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Abstract

In this paper we concentrate on MPSK carrier frequency estmation based on random data

modulation. We present a fast, open-loop frequency estimation and tracking techinque, which

combines a feedforward estimator stucture and a recursive least square (RLS) predictor. It is

suitable for the frequency estimation and large frequency acquisition and tracking required of

burst mode satellite modems operating under the condition of low SNR and large burst-to-burst

frequency offset. The performance of the estimator is analyzed in detail and simulation results

are shown. Finally, the non-linear impact of data modulation removal methods is discussed.

The estimator we derived is easily implemented with digital hardware.
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1 Introduction

Carrier frequency recovery is very important to MPSK modems. Fast frequency estimation and

tracking is necessary for burst mode satellite modems operating in the presence of large frequency

offset. An additional burden of low signal noise ratio (SNR) can make the task of frequency es-

timation quite difficult. Traditional methods such as phase locked loop (PLL, e.g. Costas loop)

and Decision Directed Methods [13][14][15] are widely used in MPSK modems. A combination of

PLL and frequency sweeping is commonly used to deal with large frequency offsets in continuous

modems. For burst modems, some form of estimation is usually employed to speed up the ac-

quisition process. The paper [15] shows that the PLL has a small frequency capture range and a

long acquisition time[1][14]. The capture range of the PLL is around 2BL, where BL is the loop

bandwidth. A rough approximation of BL is given as Rs/n. Rs is symbol rate, n is typically on

the order of few hundred, depending on the SNR. The lower SNR, the larger n. Hence, we have a

smaller capture range and a longer accquisition time at low SNR. Decision-Directed and Data-aided

methods are more suitable for systems with a training sequence or operation at high SNR. Unfor-

tunately, training sequences are not available for many burst modems. Continuous mode modems

can also benefit from the faster acquisition time proposed. For these cases, open-loop frequency

estimation methods, which have larger estimation range than PLL and require a smaller number

of symbols and operate on random data modulation, are considered in this paper as a method to

achieve fast frequency acquisition in the presence of large frequency offsets. An estimation module

combined with a traditional PLL can achieve much faster synchronization. The technique presented

can also be used for frequency tracking of burst mode modems that utilize a preamble for carrier
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recovery, such as TDMA. The added benefit of this technique is the robustness of frequency estima-

tion, and subsequent carrier recovery acquisition once phase is resolved, when frequency offsets are

large compared to the symbol rate. This could permit less stringent and costly frequency control

of TDMA networks.

Focusing on the carrier frequency recovery problem, a number of fast-converging methods are

proposed. The paper[6] gives a survey of those methods operating on random data modulation

which are easy to implement. A frequency estimator, based on power spectral density estimation,

was first proposed by Fitz [5] for an unmodulated carrier. For an MPSK signal, the non-linear

method in [1] can be used to remove data modulation. A variant of this algorithm was proposed by

Luise[7]. The performance of these methods, at low SNR, is close to the Cramér−Rao lower bound

(CRLB) [14] for a carrier with unknown frequency and phase. The maximum frequency error that

can be estimated by the Fitz algorithm is Rs/(2ML), where L is the maximum autocorrelation

lag and M is the number of phase states in MPSK. Under the assupmtion that the carrier phase

has a constant slope equal to the angular frequency offset, Tretter [2] and Bellini [3][4][6] proposed

a frequency estimator by means of linear regression or line fit on the received signal phase. The

maximum frequency error that can be digested is Rs/(2M). The performance of this algorithm is

good at high SNR (close to the CRLB for data modulated carrier) with low hardware complexity.

Phase change over symbols is proportional to the frequency offset. Chuang and Sollenberger[8][9]

use this idea and present algorithms based on differential symbol estimates. In this paper, we

present a carrier recovery algorithm based on [8][9]. We propose a new data modulation removal

method which performs better than [8] at small frequency offset. We also introduce an adaptive
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filter to improve performance at low SNR(Eb/No ≤ 5dB).

In the second part, we revisit Viterbi’s [1] feedforward phase estimator which is closely related

to our algorithm. We then derive a simple version of the estimation and tracking algorithm and

follow with the development of a more complex version. The complex estimator uses the idea

of Viterbi’s feedforward structure. An adaptive filtering technique is used for tracking and noise

removal. A simple Recursive Least Square (RLS) one-step predictor is proposed. The performance

of the estimation and tracking algorithm is analyzed in detail. An approximation for the variance

of the estimate is derived for the Chuang algorithm[8]. In the third part, simulation results are

shown and the non-linear effect of data modulation removal is discussed.

2 Frequency Estimation and Tracking Algorithm

In order to simplify our presentation, the following assumptions are made for the development of

the algorithm:

1. The symbol timing is known

2. Discrete time samples are taken from the output of a pulse shape matched filter, one sample

per symbol

3. The pulse shape satisfies the Nyquist criterion for zero intersymbol interference
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The last assumption is reasonable for relatively small frequency offsets. The ith complex sample

derived from matched filter can be expressed as

ri = diexp(j(2π∆fiTs + φ0)) + ni, |di| = 1. (1)

where di represents the ith complex symbol modulating the MPSK carrier, ∆f is the frequency

offset, Ts is the symbol interval, φ0 is the carrier phase, ni represents complex additive Gaussian

noise. The channel noise has two-sided power spectral density No/2. The variance of the two

quadrature components of ni is No/(2mEb), where Eb is the energy per information bit and m =

log2M .

2.1 The Feedforward Phase Estimator

In their classical paper[1], Viterbi and Viterbi proposed a feedforward structure to estimate the

phase φ0 of data modulated MPSK signal. This estimator operates on a block of N symbols. It

first removes the modulation from the complex sample ri, obtaining,

Ri = Ii + jQi = F (|ri|)exp(jMarg(ri)), F (|ri|) = |ri|
k, k ≤M even. (2)

Then it averages the N in-phase and quadrature components and finally generates the estimated

carrier phase φ̂ for the block of symbols:

φ̂ =
1

M
tan−1(

∑
Qi∑
Ii

). (3)

This estimate is affected by a (2π/M)-fold ambuity, which can be resolved by differential encoding

of channel symbols.
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F (|ri|) = 1 is best at Eb/No ≥ 6dB, F (|ri|) = |ri|2 is best at low Eb/No ≤ 0dB[1]. Ordinarily we

pick up the zeroth power function because of the SNR we work with. The estimator is unbiased

and has the variance,

σ2 =
1

N2mEb/No
Γ(M,∆f), for F (|ri|) = |ri|

k, (4)

Γ(M, 0) = 1 +
(k − 1)2

2mEb/No
+O(

1

2mEb/No
). (5)

2.2 Frequency Estimation and Tracking Algorithm

The frequency offset causes the phase of unmodulated carrier to change by 2π∆fTs every symbol,

so if we differentiate the phase of adjacent symbols, we can get an estimate of the carrier frequency.

That’s the basic idea of our algorithm.

The selection of the proper nonlinearity for data modulation removal is a difficult topic. Most

frequency estimation methods suffer dramatic performance loss after going through data modulation

removal. There are two common methods:

1. mod2π/M

2. M-th power.

We will discuss them seperately. In the following discussion, we will focus on QPSK, the method

also applies to all MPSK.

According to the work done by Tretter[2], we can absorb the noise term ni in the received signal,
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ri, into phase noise at high SNR, i.e.

ri = Aexp(j(2π∆fiTs + θi + φ0 + VQi)). (6)

where A=1, θi is data modulation, VQi is equivalent phase noise. Therefore, the phase φi of ri can

be modeled as

φi = 2π∆fiTs + θi + φ0 + VQi, θi =
2πk

M
, k = 0, ...,M − 1. (7)

If we differentiate φi, we can get

δi = 2π∆fTs + θi − θi−1 + VQi − VQ(i−1). (8)

Because data modulations θi and θi−1 are multiples of 2π/M (π/2 for QPSK), if we keep only the

remainder of δi/(π/2), (i.e. modulo operation) or select an l, such that γi = δi − l
π
2 is within the

range (−π/4, π/4), we can get

γi = 2π∆fTs +Ni, Ni = (VQi − VQ(i−1))mod
π

2
. (9)

In order to prevent frequency aliasing, the frequency offset must satisfy |∆f | < 1/(2MTs). For

QPSK, |∆f | < 1
8Rs, is the bound of maximum frequency offset which can be estimated.

Equation(9) is a simple estimation of ∆f based on adjacent symbols. γi is corrupted by phase noise

Ni.

The other method for modulation removal is M-th (4 for QPSK) power, 4·δi, i.e.

γ′i = 4δi = 4 · 2π∆fTs + 4(θi − θi−1) + 4(VQi − VQ(i−1)). (10)
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γ′i is passed through an exponential function exp(j(·)). It is similar to the algorithms in [1][8]. The

same restriction on ∆f applies as the modπ/2 method.

Sequence {γi} or {γ′i} is composed of frequency information and noise. Processing them in the phase

domain is numerically error prone. We apply the idea of Viterbi’s feedforward structure, project

γi or γ′i onto in-phase and quadrature components, then average both in-phase and quadrature

components. We can get the frequency estimate as follows, for γi(9), we get

2π∆̂fTs = tan−1(

∑N
i=1 sin(γi)∑N
i=1 cos(γi)

), (11)

∆̂f =
Rs
2π
tan−1(

∑N
i=1 sin(γi)∑N
i=1 cos(γi)

). (12)

For γ′i(10), we get

2π∆̂fTs =
1

4
tan−1(

∑N
i=1 sin(γ′i)∑N
i=1 cos(γ

′
i)

), (13)

∆̂f =
Rs

4 · 2π
tan−1(

∑N
i=1 sin(γ′i)∑N
i=1 cos(γ

′
i)

). (14)

N is the number of symbols. We call this estimator the differential feedforward estimator(DFE).

Equation (14) is the algorithm presented in [8].

Simulation shows that the estimation result of (12) and (14) can be modeled as

∆̂f = ∆f +Np. (15)

Np is additive noise with zero mean and autocorrelation {rNp(k)}, k=0,1,....

In order to remove noise and track the frequency change, an adaptive algorithm [10][11][12] can be

used. There are three criteria for our algorithm selection:
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1. unbiased prediction

2. good compromise between fast convergence and small variance

3. low hardware complexity.

Therefore, according to our model in (9) and (15), a recursive least square (RLS)[10] one-step

predictor is a good choice. We would like to minimize the following performance index:

Λn =
n∑

i=1

λn−i(ωn − γi)
2. (16)

where ωn is the carrier frequency offset estimate from the predictor at time n, γi is the same as γi

of (9) or ∆̂f of (15). λ is an exponential forgetting factor, satisfying 0< λ <1. We minimize Λn

based on ωn,

∂Λn
∂ωn

= 2
n∑

i=1

λn−i(ωn − γi) = 0, (17)

ωn =

∑n
i=1 λ

n−iγi∑n
i=1 λ

n−i
. (18)

After simple arithmetic, we can find the relationship between ωn and ωn−1. If we define Fn =

∑n
i=1 λ

n−i, Kn = 1− 1/Fn and Mn = 1/Fn, we can get the following RLS one step predictor:

1. Initialization: Select a proper λ which controls convergence speed and variance. If λ is

small(close to 0), the predictor converges faster but has large variance; if λ is large(close to

1), the predictor converges slower but has small variance. Let F0 = 0, ω0 = 0.

2. Processing: for n=1,2,...

Fn = λFn−1 + 1, (19)
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Kn = 1−
1

Fn
, Mn =

1

Fn
(20)

ωn = ωn−1Kn + γnMn. (21)

The structure of the RLS predictor is similar to that of the extended Kalman filter in [10]. In real

hardware implementation, we can fix Kn = K and Mn = M by letting M = 1−K, 0<M<1.

The RLS predictor is a solution for the requirement of small variance and tracking capability. It

is intuitive to see that the larger the N, the smaller the variance. But, if we increase the number

of symbols in frequency estimation, we will cover small but non-negligible frequency change. The

following performance analysis shows that the RLS predictor can remove noise(reduce variance)

and keep the tracking capability of the DFE with small N. If the frequency changes dramatically,

a higher order predictor should be considered to achieve faster convergence with smaller variance.

2.3 Hardware Implementation

Figure 1 shows the flow diagram of hardware implementation. (a) is the simple version that works

well at Eb/No ≥ 10dB. (b) is the slightly more complex DFE version in which two ”arctan” modules

can share one lookup table on a time division basis. We can also place modπ/2(or 4 times phase)

and NCO(sin(),cos()) together into another lookup table. In order to simplify the RLS predictor,

constant coefficients K and M can be used as an extended Kalman filter, however, it will suffer

slower covergence. When we combine the RLS predictor(or extended Kalman filter) with the DFE

we can track the frequency change without large performance loss. Simulation results show that

this combination will improve the estimation variance, especially at low SNR.
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The system(b) in Figure 1 operates as two stages: estimation and tracking. It works in the following

manner:

1. Estimation: DFE estimates frequency offset over N symbols. During last L symbols, the RLS

predictor is activated to remove noise.

2. Tracking: after estimation, the DFE tracks frequency offset over a rectangular sliding ”win-

dow” of length N. The estimation result is passed through the RLS predictor.

We activate the RLS predictor during last L symbols because as the number N increases, the

estimation variance of DFE goes down at speed O(1/N). The RLS predictor (or Kalman filter)

removes noise, but it also accumulates noise from previous inaccurate (when time ≤ N) estimation.

There is an optimum point, N − L, at which we begin the filtering process to remove maximum

noise. This point can be obtained by simulation.

2.4 Performance Analysis

In this subsection, we first analyse the variance of DFE and then discuss the convergence of the

RLS predictor. We follow with a discussion of some advantages of this technique.

The DFE algorithm is very similar to Viterbi’s feedforward structure with the addition of differ-

entiating input phase. It is intuitive to see that the relationship between the frequency estimation

variance and N (the number of symbols) should be the same as (4) as shown in the simulation

The two nonlinear data removal methods discussed in this paper play different roles at low SNR(Eb/No ≤
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Figure 1: Flow digram of frequency estimation and tracking module

5dB) and high SNR(Eb/No ≥ 12dB). At low SNR, modπ/2 has smaller variance but is biased

when frequency offset is large. The 4-th power is unbiased but has a larger variance. At high

SNR(Eb/No ≥ 12dB), modπ/2 is preferred. The modπ/2 hard limits the phase difference into

(-π/4, π/4), but this nonlinear operation will cause estimation error. The 4-th power method am-

plifies the noise 4 times when it removes data modulation, which introduces a (approximately)12dB

noise penalty.

Because of the nonlinear operation above, it’s difficult to get an analytical solution of the estima-

tion variance. Fortunately, simulation shows that the variance of the estimator(14)(4-th power,

Chuang algorithm [8]) exhibits some regularities. After some data processing, we get the following
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approximation:

var(
∆f

Rs
) =

C

N(2π)2(2m)(Eb/No)3.2
, for Eb/No > 2dB. (22)

where C is a constant depending on the modulation scheme. We can use this formular(22) to

predict the performance of the predictor.

During the analysis of the RLS predictor, we must assume the models(9) and (15) hold, where

Np or Ni is additive noise with zero mean and autocorrelation {rN (k)}. It is easy to verify the

predictor (18)(21) is unbiased. If we assume the output of predictor is ωn (shown in Figure 1), then

we can get

var(ωn) =
1

(
∑n
i=1 λ

n−i)2
(
n∑

i=1

n∑

k=1

λ2n−i−krN (i− k)). (23)

In order to simplify the problem, let us assume Np or Ni is white (which is not quite accurate

because the DFE estimation results are correlated), and let rN (0) = σ2,

var(ωn) =

∑n
i=1 λ

2(n−i)

(
∑n
i=1 λ

n−i)2
σ2 =

(1− λ−1)2(1− λ−2(n+1))

(1− λ−2)(1− λ−(n+1))2
σ2. (24)

From (22)(24): var(∆f/Rs) decreases at O(1/N), but var(ωn) decreases as (24). Further, our

simulation shows some gain at low SNR from filtering.

We can summerize the advantages of the DFE & RLS predictor as follows:

1. At low SNR, the 4-th power estimation is unbiased (linear regression method exhibits a

serious bias). RLS predictor reduces estimation noise during the ”estimation” stage; during
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the ”tracking” stage, it reduces noise further and keeps tracking frequency changes. At high

SNR, RLS plus modπ/2 provides a simpler solution. The DFE & RLS technique is simple

and easy for hardware implementation when contrasted with the more complex spectrum

estimation method.

2. The performance of this technique is scalable. We can get different performance (variance)

by programming the length N of the accumulator by using (22).

3. If Viterbi’s feedforward phase estimator is adopted, the hardware cost is even smaller in that

two methods share most modules.

3 Simulation Results

The following simulation results are based on QPSK.

Figure 2 shows the normalized estimation variance(i.e., var(∆f/Rs)) of the 4-th power DFE

(Chuang algorithm[8]) as a function of Eb/No and symbol length N. The ”∆” curve is equation (22)

given N=800 and C=30 for QSPK. It shows that (22) is a good approximation of the performance of

the Chuang algorithm. The most attractive advantage of 4-th power DFE is that it is unbiased and

the performance is independent of frequency offset(less than 1/8 Rs) at low SNR (Eb/No ≥1dB),

given the proper selection of N vs. SNR.

Figure 3 shows the normalized estimation variance of the modπ/2 DFE as a function of Eb/No

and symbol length N. We can see that at low SNR, the variance decreases at approximately

O(1/N); at high SNR it decreases even faster. The variance is smaller than that of the Chuang
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Figure 2: Normalized frequency estimation variance vs Eb/No and N, 4-th power DFE

algorithm within the estimation range of the modπ/2 DFE (e.g. when Eb/No=4dB, N=400,

∆f/Rs=2%, varmodπ/2=8.2979e-6, var4th=3.7916e-5, when Eb/No =12dB, N and ∆f remain the

same, varmodπ/2=1.5778e-8, var4th=7.7097e-8). The shortcoming of the modπ/2 DFE is that it is

biased given large frequnecy offset at low SNR. The actual frequency estimation range of modπ/2

at low SNR is much smaller than that of 4-th power DFE. However, with increasing SNR, modπ/2

exhibits an increased frequency estimation range.

Figure 4 shows the normalized mean square (MS) estimation error(E[(∆̂f/Rs−∆f/Rs)2]) of 4-th

power and modπ/2 DFE as a function of ∆f/Rs, given Eb/No=14dB, N=400. We can see that
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Figure 3: Normalized frequency estimation variance vs Eb/No and N, modπ/2 DFE

the maximum frequency offset ∆fmax of the 4-th power DFE is very close to our theoretical value

0.125Rs. The modπ/2 DFE has a small frequency estimation range (e.g., under 4%Rs, it performs

better than 4-th power). It exhibits even smaller frequency estimation range (around 2%Rs) at

lower SNR, but it has a smaller MS estimation error within its estimation range.

Figure 5 shows the performance comparision of the 4-th power DFE, the 4-th power DFE plus

extended Kalman filter and line fit algorithm[3][4][6], given N=200. The coefficient M of the

extended Kalman filter is 1/64. The “*” curve shows the filtered result (after 100 symbols training).

We can see that the RLS predictor (or simplified extended Kalman filter) removes more noise,
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Figure 4: Frequency offset estimation range, 4-th power vs modπ/2 DFE

especially at low SNR, (e.g. at Eb/No=1dB, varDFE=2.6767e-3, varDFE+RLS=1.5113e-3). The

filter improves the perfomance of the estimator by 0.5dB to 1dB. It also shows that the line fit

algorithm (linear regression) is biased at low SNR.

The following table shows the performance comparision of the pure 4-th power DFE and the 4-th

power DFE plus RLS predictor in the “estimation” stage at low SNR. The condition is: N=250,

L=50 (i.e. RLS predictor starts filtering at N-L=200), λ = 0.97.

From the simulation result we can see that the combination of DFE and RLS predictor reduces the

frequency uncertainty to a small range at low SNR, which could be used to speed up the subsequent
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Figure 5: Performance comparison between DFE+RLS and DFE

PLL pull-in process. At high SNR, a PLL is not necessary for very short bursts in that an open

loop frequency estimator plus feedforward phase estimator can recover the carrier. According to

the analysis in [6], the maximum value of ∆f/Rs that Viterbi’s estimator can tolerate is 1/2Mn,

where n is the block length for phase estimation[1]. Typical values of n are around 20 to 25 for

QPSK [3]. Hence, the variance of ∆f/Rs which should be guaranteed is around 6 × 10−6. If we

use the modπ/2 DFE, Eb/No=12dB, N=100, var(∆f/Rs)=1.4181e-7.
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Eb/No(dB) 0 1 2 3 4

var(∆f/Rs)DFE 3.7135e-3 2.3406e-3 9.7756e-4 2.3223e-4 7.8873e-5

var(∆f/Rs)DFE+RLS 3.1208e-3 2.0396e-3 8.7936e-4 2.2489e-4 6.8964e-5

Data modulation removal is a key point to carrier frequency offset estimation based on random

data modulation. The 4-th power method reduces SNR by approximately 12 dB. At low SNR, the

harmonics generated by the nonlinear operation of data removal are serious. These harmonics cause

bias of the frequency estimates at low SNR, which could distort the results of other algorithms (e.g.

line fit). The 4-th power DFE discribed above shows good performance at low SNR.

4 Conclusion

This paper presents a simple open loop frequency estimation and tracking algorithm based on

random data modulation. Two data removal nonlinear methods are discussed. The 4-th power

DFE is unbiased at low SNR. The modπ/2 DFE exhibits a smaller variance within its smaller

estimation range. A formular for performance approximation is given. The combination of this

algorithm and a PLL can be used to reduce carrier synchronization time. It is also suitable for the

frequency acquisition and tracking of burst mode modems operating under the condition of large

burst-to-burst frequency offset.
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