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Abstract

The dimensionally-uniform Jacobian matrix of a novel three-limbed, six degree-of-freedom (DOF)
minimanipulator is used to derive its dimensionally-uniform stiffness matrix.

The minimanipulator limbs are inextensible and its actuators are base-mounted. The lower ends of
the limbs are connected to bidirectional linear stepper motors which are constrained to move on a base
plane. The minimanipulator is capable of providing high positional resolution and high stiffness.

It is shown that, at a central configuration, the stiffness matrix of the minimanipulator can be
decoupled (diagonalized), if proper design parameters are chosen. It is also shown that the stiffness
of the minimanipulator is higher than that of the Stewart platform. Guidelines for obtaining large
minimanipulator stiffness values are established.

1 Introduction

In recent years, many researchers have studied parallel manipulators. Such mechanisms are most suitable
for applications in which the requirements for accuracy, rigidity, load-to-weight ratio, and load distribution
are more important than the need for a large workspace.

The stiffness matrix of a manipulator is generally defined as the transformation which relates the gen-
eralized force (force and torque) applied to the end-effector and its resulting displacement [1]. In a parallel
manipulator, the platform plays the role of the end-effector. Stiffness matrices of parallel manipulators,
which are closely related to their Jacobian matrices, have been studied by Kerr [3] and Gosselin {2].

The authors have designed and analyzed a new six-DOF parallel minimanipulator, which has three
inextensible limbs ([6] - {9]). In this article, the Jacobian matrix of the minimanipulator is used to obtain its
dimensionally-uniform stiffness matrix. It is shown that, if proper design parameters are chosen, the stiffness
matrix of the minimanipulator can be decoupled at a central configuration. It is also shown that the stiffness
of the minimanipulator is higher than that of the Stewart platform [4]. Finally, guidelines for increasing the
minimanipulator stiffness are established.

2 Description of the Minimanipulator

Let subscript i in this section and the rest of this work represent numbers 1, 2, and 3 in a cyclic manner.
The minimanipulator contains three inextensible limbs, P; R;, as shown in Figure 1.

The lower end of each limb is connected to a bidirectional linear stepper motor driver [10] and can be
moved freely on the base plate. Note that bidirectional linear stepper motors act as X-Y positioning tables,
but their stators are base-mounted. The desired minimanipulator motion is obtained by moving the lower
ends of its three limbs on its base plate. Two-DOF universal joints connect the limbs to the moving platform.
The lower ends of the limbs are connected to the drivers through three more universal joints. Note that
one of the axes of the upper universal joint is collinear with the limb, while the other axis of the upper
universal joint as well as one of the axes of the lower universal joint are always perpendicular to the limb.
This arrangement is kinematically equivalent to a limb with a spherical joint at its lower end and a revolute
joint at its upper end.
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Figure 1: Representation of a minimanipulator. Figure 2: Depiction of T,

Other two-DOF mechanisms, such as five-bar linkages and pantographs, can also be used as the drivers
for the minimanipulator ([6] - [9]).

Inextensible limbs are used to improve positional resolution and stiffness of the minimanipulator. Since
the minimanipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower
power dissipation can be obtained. In addition, to maintain symmetry, the limbs are made equal in length,
triangle P, P, P3 is made equilateral, and the axes of the topmost joint at point P; is made parallel to line
P2 P

3 The Jacobian Matrix

Let us define a fixed (base) reference frame, XYZ, as shown in Figure 1. The origin, point O, is a fixed
point on the plane passing through R;, Ry, and R3. The X and Y axes lie on the same plane. The Z axis is
defined by the right-hand-rule.

As shown in Figure 2, let T; be a unit vector which is collinear with the axis of the topmost revolute joint
at point P; and points in the direction of vector P;43P;4+;. Note that, in Figure 2, point G is the centroid
of the platform, parameter r represents the limb length, and parameter p represents the circumradius of the
platform.

Let us define vector 7i; by

Fi=TixBR; (1)
In addition, let us define the generalized velocity vector of the platform, %, as
z= [vir BV?: BVJG’ wap, Bwf: Bwf] 2)

B—G B—G B—G

where "V, V,, V, are the components of the velocity of point G in the base reference frame and BgP,
Bwyp , Bw? are the components of the angular velocity of the platform with respect to the base reference

frame. Also, let

q-__[BVRL ByRy ByRa BrRs B—R, B—R,]T

T ) Vy ) z ! Vy ) V: ) Vy (3)



B—R, B—R, . . .
where V" and " V" are the X and Y components of the velocity of point R; in the base reference frame,

and superscript T" denotes transpose. We can define the Jacobian matrix, J, by

Note that due to dualities of parallel and serial manipulators, we have defined the Jacobian matrix as the
transformation which maps the generalized velocity of the platform to the input rates. This is a common

practice among most researchers who have studied parallel manipulators.
It has been shown [7] that the Jacobian matrix is given by

1 0 —pi.  —#1x (YRa=Ys) —Zg-—pix (Xe—Xr1) Yo-Yra

0 1 —piy Zo—pty (YRa=Ye) -piy Xe-Xr1) Xrni-Xo
7=11 0 —u2z —p1x (YRa—Ys) —Za-—psy(Xa—Xr2) Yo -—Yr2 )

Tl 01 —my Zeo-my (Yra—Ye)  —piy Xe—Xrz) Xr2-—ZXe

1 0 —p3r, —pix{Yra—-Yas) —Zo—pix (Xe—Xrs) Yo-—Yrs

01 _”:'S,y ZG - /‘C'i,y (YR.:‘ - YG) _/-‘.‘,!,y (XG - xR,3) XR.,S - XG

The third, fourth, and fifth columns of J involve the terms u{ , and p{ , which are defined by

Hiz = Big/Bis » Biy = diy/biz (6)

where iz, pi,y, and p; ; are the X, Y, and Z components of vector 7, respectively. Note that, in equation (5),
X¢ and Yg represent the X and Y coordinates of point G. Also, Xgi, and Yg; denote the X and Y
coordinates of point R;.

3.1 Dimensionally-Uniform Jacobian Matrix

As shown in equation (2), the first three elements of T have the dimension of length/time, whereas the last
three elements of T have the dimension of radian/time. As a result, as shown in equation (5), elements of
the first three columns of J are dimensionless, whereas elements of the last three columns of J have the
dimension of length.

In this section, we define a dimensionally-uniform generalized velocity vector for the platform in or-
der to obtain a dimensionally-uniform Jacobian matrix. The result will be used in section 4.1 to obtain a

dimensionally-uniform stiffness matrix, which can be diagonalized by means of a principal axis transforma-
tion.

Let 7 be a dimensionally-uniform generalized velocity vector for the platform, whose elements have the
dimension of length/s. We define vector ¥ as

F=Wyz 7)
where Wy is a 6 x 6 diagonal, positive definite, weighting matrix given by
Wy =diag(1, 1, 1, L, L, L) (8)

In equation (8), L is a parameter which has the dimension of length (e.g., p). Solving equation (7) for T and
substituting the result into equation (4), we obtain

7=137 (9)
where J is a dimensionally-uniform Jacobian matrix, which is given by
¥F=IwWy? (10)

The elements of J are all dimensionless.



4 The Stiffness Matrix

From equation (4}, we can conclude that .
6¢g = Jéz (11)

where 8¢ and 8z represent infinitesimal displacements at the lower ends of the limbs and at the center of the

platform, respectively. Equation (4) and the principle of virtual work can be used to derive the following
equation[1].

F=JTF (12)
where =
T P
ro[22) »
and : .
f = [fl,za fl,ya f2,x, f2,y; .f3,z; f3,y]T (14)

Vectors Fp and M p in equation (13) represent the force and moment applied to the platform. Also, f; . and
fi,y in equation (14) are the X and Y components of the actuator force applied at point R;. The actuator
forces and displacements at the lower ends of the limbs can be related by the following equation.

f=kéq (15)

where k is a 6 x 6 diagonal matrix whose elements have the dimension of force/length. Substituting equation
(11) into equation (15) and the resulting equation into equation (12), yields

F=3Tk1%z (16)

If k represents the stiffness of each bidirectional linear stepper motor in the X and Y directions, then the
diagonal elements of k are all equal to k. Therefore, the stiffness matrix for the platform (K) can be expressed
as

K = xJTJ (17)

It can be shown that K is a symmetric, positive semidefinite matrix.

4.1 Dimensionally-Uniform Stiffness Matrix and Its Principal Axis Transfor-
mation

As mentioned in section 3.1, matrix J is not dimensionally uniform. As a result, the stiffness matrix K,
which is defined by equation (17), is not dimensionally uniform either.

The upper left 3 x 3 portion of K represents the direct or translatory stiffness, and consists of elements
which have the dimension of force/length. The lower right 3 x 3 portion of K represents the torsional stiffness,
and consists of elements which have the dimension of force-length. The other 3 x 3 portions of K consist of
cross-coupling elements which have the dimension of force.

We can ask ourselves if K can be diagonalized by means of a coordinate transformation. To diagonalize
the matrix K, its eigenvalue problem should be solved. Let us examine if such an eigenvalue problem makes
sense physically.

Referring to equations (16) and (17), we note that the eigenvalue problem for K involves solving the
following equation.

F = Kbz = Moz (18)

where ) is the eigenvalue of K. In other words, we are looking for certain directions of 6z which are identical
to the corresponding directions of 7. The first three elements of F have the dimension of force and the first
three elements of 6z have the dimension of length. Therefore, the dimension of A has tobe force/length.
However, the last three elements of F have the dimension of force-length and the last three elements of
5z have the dimension of radians. As a result, the dimension of A should also be equal to force-length.
Since the dimension of A can not be both force/length and force-length, the eigenvalue problem for K is
dimensionally inconsistent and does not make sense physically. This is due to the fact that K, F, and éz
are not dimensionally uniform.



Let us define a dimensionally-uniform generalized force applied to the platform (.;' ) and use it in con-
nection with the definitions of Z and J (see section 3.1) to obtain a dimensionally-uniform stiffness matrix

(K)i.et the elements of F have the dimension of force, and let F be defined as
F=W;F (19)
where Wy is a 6 x 6 diagonal, positive definite, weighting matrix given by
Wg =diag(1, 1, 1, L7}, L7}, L71) (20)

In equation (20), L is a parameter with the dimension of length (e.g., p). Comparing equations (20) and
(8), we note that

WiWy =1 (21)
where I is the 6 x 6 identity matrix. Substituting equation (12) into equation (19) yields
F=wWgiTF (22)

Following the same procedure used for the derivation of equations (16) and (17) and using equation (21), we
obtain
F =Koz (23)
where .
K =xWeITIWg (24)

Note that K is the dimensionally-uniform stiffness matrix_ and 6z represents the dimensionally-uniform
infinitesimal displacement of the platform. The elements of 5z have the dimension of length and the elements
of K have the dimension of force/length. It can be shown that K is symmetric and positive semidefinite.
Comparison of equations (24) and (17) shows that

K = WKW, (25)

Matrix K can be diagonalized by means of a principal axis transformation. Since K is symmetric, it has
a complete set of orthonormal eigenvectors [5]. Let E be an orthogonal matrix whose columns represent

orthonormal eigenvalues of K. Also, let A be a diagonal matrix, with the eigenvalues of K along its diagonal.
Then,

K = EAET (26)
Substituting equation (26) into equation (23), and modifying the resulting equation, we get
ETF = AET 6z (27)

Matrix ET represents the principal axis transformation and the elements of ETF point in the same direc-

tions as the corresponding elements of~ETg;. These directions, which are determined by the orthonormal
eigenvectors, are the principal axes of K.

To gain more insight into the physical meaning of the principal axes of ﬁ, let us examine 6z when a
dimensionally-uniform generalized force of unit magnitude is applied to the platform, i.e.

FTF=1 (28)
Substituting equation (23) into equation (28), we get
o RTRoz =1 (29)
Since K is symmetric, equation (29) reduces to
7 Kz =1 (30)

Equation (30) represents a six-dimensional ellipsoid whose axes point along the eigenvectors of K (principal
directions). The axes lengths are 1/A,...,1/)¢, where Ay, ..., s are the eigenvalues of K [5]. !

~7 ~ ~
INote that eigenvectors of K are the same as those of K and eigenvalues of K2 are Ag, veey /\g.



4.2 Central Stiffness Matrix

Since K is symmetric, its norm is equal to its largest eigenvalue. Theoretically, the norm of K can be used
to measure and/or to compare the stiffness levels of different minimanipulators. However, to find the norm
of K, its eigenvalue problem, which is a sixth order polynomial, should be solved. In general, there are no
analytical expressions for the solutions of such a polynomial. Also, K is configuration-dependent. Therefore,
finding the eigenvalues and the norm of K at all of the minimanipulator configurations becomes impractical.
Even if we try to use the norm of K at a specific configuration as a measure of stiffness, no analytical
expression for such a measure can be obtained. As a result, establishing design guidelines for obtaining high
stiffness becomes difficult.

In what follows, we define a central configuration for the minimanipulator and study the stiffness of the
minimanipulator at the central configuration. Since the minimanipulator is intended for fine manipulation
around such a designated posture, the stiffness will not deviate significantly from that corresponding to the
central configuration. Hence, it is important that we understand fully the minimanipulator stiffness at the
central configuration.

Let us define the “central configuration” of the minimanipulator workspace as the configuration where

1. The platform is not rotated with respect to the base.
2. The centroid of triangle Py P, P; (platform) is directly on top of the origin of the base reference frame.
3. The platform is positioned at a designated elevation, i.e., Zg = ¢ (a design value).

Next, the stiffness matrix at the central configuration of the minimanipulator (central stiffness matrix)
will be derived. It will be shown that, if proper minimanipulator dimensions are used, the central stiffness
matrix can be diagonalized (decoupled) without any coordinate transformations. The diagonalized central
stiffness matrix will be used to obtain a simple measure of stiffness and to establish design guidelines for
the minimanipulators. As mentioned before, a minimanipulator will be operated at or near the central
configuration during most of its operations. Therefore, establishing design guidelines based on the central
stiffness matrix is justified. The results of this section will also be used to compare the minimanipulator
stiffness with that of the Stewart platform (see section 4.3).

Recall that Iﬁf’:l = p, and Zg = ¢ at the central configuration. Also, as shown in Figure 3, let [5E| =v
at the central configuration. Using equations (5) and (17), the central stiffness matrix (K+) is found to be

_ 2p—v)C -
1 0 0 0 L 0
0 1 0 L 0 0
0 0 0 0 0
Kt =3« v= (31)
v—2 gu’-22u+2§’)§°
2 ° Hv=p 0 Av-p 3_9 0+2 2,3 0
-y Y- 14
LH =7 0 0 0 L(L_jg_ﬁ_z e 0
| 0 0 0 0 0 2|

It is desirable to eliminate the off-diagonal terms which couple the forces (moments) applied along (about)
the X and Y axes to the rotations (translations) about (along) the Y and X axes, respectively. Fortunately,
this can be easily accomplished by choosing

as a design condition. In other words, the platform (triangle P;P,P;3) should be equal to one-half of the
triangle Ry RyR3 at the central configuration. The above result is similar to that obtained by Kerr [3] in
designing a Stewart-platform-based force/torque transducer. If the condition expressed in equation (32) is
satisfied, then

C=r-p (33)
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Figure 4: A Stewart platform configuration in
which the lmb lengths are equal.

If equations (32) and (33) are used to substitute for v and ¢ in equation (31), matrix K* reduces to

1 0

2 _ 2\ /2
K* = 3k (r*=p%)/p , (34)
r? — p?
0 4p?

We shall refer to matrix K* as the decoupled central stiffness matrix. The first three diagonal elements
of K* have the dimension of force/length, whereas its last three diagonal elements have the dimension of
force-length.

Using equation (25), and setting L = p in Wy, we obtain the following expression for the dimensionally-
uniform decoupled central stiffness matrix

1 0 1
B = 30 (r/p)* -1 /o -1 (35)
. (r/p)* -1

Equation (35) can be used to determine the relative dimensions of the minimanipulator so that desirable
characteristics are obtained.

Note that parameter v in equation (32) can be determined from other design considerations such as the
upper bound on the base plate size.

To move the platform in the X or Y direction, the lower ends of all three limbs should also move in
the X or Y-direction. As a result, elements K 1 and K3 2 are constants. From the statics point of view,

external forces in the X and Y directions are shared equally among the three actuators. Element Ks ¢ is

also a constant. This is related to the fact that in order to rotate the platform about the Z-axis, the lower
ends of the limbs should move on a circle, which passes through them, in the same direction and by an equal



amount. Note that we can not increase the values of X L1 I~{;,2, and I?;’s by changing the minimanipulator
parameters r and p. - B B

The other three non-zero elements K3 3, K{ 4, and K3 s are functions of minimanipulator dimensions and
are equal to each other. Therefore, we can use any of these terms as the stiffness measure (S.M.) of the
minimanipulator. Namely, we can define

S.M. =3k [(r/p)2 - 1] (36)

The higher the value of r/p, the higher the stiffness of the minimanipulator. Another way to interpret the
S.M. is to note that S.M. is proportional to tangent-squared of the angle between any of the limbs and the
base plane at the central configuration. The closer this angle to 90 degrees, the higher the stiffness of the
minimanipulator.

The first three diagonal elements of K* are the direct stiffness terms. Equation (35) shows that if
r = /2p, we obtain equal direct stiffness values in the X, Y, and Z directions. At this configuration, the
angle between any of the limbs and the base plane becomes equal to 45 degrees.

The last three diagonal elements of K* are the torsional stiffness terms. Referring to equation (35), we
notice that if r = 1/5p, we obtain equal torsional stiffness values in the X, Y, and Z directions. At this
configuration, the angle between any of the limbs and the base plane becomes equal to 63.43 degrees.

4.3 Comparison to the Stewart Platform

In this section, the results of Kerr [3] are used to compare the minimanipulator stiffness with that of the
Stewart platform.

Duplicating Kerr’s model, let us consider a Stewart platform with its linkage parameters identical to
those of the minimanipulator. As shown in Figure 4, the six limbs connect three points on the base to three
points on the platform. The three points on the platform form an equilateral triangle whose circumradius is
equal to p. Similarly, The three points on the base form an equilateral triangle whose circumradius is equal
to v. Kerr (3] showed that the stiffness matrix of the Stewart platform is decoupled, when all of the limb
lengths are equal, and p = v/2. When all of the limb lengths are equal, the platform is not rotated with
respect to the base, and the centroid of the platform (point G) is right on top of the centroid of the base
(point O). Therefore, the conditions under which the Stewart platform has a decoupled stiffness matrix are
identical to those which decouple the stiffness matrix of the minimanipulator (see section 4.2). When the
limb lengths are equal, we refer to the common limb length as r. The axial (actuator) stiffness of each limb,
K, is taken to be the same as the stiffness of each bidirectional linear stepper motor in the X and Y directions
(see section 4).

Kerr’s expression for the decoupled stiffness matrix (K#) is not dimensionally uniform and its elements
have the same dimensions as the corresponding elements of K*. Using the same procedure used in section 4.2
for obtaining K*, we find the following dimensionally-uniform decoupled stiffness matrix for the Stewart
platform.

3(p/r)? 0
3(p/r)?
R* = 3x 2[1-3(p/r] (37)
1-3(p/r)?
1-3(p/r)?

0 6(p/r)* |

The coordinate system, configuration, and parameters used for derivation of K* in section 4.2 are identical
to those used for obtaining K#. Therefore, the diagonal elements of these two matrices can be used to
compare the stiffness of the minimanipulator to that of the Stewart platform, ~

Equation (37) shows that decreasing p/r results in higher values for K:f 3 Kf 4, and Kf s, and lower

values for K f » K .f 5, and kg‘f - To avoid having a negative or a zero value for any of the diagonal elements

of K#, p/r should be constrained as shown below.

1/vV3>p/r>0 (38)



r/p 1.75 2.0 2.5

K =K3,| 3« 3k 3k
Kf = K#, | 2.9388x | 2.25¢ | 1.44x
K3, 6.1875¢ | 9% | 15.75«
K%, 0.1224x | 1.5x | 3.12x
K;,=K:,|61875c| 9¢ | 15.75¢
Kf,=K¥ | 0.0612« | 0.75¢ | 1.56x
Kss 12« 12« 12«
K¥, 5.8776x | 4.5¢ | 2.88x

Table 1: Sample values for the diagonal elements of K* and K#.

Due to the constraints expressed in equation (38), the diagonal elements of K*# are bounded, as shown below.

K# < 3« (39a)
f{';’fz < 3 (39b)
f{'fa < 6k (39¢)
I?,f.i < 3k (39d)
I?s,s < 3 (39)
Kf, < 6« (39f)
Comparing equations (35) and (39), we note that
K1 =3 > Kkf (40a)
K3a=3x > Kf, (40b)
K;s=12c > K, (40c)

’

The other three non-zero elements of K* (1?5'3, I?;A, and K 5,5) are all functions of »/p. Writing equation (38)
in terms of r/p, we obtain

co>r/p> V3 (41)

For comparison purposes, let us apply the lower limit of #/p in equation (41) to 1?513, 1?2,4, and K 55 We
find out that

K3s= I?IA = I?;,s > 6« (42)
Comparing equations (39) and (42), we note the
K33 > Ki, (43a)
K1, > Kf, (43b)
Kis > K, (43¢)

Table 1 shows the values for the diagonal elements of K* and K# corresponding to three typical values
of r/p, which satisfy the constraints imposed by equation (41).

The above results confirm that, due to the use of inextensible limbs, the minimanipulator has higher
stiffness than the Stewart platform. In particular, direct stiffness in the Z direction, and torsional stiffness
in the X and Y directions can be increased drastically by making the ratio of r to p large.



5 Summary

In this article, the dimensionally-uniform stiffness matrix of a new three-limbed six-DOF parallel minima-
nipulator is derived.
Based on the stiffness matrix, the following design guidelines are established for the minimanipulator.

o The central stiffness matrix can be diagonalized (decoupled) by making the platform (triangle P; P, Ps)
one-half the size of the triangle passing through the lower ends of the limbs, i.e. p = v/2.

o If the central stiffness matrix is decoupled, then

— The larger the ratio of the limb length to the platform circumradius (r/p), the larger the direct
stiffness in the Z-direction, and the larger the torsional stiffness values in the X and Y-directions.

In addition, it is shown that the stiffness of the minimanipulator is higher than that of the Stewart
platform.
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