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Abstract

Recent advances in ISDN have promoted applications such as video-phone, tele-conferencing
and HDTV, that demand real-time processing of large volume audio, video and speech data.
Being the only refuge for this intense computation, the VLSI technology favors modular and
regular designs with local communication requirements. In this light, the framework for time-
recursive computation, presented in part I [7] of this two-part paper, provides the background
for designing eflicient VLSI implementations, capable of accommodating high throughput re-
quirements. In part II, we develop a routine that can be used for designing the time-recursive
architecture of a given linear operator in a systematic manner. Three classes of QMF banks
are used as design examples: the lossless QMF bank, the cosine modulated QMF bank and two
Extended Lapped Transforms, one of them being the Modulated Lapped Transform (MLT). In
addition to demonstrating the use of the design procedure, these examples provide novel results,
interesting on their own right. In particular, the time-recursive architecture we propose for an
N-point MLT, also known as Modified DCT or Time Domain Aliasing Cancellation (TDAC)
transform, requires 2N + 3 multipliers, 3N + 3 adders and N — 1 rotation circuits.
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1 Introduction

In part I [7] of this two part paper, we revealed the infrastructure of time-recursive computation.
We also identified the fields where this model of computation has already been applied. The
purpose of this part II is two-fold. First, to integrate the framework provided in part I into a
Generic Architecture Design Procedure and to demonstrate its usage by means of application in
some perfect Reconstruction (PR) Quadrature Mirror Filter (QMF) bank designs, namely the
lossless QMF banks [28, 27], the cosine modulated PR QMF banks [27], and two Extended Lapped
Transforms (ELT) [21, 22]. Second, to develop efficient novel architectures that will assist the
custom VLSI implementation of the QMF based computations, thus responding to the demand of
real-time computation that has recently arisen in a number of applications such as audio, video
and speech compression [13, 25].

Fast algorithm practices have yielded efficient implementations for the computations we men-
tioned above [27, 22]. Nevertheless, these algorithms not always translate into efficient VLSI ar-
chitectures, the main reason being that they require global communication. The time-recursive
approach suggests an attractive alternative, where one seeks the minimization of the operator
counts, while maintaining the communication locality. Therefore, linear area utilization is obtained
in VLSI designs [18, 4, 19, 2]. This is in contrast with the fast algorithm design principles, where
the goal is the minimization of the associated operation count, regardless of the locality of the
communication. Consequently, a quadratic area requirement is implied by the corresponding VLSI
designs [26].

The terminology that has been introduced in part I {7], such as mapping operator, kernel func-
tion, kernel group, shift property (SP), difference equation property (DEP) and periodicity property
(PP) will be used throughout the text of part II without any further explanation. Furthermore,
we shall use the notation I.n to reference item n from part I. For example, "Lemma 1.2” should be

read as "Lemma 2 in part I”.



In Section 2, we draw a Generic Design Procedure for time-recursive realization. By encompass-
ing the appropriate decision rules and procedures in a flow diagram, this tool enables the design
of a time-recursive realization of a linear mapping operator {7] in a routine way. We distinguish
categories of mapping operators based on the way they are specified and the structure they are
implemented with. In particular, a mapping operator can be specified either by some close form
expression or as a vector of coefficients, while its time-recursive realization may employ either lat-
tice or IIR building modules [7]. The realization of a lossless QMF bank [28, 27] is presented in
Section 3 as the first design example. In this example, the mapping operators are specified in a vec-
tor of coefficient form, while the building blocks of the resulting realization are lattice modules. In
Section 4, the second design example is presented, which concerns the realization of the modulation
matrix in the cosine modulated QMF bank. The mapping operators are specified by a close form
expression, while IIR modules are employed by the resulting realization. In Section 5, a special case
of the cosine modulated QMF banks is discussed, namely the ELT. We develop the time-recursive
architectural realizations for two instances of the ELT, the Modulated Lapped Transform (MLT)
and an ELT with basis functions of length 4N, N being the number of transform coefficients. In
this case, the mapping operators are specified by a close form expression, while lattice modules are

the appropriate building blocks for the associated realizations. We conclude with Section 6.

2 Generic Design Procedure

In Fig. 1, we present the flow diagram of the Generic Design Procedure that addresses the problem
of designing a time-recursive architecture for a linear mapping operator. The input specification can
be either the coefficient vector [ho hy - hn-1] or a function in the form ¢(-) = 3°; ¢;¢i(-), where
the kernels in {¢;(-)} belong in the class of functions specified by Lemma 1.2. For the majority

of interesting applications the specified input expression can be manipulated so that kernel groups

of size M = 2 suffice for the architecture design. This is desirable since it implies locality and
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low complexity in the resulted design. Therefore, the design procedure will be focused on kernel
groups of size M = 2, that also serves the purpose of simplicity and clarity in this presentation.
Nevertheless, we believe it deserves the name generic since it considers all different factors that
affect the architectural structure. Also, it conveys basic notions, so that the design rules and
procedures in Fig. 1 can be easily modified to accommodate arbitrary values of M.

In the sequel, we present the flow diagram in Fig. 1. If the input is specified in the coefficient
vector form the preprocessing described in Subsection 1.3.5 has to be employed, resulting an ex-
pression of the mapping operator coefficients in terms of sine, cosine and exponential functions.
This is labeled with Step 0 in the flow graph in Fig. 1. The mapping operator specified as a linear
expression of kernel functions (regardless whether this is the output of Step 0 or the provided input)
is fed to Step 1 described in Subsection 1.3.3. In this step of the design procedure we determine
the kernel groups {f;(-)} that are associated to the functions {¢;(:)}. For each kernel group f; we
question the periodicity property (PP). If PP is not satisfied the lattice architecture is decided
and it is determined by Step 2. Otherwise, we question whether both members of f; participate
in the expression ¢(-) = 3_; ¢i¢i(-). If this is the case, then the lattice architecture is preferable,
since it performs the computation pertinent to the second kernel function at no additional cost.
Furthermore, the resulted lattice structure often comprises of a rotation circuit that can be im-
plemented very efficiently by using a CORDIC processor {12] or distributed arithmetic [30, 24].
On the other hand, the IIR architecture is recommended if only one of the kernel functions in f;
is to be implemented. If this kernel function ¢; satisfies the difference equation property the IIR
architecture parameters can easily be determined by using Corollary 1.3 (see also Fig. 1.6 and Eqn.
(1.22)). Although given a kernel function one can construct the associated difference equation,
we suggest this path only if this equation can be found in tabulated form (see for example [3}).

Otherwise, a less painful way to determine the IIR architecture parameters is to determine first the

corresponding lattice parameters by following Step 2 and then using Corollary 1.2 (see also Fig. 1.6



and Eqn. (1.19)).
In the following Sections we give a number of architecture design examples in order to demon-

strate the usage of the above design procedure.

3 Lossless QMF Banks

The function of a 2-band Quadrature Mirror Filter (QMF) bank is to analyze an input signal in 2
subband components, so that reconstruction of the original signal is possible based on them [27].
Here, we consider the time-recursive implementation of a QMF bank that consists of the real

coefficient, finite impulse response (FIR) filters

H= [hN-l hN—2 L h()] and G = [gN—l gN—2 *** gO],

and it exhibits the losslessness property 1[28, 27]. The sequence of the steps we follow in this
Section, demonstrate the time-recursive realization for the case where the mapping operator is
specified in the vector of coefficient form.

Implementing the filters H and G is equivalent to implementing the mapping operators

[ho h1 --- hn-1], and [go g1 -~ gN-1].

Since the input specification to the Generic Design Procedure is in coefficient vector form, we follow
the left branch of the flow diagram in Fig. 1.

Step 0.1: Consider the linear system with the N first Markov coefficients being equal to the N

'In other words, the frequency responses of the filters satisfy the relation
H*(“)H(e*) + H*(“)H(e’*) = ¢, Vw,

where ¢ is a positive scalar and %" denotes conjugation. Without loss of generality we assume ¢ = 1.



columns of the matrix
ho hy -+ hn-1

go 91 -+ gN-1
We specify the partial realization {A,b, ¢} of minimal order M for this linear system [16, 17], so
that
hn,
=¢A™, n=0,1,---,N - 1. (1)
In
Step 0.2: Bring the triplet {A,b,c} in the modal canonical form [16]. Since our system is lossless
all the eigenvalues of the system matrix A will have the same magnitude, equal to 1 [27]. For the

sake of concreteness, suppose that the order of the system is M = 3. The format of the matrix A

will be

cosa sina 0

A=| _sina cosa 0 |-

0 0 B

L. .

where o takes values in the interval [0,27) and § equals either 1 or —1. The M X 1 vector b and
the 2 x M matrix ¢ do not have any particular structure.

Step 0.3: By substituting the above expression of A in (1) and expanding the matrix notation we

obtain ) -
cosan sinan 0 bo
h, Coo Co1 Co2
= —sinan cosan 0 b1
gn Cio C11 €12
0 0o B || b,
L 4 L -
and consequently
hn coobo + co161 —co1bo + coob1 | cozb2
= cos an + sinan + g". (2)
gn c10bo + ¢11by c11bo + c10b c12b2



Step 1: The kernel groups we need to implement are

foo(n) cos an

it

fo(n) = and fi(n) = fio(n) = §".

for(n) sin an

Step 2: For the kernel group () we have fo(n — 1) = Rfy(n) with

cosa sinao

R =
- sig a cosa
We also have
foo(0) 1 foo(N) cosaN
= and =
f01(0) 0 fo1(N) sin aN

The resulted architecture is depicted in Fig. 2, module Mgy. On the other hand, for the singleton
kernel group f;(:) we have fi(n — 1) = Rfy(n) with R = % and also f10(0) = 1, fio(N) = g". The
associated architecture is demonstrated by module M; in Fig. 2. The architectural implementation
of the given pair of mapping operators for the case when M = 3 is shown in Fig. 2. In general, we
need to implement M kernel functions. Among these functions no more than two are in the form of
fi(-) seen above (since only two distinct such functions exist with # = 1 and 8 = —1) and they are
implemented by module M;. The rest of the kernel functions will group into pairs of cosine-sine
functions specified by the parameter a, as dictated by fo(-) in the above example, and they can
be implemented by module Mj. For example, consider the pair of wavelet filters H and G, whose
coefficients, obtained in [1], are given in Table 1. The lengths of the filters H and G are 9 and 7
respectively. The size of the kernel group we have to implement (that is the order of the associated
linear system) is M = 6. The resulted architecture is shown in Fig. 3 and it involves two copies of
module My and two copies of module M;. The values of the parametefs o and f3, as well as the

output weights are given in Table 1.



The reconstruction of the original signal is obtained by using the mirror filters H and G of H
and G [1]. The architectural implementation of the reconstruction filter bank is obtained from the
analysis structure by simply replacing the parameters a and # by 7 — a and —/ respectively.

Note that the procedure we have discussed insofar for realizing the 2-band lossless QMF bank
can be used without any alterations for the case of K bands with K taking arbitrary values.

Concerning the implementation cost, module My in Fig. 2 requires 2 multipliers, 3 adders and
one rotation circuit. For the implementation of module M; we need 2 adders. We implement the
desired>pa.ir of mapping operators as two weighted sums of the outputs of the above described parts.
If the size of the associated kernel group is M the cost of this interconnection is 2M multipliers and
2(M — 1) adders. The overall cost of the design is not higher than 3M multipliers, |7M /2] adders
and M/2 rotation circuits. For example, the circuit in Fig. 3 requires 15 multipliers, 20 adders and
2 rotation circuits. Apparently, the cost of the time-recursive realization does not depend on the
filter length N, but rather on the number of decomposition kernels M, as we conjectured in part
11[7].

Since the design we present in this Section is optimal (with respect to kernel group size M) it
conveys information on whether the time-recursive computation is appropriate for a given lossless
QMTF bank and more general for a mapping operator. Nevertheless, there are special cases of lossless
QMF banks exhibiting a structure that can be exploited by the use of time-recursive computation
in different ways. An example of such filter banks is the cosine modulated QMF banks presented

in the following Section.

4 Cosine Modulated PR QMF Banks

The cosine modulated Perfect Reconstruction (PR) QMF banks exhibit a performance character-
istics similar to the other QMF banks with an easier design and cost effective algorithmic imple-

mentations [27, 22]. In this Section, we address the problem of time-recursive realization of the



modulation matrix. This modification suppresses the global communication requirement of the
QMF bank, giving rise to an architecture very appropriate for VLSI implementation. On the other
hand, this second design example serves the purpose of demonstrating the use of the IIR building

modules.

4.1 Preliminaries

An N-band cosine modulated PR QMF bank is characterized by the following property: the filters
Hy(z), Hi(2),- - -, Hn—1(2) in the analysis bank are modulated versions of a symmetric prototype
filter Po(z). A cosine matrix is used for performing the modulation operation. More specifically,

the analysis filters are:

2N-1
Hi(z) = Z cknz“”En(——z2N), k=0,1,---,N -1,

n=0
where E,(z),n=0,1,---,2N —1 are the 2N polyphase components of a prototype filter Py(z) and
the coefficients cg, are

Ckn = 208 [% (k + —;—) (n - L—;}-> + ()k} ) (3)

where k = 0,1,---,N -1, n = 0,1,---,2N — 1 and 6; = (-1)¥Z [27]. If the length L of the
prototype filter Py(2) is an even multiple of the filter bank of size N, then the modulation matrix can
be implemented based on a fast Discrete Cosine Transform algorithm. The resulting QMF analysis
structure is depicted in Fig. 4, where the polyphase components Ex(z), Exyn(2),k=0,1,---, N ~1
need to be pairwise lossless. The data processing evolves at the minimum rate, that is N times

lower than the input data rate.



4.2 Time-Recursive Computation of the Cosine Modulation Matrix

For the cosine modulation matrix specified by (3) we need to implement N mapping operators c;

each one of length 2N

¢k = [cko ¢k1 - Ck2N-1], k=0,1,---,N -1

Since we have

the kernel group fi(n) associated to the kth mapping operator

fro(n) cos [% (k

fra(n) sin [% (k

W e-)e]]
+1) (o= 17) +0] “

fi(n) =

satisfies the shift property (cf. Subsection 1.3.1). Thus, the kth mapping operator is specified by

the expression ¢k, = fxo(n). This completes Step 1 of the design procedure. For the kernel group

fi(-) we have fy(n — 1) = Rifi(n), where

R, cos—]’\%(k+%) sin%(k+%)

and



where § = —1. Consequently, fy(n) satisfies the periodicity property (cf. Subsection 14.2). Also,
since only one of the two kernel functions in fi(:) is sufficient for our computation (that is fio(-)),
the flow graph in Fig. 1 dictates that the IIR architecture should be adopted. The latter is derived

based on Fig. 1.8 and (I.19) and it is shown in Fig. 5.

4.3 Modified Realization of Cosine Modulated QMF Bank

The circuit inside the dotted area in Fig. 4 can be implemented with a bank of IIR modules
Mo, M;,---, Mn_; preceded by a switch as depicted in Fig. 6. This switch operates at twice the
input data rate and it periodically repeats the schedule 0,2,---,2N—-2,1,3,---,2N —1. One of the
three multipliers in the module My, £k = 0,1,---, N —1 needs to operate at the same rate, while the
remaining two n-mltipliers, as well as the polyphase components Eo(—22), Ey(—2%),- -+, Eon_1(—2%),
operate at the minimum data rate. This non-uniformity of the data processing rate can be com-
pensated by using a parallel implementation for the multiplier that operates at the higher rate,
while using digit serial operators [10] for all the other components of the circuit.

The modified realizations of the cosine modulated filter banks we described have a number of

advantages:

1. They maintain the locality throughout the realization of the filter bank, that is very important

in VLSI implementations, since a short clock cycle can be used.

2. They are modular, regular, scalable and they imply linear implementation cost, as opposed
to more irregular design and quadratic cost for the fast algorithm based approaches [26].
Consequently, the VLSI implementation of filter banks with large number of filters N becomes

more feasible.

3. The design is efficient for arbitrary values of the filter bank size N, unlike the fast algorithm

designs that are efficient only for N being a power of 2.
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In conclusion, we anticipate that a single-chip implementation of the cosine modulated PR QMF

bank will be feasible based on the time-recursive realization of the modulation matrix.

5 Extended Lapped Transforms

A subfamily of the cosine modulated PR QMF banks is the family of the Extended Lapped Trans-
forms (ELT) [21, 22]. In this case of QMF banks the coefficients of the prototype design filter Fy(2)
are sampled sinusoids, resulting into a very efficient algorithmic implementation of the associated
filter bank. In this Section, we show that the special structure of the prototype filter Py(z) can be
exploited by the time-recursive design principles, resulting in very efficient architectural implemen-
tations too. At the same time, we continue the demonstration of the design procedure by providing
examples of time-recursive architectures utilizing lattice modules. We also demonstrate the use of

time-recursive computation for realizing inverse block transforms.

5.1 Preliminaries

The most popular member of the ELT family is the Modulated Lapped Transform (MLT') [20, 22],
oftentimes called Modified Discrete Cosine Transform (MDCT) in the data compression commu-
nity [13]. The basis functions of the N-point MLT constitutes an N-band PR cosine modulated
QMTF bank, for which the prototype filter is a sinusoidal function of length equal to 2N [22] or equiv-
alently, the polyphase components in Fig. 4 are length-1 FIR filters. The magnitude responses of
the MLT basis functions exhibit a stopband attenuation of approximately 24dB [22], yielding high
capability of resolving weak signals despite the presence of stronger ones. Furthermore, being a
Lapped Orthogonal Transform (LOT), the MLT diminishes the blocking effect that appears at low
bit rate data coding with transform techniques. The MLT has been incorporated by the ISO-MPEG
and ASPEC standards (with the name MDCT) for audio data compression [14] and it is also used

for image data compression {13, 22, 23].
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The performance characteristics of the MLT can be further enhanced by using an Extended
Lapped Transform (ELT) with longer kernel functions {21, 22]. For example, an N-point ELT with
basis length equal to 4N has been used by a high fidelity audio coding scheme [29]. This ELT can
be viewed as a cosine modulated QMF bank with length-2 polyphase components, generated by a
prototype filter Py(z) of length 4N. What is important with the time-recursive design we propose
is that the increased length of the prototype filter translates mostly in communication cost rather

than in increasing the operator counts, while communication locality is maintained.

5.2 Architecture for the Forward MLT

The MLT operates data segments of length 2N, z(t + n — 2N + 1),n = 0,1,---,2N — 1 and it

produces N output coefficients Xprr7(k,t),k=0,1,--+, N — 1 as follows [20]:

[2 283 1 1 1 N |
Xnmrr(k,t) = ck v Z sm% (n+—2-) cos [—]—7:,— (k+-2—> (n+§+—2—)] z(t+n—-2N+1), (4)

wheret = 0,1, --and cx = (—1)(F+2)/2 if k is even and ¢; = (—1)(*~1/2if k is odd. The sequence of

the kth output coefficients Xpsrr(k,t),t = 0,1,--- can be thought of as the output of the mapping

hin = (ck\/%) sin-é% (n + %) cos [% (k + %) (n + % + %)] . (5)

After a few algebraic manipulations, we derive the following decomposition of this mapping operator

hk,n = = (ckv %) fk+l,0(n) - (Ckw "2}5,’) fk,l(n)a k= 0,1,-- 'aN -1, (6)

operator

where
o | _ [ lirbe s (o8] ] o,
Jra1(n) sin [ﬁk (n + %) + (k +1)z
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is the associated kernel group. For this kernel group we have fy(n — 1) = Rifi(n), where

kr kr
COS 57 N sin N

R = . (7)

kx kr
sm N COS 17 N

We also have
feo®) | _ | fuo(2) || con[gf+ (k+1) 3

. ®
$ea(0) faeNy | | sin[ip+ (k42)3] |

where § = 1. Therefore, the periodicity property is satisfied. Since both member functions of the
kernel group appear in the decomposition (6), the lattice architecture is recommended (cf. Fig. 1).
In Fig. 7, we provide the lattice module that is used as the building block in the MLT architectural
implementation. The latter is depicted in Fig. 8 for the case of N = 8. Rotation circuits are

suggested for the implementation of the lattice structure [24].

5.3 Architecture for the Inverse MLT

The inverse MLT (IMLT) is specified by transposing the coefficient matrix of the direct transform.

In close form, the IMLT is

1

z(Nt+n+1)= \/zsmﬁ( ) Z ckcos[ (k+ 2) (n+%+—g—f-)] Xmrr(k,Nt),

fort =1 and
2 T 1 N ,
z(Nt+n+1)=\/Nsm-éW( )chcos[ ( + = )(n+§+—2—)}XMLT(k,Nt)+

\/%sin%v-( >1§_‘;6kcos[ (k+ )( +%+§g‘>]XMLT(k,N(t‘1))7

13



for t > 2. Since we have

cos[% (k+3) (vt 3+ 2)] = Co#ttsin [ (k4 3) (n+ 5+ 7))

we obtain

4

\/%sin N (n + —%) N Leryro(Nt+n+ 1), t=1
g(Nt+n+1)= 9 2 sin % (n+ 1) TN epko(Nt+n+ 1)+
\/7; TN( 2) k=0 CkUk,0( ) 19,
| VEsingk (n 43+ 5) TG DM ek (V- 1) 40+ 1)
where
Yro(Nt+n+1) A
= fk(n)XMLT(k,Nt) = yk(Nt +n+4+ 1) (9)
Ye1(Nt+n+1)
and
Sro(n cosZ(k+i)(n4+l+ %
fi(n) = o(n) _ N( 2)( 2 2) ' (10)
fra(n) sin —]’% (k + %) (n + % + —12!)
For the kernel group f(-) we have
fi(n — 1) = Rifg(n), n=1,2,---,N, (11)

with
R, = cos % (k + %) sin % (k + %) 12)
—sin%(k-{-%) cos-,’%,(k+%)

and '

(13)

fx0(0) cos N2+1 T (k + %)
fra(0) sin (AT (k+ 1

Consequently, the shift property is satisfied.

14



In the sequel, we show how we can evaluate the expression in (9) in a time-recursive way. For
the sake of a simpler notation, we drop the subscript k except when it is necessary for avoiding
confusion.

From (11) we have

f(n+1)=Rf(n), n=0,1,---,N -1, (14)

where

Also, (9) is equivalent to

y(Nt+n)=f(n—1)X(0,Nt), t=1,2,--, n=1,2,---,N, (15)

where X(0,%),t=0,1,---is the transform sequence that corresponds to the 0th kernel function of
f(-). (14) and (15) imply

y(Nt+n+1)=RX(0,Nt)

and therefore, the quantities y(Nt+n +1),n=0,1,---, N — 1 can be evaluated by the following

time-recursive algorithm:

y(Nt+1)=f(0)X(0,Nt) (16)
y(Nt+n+1)=ﬁy(Nt+n), n=12,.---,N-1. (17)

This algorithm can be implemented by the lattice architecture in Fig. 9. Note that the parameters
i, 1=0,1, j = 0,1 are the elements of the matrix R. In particular, the lattice module for IMLT

is depicted in Fig. 10. The architectural implementation of the overall IMLT for N = 8 is shown

in Fig. 11.
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5.4 Architecture for Forward ELT

In this Subsection, we consider the ELT ? that operates on segments of data of length 4N, z(t+n—
4N +1),n=0,1,---,4N — 1 and it produces N output coefficients Xgrr(k,t),k=0,1,---,N —1

as follows [22]:

Xerr(k,t) = \/z:%; [ 2\1/_ _l.cos T (n + %)] cos [-};,— (k + —;—) (n + % + -J;)] z(t+n—-4N+1),

(18)
where t = 0,1,---. The sequence of the kth output coefficients Xgrr(k,t),t = 0,1,--- can be

thought of as the output of the mapping operator

hk,nz2\/12W[a+2cos%<n+%)]cos[ (k+ ><n+%)+(k+%)%] (19)

where @ = —+/2. After a few algebraic manipulations, we derive the following decomposition of the

mapping operator:
\/2_N[ fk ll(n)+afk0(n)+fk+l l(n)]v _0’1""5N"'17 (20)

where

fro(n) cos [ (k + ) (n + %) + (k + %) %]
fea(n) sin [ (k + ) (n + %) + (k + %) 125]
is the associated kernel group fi(n). For this kernel group we have fi(n — 1) = Rify(n), where

R, = cos % (k + %) sin & (k + %) . (21)

—sin{%(k+%) cosﬁ(k+%)

2Although the Extended Lapped Transforms are a family of transforms (including MLTY}, in the sequel we shall
reserve the name ELT discussed in this Subsection.
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We also have

fi0(0) fro(4N) cosZ(14+4)(k+12

fea(0) fea@N) | | sing (14 4) (k+1)
where S = 1. Therefore, the periodicity property is satisfied. Since both member functions of the
kernel group appear in the decomposition (20), the lattice architecture is recommended (cf. Fig. 1).

In Fig. 12, we provide the time-recursive architecture for the case of N = 8. The details of the

lattice modules in Fig. 12 can be obtained by a simple parameter substitution.

5.5 Cost Issues

The cost of the time-recursive implementation of the MLT is N — 1 rotation circuits, 2N + 3
multipliers and 3N + 3 adders, while the cost of the time-recursive implementation of the ELT is
N 4 2 rotation circuits, 3N 4 4 multipliers, and 4N + 4 adders.

For the derivation and proper interpretation of the throughput rate, we need to consider the
data model from a closer perspective. In the applications of interest, such as communication of
audio, video, sonar and radar data, the input is provided in a serial way. Let us denote with
¢ the time-unit, that is the time lapsing between two adjacgnt input data. Let us recall also,
that the locality property of the time-recursive design makes the bit-parallel implementation of
the arithmetic operators feasible. We will denote with Rp, Mp and Ap the time required for a
rotation, a multiplication and an addition respectively, as opposed to Rg, Mg and Ag that will
denote the time needed for the same operations when implemented in a bit-serial way. Note that
the architectures based on fast algorithms usually must employ serial implementations because
of the extensive use of global communication. For real-time applications the throughput rate th,
that is the number of data samples tc; be processed per time-unit, needs to be equal to th = 1.
Otherwise, if th < 1, the circuit will not be able to handle all the arriving data, so storage of data

and off-line processing will be needed. On the other hand, if th > 1, the circuit will be periodically
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idle since no input data will be available. Under this light of timing information and throughput
requirements we will next consider the MLT implementation.

First, for the time-recursive architecture of the sliding MLT circuit the data flow of the structures
in Fig. 7 and Fig. 8 dictate that between two adjacent output data samples one multiplication, three
additions and one rotation have to be performed. By introducing buffers at the boints A, B, C

and D in Fig. 7 pipeline processing is possible, so that the computation time is specified by
max{Mp + Ap,Ap+ RP}.

Consequently, the real-time processing requirement is equivalent to

u

th = =1.
max {Mp + Ap, Ap + Rp}

In other words, the implementation should meet the constraint

max{Mp+Ap,Ap+Rp} = u. (23)

Furthermore, if this is true the latency of the circuit will be equal to 3Nu. Consider now the
fast algorithm design for the sliding MLT that has an inherently parallel-input parallel-output
nature [20, 22]. At each time instant an input data arrives, and a sliding window of length N moves
to the next position. The real-time processing requirement dictates that before the next input data
arrives an N-point MLT must be performed. An architecture based fast transform consists of
a sequence of log, N + 1 alternating stages of multiply-add pairs and butterfly interconnection
networks. The latency time from input to output for a fully parallel structure will be equal to
(logy N + 1)(Ms + Ag). For a fully parallel and pipelined structure each stage can operate on a

different set of data, so at a time interval equal to the latency time above a number of output data
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sets equal to logy N + 1 will be available. Therefore, the real-time processing requirement will be

equivalent to

Ms + As = u. (24)

A comparison of (23) with (24), as well as the latencies of the time-recursive and the architec-
ture based on a fast algorithm yields a strong superiority to the former. In other words, (23) is

substantially easier to meet than (24). There are two reasons for this:

1. The locality property of the time-recursive architecture allows a shorter internal clock cycle
than the one employed by the architecture based on a fast algorithm since the latter makes

extensive use of global interconnections.

2. Even if the same clock cycle intervals are used for the two circuits, the ratio %ﬁ will be of the
order of the wordlength used in the finite word length implementation [11]. Here, X5 and Xp
denote the time necessary to carry out an operation (either addition or multiplication) with
a bit-serial and a bit-parallel implementation respectively. It worths mentioning that the use
of distributed arithmetic {30, 24] in implementing bit-parallel operations has been proved to
be very effective in the applications of interest [4]. In particular, it is possible to execute one

multiplication per clock cycle with this approach.

For the time-recursive implementation of the block MLT the output of the circuit depicted in
Fig. 7 needs to be decimated at the points C' and D. By employing the pipeline processing de-
scribed above we obtain the time lapsing betweel} two adjacent output samples: N max {Mp + Ap,
Ap + Rp}. For real-time data processing the time available for this computation is equal to Nu.
Consequently, the real-time processing requirement is again specified by (23). Also, the latency
time is 3N u as in the case of the sliding MLT. On the other hand, an architecture based on a fast
transform operates as follows. The data arrive serially, and stored in a buffer of length N, which

feeds the fully parallel and pipelined structure described above. This structure produces a new set

19



of output data in a time interval equal to Ms + As. The available time for this computation is

equal to Nu. Consequently, the real-time processing requirement dictates

Mg+ Ag = Nu. (25)

The latency time in the pipelined structure will be (log; N + 1)u. The waiting time of the data
in the input buffer needs to be added on the latter. This ranges from u to Nu with an average
(approximately) —{}u. In total, the (average) latency time is (log, N + 12! + 1)u.

The throughput rate constraints and the operator counts for both the MLT and ELT circuits
are summarized in Table 2. Aslong as VLSI implementation is concerned, this information needs to
be viewed in conjunction with the layout features of the associated circuits and their consequences
listed in Subsection 4.3. In conclusion, the time-recursive approach suggests very competitive
designs for the VLSI implementation of the MLT and ELT that have a significant impact on the

real-time audio data compression [14, 29] and other real-time signal processing applications [22].

6 Conclusion

In the second part of this two part paper, a design procedure for time-recursive realization under
different conditions has been presented and it has been applied to derive novel architectures for a
number of PR QMF banks.

Given a linear, discrete time, time invariant, compactly supported but otherwise arbitrary
mapping operator, a Generic Design Procedure we propose dictates first, whether the time-recursive
computation is appropriate for a given mapping operator and second, how to derive an optimized
time-recursive design. Furthermore, the flow graph of this design procedure provides the way for
specifying the parameters of the available IIR and lattice building blocks and combining them into

the time-recursive architecture.

20



The use of time-recursive computation in the cosine modulated QMF banks, as well as the
MLT and ELT, yields architectures that are very appropriate for VLSI implementation. These
architectures are modular, regular and they require only local communication. Also, they are
very efficient in terms of area utilization because: first, they have linear requirements in operation
counts, second, a substantial part of the computation is carried out by rotation circuits that can
be implemented very efficiently [24] and third, the designs are based on locally interconnected
building modules that are almost as low in number and complexity as the corresponding ones of
the DCT [18]. Furthermore, they operate in a Single Input Multiple Qutput (SIMO) manner, that
is very convenient for signal processing applications in communications. Exhibiting these features,
the designs we propose have an impact in diverse applications in real-time signal processing, such
as audio data compression, sampling rate conversion, channel equalization and echo cancellation.
Furthermore, the combination of the aforementioned Generic Design Procedure with an induction
procedure for realizing multi-dimensional computational cores {19] yields a very powerful technique
for real-time multi-dimensional signal processing.

In summary, we have provided evidence that the time-recursive computation carries a potential
(mainly in VLSI computing) that has not been fully exploited by the signal processing community
yet. We also have developed a tool that facilitates the design of the time-recursive realizations,

thus providing the means of exploiting this potential.
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hy gn aor § weight, weight,
0.0267 0.0000 1.0 0.1781  -0.0032
-0.0168 0.0456 -1.0 -0.0056  0.1778
-0.0782 -0.0287 | 1.1085 -0.0881 -0.0235

0.2668 -0.2956 -0.3089 -0.0781
0.6029  0.5575 | 2.0929 -0.0575 -0.1511
0.2668 -0.2936 0.0998  0.2673

-0.0782 -0.0287
-0.0168  0.0456
0.0267  0.0000

Table 1: Example of lossless QMF filter coefficients and the associated architecture parameters.
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rate constraint implementation cost
(mult, add, rotation)
time-rec.sliding || max{Mp + Ap,Ap+ Rp}=u | 2N +3,3N+3,N -1
MLT | time-rec.,block max {Mp + Ap,Ap+ Rp}=u | 2N 4+3,3N+2,N -1
fast algo.,sliding Ms+As=u L (log, N +5),
fast algo.,block Ms + As = Nu # log, N + 32X 0
time-rec.,sliding || max {Mp + 2Ap,Ap+ Rp} =u | 3N +4,4N +4,N + 2
ELT | time-rec.,block || max{Mp + 24p,Ap+ Rp} =u |3N+4,4N+3,N+2
fast algo.,sliding Mg+ As=u Z(log, N + 5) ,
fast algo.,block Mg+ As = Nu %— log, N +4N, 0

Table 2: Cost metrics for the architectural implementation of block transforms. Mp, Ap and Rp
denote the time delays associated with a bit-parallel implementation of the multiplier, the adder
and the rotation circuit respectively. Ms, As and Rg denote the corresponding time delays for a
bit-serial implementation.
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Corollary 1.3 ¢SP | >| Step2 (§1.3.3)

l Lattice Architecture ‘

Corollary 1.2

IR Architecture

Figure 1: Architecture design procedure.
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