
A Geometric Algorithm for Selecting Optimal Set of
Cutters for Multi-Part Milling

Zhiyang Yao
Mechanical Engineering Department
and Institute for Systems Research

University of Maryland
College Park,MD-20742

+1-301-405-6572

yaodan@Glue.umd.edu

Satyandra K. Gupta
Mechanical Engineering Department
 and Institute for Systems Research

University of Maryland
College Park,MD-20742

+1-301-405-5306

skgupta@eng.umd.edu

Dana S. Nau
Computer Science Department

and Institute for Systems Research
University of Maryland

College Park,MD-20742
+1-301-405-2684

nau@cs.umd.edu

ABSTRACT
For the manufacture of milled parts, it is well known that the size of the cutter significantly affects the machining time. However, for small-
batch manufacturing, the time spent on loading tools into the tool magazine and establishing z-length compensation values is just as
important. If we can select a set of milling tools that will produce good machining time on more than one type of parts, then several
unnecessary machine-tool reconfiguration operations can be eliminated. This paper describes a geometric algorithm for finding an optimal
set of cutters for machining a set of 2½D parts. In selecting milling cutters we consider both the tool loading time and the machining time
and generate solutions that allow us to minimize the total machining time. Our problem formulation addresses the general problem of how
to cover a target region to be milled with a cylindrical cutter without intersecting with the obstruction region; this definition allows us to
handle both open and closed edges in the target region. Our algorithm improves upon previous work in the tool selection area in following
ways: (1) in selecting cutters, it accounts for the tool loading time, and (2) it can simultaneously consider multiple different parts and select
the optimal set of cutters to minimize the total manufacturing time.

Keywords
Milling Cutter Selection, Computer-Aided Process Planning.

1. INTRODUCTION
Increasingly, the manufacturing industry is moving towards high part mixes, which makes it important to reduce setup and tooling
operations. For example, if a machine-tool is not configured to accommodate more than one part within a part family, then large amounts
of time will repeatedly be spent on reconfiguring the machine-tool (i.e., loading new tools and fixtures into the machine-tool) each time a
request is received for manufacturing a different part. Such reconfigurations are the major source of inefficiency in small batch
manufacturing.

If a machine-tool was configured from the beginning to accommodate several different parts within the part family, much of the cost of
reconfiguring the machine-tool could be avoided. This will require considering all of the parts that need to be produced during the given
operational period, and selecting tools and machine-tool configurations that can work for multiple different parts.

In the milling operation domain, it is well known that the size of the milling cutters significantly affects the machining time. Therefore, in
order to perform milling operations efficiently, we need to select a set of milling cutters with optimal sizes. It is difficult for human process
planners to select the optimal or near optimal set of milling cutters due to complex geometric interactions among tools size, part shapes,
and tool trajectories. Furthermore, in small batch manufacturing, both tool loading time (i.e., the time spent on loading tools into the tool
changer) and machining time (i.e., the time spent on performing milling operations) are equally important.

Most existing cutter selection algorithms select milling cutters by minimizing the machining time and do not account for tool loading time
[1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In most cases, the existing algorithms will recommend using a different set of cutters for each new
type of part. Since most machine-tools can only hold a limited number of tools at one time, this means that we will need to reconfigure the
machine-tool (i.e., we will need to change the set of tools in the tool magazine) before machining each new type of part. When the batch
size is small, reconfiguring the machine-tool before machining each type of part may significantly reduce the throughput. However, if we
can select a set of tools that can be used for more than one type of part, then several unnecessary machine-tool reconfiguration operations
can be eliminated, thereby increasing the throughput.

This paper describes a geometric algorithm for finding an optimal set of milling cutters for machining a given set of parts. In selecting
milling cutters we consider both the tool loading time as well as machining time and generate solutions that allow us to minimize the total
manufacturing time. Our tool selection algorithm improves upon the previous work in this area, in the following manner: (1) in selecting
cutters it accounts for tool loading time, and (2) it can simultaneously consider multiple different parts and select the optimal set of cutters
to minimize the total manufacturing time.

Currently our algorithm is restricted to 2½D milling operations. In particular, we consider the problem of selecting a sequence of
cylindrical cutters to cut all of the points in a 2½D target region without cutting any of the points in a 2½D obstruction region [15]. This
approach allows us to handle both open and closed edges. The steps of our approach are as follows. Given a set of available cutters, we
first compute how much of the target region each cutter can cut. We do this by finding the set of all possible permissible locations for the
tool, and then computing the total area covered by the tool at these permissible locations.1 Next, we represent the problem of finding an
optimal sequence of cutters as a least-cost path problem, and use Dijkstra’s algorithm to solve it. Our overall approach is shown in Figure
1.

2. PROBLEM FORMULATION
The milling problem is the problem of taking one or more pieces of stock and using a sequence of one or more milling operations to
remove portions of each piece of stock, in order to produce some desired set of parts. Each milling operation is performed using a milling
cutter, and our research focuses on the geometric aspects of selecting those cutters. In previous work [15], we looked at the case where
only one milling operation was to be used, and developed an algorithm for finding the optimal cutter for this operation. However, in
practical milling problems, it is more typical to use more than one milling operation, using a different cutter for each operation—and that
problem is the subject of the current paper.

Let P be one of the parts that needs to be produced, and let S be the piece of stock from which P is to be produced. We will assume that S
–* P (i.e., the portion of S that needs to be removed to produce P) is a 2½D solid (this assumption holds for many milling operations). In
this case, the cutter selection problem can be reduced to a 2D problem by considering any cross-section of the 2½D solid. Within this 2D
cross-section, we define the region to be machined as the target region T (a region is a set of 2D points). In addition to the target region,
there is an obstruction region O that is the region that the cutting tool should not cut during machining. An example is shown in Figure 2.
The target region and the obstruction region must both be regular sets, each of which may consist of a number of non-adjacent sub-regions:

T = T1 ∪ … ∪ TM;

O = O1 ∪ … ∪ ON.

In this paper, we assume that the boundary of each sub-region consists only of line segments and segments of circles.

Let C be a rotating cutter of radius r(C) located at some point p=(x,y). If we hold C stationary while it is rotating, then C will cut a circular

region R(C,p) = {all points (u,v) such that)()()(22 Cryvxu ≤−+− }. We will call R(C,p) the set of points covered by C at p.

1 This problem is computationally similar to the problem of computing the offset for a 2D point set, and previous approaches for this

problem have been based on the use of the offsetting operators traditionally available in solid modeling systems. However, in this paper
we show that use of traditional offsetting operators will not always produce correct results, and in Section 3.2.2 we show what
modifications are needed to make those approaches correct.

Collection of parts to be machined

For each cutter, find how much of area
it can cover(Section 3.2).

Choose an optimal set of cutters by solving
 least-cost path problem(Section 4).

Cutter library

Figure 1: Overview of Our Approach

Best Cutter Combination

Tool Setup Time,
Cutting Parameters

Get 2D profile from 3D parts(Section 3.1).

If we move C while it is rotating, then C will cut some region larger than R(C,p). In this paper, one of the things we will want to find is the
set of all points in T that can be cut by C. There are several different non-equivalent ways to define what this set is. As we discussed in

 (a) Stock (b) Final Part

Figure 2: Examples of the stock, final part, target region, and obstruction region.

(c) Target and Obstruction Regions

Obstruction Region, O

Target Region, T

Milling Cutter

Figure 3: Example of profile extraction

3-D Model

Bottom Surface
Profile f2

Upper Surface
Profile f1

Profile Shows Target
and Obstruction
Region

[15], the best one for our purposes is as follows. A point p is a permissible location for C if the interior of R(C,p) does not intersect with
the obstruction region, or equivalently, if ∅=∩),(* pCRO . A set of points can be safely covered by C if for every point p in the set,

there is a permissible location of C that covers p.

In most cases, the length of the cutter path associated with a cutter will decrease as the cutter size increases, and therefore it will take less
time to cut a given area. However, due to geometric restrictions, a large cutter may not be able to safely cover the entire target region—and
thus one or more smaller cutters will be needed to cut the remaining portion of the target region.

In multi-cutter selection problems, multiple milling operations are used, each with a different milling cutter. The bigger cutters are used
first, in order to cut material as fast as possible. Then, smaller cutters are used to create the smaller features of the target region. The total
machining time TM for the sequence of milling operations is the total time needed from the time that the stock is loaded into the milling
machine, until the time that the finished part is produced. TM can be expressed as

TM = Tct+Tcc+Tcl ,

where Tct is the total real cutting time (the time spend on moving cutters to cut the profile); Tcc is the total cutter change time (the total time
of changing tools during machining all the parts); and Tcl is the total cutter loading time (the total time spent on loading and calibrating all
selected cutters before machining given parts). Since cutter change time is significantly smaller (of the order of 5 seconds) compared to
cutting time and cutter loading time (of the order of 5 to 10 minutes), in this paper we will ignore cutter change time. Therefore, in this
paper we will use

TM = Tct+ Tcl .

Intuitively, the cutter selection problem can be described as a region covering problem: we need to find an optimal sequence of cutters that
can cover the target region without intersecting the obstruction region. Mathematically, we define the multi-part cutter selection problem
as follows. Suppose we are given one or more pieces of stock (S1, …, SL) from which we need to produce a corresponding set of parts (P1,
…, PL). In order to produce those parts, suppose we have a sequence of cutting tools (C1,C2,…,Cn), given in decreasing order of cutter
radius (i.e., r(C1) > … > r(Cn)). Furthermore, suppose that Cn is small enough that it can safely produce all of P1, …, PL, and that for m <
n, no Cm is small enough to safely produce all of P1, …, PL. The problem is to find a subsequence (C*

1,C
*
2,…,C*

m) of (C1,C2,…,Cn) such
that if we use C*

1,C
*

2,…,C*
m in the order given, this will minimize the total machining time TM. In this paper we present an algorithm for

solving this problem.

3. FINDING COVERABLE AREA FOR A GIVEN CUTTER
In order to solve the multi-part cutter selection problem, an important step is to estimate the area of the region that can be safely covered
(in following sections, we call this region as coverable region and the area of coverable region as coverable area) by each of the cutters C1,
…, Cn. This section describes geometric algorithms for calculating the coverable area for a given part and tool combination.

3.1 An Algorithm for Extracting 2D Profile
To estimate the coverable area automatically, we will need to extract the target and obstruction region from the CAD model. To see how
we extract the target region and obstruction region, consider example shown in Figure 3, in which we have a 3D model of a rectangular
part whose faces are parallel to the xy, yz, and xz planes. As shown in the figure, this part has a single feature, which is a blind 2½D
milling feature which is located in the part’s top face. To find the target region and the obstruction region, we extract two cross-sections
that are parallel to the xy plane: a cross-section f1 at the top of the part, and a cross-section f2 at the bottom of the feature. The obstruction
region is f1, and the target region is f2 −* f1.

3.2 An Algorithm for Finding Coverable Area
3.2.1 Definitions
Lemma 1: Given a cutter C of radius r(C), the target region T and obstruction region O, the set of non-permissible locations A(O,C) for C
is given by:

A(O,C) = {p: ∃ q ∈ O, distance(p,q) < r(C) }.

Proof: For every point p in A(O,C), ∃ q ∈ O such that distance(p,q) < r(C). Therefore, q will be in the interior of R(C,p). Thus, R(C,p) ∩*
O ��∅. Hence every p in A(O,r) is not a permissible location of C.

Lemma 2: Let be the complement of A(O,C). Every point in the set is a permissible location.

Proof: . Let p be a point in . Let q be the closest point in O to p. Since A(O,C) contains all points whose minimum distance to O is less
than r(C), it follows that distance(p,q) ��r(C). Therefore, q is either outside of R(C,p) or on the boundary of R(C,p). Thus, R(C,p) ∩* O =
∅. Hence every p in is a permissible location of C.

Lemma 3: Let E(,C) = {p: ∃ q ∈ , distance(p,q) ≤ r(C) }. Then for every point p in E(,C), there is a permissible location q such that p
can be safely covered by C at q.

Proof: Let p ∈ E(,C). Then there is a point q in such that distance(p,q) ≤ r(C). Therefore, p∈ R(C,q). Since q is in , it follows from
Lemma 2 that q is a permissible location. Therefore, p can be safely covered by q.

Lemma 4: Let be the complement of E(,C). For every p ∈ ��there is no permissible location for C to cover p.

Proof: Let p be any point in , and suppose we can find a permissible location q such that R(q,C) covers p. Then from Lemma 1, it
follows that q is not in A(O,C) and hence is in . Since R(q,C) covers p, this means that distance(q, p) ��r(C). Thus p is in E(,C), which
is a contradiction since p is in .

Theorem 1: Let D = T −* E(,C). Then for every p ∈ D, there is no permissible location for C to cover p.

Proof: Since D is a subset of , this theorem directly follows from Lemma 4.

Theorem 2: Let B = T −* D. Then for every p ∈ B, there is a permissible location for C to cover p. (Thus we will call B the coverable
region of C).

Proof: B is a subset of E. Therefore, this theorem directly follows from Lemma 3.

Figure 4 shows an example in which A(O,C),� , E(,C),� , D and B are given.

3.2.2 Algorithm

Figure 4: Illustration of Definitions

r

(a) Target region T, obstruction
region O and given cutter C.

(b) A(O,C) is the set of
non-permissible locations

(d) E(A,C) = {p: ∃ q ∈ A, distance(p,q) ≤ r(C) } (e) Examples of coverable region B
and uncoverable region D.

Obstruction
Region, O

Target Region,
T

Given Cutter,
C

A(O,C)

Uncoverable
Region, D

5

E(,C)

r(C)
r

(c) A is the complement of A(O,C).

5

Coverable Region,
B

r(C)

r(C)

Let A be the area of the coverable region B. A is the coverable area of using C. From the definition and lemmas introduced in Section
3.2.1, we know that if we can find D, then we can get B and then we can compute A. Our algorithm for doing this is as follows:

COVERABLE_AREA_FINDING(C, O, T)

1. From O and r(C), get the 2D point set A(O,C) (see the discussion of this below)

2. =cA(O,C) (c is the operator to compute complement, and we assume that the universal set is a large rectangular area that contains A)

3. From and C, get E(,C)

4. =cE

D

B

(a) (b)

(c) (d)

Target
Region T

Obstruction
Region O Cutter C A’= κ A(O,C)

Figure 5: A case where using the offset operator to compute A’ results in a correct value for B.

r(C)

r(C)

r(C)

5

= κ c A’

E(,C)

(c)

5

5

Figure 6: A case where using the offset operator to compute A’ results in an incorrect value for B.

A’= κ A(O,C)

(a) (b)

(d) (e)

Target
Region T

Obstruction
Region OCutter C

r(C)

r(C)

r(C)

Incorrect
value for E

Incorrect value
for D

Incorrect value
for B

5

κ c A’ (notice that this is ≠)

(c)

Incorrect
value for

Region that
incorrectly
omitted from
E

5. D = T −* E(,C)

6. B = T −* D

7. Return A = the area of B

 Except for Step 1, all of the above steps are standard geometric operations, and descriptions of them can be found in geometric modeling
books such as [4]. However, Step 1 is more problematic. It involves computing A(O,C), whose definition is similar to the “offset”
operation found in popular geometric kernels, but with an important difference. A(O,C) is set of points that are less than distance r from
the obstruction region. Most offset operators compute the set of points that are less than or equal to distance r from the given region.
Therefore the set A(O,C) is an open set, whereas the offset operation produces the closed set A’ = κA(O,C) (where κ is the closure
operator).

In many cases, = κcA’ . In such cases, Steps 1 and 2 of the COVERABLE_AREA_FINDING algorithm can be replaced with the two steps
shown below (for an example, see Figure 5):

1’. compute A’ using the offsetting operation

2’. = κcA’

In fact, Steps 1’ and 2’ seem so obvious that they are standardly used in algorithms for computing the area of B [9,10]. However, there are
a few cases in which Steps 1’ and 2’ will lead to incorrect results. For example, suppose that the part is the same as in Figure 5 but the
cutter's radius is as shown in Figure 6. In this case, is not equal to κcA’ , because κcA’ does not include the additional edge shown in
Figure 7(b) and 7(c). As a result, if we use Steps 1’ and 2’ instead of 1 and 2, Step 3 will compute an incorrect value for E in that leaves
out the “omitted region” shown in Figure 6(d). Thus, if we use Steps 1’ and 2’ instead of 1 and 2 in the COVERABLE_AREA_FINDING
algorithm, we will get an incorrect value for B.

In our current implementation of COVERABLE_AREA_FINDING, we use the following approach to compute a close approximation of B.
We use Steps 1’ and 2’, but instead of offsetting O by the radius r, we offset O by a distance r', where r' = r − ε (with ε > 0 and ε << r).
This can overcome the problem with the “omitted region” illustrated in Figure 6, but only if the value of ε is chosen carefully so that
another “omitted region” does not occur elsewhere.

We are currently extending our implementation to compute set A(O,C) exactly. This requires computing open sets and performing
Boolean operations on open sets.

4. FINDING OPTIMAL SEQUENCE OF CUTTERS FOR MULTI-PART
In cutter selection problems, we are given a set of parts associated with corresponding stocks, and a set of available cutters. We need to
select a subset of the initial set of cutters such that by using the subset to perform machining operations, the given set of parts can be
produced from the corresponding stocks in the shortest possible total machining time.

r(C)

A(Open Set)

Figure 7: A correct way to compute B for part shown in Figure 6

(a) (b)

(d)

 includes the line
segment.

5

E In this example, D =
∅ and thus B = T.

(e)

The open edge that was
missing in Figure 6.

Target
Region T

Obstruction
Region OCutter C

r(C)

5

(c)

Recall from Section 2 that we are given a sequence of cutting tools (C1,C2,…,Cn), listed in decreasing order of cutter radius; we are given
one or more pieces of stock (S1, …, SL) from which we need to produce a corresponding set of parts (P1, …, PL); and the problem is to find
a subsequence (C*

1,C
*
2,…,C*

m) of (C1,C2,…,Cn) such that if we use C*
1,C

*
2,…,C*

m in the order given, we can minimize the total machining
time TM..

We now define the workpiece state Γij as follows. For j=1,…,L, let Γ0j = Sj, and for i=1,…,n, let Γij be the state of the workpiece that
results after using the cutter Ci, under the assumption that we use Ci to cut as much of Tj as it can safely cut. From this definition, it
follows that for every i>0, Γij is equal to the set of points in Tj that cannot be safely covered by Ci. The reason for this is that any cutters
that we used prior to Ci are larger than Ci, and thus the portion of Tj that they can safely cut is a subset of the portion of Tj that Ci can safely
cut.

For the given set of parts (P1, …, PL), we define the composite state Γi to be (Γi0, Γi1,…, ΓiL). Thus there are n+1 composite states
Γ0,…,Γn. Since Cn can completely cover all of the target regions, Γn represents the set of all of the final part shapes.

Let Bij = Tj –* Γij, and let Aij be the area of Bij. (As a special case, note that B0j = Tj –* Γ0j = Tj –* Sj = ∅, and thus A0j = 0.) Then the safely
coverable area for the composite state Γi using cutter Cj is given by

∑
=

=
L

j
iji AA

1

.

Let G be the directed graph whose node set is (Γ0,…,Γn), and whose edge set is {(Γi,Γj) : i < j}.

Each edge (Γi,Γj) corresponds to the operation of using the cutter Cj to produce Γj directly from Γi. For each edge (Γi,Γj), we want to
assign a cost w(Γi,Γj) that estimates the cost of performing that operation. We will define w(Γi,Γj) as follows.

As discussed in Section 2, the cost of performing the operation is Tcl + Tct, where Tcl is the cutter loading time and Tct is the cutting time.
An average value for Tcl is usually determined experimentally, and we can estimate Tct as follows. Since the cutter Ci has already been used
to cut a coverable area Ai of Γi, the cutter Cj will only need to cut the area Aj - Ai in order to produce Γj. The time needed to cut Aj - Ai can
be estimated as k × (Aj - Ai)/rj, where k is a factor determined by machining parameters. Thus, we define w(Γi,Γj) = Tcl + k × (Aj - Ai)/rj.

Since Γ0 represents the initial stocks (S1, …, SL) and Γn represents the final parts (P1, …, PL), any path in G starting from Γ0 to Γn

represents a cutting sequence in which the final parts can be produced form the initial stocks. Because the cost of every edge in G
represents the estimated machining time needed to go from one state to another, any valid path in G has an associated total estimated
machining time, which is the sum of the path’s edge costs. If we can find the least-cost path from Γ0 to Γn, this will give us the sequence of
cutting operations that minimizes the total estimated machining time. Using Dijkstra’s algorithm, this least-cost path can be found in time
O(n2) [3].

5. IMPLEMENTATION AND EXAMPLES
We have implemented our algorithm, using C++ and the ACIS® kernel. As an example, Figure 9 shows parts P1, P2, P3 and P4. In this
example, we are given 10 cutters (C1,…,C10) and their radii are 2.5mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm, 17.5 mm, 20 mm, 22.5

Figure 8: Problem Representation

… …
Initial
State

Γ0

State
Γ1

State
Γi

Final
State

Γn

State
Γj

…

(Γi Γj)

Part P1
Part P2 Part P3

Part P4

Figure 9 : Example Parts

mm and 25mm. We first get the 2D profile for each part as described in Section 3.1. After that, we use the algorithm described in Section
3.2.2 to get the coverable area for each cutter and part combination. Based on these results, Figure 10 gives a chart showing the
relationship between the sizes of the cutters C1,…,C10 and the total area that each cutter can safely cover. After we get all the coverable area
values, we use the approach described in Section 4 to find the best combination of cutters. Figure 11 shows the resulting answer.

In Section 1, we pointed out that the best combination of cutters is likely to be different than what we would get by selecting optimal cutter
sets for each part individually. As an illustration of this, Figure 12 shows what cutters we would have chosen if we had selected optimal
cutter sets for each part individually. If optimal cutter sets are generated for each part individually, then the total number of cutters selected
will be 7 (their radii are 2.5 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 17.5 mm and 20 mm). As shown in Figure 13, the total machining time
used by these cutter sets will be 290 minutes. In contrast, by considering all parts together, the total number of cutters needed is only 4, as

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Coverable Area of P1

Coverable Area of P2

Coverable Area of P3

Coverable Area of P4

Coverable Area of All
Parts

Cutter Size

Coverable Area Coverable Area/Cutter Size chart

Figure 10 : Cutter Size/ Coverable Area Chart

: 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5Cutter’s Radius

Least-Cost Path:

Figure 11: The Optimal Cutter Set Generated by considering all parts simultaneously
(cutter loading time is 20 minutes)

Figure 12: Optimal Cutter Sets for Individual Parts (cutter loading time is 20 minutes)

Least-Cost Path
for P1:

: 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

Least-Cost Path
for P2:

Least-Cost Path
for P3:

Least-Cost Path
for P4:

Cutter’s Radius

shown in Figure 12 (their radii are 2.5 mm, 7.5 mm, 12.5 mm and 20 mm). As shown in Figure 13, the total machining time by using
cutters selected by considering multi-part simultaneously will be 205 minutes. Thus, the total time saved by using multi-part cutter
selection approach is (290-205)/290 = 29.3%.

Another interesting observation is that if the tool loading time changes, the optimal cutters may change. In particular, the lower the cutter
loading time, the higher the total number of cutters in the optimal sequence may be. For example, as shown in Figure 14, if we take the
previous example and change the cutter loading time to 10 minutes, then the number of cutters in optimal cutter set will be 5 rather than 4.
Similarly, the higher the cutter loading time, the lower the total number of cutters in the optimal sequence. Meanwhile, the time saving
will also be higher when considering multiple parts together compared to consider parts individually because the shared cutter loading
time.

6. DISCUSSION AND CONCLUSION
In order to stay competitive in today’s market, companies need to eliminate as many sources of manufacturing inefficiency as possible. One
such source of inefficiency comes from unnecessary machine-tool reconfiguration operations.

In this paper, we describe a way to select an optimal set of cutting-tool sizes such that the cutting tools can be used for multiple different
parts, thereby eliminating unnecessary machine tool reconfigurations. In particular, this paper describes the following new results:

1. We describe mathematical conditions for determining the region that can be covered by a given cutter, and discuss a problem with
previous formulations of those conditions. Based on our conditions, we give an algorithm (not yet implemented) that can compute the
coverable area exactly, and another algorithm (implemented) that can compute a close approximation.

2. We show how to represent the multi-part cutter selection problem as the problem of finding the least-cost path in a directed graph.

3. We describe a prototype implementation of our approach, and demonstrate it on an example. The example illustrates how significant
savings can be achieved in the total machining time.

We plan to extend our work in the following areas to overcome current limitations:

1. We plan to implement the algorithm mentioned in Item 1 above.

2. Our current estimate of cutting time assumes that it is proportional to the ratio of the covered area and the cutter size. In practice, the
cutting time will also depend on the cutter path. We plan to develop a better algorithm for estimating cutting time, by incorporating
tool-path considerations.

Considering Individual Part Considering Multi-Part

Manufacturing Time Comparison

Tcc of P1

Tcc of P2

Tcc of P3

Tcc of P4

Tcl of Selected
Cutters

TM

Figure 13: Comparison of Total Machining Time by Considering Four Parts Individually
 and Considering Four Parts Simultaneously

0

80

160

240

320

Minutes

Cutter’s Radius : 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

Least-Cost Path:

Figure 14: The Optimal Cutter Set Generated by considering all parts simultaneously
(cutter loading time is 10 minutes)

3. Tool life plays an important role in tool selection. We plan to incorporate tool-life information in order to develop a more realistic
estimate of total machining time.

4. So far, we have only considered geometric constraints in the cutter selection problem. We plan to extend our method to incorporate
milling process constraints as well.

7. ACKNOWLEDGMENTS
This research has been supported in part by NSF grants DMI9896255 and DMI9713718, by AFRL grant F306029910013, and by a
semester research award from the University of Maryland General Research Board. Opinions expressed in this paper are those of authors
and do not necessarily reflect opinion of the funders.

8. REFERENCES
[1] S. Arya, S. W. Cheng and D. M. Mount. Approximation algorithm for multiple-tool milling. Proc. Of the 14th Annual ACM

Symposium on Computational Geometry, pp. 297-306, 1998.

[2] M.Bala and T.C.Chang. Automatic cutter selection and optimal cutter-path generation for prismatic parts. International Journal of
Production Research, 29(11), 2163-2176, 1991.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms, The MIT Press/McGraw Hill, 1990.

[4] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction, Morgan Kaufman Publishers, 1989.

[5] Y. S. Lee, B. K. Choi and T. C. Chang. Cut distribution and cutter selection for sculptured surface cavity machining. International
Journal of Production Research, 30(6), 1447-1470, 1993.

[6] K. Lee, T. J. Kim and S. E. Hong. Generation of toolpath with selection of proper tools for rough cutting process. Computer-Aided
Design, vol(26) 822-831, Nov. 1994.

[7] Y. S. Lee and T. C. Chang. Application of computational geometry in optimization 2.5D and 3D NC surface machining. Computers in
Industry, 26(1), 41-59, 1995.

[8] Y. S. Lee and T. C. Chang. Automatic cutter selection for 5-axis sculptured surface machining. International Journal of Production
Research, 34(4), 977-998, 1996.

[9] T.Lim, J.Corney, J.M.Ritchie and D.E.R.Clark, Optimising automatic tool selection for 21/2D components. In Proc. DETC 2000:
2000 ASME Design Engineering Technical Conference, Baltimore, MD, September 10-13, 2000.

[10] T.Lim, J.Corney and D.E.R.Clark. Exact tool sizing for feature accessibility. International Journal of Advanced Manufacturing
Technology, Vol.16, pp.791-802, 2000

[11] B. Mahadevan, L. Putta and S. Sarma. A feature free approach to tool selection and path planning in 3-axis rough cutting.
Proceedings of First International Conference on Responsive Manufacturing, Nottingham, pp.47-60, September 1997.

[12] Ganping Sun, Fu-Chung Wang, Paul Wright and Carlo Sequin. Operation decomposition for freeform surface features in process
planning. In Proc. DETC 1999: 1999 ASME Design Engineering Technical Conference, Las Vegas, Nevada, September 12-15, 1999.

[13] D. Veeramani, and, Y. S. Gau. Selection of an optimal set of cutting-tool sizes for 2.5D pocket machining. Computer-Aided Design,
29(12), 869-877, 1997.

[14] D.C.H. Yang and Z. Han. Interference detection and optimal tool selection in 3-axis NC machining of free-form surface. Computer-
Aided Design, Vol.31, pp.303-315, 1999.

[15] Zhiyang Yao, S. K. Gupta and Dana Nau. A Geometric Algorithm for Finding the Largest Milling Cutter. SME’s Journal of
Manufacturing Processes. To appear, 2001.

