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Here we analyze natural variability within two types of systems.  1, The

output of the biological spinal central pattern generator for locomotion in the cat, and

2, Sets of stochastic neural networks giving an output qualitatively similar to that

observed within the biological system.

Fictive locomotion contains asymmetric transitions between the flexion and

extension phases.  The transition from extension to flexion is: 1, Always strongly

phase locked; 2, Composed of overlapping extensor burst offsets and flexor burst

onsets; and 3, Invariant to changes in mean cycle period.  The transition from flexion

to extension is:  1, Weakly phase locked within bouts containing short cycle periods,

and well phase locked in bouts containing long cycle periods; 2, Offset times of

flexor bursts and the onset times of extensor bursts do not overlap; and 3, Strength of

phase locking depends critically upon relative timing of flexor offset and extensor

onset.

Stochastic neural networks that qualitatively reproducing the timing

relationships observed within the biological system have outputs that depend upon

both the architecture of the network as well as model neuronal type (oscillatory-non-



oscillatory).  Within models designed to reproduce the bi-phasic activity observed in

some muscles, correlation of the bi-phasic burst is strongly influenced by model

connectivity.  Additionally sets of leaky integrators have burst durations, which are

sometimes well correlated even though they are well separated in time.

Half-center models producing alternating output are strongly influenced by

the internal structure of simulated neurons.  A half-center composed of a pair of

leaky-integrators has transitions between phases which are always well phase locked,

and overlapping.  Half-centers composed of intrinsically oscillatory Morris-Lecar

neurons have transitions between phases whose phase locking is parameter

dependent.  This parameter dependence is mainly due to changes in the timing of

burst offset and burst onset.

We conclude that the output of the biological central pattern generator is

likely to be strongly influenced by the intrinsically oscillatory properties of its

neurons.  Models containing non-intrinsically oscillatory simulated neurons are

unable to account for observed variability within the output of the biological system.
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CHAPTER ONE:  GENERAL INTRODUCTION

The History of the Half-Center

Since the beginnings of the scientific study of the nervous system it has been

observed that animal preparations, even though greatly reduced either through the

elimination of higher centers or through lack of sensory input, could maintain a rhythmic

motor output similar to that observed within walking in the intact animal (Brown, 1911,

Sherrington, 1913).  Brown proposed from this evidence that the nervous system

contained intrinsically active ‘centers’ which alternated in activity and provided the

source of the neural signal to the muscles necessary to maintain movement (Brown

1911).  In modern terms this intrinsically active center is called the spinal central pattern

generator for locomotion (sCPG).

The first theoretical model proposed to explain the persistence of rhythmic

behavior within an animal preparation that was greatly reduced is the half-center

(Lundberg, 1969).  Lundberg hypothesized that the spinal cord contained a set of

mutually inhibitory neurons which were activated in an alternating fashion.  Activity

within each set of neurons was associated with activity within either flexors (muscles

causing lifting of the limb), or extensors (muscles causing protraction of the limb).  For

Lundberg, the isolated spinal cord within the reduced preparation was incapable of

generating the complicated pattern of activity observed within the intact animal without

sensory input into the network.

Subsequently, Grillner and Zangger (1979, 1984) observed that individual nerves

within the ventral root retain a pattern of activation very similar to that observed within

intact locomotion even when the spinal cord was isolated from sensory input.  To account



2

for this complex pattern of activity Grillner hypothesized that the sCPG consisted of not

just a single half-center but a collection of linked half-centers each controlling activity

within single joints (Grillner, 1981).   This framework with the half-center as the basic

building block of the sCPG for locomotion continues to be the dominant paradigm in

understanding the structure of the sCPG.

Ubiquity of Oscillation

Study of the structure of the mammalian sCPG for locomotion has been

complicated by a variety of factors, but perhaps historically the most vexing is the

ubiquity of oscillatory behavior within neurons of the spinal cord.  This ubiquity has

made identification of neurons making up the sCPG for locomotion difficult.   This is

most clearly evident in the work of Orlovskii and Feldman (1972).  In a survey of 30

spinal interneurons the authors found that 11/30 were active during the stance phase of

locomotion, 8/30 during the swing phase of locomotion and that the remaining 11/30

could not be categorized as associated with either the stance or the swing phase of

locmotion.  More modern approaches focus on molecular methods to identify sets of

interneurons which are likely to have intrinsically oscillatory properties on the

assumption that these neurons are likely part of the core sCPG within the spinal cord

(Eide, et. a.l., 1999, Kiehn, 1996, Stokke, et. al., 2002).

Perturbation of the Network:  The Modern Paradigm

Given the inaccessibility of sCPG to direct measurment, the dominant

experimental paradigm for understanding network function is through analysis of its
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response to perturbation.  While recording intracellularly from motor neurons in a

reduced preparation one stimulates a single nerve at high frequency (Burke et. al. 2001,

Quevedo et. al. 2005a-b).  Stimulation at the periphery causes sub-threshold excitatory

and inhibitiory post synaptic potentials within the motor neuron of interest.  An analysis

of  the timing and strength of theses PSPs allows one to make inferences about the details

of the pathway from sensory interneurons to motor neurons.

Differential response to peripheral stimulation has led to the hypothesis that the

sCPG for each limb is hierarchal, containing a feed-forward rhythm generator setting the

overall timing for flexion and extension, and a separate pattern formation network that

both shapes the output of rhythm generator and adapts that output to sensory inputs

(Rybak et. al, 2006a-b, La Friene Roula et. al. 2005).   Perturbation experiments like

these form the main experimental evidence used to calibrate models of the mammalian

sCPG for locomotion.

Previous and Current Models of the Mammalian CPG

Given the fact that the sCPG network is uncharacterized, construction of

biophysical realistic models is impossible.   Traditionally, models of the sCPG for

locomotion have used the half-center organization as the basic building block of network

connectivity.  Sets of deterministic half-centers can then be coupled together to explain

how coordinated activity across multiple joints is maintained (Taga. 1991), Rybak,

2006a-b). These models differ from one another in terms of connectivity, for instance

order to account for responses to periphaeral perturbation the Rybak (2006a-b) model is

hierachal with a separate half-center termed the rhythm generator connected in a feed
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forward fashion to a set of lower level pattern formation neurons.   The major weakness

of these models and models like them is that model dynamics are sufficiently

complicated that understanding their functioning is non-trivial.

 Quantifying Natural Variance

Our approach to understanding the structure of the mammalian sCPG differs

substantially from those described above. The current work focuses on using the natural

variance within the output of both biological and simulated networks as a probe into the

structure function relationships inherent within those networks.

Natural variation within the nervous system is derived from many potential

sources the impacts of which are matters of much debate. Within model systems of

simulated neurons natural variation is induced by the injection of noise into the network

of interest.   The natural variation of each system can then assessed through the use of

identical statistical techniques.

The addition of noise to simulated neuronal networks is not new in and of itself,

but the context within which it is used here is novel.   Most of the current results focus on

networks having some strong underlying asymmetry within their structure.  These

asymmetries allow noise to influence the output of the networks under study in

interesting and previously unknown ways.   At some points in the dynamics of these

networks injected noise shows very little influence on model outputs, whereas at other

times it might strongly influence the behavior of the network.   The differences in the

way noise interacts with network dynamics can then be observed in the relative timing of

events within each models output.  One can then track which set of asymmetries within
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the internal structure of the networks creates which timing relationships within its output

and compare these directly to the output of the biological system.

Unlike the lamprey system, the study of mammalian locomotion has been largely

devoid of detailed mathematical analysis.  This is likely due to the unreliability of most

mammalian locomotion preparations making statistically significant data sets rare.

As such even a basic analysis of the structure of natural variation within the output of

biological system is currently unreported within the literature.

Here we report our analysis of natural variation within three systems  1, Two sets

of stochastic neural networks designed to produce double-bursting.  2, The output of

MLR induced fictive locomotion within the cat, and 3,  Two stochastic half-centers, one

composed of oscillatory and one composed of non-oscillatory units.

Models of Double Bursting (Chapter 2)

One important theoretical problem for models of the sCPG organized in a half-

center fashion is double bursting.  Many muscles within the hind limb of cat are active

twice per cycle, once during flexion and once during extension.  This pattern of activation

is unlikely to be reproducible within a network composed of linked half-centers.  We

hypothesized two ways that the half-center could be modified to provide a double

bursting output (Boothe, and Cohen, 2002, Chapter 2).  Such modified half-centers could

potentially be fit within a larger network like those proposed above (Taga 1991, Rybak.

2006).  The set of models we present here, unlike previous models of mammalian

locomotion, emphasize are mathematically tractable and transparent in their dynamics.
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We report our analysis of how each model’s architecture and dynamics determines the

observed natural variabilitiy inherent in model outputs within Chapter 2.

Natural Variation within the Ouput of the MLR Induced Fictive Locomotion (Chapter 3)

Surprisingly, detailed analyses of the natural variability of fictive locomotion is

unreported within the mammalian sCPG literature.  Likely sources for this absence are as

stated previously a lack of large data sets, and a focus on experiments involving

perturbations of the system.  The one previous study similar to that presented here

focused on the relationships between burst durations and cycle period (Yakovenko,

2005).  However this study left important aspects of the output of the fictive locomotor

preparation unanalyzed, specifically the timing relationships between burst onsets and

offsets.  Chapter 3 provides a detailed study of these timing relationships and what sorts

of inferences can be made regarding underlying sCPG structure.  Unforunately, an in

depth analysis of double bursting was impossible due to the lack of data.

The Influence of Model Neuronal Type on the Output of  the Half-Center (Chapter 4)

Although the half-center has been well studied both as a mathematical object

(Sommers and Kopell, 1994, Jung, et. al., 1996,  Izhikevitch, 2001), and as the building

blocks in more complicated networks (Taga, 1991, Rybak, et. al. 2006a-b), the impact of

model neuronal type on the output of such networks is sparse.  Here, we present a set of

stochastic half-centers and report how model neuronal type influences network output.

We then use these networks to flesh out hypotheses developed in Chapter 3 to explain our

observations of the output of the biological sCPG
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CHAPTER TWO:  TEMPORAL CORRELATIONS IN A
STOCHASTIC MODEL OF DOUBLE BURSTING

(Boothe  DL,  Cohen AH,  Troyer TW (2006) Temporal correlations in a stochastic
model of Double bursting.  J  Neurophysiol  95: 1556-1570)

Abstract

The output of the spinal central pattern generator for locomotion falls into two

broad categories; alternation between antagonistic muscles, and double bursting within

muscles acting on multiple joints.  We first model an alternating half-center, and then

present two different models of double bursting.  The first double bursting model consists

of a central clock with an explicit one-to-one mapping between interneuron activity and

model output. The second double bursting model consists of a half-center with an added

feedback neuron.   Models are built using rate-coded leaky integrator neurons with slow

self-inhibition.

Structure-function relationships are explored by the addition of noise.   The

interaction of noise with the dynamics of each network creates a unique pattern of

correlation between phases of the simulated cycle.  The effects of noise can be explained

by perturbation of deterministic versions of the networks.  Three basic results were

obtained:  1) slow self-inhibitory currents lead to correlations between parts of the step

cycle that are separated in time and network relative;  2) model outputs are most sensitive

to perturbations presented just before competitive switches in network activity, and; 3)

clock-like models possess substantial symmetries within the correlation structure of burst

durations, whereas the correlation structure of feedback models are asymmetric.

Our models suggest that variability in burst length durations can be analyzed to

make inferences about the structure of the spinal networks for locomotion. In particular,
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correlation patterns within double bursting outputs may yield important clues regarding

the interaction between more central, clock-like networks and feedback from more

peripheral interneurons.

Introduction

The dominant behavior of electroneurograms (ENGs) recorded in the mammalian

spinal cord during locomotion is an alternating output that occurs during walking.

Generally, flexors are active during the swing phase of locomotion when the animal lifts

its limb off the ground and extensors are active during stance when the animal makes

contact with the ground and pushes itself forward.  Many muscles display more

complicated behaviors such as double bursting, in which a flexor is active during both the

swing and the stance phases of locomotion (Grillner, 1979).   Within intact animals the

period of co-activation between flexor activity and extensor activity is thought to stabilize

the limb upon contact with the ground and can be used to create additional force during

extension (Grillner, 1975).  The addition of a second flexion burst to the familiar

alternation between flexion and extension results in an output pattern with four parts

(Forssberg 1979): (F) flexor on alone; (E1) extensor on alone during the beginning part of

extension; (E2) a second flexion phase cotemporaneous with extensor activity; and (E3)

extensor on alone during the later part of extension.

Double bursting raises a key theoretical issue about the structure of the spinal

central pattern generator (CPG) for locomotion: are the two bursts of flexion controlled

by independent or overlapping sets of neurons within the CPG? According to one

hypothesis, the CPG is a set of neurons working much like a clock whose timing is set
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centrally (Burke et. al 2001, Burke 1999).  The basic output pattern of this clock is then

fine tuned by the many interneurons of the spinal cord, but the basic pattern of activity

within the clock itself remains unchanged.  Alternatively, the interaction between more

centrally located interneurons and feedback from interneurons closer to the periphery

may create the proper output (Shefchyk et. al. 1990, Edgley and Jankowska, 1987).

Under this hypothesis, some spinal premotor interneurons are part of the central pattern

generator and contribute to pattern formation even in the absence of sensory input.

  Here we investigate three network models of the spinal CPG for locomotion

built using mutually inhibitory leaky integrator neurons with slow self-inhibition.  We

first study the dynamic properties of these networks using a simple half-center model

with two mutually inhibitory interneurons. We then extend the half-center to consider

networks that embody the two hypotheses above for producing double bursting outputs.

The closest point of experimental contact with our modeling work is the data obtained

from fictive walking in which the spinal cord is isolated by removing descending motor

commands and inputs from the periphery. Although fictive walking is often quite variable

and sometimes non-functional, there are bouts of fictive locomotion where the CPG

output is very similar to the output of the intact system (Grillner, and Zangger, 1984,

Grillner, 1975).

To investigate structure-function relationships in our models, we injected white

noise currents into the model interneurons and studied the resulting patterns of variability

in motor neuron outputs.  In particular, we measured patterns of variance and covariance

in the durations of different parts of the step cycle. To further analyze the models, we

performed a series of microstimulation experiments that allows the effect of a single
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perturbation to be traced through time.  Results from these experiments can then be

reintegrated to understand the results from the noise-driven simulations.

Overall, we find three basic results.  First, we find that the slow dynamics of self-

inhibition can cause correlations that occur over more than a single cycle. For example, in

one network model, the duration of the flexion burst F is strongly correlated with the last

phase of extension E3, but is nearly independent of the intervening phases E1 and E2.

Second, the microstimulation studies show that the networks are much more sensitive to

perturbation at some time points than others.  For the current class of models, this

sensitivity is generally greatest during the period just before transitions between parts of

the step cycle.  Finally, we find that the underlying symmetry in the clock-based model is

reflected in the variations of the durations of different phases of the cycle.  In particular,

all phases of the step cycle have similar variance, and the correlation between two phases

is determined chiefly by the number of intervening phases of the step cycle rather than

the identity of either phase.  This pattern is not seen within the model based on feedback

from interneurons closer to the periphery where correlations between bursts are specific

to interactions between the underlying inhibitory interneurons.  Our modeling results

suggest that measurements of the noise-driven correlation structure may provide insight

into the structure and function of the underlying spinal CPG for locomotion.

Methods

The main aim of the models presented here was to explore basic theoretical issues

related to the production of double bursting outputs during locomotion. Given our limited

knowledge concerning the neuronal properties and connectivity of mammalian pattern
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generating circuits we have chosen to explore basic structure-function relationships in

simplified models of the spinal CPG (for current debates see e.g. Eide, et. al. 1999,

Huang, et. al, 2000).   The connectivity and structure of the networks are shown in Fig. 1.

The connectivity of the half-center model is similar to that proposed for the lamprey

spinal CPG (Grillner, 1975).  The connectivity of the clock model has been studied

previously within the context of gait creation and symmetry (Golubitsky, et. al. 1999),

and the connectivity of the feedback model is similar to the function proposed for some

sensory interneurons of the spinal cord (Edgely and Jankowska, 1987).

Neuron Model

We used the well-studied lamprey system as a starting point for our networks

(Williams, 1992, Jung et. al., 1996).  Lamprey neurons are known to exhibit bursting

behavior in which spikes ride on a wave of depolarization. This wave of depolarization is

well correlated with the output of the motor neurons as recorded by ENGs (Grillner 1975,

1979 and 1999, Kiehn, et. al., 1999). Therefore we used simple rate-coded neurons where

the activity in a single model neuron represents the summed bursting activity of a

population of functionally related neurons (Jung, et. al. 1996, Boothe and Cohen, 2001,

2002).  Model neuron i is governed by two internal variables: a normalized membrane

voltage variable Vi that takes values between -1 and 1, and a slow self-inhibitory

conductance gdiDi, where Di ranges between 0 and 1. Voltage dynamics are based on the

following differential equation:
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The terms on the right hand side of equation (1) represent the following currents:

a leak current with conductance gri and reversal potential V=0; a tonically active

excitatory current with conductance gti and reversal potential V=1; synaptic input from

other neurons as represented by the sigmoid firing rate function h(Vj) times a maximal

synaptic conductance gij and reversal potential vsyn (vsyn =1 for excitation, vsyn = -1 for

inhibition);  the slow self-inhibitory current with conductance gdi Di and reversal potential

V= -1; and a perturbation current Ii. Perturbation currents took one of two forms: a

Gaussian white noise process xi, or a short step of current applied at various phases of an

ongoing deterministic system. The slowly acting inhibitory conductance gdiDi  was

governed by an exponential decay to a cells output firing rate h(Vi) with time constant ti:

                  

A similar schema for self-inhibition was used in Pribe, et. al. (1997), where the slow self-

inhibitory current was construed as an additional neuron providing inhibitory feedback.

The firing frequency of a simulated neuron is a function of the membrane voltage

and is determined by a non-linear sigmoid rate function h(Vi).  We chose to use a

piecewise polynomial function with the following properties (Jung, et. al. 1996): (i)

outputs rates range from 0 to 1; (ii) there exists a true threshold (Vi = 0) below which

output rate is equal to 0; (iii) the function is sufficiently smooth to facilitate currently

unpublished bifurcation analyses.
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 Analysis of Network Behavior

Our analysis focused on changes in the durations of parts of the step cycle.  All

three of the networks analyzed (Fig. 1) included two excitatory interneurons that serve as

the model’s output, one to flexor motor neurons (Ef) and one to extensor motor neurons

(Ee).  The fractionation of the step cycle into parts was determined by time intervals

during which these neurons were above a burst threshold. To avoid small noise

fluctuations near threshold being registered as separate events, burst threshold was set at

0.1 simulated units of voltage.  In addition, periods of threshold crossing shorter than .1

simulated seconds were not considered to be bursts and were ignored.

The flexor burst (F) and the extensor burst (E) were defined as the period of time

in which activity in Ef and Ee, respectively, were above the burst threshold (see Fig. 2).

A cycle is defined as the time from the beginning of one flexion phase (F) to the

beginning of the next flexion phase (F).  The two double bursting models have a second

period of flexor activity that is cotemporaneous with extension.  This splits the extensor

period E into three parts.  These are E1, which is the length of time from the beginning of

the E burst (extensor on alone) until the beginning of the second flexor burst, E2 in which

both Ee and Ef are above threshold, and E3 which is the length of time from the end of E2

to the end of extension. Note there may be short periods during transitions when neither

neuron is active, so F+E1+E2+E3 is not always equal to the length of a full cycle.  In

practice, these small periods of time made little difference to the results.
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Model  Parameters

The network architectures studied are shown in Fig. 1.  Final parameter values

were set with two basic aims: the burst durations should match the burst durations

measured during fictive walking in the cat, and overall cycle variability should be similar

across models (Boothe and Cohen, 2002).  The need to control burst durations had to be

FIG. 2.1,  Model Architectures.  Excitatory/inhibitory connections are marked with a line/filled
circle. Excitatory interneurons form the model output: Ef  to flexors; Ee to extensors.  A: Half-
center model.  Mutual inhibition biased by slow self-inhibition (not shown) causes alternation of
the two central interneurons (Ie, If) and hence alternating flexion and extension. B: Clock model.
Mutual inhibition with asymmetric weights causes serial activation of the four central interneurons,
I1 to I2 to I3 to I4.    When I3 is active, neither Ef nor Ee is inhibited creating double bursting output.
C: Feedback model, consisting of a half-center plus an additional “override” neuron Io. Onset of
extension activates Io, inhibiting If and Ie simultaneously, creating double bursting output.
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balanced with the need to achieve stable behavior in the face of added noise.

Overall, the half-center model and clock model (Fig. 1A, 1B) are more robust

than the feedback model (Fig. 1C), giving functional outputs for many parameters

varying over an order of magnitude.  A number of parameters affect total cycle duration

on both models but keep the basic activity patterns intact. The frequency of oscillation

can be increased by raising the tonic drive to the inhibitory interneurons, gti, and/or by

reducing the magnitude of either gdi or the time constant ti of the slow self-inhibition.

Burst durations remain at a fixed relative phase during these changes.

In the clock model, the main difficulty in achieving stable output was a tendency

for the model to have two simultaneous winners in the central square of inhibitory

interneurons.  This was counteracted by increasing tonic excitatory drive to these neurons

while increasing the strength of the mutually inhibitory connections (see below).  Since

parameters affecting a single interneuron tended to change the durations of multiple

phases of the cycle,  achieving the appropriate fractionation of the step cycle required the

simulataneous adjustment of several parameters..

In the feedback model, a mismatch between parameters affecting the override

neuron and those affecting slow inhibition in the central inhibitory neurons Ie and If

caused non-functional alternating outputs where flexion and extension overlap at the end

of flexion and the beginning of extension.  Due to the hierarchical nature of this model, it

was relatively easy to independently adjust the durations of different parts of the step

cycle.

Values of the parameters used are reported below. The rest conductance of all

neurons in all models was set to grI , grE = 3.5.  Synaptic conductances not represented in



16

Fig. 1 and not described below have been set at gij
syn=0,  including gii

syn=0 for all

simulated neurons.

The parameters of the half-center model were as follows: the tonic excitation to

the excitatory interneurons, gtE= 1.6; tonic excitation to the inhibitory interneurons, gtI=

1.0; the conductance of the slow self inhibition, gdI= 100; the conductance of the synaptic

current from the inhibitory interneurons to the excitatory interneurons, gIE
syn= 90; and the

synaptic current between the mutually inhibitory interneurons, gII
syn= 35; and the time

constant of self-inhibiton on the inhibitory interneurons, tI= 10.

 The parameters of the clock model were as follows: the tonic excitation to the

excitatory interneurons, gtE= 2.0; the tonic excitation to the inhibitory interneurons, gtI=

20; the conductance of the slow self inhibition, gdI= 75;  the conductance of the synaptic

current from the inhibitory interneurons to the excitatory interneurons gIE
syn= 20; and the

strong synaptic current between the mutually inhibitory interneurons, gI1I4
syn, g

I2I1
syn ,

gI3I2
syn, g

I4I3
syn= 70; the medium synaptic current between the mutually inhibitory

interneurons, gI1I3
syn, g

I2I4
syn , g

I3I1
syn, g

I4I2
syn= 100; and the weak synaptic current between

the mutually inhibitory interneurons, gI1I2
syn, g

I2I3
syn , g

I3I4
syn, g

I4I1
syn= 65; and the time

constants of self-inhibiton, tI1= 4,  tI2= 3, tI3= 3, and tI4= 2.

 The parameters of the feedback model were as follows: the tonic excitation to the

excitatory interneurons, gtE=1.6; the tonic excitation to the inhibitory interneurons,

gtI=3.5;  the tonic excitation to the override neuron, gtO=.7; the conductance of the slow

self inhibition on the mutually inhibitory interneurons Ie  and If, gdI=100; the slow self

inhibition on the override neuron, gdO=150; the conductance of the synaptic current from

the inhibitory interneurons to the excitatory interneurons, gIE
syn=100; the synaptic current
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between the mutually inhibitory interneurons, gII
syn=35; the synaptic current between the

flexor excitatory interneuron and the override neuron, gEeIo
syn=15; and the synaptic

current from the override neuron (Io) to the mutually inhibitory interneurons, gIoI
syn=150,

the t of self-inhibiton on the mutually inhibitory interneurons, tI=10, tO=9.

Simulations

Stochastic simulations were run on a Dec-alpha using xpp.aut (Bard Ermentrout,

www.math.pitt.edu/~bard/xpp/xpp.html).   Differential equations used in the model were

solved numerically using the Euler-Maruyama method for solving stochastic differential

equations (Oksendal, 2000).  Simulations were originally run using a variety of time steps

and methods with little change in model outputs; reported simulations used a time step dt

=0.004.  This noise takes the simplest possible form, an additive current into the

membrane voltage.  At each time step of width dt, noise values in the term xi were drawn

from a Gaussian distribution with standard deviation equal to one and then scaled by the

quantity s/sqrt(dt).  The final value for s was set so that the variability in cycle length

was approximately the same for all models (s=.03 for the half-center, s=.04 for the clock

model, and s=.01 for the feedback model).

The deterministic microstimulation experiments were performed using the

standard ODE solver available in matlab [ode23; Mathworks, Natick, MA].  Parameters

of this model were identical to those used in the stochastic case.  A small current was

injected into each model for 10 time steps, or 0.04 simulated seconds. Due to their greater

stability, the magnitude of injects current was larger for the half-center and clock model

(0.3) than for the feedback model (0.1).    For each of the central inhibitory interneurons
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in each model, we performed 60 separate simulations in which microstimulation was

initiated at regular 0.1 second intervals spanning the 6 second long prototypical cycle.

Burst durations were then compared to perturbation-free simulations.  Since perturbations

of burst durations were small during the second cycle after the perturbation was given,

we analyzed changes in burst duration for phases of the step cycle containing the

pertubation as well as the phases in the next cycle.

Measuring and Predicting Correlations

Correlations between the lengths of different phases of the step cycle were

quantified using Pearson’s correlation coefficient,  r.  For any two variables X and Y the

correlation coefficient ranges from –1 to +1 and is defined by

                                               
)()(

),(

YVarXVar

YXCov
r =

where Cov(X,Y) is the covariance of X and Y and Var(X)=Cov(X,X)  is the variance of X.

Correlation coefficients measured during the simulations with noise could be

predicted from the results of the microstimulation simulations described above. We write

the magnitude of burst duration perturbations as Dt B ( t, I). The subscript B refers to the

burst phase for which perturbations are measured (F and E for the half-center model and

F, E1, E2 and E3 for the double bursting models), the argument t refers to the time of the

perturbation relative to the beginning of the cycle containing the burst, and the argument

I is the label of the interneuron to which the stimulation was delivered (Ie and If for the

half-center; I1, I2, I3, and I4 for the clock model; Ie, If, and Io for the feedback model).
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Since all perturbations decay to very small values by the second cycle after stimulation,

we only computed values for times in the same and previous cycle as the burst in

question, for all other times t we assumed Dt B ( t, I)=0.

We view noise as a continuous bombardment of perturbations having amplitude

a(t,I) delivered at time t to interneuron I. To the degree that perturbations are linear, this

perturbation should change the lengths of bursts X and Y by amounts proportional to

a(t,I) DtX (t,I) and a(t,I) DtY (t,I )respectively.  Implicit in this linearity assumption is the

fact that negative perturbation have an equal and opposite effect as positive perturbations

of the same magnitude.  This assumption was examined for a sample of perturbations and

found to hold to a reasonable degree.

We can perform a prediction pCov(X,Y) for the noise-driven covariance of burst

phases X and Y, by noting that a given perturbation will contribute to the covariance of X

and Y in proportion to the product of the effects of that perturbation on X and Y. Suppose

X and Y lie in the same cycle and consider a perturbation delivered to interneuron I at

time t relative to the start of that cycle. Let a(t,I) be the amplitude of the perturbation.

This perturbation will contribute to the covariance of X and Y in proportion to a2(t,I) DtX

(t,I)) DtY (t,I).  A prediction pCov(X,Y) can be obtained by averaging these products over

the distribution of noise amplitudes and summing these products over all perturbations

that affect the lengths of both bursts. Since the noise injections are the same for all

interneurons and uniform in time, the average of a2(t,I) is a fixed constant A. Then

pCov(X,Y) is proportional to ( ) ( )Â Â DD
I s YX IttIttA ,, .  If burst Y is in the cycle

following burst X, then the expression becomes:

( ) ( )Â Â -DD
I t nextYsameX ILttIttA ,, ,,
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where the time t is expressed relative to the cycle containing X and L is the length of an

entire cycle. Finally,

                                     
),(),(

),(

YYpCovXXpCov

YXpCov
rpred =

Note that in calculating the values for pCov(X,Y), we sum over time at the resolution at

which we delivered stimulation, i.e. time t covers the cycle in .1 sec intervals. To the

degree that this resolution is sufficient to capture the behavior of the system, sampling

time more finely should change the above expression by a constant factor.  Since both

this constant factor and the noise scaling A enter equally in the numerator and

denominator, they do not affect our final predicted value for the correlation coefficient

rpred.

Results

We have analyzed three models of walking behavior. We begin with a detailed

analysis of the simple half-center model in order to clarify and highlight basic behavioral

principles that emerged from our analysis. We then explore two conceptually distinct

mechanisms for the creation of double bursting each of which gives different predictions

of the correlations structure between phases of the step cycle.

Half-Center Model

We start by exploring the behavior of a simple half-center oscillator, since it

forms the basis for understanding fundamental properties of the double bursting networks

presented later. The half-center model has been studied previously in the context of

models of lamprey swimming (Bem et. al. 2003, Buchanan, 1992, Williams, 1992).
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Dynamics of the half-center are

characterized by the combined

interplay of the fast winner take all

interaction between the two

mutually inhibitory interneurons

(denoted Ie and If in Fig. 1A), and

the slow dynamics of self-

inhibition.  Build up of slow

inhibition in the currently active

neuron eventually tips the

competitive balance from one

neuron to the other, resulting in

alternating activity in the two

mutually inhibitory interneurons

(Fig. 2). The output of this central

CPG is read out by corresponding

excitatory interneurons (Ee and Ef in Fig. 1A). Note that since the actions of the central

interneurons Ie and If are inhibitory, Ie is active during F (flexion) and If is active during E

(extension).

To examine the dynamic structure within the network, we ran simulations in the

presence of a white noise current injected into each of the two main inhibitory neurons Ie

and If (see Methods) and measured overall variability and the correlation between the

lengths of extension and flexion bursts in the same and surrounding two cycles (Fig. 3).

FIG. 2.2,  Half-Center Output (noise level s = 0.03).
Voltage traces of the four interneurons, two excitatoy (Ee
and Ef) and two inhibitory (Ie and If), plus slow self-
inhibition in the two inhibitory neurons (Slow Ie and Slow
If). The flexion burst (F; solid vertical lines) and extension
burst (E; dashed vertical lines) are determined by activity
in excitatory interneuron Ef and Ee being above threshold
(=0.1).  Ie suppresses extension and is active during F; If
suppresses flexion and is active during E.



22

Correlation was quantified using the Pearson’s correlation coefficient (see Methods).

This correlation analysis reveals that F is positively correlated with adjacent parts of the

step cycle  (significantly different from 0; error bars show 2 standard deviations) and is

uncorrelated with parts of the cycle further away.  This means that a lengthening of F,

rather than being correlated with a shortening of the adjacent E’s, actually is correlated

with their lengthening as well.

Microstimulation of the Half-Center Model

To understand the dynamic mechanisms underlying the correlation structure in the

noisy case, we performed a series of microstimulation experiments in which single small

perturbations were made to an otherwise noise free simulation (.2 amplitude current for

.04 simulated seconds). Fig. 4a shows the reaction of the model to microstimulation of

interneuron Ie delivered starting at time 2.5.  The main effect of the microstimulation is to

elongate the flexion burst F.  This experiment was repeated, with microstimulation

delivered at times evenly spaced throughout the step cycle. The changes in the flexion

burst length (DF) were then plotted as a function of the time at which the stimulation of Ie

was delivered (Fig. 4b). Thus, we see that perturbation of Ie late during F results in a

relatively large lengthening of that phase, whereas stimulation early during F results in a

moderate shortening.

This technique is generalized to examine how microstimulation of a given

interneuron during one part of the step cycle affects the lengths of that and all subsequent

parts of the cycle.  Figs. 5Ab-5Ae show the effects of microstimulation of Ie on the length

of four different burst phases: F and E during the current cycle and F and E during the
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next cycle (Fig. 5b

is an extended

version of Fig. 4b).

Figs. 5Bb-5Be

show the analogous

results for

stimulation of If.

Notice that the

plots in Figs. 5Ab

and 5Bb fall to

zero for times after

the end of F, simply because microstimulation delivered after the end of F cannot affect

its length.  A similar causal relationship can also be seen at the right-hand side of Figs.

5Ac and 5Bc: microstimulation delivered after the end of E cannot affect the length of E.

Note also that the symmetry of the underlying model is reflected in the perturbation

results. For example, perturbations of If have the same effect on the length of E as do

perturbations of Ie on the length of F.

The curves shown in  Fig. 5 are related to the well-known phase response curve

(PRC) commonly used to examine the behavior of coupled oscillators (Rinzel and

Ermentrout, 1989; Winfree, 2001).  However, the PRC measures the effect of a

perturbation on the timing of the entire oscillation, whereas Fig. 5 separates out the effect

of a given perturbation on the separate subparts of the oscillation over multiple cycles.

The effects of microstimulation on the half-center oscillator can be understood by

FIG. 2.3,  Correlation Structure for the Half-Center Model (noise level s =
0.03). Filled circles indicate Pearson correlation coefficients between flexion
burst duration and other bursts for two cycles before and after.  Error bars on
correlation coefficients denote two standard deviations.  Subscript denotes
distance in cycles (0=current cycle, +1=next; -1=previous). F0 indicates the
correlation of F with itself (coefficient = 1). E-1 >0 and E0 >0 indicate that
the flexion burst is positively correlated with the length of the previous and
subsequent extension.  Open circles indicate linear prediction from
microstimulation experiments.
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considering three basic properties of networks using fast mutual inhibition and slow self-

inhibition:  (1) The dynamics are most sensitive to perturbation near the fast competitive

events that happen at transition points in the step cycle; (2) the role for a given

interneuron switches at these transition points; (3) microstimulation of a given

interneuron has a relatively large immediate influence in one direction, followed by a

rather long lasting inhibition that acts in the opposite direction.

The switch from excitation to inhibition is most clearly seen when examining the

duration of the burst in which the microstimulation is applied.  If the active interneuron is

stimulated near the end of a burst, the fast resulting excitation extends that burst

(stimulation of Ie extends F, Fig. 5Ab at time 1.2; stimulation of If extends E, Fig. 5Bc at

time 2.2).  This effect is relative large.  If the stimulation of the active neuron comes near

the beginning of the burst, the direct excitatory effects decay away and self-inhibition

hastens the transition to the next phase of the cycle, shortening the ongoing burst (Fig.

5Ab at time .6; Fig. 5Bc at time 1.6).

Application of property 2 suggests that these effects should be reversed for

stimulation of the opposite neuron.  This is indeed the case for stimulation late in the

burst phase: the fast excitation of the inactive interneuron favors this neuron in the

upcoming competition, shortening the burst (Fig. 5Ac at time 2.2; Fig. 5Bb at time 1.2).

However, for stimulation occurring early in the burst phase microstimulation of the

inactive neuron does not push this neuron above threshold.  As a result, no additional

self-inhibition is recruited and stimulation has no effect on burst duration (Fig. 5Ac at

time 2.1; Fig. 5Bd at time 1.1).
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An important property of the slow self-inhibition is that a relatively brief

stimulation can have effects that linger for multiple phases of the cycle.  For stimulation

late in the burst, the increase in activity that helps the neuron win the competition in the

current burst leads to self-inhibition that hinders the neuron during the next cycle.  For

example, stimulation of Ie near the end of F lengthens that phase but also leads to greater

inhibition within Ie. This increased inhibition hinders Ie during the subsequent

competition and consequently lengthens E (Fig. 5Ab and 5Ac at time 1.1).  Note that in

this case the reversal from fast excitation to slow inhibition is accompanied by a reversal

in role from the active to the inactive neuron during the transition from F to E.  Thus,

stimulation of the active neuron near the end of a burst increases the duration of both the

ongoing and subsequent burst.  The same combination of a reversal from excitation to

inhibition and a role reversal happens for stimulation of the inactive neuron near the end

of the burst, so this stimulation acts to shorten both the current and subsequent burst (5Ac

and 5Ad at time 2.1; 5Bb and 5Bc at time 1.1).

Finally, we point out that the time course over which self-inhibition exerts its

influence can be influenced by dynamic events that are influenced by the initial

stimulation.  For example, consider stimulation of the active neuron during the middle of

a burst phase.  The stimulation recruits additional self-inhibition that ends the ongoing

phase early. However, this reduces the period during which self-inhibition accumulates,

largely compensating for the initial increase in inhibition. As a result, after the

competitive transition that ends the phase the system has returned to near its unperturbed

trajectory and the effect of the perturbation on subsequent phases is negligible (5Ab-5Ae

at time 1.1; 5Bc-5Be at time 2.1).
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Correlation Structure of the Half-Center Model

Taken as a whole,

the microstimulation plots

shown in Fig. 5 can be

used to understand burst

length correlations in the

fully noise-driven model

(Fig. 3).  For example,

consider the effects of

microstimulating Ie near

the end of F.  As explained

above, this stimulation will

serve to elongate both F

and E.  That is, this

common cause will tend to

induce a positive correlation in the lengths of F and E.  Viewing continuous noise

perturbation as the sum of many small perturbations distributed in time, we can predict

the net correlation between any two parts of the step cycle by computing the product of

the effects of microstimulation on each part of the cycle, and summing these effects

across all microstimulations (see Methods).  Such a prediction assumes that the effects of

perturbing different neurons sum linearly, as do the effects of perturbing the same

interneuron at different times. It also assumes that effects scale linearly with the size of

FIG. 2.4,  Changes in Burst Duration Due to Microstimulation.
Effects of microstimulation of Ie on the duration of F.  (a) Voltage of
Ef in the unstimulated condition (solid line) and with microstimulation
starting at time 2.5 (dashed line).  Vertical lines mark the end of F in
the unstimulated (solid) and stimulated (dashed) simulations. The
change in burst duration DF = 0.3 sec. (b) DF as a function of the start
time for microstimulation. Each point (0.1 sec intervals) shows DF for
a single simulation, e.g. stimulation shown in (a) contributes the point
at 2.5 sec.  Stimulation of Ie early in the phase shortens F, whereas late
stimulation lengthens F.



27

the perturbation, and that injecting a negative current has the opposite effect of injecting a

positive current. Fig. 3 demonstrates that departures from these linearity assumptions are

relatively minor.

Clock Oscillator Model

Like the half-center, the clock oscillator is constructed from a group of mutually

inhibitory interneurons acting in a winner-take-all fashion. In generalizing the alternating

half-center to a four phase output, the number of inhibitory neurons is increased from two

to four (labeled I1 to I4, Fig. 1B).  The weights within the network are biased such that

FIG.2.5,   Microstimulation of the Half-Center. Effects of microstimulation of Ie (A) and If  (B) on burst
durations for the current and next cycle. a: Voltage traces of excitatory interneurons Ef (solid) and Ee
(dashed). Vertical lines show limits of F (solid) and E (dashed).  b,c: Change in F (DF) and E (DE) for the
cycle undergoing microstimulation. Plots 5Aa and 5Ab are the same as in Fig. 4a and 4b. Stimulation of Ie
near the end of F lengthens both F (time=1.1 Ab) and E (time=1.1 in Ac) in the current cycle.  Stimulation
of If near the end of E shortens F (time=1.1 in Bb) and E (time=1.1 Bc) in the current cycle.  d,e: The
change in burst durations of F and E in the cycle following microstimulation (labeled Next DF and Next
DE above).  Stimulation of Ie  during E shortens E in the current cycle  (time=2.1 in Ac) and F in the next
cycle (time=2.1 in Ad).  Stimulation of If during F lengthens F in the current cycle  (time=2.1 in Bc) and E
in the next cycle (time=2.1 in Bd).  Influence of microstimulation on Next E is negligible (Ae and Be).
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activity patterns proceed in a single

direction around the clock, I1 to I2 to

I3 to I4 (Fig. 6).  Each part of the

cycle corresponds to activity within

a single interneuron.  In this sense,

the central set of interneurons acts

like a clock, marking off the four

parts of the cycle.  As in the half

center model there are two

excitatory interneurons Ef and Ee

providing output to the flexor and

extensor motor neurons.  Activation

of neuron I1 corresponds to part F

(flexor on alone), activation of I2 to

part E1 (extensor on alone),

activation of I3 to part E2 (double

bursting), and activation of I4 to E3

(extension alone).

Dynamics within the clock

model have the property of

rotational symmetry. For example,

interneuron I1 has a similar relationship with its neighbors I4 and I2 as interneuron I2 has

with its neighbors I1 and I3. More generally, rotating the labels in Fig. 1B would not

FIG. 2.6,   Clock Model Output (noise level s =04). a,b:
Vertical lines show limits of F and E2 (solid) and of E1
and E3 (dashed) in the output of the excitatory
interneurons (Ef and Ee). c-f:  Activity in the four central
inhibitory interneurons I1, I2, I3 and I4 correspond to
phases F, E1, E2 and E3 in serial order.
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qualitatively change the pattern of relationships between the four central interneurons of

the model. Since activity in each interneuron is associated with one burst phase of the

cycle, we expect that the relationship of phase E1 with the surrounding phases F and E2

should resemble the relationship of phase E2 with its surrounding phases E1 and E3, etc.

Note that because the time constants for the slow self-inhibition were altered to roughly

match the experimentally measured burst lengths, the underlying symmetry of the

dynamics is only approximate.

As a first step in analyzing output variability in the clock model, we set the noise

level so that the coefficient of variation (CV = standard deviation divided by the mean) in

overall cycle length was approximately 1.5% (noise level s=0.04 gave CV of the cycle =

1.45%). We then measured the CV for each part of the step cycle.  All parts of the cycle

showed similar degrees of variability as measured by the CV (F: 3.48%; E1: 2.50%; E2:

3.65%; E3: 2.78%).  If the parameters of all neurons and connections were exactly

symmetric, then the CVs would be identical (up to sampling noise).

We also measured the correlation for each part of the step cycle with all parts of

the step cycle one cycle before and one after (Fig. 7).  Each of the four subplots in Fig. 7

shows the correlation with a given phase of the step cycle. The dotted curve shows the

correlations predicted from applying the linearity assumption to the perturbation results

presented below. The basic pattern of correlation is similar for all four phases of the step

cycle, i.e. the curve in each of the subplots has roughly the same shape when centered

over the phase in question.  This means that the strength of the correlation between any

two phases of the step cycle is determined mostly by the number of intervening phases of

the cycle, rather than on the specific phases being compared.  Again, this is to be
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expected from the

approximate

rotational

symmetry of the

underlying clock

network.  Second,

the strongest

correlations are

between phases of

the cycle that are

separated by two

intervening phases.

This effect is

moderately strong,

yielding correlation

coefficients in the

range of 0.05-0.2

(Fig.7).

We explore

the underlying

dynamics of the

clock model by

examining the

FIG. 2.7,   Correlation Structure of the Clock Model. Correlations with
noise shown as solid circles and solid line; error bars indicate 2 standard
deviations.  Each plot shows correlation of one phase of the cycle (F (a),
E1 (b), E2 (c), E3 (d)) with other phases in the current, next and previous
cycles (subscript = 0,+1,-1, resp.).  All phases show the same basic pattern
of correlation. Parts of the cycle separated by two intervening bursts have
the strongest correlation, e.g. F0 is most strongly correlated with E30, E10
with the next F+1, etc. Open circles and dashed line show linear predictions
from microstimulation.



31

effect of microstimulation on the central inhibitory neurons driving the oscillation. Fig. 8

shows the effect of microstimulation on interneurons I3 and I4. These plots again reveal

the underlying rotational symmetry of the clock model, with stimulation of neuron I3

having the same qualitative pattern as stimulation of I4, just shifted in time and phase.

All the main features of the microstimulation experiments can be understood from

direct application of the three properties outlined for the half-center model above.

Stimulation of the active neuron results in the same large lengthening when delivered

near the end of the burst and a moderate shortening when delivered earlier (Figs. 8Ac at

times 2 to 2.8, and 8Bd at times 3 to 4).  Like the half-center, the shortening of the phase

from early stimulation largely compensates for an increase in self-inhibition so that early

stimulation has little effect beyond the current phase. Also, stimulation of an inactive

neuron near the end of a given phase aids this neuron in the upcoming competition and

hence shortens that phase (Figs. 8Ab at time 1.9, and 8Bc at time 2.9).

The main difference between the models is that the clock model contains a greater

variety of functional role reversals at competitive transition points between bursts.  In

particular, a neuron that has just been active does not participate in the competitions that

determine the onsets of the next two burst phases. Therefore, the measurable output of the

oscillator is not affected until the next cycle, where self-inhibition delays the onset of the

corresponding burst.  The delayed onset results in a lengthening of the burst before the

neuron becomes active.  The link between the extension of a burst and the delayed onset

of the same burst in the next cycle results in a positive correlation between the length of

that burst and the length of the preceding burst in the next cycle (Fig. 7).  Negative
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correlations between remaining bursts are a consequence of mutual inhibition between

the inhibitory interneurons of the network.

Feedback Oscillator

The feedback oscillator is also a generalization of the basic half-center circuit.

But rather than incorporate more neurons within a single winner take all dynamics, this

FIG. 2.8,  Microstimulation of Clock Model.  Stimulation of I2 (Aa to Ai) and I3 (Ba to Bi) in the clock
model.  Stimulating I2 and I3 lead to similar patterns of effects relative to the phase in which neuron is
active (DE1 (Ac) and DE2 (Bd) resp.).  Effects are similar to the half-center model.  Stimulation of the
active interneuron late in its active phase causes lengthening of that phase (time=2.8 in Ac, and time=4
in Bd); early stimulation causes shortening (time =2.4 in Ac and time=3.5 in Bd).  Late stimulation also
delays the onset time of activity in this interneuron in the next cycle which causes a lengthening of the
previous phase (time=2.8 in Af and time=4 in Bg).
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model retains a single pair of mutually inhibitory neurons that control flexor and extenor

motor neurons. The basic alternation between flexion (F) and the period of extension (E1-

E3) results from the mutual inhibitory dynamics between these two neurons. Double

bursting is caused by a separate inhibitory neuron called the override neuron, that inhibits

both If and Ie  (Io; Fig. 1C).  High activity in this cell shuts down activity in all central

inhibitory neurons.  This releases all excitatory interneurons from inhibition, leading to

co-activation of flexor and extensor motor neurons.  The override neuron receives

excitatory input from Ee. When Ee becomes active at the beginning of extension it excites

Io, which in turns inhibits If leading to a second flexion burst (Ie is already inhibited).

This marks the end of E1 and the beginning of E2. Self-inhibition then accumulates in Io,

releasing If from inhibition, ending the second flexion burst and terminating phase E2.

Voltage traces from the feedback model are shown in Fig. 9.

Unlike the clock model, the feedback model is hierarchical, and different

mechanisms contribute to the transition between different phases of the step cycle.  In

particular, the transitions from F to E1 and from E3 to F are determined by mutual

inhibition between Ie and If, the transition from E1 to E2 is determined by the buildup of

activity in Io, and the transition from E2 to E3 is determined by the decay of inhibition

from Io as well as the ability of If to escape from this inhibition.  As a result of this

heterogeneity, the different parts of the step cycle show very different degrees of

variability. Again we adjusted noise level so that the CV of cycle length approximated

1.5% (noise level s=0.01 gave CV of the cycle = 1.71%). Unlike the clock model, the

different parts of the step cycle  in the feedback model have widely different CVs (F:

2.97%; E1: 1.09%; E2: 3.19%; E3: 4.86%).   Fig. 10 shows the pattern of correlation
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between different phases of the step cycle.  As in Fig. 7, each subplot shows the pattern

of covariance with a particular

phase of the cycle.  In contrast

to the clock oscillator, each

phase of the step cycle shows a

distinct pattern of covariance.

Of particular note is the

correlation between E3 and the

next F, which reaches almost 0.6

(Fig. 10a and 10d).

Microstimulation in the

Feedback Oscillator

We describe the

behavior of the feedback model

in the context of how the model

responds to micro-stimulation

(Fig. 11),  with a focus on each

phase of the cycle, starting with

the flexion phase F.  The

transition from F to E1 is

governed by the competitive

dynamics between Ie and If and

FIG. 2.9, Feedback Model Output (noise level s = 0.01).
Vertical lines show limits of F and E2 (solid) and of E1 and E3
(dashed)(a-e).  Top two traces show excitatory (Ef  (a) and Ee
(b)) voltages. Bottom three traces show activity in inhibitory
interneurons If (c), Ie (d) and Io(e).  Io becomes active at the
beginning of extension creating the second flexor burst
(time=2.2 in e).  Note the small period of Ie activity near the
onset of E3 (time=3 in d).  This is a third period of competition
between Ie and If but one where Ie always loses.  This adds
significant complexity to the dynamics of the feedback model.
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hence is influenced by the same mechanisms important in the half-center model. In

particular, stimulation of Ie (the active neuron) late in the phase extends F, whereas

stimulation early recruits self-inhibition and shortens F (Fig. 11Bb).  Conversely

stimulation of If (the inactive neuron) near the end of F shortens F (Fig. 11Ab).    The

only departure from the behavior of the half-center is that stimulation of Ie near the end of

F does not result in a lengthening of the subsequent phase of extension, but rather has a

slight shortening effect on E3. This results from a complex interaction between slow self-

inhibition in Ie and other dynamic events occurring during extension and will be

explained below.  Note that the override neuron Io is below threshold during F, so small

stimulations of this neuron have no effect.

Next we examine the initial phase of extension, E1.  Looking at the voltages in

Fig. 9, we see that the onset of extension is marked by a rapid rise of activity in the

excitatory extensor interneuron Ee (Fig. 9b, time 2), followed with a short delay the rapid

rise in the override neuron Io (Fig. 9f).  This causes a rapid decline in If activity (Fig. 9d),

leading to double bursting. Note that all transitions are strong and rapid.  That means that

even though perturbations may have a significant impact on voltage, these changes will

be converted into rather minor differences in the time at which threshold is crossed.

Consistent with this, stimulation of all interneurons, including the override neuron Io, has

a very small effect on the length of E1, explaining why E1 is the least variable phase in

this model.

The double burst phase, E2, is terminated by the increasing self-inhibition in Io

that reduces inhibition to the central half-oscillator, allowing If to escape from inhibition

and end E2. Stimulation of Io shows the familiar pattern.  Stimulation near the end of E2
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extends activity in Io and

hence extends E2 (Fig. 11Cd

at time 4.5), whereas

stimulation of Io early during

E2 recruits greater self-

inhibition in Io and shortens

E2 (Fig. 11Cd at time 3.7).

If we look at If, the effects

are in the opposite direction

and significantly smaller

(Fig. 11Ad). A close

examination of the voltage

traces during the transition

from E2 to E3 (Fig. 9f)

reveals that Ie also increases

its activity at this time,

initiating another bout of

competition between Ie and

If and causing a dip in the

output of Ee.  If always has

the upper hand in this

competition (Fig. 9d), and

activity in Ee quickly

FIG. 2.10,   Correlation Structure of the Feedback Model.
Correlations with noise shown as solid circles with solid lines.
Errorbars indicate two standard deviations.  Phases are labeled as in
Figs. 3 and 7.  Each individual phase of the step cycle has a specific
pattern of correlation with the other parts of the step cycle.  Note the
very strong correlation between F0 and E30, and the different patterns
of correlations between the graphs from top to bottom.   Open circles
and dashed line show linear predictions from microstimulation.
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recovers to support the rest of phase E3.  However, the time it takes for If to escape from

suppression by the override neuron is influenced by competition with Ie.  As a result,

microstimulation results in a typical half-center pattern, with stimulation of Ie late in the

burst extending E2 and stimulation early shortening E2 (Fig. 11Bd). Conversely,

stimulation of If late in the burst shortens E2 while stimulation early has little effect (Fig.

11Ad).

Finally, we turn our attention to the other transition governed by competition

between Ie and If: the transition between E3 and F.  Again we see the familiar half-center

pattern near the end of E3 with stimulation of If (the active neuron) extending E3 and

stimulation of Ie (the inactive neuron) shortening E3 (Figs. 11Ae and 11Be).  We also see

that stimulating Io near the end of E3 extends E3. Io inhibits both If and Ie (Fig. 11Ce),

and so one would not necessarily expect Io to bias the competition between them.

However, a small increase in inhibition has a relatively minor impact on the already

active neuron (If), whereas Ie is just beginning its rise in activity and the same small

increase in inhibition has a relatively large impact.  So although Io sends increased

inhibition to both If and Ie, it has a larger impact on Ie, delaying the onset of F.  If we look

further back in time, we see that the length of E3 is also highly sensitive to stimulation of

Ie and If near the end of E2 (figs. 11Ae and 11Be).  Interactions between all three

interneurons contribute to ending both of the phases E2 and E3. The sensitivity of the

dynamics at these two points in the cycle explains the relatively large effects of

microstimulation at these times, as well as the fact that phase E3 is relatively more

variable than the other phases in the cycle.
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As pointed out above, the length of E3 is also reduced by stimulation of Ie near

the end of F (Fig. 11Be).  Note that this shortening runs counter to expectations derived

from the half-center model: stimulation of Ie near the end of F should recruit more self-

inhibition in Ie and this delay the onset of the next F, thereby lengthening E3. The

reversal in the effect of slow inhibition is due to an interaction between the slow

inhibition and the complex competitive event at the end of E2. With greater inhibition, Ie

is less active during this event and this has a net effect of reducing the self-inhibition and

hence shortens E3. This illustrates how interactions between long-lasting inhibition and

subsequent dynamic events can lead to complex dependencies that span multiple phases

of the step cycle.

The correlations seen in the structure in the noise-driven condition (Fig. 10) are

entirely consistent with the microstimulation experiments.  In particular, note that

perturbation of all three interneurons has a similar effect on the length of E3 and the next

F. Given the sensitivity of E3 to perturbation, this results in a very large correlation

between these two phases.  The microstimulation results also reveal that dynamic

influences can work in opposition.  For instance, for each of the mutually inhibitory

interneurons, perturbation during E2 affects the length of both E2 and E3 in the same

direction, leading to a positive correlation.  However, perturbation of the override neuron

in latter half of E2 lengthens E2 significantly, but acts to shorten E3 (Figs. 11 A-C, d and

e). This induces a negative correlation. The fact that the net correlation between E2 and

E3 is negative indicates that the influence of Io on this correlation is stronger than the

combined influence of Ie and If.
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Microstimulation Effects on Extension Length in Double Bursting Models

Differences between the output of the feedback and clock models can also be seen

in the influence of microstimulation on the burst duration of the whole of extension (E)

(Fig. 12).  These results are interesting in light of recent results published by Saltiel and

Rossignol (2004a, 2004b; see Discussion).  When comparing changes in the duration of

extension (E) across models under the effects of microstimulation, three differences are

apparent:

First, microstimulation of some interneurons in the feedback model affect the

length of E across a large portion of E (microstimulation of Io in Fig. 12Bc), while the

FIG. 2.11.   Effects of Microstimuation on the Feedback Model.  Stimulation of the central inhibitory
interneurons If (Aa-i), and Ie (Ba-i), have similar effects on extenstion and flexion as in the half-center
model (compare with Fig. 5).   Stimulation of I0 (Ca-i) has the largest effect on the duration of the
double burst phase E2 (Cd), but also has an affect on the transition from E3 to F (Ce). Note that
stimulation of all three neurons lead to a similar pattern of deviations in the lengths of E3 and the next
F (Ad-e, Bd-e, Cd-e), accounting for the strong positive correlation between these phases (figure 10a,
column E3-1 and 10d, column F+1).
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same stimulation in the clock model only alters E if delivered in a small portion of the

burst (microstimulation of I3 in Fig. 12Ab).

Second, in the clock model, microstimulation affects the total length of E in a

symmetric manner, i.e. stimulation of any of the three interneurons active during E leads

to a part of the phase where E is initially shortened followed by a phase where E is

lengthened (compare Fig. 12Aa to 12Ac). The same type of stimulation of the feedback

model leads to multiple different responses (Fig. 12B).  For instance stimulation of

interneuron Io shortens E if delivered at the beginning of E2, elongates E when delivered

at the end of E2, and lengthens E when delivered during E3 (Fig. 12Bc).  Compare this

with microstimulation of Ie where stimulation during E2 acts like stimulation of Io, but

stimulation during E3 gives the opposite effect.

Third, within the feedback model there are times of the step cycle when

stimulation of any of the interneurons of the model can influence the burst duration of E,

(Fig. 12Ba-12Bc, times 3.2 to 5.1).  Within the clock model there are points in the step

cycle perturbable by more than one interneuron (Fig. 12Ab and 12Ac at time 2.8) but

these make up only a fraction of the entire cycle, and there are no times where all of the

three interneurons influence the burst duration of E.

Discussion

The current study explored three models of the spinal CPG for locomotion.

Fundamental properties of networks based on fast competitive inhibition and slow self-

inhibition were explored in the context of a simple half-center model. For this model, we

find that excitatory perturbation of the active interneuron within a burst has differing
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effects depending on when in the burst it is given: (1) perturbation early in the burst

causes a moderate shortening of the ongoing burst and does not affect subsequent burst

durations, and (2) perturbation late in the burst causes a relatively large lengthening of

the ongoing burst and a moderate delay in the onset of the corresponding burst in the next

cycle.  We also find that (3) excitatory perturbation of the inactive interneuron is only

effective near the end of the burst, and serves to shorten both the current burst and

subsequent bursts. Effects 2 and 3 cause adjacent burst durations in the half-center model

to either lengthen or shorten together, resulting in a positive correlation between these

durations in the simulations with noise (Fig. 3).   This positive correlation results from an

FIG. 2.12.  Effects of Microstimulation on Extension.  Change in total length of extension (DE)
during microstimulation of interneurons in both the clock (A) and feedback (B) models.  For the
clock model (A) stimulation of the interneurons all effect DE in the same manner i.e. stimulation of I3
during E and I4  during E always shortens E first and then lengthens it,  while stimulation of the
interneurons of the feedback model each effect DE in a unique way, i.e. stimulation of  I0 first
lengthens E during E2 and latter lengthens E during E3, while stimulation of If produces the opposite
effect.
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alignment of the reversal between initial excitation and delayed self-inhibition with the

competitive reversal experienced by the stimulated interneuron at the boundary between

bursts.

We then generalized the half-center, considering two architectures that give

double-bursting output in flexor muscles.  In the clock model, the two interneurons of the

half-center are replaced by a ring of four mutually inhibitory interneurons, with activity

proceding around the ring.  The main predictions related to this model stem from the

symmetry of the underlying architecture.  In particular, all phases of the output have

similar CVs, and the strength of correlation between any two phases depends chiefly on

the number of intervening phases rather than the particular phases being compared.  In

the feedback model, a delayed feedback loop interacts with the mutual inhibition

underlying flexion and extension to produce double bursting outputs.  The main

predictions of this model are that the E1 phase should be relatively insensitive to noise

(low CV) whereas phase E3 should have relatively high noise sensitivity (high CV), and

that correlations between the burst durations will not depend directly on the temporal

relationship between the bursts being compared but upon which bursts are being

examined as well.

Class of Models Studied

From a strictly theoretical perspective, the current models expand our

understanding of how noise affects the output of neuronal networks that act like

relaxation oscillators (Bem, et. al., 2003; Skinner, et. al. 1994; Traven, et. al., 1993;

Wang and Rinzel, 1995).  These models are characterized by large state changes at
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specific times during the cycle, and have distinct fast and slow state variables that

provide an explicit substrate for dynamic influences spanning multiple burst phases.  The

other main approach to modeling spinal CPGs has been to look at the class of oscillators

with phase-difference coupling (Kiemel et. al., 2003; Kiemel and Cohen, 1998).  Such

phase oscillators are characterized by a single variable (the phase) and generally have

state changes that are more continuous.

Although the slow self-inhibition in our models is most commonly attributed to

neuronal adaptation via voltage or calcium dependent potassium channels (Rinzel and

Ermentrout, 1989;  Grillner 1999), slow inhibition could result from synaptic

mechanisms such as g-protein coupled inhibition and/or from synaptic facilitation in

mutually inhibitory synapses. Since the exact temporal profile of the self-inhibition is

unlikely to qualitatively alter model behavior, we expect the qualitative predictions

derived from our models to apply to a broad class of networks where mutual inhibition

and slow self-inhibition drive the dynamics (Morris and Lecar, 1981).

Phase Dependent and Temporally Extended Responses

We have shown that the correlation between burst lengths in our models can be

accurately predicted by integrating results obtained from microstimulating the

interneurons that make up the simulated CPG.  In the half-center model, the direct effect

of stimulating either central inhibitory interneuron matches the most common action of

proprioceptive feedback onto the mammalian CPG (Rossignol and Drew 1988; Hiebert,

et. al. 1996; Whelan, 1996).  For example, stimulating either Ia or Ib receptors of a given

muscle during locomotion tends to enhance activity in the stimulated and active muscle
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and inhibit activity in muscles antagonistic to them. Stimulation of the inactive muscle

(e.g. flexor Ia receptors during extension) can end the current phase early and reset the

step cycle to begin the next phase (Hiebert, et. al. 1996; Whelan, 1996).  In our model,

these results follow directly from the half-center architecture in which flexor and extensor

inhibitory interneurons compete for activation.

In addition to the immediate effect on the interneurons driving the oscillation,

microstimulation of our models has extended effects that are mediated by slow self-

inhibition.  For example, the build-up of inhibition in our half-center model leads to the

curious property that microstimulation of the active interneuron early in a burst results in

a shortening of the current burst duration.  A similar difference between early and late

perturbation has recently been reported for phasic retraction of a cat’s shoulder during

fictive locomotion  (Saltiel and Rossignol, 2004b; see also Duysens, 1977; Duysens and

Stein, 1978).  A similar effect that spans adjacent phases of the step cycle can be seen

within the stumble corrective reflex in the context of stumble prevention (Forssberg,

1979; Quevedo, et. al. 2005a).  Transient stimulation to the superior peritoneal nerve

during extension serves to elongate the extension ipsilaterally and to induce an increase

in burst duration of the subsequent flexion (Quevedo, et. al., 2005a).  Our half-center

model shows a similar increase in extension and the following flexion after stimulation of

If near the end of extension (Fig. 5Ab, 5Ac). The fact that both phases are elongated is

due to the temporal alignment between the reversal from excitation to slow inhibition in If

and the change in If ’s state from active to inactive at the onset of extension.

Because long-lasting effects in our half-center model are sustained by slow self-

inhibition, short-term and long-term effects must be functionally opposed.  Thus, our
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model cannot explain long-lasting alterations in the CPG that consistently favor extension

or flexion.  For example, our models cannot explain the fact that stimulation of the sural

nerve during flexion elongates that flexion burst and also shortens the following

extension phase (Duysens, 1977), or that stimulation of the superior peritoneal nerve

during flexion elongates the current flexion but has no effect on the length of the

following extension (Quevedo, et. al. 2005b).

Transition Points in the Dynamics of the Double Bursting Models

In a pair of recent papers, Saltiel and Rossignol (2004a, 2004b) argue for the

existence of discrete 'critical points' within the locomotor output that correspond to the

dynamics within bursts rather than the edges of bursts alone.  These critical points occur

at times when an animal must coordinate changes in activity within multiple muscle

groups, and are associated with changes in the way the CPG responds to phasic

perturbations.  Although outputs in our model are restricted to a single pair of

antagonistic muscles, the underlying dynamics have two properties that are similar to

critical point behavior.  First, the major transitions in the dynamics result from strong

interactions between interneurons controlling different outputs.  As a result, it is possible

to alter when these transitions occur but it is impossible to decouple them without

changing the basic behavior of the models. Second, like the results of Saltiel and

Rossignol (2004a and 2004b), these coupled events often demark changes in how the

models respond to microstimulation.  Fig. 12 shows the effects of perturbations on the

length of extension in our double bursting models. The length of extension is most
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sensitive to perturbation near the dynamic transitions associated with the double bursting

events.

Coordination of Complex Movements

 The complexity and time course of the effects within our models suggest how

transient inputs could aid in the coordination of complex movements.  For example,

transient sensory input to the spinal cord might trigger a series of dynamic changes that

alter muscle activity over time periods extending into the next step cycle.   Alternatively,

temporally localized inputs from higher centers could trigger chains of functionally

related effects to coordinate voluntary movements such as obstacle avoidance (Drew, et.

al.  2004).  Such long-lasting effects from transient stimulation have been observed under

conditions of very strong stimuli from motor cortex (see Fig. 10 in Bretzner and Drew,

2005) and may explain why a complicated behavioral repertoire remains in animals

without extraspinal inputs (e.g. Forsberg, 1979). Of course not all coordination will be

accomplished within the spinal CPG, as it is well known that both motor cortex and

sensory information modulate the CPG on a cycle-by-cycle basis (reviewed in Cohen and

Boothe, 2002; Drew, et. al., 2004).

Such extended changes in burst lengths due to perturbation are often attributed to

the triggering of complex activity patterns within excitatory and inhibitory interneurons

(Bretzner and Drew 2005; Quevedo 2005b).  Our simplified models raise the possibility

that some of these functional reversals may reflect the shift from transient excitation to

the dominance of slow self-inhibition.  Moreover, our double bursting models

demonstrate that simple switches from immediate excitation to long-lasting inhibition can
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have complex and surprising effects that depend on the functional architecture of the

model.  In the clock model, for example, each interneuron only participates in the

competitions at the boundaries of a single phase of the cycle. Therefore, perturbation of a

single interneuron changes the length of the current burst, has very little effect on the two

intervening bursts, and then another substantial effect on burst length.  Somewhat

surprisingly, this temporally separated interaction is not seen between the same phase

across cycles, but rather a given phase in one cycle and the preceding phase in the next

cycle. This is because burst durations are not coded per se, but rather are determined by

competition-driven state transitions at the beginning and end of each phase.  A different

form of complexity is demonstrated by the feedback model, in which a short period of

activity in one of the central interneurons (Ie) at the end of phase E2, has a very minor

effect on the output of the CPG but serves to 'reverse the sign' of the effect of slow

inhibition on later parts of the step cycle (see Results).

Clock-like vs. Feedback Model of Double Bursting

Much of the research on spinal CPGs addresses two basic questions. What

controls the timing relations between various motor outputs?  Is the same circuit or

different circuits used to accomplish qualitatively different behaviors? The phenomenon

of double bursting allows one to study a blend of these questions within the same basic

behavior. In particular, it raises the question of whether the same or different parts of the

spinal CPG drive the two bursts of flexion.   A more specific, but related question is

whether the CPG is dominated by a clock-like mechanism.  If the dynamical mechanism

is simply marking out time, one expects an underlying symmetry in the dynamics in
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which distance in time, rather than similarity in peripheral effect, is the dominant variable

determining the dynamic structure of the network (c.f. Golubitsky et. al, 1999).

Although quantitative predictions cannot be drawn from the abstract models

considered here, the models do suggest a number of qualitative predictions. Most

generally, a clock hypothesis predicts that correlation patterns for all phases of the cycle

should be qualitatively similar (e.g. Fig. 7). More specifically, in a double bursting

system the phases of flexor activation (F and E2) lie on 'opposite sides' of the step cycle.

Under a clock hypothesis, these phases are expected to be 'maximally different' and have

little correlation. One also expects that perturbing the CPG during these two phases

should lead to quite different effects.  In contrast, in a model in which the two phases of

flexor activation are driven by the same part of the CPG, one would expect

commonalities between these two phases, such as perturbations having similar effects in

phase F and E2 (e.g. compare the effect of stimulating Ie and If during F on DF and

stimulation during E2 on DE in Fig. 9).

Measuring Correlations as well as Perturbations

        A classic method for studying a system is to perturb it and observe the pattern of

effects.  We have shown that noise-driven variability can also reveal useful information

about the structure of the underlying system.  In our models, stimulating distinct

populations of interneurons within of the CPG cause perturbations that are generally

consistent with these noise-driven correlations.  In fact, the noise-driven correlations can

be predicted by combining the perturbations from all components that drive the

oscillation.  In the actual system, however, little is known about the correlation structure



49

of burst lengths during fictive walking, and whether particular physiological

perturbations act in concert with or in opposition to the natural variability within the

system.  It also an open question whether perturbations, in addition their effect on mean

burst length, act to change patterns of subsequent variability in the system. Our approach

suggests that analyzing the trial-to-trial variability under a number of experimental

conditions may shed light on the structure of the underlying CPG.
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CHAPTER THREE:  ASYMMETRIES IN THE FICTIVE
LOCOMOTOR CYCLE OF CAT

Abstract

Here we have performed a detailed statistical study of the natural variation

occurring during midbrain locomotor region (MLR) induced flexor dominated fictive

locomotion.  We find strong asymmetries between the two main transitions of the step

cycle; the transition from extension to flexion (E to F) and flexion to extension (F to E).

Phase locking at the E to F transition is always strong.  This strong phase locking is

associated with periods of overlapping bursts between the offset of extensors and the

onset of flexors.  Phase locking at the F to E transition is variable.  Bouts (3 out of 7)

having short cycle periods (<.65 seconds) are associated with weak phase locking

between flexor burst offsets and extensor burst onsets.  Weak phase locking is associated

with flexor burst offsets and extensor burst onsets that are separated in time.  Bouts

containing long cycle periods (4 out of 7) have increased levels of phase locking at the F

to E transition, associated with shortening of latency between flexor burst offset and

extensor burst onset.  Overall we find that latency between burst terminations and onsets

is a stronger indicator of strength of phase locking than either burst durations or cycle

period.

We conclude that observed asymmetries in the fictive locomotor cycle are likely

due to underlying asymmetries in the network making up the spinal central pattern

generator for locomotion (sCPG).
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Introduction

There is broad agreement that the core of the spinal locomotor system consists of

an intrinsically oscillatory network or spinal central pattern generator (sCPG).  However,

the functional organization of the sCPG remains illusive.  Early on, it was hypothesized

that the structure of the sCPG consisted of two mutually inhibitory oscillators, each

producing one of the two dominant phases of locomotion: flexion and extension (Brown,

1911, Lundberg, 1969).    The central representations of these two phases were presumed

to be unitary, with the more complex cycle fractionation in intact animals resulting from

the interaction of the sCPG with sensory feedback.  Subsequently, Grillner and Zangger

(1979, 1984) showed that individual nerves retain their patterns of activation even when

the spinal cord is isolated from sensory input.  To account for this complex pattern

Grillner hypothesized that the sCPG consisted of a collection of semi-independent sub-

oscillators each controlling activity within single joints (Grillner, 1981).

Recently it has been shown that while stimulation of many sensory nerves can

evoke changes in sCPG output (Burke et. al. 2001.), only a small subset of nerves are

capable of resetting the phase of the overall step cycle (Lafriere-Roula and McCrea,

2005, Quevedo, et. al. 2005a-b, Rossignol, et. al.  2006).   Differential response to

peripheral stimulation has led to the hypothesis that the sCPG for each limb is

hierarchical, containing a feed-forward rhythm generator setting the overall timing for

flexion and extension, and a separate pattern formation network that both shapes the

output of rhythm generator and adapts that output to sensory inputs (Rybak et. al, 2006a-

b, La Friene Roula et. al. 2005).

Models based on mutual inhibition such as those described above have treated the

sCPG as symmetric, with flexion and extension created by sub-networks having the same
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connectivity and function (Lundberg, 1969, Grillner, 1981, Rybak, et. al. 2006a-b,

Yakovenko, 2005).   Asymmetries observed within intact locomotion such as changes in

phase duration as animals increase or decrease their speed have been attributed to the

influence of sensory input on a symmetric sCPG network (Rossignol, 2006).  Recently it

has been shown that flexor and extensor burst durations have a symmetric relationship

with changes in cycle period (Yakovenko, et. al., 2005).  However, in analyzing burst

lengths only, other flexor/extensor asymmetries in the sCPG may have been overlooked.

Here we measure the degree of phase locking between previous burst offset and

subsequent burst onset at transitions between flexion and extension. We find: 1, The

transitions from extension to flexion (E to F) and flexion to extension (F to E) are

qualitatively different, with E to F having strong phase locking across all experiments and

F to E having weak phase locking for a subset of experiments; and 2, the latencies

between burst onset/offset times are a critical determinant of the level of phase locking

observed.

Methods

Experimental Procedures

Midbrain locomotor region (MLR) induced fictive locomotion reported here was

kindly provided to the authors by Dr. David McCrea.  The current data set has been

previously published using a different set of statistical methods (Yakovenko, et. al.,

2005).  Experimental procedures used to obtain ventral root ENGs  appear in Yakovenko,

et. al. 2005, where different ENGs received by the authors were linearly rectified, filtered

between 30 hz and 3 khz, low pass filtered at 100 hz and then digitized at 500 hz

(Yakovenko, et. al. 2005).
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Data Selection

MLR induced fictive locomotion is often noisy and inconsistent making choice of

proper data to be analyzed an important aspect of reporting observations.  We focused

our analysis on ENG recordings that display consistent and regular bursting, selecting 10

bouts of fictive locomotion derived from 21 episodes of fictive locomotion.  Bouts

consisted of a continuous stretch of bursting activity fulfilling the following criteria:  1,

Each bout contains a sufficient number of cycles (minimum= 17);  2,  Bouts contain no

phase resetting deletions (c.f. La Friene-Roula, et. al. 2005 for a discussion on deletions);

3, Bouts have bursts with high slope onsets and offsets with peak activity well above

background noise, making them easily detectable using a threshold;  and 4,  All bouts

contain both Sart and SmAB (the flexor and extensor nerves occurring most frequently

within this data set), for determination of relative phase (see below).  Out of the 11 bouts

not reported here 6 were discarded because they lacked either Sart or SmAB.  2 were

discarded because Sart or SmAB contained weak bursting, and 2 were discarded because

sets of continuous bursts contained deletions, and one was discarded because it had an

insufficient number of continuous bursts.

Some nerves within the 10 selected bouts were not analyzed due to three non-

exclusive reasons:  there were not enough bouts with consistent bursting; the nerves had

inconsistent fractionation, i.e. they sometimes were active during flexion, sometimes

during extension; or they were active only at the beginning of the flexor or extensor

subphase.  For example the posterior biceps semitendinosis appears in 6 bouts, however

in 3 of those bouts it is weakly activated and inconsistent, in 1 bout it is double bursting,
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and in 2 bouts it is active during extension.  The flexor digitorum longus appears in 6

bouts, out of which its bursting is weak and noisy in 3, and is active during flexion in two

bouts and during extension in one.  Quadriceps appears in 6 bouts, however its activation

is often weak, and the shape of its burst with a long low slope onset beginning in the

middle of flexion is poorly amenable to analysis using the thresholding method described

below.  Additional nerves present in the data but not analyzed were: Iliopsas;

gastrocnemius soleus; flexor hallucis longus; flexor digitorum longus; and flexor

digitorum hallucis longus.  The final subset of nerves with consistent bursting properties

included the knee flexor  sartorious (Sart), the ankle flexors tibialis anterior (TA) and

Fig. 3.1,  Schematic of Cycle:  Definition of Terms.  Cycle is defined as the length of time from
midpoint Sart burst to midpoint next Sart burst.  Relative onset and offset times of bursts are then
calculated in relative phase coordinates.   The transition from the end of the flexion phase to the
beginning of the extension phase is termed the F to E transition.  The opposing transition from
extension to flexion is termed the E to F transition.  ‘Gaps’ or ‘latencies’ are the difference in sec
between burst onset and offset times. Latencies with negative sign indicate a period of burst overlap
(c.f. Gap EDL-SmAB above).  Latencies with a positive sign indicate a period of time where both
bursts are off (c.f. Gap SmAB-Sart above).
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peroneous longus (PerL), the ankle and toe flexor extensor digitorum longus (EDL), the

hip extensor semimembranosus anterior biceps (SmAB), and the ankle extensors lateral

gastrocnemius and soleus (LGS) and medial gastrocnemius (MG).

Burst Detection and the Determination of Relative Phase

All analyses were performed on a LINUX based Dell personal computer using

MATLAB (Mathworks, Natick MA).

Continuous stretches of data were first obtained by visual inspection.  Burst onset

and offset times within individual ENGs were then determined by the crossing of a hand-

set threshold.  To eliminate small jumps above or below threshold caused by noise, super-

threshold crossings less than .05 sec, and sub-threshold crossing less than .1 sec were

discarded , except for within one bout where .4 sec was used.

We have applied similar methods previously within the context of lamprey ENGs

(Mellen, et. al. 1995).

Since the absolute time at which an experiment was performed is arbitrary, timing

of an event must be taken relative to other time points to have meaning. For example,

burst duration measures the relative timing of burst onset and burst offset. To characterize

the relative timing of individual events during a cycle with respect to a common frame,

we used a relative phase measure of burst onset and burst offset times.   For convenience,

we used the midpoints of bursting activity within sartorious to define the beginning and

end of a cycle (Fig. 1).  Relative phase, which takes on values between 0 and 1, was

defined as the time difference between the beginning of the cycle and the features of

interest (in this case burst onset and burst offset), divided by the duration of that cycle.
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  Qualitatively similar results were obtained using slight variations of the method

described above for determining relative phase including:  1, Defining two different cycle

lengths each used to compute relative phase of a single transition, i.e. Sart onset to onset

of next Sart for the F to E transition and SmAB onset to onset of the next SmAB for the E

to F transition; 2,  Computing the times of burst onset and offset relative to the midpoint

onset and offset times for Sart and SmAB; and 3, Defining cycle onset/offset as the mean

midpoint of all flexors.  While absolute values of several statistical properties depended

upon their method of measurement, relationships between the measurements were

consistent across methodologies.  We view the statistics reported here to be useful for

purposes of comparison across nerves and across conditions, not as absolute measures of

the underlying phenomena.

Data Analysis

Correlations between variables were reported using Pearson’s correlation

coefficient, r.  To eliminate correlations resulting from slow drift in variables over the

course of a bout, all variables were detrended by subtracting from each value xi the

average of all values within a 13 data point window centered on xi.  For any two random

variables X and Y the Pearson’s correlation coefficient r ranges from –1 to +1 and is

defined by r=Cov(X,Y)/(sXsY), where sX=sqrt(S(xi-mX)2/(n-1)) is the standard deviation

of X (mX is the mean of X), and Cov(X,Y)=S(xi-mX)( yi-mY) /(n-1) is the covariance of X

and Y. However, since the correlation coefficient is bounded between 1 and –1,

comparisons across coefficients can be affected by floor/ceiling effects (e.g. it is

impossible to get a correlation more than .05 higher than a value of .95).  Therefore, all
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statistical arguments relating to relative degrees of correlation used z’ (z-prime), Fisher’s

z-transform   of the correlation coefficient r: z’= log((1+r)/(1-r))/2.  This manuscript

focuses on patterns of the correlations between measurements extracted from several

nerves.  Since a single nerve can be paired with several other nerves, pair-wise

correlation values can not be assumed to be independent.  Therefore, statistical

comparisons are based on the less stringent, non-parametric Wilcoxon Rank Sum (WRS)

test, and the Wilcoxon Ranked Pairs (WRP) test when paired measurements are reported.

To retain the intuitive power of the more familiar raw Pearson measure, we

converted means and differences of z’ back to the corresponding r value before reporting

values in the text.  For example, to report the mean difference between two sets of

correlations A and B, all correlations in both A and B would be converted to z’ scores,

the mean difference between to z’ scores in A and B would be calculated, and the mean

difference in correlation would be reported as the r value that corresponded to this mean

difference z’ score.

Results

Previous statistical surveys of fictive locomotion have focused on the relationship

between burst durations and cycle periods (Yakovenko, 2005).  Here we focus on phase

locking between burst onset and offset.  We report four statistical properties of fictive

locomotion:  1, Overall variance of burst durations and cycle periods; 2,  Correlation

between burst durations; 3, Phase locking of burst onset and offset times, and 4,

Latencies of burst onset and offset times.
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Data Analyzed

Qualitatively the output of MLR induced fictive locomotion can be placed into

two broad categories: flexor dominated fictive locomotion where the flexor phase is

longer than 1/2 of the cycle, and extensor dominated fictive locomotion where the

extensors are active for more than 1/2 of the cycle.  We have analyzed 474 cycles of

flexor dominated locomotion from 7 bouts and 157 cycles of extensor dominated

locomotion from 3 bouts, and present their statistics below.   Different sets of nerves

were recorded across bouts (Table 1).  However, all bouts included the flexor Sart and the

extensor SmAB.

Variances of Burst Durations and Cycle Periods

We began by measuring the variability of cycle period, quantified using the

coefficient of variation (CV is equal to the standard deviation divided by the mean).

Because it lends itself to reliable measurements of the transitions between extension and

flexion, we chose the midpoint of bursting in the flexor sartorius as the start of the cycle.

Variation of cycle length in the 3 extensor dominated bouts was much greater than in the

7 flexor dominated bouts (p = 1.85 x 10-6); mean = 8.45%, range = 4.81 to 17.86% for

Flexors Mean Cycle Duration

(seconds)

Extensors Mean CycleDuration

(seconds)

Sart All SMAB All

TA .639, .812, .909, 1.05

.855*, .995*

LGS .534, .686, .812, .901

.995*

Perl .522, .812, .855*,

.995*

MG .522, .554, .686

EDL .522, .639, .734*

.855*, .995*
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flexor dominated, mean = 22.45%, range = 7.81 to 46.68% for extensor dominated; Fig.

2). For all bouts, extensor bursts were proportionally more variable on average than the

flexor bursts (mean CV of flexor/extensor bursts = 7.55/9.35% respectively during

flexor-dominated bouts, and 16.98/31.56% during extensor-dominated bouts).   Given the

high variability seen in extensor-dominated bouts,  all analyses reported below concern

flexor-dominated locomotion unless otherwise specified.

Within the n=7 bouts containing flexor-dominated fictive locomotion, there

appeared to be a systematic dependence of variability on mean cycle duration. Bouts

containing short cycle periods (<0.65 sec; n=3) have flexor bursts which are less variable

than longer cycle period bouts (p = 4.136 x 10-4; mean flexor CV for short-cycle bouts =

Fig. 3.2, Variance of Burst Durations.  Each data point indicates coefficient of variation (y-axis)
within each bout identified by mean cycle period (x-axis).  Overall burst durations within the three
extensor dominated cycles (mean cycle lengths .734, .855, .995 sec) are much more variable than
those within flcxor dominated locomotion (all of other bouts).  Variance of burst durations within all
bouts is of similar magnitude for all flexor dominated bouts.
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4.81%,  range = 3.71% to 6.42%; mean flexor CV for long-cycle bouts = 9.46%, range =

5.89% to 12.32%; Fig. 2).  The variability of extensor burst durations did not change

across bouts (p=.4043).

Correlations Between Burst Durations

In order to examine the functional coupling between different components of the

motor output, we calculated pairwise correlations between burst durations, measured

using the Pearson correlation coefficient.   Because it leads to more uniform measures of

correlation, we used Fisher’s z-transform of the correlation coefficient for figures and

statistical comparisons (see Methods). However, given the intuitive nature of the raw

Pearson values, we use these for reported values in the text and on axis labels. For

simplicity, we will use “burst correlation” to refer to the correlation between burst

durations.

As expected, flexor burst durations are positively correlated with other flexor

bursts, and extensor burst durations are positively correlated with other extensor bursts

(Fig. 3). The one exception is the bout containing cycles with the shortest period, where

correlations between extensor bursts are not significantly different from zero.

Correlation between cotemporaneous extensor (SmAB, MG, and LGS) bursts are

weak within short cycle bouts (p=.0159; mean correlation between extensors = .430 ,

range = -.084 to .778 for short-cycle bouts; mean correlation between extensors =  .9051,

range = .851 to .962 for long-cycle bouts).  The same differences in burst correlations

hold for cotemporaneous flexor nerves (Sart, TA, and PerL) with shorter cycle bouts

having weaker correlations (p=3.996 x 10-4; mean correlation between flexors = .534,
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range = .378 to .680 for short cycle bouts; mean correlation between flexors = .952

seconds, range = .849 to .992 for long cycle bouts).

One possible explanation for differences in correlation between bouts with long

and short cycles is that different collections of nerves are recorded in different bouts.  To

exclude this possibility, for each pair of nerves, we found the average correlation between

those nerves in short-cycle bouts and in long-cycle bouts (n=7 pairs appeared in at least

one short-cycle and one long-cycle bout; averaging was performed on z-transformed

coefficients).  Long-cycle correlations were larger in 7 out of  7 pairs.

The correlation coefficient between variables X and Y is a normalized measure

equal to the covariance between X and Y divided by the product of the standard

deviations of X and Y.  Therefore, the smaller correlation in short-cycle bouts could be

Fig. 3.3.  Correlations Between Burst Durations.  Error bars denote one standard deviation.  Bouts
having short cycle periods (mean cycle period <.65) tend to have burst durations within a phase which
are weakly correlated (p=.0159 for extensors; p=3.99x10-4 for flexors).  Solid line indicates connects
correlation between SmAB and LGS burst durations in short and long cycle period bouts.  Dashed line
indicates strength of correlation between the flexors Sart and TA.
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due to an overall increase in standard deviation, and/or a decrease in covariance. Using

the same pairings as above, we found that from long to short cycles the proportion of

decrease in the average covariance was higher than the proportion of decrease in the

product of the standard deviation in all nerve pairs observed.  Thus, the decrease in

correlation in short-cycle bouts is mainly due to a net decrease in covariance between

burst durations.  Therefore changes in correlation between bouts having short and long

cycles cannot be explained simply as an increase in random noise.

In contrast to generally strong burst correlations between nerves belonging to the

same phase, the correlation between flexor and extensor burst durations is weak. The

mean correlation of a flexor burst with the following extensor burst is -.0944;  the mean

correlation of an extensor burst with the following flexor burst is .0633.  These

correlations are not significantly different from zero, and are not significantly different

from one another.

Correlation Between Burst Onsets/Offsets

Conceptually, a weak correlation in the durations of two bursts could result from a

weak correlation between burst onsets, a weak correlation between burst offsets, or both.

Since measurements of timing require a standard (i.e. a time that is considered time zero),

we characterized burst onset and burst offset using a normalized phase measure, based on

a standard cycle starting and ending in the middle of the flexor Sart (see Methods).    We

will use the term “phase locked” to describe two events that are strongly correlated

according to this measure.  However, since changes in the duration of flexion and/or

extension will shift the measured timing of events during the cycle, this measure
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generally leads to positive correlations between events that occur at similar normalized

phase.  Therefore, we focus on the relative degrees of phase locking between different

event pairs, rather than the phase-locking of any particular pair.

For different extensors recorded in the same bout, we find burst onsets having

approximately the same degree of phase locking as burst offsets (p=.0742; onset

correlation minus offset correlation equals .3368 +/-  .4999; see Fig. 4).  For

cotemporaneous flexors (Sart, TA, and PerL), there is a strong asymmetry in strength of

phase-locking, with the onsets of different flexors being significantly more phase-locked

than offsets (p=.0156; mean onset correlation minus offset correlation .7910, range .0731

to .9483).

Fig. 3.4. Phase-Locking within a phase.  Each data point represents correlation between a pair of
burst onsets or burst offsets each within the same phase (flexion or extension).  Correlation strength
between pairs of extensor onsets and pairs of offsets are approximately the same (c. f. solid line
between black triangles connecting correlations between SmAB and LGS).   Pairs of flexor burst
onsets are more well correlated than pairs of flexor burst offsets (p = .0156, c. f. dashed line indicates
correlations between Sart and TA onsets and offsets).   Overall correlation between the offset times of
flexors is weak.
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Additionally EDL onset is less well phase locked with onset and offset of

cotemporaneous flexors.  For the 3 bouts containing Sart, TA, and EDL (Fig. 4,  mean

cycle length .63; .91; 1.06) phase locking between Sart onset and TA onset is stronger

than phase locking between Sart onset and EDL onset.

Fig. 3.5,  Phase-Locking Between Burst Offsets/Onsets.  Circles above represent correlation of
relative phase of flexor offset with relative phase of the following extensor onset (F to E transition).
Squares indicate opposite transition between extensor offset and flexor onset (E to F transition).
Phase-Locking (correlation between burst offset and onset) between Sart and SmAB (shown as
black circles/squares connected by dashed line) is weaker at the F to E transition, than at the E to F
transition.  This trend holds for all nerves observed with the exception of EDL.  Phase-Locking
between EDL and SmAB, is stronger at the F to E transition (+ inside of circles and squares
connected by solid line), and weaker at the E to F transition.
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Phase-locking at Transitions Between Flexion and Extension

Our analysis thus far has focused on flexion and extension as events that make up

a given cycle.  For the remainder, we adopt a complementary perspective that places a

primary focus on the transitions between flexion and extension.  Across our data set,

transitions between cotemporaneous flexors and extensors are strongly asymmetric, with

the transition from extension to flexion (E to F) more strongly phase locked than the

transition from flexion to extension (F to E).  The one exception to this is the bout having

the shortest cycle period, This particular bout is unique in this set of data since it contains

bursting within the posterior biceps-semitendinosis nerve during both flexion and

extension.   Due to its qualitatively different pattern of activation we do not include this

bout in the remaining reported statistics.

Phase locking is stronger at the E to F than at the F to E transition in 16 out of 20

pairings (Fig. 5); the difference is highly significant (p = 1.40 x 10-4; E to F correlation

minus F to E  averages .559, range -.076 to .890), and knowing the direction of the

transition (i.e. E to F or F to E) explains 27.4% of the variance in correlations at the

transitions.   Note that not only is phase locking stronger at the E to F transition vs. the F

to E transition, it is also less variable (p=.0005).

Phase locking is weaker for shorter-cycle bouts than for longer-cycle bouts.   This

is true for both the transition from E to F and from F to E (for E to F  p=.0068; mean

correlation in short-cycle bouts = .811, range = .701 to .853; mean  correlation in long-

cycle bouts = .994, range = .8191 to ..9830;  for F to E p=.0017; mean in short-cycle

bouts = .073, range = -.227 to .411; mean in long-cycle bouts = .8358, range = .409 to

.965).
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The flexor EDL appears to be different from the cotemporaneous flexors in the

way it phase-locks with extensors.  Although the numbers are small, in 5 of 6 cases where

EDL is paired with an extensor, phase locking at the transition from E to F is weaker than

at the transition between F to E (p=.125; Fig. 5 circles with +).

Latencies and Phase Locking at Transitions

In examining the differences at the E to F and F to E transitions, we noticed that

there was often a short period of overlap between bursts at the E to F transition, whereas

there was short ‘gap’ between bursts at the F to E transition.  We will call the time of

subsequent burst onset minus the time of previous burst onset the ‘latency’ between

bursts at the given transition. Positive latencies correspond to gaps and negative latencies

to burst overlaps.   For cotemporaneous nerves latencies at the F to E transition tend to be

positive and large (i.e. burst do not overlap;  mean = .0398 sec., range = .0002 to .0714

sec),  whereas those at the E to F transition tend to be negative, and short (mean = .0025

sec, range =  -.0405 to .0711 sec.; Fig. 6a).  The differences across nerve pairs is

significant (p = .0017; mean E to F minus F to E -.0373 sec, range –0.887 to .0422 sec)

Again, the pattern of latencies for EDL is the opposite of the pattern for other

flexors. The offsets of EDL bursts tend to occur after the onset of extensor bursts (mean

latency = -.0481 sec. , range = -.0898 to -.0264 sec., Fig 6a open circles with +).

Conversely, EDL onset tends to occur appreciably later than extensor offset (mean

latency = .0796 sec., range = .0048 to .1567 sec.; gray).  These differences between EDL

and other flexors are significant (p = .0131 for E to F latencies; p = 7.74 x 10-4 for F to
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E).  More importantly, differences are such that the relationship between phase locking at

Fig. 3.6,  Relationship between Phase-Locking and Latency.  All data points labeled as in Fig. 5.  6a
shows weak relationship between mean cycle period and latency.  Latencies between flexor offset and
extensor onset (F to E; circles above) tend to be positive and large.  EDL is an exception having bursts
offset which overlap with extensor onsets (6a: circles with +, have latencies at the F to E transition
which are negative).  Extensor offset and flexor onset tend to overlap (6a: squares have negative
latencies).  6b exhibits relationship between latencies and strength of phase locking.  Bursts having
periods of overlap (negative latencies) tend to have strong phase-locking between burst offsets and
onsets.  Latencies between relative phase of burst offset and burst onset which are positive and large
tend to be weakly phase-locked.
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the transition and latency for EDL (Fig. 6b, gray markers), matches the overall trend for

the other flexors.  This consistency argues that the factors determining the latency

between burst offset and onset are closely related to those that determine phase locking at

transitions.

Parameter Dependence of Phase Locking

In our data set, the degree of phase locking at the transitions between phases

varies systematically with both mean cycle period and with the mean latency between

bursts at the transitions. Separating out the two transitions, mean latency explains 27.2%

of the variance in the E to F transitions (p=.0184), whereas cycle duration explains 22.1%

(p=.0366).  For the F to E transitions, mean latency explains 48.4% of the variance

(p=.0007), whereas cycle duration explains 57.2% (p=.0001).  The fact that both

variables explain less of the variance in the E to F transitions is likely due to the fact that

the phase locking at this transition is more consistent across all bouts.  Putting all the data

together, cycle duration explains 28.8% of the variance in phase locking (p=.0004).  This

reduction is to be expected, since a prediction based on mean cycle duration cannot

capture the asymmetry in the E to F vs. F to E transitions.  On the other hand, mean

latency does capture this asymmetry, explaining 47.1% of the overall variance in phase-

locking (p= 9.19 x 10-7).  The fact that the mean latency is able to explain such a high

fraction of the variance over the entire set of data suggests a strong functional

relationship between phase-locking and mean latency, with differences in the degree of

phase-locking reflected by differences in mean latency and vice versa.
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Discussion

We describe four properties of MLR induced fictive locomotion: 1, Correlation

between burst durations is weak within bouts containing short cycle periods and strong

within bouts containing long cycle periods.  2, Phase locking at the E to F transition is

strong both within and across the flexor and extensor phases,  3, Phase locking at the F to

E transition is weak, especially within bouts containing short cycle periods.  4, Strength

of phase locking between burst onset/offset times is strongly related to latency duration.

Changes in Correlations Between Bursts Across Experiments

Previously it has been shown that ENGs from the multiple nerves making up a

phase have well correlated activity (Bayev, 1978).  Here we report that the amount of

correlation between burst durations within both the flexor and extensor phases vary

across bouts of fictive locomotion.

One possible explanation for changes in strength of correlations between burst

durations is that different bouts exhibit different levels of random noise in motor neurons.

However, since it is known that ENGs recorded in the ventral root are produced by the

interaction of a linear MN threshold with phasic excitation and inhibition from the sCPG

in the form of the locomotor drive potential (LDP) (Krawitz, et. al. 2001), one expects for

an increase in random noise at the level of motor neurons to increase overall variability

within burst durations.  However, we observe the opposite effect, burst durations within

bouts containing short cycle periods are both less correlated (Fig. 3) and less variable

(Fig. 2).
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Another source of difference in correlation between burst durations could be

changes occurring within the LDPs at pre-motor neuronal levels  A previous study has

shown that ENGs closely follow LDP activity (Hamm et.  al. 1999).  One way such

changes could occur is through changes in coupling between multiple oscillators each

associated with unique LDPs sent to different MN pools. These changes in coupling

between sub-oscillators would have the effect of increasing or decreasing phase locking

between LDPs.  Within bouts containing shorter cycle periods coupling between

oscillators would be weaker and variance within ENGs would be strongly influenced by

the natural variability of the individual oscillators. Bouts having long cycle periods would

have functional coupling that is strong, and variance that is well correlated within the

LDPs received by multiple motor neuronal pools.  Changes in excitatory coupling

between multiple oscillators could be associated with a positive feedback loop explaining

the increase in variance observed across bouts.

Asymmetry at Transitions Between Phases

The E to F transition is strongly phase locked across all observed experimental

outputs with the offset of extensors being closely coupled to the onset of flexors.  From a

functional perspective this is intuitive given that initiating the transition from the stance

(extension) to the swing (flexion) phase of locomotion at an inappropriate time can cause

maladaptive behavior.  The strong influence of sensory inputs on the initiation/inhibition

of the E to F transition has been well studied in a variety of preparations (Rossignol, et.

al. 2006, Whelan, 1996).  Evidence presented here implies that much of the tight coupling

of the offset of extensors with the onset of flexors doesn’t require sensory input and is
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hard wired into the connectivity of the spinal locomotor network.  While phase locking at

the E to F transition remains strong, phase locking at the F to E transition changes across

observed experiments.  We hypothesize that observed asymmetry between the E to F and

the F to E transitions (Fig. 5) is due to intrinsic differences between the internal dynamics

of the flexor and extensor oscillators within a half-center like organization.

It is uncontroversial that the most basic building block of the sCPG is a half-

center (Lundberg, 1969, Grillner, 1981, Rybak et. al. 2006).  What is and remains

controversial is determination of both how many half-centers there are, and the

connectivity of these half-centers in making up the entirety of the sCPG network.  Within

this section this issue is tangential in the sense that asymmetries in the organization of the

Fig. 3.7,  Strength of Phase-Locking Hypotheses.  7a. Weak phase locking at the transitions between
bursts could be caused oscillators by within a half-center offsetting due to their own intrinsic
properties. 7b. The half-center could then be modulated such that network behavior now consists of
one transition which is caused by synaptic inhibition from the opposing set of neurons.  This
transition would begin to exhibit strong phase locking.  7c.  Activity within each oscillator now
‘fills’ up the cycle and both transitions are mediated by active inhibition from opposing neurons.
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basic network would be observable in the output of the entire network regardless of its

structure.

The basic organization of the half-center is such that there are two related but

different ways in which the transition between the flexor and extensor phases can occur:

1, Each oscillator can turn off due to its own intrinsically oscillatory properties associated

with a transition that is weakly coupled, or 2, Onset of the opposing oscillator can cause

the currently active oscillator to turn off associated with a transition which is strongly

phase locked (Fig. 7).  We propose that within experiments containing short period cycles

the relative duty cycles of the underlying oscillators are asymmetric.  This asymmetry in

duty cycles is such that at the F to E transition the flexor oscillator is turning off due to its

own intrinsic oscillatory dynamics.  Interaction at the F to E transition is then increased

by modulation of the duty cycle of either oscillator such that the F to E transition begins

to occur through mutual inhibition between the underlying oscillators. .  At the opposing

transition from E to F the extensor oscillator is always being actively turned off by the

onset of flexion.  The strong association of mean gap length with strength of phase

locking at the transition is likely indicative of increased competition between flexor and

extensor oscillators making up a half center (Fig. 7).

Relationship Between Gaps and Cycle Period

While mean cycle period is varying across bouts, mean gap durations are

remaining relatively fixed.  This effect is asymmetric, with gap durations at the E to F

transition being invariant and near zero, while differences in cycle period are weakly

associated with decreases in gap duration at the F to E transition.  One possible
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explanation for the weak influence of cycle period on gap durations could be that there is

a maximal level of correlation that can be attained between burst onset/offset times.   If

we imagine the relationship between gaps and strength of phase locking to be a

continuum then as the gap shortens (from large and positive) phase locking increases in

strength.  At some point before the mean gap duration reaches zero, the phase locking is

as strong as possible.  The mean gap durations may continue to shorten (into overlap), but

the strength of phase locking will not change appreciably.  If this is the case then large

scale changes in the state of the sCPG associated with lengthening or shortening of cycle

period could be associated with relatively small changes in gap duration.  However, when

this lengthening or shortening occurs near the transition to maximal correlation it would

engender a large change in strength of phase locking at the transition.

  Previously it has been hypothesized that the sCPG consists of a set of flexor

oscillators interacting with a non-oscillating extensor network (Duysens, 1977).  We find

this unlikely since it implies that either 1, strength of phase locking at the transitions

would be invariant since functionally the underlying cause of the transition i.e. onset or

offset of the flexor oscillator would be constant, or 2, That changes in phase locking at

the transitions would be related to the state of the flexor oscillator in which case one

would expect for the to be a strong relationship between flexor burst durations and both

the gap duration and strength of phase locking, which is not what we observe here.

Relative Fractionation of EDL

Of particular interest in determining the influence of gap durations on the amount

of phase locking observed at the transitions between the flexion and extension phases is
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the gap and correlation structure of EDL.  Previously it has been shown that EDL

responds differentially to stimulation from the periphery (Degtyarenko, et. al. 1999, and

Burke, 2001), and that LDPs received by cotemporaneously active flexors such as PerL

are uncorrelated with ENGs recorded from EDL (Hamm, 1999).  These differences in

behavior between EDL and cotemporaneous flexors has lead to speculation that activity

in EDL could be produced by a separate pattern formation network, giving impetus to the

idea that the sCPG is composed of multiple sub-oscillators (Grillner and Wallen, 1985).

Here we report similar differences in the pattern of activation of EDL.  Where

cotemporaneous flexors have large gaps and malleable phase locking at the F to E

transition, EDL has small or negative gaps and strong phase locking across all.

This result implies that EDL is not simply phase advanced or phase delayed

relative to cotemporaneous flexors.  If EDL were simply phase delayed at the F to E

transition, then one would expect that EDL offset would retain the same level of phase

locking with the onset of extension observed in cotemporaneous flexors regardless of

duration of latencies.  I.e. if activity in cotemporaneous extensors is such that they are

slightly delayed, then EDL should be delayed by the same amount, but the correlation of

EDL with extensor onset shouldn’t qualitatively change.

Additionally, the current results show that the relative fractionation of bursting

activity reported here in the form of gap durations, determines the strength of phase

locking between activity within the various nerves more strongly than does the identity of

that nerve as a flexor or extensor.

Summary and Future Directions
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Although, currently the authors believe that it is likely that the sCPG for

locomotion is composed of multiple sub-oscillatory units, we are unable to prove this to

be the case given the relative fractionation of nerves presented here.  Although it is rarely

directly stated within the literature, the criterion for showing the existence of multiple

oscillatory units entails finding cases where the qualitative structure of the output cannot

be explained in terms of a simple phase advance or phase delay on a unitary signal.  The

most obvious way to show that burst onset/offsets are not simply phase advanced or

phase delayed is to show that although the relative fractionation of two events are similar,

i.e. say onset of flexors, the strength of phase locking of between these events and

another event elsewhere in the step cycle is such that one is well phase locked and one is

not.  The existence of events that share timing but do not share phase locking would

provide powerful evidence that there are separate networks underlying these temporally

related events.  As discussed earlier, since events occurring close together in time tend to

be well correlated, the strongest case would be made for events which are well separated

in time.
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CHAPTER FOUR: MODELING ASYMMETRIES IN THE FICTIVE
LOCOMOTOR CYCLE USING STOCHASTIC HALF-CENTER
OSCILLATORS

Abstract

Functional relationships between simulated neuronal networks composed of

oscillatory and non-oscillatory units are at present poorly characterized.  Here we

examine differences in the behavior of half-centers composed of the non-intrinsically

oscillatory leaky integrator, and the oscillatory Morris-Lecar neuron.  In order to induce

natural variability in the models we inject a continuous and small noise current into each

simulated neuron.  We then track four properties of the output of the network over

multiple parameter regimes:  1, Strength of phase locking between burst offset and onset

times; 2,   Relative timing of burst offset and burst onset; 3, Correlations between burst

durations; and 4, Cycle period.

We find that for all parameters tested the leaky integrator half-center oscillator

has strongly phase locked burst offsets and burst onsets.   Within the Morris-Lecar half-

center, strength of phase locking is malleable and depends upon the balance of excitation

and inhibition within each simulated neuron.  Changes in phase locking are largely

determined by the latency or temporal distance between burst offsets and onsets.

Through manipulating the relative levels of excitation and inhibition in the

Morris-Lecar neurons making up a half-center one can create a variety of qualitatively

different states that can then be compared directly to the statistics of biological neuronal

systems.  One such state of particular interest to the authors (c.f. Boothe, et. al. Chpt 2) is

asymmetric outputs where one transition is strongly phase locked and one transition is

weakly phase locked.  The Morris-Lecar half-center exhibits such a strongly asymmetric
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state when one simulated neuron receives high levels of both tonic excitation and self-

inhibition relative to the opposing neuron in the half-center.

Introduction

The behavior of many rhythmic neuronal networks from the spinal central pattern

generator for locomotion (sCPG) to the stomatogastric ganglion of lobster’s are thought

to derive important functional properties from a core set of mutually inhibitory neurons

(Grillner, 1999, Marder, 2005).  The simplest such network consists of two mutually

inhibitory interneurons termed a half-center (Lundberg, 1969).   Deterministic models of

the half-center organization have been well studied within both a mathematical context

(Izhikevitch, 2001, Skinner et. al. 1994, Wang and Rinzel, 1992) as well as having been

applied directly as an aid in understanding the structure and function of the spinal central

pattern generator (sCPG)  for locomotion (Jung, et. al, 1996,  Rybak, et. al. 2006a-b).

While current understanding of the behavior of such deterministic half-centers is well

developed, understanding of the behavior of stochastic versions of these same networks is

still evolving (Boothe, et. al., 2006).

Here we explore the possibility that half-centers composed of different types of

simulated neurons might have substantial qualitative differences in the structure of their

outputs.  One of the most intuitive distinctions that can be made between simulated

neurons is that they can be either intrinsically oscillatory, or incapable in isolation of

generating a rhythmic pattern of output.  If the oscillatory or non-oscillatory properties of

simulated neurons strongly influence model output, then many properties of biological
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neuronal networks may only be accurately reproduced in networks composed of

simulated neurons of the proper type.

Previously we hypothesized that the intrinsically oscillatory properties of neurons

making up the biological sCPG might be responsible for differences in the strength of

phase locking between relative phase of burst offset and burst onset within the output of

the sCPG during fictive locomotion (Boothe et. al. Chapter 3).  In order to explore how

differences in phase-locking could occur within a half-center organization we have

performed a set of mathematical simulations using both the intrinsically oscillatory

Morris-Lecar neuron, and the non-intrinsically oscillatory leaky integrator.  These

simulated neuronal types have been broadly used both in the context of modeling the

sCPG for locomotion (Boothe, et. al. 2006, Jung et. al. 1996) and models of cortical

function.

To induce measurable natural variation in the models we injected white noise

currents into each simulated neuron.  This method has the advantage of allowing one to

measure the strength of phase locking within each simulation directly by measuring

correlation between relative phase of burst onset and burst offset.  Changes in phase

locking can then be tracked across parameter changes that qualitatively alter the structure

of each model’s output. Of particular interest is the relationship between asymmetric sets

of parameters and strength of phase locking.

We find that for all parameters tested phase locking in a half-center composed of

leaky integrators is strong.  Within a half-center composed of Morris-Lecar neurons we

find individual parameters have specific effects upon strength of phase locking,

specifically:  1, increases in excitatory currents (self-excitation or tonic drive) tend to
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increase phase locking at multiple transitions between phases, while 2, decreases in self

inhibition tend to increase phase locking at the following transition between phases, but

not the previous transition.

Methods

Models presented here are designed to elucidate how changes in phase locking at

the transitions between bursts might be accomplished within the context of a half-center

organization.  Previously we hypothesized that differing strength of phase locking at the

transition from extension to flexion and flexion to extension may be caused by

underlying differences in the state of the oscillators responsible for each phase of

locomotion (Boothe, et. al., Chapter 3).  Here we test the plausibility of this hypothesis

through the construction of two sets of stochastic models.

Half-Center Composed of Leaky Integrators

We have performed an in depth analysis of the behavior of a half-center

composed of neurons of the leaky integrator type (Boothe, et. al. 2006).   The model

presented here uses different parameters (c.f. below) but is otherwise identical to that

presented earlier.

Within the leaky integrator half-center model neuron i is governed by two internal

variables: a normalized membrane voltage variable Vi that takes values between -1 and 1,

and a slow self-inhibitory conductance gdiDi, where Di ranges between 0 and 1. Voltage

dynamics are based on the following differential equation:
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The terms on the right hand side of equation (1) represent the following currents:

a leak current with conductance gri and reversal potential V=0; a tonically active

excitatory current with conductance gti and reversal potential Vi=1; synaptic input from

other neurons as represented by the sigmoid firing rate function h(Vj) times a maximal

synaptic conductance gij
syn and reversal potential vsyn;  the slow self-inhibitory current

with conductance gdi Di and reversal potential Vi= -1; and a perturbation current Ii.

Perturbation currents for this set of simulations take the form of a Gaussian white noise

process xi scaled by si. The slowly acting inhibitory conductance gdiDi  was governed by

an exponential decay to a cells output firing rate h(Vi) with time constant ti:

                             

A similar schema for self-inhibition was used in Pribe, et. al. (1997), where the slow self-

inhibitory current was construed as an additional neuron providing inhibitory feedback.

The firing frequency of a simulated neuron is a function of the membrane voltage

and is determined by a non-linear sigmoid rate function h(Vi).  We chose to use a

piecewise polynomial function with the following properties (Jung, et. al. 1996): (i)

outputs rates range from 0 to 1; (ii) there exists a true threshold (Vi = 0) below which

output rate is equal to 0; (iii) the function is sufficiently smooth to facilitate currently

unpublished bifurcation analyses.
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Parameters were selected such that output of the model would conform to

previously reported experimental observations (Boothe et. al. Chapter 3).  Specifically the

model should have parameter regimes where one burst is significantly longer than the

opposing burst, and have bursts whose coefficients of variation (standard deviation of the

burst duration divided by mean burst duration) are approximately the same size as those

observed in both the output of the biological system (3 to 7%; Boothe, et. al. submission,

Chapter 3), as well as the half-centers composed of Morris-Lecar neurons described

below.  Default parameters were chosen such that the symmetric model (in the

parameters below) could transition into the asymmetric behaviors we are interested in

with minimal changes.   Default parameters of the leaky integrator half-center presented

here are:  gri = 3.5; gti = 7; gij
syn = 30; gdi= 20; vsyn= -1; ti=5.

Half-Center Composed of Morris-Lecar Oscillators

Morris-Lecar type neurons, while originally proposed as a model of barnacle

muscle (Morris, and Lecar, 1981), have become a standard way to model neurons having

intrinsically oscillatory properties and have been applied to a wide range of phenomenon

(Rinzel and Ermentrout, 1987, Wang and Rinzel, 1995).   As in the leaky integrator half-

center the simulated voltages described here are assumed to linearly represent aggregate

spiking rates in a population of neurons.

Each model neuron i  is described by two internal variables:  Vi representing

membrane voltage, and Wi representing activation within a slow self-inhibitory

conductance.  Voltage dynamics are described by:
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(4)

The terms on the right side of (4) represent the following currents:

A fast self-excitatory current with maximal conductance gei, and activation dynamics

minf(Vi) and reversal potential ve; a slow self inhibitory current with maximal

conductance gki, activation dynamics Wi and reversal potential vk; a synaptic current from

the other neuron of the half-center with maximal conductance gij
syn, and activation

dynamics determined by the sigmoid firing rate of the opposing neuron represented by

h(Vj) and reversal potential vsyn= -1;  a leak conductance with maximal conductance gl

and reversal potential vl;  a term for stimulating current or in our terms tonic drive Ii; and

a Gaussian white noise process xI scaled by a factor si.

The slowly acting self inhibitory conductance gkiWi is governed by an exponential

decay to the maximal activation of the self-inhibition fwinf(Vi)with time constant ti(Vi).

(5)

The activation dynamics of the fast self excitation minf (Vi) are represented by a

sigmoid function with activation between 0 and 1, as is winf(Vi).
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(6)

Firing frequency of simulated neurons is determined by a non-linear rate function

h(Vi) (Equation 3 above).   Unlike in the previous model ti depends upon the current

voltage, and is represented by equation (7) below.

(7)

Default parameters were similar to those used by Rinzel and Ermentrout (1989).

Unless otherwise noted in the text parameters were symmetric and as described below:

gei= 1.1; gki= 2; gli= .5; gij
syn= 10; ve= 1; vk= -1; vl= -.5; vsyn= -1; Ii= .26; v1= .01; v2=.145;

v3=.1; v4=.15.

Analysis of Network Behavior

Bursts were detected using an automated procedure similar to that reported in

Yakovenko et. al. 2005.  For each simulated output from 30 to 300  thresholds were

tested at equal intervals (from .01 to .001 Vi) within regions of model output where the

slope of Vi was large.  From each of these measurements the total number of threshold

crossings was obtained for each threshold.  When the threshold was applied at regions of

simulated voltage that had large individual differences between bursts or were noisy, the

total number of threshold crossings is large.  Thresholds that only detected burst onsets



84

and burst offsets yield the smallest possible number of threshold crossings.  Once each

threshold was tested, It was then determined whether or not contiguous thresholds also

detected the smallest number of total threshold crossings.   For the sake of consistency we

then chose the smallest threshold possible having contiguous thresholds with the

minimum number of threshold crossings.

Statistics performed on time dependent phenomena require setting an arbitrary

time as time zero.  Measurements taken without comparison to a standard are unreliable

since time is itself monotonically increasing, leading to artificially high co-variances and

correlations.  Additionally, measurements of time dependent phenomena in ‘real’ or

Fig. 4.1, Schematic Representation of Model Analysis.  Here we report four measurements:  Model
output contains two transitions, i.e. from B to A, and from A to B.  Since all parameter changes reported
were performed in the neuron underlying behavior in burst A, the B to A transition is always the
preceding the burst of interese, and the A to B transition is always following.  For each transition we
measure relative phase of burst onset and offset (time of burst onset/offset-cycle onset/cycle length).
Strength of phase locking at each transition is then defined as the correlation coefficient between relative
phase of burst offset with burst onset. Latencies between bursts are defined as relative phase of burst
onset minus burst offset.  Negative latencies indicate periods of overlap (pictured at B to A transition
above), while positive latencies indicate a period of quiescence between bursts ( A to B transition
above).  Burst duration is defined as burst onset time minus burst offset time and is not reported in
relative phase.  Burst correlation is the correlation coefficient of the duration of burst A and burst B.
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absolute time are strongly influenced by cycle to cycle variability.  In order to accurately

measure regularity in temporal relationships we have used a relative phase measure of

burst onset and burst offset times.

We have named the neurons in the half-center neuron A and neuron B (Fig. 1,

Fig. 2. a-b).  We then define the cycle period as the time from onset in neuron A the time

of next onset in neuron A.  Relative phases of burst onset and offset can then be

computed relative to this cycle definition.  Relative phase of offset of burst A is then

defined as the length of time from the beginning of the burst in neuron A to the offset of

the burst in neuron A divided by the cycle period.  Relative phase of the burst onset

within neuron B is then defined as the difference in onset times of neurons A and B,

divided by the cycle period.  Since, we are only analyzing the statistics of one transition;

neuron A is always turning off (offset) and neuron B is always turning on (onset) for this

set of simulations.

Strength of phase locking between burst A offset and burst B onset can then be

computed directly using the correlation coefficient on the relative phase of offset burst A

and relative phase of onset of burst B.  Pearson’s correlation coefficient (r ) for any two

variables X and Y ranges from –1 to +1 and is defined by:

(8)

where Cov(X,Y) is the covariance of X and Y and Var(X)=Cov(X,X)  is the variance of X.

We report three additional measures of model output (Fig. 1).  One which we term

the ‘latency’ is defined as the mean distance in relative phase between the offset of burst
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A and onset of burst B (Fig. 1).  A

positive latency indicates a short

off period or ‘gap’ between burst

A offset and burst B onset, while a

negative gap indicates that the

bursts overlap with burst B onset

occurring before burst A offset.  A

second reported measure is the

‘burst correlation’ which we

define as a pairwise comparison of

covariance between burst duration

A and burst duration B using the

correlation coefficient (Fig. 1).

The third is the ‘burst ratio’ which

is defined as the mean length of burst duration A divided by the mean length of burst

duration B (Fig. 1).

Naming and the Transitions Between Bursts

Since reported parameter changes all occur within a single neuron, with

parameters within the opposing neuron remaining constant, the B to A transition is by

definition equivalent to measuring changes as above only now having parameters within

the opposing neuron remain constant (now neuron A), and making identical parameter

Fig. 4.2,   Summary of Model Parameters.  1a.  Morris-
Lecar neurons composed of two excitatory currents
(conductances: gei, Ii) and two inhibitory currents
(conductances: gij

syn, gki).  1b.  Leaky integrator half-center
composed of one excitatory current (conductance gti), and
two inhibitory currents (gij

syn, gdi).
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changes within neuron B.  When we report measures of the B to A transition this is the

method we have used.

Simulations

Stochastic simulations were run on a Linux based Dell E-310 using xpp.aut (Bard

Ermentrout, www.math.pitt.edu/~bard/xpp/xpp.html).   Differential equations used in the

model were solved numerically using the Euler-Maruyama method for solving stochastic

differential equations (Oksendal, 2000).  Simulations were originally run using a variety

of time steps and methods with little change in model outputs; reported simulations used

a time step dt =0.004.  Noise added to the models takes the simplest possible form, an

additive current into the membrane voltage.  At each time step of width dt, noise values

in the term xi were drawn from a Gaussian distribution with standard deviation equal to

one and then scaled by the quantity si/sqrt(dt).  The final value for si was set so that the

variability in cycle length was approximately the same for all models.

Statistical analysis was performed in Matlab (Mathworks, Natick, MA).  In order

to run xpp.aut from within matlab we relied on a very usefull m-file entitled

ChangeXppOde.m (http://www.cam.cornell.edu/~rclewley/research. html) written by Dr.

Robert Clewley.

Results

The creation of oscillatory behavior in simulated neuronal networks takes two

general forms:  1, the oscillatory behavior can be a property of a network composed of

non-intrinsically oscillating simulated neurons; or  2, the individual neurons used within

the simulations can themselves have intrinsically oscillatory dynamics.
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The simplest oscillatory network composed of non-oscillating units is the half-

center.   In order to give a rhythmic output such models must contain within their

dynamics a way of turning off activity in one neuron, and turning on activity in the

opposing neuron.  This can be performed in many ways, but the simplest is for each

neuron to have some form of self-inhibition.   Self-inhibition slowly builds up strength

while the simulated neuronal voltage is above an arbitrary threshold.  When the self-

inhibition is sufficiently strong, there is a reduction in voltage within the currently active

neuron.  This reduction in voltage causes a reduction in inhibition upon the opposing

neuron.  The combination of the currently active neuron being self-inhibited, and the

opposing neuron being released from inhibition, has the effect of terminating activity in

the currently active neuron, and causing onset of activity in the other neuron in the half-

center.  This process then begins again for the opposing neuron.  Since active inhibition

from the opposing neuron is always necessary for the transition in activity between the

neurons of the half-center we hypothesize that phase locking between burst offset in one

neuron and burst onset in the opposing neuron will always be strong.  This strong phase

locking will be associated with small latencies between bursts (Fig. 1).

Half-centers composed of intrinsically oscillating neurons can be in one of two

regimes which form a continuum.  If the burst duration of each neuron is short relative to

the cycle period, bursting in each neuron will be anti-phasic, due to mutual inhibition.

Within this regime the offset of neurons in the network is caused by interplay within the

individual neuron’s internal dynamics of self-excitation and self-inhibition.  When one

neuron offsets, the other neuron simply turns on due to its own intrinsic oscillatory

properties.   Here, since the time of offset of each neuron is due to its own intrinsic state,
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modulated by independent noise, we expect for phase locking between the offset and

onset of each neuron to be weakly phase locked.   Additionally, since burst offset is

occurring due to internal dynamics, burst offset and onset can occur well separated in

time, giving a large and positive latency.

When intrinsically oscillating neurons within a half-center are in a state where

burst durations are large relative to the cycle period, they act much like the non-

intrinsically oscillating network described above, i.e. bursting within the currently active

neuron is actually terminated by the interaction of its own self-inhibition with onset

bursting activity within the opposing neuron, causing a transition where phase-locking is

strong.

Consistent Properties Across Simulations

As described above, in the leaky integrator model there is only one route to

oscillatory behavior, namely winner-take-all dynamics that is biased by an alternating

buildup of slow self-inhibition.  Since the offset of every burst is dependent upon the

onset of competitive inhibition coming from the other neuron, we expect burst offsets and

onsets to be strongly phase locked at transitions.  Furthermore, since both neurons are

active during the period of competition, we expect that the latencies at burst to be

negative. These expectations are borne out in our simulations, with negative latencies and

near perfect phase locking for all transitions and across all parameter values for this

model.

Less obviously, we consistently find that the correlation in burst duration is near

zero across simulations (figs 3-5, panel d).  This result holds for both models.
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Asymmetries in Self-Inhibition

In both the Morris-

Lecar and leaky-integrator

models, the build up of self-

inhibition (Fig. 2) plays a

dominant role in burst

termination.  Consistent with

this notion, increasing the

strength of self-inhibition in

neuron A causes the

duration of bursting in this

neuron to decrease relative

to that in neuron B (Fig. 3a).

However, the effect of early

termination of the burst in

neuron A has different

consequences in the two

models.  In the leaky

integrator, the early

termination of activity in

neuron A results in an early

release from inhibition in neuron B.  Latencies remain negative and phase locking

Fig. 4.3,  Influence of Changes in Self-Inhibition.  3a.  Ratio of
mean burst A/mean burst B.  Increases in self-inhibition, (gkA)
from 1.5 to 3.3 in Morris-Lecar half-center, and 15 to 33 (gdA) in
leaky integrator half-center decrease length of burst A relative to
burst B (open circles and solid line indicate Morris-Lecar; x with
solid line indicates leaky integrator).  3b.  Leaky integrator half-
center has no change in strength of phase-locking due to
increasing gdA (overlapping + and x = *), while within the Morris-
Lecar half-center changes in self-inhibition (gkA) strongly
decrease phase locking at the A to B transition (circles with solid
line),  while weakly decreasing phase-locking at the B to A
transition (squares dashed line). 3c.  Within the Morris-Lecar half
center increasing gkA causes the latency between burst A offset
and burst B onset to increase from overlapping (negative latency)
to a period of inactivation (positive latency). The B to A
transition shows only a weak increase in latency.  3d.  Burst
durations are always weakly correlated for both models.
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remains strong. In the Morris-Lecar model, at higher levels of self-inhibition the burst in

neuron A terminates before the intrinsic oscillatory dynamics enable burst onset in

neuron B.  This leads to a positive latency between neuron A offset and neuron B onset

(fig. 3c, open circles).  Furthermore, as the termination of bursting in A and the onset of

bursting in B become separated in time, they are dominated by mechanisms that are

intrinsic to each neuron.  Therefore, the transition to positive latencies is accompanied by

a precipitous drop in phase locking at the A to B transition (fig 3b, open circles).

The situation at the B to A transition is quite different. The strength of self-

inhibition in A only affects the lingering self-inhibition inhibition that was recruited

during the previous neuron A burst, which occurred more than half a cycle earlier than

the B to A transition. As a result, changing the strength of self-inhibition in A causes little

change in the latency from burst B to A, and only a minor decrease in phase-locking at

the B to A transition (fig 3b and 3c, open squares).

Asymmetries in Tonic Drive

Increasing the tonic drive to a neuron within the half-center is expected to

lengthen bursting within that neuron and shorten the period of inactivation between

bursts.  Consistent with this straightforward interpretation, increasing tonic excitation

(Fig. 2) in neuron A causes an increase in the burst duration of neuron A relative to

neuron B (Fig 4a).

In the Morris Lecar model, as the tonic drive (IA) to neuron A becomes lower than

for neuron B (left side of plot in fig 4), the burst duration of neuron A can become shorter

than the natural period of inactivation in neuron B.  Neuron A’s burst can then “fit
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inside” this period of B

inactivation.  So at low levels

of tonic drive, the latency

between B offset and A onset

as well as the latency between

A offset and B onset grow

(fig. 4c, left).   As the onset

and offsets in A become

separated from the offsets and

onsets in B,  these events

become largely decoupled,

and the phase-locking at the

transition is weak (Fig. 4b,

left).  Note that while

asymmetries in tonic drive

cause asymmetries in burst

duration, tonic drive lengthens the burst at “both ends,” causing effects at the A to B and

B to A transitions.  Although these effects are largely symmetric, is does appear that

changes in tonic drive in neuron A have a slightly greater impact on the preceding (B to

A) transition (Fig. 4b, dashed lines).

Asymmetries in Self-Excitation

Fig. 4.4, Effect of Increasing Tonic Excitation.  4a, Increases in
tonic excitation (IA in Morris-Lecar, gtA in leaky integrators)
increase burst durations (circles indicating Morris-Lecar half-
center, and x indicating leaky integrators).  4b,  Phase-locking
within leaky integrators is always strong, increasing self-
excitation in Morris-Lecar neurons increases phase-locking at
A to B and B to A transitions.  4c, Increasing strength of phase-
locking is associated with a reduction in latency.  4d, Burst
Durations remain uncorrelated for all parameter changes.
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In the Morris-Lecar model, burst duration can also be extended by increasing the

excitatory feedback parameter gei (Fig. 2a). When a neuron is active, reducing self-

excitation will lead to a shorter period of activation before the build up in self-inhibition

causes a termination of the burst.  Consistent with this expectation, decreasing excitatory

feedback strength (geA) decreases the duration of bursting in neuron A relative to neuron

B (fig. 5a, left).  Furthermore, large reductions in feedback excitation lead to a

termination of bursting in neuron A before the onset of neuron B.  This causes positive

latencies and weak phase locking at the A to B transition (fig. 5b and 5c left, circles).  An

increase in feedback excitation will also make neuron A more sensitive to changes in

inhibition received from neuron B, and will speed the activation of neuron A at the

beginning of a burst.  In the simulations, increasing positive feedback increases phase

locking and causes a slight decrease in latency at the B to A transition (5b and 5c right,

squares).

Modeling Multiple Asymmetries:  Self-Excitation

 Previously we have shown that within fictive locomotion there are significant

differences in strength of phase locking observed between the transition from flexion to

extension and extension to flexion (Boothe, et. al., Chapter 3).  The transition from

extension to flexion is always strongly phase-locked, while the transition from flexion to

extension is weakly phase-locked in cycles having short durations.  In order to give an

output qualitatively similar to these previous observations two preliminary criterion must

be met: 1, Tested parameter regimes must contain one burst duration which is

substantially longer than the other (1.5 to 3 times), and 2, Model output must have one
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transition that is invariant

and strongly phase locked

over many parameters

changes, and one transition

that is weakly phase

locked for some of those

same parameters but is

strongly phase-locked for

others.

Since phase

locking between burst

offset and burst onset was

always strong for the

parameters tested within the leaky integrator half-center, we conclude that this model is

unlikely to generate outputs qualitatively similar to the biological system. Therefore, we

focused our analysis on the Morris-Lecar model.

Based on the previous simulations, we hypothesized that a half-center containing

one Morris-Lecar neuron having high excitatory currents (to produce asymmetric burst

durations), combined with a high level of self-inhibition (in order to de-correlate one

transition but not the other) was likely to give behavior qualitatively similar to the

experimental data. We examined the combined effect of changing both the strength of

self-excitation, geA, and the strength of self-inhibition, gkA, and measuring the relative

burst length, latencies, and phase locking for each combination of parameters (Fig 6).

Fig 4.5,   Effect of Increasing Self-Excitation.  5a.  Increasing self-
excitation (geA), increases burst durations.  5b,   Increases phase
locking at both transitions.  5c Shortens latencies, and 5d doesn’t
effect correlations between burst durations.
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The strengths of self-excitation and self-inhibition affect the relative duration of

Fig. 4.6, Interaction of Self-Excitation and Self-Inhibition. Morris-Lecar Half-Center. 6a. Relative
strength of self-excitation (geA) and self inhibition (gkA) interact to determine burst length. 6b.
Changes in burst duration are reflected in overall cycle period, shown here as the ratio of cycle
duration for the given asymmetric parameters divided by cycle period in symmetric (default
parameters)  case.  6c.  When self-excitation is strong relative to self-inhibition following
transition is well phase locked (A to B).  Increasing self-inhibition balances this effect and
weakens phase locking.  6d. Because strength of self-excitation effects the previous transition (B
to A) more strongly than does the self-inhibition, this transition B to A remains well correlated.
6e-f.  Latencies at the A to B transition are variable (as expected given the changes in phase
locking), while those at the B to A transition are always negative.
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burst A and B as above with increases in self-excitation increasing the relative burst

duration of A whereas increases in self-inhibition decrease relative burst duration in A

(fig 6a). The two affects are largely additive in that parameters that give rise to a given

relative duration correspond to a diagonal line in parameter space going from the bottom

left to the top right of Fig. 6a. Latency changes at the following (A to B) transition show

a similar pattern with larger latencies for strong self-inhibition and weak self-excitation

(Fig 6e, lower right).  Phase locking also shows a similar pattern with phase locking of

saturating near zero for strongly positive latencies, and saturating near 1 for strongly

negative latencies, with a relatively narrow transition region corresponding to latencies

slightly below 0 (Fig. 6c).  Increasing burst durations tend to increase overall cycle period

(Fig. 6b).

Changes at the B to A transition show a different pattern.  The effects of

parameter changes on the B to A latency have a similar pattern as those on the A to B

latency, but the magnitudes are much smaller.  Latencies remain negative for all

parameters explored, ranging between -.011 and-.017 sec (Fig 6f).  As with the single

parameter simulations, phase locking at the B to A transition are dominated by changes in

self-excitation, with self-inhibition playing only a minor role (Fig 6d).

Modeling Multiple Asymmetries:  Tonic Excitation

Given the strong similarities in influence on model output between self-excitation

and tonic drive (Figs 4 and 5),  we hypothesized that strength of tonic drive (IA) and

strength of self-excitation (geA) should interact with self-inhibition (gkA) in a similar

manner.  Changes due to modulation of tonic drive and self-inhibition at the A to B
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transition are nearly identical to those observed in the relationship between self-excitation

and self-inhibition above (Fig. 7a and c).   However there appears to be less variation in

latency and phase locking at the B to A transition (Fig. 7b and d).

Symmetric Parameter Changes in Asymmetric Networks

From the previous sets of simulations we hypothesized that the relationship

between latencies and strength of phase locking might be somewhat malleable.  To

determine if this was the case, we altered strength of mutual inhibition between the

Fig. 4.7,   Interaction of Tonic Drive and Self-Inhibition  Morris-Lecar Half-Center.  7a  Changes
in tonic drive (IA) has the same relationship with self-inhibition (gkA) as does self-excitation at the
A to B transition (Fig. 6a).  7b  Since increasing tonic drive effects both transitions equally the B
to A transition is more well phase locked than observed changing self-excitiation.  7c-d  Latencies
at the B to A transition are more invariant than observed in changing self-excitation.
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Fig. 4.8, Influence of Synaptic Strength. Morris-Lecar Half-
Center. 8a.  Increasing synaptic conductance (gAB

syn, gBA
syn)

increases burst duration in neuron A when neuron A has high
levels of self-excitation (geA=1.7, circles with solid line), but
has no effect when self excitation is symmetric (geA=geB=1.1,
squares with dot-dash line), or when self excitation is weak
(geA=1.0, diamond with dashed line).  8b.  Changes in synaptic
strength do not change strength of phase-locking when geA is
high, but weakens phase locking in the symmetric case.  8c,
Increasing synaptic strength has a strong influence on latency
in the symmetric case, however also of interest is that latencies
can shift slightly when strength of phase locking is saturated.
8d.  Burst correlations remain invariant during changes in
synaptic strength.

simulated neurons (on both

sides A to B and B to A) under

three conditions, the model was

asymmetric with one neuron

having strong self-excitation

(geA=1.7), a symmetric model at

the default parameters

(geA=geB=1.1), and an

asymmetric model where

strength of self-excitation in

neuon A was weaker than

neuron B.

Interestingly even

though modulation of mutual

inhibition was equal for both

sets of synapses, burst duration

of the neuron with more self-

excitation was increased

dramatically (Fig. 8a).

Modulation of synaptic

strength had very little effect on the strength of phase locking when the network was

already in a state where phase locking was either very strong, or very weak (Fig. 8b).

However when phase locking was of medium strength increasing mutual inhibition
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tended to increase the latency (Fig. 8c), and decrease the strength of phase locking (Fig.

8b).   Additionally, when neuron A had more self-

excitation, strength of phase locking was high and invariant, but changes in strength of

mutual inhibition still engendered small changes in the latencies between bursts (Fig. 8c).

Discussion

Here we have shown that half-centers composed of a pair of leaky integrator

neurons have strong invariant phase locking at the transitions between bursts.  Pairs of

intrinsically oscillatory Morris-Lecar type neurons exhibit strength of phase locking at

the transitions that are parameter dependent.  Sets of parameters where burst termination

is caused by onset within the opposing neuron have transitions between bursts which

overlap and which are strongly phase locked, while those having burst terminations

which are caused by self-inhibition tend to have transitions between bursts which do not

overlap and are weakly phase locked.

Previously we hypothesized that changes in strength of phase locking observed

within the output of fictive locomotion were likely due to differences in the internal

dynamics of the flexor and extensor oscillators (Boothe, et. al. Chapter 3).  Here we

assess this hypothesis with concrete examples describing what sorts of differences one

might expect between the flexor and extensor oscillators making up the sCPG for

locomotion within the context of the current models.
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Summary of Experimental Observations

Previously we have reported that strength of phase locking between burst offset

and burst onset within the output of MLR induced fictive locomotion is strongly

asymmetric.  Phase locking at the transition from extension to flexion (E to F) is:  1,

Always strong; 2, Associated with periods of overlap between bursts (i.e. negative

latencies); and 3, Latencies do not vary across experiments containing short or long cycle

periods (Boothe, et. al. Chapter 3).  Phase locking at the transition from flexion to

extension (F to E) is:  1,  Weak in bouts containing short cycle periods but strong in bouts

containing long cycle periods; 2, Latencies between bursts offset and onset which are

both positive and long are weakly phase locked while shorter latencies are strongly phase

locked; and 3, Cycle period and latencies are negatively correlated.  We will discuss each

of these in the context of assessing model adequacy below.

Given the fact that all parameters tested here within the leaky integrator half

center have transitions which are strongly phase locked, we do not believe it is possible to

successfully model previously observed experimental statistics using a model of this type.

Asymmetries in Strength of Phase Locking

The two overarching qualities that any model purporting to explain asymmetries

in the output of fictive locomotion must have are: bursts which are asymmetric in length,

combined with invariant phase locking between burst offsets and onsets at one transition

and variable phase locking at the opposing transition.  These overall changes should be

weakly associated with changes in overall cycle period.
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Models reported here behave similarly through the introduction of substantial

asymmetries within neurons making up the half-center.   To meet the above criterion

neurons, however must have differences in at least two parameters, one of which must be

an excitatory influence (either self or tonic) combined with changes in self-inhibition.

Changing a symmetric half-center through modulation of a single parameter fails to

qualitatively simulate the output of the biological system.

Increasing or decreasing the strength of self-inhibition alone asymmetrically

modulates strength of phase locking at the transitions, with the previous transition being

weakly effected by these changes, and the following transition being strongly effected

(Fig. 3b).  However, the same changes which create strong phase locking at the following

transition also tend to shorten the current burst duration (Fig. 3a), making it unlikely that

changes in self-inhibition alone are responsible for the combination of long burst

durations having a weakly phase locked transition at offset observed in the output of the

biological system (Boothe, et. al. Chapter 3).

Modulating excitatory currents alone is also inadequate.  Networks containing one

neuron having stronger excitatory currents (either self or tonic), tend to have strongly

asymmetric burst durations like those observed within fictive locomotion (Figs. 4-5a).

However these same increases in burst duration tend to cause increases in phase locking

at both the leading and following transitions simultaneously (Figs. 4-5b).

Asymmetries within two parameters are sufficient to produce asymmetric burst

durations combined with offset of the longer burst having variable strength of phase-

locking with onset in the opposing burst.   Possible parameter regimes are: 1, one neuron

has high excitation and then self-inhibition is changing,  2, one neuron has strong self-
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inhibition and excitiation is changing, or 3, both self excitiation and self-inhibition are

changing (Figs. 6-7).

Latencies and Phase Locking

Within the output of the Morris-Lecar half-center strength of phase locking is

largely dependent upon relative timing between burst offset and burst onset.  Large

positive latencies are associated with weak phase locking, while latencies which are

negative or positive and near zero are strong.  This strong relationship implies that many

functional properties of the models are parameter independent.  I.e. any set of parameters

which effects the latencies will also effect the strength of phase locking at the transitions.

This is illustrated by the strong similarity in the relationship of both types of excitation

(tonic or self) and strength of self-inhibition (Fig. 6 and Fig. 7).

While the strength of phase locking depends critically upon the latency, this

relationship is weakly influenced by the strength of mutual inhibition (Fig. 8).  When the

network is in a state of maximal correlation there is still some compression of the latency

that is insufficient to increase phase locking past its current maximal state.

Within the biological system, the strongest indicator of strength of phase locking

was latency duration (Boothe, et. al. Chapter 3).  However, the biological system had two

interesting properties that were difficult to explain in terms of differences in internal state

of oscillators making up the sCPG, 1,  The strong relationship between latency and phase

locking was stronger for the positive latencies observed at the F to E transition than it was

at the negative latencies observed at the E to F transition; and 2, There was a relationship

between cycle period and latencies at the F to E transition, but not at the E to F transition.
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One property the models possess that could help explain these observations is the

continuing malleability of latency under conditions of very strong phase locking (Fig. 8).

Once the latencies become sufficiently small they are resistant to compression, and are no

longer associated with increased phase locking.  However, when the latencies are positive

the same changes that extend the cycle, i.e. lengthening of the burst durations, tend to

also compress the positive latencies since there is still ‘room’ between the bursts.

 Source of Variance in the Biological System

The current set of models points to underlying differences in internal state

between intrinsically oscillating flexor and extensor units organized in a half-center as the

likely source of variation observed across bouts of fictive locomotion (Boothe, et. al.

Chapter 3).  Specifically it is likely that the flexor oscillator has stronger levels of both

excitation and self-inhibition, when compared to the extensor oscillator.  Since

correlation at the F to E transition changes across bouts, it is likely that the relative

balance of these excitatory and inhibitory currents is also changing.

Given what is known about the functioning of the biological system, we believe

that it is likely that there is an underlying asymmetry within strength of self-inhibition

across the flexor and extensor oscillators with flexors having strong self-inhibition and

extensors having weak self-inhibition.  Changes in phase locking and increasing burst

durations could then be explained in terms of different levels of tonic drive across bouts.

In short cycle bouts tonic drive to the flexors, while being higher than the extensors

would not be sufficiently strong to swamp the higher levels of self-inhibition in the flexor

oscillator and create an F to E transition that is strongly phase locked (Fig. 7).  However
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the difference in levels of tonic drive would be sufficient to make the flexor burst longer

than the extensor burst (Fig. 7).  Bouts exhibiting longer cycle periods would contain

flexor oscillators receiving increased levels of tonic drive (increases in tonic drive also

increase cycle period (Fig. 6b).  This increased level of tonic drive would have the

additional effect of strengthening correlations at the F to E transition.   This could

potentially all take place in the absence of changes to the strength of phase locking at the

E to F transition (Fig. 7b)

MLR induced fictive locomotion isn’t always flexor dominated (i.e. flexors are on

for more than 50% of the cycle), it is occasionally extensor dominated (Yakovenko,

2005).  If the source of asymmetry in the network is self-excitation then levels of self-

excitation would vary widely across bouts, i.e. sometimes the flexor oscillator has more

self-excitation and sometimes the extensor oscillator has more.  On this explanation the

internal state of the sCPG would be need to be highly plastic.

Changes in tonic drive on the other hand are thought to derive from supra-spinal

sources, so ultimately on this hypothesis the spinal cord itself could be relatively

unchanging across bouts but how it is being activated by supraspinal networks would

vary.

 On our hypothesis where the spinal cord itself is asymmetric is in the levels of

self-inhibition within the flexor and extensor oscillators.  We find this especially

plausible when one considers that within normal locomotion the flexor phase is

substantially shorter than the extensor phase.  Our current hypothesis can account for this

by assuming that in normal locomotion the tonic drive to each oscillator is symmetric.

Under such conditions the extensor oscillator would have bursts (owing to weak self-
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inhibition) which are substantially longer than the flexor burst (having strong self-

inhibition).

Conclusion

Given the complicated nature of the vertebrate nervous system, clearly models

like those presented here are unlikely to be literally true.  However, they do aid in

sharpening intuitions about what sorts of explanations are plausible and which are not.

Models presented here can serve as a usefull starting point for modeling more

complicated behaviors.  For instance if sets of half-centers like those described here are

organized in a hierachal fashion as has been suggested by Grillner (1981) and recently by

Rybak (2006) how do the statistics of the output of the networks change.  This question

should keep those interested in modeling the sCPG buys for quite some time.



106

CHAPTER FIVE: SUMMARY AND CONCLUSIONS

The current work advances our understanding of both simulated and biological

central pattern generators.  Novelty in this dissertation includes:  1, Development of

model systems with behaviors which are both complex and biologically relevant;  2, A

detailed statistical study of the biological sCPG. This analysis has generated a set of

plausible hypotheses regarding sCPG structure and function; and 3, The development of

statistical tools which can be used to measure natural variability within both simulated

and real biological systems.

Within the main body of the chapter below, I will first address the general finding

explored in Chapter 3 regarding observed differences in transitions between flexion and

extension and vice-versa.  First I will focus on analyses similar to those performed in

Chapter 3 within the mammalian sCPG literature.  I will then discuss sensory control of

phase transitions (flexion to extension and vice versa) in the intact/semi-reduced cat.

Finally I will discuss a recent paper that when interpreted in the light of our evidence

from Chapter 3, strongly implies the existence of multiple oscillators in the structure of

the sCPG in mammals.

Comparing Across Preparations

The nearest point of contact for the statistical description of MLR induced fictive

locomotion presented in Chapter 3, is a series of papers published by Grillner and

Zangger from 1979 to 1984.  Grillner and Zangger (1979, 1984) present an overview of

the output of the reduced spinal cord, and use a methodology similar to that presented in

Chapter 3.   However there are significant qualitative differences in the output of the
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preparation used by Grillner and Zangger (1979, 1984) and the MLR preparation

presented in Chapter 3. A discussion of these differences is presented below focusing on

the work of Engberg and Lundberg,(1969) and Forssberg et. al. (1980a-b).

Kinematically Defined Phases within the Locomotor Cycle

The first studies of cat locomotion characterized the basic pattern of EMGs for

both intact and chronic spinal cats (Engberg and Lundberg 1969).  Within intact cat the

locomotor cycle can be divided into four kinematically defined phases:  Flexion (F) and

Extension I (E1) during the swing phase, and Extension II and III (E2-3) during the

stance phase.  Flexion (F) occurs when the limb is lifted off the ground and actively

moved forward (Forssberg et. al. 1980a-b).  The end of the swing phase begins with

activation of the extensors (E1). E1 serves to move the limb towards ground contact

while the limb is still off of the ground. E1 is associated with activation of both ankle

(including LGS, and MG in Chapter 3) and hip extensors (SmAB).  The beginning of the

stance phase of locomotion (E2) is associated with ground contact.  E2 is characterized

by a short period of coactivation between flexors and extensors to support the weight of

the body. This is called the yield.   Once ground contact occurs (E3) force is then applied

to the substrate pushing the animal forward.  This period of ground contact combined

with the animal moving forward is final phase of stance, termed E3.  In intact/spinal

locomotion the extensors (SmAB, LGS, MG) are active throughout E1, E2 and E3

(Forssberg, et. al. 1980a-b).   Activity within the extensors is terminated at the onset of

the next flexion phase, and the entire cycle begins all over again.  These findings are

identical to those reported for extensors in Chapter 3.
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Differences in Relative Timing Between Intact and MLR Fictive Locomotion

Interestingly, while activity within the extensor nerves during MLR induced

fictive locomotion, is identical to that reported in intact (Engberg and Lundberg 1969,

Krouchev et. al. 2006) and stepping chronic spinal cats (Forssberg, 1980a-b), timing of

flexor bursts exhibits striking differences.  In the stepping chronic spinal cat, tibialis

anterior (TA) bursts run into E1 and have a short period of overlap with the onset of the

extensor bursts (SmAB, LGS, and MG, ENGs) (Forssberg, et. al. 1980a-b).  Within intact

locomotion TA burst offset occurs prior to/and or simultaneous with the onset of

extensors in the middle of E1 (SmAB, LGS, and MG) (Forssberg, et. al. 1980a-b,

Krouchev et. al. 2006,  Quevedo et. al. 2005a).  Within the output MLR induced fictive

locomotion reported in Chapter 3, TA burst offset is identical to that observed during

normal locomotion (i.e. TA offsets prior to extensor onsets, Fig. 6, Chapter 3).

Additional differences occur across preparations within the relative timing of both

the hip flexor sartorious (Sart), and the ankle/toe flexor extensor digitorum longus (EDL).

During both intact and spinal locomotion burst offset of both Sart and EDL occur shortly

after the transition to E3 (Forssberg et. al. 1980a-b, Krouchev, 2006).   If MLR induced

fictive locomotion is similar to intact/spinal locomotion then one expects for Sart and

EDL offset to overlap with the onset of extensors creating a long period of negative

‘latency’ or ’gaps’.  However our observations of MLR induced fictive locomotion

indicate that the Sart burst offset is associated with a short silent period before the

extensor burst onset.  This silent period is observed as a positive latency in Fig. 6,

Chapter 3.  So within MLR induced fictive locomotion the phase of Sart offset has a
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different functional relationship with the onset of extensors than observed in normal

locomotion.

While Sart bursts become cotemporaneous with TA bursts during MLR induced

fictive locomotion,  EDL retains some of the differences in relative timing observed

during intact locomotion. Specifically EDL exhibits a short period of overlap with the

onset of extensors at the F to E transition (negative latencies, Chapter 3, Figure 6).  So,

while the phase of offset of both EDL and Sart shift within MLR fictive locomotion to

become more similar to that observed in TA, EDL retains some timing aspects from

normal locomotion.

In summary, significant differences across preparations occur mainly in regards to

the timing of the offset of flexion and the onset of extension (i.e. the F to E transition).

Both phase of offset and the relationship of flexor offsets with extensor onsets differ for

flexors across all three reported preparations.  The opposing transition from extension to

flexion appears to remain fairly stable across multiple experimental conditions.

Statistics of Fictive Locomotion in the Low Spinal Cat

Grillner and Zangger (1979) describe the output of the reduced spinal cord using

the following procedures:  1, The spinal cord was transected between L3-L6.  2,  All

dorsal roots below L2 were cut.  3,  Spinal cords were treated with DOPA and Nialamide

to make them easier to activate.  4,  Stimulation was applied to the cut dorsal roots at 30-

50 hz in .2 ms pulses.  Two sorts of behaviors were then recorded, 1, stepping output of

the cord as EMGs, and 2,  Ventral root electroneurograms while the animals limbs were

paralyzed with both curare and Flaxedil.
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Pertinent results are 1, The variance of the extensor bursts are more strongly

correlated with the variance of the cycle than the extensors are, and 2,  Burst midpoints of

two flexors and one extensor have phase relationships that are consistent and similar to

those in intact animals.

Interestingly, Grillner and Zangger (1979) used a measure of latencies, which is

very similar to that used in Chapters 3 and 4.  Cycle duration was taken as the midpoint

of TA burst to the midpoint of the next TA burst.  Burst midpoints were normalized

relative to that definition of the cycle.  The authors then reported the differences in phase

within their normalized cycle between the midpoints of the flexors TA and tenunisimus.

The authors observed that flexors were ‘tightly’ phase locked since the standard

deviations of the normalized phase were small.   A similar result regarding the output of

MLR fictive locomotion was observed in the ‘strong’ phase locking between flexor burst

onset and offset times (Fig. 4, Chapter 3).  Prima facie the Grillner and Zangger (1979)

results seems to imply strong correlation between flexor burst durations, however if burst

durations and relative timing of the bursts within the cycle are controlled by separate

neuronal mechanisms then midpoints of the bursts could be tightly phase locked while

burst durations themselves would be uncorrelated.

Grillner and Zangger (1979) also reported the ‘tightness’ of phase locking

between the midpoint of a flexor burst (TA) and the midpoint of the following extensor

burst (LG).  Phase locking between flexor and extensor bursts was found to be ‘looser’

than that observed between flexors.  ‘Loose’ phase locking between flexor burst

midpoints and extensor burst midpoints could be caused by a highly variable transition

from F to E (Chapter 3), such as that observed in Chapter 3.  If the transitions between
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phases in low spinal fictive locomotion are produced by the same functional mechanisms

as those observed within MLR induced fictive locomotion, then one would predict that

the ‘tightness’ of phase locking would depend on the order in which two bursts are being

compared.  When one compares the midpoint of LG with the midpoint of the following

TA burst, one would expect for there to be ‘tight’ phase locking since now the phase

locking is dominated by the E to F transition.

Statistics of MLR Induced Locomotion During Treadmill Walking

A second paper by Grillner and Zangger (1984) used a preparation in which

locomotion was induced via stimulation of the MLR in a decerebrate animal.  EMGs

were then recorded while the cat was walking on a treadmill.  The effects of later

deafferentation on the qualitative structure of EMGs were also reported.

The authors (Grillner and Zangger, 1984) report that the timing of the output of

MLR induced treadmill locomotion is qualitatively similar to that observed within intact

locomotion. However some of the figures within the text clearly show that some of the

cycles are ‘flexor’ dominated like those reported in Chapter 3 and in Quevedo, 2005a.

Using a technique similar to that employed in Chapter 3, the Grillner and Zangger

(1984) compared raw latencies between extensor and flexor offsets and onsets for the

ankle flexor tibialis anterior (TA), and the ankle extensor lateral gastrocnemius (LG).

One important difference between these EMGs and the ENGs reported in Chapter 3 is

that the nerve (LGS) also innervates the synergistic soleus muscle as well as the lateral

gastrocnemius.
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Latencies observed differ from those reported in Chapter 3, in that the overall

variance and latency of the E to F transition is larger than that of the F to E transition.

Additionally, the latency between TA to LGS at the F to E transition is sometimes

negative.  However since there is no direct report of the std’s of the latencies and/or

‘strength’ of phase locking of TA and LGS offset/onset it is impossible to know how

similar/dissimilar the two results actually are.  Specifically since error bars on the

Grillner figures are a measure of standard error, one cannot discern whether or not they

are most strongly influenced by the number or cycles being compared or the variance of

the latencies.

Some likely possibilities for the divergent observations include:  First, there are

likely strong influences on the relative timing of the nerves derived from the prep and

experimental conditions themselves.  Although both sets of data (Grillner and Zangger,

1984, and Chapter 3) use MLR stimulation to induce locomotion, one data set is derived

from EMGs and one from ENGs which themselves may contribute small differences in

relative timing.  Difficulty in comparing results directly is compounded by the author’s

combining both flexor and extensor dominated experimental outputs into one data set.

Potentially with all extensor dominated locomotor outputs removed the output of MLR

induced treadmill walking could be identical to that observed in the fictive preparation

and reported in Chapter 3.

Sensory Inputs Regulating Phase Transitions

As described above walking consists of two main phases:  swing which is

associated with activity in flexor muscles and stance which is associated with activation
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of extensors.  The influence of sensory inputs upon these two transitions has been well

studied (Rossignol, et. al. 2006).  First I will discuss the influence sensory inputs on the

termination of extension and the onset of flexion, and then the opposing flexion to

extension transition.

As walking animals change speed extensor burst duration is lengthened and

shortened (Whelan, 1996).  Multiple sensory inputs have been implicated in the transition

from stance to swing including:  Unloading of the extensor muscles through activation of

Ib golgi tendon organs (Duysens, 1980);   Protraction of the limb creating hip joint angles

past 95o (Grillner and Rossignol, 1978);  Vibration of the extensors activating group Ia

afferents can cause elongation of the extensor burst (Whelan, et. al. 1995);  In a similar

manner stretch of ipsilateral flexor muscles both shortens the extensor bursts as well as

initiates activity within the flexors (Hiebert et. al. 1996).

Sensory regulation of the opposing transition from swing to stance has only

recently been explored in detail (Rossignol, et. al.  2006).   In walking decerebrate cats

enhancing protraction of the limb during the swing phase of locomotion shortens hip

flexor burst length (Lam and Pearson, 2001).  Slowing/impeding protraction of the limb

during the swing phase enhances hip flexor burst duration (Lam and Pearson, 2001).

Recently there is evidence that these same perturbations advance the onset of extension

(McVea, et. al. 2005).  Oddly, though the authors compare the off times between extensor

bursts from one cycle to the next with the burst durations of the flexors.  They then

compare the two measures (off times between extensor bursts and flexor burst durations)

using a linear regression.  However they seem unaware that this statistic has a confound

in that 1, The flexor burst duration contributes to both, and 2,  While the slopes of their
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linear regressions are statistically significant (r2=.804, and .829) these are not the same as

showing that the slope of the reported regression lines are significantly different than the

expected slope of 1.  A better measurement would have been to show that mean ‘gap’

duration shrinks relative to a normalized cycle for the perturbed and unperturbed cycles.

In conclusion, while much is known about how sensory inputs effects both burst

durations and overall timing of the transition from flexion to extension and vice versa, no

studies have reported how unitary or fragmented these perturbation induced transitions

are for synergistic muscles.  Non-synergistic muscles such as PBSt and the flexor nerves

reported here (Sart, TA, EDL, PerL) are known to be differentially activated during both

the stumble corrective response (Forssberg, 1980a-b, Quevedo, et. al. 2005a), and due to

other forms of sensory input (Rossignol, 2006).

Interpreting Differences in Phase Locking at the Transitions

So in the end what does our finding that the transition from extension to flexion is

more strongly phase locked really mean for the background literature regarding the

influence of sensory inputs on the relative timing of transitions between flexion and

extension?,

One possibility is that there is a natural step cycle imbedded within the output of

MLR induced locomotion beginning and ending at a specific phase of the step cycle.  The

natural onset point for such a cycle would be the strongly phase locked E to F transition.

Once the cycle is started, the relative timing of other events in the cycle form part of a

stereotyped motor plan.  As this ‘plan’ unfolds noise begins to make the relative timing of
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burst onset/offset ‘looser’.  One such event is the transition from flexion to extension, the

phase locking between which is now weak.

Evidence against the existence of such an imbedded cycle is two-fold:  First,  If

there is such a natural cycle embedded in the structure of the sCPG then one would

expect for resetting of the step cycle to occur preferentially at either the transition from

flexion to extension or extension to flexion.  However, peripheral perturbations of

sensory afferents are equally capable of resetting the step cycle to either the onset of

flexion or extension (Rossignol, et. al. 2006).  Secondly, if there is some set of neurons

within the sCPG clocking the cycle duration, then one would expect for the cycles where

one of the burst durations (a flexor for instance) is a little bit longer, to be associated with

shortening of the following burst (in the extensors).  This push-pull relationship would

lead to negative correlations between flexor and extensor burst durations. However in the

output of the MLR prep, the burst durations of flexors and extensors are not consistently

positively or negatively correlated with one another.  Both of the above arguments seem

to rule out the existence of a natural step cycle explaining differences in strength of phase

locking at the transitions.

A second plausible explanation is that while sensory input to the spinal cord

contributes to the timing of the transitions between flexion and extension, it does not

influence the phase locking of these transitions.  The transitions consist of a stereotyped

set of sequential offsets and offsets that are hard wired into the sCPG.  On this hypothesis

one would expect for the ‘strength’ of phase locking to be identical in both normal and

MLR induced fictive locomotion.  Furthermore, he lack of sensory input in the case of

MLR induced fictive locomotion is therefore causing the relative lengths of the bursts to
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be pathological.   This has the effect of moving from extensor dominated normal

locomotion to the flexor dominated pattern seen during MLR induced fictive locomotion.

This story is complicated by the fact that the relative timing of flexor offset (see

comparison of offset times of TA, EDL and Sart above) changes drastically between

normal and MLR induced ficitive locomotion.

A third possibility is that the phase locking itself is changing between normal and

MLR induced fictive locomotion.  On this hypothesis sensory inputs during normal

locomotion would create strongly phase locked transitions between flexion and

extension.  One would then interpret strong phase locking in MLR induced fictive

locomotion as an indicator that that transition is ‘hardwired’ into the structure of the

sCPG. Weak phase locking would then be evidence that that transition relies on sensory

input within the intact animal.   Part of this interpretation suggests that in the case of

normal locomotion the strength of phase locking would be itself a product of online

response to sensory inputs on a very fine time scale.

In the end interpretation of the observed differences in strength of phase locking

between the E to F and F to E transition seen in MLR induced fictive locomotion depend

on the strength of phase locking within the intact system. Since this is an empirical

question that is itself unresolved within the literature, any conclusions made in Chapter 3

are at best speculative.  However the results of Chapter 3 do bring up interesting

questions regarding the influence and timing of sensory input upon motor outputs.  If

sensory inputs modify the ‘when’ but not the ‘how’ of the transitions between flexion and

extension as one would conclude if the strength of phase locking during intact

locomotion was identical with that observed in MLR induced fictive locomotion, it is
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likely that these transitions are created by a feed forward motor plan.  One would then

argue that sensory inputs are not themselves regulating and contributing to many aspects

of the fine grained timing of motor output.   On the other hand if both the strength of

phase locking and the relative timing of events are different within normal locomotion

then one would conclude that during normal locomotion sensory inputs are really

updating and filtering the output of the sCPG on a very fine time scale.

Burst Durations and the Multiple Oscillators

A recent paper from the lab of Trevor Drew (Krouchev et. al. 2006) combined

with our results from Chapter 3, could be interpreted as evidence for multiple oscillators

in the structure of the sCPG for locomotion.  Krouchev et. al. (2006) reports a cluster

analysis performed on the timing of cat hindlimb EMGs during intact treadmill walking.

He finds that TA is likely controlled by a separate synergy from Sart and EDL, which are

controlled by the same underlying network.  Interestingly synergistic muscles (as defined

by the cluster analysis) are those that have strong similarities in the timing of onset and

offset normalized to the cycle duration.   If one were to interpret evidence for muscles

being synergistic as possible candidates for multiple muscles being controlled by separate

unit pattern generators (like those described by Grillner, 1981), then there is good

evidence that TA and Sart/EDL are independently controlled within normal locomotion.

Within MLR induced fictive locomotion TA, Sart and EDL all share very similar

timing.   If one were to apply a similar cluster analysis to the output of MLR induced

fictive locomotion one might or might not pick up that EDL offset occurs a fraction of the

cycle later on average than TA and Sart, and therefore is controlled as part of a separate
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synergy.  Within Chapter 3 we have shown that while TA, Sart, and EDL share some

timing relationships (positively correlated burst durations, and onset/offset times), that

EDL has a qualitatively different relationship with the extensors.  In Chapter 3 we argue

that EDL is controlled by a separate oscillator from those controlling the other flexors.

Combining the evidence from the MLR and normal locomotion argues for a sCPG

for locomotion that is highly flexible and dynamic. Relationships between individual

nerves/muscles are highly variable. Under conditions of normal locomotion TA is

independent of EDL and Sart, and during MLR induced fictive locomotion EDL is

independent from TA and Sart.  Two of the three nerves therefore are independent under

different conditions and one (Sart) switches its synergy depending upon the preparation.

Taken together, the most parsimonious interpretation of both sets of data is that each

muscle is controlled by its own independent oscillator. What is changing on this

interpretation is the relationships between these independent oscillators.  Changes like

those observed across normal and MLR induced fictive locomotion are most easily

explainable in terms of the strength of the coupling between these independent

oscillators.

Concluding Remarks

The major difficulty in drawing further conclusions regarding the results of

Chapter 3, is the unknown nature of strength of phase locking within normal locomotion.

Without such a benchmark to compare with the statisitics of MLR fictive locomotion it is

impossible to concretely assess the structure/function relationships within the sCPG.
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Understanding the same relationships within normal locomotion should differentiate the

relative contributions of the sCPG and sensory input in creating locomotion.
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