decrease in the 

measured NCP for cycle 5 at Pump State 2 (compared to cycle 4 at Pump State 3) 

initiated a change in direction of Pump State increments, as expected. This dynamic 

continued through the extent of the trial, as the Pump State continues to vacillate yet 

showed a general decrease from Pump State 7 to Pump State 2 after 15 cycles. 
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Figure 5. 5. Pump State and average net carbon productivity versus cycle for combined Trials 1-6/1-

7. 

A comparison of the measured average NCP versus the biomass production rate 

(Figure 5. 6) for the combined data of trials 1-6 and 1-7 showed low positive correlation 

(r
2 

= 0.267) with a slope that is significantly non-zero (F(1,14) = 5.308, p = 0.0371).  
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Figure 5. 6. Net carbon productivity (NCP) versus biomass production rate for combined Trials 1-

6/1-7. 

Trial 5-3: A trial with inorganic feed 

Trial 5-3 can be considered as representing a typical failure condition, as the 

inorganic feed used in this trial created unstable pH chemistry in the reservoir water, 
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unrelated to the metabolism of the algal turf, that affected the outcome of the control 

algorithm. The trial was performed from 5/2/09 to 6/3/09, using Miracle Gro
®
 solution as 

the nutrient feed at a nitrogen loading rate of 0.8 ± 0.3 g N m
-2

 d
-1

. It was operated at a 

harvest period of 4 days, and completed a total of 6 cycles starting from a Pump State of 

7 (Figure 5. 7). During its operation, the Pump State decreased steadily through 7 cycles 

to Pump State 0, and the measured net carbon productivity (NCP) at each cycle (except 

for the final cycle) was either the same or greater than the prior cycle. In this trial, the 

NCP increased at every cycle except the last. The Pump State continued on its trajectory 

(decreasing) at each cycle, and the trend in the Pump State was downward for the entire 

trial.  
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Figure 5. 7. Pump State and average net carbon productivity (NCP) versus cycle for Trial 5-3. 

A comparison of the measured average NCP versus the biomass production rate 

(Figure 5. 8) for Trial 5-3 shows high correlation (R
2 

= 0.9024) with a slope that is 

significantly non-zero (F(1,4) = 36.67, p = 0.0038).  
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Figure 5. 8. Net carbon productivity (NCP) versus biomass production rate for Trial 5-3. 

Trial 7-4: Bristol‘s solution 

Trial 7-4 can be considered as representing as close to successful algorithm 

operation on a physical system as was attained in this set of trials. The trial was 

performed from 6/25/08 to 9/3/08, using Bristol‘s modified solution as the nutrient feed 

at a nitrogen loading rate of 0.6 ± 0.1 g N m
-2

 d
-1

. It was operated at a harvest period of 4 

days, and completed a total of 11 cycles starting from a Pump State of 4 (Figure 5. 9). 

During its operation, the Pump State trended towards lower Pump States. The measured 

net carbon productivity (NCP) varied at each cycle, but there was a general lower trend in 

NCP in later cycles.   
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Figure 5. 9. Pump State and average net carbon productivity (NCP) versus cycle for Trial 7-4. 

A comparison of the measured average NCP versus the biomass production rate 

(Figure 5. 10) for the combined data of trials 7-3 (for which data were collected but not 

used by the algorithm to make Pump State change decisions) and 7-4 showed low 

positive correlation (R
2 

= 0.267) with a slope that is significantly non-zero (F(1,24) = 

8.603, p = 0.0073). The two lowest biomass production rate values may skew this 

analysisk, however, and removal of these from the regression analysis as possible outliers 

results in no correlation (R
2
 = 0.0458) with a slope that is not significantly different than 

zero (F(1,22) = 1.057, p = 0.315).  
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Figure 5. 10. Net carbon productivity (NCP) versus biomass production for Trials 7-3/7-4. 

The combined data set of trials 7-3 and 7-4 provides a large enough sample size 

(n=24) to investigate the effects of different Pump States on the productivity. A mean and 

standard error of NCP measured at different Pump States shows a slight maximum at 

Pump State 2, with decreasing values for higher and lower Pump States (Figure 5. 11). 

An analysis of variance revealed no significant difference (F(2,21) = 0.672; p = 0.52; R
2
 

= 0.061) between the mean NCP for any Pump States.  
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Figure 5. 11. Mean and standard error of net carbon productivity (NCP) versus Pump State for trials 

7-3 and 7-4. 
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The mean and standard error of the biomass production rate for the combined 

trials 7-3 and 7-4 measured at different Pump States shows a slight maximum at Pump 

State 4 and a decreased value a Pump State 1 (Figure 5. 12). An analysis of variance 

revealed no significant difference (F(2,21) = 2.326; p = 0.12; R
2
 = 0.183) between the 

mean biomass production rate for any Pump States.  
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Figure 5. 12. Mean and standard error of biomass production rate versus Pump State for trials 7-3 

and 7-4. 

Cumulative means and standard errors of trials 

The cumulative means and standard errors of the Pump State were calculated for 

the trials that showed moderate success in exhibiting control behavior (trial 1-2, trial 1-

6/1-7, and trial 7-4). These results are given in Table 5. 6.  

Table 5. 6. Number of cycles, cumulative mean, and cumulative standard error for successful phyical 

trials of the automated control system for the ATS units. 

Trial number Total cycles Cumulative Mean of 

Pump State 

Cumulative Standard Error 

of Pump State 

1-2 10 2.50 0.71 

1-6/1-7 15 3.75 0.36 

7-4 12 1.88 0.27 
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These results were plotted on the cumulative mean and cumulative standard error 

versus cycle number plots that were developed using virtual data sets in Chapter 4 

(Figure 4.6 and Figure 4.9, pages 170 and 173, respectively) as a means of comparison to 

expected outcome. Only the results from virtual data sets representing a subsidy-stress 

distribution (Figure 4.2A) and a flat distribution (Figure 4.2B) of net carbon productivity 

versus Pump State are used for comparison, as it was expected that results of the physical 

experiments would follow one of these two distributions. Results for this analysis for the 

cumulative mean of Pump State versus cycle are shown (Figure 5. 13). For all three trials, 

the cumulative mean of the Pump State fell within the bounds of the expected Pump State 

for the high input variance conditions for both the subsidy-stress input distribution 

(Figure 5. 13A) and the flat distribution (Figure 5. 13B). Only trial 1-2 falls within the 

bounds of the expected value for the low input variance conditions on the subsidy-stress 

input distribution (Figure 5. 13A). 
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Figure 5. 13. Cumulative mean for physical autonomous trials compared against virtual results 

generated for (A) a subsidy-stress distribution and (B) a flat distribution of net carbon productivity 

versus Pump State for low and high values of input variance. Error bars represent standard 

deviation of the expected state based on uncertainty resulting from the initial Pump State.  

Results for this analysis for the cumulative standard error of Pump State versus 

cycle are shown (Figure 5. 14). For two trials (1-6/1-7 and 7-4), the cumulative standard 

error of the Pump State fell within the bounds of the expected Pump State for the high 

input variance conditions for the subsidy-stress input distribution (Figure 5. 14A), and 

only one trial (trial 7-4) fell within the bounds of the expected solution of the flat 

distribution (Figure 5. 14B). The standard error of Trial 1-2 falls well outside the bounds 

of the expected value for all input variance conditions on both input distributions (Figure 

5. 14A and B). 
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Figure 5. 14. Cumulative standard error for physical autonomous trials compared against virtual 

results generated for (A) a subsidy-stress distribution and (B) a flat distribution of net carbon 

productivity versus Pump State for low and high values of input variance. Error bars represent 

standard deviation of the expected state based on uncertainty resulting from the initial Pump State. 

Algal Species Relative Abundance in Autonomous Systems 

The relative abundances of the various algal species were plotted versus day of 

operation for the autonomously controlled ATS units 1 and 7 to look for trends related to 

their operational conditions (Figure  5. 15 and Figure  5. 16). These data are a subset of 

the relative abundance data presented in Chapter 3 (Figure 3.21, page 125). For ATS unit 

1 (Figure  5. 15), there is no obvious trend throughout the entire time period, although 

near the end of the trial there is an apparent decline in Microspora and Rhizoclonium and 

an apparent increase in other species. ATS unit 7 (Figure  5. 16) shows a similar pattern, 
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with Oscillatoria and other species increasing and Microspora and Rhizoclonium 

decreasing.  

 

Figure  5. 15. Relative abundance of various algal genera versus day for ATS unit 1 while operating 

under the automated system and Bristol’s nutrient medium. 

 

Figure  5. 16. Relative abundance of various algal genera versus day for ATS unit 7 while operating 

under the automated system and Bristol’s nutrient medium. 
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The mean relative abundance of each of the dominant algal species was calculated 

for all ATS units operating under Bristol‘s medium, which included those under standard 

operating conditions at various set flow rates and those under autonomous control 

operating conditions. Results are shown in Figure  5. 17. The algae Rhizoclonium showed 

the highest mean relative abundance in ATS unit 2 operating at a flow rate of 25 lpm, 

which also showed the lowest relative abundance of other species. Rhizoclonium and 

Oscillatoria had the lowest mean relative abundance in ATS unit 4 operating at a flow 

rate of 1 lpm, which also had the highest relative abundance of other algal species. ATS 

units 1 and 7 operating under autonomous control were both dominated by Rhizoclonium 

at a measured relative abundance that was similar to those measured for the ATS units 

operating under standard conditions. The distribution of abundance in autonomous ATS1 

and ATS7 resembled most closely those observed in ATS1 operating under standard 

conditions at a flow rate of 125 lpm.  
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Figure  5. 17. Mean relative abundance for algal genera in ATS units under standard and 

autonomous operation. All units operated under similar nitrogen loading rates using Bristol's 

medium. 

The aggregated mean of relative abundance for the various species were 

calculated for the standard and autonomous operational modes and compared to each 

other (Figure  5. 18). Results show that there is no apparent difference in the relative 

abundance of the various algal genera between standard and autonomous operation. From 

standard to autonomous operation, there is a slight rise in the mean relative abundance of 

Oscillatoria and a slight decline in the mean relative abundance of other algal genera. A 

student‘s t-test was performed for each of the species comparing the mean relative 

abundance between standard and autonomous operational modes. In no case were the 

means significantly different (Table 5. 7). 
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Table 5. 7. Results of t-tests for cumulative mean and SEM of relative abundances of various algal 

genera for autonomous and standard operating modes. 

Algal 

Genus 

Autonomous Standard 
t Df P 

µ SEM n µ SEM n 

Osc 0.140 0.0278 22 0.0928 0.0353 12 1.032 32 0.310 

Rhiz 0.506 0.0330 22 0.495 0.0638 12 0.1788 32 0.859 

Micro 0.242 0.0298 22 0.254 0.470 12 0.2215 32 0.826 

Other 0.111 0.0253 22 0.158 0.343 12 1.099 32 0.280 
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Figure  5. 18. Aggregated mean relative abundance for algal genera in ATS units under standard and 

autonomous operation. All units operated under similar nitrogen loading rates using Bristol's 

medium. 

Discussion 

Evolution and display of the seeking behavior  

The operation of the control system employing the seeking algorithm operated as 

expected when programming bugs and operational protocols were worked out. The 

algorithm focused on seeking the lowest possible Pump State for the highest measured 

productivity, the convention of minimization of pump state programmed into the 

algorithm. This was shown in the operation of many of the operational trials considered 

as successful. For example, for Trials 1-6 and 1-7 (Figure 5. 5, page 204), the operation 

of the algorithm, throughout the trace of the Pump State versus cycle, exhibited the 
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expected behavior in all cases: it maintained the direction of Pump State increment as 

NCP was found to increase (for example, cycles 1, 2, and 3); reduced the Pump State 

when NCP was found to stay the same (for example, cycle 4 to 5); and changed the 

direction of Pump State increment when NCP was found to decrease (for example, cycle 

5 to 6). After numerous cycles, the Pump State in general decreased as a result of the 

algorithm‘s minimization convention.  

Another nearly successful trial of the control algorithm was exhibited in Trial 7-4 

(Figure 5. 9, page 207). In this trial, the Pump State started at state 4, and over the next 11 

cycles it circulated around the middle and low Pump States but trending towards lower 

Pump States. The NCP also varied, which explains the variation in Pump States. The 

variation in NCP was not entirely explained by the Pump State, however—for example, 

the peak at cycle 4 was higher than any other NCP. There also appears to be a general net 

trend downward in NCP over time, where one would expect the system to converge on 

the highest NCP within the range of Pump States. This trial therefore exhibited the action 

of the minimization convention, where the NCP at successive states fell within the 

tolerance for measurement error. The reduction in NCP over successive cycles was 

possibly the result of some other factor (either limiting or a pollutant) that had 

accumulating effects over time that was not measured. 

The algorithm was demonstrated to be susceptible to failure situations resulting 

from ―false‖ interpretations of input data. An example of this was observed in trial 5-3, 

where the average NCP increased at almost every cycle and Pump State change (Figure 

5. 7, page 205). These are, however, false readings of NCP, as increasingly large 

fluctuations in pH level were created because of acidification of the reservoir 
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(presumably because of nitrification of excess mineral nitrogen in cycles that were 

overfed) and subsequent pH increase through the manual addition of sodium hydroxide. 

The large fluctuations in pH contributed to the increased measured change in inorganic 

carbon (IC) for each diurnal cycle. This was attributed incorrectly by the automated 

system to algal primary productivity, when a majority of the pH changes were 

attributable to the pH increases caused by the sodium hydroxide amendments. The 

resulting effect on algorithm operations on Pump State was the steady decrease in Pump 

State (Figure 5. 7) as the NCP measured at each subsequent cycle was greater than the 

last because of ever-increasing pH swings due to acidification and NaOH chemical 

amendment. This was also evident in the strong negative correlation between biomass 

and NCP for Trial 5-3 (Figure 5. 8, page 206), explained by the reduced biomass 

production along with increased swings in pH level created chemically from NaOH 

addition. The hypothesized mechanism by which this occurs is as follows: when the algal 

community is stressed, it exhibits less than ideal growth rates, and thus does not 

completely uptake all the ammonia nitrogen from the water column. With excess 

ammonia nitrogen in an aerobic environment, nitrification occurs, causing acidification of 

the water in the reservoir. This more acid environment further stresses the algae and 

restricts its growth, a positive feedback loop that further prevents the uptake of ammonia-

N into the algal biomass. Operator interference to correct the increasingly acid aquatic 

environment, by way of amendment with sodium hydroxide, caused large sudden 

increases in pH that the monitoring program interpreted as a sudden decrease in dissolved 

inorganic carbon and thus registered as a spike in productivity. In this way, the largest 

measured NCP was associated with the lowest biomass production, and the Pump State 
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change decisions were made from false information. Overall, the algorithm was shown to 

operate sufficiently on a physical system but was susceptible to errors, false readings, and 

general measurement noise on the input data. Further development of the algorithm might 

entail more smoothing and noise reduction of the pH diurnal signal; assessment of the 

veracity of productivity values in relation to those expected, based on past performance; 

and improvement of the fidelity and accuracy of productivity measurements. 

A way to visualize the ability of the algorithm to converge on a solution is to 

generate a phase plot of net carbon productivity or biomass production rate versus pump 

state. Further, if these data are used to calculate the power of each of these processes, 

then the phase plots give an indication of a type of efficiency of the system. This type of 

efficiency—termed the transformity of the of the bioproduction—is thought to trend 

towards a minimum value in a self-organizing system (Odum 1996). The calculation of 

the power of the various components focuses on accounting for the energy inputs to the 

system (lights, turbulent flow energy, nutrients, human intervention) and the 

bioproduction outputs from the system. 

The net energy inputs to the ATS technoecosystem include the lights, turbulent 

energy, nutrients, human intervention, and material/matter support infrastructure. 

Because all ATS units were identical in construction and operation during the 

autonomous experiments and thus the power in the turbulent flow in the ATS bed was the 

only energetic variable changing throughout, only the power of the flow for each Pump 

State need be calculated for use in the phase plots. The total power of the turbulent water 

environment (ET) is equal to the sum of the power of the base flow rate (Ef) and the 

energy of the wave surge (Ew): 
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The power of the base flow rate is a function of the water velocity, density, and the cross-

sectional area of the flow. This can be derived from the equations of the kinetic energy of 

motion (E = ½ mv
2
) and may be expressed as follows: 

 

where     ρ =  density of water (1000 kg m
-3

) 

    A = cross-sectional area of flow (1 m wide by 0.015m deep) 

    v = velocity of flow (estimated at 0.2 m s
-1

) 

The power of the wave surge turbulence can be calculated as a function of the 

density of water, average wave height, and frequency of the wave surge (Phillips 1977), 

and may be expressed as follows: 

 

where 

    ρ =  density of water (1000 kg m
-3

) 

    g = acceleration of gravity (9.8 m s
-2

) 

    a = average wave height (estimated at 0.075m) 

    f = frequency of wave (varies for volumetric flow rate) 

For the ATS process, estimates for the parameters of the flow include an average 

water depth of 0.015 m, bed width of 1 m, base flow velocity of 0.2 m s
-1

, and an average 

wave height of 0.075 m. With these parameters, the power for each of the Pump State can 



 

221 

 

be calculated (Table 5. 8) and show that the power delivered is linearly related to the 

Pump State as a result in the linear increase in wave surge frequency (Figure 5. 19). 

Table 5. 8. Total power calculated per second and per day for the flow condition at each Pump State. 

Pump state Flow rate (lpm) f (min
-1

) 

Total energy ET  

(Ef + Ew)      

(J m
-2

 s
-1

) 

Total energy ET  

(Ef + Ew)      

(J m
-2

 d
-1

) 

0 1 0.09 0.621 5.36E+04 

1 20 1.8 1.393 1.20E+05 

2 40 3.6 2.206 1.91E+05 

3 60 5.5 3.019 2.61E+05 

4 80 7.3 3.832 3.31E+05 

5 100 9.1 4.646 4.01E+05 

6 120 10.9 5.459 4.72E+05 

7 140 12.7 6.272 5.42E+05 
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Figure 5. 19. Total power, a combination of that from the wave surge and and base flow velocity, for 

each Pump State. 

The power of bioproduction in the ATS can be calculated from the measurements 

of the biomass production rate, using the energetic equivalence relationships of 4 kcal g
-1

 

of dry weight of biomass (Odum 1996). These calculations were applied to the biomass 

production rate and corresponding pump state for each of the autonomous experiment 
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trial runs, and the results were plotted as phase plots of the power of bioproduction versus 

the power of the Pump State. The results for Trial 1-2 (Figure 5. 3, page 202) were 

recalculated as the power of bioproduction and plotted versus power of Pump State. 

These results (Figure 5. 20) show that the pump state converges towards an attractor state 

where bioproduction is maximized for the lowest possible Pump State. 
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Figure 5. 20. Power of biomass production versus power of Pump State for Trial 1-2. 

This analysis was performed on the results from other trials that were deemed as 

successful (Trial 1-6/7, Figure 5. 5, page 204, and Trial 7-4, Figure 5. 9, page 207), and a 

similar pattern of convergence is seen for each (Figure 5. 21 and Figure 5. 22). 



 

223 

 

0 2.0×105 4.0×105 6.0×105

0

5.0×104

1.0×105

1.5×105

2.0×105 Biomass production

Start

Power of Pump State (J m
-2

 d
-1

)

Power of
Production

(J m
-2

 d
-1

)

 

Figure 5. 21. Power of biomass production versus power of Pump State for combined Trials 1-6/1-7. 
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Figure 5. 22. Power of biomass production versus power of Pump State for Trial 7-4. 

In each of these trials, results show a converence on the lowest power of Pump 

State as the power of the bioproduction of the system circulates around and approaches a 

maximum. The visualization of the ratio of the power of pump state to the power of 

bioproduction is analogous to the transformity of the bioproduction, that is, the amount of 
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pumping energy required to produce a certain amount of bioproduction energy (Odum 

1996). In each of these trials, the state of the system is attracted around a similar ratio of 

pump power to production. Each of these plots indicates that the autonomous system 

seeks a state of lower transformity, but the circulation around an attractor state indicates 

that it reaches a threshold in that seeking process. This would seem to support the 

contention that, in the organization of complex systems, self-organization seeks the 

maximum empower and leads to a thermodynamic minimum for the transformity of an 

energy storage, in this case, the energy embodied in the algal biomass (Odum 1996). 

Difficulties and challenges with system implementation 

In many of the trials, it was observed that the correlation between NCP and 

biomass production rate was low throughout the autonomous trials. The trial with the 

highest correlation between NCP and biomass production was Trial 5-3 (Figure 5. 8, page 

206; r
2
 = 0.9024), but it was determined that this was based on the false values of NCP 

interpreted from user manipulation of the reservoir pH through NaOH amendments in 

times of deleteriously low pH levels. The next highest correlation between NCP and 

biomass was observed in Trial 7-3/7-4 (Figure 5. 10, page 208; r
2
 = 0.267), where 

potential outliers on the low end of biomass production likely skewed the regression 

analysis. Biomass production rates were comparatively low (5 to 10 g DW m
-2

 d
-1

) 

throughout most trials using Bristol‘s medium with no significant difference observed 

between Pump States, however, suggesting the likelihood that the distribution of NCP to 

Pump State under which the physical experiments were operating was closer to a flat 

distribution with large error rather than the presumed subsidy-stress distribution. 
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Throughout the operation of the control algorithm on the physical systems, it was 

observed that the shape and measurement noise of the input distribution (the expected 

relationship between Pump State and NCP) was an important determinant of the behavior 

of the control system, as suggested by the virtual trials explained in Chapter 4. A subsidy-

stress curve of NCP versus Pump State was expected for the operation of the physical 

systems, as predicted by the subsidy-stress experiments (for example, Chapter 3, Figure 

3.8A, page 97) and idealized in the virtual experiments (see Chapter 4, Figure 4.2A, page 

161). It is possible, however, that the distribution of NCP over Pump State more closely 

resembled a flat distribution (Chapter 4, Figure 4.2B, page 161), as suggested by the 

rather flat subsidy-stress relationship determined for ATS units operating under Bristol‘s 

medium at low turbulence levels (Chapter 3, Figure 3.13, page 112). Also, the results of 

the subsidy-stress experiments (Figure 3.13) suggest that the variance on the 

measurements of NCP is rather large compared to the base value of the measurements, 

further supporting the view that the operation of the algorithm in the physical systems 

more closely resembles that in response to a flat input distribution with large input error. 

This is further supported by the mean of NCP and biomass production rate for each of the 

Pump States and the associated ANOVA analyses (Figure 5. 11 and Figure 5. 12, page 

208 and 209, respectively), which indicate a flat relationship between both NCP and 

biomass production and Pump State (at least for those Pump States—0 through 3—for 

which data were available). The analysis of the cumulative means and standard errors 

(Figure 5. 13 and Figure 5. 14, pages 211 and 212), intended to clarify which input NCP-

Pump State distribution was most representative of the operational conditions, was 

inconclusive. All cumulative means of the physical trials fell within the bounds of the 



 

226 

 

standard error of the Pump State for both the idealized subsidy-stress (Figure 5. 13A) and 

flat (Figure 5. 13B) input distributions with high input variance. Comparison of the 

cumulative standard errors of the Pump State from the physical systems trials to those of 

the virtual trials would seem to indicate a closer relationship with the subsidy-stress 

Pump State distribution (Figure 5. 14A) than with the flat distribution (Figure 5. 14B), as 

two of the trials (Trial 1-6/1-7 and Trial 7-4) fell within the bounds of the expected value 

for the former but only one (Trial 7-4) fell within the bounds of the latter. This analysis 

remains inconclusive, however, as there is too much overlap between the expected values 

of the means or the standard errors of the Pump State for the two input distributions 

because of the overall low number of cycles. One would need from 50 to 100 cycles of 

the control algorithm on a physical system to be able to discern the trend in Pump State 

where the metrics of cumulative mean and standard error would yield enough information 

to allow this comparison. 

Other possible failures of the system can point to ways to improve the 

methodology and the overall automated control system. The measured NCP was seen to 

be sensitive to other factors besides bed turbulence (as set by the Pump State). However, 

noise was often generated in the pH signal, and NCP was itself very noisy when 

measurements were of high fidelity. Thus there is a high amount of variation that can be 

expected at any one Pump State. The actions of Pump State changes are thus not 

appreciably different from operating on random input data. Given this amount of 

variation, one would expect a general trend downward in the Pump State because of the 

algorithm‘s minimization convention. Another potential flaw was exhibited by Trial 7-4 

(Figure 5. 9, page 207), which showed a downward trend in NCP throughout many 
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cycles, even though a general increase in NCP was expected as a general result of the 

operation of the algorithm. This may possibly be because of inadequate frequency of pH-

IC titration. The NCP numbers are calculated using the IC titration from cycle 2 near the 

beginning of the trial. Possible changes in water chemistry through time (as certain 

constituents possibly build up in concentration) may cause a drift in the pH-IC 

relationship that was not accounted for here. Finally, the lack of strong correlation 

between biomass production rate and measured NCP is not entirely unexpected; this 

reflected the decoupling of biomass production rate and NCP exhibited in the subsidy-

stress experiments (Chapter 3), and noise in the NCP measurements may outweigh the 

variation seen through the variation of Pump State. 

The relationship between species-level organization and technological feedback 

In the analysis of the relative abundance of species in the autonomous systems, 

there was no signal seen in the mean relative abundance and no significant difference 

seen between autonomously controlled ATS units and the standard operating ATS units. 

ATS units 1 and 7 showed similar mean relative abundances of all measured algal genera 

to ATS unit 1 operating in standard mode at 125 lpm (Figure  5. 17, page 215). These 

values for the autonomously controlled ATS units were also within the middle of the 

range for all ATS units. This explains why there is no significant difference between the 

aggregated mean relative abundance of the automated and standard operating modes 

(Figure  5. 18, page 216). One might expect this, however, due to the change in species 

mix over time (as shown by the trends in Figure  5. 15 and Figure  5. 16, page 213) in 

response to the changes in the energy signature of the ATS system (through the changes 

in the turbulence level), which itself changes in response to change in the net metabolism 
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of the ecosystem. The system affords the opportunity for autocatalytic feedback to occur 

until the system finds an absorbing state, which should include a characteristic mix of 

species ideally adapted to the energy signature incident on the algal turf.  

Despite the lack of significant difference in the relative abundance of species 

between autonomous control and standard operating modes, there is some evidence that 

the autonomous systems were in the process of organizing to a new state that is particular 

to the autonomously controlled technological envelope. For both ATS unit 1 and ATS 

unit 7, an increase in Oscillatoria and other species and a decrease in Rhizoclonium and 

Microspora were observed near the end of the time period of operation under 

autonomous control (Figure  5. 15 and Figure  5. 16, pages 213 and 213). Might 

Oscillatoria and other species be more competitive in the autonomously controlled 

environment? It is possible that some characteristic of the physiology or ecology of 

Oscillatoria  positions it to better utilize the information feedback afforded by the control 

system, allowing this genera to affect change in conditions of the energy signature that 

are most advantageous for it. Indeed, this phenomenon was observed by Cai (2006), who 

observed an increased abundance in acid-secreting blue-green algae in those microcosms 

that developed under automatic control of lights compared to those that did not. 

Additionally, Oscillatoria was already seen to be more competitive at very high or very 

low range of turbulence levels (Chapter 3, Figure 3. 23C, page 128). Through the 

minimization convention programmed into the control algorithm, the control system 

automatically favors the lower end of the turbulence range. One can interpret the overall 

system as the components internal to it, both technological and ecological, are self-

organizing in such a way that the energy signature and ecosystem at the species level are 



 

229 

 

organizing around each other to find the optimum level of operation. This amounts to a 

demonstration of the Maximum Power Principle (Odum and Pinkerton 1955), which 

describes that those subsystems that maximize power—energy use per unit time by the 

ecosystem—within a self-organizing system will be selected for over time.  

Designing biologically-inspired algorithms for further experimentation 

The ATS has been demonstrated to be a technological envelope around an 

ecological system in which the various limiting growth factors of a component of that 

ecosystem can be easily and individually manipulated for experimental purposes. 

Somewhere in the state space defined by the range of all n limiting factors—for example, 

light, nitrogen, and flow turbulence—is a region or regions of intersection where algal 

metabolism is maximized (Figure 5. 23). Within this n-dimensional state space, there 

should exist local maxima as well as a global maximum of the performance of the algal 

turf.  

 

Figure 5. 23. The state space defined by the major limiting factors on the performance of the algal 

turf ecosystem in an ATS. Somewhere within the state space is a region at the intersection of defined 

levels of each factor where the productivity (NPP) of the algal turf is maximized. 
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Searching the state space to find these regions of maxima could require a 

tremendous number of replicates because of the large number of possible combinations of 

setpoint levels for each of the possible limiting factors. An alternate possibility for 

searching the state space is the use of a genetic algorithm, a type of artificial intelligence 

programming that takes biological evolution as its motivation, as it allows for random 

cross-over of characteristics between functional states, random mutation of states, and 

selection of robust states based upon fitness criteria (Hopgood 2001). A basic, 

generalized genetic algorithm flow chart is shown in Figure 5. 24, from which a summary 

of operation can be distilled from (Hopgood 2001). The algorithm requires that a search 

space be defined that includes each condition to be tested (in this case, each of the 

limiting factors). Each point in the search space is coded to be made up of ―genes‖—

values addressing each point in the state space. Each point in the state space is to be 

evaluated for fitness according to a fitness function (in this case, possibly algal 

productivity). Upon randomly generating an initial population of state space points 

(representing various combinations of limiting factor setpoints), the points are evaluated 

according to fitness. Individual states are ―mated‖ by combining portions of their genes, 

where those states evaluated as more fit, through the use of an objective ―fitness‖ 

function, have a higher probability of genetic crossover. Random mutation of states is 

performed with another probability function, and then a new population is generated with 

the new set of states determined by the genes. The loop is iterated until all states 

converge upon an optimum best solution. Using this in an ATS control scenario as 

employed in this research, it might be expected that the state space of all possible 

combinations of limiting factors will converge upon the space of maximum net primary 
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productivity. The genetic algorithm mimics biological processes of evolution and thus 

incorporates a level of autonomy to the technoecosystem design; an algorithm as such 

would exhibit a measure of self-organization in response to the ecological organizational 

processes. The two components would self-organize around each other, in effect attaining 

a minimal level of ‗homeostatic coupling‘ (Odum 1993) that is central to the 

technoecosystem concept. 

 

Figure 5. 24. Flow chart for general genetic algorithm that might be adapted for adaptive 

optimization of ATS productivity via flow rate manipulation (adapted from Hopgood (2001)). 

For adequate performance of a genetic algorithm population of 50 to 500 

replicates is needed (Hopgood, 2001), a prohibitive number for laboratory 

experimentation based upon availability of equipment and operator time. Thus, an 

autonomous ATS scenario employing a genetic algorithm might use a population of 50 

virtual replicates generated using a calibrated systems model developed from that 
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proposed in Chapter 2. In this scenario, each virtual replicate might test a different set of 

light, flow rate, and nutrient loading conditions. Prior to the generation of the new 

population of operating conditions to be tested, a subset of the most fit combinations of 

conditions (based upon the fitness function) can be tested on a number of physical units 

in the laboratory, analyzing for average productivity. The most fit of these physical 

conditions would then be assigned an additional factor modifying and increasing the 

probability function that offspring from that set of conditions will be transferred to the 

new population of conditions. A new population is generated, and the genetic algorithm 

is run again on virtual replicates. This experiment might continue until convergence on a 

set of conditions for the limiting factors is seen. This type of system might also be 

adaptable to changing environmental conditions—for example, changing ambient 

temperatures that might make one algal species more competitive over another and 

affecting the ecosystem metabolism as measured by the pH diurnal. 

Conclusions and Implications 

The following conclusions can be made for this set of experiments: 

 Experiments with the automated control system implemented on a physical ATS unit 

demonstrated that the control system operated as anticipated, seeking the highest net 

carbon productivity (NCP) at the lowest volumetric flow rate.  

 The activity of the control algorithm was strongly dependent on the characteristics of 

the input distribution of NCP to flow rate, to the strength of this relationship, and to 

the variance in the measurement of the controlled parameter (NCP). 

 The ATS technoecosystem did show signatures of convergence, as Pump State was 

minimized over a number of cycles. The system sought the energetic minimum for a 
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maximum level of bioproduction, amounting to a trajectory of development seeking 

the maximum efficiency for the bioproduction process. 

 Each of the autonomously controlled ATS units showed a change in the relative 

abundance of algal species over time favoring the blue-green Oscillatoria over other 

green algal species. 

 

The difficulties observed in operating the system suggest various avenues for 

improvement. For example, while it was expected that the distribution of NCP versus 

Pump State would follow a subsidy-stress relationship as observed in previous 

experimentation with the ATS units, the distribution of both NCP and biomass 

production rate seemed to be defined more as a distribution that was flat over most of the 

range of flow rate. Additionally, a large amount of measurement noise was expected and 

observed; these could be addressed and minimized through the adoption of better 

methodologies—for example, through more frequent titration for the IC-pH curve. The 

system also proved sensitive to false and inaccurate readings due to electrical noise or to 

drifting acid-base chemistry of the process water. Developing contingency operations for 

the algorithm for this situation is one recommendation for improvement of the system. 

Despite these difficulties in the engineering of the system, the ATS technoecosystem did 

show signatures of convergence, as Pump State was minimized over a number of cycles. 

Many more cycles than could be tested here, however, would be required to show the 

characteristics of convergence.  

The shift in the relative abundance of algal species over time in each of the 

autonomously controlled ATS units is a promising avenue for further research. It was 
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noted that there was a trend developing throughout the number of cycles that favored the 

blue-green Oscillatoria over other green algal species.  Although this trend was not 

reflected in the aggregate mean comparisons between standard and autonomous modes of 

operation, a trend analysis is warranted to determine the strength of this relationship; 

preliminary analsysis along these lines suggests that the increasing trend in Oscillatoria is 

significant. This leads to the implication that the ATS system is internally organizing 

through a change in the relative abundance of algal species such that the algal community 

can best take advantage of the engineered information feedback afforded by the control 

system. In this way, the ATS unit coupled with the feedback control system fits the 

minimal definition of a technoecosystem in which the subunits are homeostatically 

coupled. While improvements to the monitoring and control components of the system 

can certainly be suggested, the system in its current state can be considered to be a 

platform on which more complex decision-making algorithms can be developed and 

employed. This may help to increase the utility of the ATS in remote deployments as a 

caretaker technological system helps the ATS ecosystem maintain a homeostasis for 

maximized productivity in a changing environment. The ATS technoecosystem platform 

may also be developed into a standard experimental unit for testing of fundamental 

organizing principles of more complicated techno-ecological hybrids. 
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Chapter 6: Conclusions and Implications 

Research Conclusions 

With the engineering of complex self-organizing biosystems as a new field of 

endeavor, the design and constructions of complex systems that hybridize ecological 

entities within or coupled to a technological envelope is an emerging formal field of 

study in ecological engineering  The research pursued here supports the development of 

an autonomous and internally-controlled technoecological hybrid, based on an algal turf 

ecosystem, which intermingles engineered feedback control programming with internal 

feedback patterns within the ecosystem. Following a mode of analysis that seeks to 

understand and merge systems-level principles for the component technological and 

ecological system, the research sought to investigate the characteristics of the ecosystem 

in response to potential limiting factors that were incident upon it, the nature of the 

technological system designed to interface with it to maximize ecosystem performance, 

and the characteristics of the combined techno-ecological hybrid as an internally-coupled 

self-organizing system. 

Chapter 2: Preliminary Investigations 

Preliminary investigations were undertaken to understand the role of bed 

turbulence, as determined by flow rate and wave surge frequency, as a limiting factor to 

the productivity of the algal turf in an algal turf scrubber receiving a range of nutrient-

loading rates. Turbulence in the ATS unit was recognized to have components related to 

both volumetric flow rate and wave surge frequency, and each were manipulated 

independently on an algal turf scrubber operating under different nitrogen loading rates. 

The effects of different levels of turbulence on the rate of production of algal biomass 
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production rate were measured via regular periodic biomass harvest. Turbulence of the 

flow in an ATS was an important factor in the maximization of algal growth, acting as 

limiting to algal production when other factors were provided in abundance. The 

following conclusions were made based upon this set of experiments: 

 Turbulence acts as a limiting factor to the algal biomass production in an ATS when 

other factors are provided in abundance.  

 Wave amplitude is a stronger factor than wave frequency on determining the biomass 

production of algae in an ATS, and biomass production is maximized when the 

combination of wave surge amplitude and frequency is optimized. 

 Increased turbulence affects the mass transfer at the scale of the algal turf thickness 

and is one mechanism for stimulating the overall biomass productivity, although it 

cannot be concluded that this is the only mechanism.   

Chapter 3: The Ecosystem 

This set of experiments was undertaken to investigate the effect of turbulence on 

the ecosystem metabolism—net primary production, respiration, and the ratio of these—

of an algal turf in an ATS system. Measurements were design to measure the primary 

productivity (as net carbon productivity) and respiration of the ATS ecosystem and 

investigate its response to changes in turbulence levels. The wave surge frequency was 

manipulated on a set of ATS units while an automated monitoring system recorded the 

pH diurnal in each ATS, and then converted to an inorganic carbon concentration diurnal 

using information derived from titration of ATS process water and from which ecosystem 

metabolic measures were calculated. The data were used to investigate the relationship 

between the correlation between the metabolic measures and biomass production. Also, 
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the relative abundance of dominant algal genera were measured from each ATS growth 

bed for a preliminary investigation into their relative competitiveness under combinations 

of operating conditions. The following conclusions were made based on this set of 

experiments: 

 Tturbulence was shown to be a limiting factor to productivity, respiration, and 

biomass production when light and nutrient loading rate are greater.  

 Productivity and respiration were shown to follow a subsidy stress relationship, 

although the effect was more pronounced at lower light and nutrient loading 

conditions.  

 The relative abundance of the dominant genera of algae where shown to be a function 

of the level of turbulence, with each of the main genera most dominant within a 

characteristic zone of flow rate.  

Chapter 4: The Technosystem 

Virtual testing was employed to experiment with and understand the behavior of 

the supervisory control algorithm for the technoecosystem, a simple seeking algorithm 

designed to find the maximum of a dependent variable over the range of variation of an 

independent variable subject to feedback control. The algorithm was tested using 

hypothetical stochastic distributions of ecosystem productivity versus flow turbulence as 

virtual input data to investigate the accuracy and rate of algorithm convergence on the 

expected solution for various conditions. The following conclusions were made from this 

set of experiments: 

 The algorithm has the ability to seek for and find the maximum of a parameter at the 

lowest possible Pump State over a range of distribution relationships.  
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 The actions and effectiveness of the algorithm, as measured by the rate of 

convergence, are strongly influenced by the variance of the input data to which it 

responds and by the strength of the relationship between the controlled parameter and 

the measured variable.  

Chapter 5: The Technoecosystem 

Analysis of each of the component subsystems in previous sections led to 

assembly and testing of the full algal turf scrubber technoecosystem. The system was 

tested in multiple trials through numerous harvest cycles in which the Pump State and net 

primary productivity were recorded and analyzed for convergence.  The expected 

behavior of the system was for it to track the subsidy-stress curve for net primary 

productivity related to flow turbulence to find the flow rate where net primary production 

was maximized. Analysis of the system behavior consisted of analyzing the convergence 

of the time-trace of productivity and Pump State and comparing them to those expected 

as determined by the virtual algorithm experiments. Also, the relative abundances of the 

dominant algal species were tracked throughout the trials and compared to those 

measured for ATS units operating in a standard mode without feedback control. The 

following conclusions can be made from this set of experiments: 

 The automated control system implemented on a physical ATS unit operated as 

designed, seeking the highest productivity at the lowest volumetric flow rate.  

 The activity of the control algorithm was found to be strongly dependent on the 

characteristics of the input distribution of productivity to flow rate, and this 

relationship was observed to be flat over most of the range of flow rate.  
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 The ATS technoecosystem showed rudimentary signatures of convergence, as Pump 

State was minimized over a number of cycles, and the system trended toward a state 

of maximum efficiency for the production of algal biomass. 

 The relative abundance of algal species shifted over time in the autonomous units, 

seemingly in response to the novel engineered feedback loops.  

Avenues for futher study 

Based on the experiments pursued in this research, a number of avenues for 

further research can be recommended.  

First, further investigation is necessary to confirm the mechanism by which 

turbulence increases overall algal production in an ATS. While the research here suggests 

that turbulence helps to overcome diffusion limitations into the algal turf, results of the 

experiments could not exclude the possibility that increased light availability in a 

turbulent environment was also a factor. More research is warranted to determine the 

relative contribution of these factors to overall productivity. 

Second, the metabolic measurement were lower than expected and became more 

decoupled from the biomass production rate measurements as light and nutrient loading 

were increased. There was evidence that gas transfer across the air-water interface, 

assumed to be insignificant, may in fact be a consideration in measurements of 

metabolism during conditions of high turbulence. More research is necessary to 

determine the relative influence of air-water gas transfer on the pH diurnal method to 

refine the metabolism measurements. 

The control system overall could be improved through the reduction of 

measurement noise, through improved filtering of the signal, and through the 
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improvement of core methodologies, such as more frequent titration for the pH diurnal 

method of metabolism. Additionally, the ATS technoecosystem might be run through 

longer and more harvest cycles to further investigate the trajectory of convergence. 

Finally, it may be important to understand the role of the species-level 

organization in the aggregate metabolism of the ATS ecosystem for better understanding 

of the system-level operation of the ATS technoecosystem. More research is suggested to 

determine the importance in the shift of species abundance in response to the feedback 

control mechanisms engineered for the ATS system.  

Overall Conclusions and Implications 

The ATS technoecosystem is in its rudimentary stages of autonomy, as the 

coupling between technological and ecological remains mostly behavioral. Elements of 

this research, however, do suggest that the principles of self-organization apply to the 

hybridized self-organizing system and that complex internal organization is possible 

between the components of such a system. In these experiments, the algorithm showed 

signs of convergence that were reminiscent of the decision processes of a human 

operator, responding to the physiological condition of the ecological system in its care. 

The ecological system showed signs of internal organization in response to the novel 

feedback networks supplied to it that are expressed at the species level, similar to the 

dynamics found by other researchers in technoecosystem engineering. The changes in 

relative abundance of algal species observed in the automated ATS system suggest a 

measure of internal organizing such that the ecosystem can best take advantage of the 

engineered information feedback afforded by the control system. If these changes in 

internal structure in response to the presence of the technological system are indeed 
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persistent characteristics mediated by the competitive exclusion of one or a few dominant 

algal species, might these species be considered to be pre-adapted (Kangas 2004) to the 

information processing subcomponent of the technosphere? As invasive and weedy 

species are often interpreted to be pre-adapted to the unstable, disturbed environments 

created by human impact on the landscape, is there a class of species that are pre-adapted 

to take advantage of the increased rate and complexity of information processing in 

modern human society? Experiments with technoecosystem microcosms such as 

undertaken and further proposed in this research may supply a class of experimentation 

with complex adapting systems unavailable at the larger scale, yet which may provide 

understanding into the general rules of organization that must operate at scales ranging 

from the microscopic to the global.  
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Appendix A: Data Acquisition and Control Program 

The pH data acquisition and control program is designed to monitor the net 

primary productivity of an aquatic system, based upon the pH diurnal method, and take 

action on a set of pumps to affect the turbulence within the aquatic system to optimize the 

flow turbulence regime for maximum net primary productivity. The algorithm of the 

control program may be considered to consist of two main parts—one that monitors the 

pH diurnal in an aquatic system and calculates the real-time change in net primary 

productivity, and one that takes control action on pumps (or other external ‗motivator‘ 

mechanisms). The monitoring part of the algorithm is shown in Figure A. 1. The system 

takes user inputs, sets up the initial conditions for starting, and begins recording the pH 

diurnal. Using the CO2-pH titration polynomial, it converts pH readings to inorganic 

carbon concentration (IC), and then tracks changes in IC as a measure of production and 

respiration. So long as total time since the start of the cycle is less than the user-defined N 

(the number of days to track P or R for comparison with the previous cycle), the 

algorithm loops back to record another pH data point; otherwise, it advances on to the 

flow control portion. 
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Figure A. 1. Detailed flow chart of the flow control algorithm at the core of the Labview control 

system, showing the portion that monitors the net primary productivity based on the pH diurnal 

method.  
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The flow control portion of the algorithm is shown in Figure A. 2. This portion 

activates following the completion of the data acquisition portion‘s cycle for collecting 

multi-day data on metabolism. Upon activation, it prints screen messages allowing for 

user input to update the IC-pH titration polynomial estimate, and then increments or 

decrements the Pump State based upon the value of productivity (P) this cycle compared 

to that determined for the previous cycle.  Should the P measured this cycle be the same 

(within an arbitrary tolerance) to that of last cycle, the Pump State is automatically 

decremented, thus trending the flow rate to the least possible energy input for otherwise 

metabolically-equivalent conditions. Should the measured P be significantly different 

greater this cycle compared to last cycle, the Pump State is changed in the same direction 

as the previous change (Ii), otherwise the Pump State is changed in the opposite direction 

(-Ii). Following conventions on what to do at the extremes Pump States (0 and 7), the 

Pump State is returned to the start of the program for activation/deactivation of the 

appropriate digital lines, and the entire large loop of multi-day pH monitoring begins 

again. 
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Figure A. 2. Flowrate control portion of the control algorithm employed in Labview. “A” and “B” 

connect to the corresponding terminals labeled in Figure A. 1. 
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Appendix B: Full Results for Subsidy-Stress Investigations 

Subsidy-Stress Metabolic and Production measurements: Data Tables 

Table B. 1. Table of results of calculated productivity (P), respiration (R), P/R ratio, and measured 

biomass for all replicates, means, and standard deviations (SD) at various flow rates and measured 

dump bucket tipping frequency for low light/low NLR (manure) conditions. Blank values indicate “no 

data” for that trial. 

 

Table B. 2. Table of results of calculated productivity (P), respiration (R), P/R ratio, and measured 

biomass for all replicates, means, and standard deviations (SD) at various flow rates and measured 

dump bucket tipping frequency for a redo of low light/low NLR(manure) conditions following the 

cutting and mixing of ATS growth screens. Blank values indicate “no data” for that trial. 

 

 

Mean SD 1 2 3 4 5 6 7 8 Mean SD n

0.25 0.1 0.00 -1.00 -1.83 -1.01 -1.34 -1.16 -1.71 -1.07 -0.59 -1.21 0.40 8

1 0.3 0.11 -1.22 -2.24 -- -1.11 -2.17 -1.31 -2.00 -1.68 -1.68 0.47 7

7 2.7 0.16 -1.55 -1.23 -1.38 -1.90 -2.16 -1.77 -2.37 -2.16 -1.82 0.40 8

35 11.5 NA -0.46 -- -0.46 -0.63 -1.02 -0.72 -0.63 -0.67 -0.65 0.19 7

0.25 0.1 0.00 0.91 1.64 1.09 1.34 1.11 1.61 0.99 0.62 1.16 0.35 8

1 0.3 0.11 1.22 2.58 -- 1.24 2.00 1.30 1.93 1.76 1.72 0.50 7

7 2.7 0.16 1.60 1.40 1.43 2.07 2.23 1.89 2.49 2.30 1.93 0.41 8

35 11.5 NA 0.46 -- 0.50 0.59 0.94 0.67 0.64 0.64 0.63 0.16 7

0.25 0.1 0.00 1.10 1.11 0.93 1.00 1.04 1.06 1.09 0.95 1.04 0.07 8

1 0.3 0.11 1.00 0.87 -- 0.90 1.08 1.01 1.03 0.96 0.98 0.08 7

7 2.7 0.16 0.97 0.88 0.97 0.92 0.97 0.94 0.95 0.94 0.94 0.03 8

35 11.5 NA 1.00 -- 0.93 1.07 1.09 1.06 0.98 1.04 1.02 0.06 7

0.25 0.1 0.00 7.8 9.0 9.5 8.6 10.4 9.2 5.8 8.0 8.5 1.4 8

1 0.3 0.11 9.6 7.8 7.4 11.4 10.8 9.7 9.9 9.9 9.5 1.4 8

7 2.7 0.16 11.0 12.5 8.3 13.5 14.0 11.9 9.0 8.0 11.0 2.4 8

35 11.5 NA 11.1 8.7 8.8 9.3 5.2 3.7 3.0 -- 7.1 3.1 7

P
ro

d
u

c
ti

v
it

y
 

(g
C

 m
-2
 d

-1
)

R
e
s
p

ir
a
ti

o
n

 

(g
C

 m
-2
 d

-1
)

P
/R

B
io

m
a
s
s
 

P
ro

d
u

c
ti

o
n

 

(g
D

W
 m

-2
 d

-1
)

Parameter

Nom. Flow 
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Tip Freq. (min-1) Trials Statistics

Mean SD 1 2 3 4 5 Mean SD n

0.25 0.1 0.0 -- -0.90 -1.07 -0.48 -0.84 -0.82 0.25 4

1 0.4 0.1 -0.51 -0.76 -0.66 -0.71 -- -0.66 0.11 4

7 2.6 0.1 -0.73 -0.97 -0.78 -0.84 -0.77 -0.82 0.09 5

35 11.5 0.3 -0.17 -0.20 -0.19 -0.26 -0.23 -0.21 0.03 5

0.25 0.1 0.0 -- 0.54 0.92 0.60 0.57 0.66 0.18 4

1 0.4 0.1 0.47 0.56 0.66 0.59 -- 0.57 0.08 4

7 2.6 0.1 0.65 0.80 0.72 0.70 0.67 0.71 0.06 5

35 11.5 0.3 0.15 0.18 0.19 0.24 0.22 0.19 0.03 5

0.25 0.1 0.0 -- 1.68 1.16 0.80 1.47 1.28 0.38 4

1 0.4 0.1 1.10 1.36 1.01 1.22 -- 1.17 0.15 4

7 2.6 0.1 1.12 1.22 1.09 1.20 1.16 1.16 0.05 5

35 11.5 0.3 1.15 1.09 1.03 1.09 1.04 1.08 0.05 5

0.25 0.1 0.0 6.4 12.4 13.3 8.6 13.0 10.8 3.1 5

1 0.4 0.1 9.6 9.6 10.1 11.1 10.9 10.3 0.7 5

7 2.6 0.1 11.0 13.0 11.8 12.8 11.4 12.0 0.9 5

35 11.5 0.3 8.9 7.9 7.4 10.4 7.0 8.3 1.4 5
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Table B. 3. Table of results of calculated productivity (P), respiration (R), P/R ratio, and measured 

biomass for all replicates, means, and standard deviations (SD) at various flow rates and measured 

dump bucket tipping frequency for high light/low NLR (manure) conditions. Blank values indicate 

“no data” for that trial. 

 

Table B. 4. Table of results of calculated productivity (P), respiration (R), P/R ratio, and measured 

biomass for all replicates, means, and standard deviations (SD) at various flow rates and measured 

dump bucket tipping frequency for high light/medium NLR (manure) conditions. Blank values 

indicate “no data” for that trial. 

 

 

 

 

Mean SD 1 2 3 4 Mean SD n

0.25 0.04 0.01 -0.78 -1.14 -1.40 -2.44 -1.44 0.71 4

1 0.3 0.0 -1.43 -1.42 -2.44 -1.79 -1.77 0.48 4

7 2.7 0.0 -1.46 -0.86 -2.04 -1.49 -1.46 0.48 4

35 11.5 0.6 -0.53 -0.38 -0.70 -0.91 -0.63 0.23 4

0.25 0.04 0.01 0.55 0.88 1.12 1.71 1.06 0.49 4

1 0.3 0.0 1.13 1.19 2.00 1.65 1.49 0.41 4

7 2.7 0.0 1.17 0.80 1.90 1.45 1.33 0.47 4

35 11.5 0.6 0.49 0.42 0.81 0.96 0.67 0.26 4

0.25 0.04 0.01 1.41 1.30 1.25 1.43 1.35 0.09 4

1 0.3 0.0 1.26 1.20 1.22 1.08 1.19 0.08 4

7 2.7 0.0 1.24 1.08 1.07 1.03 1.11 0.09 4

35 11.5 0.6 1.09 0.91 0.87 0.95 0.95 0.10 4

0.25 0.04 0.01 15.6 11.2 11.9 12.0 12.7 2.0 4

1 0.3 0.0 14.0 11.5 13.9 18.0 14.4 2.7 4

7 2.7 0.0 15.8 11.4 16.4 13.7 14.4 2.3 4

35 11.5 0.6 14.4 12.5 15.1 13.0 13.7 1.2 4
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Nom. Flow 
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(gpm)

Tip Freq. (min-1) Trials Statistics

Mean SD 1 2 3 4 5 6 7 8 Mean SD n

0.25 0.03 0.00 -0.47 -0.48 -0.36 -0.97 -0.80 -0.69 -0.67 -0.57 -0.63 0.20 8

7 2.74 0.10 -1.57 -1.45 -- -1.08 -0.77 -1.19 -1.29 -1.42 -1.25 0.27 7

35 10.10 1.09 -0.93 -0.92 -0.65 -1.02 -1.05 -1.07 -1.23 -1.24 -1.01 0.19 8

0.25 0.0 0.00 0.41 0.53 0.48 0.96 0.81 0.75 0.62 0.56 0.64 0.19 8

7 2.7 0.10 1.59 1.41 -- 1.07 0.89 1.21 1.22 1.34 1.25 0.23 7

35 10.1 1.09 0.79 0.82 0.67 1.00 1.06 1.03 1.12 0.89 0.92 0.15 8

0.25 0.0 0.00 1.14 0.92 0.75 1.01 0.99 0.92 1.08 1.02 0.98 0.12 8

7 2.7 0.10 0.99 1.03 -- 1.01 0.87 0.98 1.06 1.06 1.00 0.07 7

35 10.1 1.09 1.17 1.11 0.98 1.02 1.00 1.04 1.09 1.40 1.10 0.14 8

0.25 0.0 0.00 19.8 17.2 18.5 18.0 16.4 21.6 24.0 19.5 19.4 2.5 8

7 2.7 0.10 28.9 13.2 25.1 20.1 18.2 29.6 24.9 27.8 23.5 5.8 8

35 10.1 1.09 27.9 22.1 28.7 24.7 21.3 33.0 25.5 35.7 27.4 5.1 8
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Table B. 5. Table of results of calculated productivity (P), respiration (R), P/R ratio, and measured 

biomass for all replicates, means, and standard deviations (SD) at various flow rates and measured 

dump bucket tipping frequency for high light/high NLR (manure) conditions. Blank values indicate 

“no data” for that trial. 

 

Table B. 6. Table of results of calculated productivity (P), respiration (R), P/R ratio, and measured 

biomass for all replicates, means, and standard deviations (SD) at various flow rates and measured 

dump bucket tipping frequency for high light/low NLR(Bristol’s solution) conditions. Blank values 

indicate “no data” for that trial. 

 

  

Mean SD 1 2 3 4 5 6 Mean SD n

0.25 0.03 0.00 -0.62 -1.66 -1.13 -0.46 -0.26 -0.47 -0.77 0.53 6

7 2.73 0.00 -0.91 -0.57 -0.76 -1.13 -1.03 -0.97 -0.90 0.20 6

35 11.00 1.41 -0.67 -0.82 -1.29 -0.86 -0.53 -0.48 -0.77 0.30 6

0.25 0.0 0.00 0.61 1.70 1.11 0.34 0.32 0.40 0.75 0.55 6

7 2.7 0.00 0.93 0.58 0.83 1.05 1.16 0.87 0.90 0.20 6

35 11.0 1.41 0.60 0.67 1.36 0.69 0.57 0.43 0.72 0.33 6

0.25 0.0 0.00 1.00 0.97 1.02 1.35 0.80 1.18 1.06 0.19 6

7 2.7 0.00 0.98 0.99 0.91 1.08 0.89 1.12 0.99 0.09 6

35 11.0 1.41 1.12 1.22 0.95 1.24 0.92 1.10 1.09 0.13 6

0.25 0.0 0.00 21.3 16.2 23.1 27.6 21.9 29.0 23.2 4.6 6

7 2.7 0.00 22.1 31.5 35.5 23.1 25.8 36.0 29.0 6.2 6

35 11.0 1.41 32.5 43.2 41.6 35.3 -- 30.5 36.6 5.6 5

P
ro

d
u
c
tiv

ity
 

(g
C

 m
-2
 d

-1
)

R
e
s
p
ir
a
tio

n
 

(g
C

 m
-2
 d

-1
)

P
/R

B
io

m
a
s
s
 

P
ro

d
u
c
tio

n
 

(g
D

W
 m

-2
 d

-1
)

Parameter

Nom. Flow 

Rate 

(gpm)

Tip Freq. (min-1) Trials Statistics

Mean SD 1 2 3 4 5 6
Mean Std Dev n

0.25 0.1 NA -0.58 -0.50 -0.54 -0.28 -0.30 -0.42 -0.44 0.13 6

7 2.8 NA -1.04 -0.68 -0.53 -- -- -0.36 -0.65 0.29 4

35 11.7 NA -0.31 -0.24 -0.23 -0.17 -0.14 -0.22 -0.22 0.06 6

0.25 0.1 NA 0.60 0.47 0.49 0.29 0.29 0.41 0.42 0.12 6

7 2.8 NA 0.91 0.66 0.48 -- -- 0.34 0.60 0.25 4

35 11.7 NA 0.25 0.24 0.21 0.16 0.13 0.20 0.20 0.05 6

0.25 0.1 NA 0.97 1.08 1.11 0.96 1.03 1.02 1.03 0.06 6

7 2.8 NA 1.14 1.04 1.10 -- -- 1.03 1.08 0.05 4

35 11.7 NA 1.24 1.01 1.13 1.10 1.10 1.10 1.11 0.07 6

0.25 0.1 NA 2.9 3.8 8.4 5.3 6.0 8.6 5.9 2.3 6

7 2.8 NA 5.8 6.4 7.2 6.8 8.2 10.4 7.5 1.7 6

35 11.7 NA 10.2 7.5 8.3 6.9 7.9 8.1 8.1 1.2 6

0.25 0.1 NA 0.24 0.54 0.32 0.29 0.64 0.82 0.47 0.23 6

7 2.8 NA 0.31 0.54 0.86 0.71 0.64 0.86 0.65 0.21 6

35 11.7 NA 0.31 0.54 0.89 0.86 0.86 1.19 0.77 0.31 6
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Linear Regression Analysis of Metabolic versus Biomass Measurements 

2.5 5.0 7.5 10.0 12.5 15.0

-3

-2

-1

0

y = -0.0885x - 0.561

r2 = 0.194

A. Biomass Production (g DW m -2 d-1)

P
 (

g
C

 m
-2

 d
-1

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3
y = 0.0994x + 0.486

r
2
 = 0.215

B.

Biomass Production (g DW m -2 d-1)

R
 (

g
C

 m
-2

 d
-1

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.50

0.75

1.00

1.25

1.50

y = -0.00870x + 1.073

r
2
 = 0.1375

C.

Biomass Production (g DW m -2 d-1)

P
/R

 

Figure B. 1. Linear regression analysis for operating conditions of (low light, low NLR, manure), 

showing the following metabolic measurements versus biomass production: (A) primary productivity 

(P); (B) respiration (R); (C) P/R ratio. 
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Figure B. 2. Linear regression analysis for the retesting of operating conditions of (low light, low 

NLR, manure), showing the following metabolic measurements versus biomass production: (A) 

primary productivity (P); (B) respiration (R); (C) P/R ratio. 
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Figure B. 3. Linear regression analysis for the testing of operating conditions of (high light, low NLR, 

manure), showing the following metabolic measurements versus biomass production: (A) primary 

productivity (P); (B) respiration (R); (C) P/R ratio. 
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Figure B. 4. Linear regression analysis for the testing of operating conditions of (high light, medium 

NLR, manure), showing the following metabolic measurements versus biomass production: (A) 

primary productivity (P); (B) respiration (R); (C) P/R ratio. 
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Figure B. 5. Linear regression analysis for the testing of operating conditions of (high light, high 

NLR, manure), showing the following metabolic measurements versus biomass production: (A) 

primary productivity (P); (B) respiration (R); (C) P/R ratio. 
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Figure B. 6. Linear regression analysis for the testing of operating conditions of (high light, low NLR, 

Bristol’s), showing the following metabolic measurements versus biomass production: (A) primary 

productivity (P); (B) respiration (R); (C) P/R ratio. 
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Figure B. 7. Linear regression analysis for all data samples from tests of all operating conditions 

except (low light, low NLR, manure) and (low light, low NLR, Bristol’s), showing the following 

metabolic measurements versus biomass production: (A) primary productivity (P); (B) respiration 

(R); (C) P/R ratio. 
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Appendix C: Light Regimes Data for Subsidy-Stress Experiments  

 

Measurements of the light intensity on each ATS unit were made periodically 

throughout all subsidy-stress experiments. In October 2007, it was observed that the 

intensity of the lights was lower than had been measured previously. Bulb age and wear 

were suspected to be the cause, and the bulbs were replaced with new bulbs at this time, 

resulting in the general division of experiments between low and high light conditions.  

On each ATS unit, measurements of the light intensity were made at 25 locations 

evenly spaced in the ATS growth area. These were averaged for each ATS for each date 

of measurement using Theissen polygon weighting (Ward and Trimble 2004), the results 

of which are shown  in Table C. 1.  

Table C. 1. Weighted mean and standard deviation of light intensities for the set of ATS units in the 

lab measured at various times throughout the set of experiments. Means and standard deviations are 

calculated using Theissen polygon areal weighting of 25 measurements evenly distributed as a grid 

over the ATS growth area. 

ATS 

No. 

Light Intensity (µmol m
-2

 s
-1

) at Date of Measurement 

April 2007 Oct. 2007 Nov. 2007 July 2008 

1 216 ± 107 186 ± 80 244 ± 129 227 ± 113 

2 188 ± 84 167 ± 75 297 ± 143 -- 

4 259 ± 143 206 ± 108 326 ± 176 -- 

5 224 ± 104 169 ± 77 322 ± 166 -- 

7 231 ± 43 -- -- 184 ± 40 

 

A two-way ANOVA analysis (Table C. 2 and Table C. 3) on ATS1 through 5 for 

April, October, and November 2007 measurements of light intensity showed that ―Date‖ 

accounts for 13.5% of the variation (F=23.5, Dfn=2, Dfd=288, P<0.0001); variation for 

―ATS no.‖ or their interaction were not significant (P>0.05). 
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Table C. 2. Table of results of a two-way ANOVA analysis on average light levels measured on each 

ATS on different dates. 

Source of Variation Df Sum-of-squares Mean square F 

  Interaction 6 81290 13550 0.9289 

  Date 2 685400 342700 23.50 

  ATS no. 3 114400 38120 2.614 

  Residual 288 4200000 14580  

 

Table C. 3. Table of results of a two-way ANOVA analysis on average light levels measured on each 

ATS on different dates, in which only the date of measure was significant. 

Source of Variation % of total variation P value Significant? 

  Interaction 1.60 0.4744 No 

  Date 13.49 <0.0001 Yes 

  ATS no. 2.25 0.0515 No 

 

The means of the columns in Table C. 1 were tested using the student‘s t-test. 

Results for this test (Table C.4)  show that the means between April and October 2007 

were not significantly different (P=0.0688), but the means between October and 

November 2007 (after the new bulbs were installed) were significantly different 

(P=0.0053). 
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Table C. 4. Result of student t-tests between the first 3 columns of Table C. 1. Results show that the 

means of the light intensity are significantly different between Oct. and Nov. 2007, before and after 

light bulbs were replaced, but were not significantly different between April and October 2007 when 

no bulb changes were made. 

Result April 2007 vs Oct 2007 Oct 2007 vs Nov 2007 

Unpaired t-test with Welch‘s Correction 

P value 0.0688 0.0053 

Means signif. different? (P < 0.05) No Yes 

One- or two-tailed P value? Two-tailed Two-tailed 

Welch-corrected  t, Df t=2.311 Df=5 t=5.504 Df=4 

How big is the difference? 

Mean ± SEM of first column 221.8 ± 14.62 N=4 182.0 ± 9.065 N=4 

Mean ± SEM of second column 182.0 ± 9.065 N=4 297.3 ± 18.87 N=4 

Difference between means 39.75 ± 17.20 -115.3 ± 20.94 

95% confidence interval -4.475 to 83.98 -173.4 to -57.13 

R squared 0.5164 0.8834 

 

The maximum light intensity levels as measured in the center of each ATS bed is 

also reported (Table C. 5). A two-way ANOVA analysis (Table C. 6 and Table C. 7) on 

ATS1 through 5 for April, October, and November 2007 measurements of maximum 

light intensity showed that ―Date‖ accounts for 60.95% of the variation (F=22.0, Dfn=2, 

Dfd=6, P=0.0017), while ―ATS no.‖ accounts for 30.74% of the variation (F=7.40, Dfn=3, 

Dfd=6, P=0.0193). 

Table C. 5. Maximum light intensity for each ATS unit in the lab measured at various times 

throughout the set of experiments. Maximum intensity was measured in the exact center of the ATS 

growth area. 

ATS 

No. 
Light Intensity (µmol m

-2
 s

-1
) at Date of Measurement 

April 2007 Oct. 2007 Nov. 2007 July 2008 

1 357 277 378 416 

2 316 270 464 -- 

4 477 385 553 -- 

5 392 265 527 -- 

7 272 -- -- 255 
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Table C. 6. Table of results of a two-way ANOVA analysis on average light levels measured on each 

ATS on different dates. 

Source of Variation Df Sum-of-squares Mean square F 

  Date 2 65750 32880 22.00 

  ATS no. 3 33160 11050 7.398 

  Residual 6 8966 1494  

 

Table C. 7. Table of results of a two-way ANOVA analysis on maximum light levels measured on 

each ATS on different dates, in which both date of measure and ATS number was significant. 

Source of Variation % of total variation P value Significant? 

  Date 60.95 0.0017 Yes 

  ATS no. 30.74 0.0193 Yes 

 

The means between the columns in Table C. 5 were tested using the student‘s t-

test. Results for this test (Table C. 8) show that the means between April and October 

2007 were not significantly different (P=0.1113), but the means between October and 

November 2007 (after the new bulbs were installed) were significantly different 

(P=0.0133). 
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Table C. 8. Result of student t-tests between the first 3 columns of Table C. 5. Results show that the 

means of the light intensity are significantly different between Oct. and Nov. 2007, before and after 

light bulbs were replaced, but were not significantly different between April and October 2007 when 

no bulb changes were made. 

Result April 2007 vs Oct 2007 Oct 2007 vs Nov 2007 

Unpaired t-test with Welch‘s Correction 

P value 0.1113 0.0133 

P value summary ns * 

Means signif. different? (P < 0.05) No Yes 

One- or two-tailed P value? Two-tailed Two-tailed 

Welch-corrected  t, Df t=1.931 Df=5 t=3.747 Df=5 

How big is the difference? 

Mean ± SEM of first column 385.5 ± 34.23 N=4 299.3 ± 28.69 N=4 

Mean ± SEM of second column 299.3 ± 28.69 N=4 480.5 ± 38.94 N=4 

Difference between means 86.25 ± 44.66 -181.3 ± 48.37 

95% confidence interval -28.57 to 201.1 -305.6 to -56.90 

R squared 0.4273 0.7374 
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Appendix D: Algal Species Abundances 

To characterize the relative competitiveness of algae in the ATS systems 

throughout various trials, algae were sampled periodically from each of the ATS units 

throughout the experiments to determine the relative abundance of the various species in 

the ATS bed. The methods used for characterizing the algae in the ATS units were as 

follows: algae were sampled with tweezers from the screen bed of each ATS unit in three 

places, typically near the center of the growth area of the ATS bed, although the specific 

location of sampling was haphazardly selected. Sampling occurred just prior to a harvest 

and was performed numerous times throughout the term of operation of the ATS units. 

These samples were combined in a sample vial. The vial was shaken vigorously by hand 

to homogenize and was sub-sampled three times with tweezers; each subsample was then 

mounted on a microscope slide. Using a microscope, algae was keyed to the genus level 

for each subsample. It was known from prior studies (Mulbry and Wilkie 2001) that the 

ATS units were typically dominated by algae from the Rhizoclonium, Microspora, and 

Oscillatoria genera. For each subsample, an indication of the relative abundance of each 

of these genera of algae was made according to the following designations: (0) = Absent; 

(1) = Rare; (2) = Common; (3) = Abundant. Unknown genera of algae (typically one of 

many planktonic forms) were categorized as ―Other‖ and ascribed an abundance 

designation. Analyses of these data included calculating the subsample mean and 

standard deviation of the abundance number designations for each algal genus in each 

ATS unit on each sample date. The mean was divided by the sum of all abundance means 

(across all genus designations) for that ATS unit and sample day to yield a percent 

abundance for each genus. The recorded data included sample date, nitrogen loading rate 
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(NLR) and feed type (i.e., manure, Miracle Gro
®
, urea solution, or Bristol‘s solution) for 

the harvest period, average flow rate and wave surge frequency for two weeks prior to 

sample date, and the relative abundance for each algal genus (Table D. 1). 
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Table D. 1.Master list of algal relative abundance under various ATS units and operating conditions. 

ATS 
No. Day 

Flow 
Rate 

(gpm) 

Tip 
Freq 

(min
-1
) 

NLR (g 
N d

-1
) 

Feed 
Type 

NO3 
(mg/l) 

Relative Abundance 

Osc Rhizo Microsp Other 

1 0 15.0 5.0 0.70 M 2 0.206 0.441 0.353 0.000 

1 3 10.0 3.3 0.70 M 1 0.067 0.533 0.400 0.000 

1 19 1.0 0.3 0.70 M 0 0.056 0.000 0.549 0.394 

1 24 2.3 0.8 0.70 M 0 0.154 0.154 0.615 0.077 

1 34 3.7 1.2 1.20 U 7 0.056 0.333 0.500 0.111 

1 44 13.3 4.4 0.72 U 0 0.235 0.294 0.471 0.000 

1 59 21.7 7.2 1.20 U 47 0.171 0.390 0.390 0.049 

1 89 17.5 5.8 0.98 MG 17 0.067 0.600 0.200 0.133 

1 93 15.0 5.0 1.08 MG 44 0.333 0.389 0.278 0.000 

1 101 16.7 5.6 0.73 MG 72 0.286 0.333 0.381 0.000 

1 112 35.0 11.7 0.28 B 48 0.200 0.467 0.333 0.000 

1 126 35.0 11.7 0.54 B 0 0.176 0.529 0.176 0.118 

1 133 35.0 11.7 0.89 B 6 0.045 0.409 0.273 0.273 

1 133 35.0 11.7 0.89 B 6 0.000 0.692 0.154 0.154 

1 147 35.0 11.7 0.86 B 67 0.200 0.600 0.067 0.133 

1 161 33.3 11.1 0.75 B 88 0.000 0.391 0.348 0.261 

1 170 25.0 8.3 0.60 B 49 0.111 0.389 0.500 0.000 

1 183 16.7 5.6 0.66 B 23 0.059 0.471 0.471 0.000 

1 188 13.3 4.4 0.75 B 47 0.000 0.450 0.450 0.100 

1 198 15.0 5.0 0.75 B 91 0.000 0.348 0.391 0.261 

1 207 21.7 7.2 0.75 B 82 0.235 0.529 0.176 0.059 

1 212 20.0 6.7 0.45 B 68 0.118 0.529 0.118 0.235 

1 226 16.7 5.6 0.64 B 82 0.071 0.643 0.143 0.143 

1 247 11.7 3.9 0.38 B 78 0.286 0.321 0.071 0.321 

2 0 7 2.3 2.00 M 0 0.167 0.367 0.467 0.000 

2 3 7 2.3 2.00 M 0 0.267 0.333 0.400 0.000 

2 19 7 2.3 2.50 M 0 0.188 0.438 0.375 0.000 

2 24 7 2.3 2.50 M 0 0.154 0.346 0.346 0.154 

2 34 7 2.3 2.50 M 2 0.308 0.346 0.269 0.077 

2 44 7 2.3 1.50 M 0 0.286 0.214 0.286 0.214 

2 59 7 2.3 2.88 M 31 0.340 0.234 0.340 0.085 

2 89 7 2.3 0.98 MG 87 0.238 0.333 0.429 0.000 

2 93 7 2.3 0.73 MG 99 0.067 0.333 0.600 0.000 

2 106 7 2.3 0.48 MG 63 0.317 0.195 0.439 0.049 

2 112 7 2.3 0.33 MG 60 0.333 0.381 0.286 0.000 

2 126 7 2.3 0.54 B 3 0.000 0.818 0.182 0.000 

2 133 7 2.3 0.86 B 6 0.375 0.375 0.167 0.083 

2 147 7 2.3 0.64 B 54 0.118 0.294 0.529 0.059 

2 154 15 5.0 0.86 B 58 0.000 0.900 0.000 0.100 

4 0 0.25 0.1 2.00 M 0 0.280 0.000 0.720 0.000 

4 3 0.25 0.1 2.00 M 0 0.200 0.200 0.600 0.000 

4 19 0.25 0.1 2.50 M 0 0.316 0.000 0.316 0.368 

4 24 0.25 0.1 2.50 M 24 0.375 0.000 0.625 0.000 

4 34 0.25 0.1 2.50 M 2 0.304 0.043 0.261 0.391 

4 44 0.25 0.1 1.50 M 0 0.231 0.077 0.692 0.000 

4 59 0.25 0.1 2.88 M 0 0.318 0.000 0.409 0.273 

4 89 0.25 0.1 0.98 MG 34 0.273 0.045 0.409 0.273 

4 93 0.25 0.1 0.73 MG 74 0.095 0.048 0.429 0.429 

4 101 0.25 0.1 0.58 MG 68 0.421 0.105 0.421 0.053 

4 112 0.25 0.1 0.73 MG 112 0.450 0.150 0.300 0.100 

4 126 0.25 0.1 0.54 B 140 0.000 0.391 0.391 0.217 

4 133 0.25 0.1 0.32 B 37 0.200 0.280 0.280 0.240 

4 147 0.25 0.1 0.64 B 38 0.000 0.563 0.063 0.375 

4 154 0.25 0.1 0.82 B 31 0.000 0.222 0.500 0.278 

5 0 35 11.7 2.00 M 0 0.529 0.162 0.279 0.029 

 



 

264 

 

Table D.1. Continued. 

ATS 
No. Day 

Flow 
Rate 

(gpm) 

Tip 
Freq 

(min
-1
) 

NLR (g 
N d

-1
) 

Feed 
Type 

NO3 
(mg/l) 

Relative Abundance 

Osc Rhizo Microsp Other 

5 3 35 11.7 2.00 M 0 0.412 0.235 0.353 0.000 

5 19 35 11.7 2.50 M 3 0.450 0.150 0.300 0.100 

5 24 35 11.7 2.50 M 26 0.391 0.000 0.217 0.391 

5 34 35 11.7 2.50 M 54 0.360 0.120 0.280 0.240 

5 44 35 11.7 1.50 M 5 0.290 0.194 0.226 0.290 

5 59 35 11.7 1.50 MG 90 0.533 0.000 0.467 0.000 

5 89 35 11.7 0.93 MG 4 0.268 0.439 0.293 0.000 

5 93 35 11.7 1.08 MG 7 0.056 0.500 0.444 0.000 

5 101 35 11.7 0.98 MG 2 0.286 0.429 0.286 0.000 

5 105 35 11.7 1.10 MG 0 0.200 0.360 0.200 0.240 

5 126 35 11.7 0.70 MG 0 0.278 0.444 0.167 0.111 

5 133 25 8.3 1.00 MG 0 0.381 0.429 0.190 0.000 

5 147 15 5.0 0.30 MG 45 0.300 0.400 0.200 0.100 

7 34 11 3.7 0 U 120 0.450 0.100 0.050 0.400 

7 44 11 3.7 0 U 90 0.500 0.200 0.300 0.000 

7 59 11 3.7 0.70 MG 0 0.000 1.000 0.000 0.000 

7 89 27 9.0 0.88 MG 9 0.364 0.409 0.227 0.000 

7 93 35 11.7 1.08 MG 46 0.471 0.353 0.176 0.000 

7 101 35 11.7 0.53 MG 61 0.300 0.450 0.250 0.000 

7 105 35 11.7 0.35 B 13 0.400 0.150 0.400 0.050 

7 126 4 1.2 0.65 B 15 0.333 0.333 0.333 0.000 

7 133 7 2.2 0.90 B 12 0.410 0.410 0.179 0.000 

7 147 17 5.6 0.90 B 56 0.000 0.900 0.100 0.000 

7 161 8 2.8 0.75 B 106 0.125 0.563 0.125 0.188 

7 170 12 3.9 0.60 B 56 0.000 0.667 0.333 0.000 

7 183 12 3.9 0.66 B 89 0.133 0.600 0.267 0.000 

7 188 13 4.4 0.75 B 73 0.000 0.600 0.400 0.000 

7 198 10 3.3 0.75 B 79 0.000 0.750 0.250 0.000 

7 207 10 3.3 0.75 B 65 0.250 0.450 0.200 0.100 

7 212 12 3.9 0.45 B 50 0.167 0.375 0.208 0.250 

7 226 12 3.9 0.64 B 77 0.250 0.563 0.125 0.063 

7 247 7 2.2 0.38 B 84 0.333 0.259 0.074 0.333 
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