A Geometric Algorithm for Selecting Optimal Set of
Cutters for Multi-Part Milling

Zhiyang Yao Satyandra K. Gupta Dana S. Nau
Mechanical Engineering Department Mechanical Engineering Department Computer Science Department
and Institute for Systems Research and Institute for Systems Research and Institute for Systems Research
University of Maryland University of Maryland University of Maryland
College Park,MD-20742 College Park,MD-20742 College Park,MD-20742
+1-301-405-6572 +1-301-405-5306 +1-301-405-2684
yaodan@Glue.umd.edu skgupta@eng.umd.edu nau@cs.umd.edu
ABSTRACT

For the manufacture of milled parts, it iswell known that the size of the cutter significantly affects the machining time. However, for small-
batch manufacturing, the time spent on loading tools into the tool magazine and establishing z-length compensation values is just as
important. If we can select a set of milling tools that will produce good machining time on more than one type of parts, then severa
unnecessary machine-tool reconfiguration operations can be eliminated. This paper describes a geometric algorithm for finding an optimal
set of cutters for machining a set of 242D parts. In selecting milling cutters we consider both the tool loading time arfining tmae
and generate solutions that allow us to minimize the total machining time. Our problem formulation addresses the gemeraf pooble
to cover a target region to be milled with a cylindrical cutter without intersecting with the obstruction region; thisnlefilotis us to
handle both open and closed edges in the target region. Our algorithm improves upon previous work in the tool selecfalvaieg in
ways: (1) in selecting cutters, it accounts for the tool loading time, and (2) it can simultaneously consider multiplepdiffsrand select
the optimal set of cutters to minimize the total manufacturing time.

Keywords

Milling Cutter Selection, Computer-Aided Process Planning.

1. INTRODUCTION

Increasingly, the manufacturing industry is moving towards high part mixes, which makes it important to reduce setup @nd toolin
operations. For example, if a machine-tool is not configured to accommodate more than one part within a part family #meouatg

of time will repeatedly be spent on reconfiguring the machine-tool (i.e., loading new tools and fixtures into the maclgaekidiole a
request is received for manufacturing a different part. Such reconfigurations are the major source of inefficiency incémall bat
manufacturing.

If a machine-tool was configured from the beginning to accommodate several different parts within the part family, mucbsbbthe
reconfiguring the machine-tool could be avoided. This will require considering all of the parts that need to be prodgctte djivien
operational period, and selecting tools and machine-tool configurations that can work for multiple different parts.

In the milling operation domain, it is well known that the size of the milling cutters significantly affects the machininghenefore, in
order to perform milling operations efficiently, we need to select a set of milling cutters with optimal sizes. It is fifficuthan process
planners to select the optimal or near optimal set of milling cutters due to complex geometric interactions among t@otssbiapes,
and tool trajectories. Furthermore, in small batch manufacturing, both tool loading time (i.e., the time spent on loadtihg ool
changer) and machining time (i.e., the time spent on performing milling operations) are equally important.

Most existing cutter selection algorithms select milling cutters by minimizing the machining time and doonat &mctool loading time
[1,2,5,6,7,8,9,10, 11, 12, 13, 14]. In most cases, the existing algorithms will recommend using a different gt fof @zth new
type of part. Since most machine-tools can only hold a limited number of tools at one time, this means that we will rozid)toer toe

machine-tool (i.e., we will need to change the set of tools in the tool magazine) before machining each new type of ghg.BAtchn
size is small, reconfiguring the machine-tool before machining each type of part may significantly reduce thputrblogvever, if we
can select a set of tools that can be used for more than one type of part, then several unnecessary machine-tool necapdigdiain
can be eliminated, thereby increasing the throughput.

This paper describes a geometric algorithm for finding an optimal set of milling cutters for machining a given set of qeetstirig
milling cutters we consider both the tool loading time as well as machining time and generate solutions that allow uszethertiotal
manufacturing time. Our tool selection algorithm improves upon the previous work in this area, in the following mannseléajirg
cutters it accounts for tool loading time, and (2) it can simultaneously consider multiple different parts and selectathseopfitutters
to minimize the total manufacturing time.

[Collection of parts to be machined]

!

Get 2D profile from 3D parts(Section 3.1).

!

[Cuter library > For each cutter, find how much of area

it can cover(Section 3.2).
\
Tool Setup Time, Choose an optimal set of cutters by solving
Cutting Parameters least-cost path problem(Section 4).
\
[Best Cutter Combination]

Figure 1: Overview of Our Approach

Currently our algorithm is restricted to 2%D milling operations. In particular, we consider the problem of selecting a s#quence
cylindrical cutters to cut all of the points in a 2%2D target region without cutting any of the points in a 2%2D obstructiofiLEgi This
approach allows us to handle both open and closed edges. The steps of our approach are as follows. Given a set oftersgilable cu
first compute how much of the target region each cutter can cut. We do this by finding the set of all possible permisitdefdoche

tool, and then computing the total area covered by the tool at these permissible Idds@rhsve represent the problem of finding an
optimal sequence of cutters as a least-cost path problem, and use Dijkstra’s algorithm to solve it. Our overall apprwadin iBighre

1.

2. PROBLEM FORMULATION

The milling problem is the problem of taking one or more pieces of stock and using a sequence of one or more milling ¢perations
remove portions of each piece of stock, in order twlpce some desired set of parts. Each milling operation is performed using a milling
cutter, and our research focuses on the geometric aspects of selecting those cutters. In previous work [15], we locksel \ahéne

only one milling operation was to be used, and developed an algorithm for finding the optimal cutter for this operatiorer, fowev
practical milling problems, it is more typical to use more than one milling operation, using a different cutter for eaicm-epmrdtthat
problem is the subject of the current paper.

Let P be one of the parts that needs to be produced, aBdéethe piece of stock from whichis to be produced. We will assume tBat

—* P (i.e., the portion oS that needs to be removed to prod®és a 2%4D solid (this assumption holds for many milling operations). In
this case, the cutter selection problem can be reduced to a 2D problem by considering any cross-section of the 2%Disdliés 2Dith
cross-section, we define the region to be machined aarijt region T (a region is a set of 2D points). In addition to the target region,
there is arobstruction region O that is the region that the cutting tool should not cut during machining. An example is shown in Figure 2.
The target region and the obstruction region must both be regular sets, each of which may consist of a nombdacént sub-regions:

T:T]_D DTM,

0=0.0...0 Oy
In this paper, we assume that the boundasech sub-region consists only of line segments and segments of circles.
Let C be a rotating cutter of radiugC) located at some poipt(x,y). If we holdC stationary while it is rotating, the@will cut a circular
regionR(C,p) = {all points (u,v) such that\/(u - x)2 +(v— y)2 < r(C)}. We will call R(C,p) the set of pointsovered by C at p.

! This problem is computationally similar to the problem of computing the offset for a 2D point set, and previous appro#tkes for
problem have been based on the use of the offsetting operators traditionally available in solid modeling systems. Hbigepapein
we show that use of traditional offsetting operators will not always produce correct results, and in Section 3.2.2 we show what
modifications are needed to make those approaches correct.

Milling Cutter

(a) Stock (b) Final Part

Target Region, T
Obstruction Region, O

(c) Target and Obstruction Regions

Figure2: Example =
coST T

O p
5. == Profile Shows Target

</ « and Obstruction

L= Region
L T

O
Q %OO
&) —— Upper Surface
Profile f;

et region, and obstruction region.

<—— Bottom Surface
Profilef,

<+«— 3-D Mode

Figure 3: Example of profile extraction

If we move C whileit isrotating, then C will cut some region larger than R(C,p). In this paper, one of the things we will want to find is the
set of al pointsin T that can be cut by C. There are severa different non-eguivaent ways to define what this set is. As we discussed in

[15], the best one for our purposesis as follows. A point p is a permissible location for C if the interior of R(C,p) does not intersect with
the obstruction region, or equivalently, if On" R(C, p) = . A set of points can be safely covered by C if for every point p in the set,
thereisapermissible location of C that coversp.

In most cases, the length of the cutter path associated with a cutter will decrease as the cutter size increases, and therefore it will take less
time to cut a given area. However, due to geometric restrictions, a large cutter may not be able to safely cover tigetariiena—and
thus one or more smaller cutters will be needed to cut the remaining portion of the target region.

In multi-cutter selection problems, multiple milling operations are used, each with a different milling cutter. The biggeamiused

first, in order to cut material as fast as possible. Then, smaller cutters are used to create the smaller featurest oéghentarflectotal
machining time Ty, for the sequence of milling operations is the total time needed from the time that the stock is loaded into the milling
machine, until the time that the finished part is produdggdcan be expressed as

Ty =Tt Tt Ty

whereTy is the total real cutting time (the time spend on moving cutters to cut the pRfiléey;the total cutter change time (the total time
of changing tools during machining all the parts); &gds the total cutter loading time (the total time spent on loading and calibrating all
selected cutters before machining given parts). Since cutter change time is significantly smaller (of the order of Teeqmrdd)to
cutting time and cutter loading time (of the order of 5 to 10 minutes), in this paper we will ignore cutter change tinme Thetbfs
paper we will use

Ty =Tyt Ty .
Intuitively, the cutter selection problem can be describedragian covering problem: we need to find an optimal sequence of cutters that
can cover the target region without intersecting the obstruction region. Mathematically, we defiitithart cutter selection problem
as follows. Suppose we are given one or mageqgs of stocks,, ..., S) from which we need to produce a corresponding set of gaits (
..., P)). In order to produce those parts, suppose we have a sequence of cuttingCig@ls..(C,), given in decreasing order of cutter
radius (i.e.r(Cy > ... > r(C,)). Furthermore, suppose thiatis small enough that it can safely produce alPgf..., P_, and that fom <
n, noCy, is small enough to safely produce allRyf ..., P,. The problem is to find a subsequen€&,C 5,...,C) of (C1,Cs,...,C,) such
that if we useC’;,C’,,...,C', in the order given, this will minimize the total machining tifiye In this paper we present an algorithm for
solving this problem.

3. FINDING COVERABLE AREA FOR A GIVEN CUTTER

In order to solve the multi-part cutter selection problem, an important step is to estimate the area of the region thafebacdered
(in following sections, we call this region eaverable region and the area of coverable regiorcagerable area) by each of the cuttefs,,
..., Cn. This section describes geometric algorithms for calculating the coverable area for a given part and tool combination.

3.1 An Algorithm for Extracting 2D Profile

To estimate the coverable area automatically, we will need to extract the target and obstruction region from the CAD rseddiow o

we extract the target region and obstruction region, consider example shown in Figure 3, in which we have a 3D modeigufiar recta
part whose faces are parallel to the yz, andxz planes. As shown in the figure, this part has a single feature, which is a blind 2¥2D
milling feature which is located in the part’s top face. To find the target region and the obstruction region, we extrassiserions

that are parallel to they plane: a cross-sectidpat the top of the part, and a cross-sectjaat the bottom of the feature. The obstruction
region isf,, and the target regionfs—" f,.

3.2 An Algorithm for Finding Coverable Area

3.2.1 Definitions
Lemma 1: Given a cutteC of radiusr(C), the target regiofi and obstruction regio®, the set of non-permissible locatioAgO,C) for C
is given by:

A(O,C) ={p: Oq O O, distanceg,q) <r(C) }.
Proof: For every poinp in A(O,C), Oq O O such that distancg) < r(C). Thereforeg will be in the interior oR(C,p). Thus,R(C,p) n*
O#0. Hence everp in A(O,r) is not a permissible location 6f o
Lemma 2: Let A be the complement @f(O,C). Every point in the sed is a permissible location.

Proof: . Letp be a point inA. Letq be the closest point i@ to p. SinceA(O,C) contains all points whose minimum distancetés less
thanr(C), it follows that distance(q) > r(C). Thereforeq is either outside dR(C,p) or on the boundary &(C,p). Thus,R(C,p) n* O =
0. Hence everp in A is a permissible location &. o

Lemma 3: Let £(A,C) = {p: Oq O A, distance$,q) < r(C) }. Then for every poinp in E(A,C), there is a permissible locatiorsuch thap
can be safely covered I6yatq.

Proof: Letp O E(A,C). Then there is a pointin A such that distancgg) < r(C). Thereforep R(C,g). Sinceq is in A, it follows from
Lemma 2 that] is a permissible location. Therefopecan be safely covered lyo

Target Regl on, Obstruction

Region, O Given Cuitter, ~
T I_\K ________ e? _______ C ' A

: ﬂ

1

i

1

i

i

1

i

i

1

R
@ Target regi onT, obstruction () A(O,C) isthe set of
region O and given cutter C. non-permissible locations (c) A isthe complement of A(O,C).
A
Coverable Region,
B
Uncoverable
E(A,C) Region, D
R
(d) E(A,C) = {p: 0q 0 A, distance(p,q) < r(C) } (e) Examples of coverable region B

and uncoverable region D.
Figure4: Illustration of Definitions

Lemma 4: Let E be the complement of £(A,C). For every p 0 E, there is no permissible location for C to cover p.

Proof: Let p be any point in E, and suppose we can find a permissible location g such that R(q,C) covers p. Then from Lemma 1, it
followsthat g isnot in A(O,C) and henceisin A. Since R(q,C) covers p, this means that distance(q, p) <r(C). Thus pisin E(A,C), which
isacontradiction sincepisin E. o

Theorem 1: Let D=T - E(A,C). Then for every p 0 D, there is no permissible location for C to cover p.
Proof: Since Disasubset of E, this theorem directly follows from Lemma4. o

Theorem 2: Let B=T - D. Then for every p 0 B, there is a permissible location for C to cover p. (Thus we will call B the coverable
region of C).

Proof: B isasubset of E. Therefore, this theorem directly follows from Lemma3. o
Figure 4 shows an example in which A(O,C), A, E(A,C), E, D and B are given.

3.2.2 Algorithm

Target Obstruction —
Region T Region O Cuitter C A= KAL)

@ (b) ©

" e

(© (d)
Figure5: A casewhere using the offset operator to compute A’ resultsin a correct valuefor B.

Let A be the area of the coverable region B. A is the coverable area of using C. From the definition and lemmas introduced in Section
3.2.1, we know that if we can find D, then we can get B and then we can compute A. Our algorithm for doing thisis as follows:

COVERABLE_AREA_FINDING(C, O, T)
1. From O and r(C), get the 2D point set A(O,C) (see the discussion of this below)
A=cA(O,C) (c isthe operator to compute complement, and we assume that the universal set is alarge rectangular areathat contains A)

2.
3. FromAandC, get £(A,C)
4

E=cE
Target Obstruction
RegionT CutterC RegionO A=K A(OC) K cA’ (notice that thisis # A)
2\
AN

Incorrect

value forE
Incorrect value
for D

Incorrect ~

valuefor E Incorrect value

/ for B

Region that

incorrectly

omitted from R

E

(d) (e)

Figure 6: A case where using the offset operator to compute A’ resultsin an incorrect value for B.

) A includesthe line
Target Obstruction The open edge that was segment.
RegionT CutterC Region O A(Open Set) missing in Figure 6.

@ (b) ©

In this example, D =
O andthusB=T.

(d) ®

Figure7: A correct way to compute B for part shown in Figure 6
5. D=T- EAC)
6. B=T-D
7. Return A=theareaof B

Except for Step 1, al of the above steps are standard geometric operations, and descriptions of them can be found in geometric modeling
books such as [4]. However, Step 1 is more problematic. It involves computing A(O,C), whose definition is similar to the “offset”
operation found in popular geometric kernels, but with an important differd©eC) is set of points thadre less than distance r from
the obstruction region. Most offset operators compute the set of points tHessat@n or equal to distance r from the given region.
Therefore the seA(O,C) is an open set, whereas the offset operation produces the closétd=s&tA(O,C) (where K is the closure
operator).

In many cases, A = KCA’. In such cases, Steps 1 and 2 of the COVERABLE_AREA_FINDING algorithm can be replaced with the two steps
shown below (for an example, see Figure 5):

1'. computed’ using the offsetting operation

2. A=kcA

In fact, Steps 1’ and 2’ seem so obvious that they are standardly used in algorithms for computing th2 [@&d8Jof However, there are
a few cases in which Steps 1’ and 2’ will lead to incorrect results. For example, suppose that the part is the sameeas buftge
cutter's radius is as shown in Figure 6. In this cAsis, not equal taccA’, because KCA’ does not include the additional edge shown in
Figure 7(b) and 7(c). As a result, if we use Steps 1’ and 2’ instead of 1 and 2, Step 3 will compute an incorrecttvalubdoteaves
out the “omitted region” shown in Figure 6(d). Thus, if we use Steps 1’ and 2’ instead of 1 and 2 QvERABLE_AREA_FINDING
algorithm, we will get an incorrect value fBr

In our current implementation ofGVERABLE_AREA_FINDING, we use the following approach to compute a close approximatiGn of
We use Steps 1’ and 2’, but instead of offsettihy the radius, we offsetO by a distance’, wherer' =r — ¢ (with £ > 0 ande <<r).
This can overcome the problem with the “omitted region” illustrated in Figure 6, but only if the vadue ohosen carefully so that
another “omitted region” does not occur elsewhere.

We are currently extending our implementation to computeA$et{C) exactly. This requires computing open sets and performing
Boolean operations on open sets.

4. FINDING OPTIMAL SEQUENCE OF CUTTERSFOR MULTI-PART

In cutter selection problems, we are given a set of parts associated with corresponding stocks, and a set of available netet<o
select a subset of the initial set of cutters such that by using the subset to perform machining operations, the gi\aets setnobe
produced from the corresponding stocks in the shortest possible total machining time.

Initial
State
o

Figure 8: Problem Representation

Recall from Section 2 that we are given a sequence of cutting tools (C,C,,...,C,), listed in decreasing order of cutter radius; we are given
one or more pieces of stocg(..., §) from which we need to produce a corresponding set of farts.(, P,); and the problem is to find

a subsequenc€(;,C 5,...,C) of (C1,Cs,...,C,) such that if we us€’;,C",,...,.C'm in the order given, we can minimize the total machining
time Ty,..

We now define thevorkpiece state /5; as follows. Foij=1,...L, let /4 =S, and fori=1,...n, let /5 be the state of the workpiece that
results after using the cutt&, under the assumption that we WSeto cut as much of; as it can safely cut. From this definition, it
follows that for every>0, /j; is equal to the set of points Ththat cannot be safely covered Gy The reason for this is that any cutters
that we used prior tG; are larger tha@;, and thus the portion @jf that they can safely cut is a subset of the portioh) tifatC; can safely
cut.

For the given set of part®y, ..., P.), we define thecomposite state /5 to be (Go, [i1,.... [i). Thus there are+1 composite states
l....,[. SinceC, can completely cover all of the target regiofistepresents the set of all of the final part shapes.

Let B; = T; —* [}, and letA;; be the area a8;;. (As a special case, note tii&g} =T, —* /4 = T; —* § =, and thusAy; = 0.) Then the safely
coverable area for the composite stgtasing cutteC; is given by

A=SA

Let G be the directed graph whose node sef{s (,/7), and whose edge set ig{(/;) : i <j}.

Each edge/,/;) corresponds to the operation of using the cuEjeto produce/; directly from /5. For each edge(/;), we want to
assign a cosk(/5,/;) that estimates the cost of performing that operation. We will defifig/;) as follows.

As discussed in Section 2, the cost of performing the operatidp isTy, whereTy is the cutter loading time anig; is the cutting time.
An average value foFy is usually determined experimentally, and we can estifags follows. Since the cutt€ has already been used
to cut a coverable aré® of /5, the cuttetC; will only need to cut the arely - A;in order to producé;. The time needed to cAf- A can
be estimated ds x (A - A))/r;, wherek is a factor determined by machining parameters. Thus, we d&iiné;) = Ty + k x (A - A)/r;.

Since I, represents the initial stock§,(..., §) and 7, represents the final part®(..., P), any path inG starting from /to /-,
represents a cutting sequence in which the final parts can be produced form the initial stoakse Bhe cost of every edgeGn
represents the estimated machining time needed to go from one state to another, any vali feth am associated total estimated
machining time, which is the sum of the path’s edge costs. If we can find the least-cost pditdrom this will give us the sequence of
cuttizng operations that minimizes the total estimated machining time. Using Dijkstra’s algorithm, this least-cost pafbucahift¢ime
o(n?) [3].

5. IMPLEMENTATION AND EXAMPLES

We have implemented our algorithm, using C++ and the A®EEnel. As an example, Figure 9 shows parts Py, P,, Pz and P4 In this

example, we are given 10 cutters (Cy,...,Cy0) and their radii are 2.5mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm, 17.5 mm, 20 mm, 22.5

AN

Part P, Part P, Part P, Pat P,

Figure9 : Example Parts

mm and 25mm. Wefirst get the 2D profile for each part as described in Section 3.1. After that, we use the algorithm described in Section

3.2.2 to get the coverable area for each cutter and part combination. Based on these results, Figure 10 gives a chart showing the
relationship between the sizes of the cutters C,,...,Cyg and the total area that each cutter can safely cover. After we get all the coverable area
values, we use the approach described in Section 4 to find the best combination of cutters. Figure 11 shows the resulting answe

Coverable Area Coverable Area/Cutter Size chart
16000.00

R — —¢— Coverable Areaof P:

14000.00 \\
12000.00 \\ —H— Coverable Area of P2
10000.00

—*— Coverable Area of Ps

8000.00 \l\
——
6000.00 \K Coverable Areaof P4
4000.00 | % —*— Coverable Area of All
— . Parts
2000.00 AN N—
0.00 — ———7%

25 5 75 10 125 15 175 20 225 25 CutterSze

Figure 10 : Cutter Size/ Coverable Area Chart

In Section 1, we pointed out that the best combination of cutters is likely to be different than what we would get bycmiewingutter
sets for each part individually. As an illustration of this, Figure 12 shows what cutters we would have chosen if wetédadstheal
cutter sets for each part individually. If optimal cutter sets are generated for each part individually, then the totaif murttder selected

will be 7 (their radii are 2.5 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 17.5 mm and 20 mm). As shown in Figure 13, the total tiaehining
used by these cutter sets will be 290 minutes. In contrast, by considering all parts together, the total number ofdadteroniget, as

scomran O O W\t/\i

Cutter'sRadius - 25 225 20 17.5 15 12.5 10

Figure 11: The Optimal Cutter Set Generated by considering all parts simultaneously
(cutter loading timeis 20 minutes)

i OO O O O O O @0 ®

e OO O @ O O ® O O O
]l_oeia:tsc:ost rth () (O ./OO\. O O O O
Lacarn O O @ O O O @ O @ O

Cutter'sRadius : 25 225 20 17.5 15 12.5 10 7.5 5 2.5

Figure 12: Optimal Cutter Setsfor Individual Parts (cutter loading timeis 20 minutes)

. Manufacturing Time Comparison
Minutes 9 P

3201

240 O Tec of P1
. ch Of P2

1601 O ch of P3
O Tec of Pa

80 O T, of Selected
0 : ‘ B 7y
Considering Individual Part Considering Multi-Part

Figure 13: Comparison of Total Machining Time by Considering Four Parts Individually
and Considering Four Parts Simultaneously

et ot Pt o O mﬁ%

Cutter's Radius : 225 17.5

Figure 14: The Optimal Cutter Set Generated by considering all parts simultaneously
(cutter loading time is 10 minutes)
shown in Figure 12 (their radii are 2.5 mm, 7.5 mm, 12.5 mm and 20 mm). As shown in Figure 13, the total machining time by using
cutters selected by considering multi-part simultaneously will be 205 minutes. Thus, the total time saved by using multi-part cutter
selection approach is (290-205)/290 = 29.3%.

Another interesting observation is that if the tool loading time changes, the optimal cutters may change. In particular, the lower the cutter
loading time, the higher the total number of cutters in the optimal sequence may be. For example, as shown in Figure 14, if we take the
previous example and change the cutter loading time to 10 minutes, then the number of cuttersin optimal cutter set will be 5 rather than 4.
Similarly, the higher the cutter loading time, the lower the total number of cutters in the optimal sequence. Meanwhile, the time saving
will aso be higher when considering multiple parts together compared to consider parts individually because the shared cutter loading
time.

6. DISCUSSION AND CONCLUSION

In order to stay competitive in today’s market, companies need to eliminate as many sources of manufacturing inefficiency as possible. One
such source of inefficiency comes from unnecessary machine-tool reconfiguration operations.

In this paper, we describe a way to select an optimal set of cutting-tool sizes such that the cutting tools can be used for multiple different
parts, thereby eliminating unnecessary machine tool reconfigurations. In particular, this paper describes the following new resullts:

1. We describe mathematical conditions for determining the region that can be covered by a given cutter, and discuss a problem with
previous formul ations of those conditions. Based on our conditions, we give an algorithm (not yet implemented) that can compute the
coverable area exactly, and another algorithm (implemented) that can compute a close approximation.

We show how to represent the multi-part cutter selection problem as the problem of finding the least-cost path in a directed graph.

We describe a prototype implementation of our approach, and demonstrate it on an example. The example illustrates how significant
savings can be achieved in the total machining time.

We plan to extend our work in the following areas to overcome current limitations:
1. Weplan to implement the algorithm mentioned in Item 1 above.

2. Our current estimate of cutting time assumes that it is proportional to the ratio of the covered area and the cutter size. In practice, the
cutting time will also depend on the cutter path. We plan to develop a better algorithm for estimating cutting time, by incorporating
tool-path considerations.

3. Tool life plays an important role in tool selection. We plan to incorporate tool-life information in order to develop a more redlistic
estimate of total machining time.

4, So far, we have only considered geometric constraints in the cutter selection problem. We plan to extend our method to incorporate
milling process constraints as well.

7. ACKNOWLEDGMENTS

This research has been supported in part by NSF grants DM19896255 and DMI19713718, by AFRL grant F306029910013, and by a
semester research award from the University of Maryland General Research Board. Opinions expressed in this paper are those of authors
and do not necessarily reflect opinion of the funders.

8. REFERENCES
[1] S. Arya, S. W. Cheng and D. M. Mount. Approximation agorithm for multiple-tool milling. Proc. Of the 14™ Annual ACM
Symposium on Computational Geometry, pp. 297-306, 1998.

[2] M.Baaand T.C.Chang. Automatic cutter selection and optimal cutter-path generation for prismatic parts. International Journal of
Production Research, 29(11), 2163-2176, 1991.

[3] T.H.Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms, The MIT PressMcGraw Hill, 1990.
[4] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction, Morgan Kaufman Publishers, 1989.

[5] Y.S. Lee B. K. Choi and T. C. Chang. Cut distribution and cutter selection for sculptured surface cavity machining. International
Journal of Production Research, 30(6), 1447-1470, 1993.

[6] K.Lee T.J KimandS. E. Hong. Generation of toolpath with selection of proper tools for rough cutting process. Computer-Aided
Design, vol(26) 822-831, Nov. 1994.

[7] Y.S.LeeandT. C. Chang. Application of computational geometry in optimization 2.5D and 3D NC surface machining. Computersin
Industry, 26(1), 41-59, 1995.

[8 Y.S LeeandT. C. Chang. Automatic cutter selection for 5-axis sculptured surface machining. International Journal of Production
Research, 34(4), 977-998, 1996.

[9] T.Lim, J.Corney, JM.Ritchie and D.E.R.Clark, Optimising automatic tool selection for 21/2D components. In Proc. DETC 2000:
2000 ASME Design Engineering Technical Conference, Baltimore, MD, September 10-13, 2000.

[10] T.Lim, J.Corney and D.E.R.Clark. Exact tool sizing for feature accessibility. International Journal of Advanced Manufacturing
Technology, Vol.16, pp.791-802, 2000

[11] B. Mahadevan, L. Putta and S. Sarma. A feature free approach to tool selection and path planning in 3-axis rough cutting.
Proceedings of First International Conference on Responsive Manufacturing, Nottingham, pp.47-60, September 1997.

[12] Ganping Sun, Fu-Chung Wang, Paul Wright and Carlo Sequin. Operation decomposition for freeform surface features in process
planning. In Proc. DETC 1999: 1999 ASME Design Engineering Technical Conference, Las Vegas, Nevada, September 12-15, 1999.

[13] D. Veeramani, and, Y. S. Gau. Selection of an optimal set of cutting-tool sizes for 2.5D pocket machining. Computer-Aided Design,
29(12), 869-877, 1997.

[14] D.C.H. Yang and Z. Han. Interference detection and optimal tool selection in 3-axis NC machining of free-form surface. Computer-
Aided Design, Vol.31, pp.303-315, 1999.

[15] Zhiyang Yao, S. K. Gupta and Dana Nau. A Geometric Algorithm for Finding the Largest Milling Cutter. SMIE's Journal of
Manufacturing Processes. To appear, 2001.

