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Internet-based matching markets have gained great attention during the last

decade, such as Internet advertising (matching keywords and advertisers), rideshar-

ing platforms (pairing riders and drivers), crowdsourcing markets (assigning tasks

to workers), online dating (pairing romantically attracted partners), etc. A funda-

mental challenge is the presence of uncertainty, which manifests in the following two

ways. The first is on the arrival of agents in the system, e.g., drivers and riders

in ridesharing services, keywords in the Internet advertising, and online workers in

crowdsourcing markets. The second is on the outcome of interaction. For example,

two users may like or dislike each other after a dating arranged by a match-making

firm, a user may click or not click the link of an advertisement shown by an Ad

company, to name a few.

We are now living in the era of big data, fortunately. Thus, by applying

powerful machine learning techniques to huge volumes of historical data, we can

often get very accurate estimates of the uncertainty in the system as described



above. Given this, the question then is as follows: How can we exploit estimates for

our benefits as a matching-policy designer?

This dissertation aims to address this question. We have built an AI toolbox,

which takes as input the estimates over uncertainty in the system, appropriate

objectives (e.g., maximization of the total profit, maximization of fairness, etc.), and

outputs a matching policy which works well both theoretically and experimentally on

those pre-specified targets. The key ingredients are two matching models: stochastic

matching and online matching. We have made several foundational algorithmic

progress for these two models. Additionally, we have successfully utilized these

two models to harness estimates from powerful machine learning algorithms, and

designed improved matching policies for various real matching markets including

ridesharing, crowdsourcing, and online recommendation applications.
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Chapter 1: Introduction

We are now living in an era of Internet Economy: we prefer to visit giant

online marketplaces such as Amazon or eBay for shopping instead of brick-and-

mortar stores; we have become more reliable on online dating websites as opposed

to friends or relatives to find “The One”; We have shifted from Taxicabs to Uber and

Lyft when traveling outside; we are increasingly likely to use hospitality services from

Airbnb instead of hotels when making our trip plans. Unlike traditional business

models, Internet companies do not directly offer services to customers. Instead,

they provide convenient online platforms and facilitate “deals” (or matches) among

users from typically two parties, e.g., buyers and sellers in Amazon, guests and hosts

in Airbnb, passengers and drivers in Uber, advertisers and impressions (users) in

Google, and task manager and (online) workers in crowdsourcing markets (Amazon

Mechanical Turk). Notably, for most Internet companies, their main income comes

exactly from these successful “deals” completed through the online platforms and

thus, they try to manage as many “successful” matches as possible such that they

can profit most from them.

There are several fundamental challenges in the way, however. One among

them is uncertainty, which is inherent in modern data science. The first kind of
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uncertainty lies in the arrival of agents into the system. Due to the nature of the

Internet Economy, agents from at least one party arrive in a stochastic manner

(see, e.g., keywords in the advertising business, drivers and users in ridesharing

platforms). The second is due to the inherent risk of failure associated with each

“deal” (or match). Consider Amazon for example: Amazon offers a discounted price

to a potential buyer while the buyer rejects the offer. Another example is displaying

advertisement on Google: Google displays an ad to some online user, while the user

shows no interest in the ad and chooses to ignore it. Note that in the modern pay-

per-click model, Google will receive a contracted payment from each advertiser only

when a user clicks on the ad (impression). Imaginably, the inherent uncertainty due

to the agents’ arrivals and risk of failure impose significant challenges when Internet

companies try to optimize the matching policy.

Fortunately, we are now blessed with big data and powerful machine learning

techniques. There is tons of past and ongoing research which deals with how to apply

various deep learning techniques to estimate the uncertainty as described above. For

example, [1–3] utilized neutral networks to predict the riders’ arrival patterns and

the drivers’ arrival time in ridesharing platforms.

Given this, one of the main questions is as follows: How to best leverage these

estimates from machine learning algorithms to optimize the matching policy? This

dissertation aims to answer this question. My research has designed such an AI tool-

box that it takes as input the estimates over the uncertain parameters in the system

and appropriate objective functions, and outputs a matching policy which provably

works well while being practically useful. Sample objectives include maximization of
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the total profit obtained in the market, maximization of users’ satisfaction (e.g., min-

imization of riders’ waiting time in ridesharing platforms), and maximization of the

fairness among all users.

The rest of this chapter is organized as follows: Section 1.1 will discuss in

detail the sources of uncertainty in E-Commerce, and Section 1.2 will present a

brief overview of two fundamental matching models: offline and online stochastic

matchings.

1.1 Challenges: Two Kinds of Uncertainties

In this section, we present a detailed discussion regarding the challenging issue

of uncertainty in E-Commerce.

Uncertainty on outcomes. In many applications, we use a graph to capture the

complex relations between different agents involved. In online dating, we formulate

a graph where each vertex represents an online user, and each edge connects a pair

of users whose attributes, as shown in their profiles, match each other well. In online

advertising, we have such a natural bipartite graph: a set of advertisers and a set of

users, each edge links an advertiser u and a user user v who shows interests toward

the ads from u. Suppose we run an online dating company or an ads platform

(e.g., Google) and our goal is to arrange as many matches as possible. Unlike the

traditional matching model, each edge e appearing in the final matching should go

through two steps: an attempt of adding e (called probing) and another stochastic

process for its existence. In online dating, “probing” an edge e = (u, v) means
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that we make a recommendation of u to v: it may end up a failure or a success (a

final match), either of which occurs with a certain chance. In the online advertising

business, “probing” an edge e = (u, v) means that we display an ad from u to a user

v: v may not click on the ads or click (a final match). In both these models, we can

gain a profit we only when we get a final match of e. Thus, an inherent challenging

problem arises: given a weighted “stochastic” graph where edges each exist with

a certain (known) probability, how to probe them sequentially such that the final

random matching obtained has a maximum expected weight. This question is later

formalized as the (offline) Stochastic Matching problem (SM) after adding several

practical constraints.

Uncertainty on arrivals. Consider the online advertising scenario as mentioned

before. In practice, for an ads company, only the set of advertisers is known in

advance while each user comes in a stochastic manner. We often try to identify

the arrival of a certain type of users by their online activities in different venues

such as search engines, emails, and social networking websites. Another example is

crowdsourcing markets (e.g., Amazon Mechanical Turk and Crowdflower), which are

powerful platforms for task managers to crowdsource online workers. The problem

facing a task manager can be naturally modeled by a bipartite graph as well: one side

is the set of tasks while the other side is the set of online workers. Again as in online

advertising, only tasks are known beforehand while the workers join the platform in

a stochastic manner. In both applications, we have a special bipartite graph where

one side of vertices is known beforehand (called offline side) while the other side is
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revealed sequentially in a random way (called online side). This stochastic arrival

feature often comes together with another particular requirement for our decision

process: an immediate and irrevocable decision is required upon the arrival of an

online vertex. In online advertising, once we detect the arrival of an online user, we

have to display the relevant ad immediately, since users typically stay on a website

for a very short time. The same applies to crowdsourcing markets: once a worker

arrives online to bid a set of tasks, we should figure out the final assignment for her

quickly. In short, we cannot afford to optimize our decisions after observing the full

arrival sequence from the online side. A natural question is: how to optimize our

real-time matching decisions to well address the stochasticity in the arrivals from

the online side? This problem is later formalized as the Online Matching (OM)

problem.

1.2 Overview of Two Matching Models

In this section, we present a brief summarization of the two fundamental

matching models: offline and online stochastic matchings.

Stochastic Matching (offline). Stochastic matching (SM) models capture lots

of real matching markets which features inherent uncertainty in the matching out-

comes. Typically it has no real-time decision-making requirement. Samples include

online dating, kidney exchange, public housing allocation, etc. SM takes as input

a general graph used to model the network of agents in the market. Many cases,

the target network studied by SM is complicated enough that we can’t simply use
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a bipartite graph to capture the complex structure. Consider online dating in the

bisexual setting for example: We can imagine that some users might be romantically

attracted to users of both genders; thus, we have to use a general graph to model

the network.

Online Matching. Online matching models capture a large variety of matching

markets which share the following two features. The first feature is that at least

part of agents arrive in a dynamic way. For example, keywords (impressions) in

Google, riders in Uber and Lyft, etc. The second is the real-time decision-making

requirement. Upon the arrival of an online agent, we should decide immediately and

irrevocably which current existing relevant agent(s) in the system we should match

it to, if possible. Sample markets include Internet advertising business (Google),

ridesharing platforms (Uber and Lyft), crowdsourcing markets, etc. Typically, OM

takes as input a bipartite graph, where the two sets of vertices are used to model

the respective groups of static and dynamic agents in the system, which are called

offline and online specifically. Note that in SM only the set of offline vertices is

known in advance: the other online set is revealed sequentially in a certain random

way.

The main differences between SM and OM are summarized in Table 1.1. Let

Challenge I, Challenge II and Challenge III denote respectively the uncertainty on

outcomes, the uncertainty on arrivals, and the real-time decision-making require-

ment.

The rest of this dissertation is organized as follows: Chapters 2 and 3 will
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Input Challenge I Challenge II Challenge III

SM General graphs 3 7 7

OM Bipartite graphs 3 3 3

Table 1.1: The main differences between SM and OM

present the two fundamental matching models respectively in detail and relevant

foundational algorithmic progress; Chapter 4 will offer a specific application of on-

line matching in ridesharing platforms; Chapter 5 will briefly discuss applications

of online matching in several other real matching markets including online recom-

mendations, taxi-dispatching services, and online task assignment platforms. We

conclude the dissertation and discuss some future directions in Chapter 6.

Chapter 2: Stochastic Matching (Offline)

2.1 Preliminaries

Approximation Ratio. Owing to the computational intractability (known, con-

jectured, or otherwise) of problems in combinatorial optimization, a powerful ap-

proach that has developed over more than four decades is that of approximation

algorithms, where we aim at efficiently computing solutions that are within a guar-

anteed factor of optimal; see, e.g., the textbooks [4, 5]. For maximization problems

with a non-negative objective function, a ρ-approximation algorithm, for ρ ≥ 1, is a

7



polynomial-time algorithm that always delivers a solution of value at least 1/ρ times

optimal; for randomized algorithms, the expected solution-value output should be

at least 1/ρ times optimal, where this expectation is over the internal randomiza-

tion of the algorithm. In the context of stochastic optimization (maximization), we

need to be a little more careful, since the objective function value is random due to

the randomness in the stochastic input; letting OPT denote the maximum-possible

expected objective-function value over all possible terminating algorithms with no

constraint on the running time, a ρ-approximation algorithm is one that outputs a

solution of expected value at least OPT /ρ, where the expectation is over the un-

certainty of the input, and over any internal randomization of the algorithm. This

will be the notion of approximation employed in the next sections, where we discuss

our approximation algorithms for stochastic matching in a model that posits the

uncertain data as being independent with known distributions.

Random permutation and FKG inequality. We will often consider a uniformly

random permutation π on a set of items I = {e1, e2, . . . , e`}. We can assume that

π is chosen as follows: for each item e, we pick independently and uniformly at

random a real number π(e) = ae ∈ [0, 1], and then sort these in increasing order to

obtain π. Note that we abuse notation by letting π denote both the permutation

and the reals chosen; however, this choice will be clear from the context.

In the context of such a randomly-chosen permutation π of our set I, the FKG

inequality [6] will be quite useful to us, as follows. A Boolean function f : {0, 1}t →

{0, 1} is termed increasing if for each input x = (x1, x2, . . . , xt) ∈ {0, 1}t, turning
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any xi from 0 to 1 cannot change the value of f(x) from 1 to 0; i.e., the value of

f either remains unchanged by this bit-flip, or increases from 0 to 1. Similarly,

g : {0, 1}t → {0, 1} is decreasing if for each x = (x1, x2, . . . , xt) ∈ {0, 1}t, turning

any xi from 1 to 0 cannot change the value of g(x) from 1 to 0. The FKG inequality

states that if we have independent random bits R1, R2, . . . , Rt, then for all k and for

all increasing or all decreasing f1, f2, . . . , fk that map {0, 1}t to {0, 1},

Pr

[
k∧
i=1

(
fi(R1, R2, . . . , Rt) = 1

)]
≥

k∏
i=1

E
[
fi(R1, R2, . . . , Rt)

]
;

In our analyses, we will often condition on an event A of the form “π(e) = x”

(where π is our random permutation as above and x ∈ [0, 1]), and will need to

lower-bound certain probabilities of the form Pr
[∧k

i=1Bi

∣∣ A]; the FKG inequality

is quite useful if these events Bi have a certain structure [7, 8]. For all f ∈ I such

that f 6= e, define a random bit Rf that is 1 if π(f) ≤ x, and 0 otherwise; note that

even conditional on the event A, these Rf are all independent. Now, if the Bi are

Boolean functions of the tuple of bits Rf such that the Bi are all increasing or all

decreasing, then the FKG inequality applied to the space where we condition on A,

yields

Pr

[
k∧
i=1

Bi

∣∣ A] ≥ k∏
i=1

Pr[Bi

∣∣ A]. (2.1)

Chernoff-Hoeffding bound. In this chapter, we will also make use of the following

form of the Chernoff-Hoeffding bound [9]:

Definition 2.1.1 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be n independent
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random variables with 0 ≤ Xi ≤ 1. Let X = X1 + . . .+Xn and µ = E[X]. Then for

any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp

(
− ε2

2 + ε
µ

)
, and

Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)

2.2 Overview and Related Work

The Stochastic Matching (unweighted) was first introduced in Chen et al. [10].

Suppose we are given an undirected and unweighted graph G = (V,E); each vertex v

has an integral patience parameter, say tv, and each edge has a presence probability

pe; at any step of the algorithm, only an edge e = (u, v) ∈ E such that tu > 0 and

tv > 0 can be probed. Upon probing such an edge e, one of the following happens:

(1) with probability pe, e exists; we are forced to add e into the final matching while

both u and v are removed from G; or (2) with probability (1− pe), e does not exist;

e is removed while tu and tv are reduced by 1. All these edge-existence events are

independent. Our goal is to find an adaptive strategy of probing edges such that

the expected cardinality of the final matching is maximized. As for the weighted

version, each edge e has a weight we ≥ 0 and the target is updated as finding a

matching with a maximum expected total weight.

As for the above unweighted stochastic matching on a general graph, Chen

et al. [10] gave a simple greedy algorithm which achieves an approximation ratio of

4. Later, it was shown in [11] that greedy achieves an improved ratio of 2 actually.
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Bansal et al. [12] was the first to consider the weighted version of Stochastic Match-

ing. They proposed the following benchmark LP to upper bound the OPT, which

represents the performance of an optimal algorithm1. For each vertex v, let ∂(v) be

the set of edges incident to v. Let ye be the probability that edge e = (u, v) gets

probed in an OPT, and xe = yepe the probability that e gets matched.

maximize
∑
e∈E

wexe (2.2)

subject to
∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V (2.3)

∑
e∈∂(v)

ye ≤ tv ∀v ∈ V (2.4)

xe = yepe ≥ 0, ye ≤ 1 ∀e ∈ E (2.5)

Note that the above LP is inspired by the work of Dean et al. [13], which

was the first work to use an LP to upper bound the performance of an optimal

adaptive algorithm for the stochastic knapsack problem. Bansal et al. [12] consid-

ered weighted stochastic matching on a bipartite graph and gave a 3-approximation

algorithm as follows.

From [14], we see that {Ye} at the end of Step 2 of Algorithm 1 satisfies these

three properties: (1) E[Ye] = ye for each e; (2) {Ye} is negatively correlated; (3)

For each v,
∑

e∈∂(v) Ye ≤ d
∑

e∈∂(v) yee. Note that the last property guarantees that

we can ignore patience constraint on each vertex during the random probing on

1We use OPT to refer to an optimal algorithm as well when the context is clear.
2Our statement here is slightly different from the original version.
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Algorithm 1: Stochastic matching on a bipartite graph [12]2

1 Solve the LP (2.2) and let {ye} be an optimal solution.
2 Apply dependent rounding [14] to {ye} and let {Ye} be the random integral

vector returned.
3 Follow a random order π over all rounded edges e with Ye = 1 and check if

each e is safe, i.e., if probing e will not violate any patience and matching
constraint.

4 If an edge e is safe, then probe it; otherwise, skip it.

Step 3 and 4. [12] shows that Algorithm 1 achieves an approximation ratio of 3 by

using the benchmark LP (2.2). Based on this result, they continued to present a

4-approximation algorithm for a general graph.

Adamczyk et al. [15] considered the same weighted stochastic matching prob-

lem and improved the ratio of 3 and 4 to 2.845 and 3.709 respectively on a bipartite

and general graph. They used the same benchmark LP and processed the optimal

solution in the same way as shown in Step 1 and 2 of Algorithm 1. The key idea

there is instead of choosing a random order, they chose a weighted permutation over

all rounded edges such that edges with small pe values have a higher chance to come

earlier in the order than those with large pe values. In this way, they ended up with

an algorithm which favors edges with small pe values. After that, they designed

another algorithm which favors edges with large pe values and then combined the

two to get the improvement.

In the setting of stochastic matching, the requirement of adding each existing

edge into the final matching is typically called as query-commitment. There are

several other work which considered stochastic matching in the context of kidney

exchange without that constraint (e.g., [16–18]). In particular, [16] considered
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stochastic matching without query-commitment assuming each vertex has a patience

of 2 while [17] considered the same model assuming each vertex has a patience

bounded by a constant, i.e., we are allowed to query a constant number of edges for

each vertex.

Another interesting related work is due to [19], which considered the weighted

stochastic matching with query-commitment but without patience constraints. Putting

into our context, each vertex has a patience of infinity, i.e., it has no restrictions on

the number of probes. They gave an algorithm achieving at least a fraction of 0.573

of the OPT.

2.3 Main Techniques and Our Results

We focus on the case of weighted stochastic matching with query-commitment

on a general graph. Both of [12] and [15] attacked this case by reducing a general

graph to a bipartite one (randomly splitting all vertices into two parties) and then

invoke the algorithm for the bipartite case as a black box. In this paper, we try

to treat a general graph in a direct way while the main issue is: We can not apply

dependent rounding as before to round a fractional solution from the benchmark

LP to an integral one such that patience constraint can be ignored afterwards.

We overcome this issue through a careful analysis of our algorithm and manage to

identify an elegant structure for the worst scenario. Our algorithm is pretty simple,

which states as follows:

Theorem 2.3.1 ( [20]). The approximation ratio achieved by Algorithm 2 is 3.22

13



Algorithm 2: Stochastic matching on a general graph [20]

1 Choose a random permutation π on E.
2 For each edge e ∈ E, generate a random bit Ye = 1 independently with

probability ye. Let E ′ be the set of edges with Ye = 1.
3 Follow the random order π to inspect edges in E ′

4 If an edge e is safe, then probe it; otherwise, skip it.

for the weighted stochastic matching problem on a general graph. What is more,

the ratio achieved by Algorithm 2 is improved to 2.67 under the same setting when

patience constraints are allowed to be violated by 1.

After a detailed analysis of Algorithm 2, we can rigorously prove that the

edge e = (u, v) achieving the worst performance has the following setting, which is

referred to as the Worst Scenario (WS): (1) ye ∼ 0 and tu = tv = 2; (2) both of

E(u) and E(v) have such a structure: one big edge f with yf = pf = 1 and a bunch

of N tiny edges each has yf = 1/N and pf = 0 while N → ∞. Note that in the

WS, the big edge tightens the matching constraint such that
∑

e∈∂(u) yepe = 1 while

the bunch of all rest tiny edges help tighten the patience constraint in the way that∑
e∈∂(u) ye = 2. We can verify that in the WS, edge e will be probed with probability

exactly equal to 0.301ye in Algorithm 2, which leads to the final ratio.

2.4 Proofs of Main Results in Theorem 2.3.1

In this section, we present proofs in details for the first part of results in

Theorem 2.3.1, which states in the following proposition. For the rest of proofs,

please check Section 5 of [20].

Proposition 2.4.1. Algorithm 2 achieves an approximation ratio at least 3.22 for
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the weighted stochastic matching problem on a general graph.

To analyze the performance of our algorithm, we conduct an edge-by-edge

analysis. Recall that yepe is the probability that e is matched in LP (2.2), and the

optimal value of the LP is exactly
∑

e∈E wepeye. Let ALG be the expected weight

output by Algorithm 2. We have that

E[ALG] =
∑
e∈E

wepe · Pr[e ∈ E ′] · Pr[e gets probed|e ∈ E ′]

=
∑
e∈E

wepeye · Pr[e gets probed|e ∈ E ′]

≥
∑
e∈E

wepeyeλ

The last inequality is obtained by assuming Pr[e gets probed|e ∈ E ′] ≥ λ. This

gives us a λ-approximation algorithm.

The subsequent discussion focuses on how to lower-bound the value of λ. Con-

sider a specific edge e = e(u, v), and let E(u) be the set of edges incident to u

excluding e itself, i.e., E(u) = ∂(u) \ {e}. Let π(e) = x, 0 < x < 1. Conditioned on

π(e) = x, with 0 < x < 1, and Ye = 1, let Pu be the probability that e is not blocked

by any of the edges in E(u) in Algorithm 2. We say that e is blocked by some edge

f in E(u) if f gets matched or the patience constraint of u gets tight resulting from

probing f (i.e., tu = 0). We assume without loss of generality that |E(u)| ≥ tu,

otherwise the patience constraint for node u is redundant.
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A little thought gives us the following lower bound on Pu:

Pu ≥ Pu =
∑

S⊆E(u),|S|≤tu−1

x|S|
∏
f∈S

yf (1− pf )
∏
f /∈S

(1− xyf ) (2.6)

To see why this is true, let Y ′f (for any f ∈ E(u)) be the indicator random

variable that is 1 if and only if f gets matched when probed, i.e., Pr[Y ′f = 1] = pf .

For each S ⊆ E(u) such that |S| ≤ tu − 1, we associate an event AS that happens

when both of the following conditions are met: (1) Each edge f ∈ S falls before e in

π with Yf = 1 and Y ′f = 0; and (2) each edge f /∈ S either falls after e in π or Yf = 0.

We can see that this event guarantees that e will not be blocked by any edge of S.

Thus, Pu should be at least the probability that one or more of AS happen, which

is exactly Pu.

Next, we focus on adverserial configurations of E(u), i.e, how are the edges

in E(u) arranged so as to minimize the value of Pu subject to the constraints: (1)∑
f∈E(u) yfpf ≤ 1, (2)

∑
f∈E(u) yf ≤ tu and (3) 0 ≤ yf , pf ≤ 1 for each f ∈ E(u).

Here we view x as a (given) parameter. We denote such adversarial configurations

of E(u) as the worst-case structure (WS) of E(u). Notice that we give the (hy-

pothetical) adversary extra power of manipulating the values of pf and number of

edges in E(u), both of which are actually part of the input.

Lemma 2.4.1. In WS, there will be at most one edge with pf = 1 and at most one

edge with 0 < pf < 1. All other edges must have pf = 0.

Proof. We prove by contradiction. Assume there are two edges, say p1 = p2 = 1 in

WS. Then, y1 + y2 ≤ 1 since
∑

i yipi ≤ 1. We perturb the current configuration
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as follows: merge the two edges into a single edge e3 where y3 = y1 + y2 and

p3 = 1. After this perturbation, both values,
∑

f∈E(u) yfpf and
∑

f∈E(u) yf , remain

unchanged. Thus, both the matching and patience constraints are maintained at u,

and our perturbation gives a feasible configuration.

The change brought by this perturbation to the value Pu is as follows: for each

non-zero term in Pu associated with some S ⊆ E(u) where e1 /∈ S, e2 /∈ S, the term

(1− xy1)(1− xy2) will be replaced with (1− x(y1 + y2)), which results in a strictly

lower value of Pu. This is a contradiction.

Now assume there are two edges a, b with 0 < pa, pb < 1 in WS. Consider the

following perturbation: for some small ε 6= 0, set p′a = pa + ε/ya and p′b = pb− ε/yb.

After this perturbation, both of
∑

f∈E(u) yfpf and
∑

f∈E(u) yf remain unchanged and

the perturbed configuration is still feasible.

Let f(ε) be the value of Pu after this update. In the expression of Pu, the

terms contributing to ε2 must be those associated with S where a, b ∈ S. Notice

that

(1− p′a)(1− p′b) = (1− pa − ε/ya)(1− pb + ε/yb)

has a negative coefficient of ε2, implying that the second derivative f ′′ is negative.

Therefore we can always find a non-zero value of ε to make Pu strictly smaller.

Again a contradiction.

Let E1(u) and E0(u) be the set of edges in the WS which have pf = 1 and

pf = 0 respectively. Let a be the potential edge taking a floating value, 0 < pa < 1.

Lemma 2.4.1 tells us E1(u) contains at most one such edge in the WS. Let A =

17



∑
f∈E1(u)

yf .

Based on Lemma 2.4.1, we can update the expression of Pu as

Pu = (1−xA)(1−xya) Pr[Zu ≤ tu− 1] + (1−xA)xya(1− pa) Pr[Zu ≤ tu− 2] (2.7)

where Zu =
∑

f∈E0(u)
Zf and the (Zf : f ∈ E0(u)) are independent Bernoulli random

variables with Pr[Zf = 1] = xyf ,∀f ∈ E0(u). (We are abusing notation in the

equation Zu =
∑

f∈E0(u)
Zf by reusing the symbol Z for the left hand side and right

hand side; this will not cause any confusion as the identity of Z will always be clear

from the context.)

Lemma 2.4.2. In WS, pa = 0.

We defer the proof of the above lemma to Appendix A of [20]. From Lemma

2.4.2, we can claim that there is no edge f which has pf ∈ (0, 1). Thus, we can

further simplify the expression of Pu in equation (2.7) as

Pu = (1− xA) Pr[Zu ≤ tu − 1]. (2.8)

Lemma 2.4.3 reveals additional structure of the WS.

Lemma 2.4.3. In WS, we have A = 1 and Zu ∼ Pois(x(tu − 1)).

Proof. We show A = 1 by contradiction. Assume A < 1 in WS. Notice that E0(u)

is non-empty since E[Zu] =
∑

f∈E0(u)
E[Zf ] = x(tu − A) > 0. Next, consider an

18



arbitrary edge f ∈ E0(u) with yf ∈ (0, 1]. Let Z ′u = Zu − Zf . Then,

Pu = (1− xA) Pr[Zu ≤ tu − 1]

= (1− xA) (Pr[Z ′u ≤ tu − 2] + (1− yfx) Pr[Z ′u = tu − 1])

= (1− xA) Pr[Z ′u ≤ tu − 2] + (1− (yf + A)x+ yfAx
2) Pr[Z ′u = tu − 1].

We have two cases:

(i) A < yf . In this case, Pu can be decreased by interchanging the values A and yf .

(ii) A ≥ yf . In this case, Pu can be decreased by perturbing as A′ = A + ε and

y′f = yf − ε for some small ε > 0.

Notice that in case (i), after interchanging the values A and yf , the value∑
f∈E(u) yfpf will change from A to yf and thus is at most 1, since yf ≤ 1 for each

f ∈ E. As for case (ii), the value
∑

f∈E(u) yfpf will change from A to A+ ε. Since

A < 1, we can always find a ε > 0 such that A + ε ≤ 1 such that the constraint∑
f∈E(u) yfpf ≤ 1 is maintained. Thus, the value (A+ yf ) remains unchanged after

perturbation in both cases and the constraint
∑

f∈E(u) yf ≤ tu is maintained. In

either case, we end up at a feasible configuration in which Pu is strictly lower than

that in WS. This yields a contradiction.

We defer the proof of the second part of this lemma, Zu ∼ Pois(x(tu − 1)), to

Appendix A of [20].

At this point, we have all the ingredients to prove Proposition 2.4.1.
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Proof. We have Pr[e gets probed |Ye = 1] =
∫ 1

0
PuPvdx ≥

∫ 1

0
PuPvdx, i.e., at least

H(tu, tv)
.
=

∫ 1

0

(1− x)2 Pr[Zu ≤ tu − 1] Pr[Zv ≤ tv − 1]dx,

where Zu ∼ Pois(x(tu − 1)) and Zv ∼ Pois(x(tv − 1)). We verified that the

above expression has a minimum value of 0.31016 = 1/3.224 at tu = tv = 2. All

our numerical computations were done on Mathematica 10 with precision at least

up to the fourth digit after the decimal point. We split the whole verifications into

the following three cases: (1) 1 ≤ tu, tv ≤ 20; (2) tu, tv ≥ 20 and (3) 1 ≤ tu ≤ 20

while tv ≥ 20. Notice that H(tu, tv) is symmetric in the two variables and thus our

verifications are complete.

• For 1 ≤ tu, tv ≤ 20, we can numerically verify that H(tu, tv) achieves its

minimum value of 0.31016 = 1/3.224 at tu = tv = 2.

• For tu, tv ≥ 20, the Chernoff bound from Definition 2.1.1 implies that H(tu, tv)

should be at least

∫ 1

0

(1− x)2
[
1− exp

(
−ε2x(tu − 1)

2 + ε

)][
1− exp

(
−ε2x(tv − 1)

2 + ε

)]
dx,

where ε = ε(x) = 1
x
−1; by plugging in tu = tv = 20, we can verify numerically

that this integral is at least 0.316324.

• Similarly, for 1 ≤ tu ≤ 20 while tv ≥ 20, we can verify numerically (by checking

all integers 1 ≤ tu ≤ 20) that with ε = 1
x
− 1,
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H(tu, tv) ≥
∫ 1

0

(1− x)2 Pr(Zu ≤ tu − 1)

[
1− exp

(
−ε2x(20− 1)

2 + ε

)]
dx,

which is at least 0.312253.

This establishes the key claim that Pr[e gets probed |Ye = 1] ≥ 0.3101 for each

e ∈ E.

2.5 Extension to Stochastic Hypergraph Matching

We now consider Stochastic Hypergraph Matching (SHM) on a k-uniform hy-

pergraph, i.e., a hypergraph where all edges have size exactly k. However, unlike

before, we do not consider patience constraints (the work of [7] proceeds similarly).

The following LP can be obtained by naturally extending the LP in (2.2), where

∂(v) denotes the set of hyperedges incident to v:

max
∑
e∈E

weyepe s.t.
∑
e∈∂(v)

yepe ≤ 1,∀v ∈ V ; 0 ≤ ye ≤ 1,∀e ∈ E (2.9)

Theorem 2.5.1 and Theorem 2.5.2 improve upon the (k + 1)–approximation

of [7] for weighted matching in k-uniform hypergraphs. Both of these algorithms

classify the hyperedges as “small” or “large” based on the LP values, and treat

each group separately. The difference is as follows. The algorithm of Theorem 2.5.1

attenuates the small edges to boost the performance of large edges; the algorithm

of Theorem 2.5.2 uses a “weighted permutation” of the hyperedges such that each
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large edge has a higher chance to fall behind a small edge. Although Theorem 2.5.2

is asymptotically better, we present both theorems since their ideas can be useful

elsewhere.

Note that the LP-based methods of [7] and ours cannot in general do better

than k − 1 + 1/k [21]; hence, we are close to optimal for LP-based approaches.

Theorem 2.5.1. There is a (k + 1
2

+ o(1))–approximation algorithm for SHM on a

k-uniform hypergraph, where the “o(1)” term is a function of k that goes to zero as

k becomes large.

Theorem 2.5.2. For any given ε > 0, there is a (k + ε + o(1))–approximation

algorithm for SHM on a k-uniform hypergraph, where the “o(1)” term is a function

of k that goes to zero as k becomes large.

We next resent the algorithms and proofs for these two theorems.

2.6 Proof of Theorem 2.5.1

In this section, we present an algorithm achieving an approximation ratio at

least (k + 1/2 + o(1)). For notational convenience, let {ye} be an optimal solution

to LP (2.9). At a high level, our algorithm proceeds according to the outline below.

Let c ≥ 1/2 be a parameter, which will be optimized at 1/2 later.

1. Divide the edges into two sets, the “small” edge set ES = {e|yepe ≤ c}, and

the “large” edge set EL = E \ ES.

2. Choose a random permutation π of ES.
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3. Sample each edge e ∈ ES with probability ye, independent of other edges. Let

E ′S be the set of sampled edges.

4. Follow the order π to inspect if each (small) edge e ∈ E ′S is safe or not. If e

is safe, probe it with probability he; otherwise, skip it. Here 0 < he ≤ 1 is a

parameter to be determined later.

5. After inspecting all small edges, remove all the unsafe large edges from EL,

and probe others with probability 1 (in arbitrary order).

Roughly speaking, an edge e being “safe” means that none of the edges in the

neighborhood of e are matched. Later, we will give a definition that is both stronger

and exactly computable. Based on the new definition, we compute an attenuation

factor he for each e ∈ ES, such that at the end of the algorithm, e is probed with

probability exactly equal to ye/λ. Here, λ ≥ 1 is our target approximation ratio. All

that remains is to analyze the performance of each large edge e ∈ EL and show that

e is probed with probability at least ye/λ. This, then, will give us a λ–approximation

algorithm.

We redefine the notion of a small edge e being safe. Suppose π is the random

order on ES and π(e) = x, 0 < x < 1. Let NS[e] be the set of small edges in the

neighborhood of e. For each f ∈ NS[e], let Xf , Yf , Zf be three random variables

such that: Xf = 1 if f falls before e in π, Yf = 1 if f ∈ E ′S and Zf = 1 if f

exists in the hypergraph when probed. Note that the collection of random variables

{Xf , Yf , Zf |f ∈ NS[e]} are mutually independent. For each f ∈ NS[e], let Af be the

event that (Xf + Yf + Zf ≤ 2) and Se = ∧f∈NS [e]Af . We define e to be safe iff Se
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happens . Lemma 2.6.1 computes the probability that a small edge e is safe in our

algorithm.

Lemma 2.6.1.

Pr[Se] =

∫ 1

0

Pr[Se|π(e) = x]dx =

∫ 1

0

∏
f∈NS [e]

(1− xyfpf )dx. (2.10)

Proof. By definition, Pr[Xf = 1|π(e) = x] = x. Note that Pr[Yf = 1] = yf ,

Pr[Zf = 1] = pf , and that these two random variables are independent of π(e).

Thus, given π(e) = x, Af will occur with probability (1− xyfpf ). Since the Af are

independent for f ∈ NS[e], the proof is completed.

Here are two interesting points for the event Se: (1) When Se happens, e must

be safe according to our initial definition, i.e., none of the edges in its neighborhood

get matched; the contrary is not true. Thus the new definition is more strict. (2)

On checking e in the algorithm, we might not know if Se occurs or not due to some

missing Zf for f ∈ NS[e]. For instance, suppose some f ∈ NS[e] gets blocked by

some small edge f ′ ∈ NS[f ] while Xf = Yf = 1. In this case, we do not know

the value of Zf since f will not be probed. In order to continue our algorithm, we

simulate Zf by generating a random bit Zf = 1 with probability pf and Zf = 0

otherwise. Notice that if Zf = 1, we will view e as not safe and will not probe it,

even though it might be safe according to our initial definition.

The full picture can be seen in Algorithm 3.
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Algorithm 3: Stochastic hypergraph matching on a k-uniform hypergraph

1 Initially all edges are safe.
2 Split the edges into two sets, the “small” edge set ES = {e|yepe ≤ c} and the

“large” edge set EL = E \ ES where c ≥ 1/2.
3 Choose a random permutation π on ES.
4 For each e ∈ ES, generate a random bit Ye = 1 with probability ye. Let E ′S be

the set of (small) edges with Ye = 1.
5 Follow the random order π to check if Se happens or not for each e ∈ E ′S.
6 if Se happens then
7 Probe e with probability he.
8 if e is matched (exists) then
9 Set Ze = 1 and mark all its neighboring large edges as unsafe.

10 else
11 Set Ze = 0.

12 else
13 Generate a random bit Ze = 1 with probability pe.

14 Probe each safe large edge with probability 1 in an arbitrary order.

2.6.1 Analysis of Algorithm 3

We first analyze the performance of a small edge. For each edge e ∈ ES,

Pr[e gets probed] = yehe Pr[e is safe|Ye = 1] = yehe Pr[Se].

To ensure that each small edge e ∈ ES is probed with probability equal to ye/λ, we

can set he = 1/(λPr[Se]) if we can ensure that Pr[Se] ≥ 1/λ. The following lemma

states that this goal is achievable. Recall that c ≥ 1/2 is the threshold such that an

edge e is small iff yepe ≤ c.

Lemma 2.6.2.

Pr[Se] ≥
1− (1− c)k/c+1

k + c
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Proof. Consider a small edge e, say e = (v1, v2, · · · , vk) and πe = x. Let E(vi) be

the set of edges incident to vi excluding e itself. Notice that NS[e] = ∪ki=1E(vi).

Therefore by Lemma 2.6.1, we have

Pr[Se|π(e) = x] =
∏

f∈NS [e]

(1− xyfpf ) ≥
k∏
i=1

∏
f∈E(vi)

(1− xyfpf )

From the proof of Lemma 2.7.2, we see that
∏

f∈E(vi)
(1− xyfpf ) ≥ (1− xc)1/c

for each 1 ≤ i ≤ k. Thus by an application of the FKG inequality as in (2.1), we

get that Pr[Se|π(e) = x] ≥ (1− xc)k/c.

Integrating over [0, 1], we get

Pr[Se] =

∫ 1

0

Pr[Se|π(e) = x] ≥ 1− (1− c)k/c+1

k + c
dx.

At this point, we have all the ingredients to prove Theorem 2.5.1.

Proof. For small edges, Lemma 2.6.2 gives us a sufficient condition to guarantee

that each small edge is probed with probability exactly equal to ye/λ, i.e.,

Pr[Se] ≥
1− (1− c)k/c+1

k + c
≥ 1

λ
. (2.11)

We now analyze the performance of large edges in SM3. For each e ∈ EL, let

Se be the event that e is safe when considered in SM3, i.e., none of small edges in the

neighbor of e gets matched. Since each small edge f gets matched with probability
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equal to
yfpf
λ

, we have that for each large item e ∈ EL, Pr[Se] ≥ 1 − (1−c)k
λ

by

applying the union bound.

In order to ensure that each large edge gets probed with probability at least

ye
λ

, it suffices to set

Pr[Se] ≥ 1− (1− c)k
λ

≥ 1

λ
(2.12)

Observe that for a small edge e, the lower bound of Pr[Se] from (2.11) is a

decreasing function of c, while for a large edge e, the lower bound in (2.12) is an

increasing function of c. Thus to find the optimal value for λ, we choose c that

maximizes the minimum of the two,

1− (1− c)k
λ

=
1− (1− c)k/c+1

k + c
=

1

λ

The solution above is c = 1
k+1

+ o( 1
k+1

). However, this is not feasible because

by assumption, c ≥ 1/2. Thus the optimal c∗ equals 1/2, in which case 1
λ

=

1
k+1/2

− O(1/(k4k)), and each small edge is safe to probe with probability 1
λ

while

each large edge is safe with probability 1
2

+ o(1/k).

2.7 Proof of Theorem 2.5.2

In this section, we present a simple randomized algorithm that achieves an

approximation ratio of (k+ ε+ o(1)) for stochastic matching on a k-uniform hyper-

graph, where ε > 0 is a given constant.

Let (x, y) be an optimal solution to the LP (2.9). Assume w.l.o.g. 1/ε = L
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where N is an integer. Let a be a constant such that 1− 1/L < a < 1. We say an

edge e is “large” if yepe > 1/L; otherwise we call e “small”. For each small edge

e, we draw a random real number xe uniformly from [0, 1]. For each large edge e,

we draw a random real number xe from [0, δ] with density a and from (δ, 1] with

density (1−aδ)/(1−δ), where δ = min(1, L(1−a1/(L−1)). Then we derive a random

permutation π by sorting {xe, e ∈ E} in increasing order. Assuming L is sufficiently

large, the value δ is at most 1/L + o(1/L). Notice that L, a and δ are all fixed

constants. Based on π, we sketch our randomized algorithm as follows. Here we say

an edge is safe iff none of its neighbors gets matched.

Algorithm 4: Stochastic hypergraph matching on a k-uniform hypergraph

1 Initially all edges are safe.
2 Follow the random order π to check each edge e ∈ E if it is safe or not.
3 If e is safe, then probe it with probability ye; otherwise, skip it.

The lemmas below are useful for the proof of Theorem 2.5.2.

Lemma 2.7.1. For any c > 1/L and 0 < x < δ, we have

1− axc > (1− x/L)cL

Proof. Define F (x) = 1− axc− (1− x/L)cL. We can verify that: (1) F (0) = 0, and

(2) F ′(x) > 0 for any 0 ≤ x < δ. This gives the desired result.

For each edge e, define ce = yepe. Consider an edge e = (v1, v2, · · · , vk).

Suppose yepe = ce < 1− 1/L and xe = x, 0 < x < δ. For each 1 ≤ i ≤ k, let E(vi)
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denote the set of edges incident to vi excluding e itself. Denote by Si the event that

none of the edges in E(vi) come before e and get matched.

Lemma 2.7.2.

Pr[Si] ≥ (1− x/L)(1−ce)L.

Proof. From LP (2.9), we see
∑

f∈E(vi)
yfpf ≤ 1 − ce. Let A and B be the set of

small edges and large edges in E(vi) respectively. Observe that

Pr[Si] ≥
∏
f∈A

(1− xcf )
∏
f∈B

(1− axcf ). (2.13)

Now we investigate how an adversary can minimize the right hand side (RHS)

of (2.13) subject to the constraint
∑

f∈E(vi)
yfpf ≤ 1 − ce. By Lemma 2.7.1, the

adversary will not put any large edge f in B: otherwise it could further decrease

the RHS by splitting f into cfL copies of small edges f ′ with each cf ′ = 1/L while

maintaining the constraint. Thus the adversary aims to minimize
∏

f∈A(1 − xcf )

subject to
∑

f∈E(vi)
cf ≤ 1 − ce with 0 ≤ cf ≤ 1/L for each f . By applying a local

perturbation as in Lemma 2.4.1, the RHS will be minimized when there are (1−ce)L

small edges in A, with each such small edge f having cf = 1/L.

We now prove Theorem 2.5.2.

Proof. We consider two cases.

1. Consider a small edge e, say e = (v1, v2, · · · , vk) and xe = x. From Lemma

2.7.2, we see Pr[Si] ≥ (1 − x/L)L for each 1 ≤ i ≤ k. Thus by applying the
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FKG inequality (2.1), we get Pr [
∧
i Si] ≥ (1− x/L)kL, which is followed by

Pr[ e is checked as safe ] ≥
∫ δ

0

(1− x/L)kLdx =
1

k + 1/L
−O(kk0/k),

where k0 = (1− δ/L)L < 1 is bounded away from 1.

2. Consider a large edge e, say e = (v1, v2, · · · , vk) and xe = x. From Lemma

2.7.2, we see Pr[Si] ≥ (1 − x/L)L−1 for each 1 ≤ i ≤ k. Thus by applying

FKG, we see when x ≤ δ, Pr [
∧
i Si] ≥ (1− x/L)k(L−1), which is followed by

Pr[ e is checked as safe ] ≥
∫ δ

0

a(1− x/L)k(L−1)dx

≥ aL

L− 1

1

k + 1/(L− 1)
−O(kk1/k) >

1

k

where k1 = (1 − δ/L)L−1 < 1 is bounded away from 1; we use the fact that

a > 1− 1/L to get the last inequality above.

2.8 Open Problems

Here we list a few open problems related to stochastic matching:

• Can we improve the ratio stated in Theorem 2.3.1 for the general graph? Note

that in the WS as described above, the big edge f has a pretty much a higher

chance of getting probed than 0.301yf . That suggests that we can potentially

break the WS by choosing a weighted permutation favoring small pe values,
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the same idea as shown in [15].

• As for the weighted stochastic matching without patience constraints as in-

troduced in [19], can we improve the best ratio of 1/0.573? We can reanalyze

Algorithm 2 and potentially land at a different WS.

Chapter 3: Online Matching

3.1 Introduction

Applications to Internet advertising have driven the study of online matching

problems in recent years [22]. In these problems, we consider a bipartite graph

G = (U, V,E) in which the set of vertices U is available offline while the set of

vertices in V arrive online. Whenever some vertex v arrives, it must be matched

immediately (and irrevocably) to (at most) one vertex in U . Each offline vertex u

can be matched to at most one v. In the context of Internet advertising, U is the set

of advertisers and V is the set of impressions. The edges E define the impressions

that interest a particular advertiser. When an impression v arrives, we must choose

an available advertiser (if any) to match with it. We consider the case where v ∈ V

can be matched at most once upon arriving. Since advertising forms the key source

of revenue for many large Internet companies, finding good matching algorithms

and obtaining even small performance gains can have high impact.
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In the arrival mode of Known Independent Identical Distributions (KIID), we

are given a bipartite graph G = (U, V,E) and a finite online time horizon T (in most

cases, we assume T = |V | = n and say the online phase takes place over n rounds).

In each round, a vertex v is sampled with replacement from a known distribution

over V . The sampling distributions are independent and identical over all of the T

online rounds. This captures the fact that we often have historical data about the

impressions and can predict the frequency with which each type of impression will

arrive. Edge-weighted matching [23] is a general model in the context of advertising:

every advertiser gains a given revenue for being matched to a particular type of

impression. Here, a type of impression refers to a class of users (e.g., a demographic

group) who are interested in the same subset of advertisements. Each arrival of

a type v ∈ V is considered a distinct vertex (user) that can be matched to up to

one u ∈ U . For example, if the same v arrives three times, we consider this three

separate vertices (or copies of v) that can potentially be matched to three different

vertices in U . A special case of this model is vertex-weighted matching [24], where

weights are associated only with the advertisers (the offline set U). In other words, a

given advertiser has the same revenue generated for matching any of the user types

interested in it.

In some modern business models, revenue is not generated upon matching

advertisements, but only when a user clicks on the advertisement: this is the pay-

per-click model. From historical data, one can assign the probability of a particular

advertisement being clicked by a type of user. Works including [25,26] capture this

notion of stochastic rewards by assigning a probability to each edge.
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3.2 Preliminaries

In the Unweighted Online KIID Stochastic Bipartite Matching problem, we

are given a bipartite graph G = (U, V,E). The set U is available offline while

the vertices v arrive online and are drawn with replacement from an independent

identical distribution on V . For each v ∈ V , we are given an arrival rate rv, which

is the expected number of times v will arrive. We refer to the case when all rv ∈ Z+

as (the setting of) integral arrival rates; otherwise, we call non-integral or fractional

arrival rates. For reasons described in [27], we can further assume WLOG that each

v has rv = 1 under the assumption of integral arrival rates. In this case, we have

that |V | = n where n is the total number of online rounds.

In the vertex-weighted variant, every vertex u ∈ U has a weight wu and

we seek a maximum weight matching. In the edge-weighted variant, every edge

e ∈ E has a weight we and we again seek a maximum weight matching. In the

stochastic rewards variant, each edge has both a weight we and a probability pe

of being present once we probe edge e1 and we seek to maximize the expected weight

of the matching.

Asymptotic assumptions and notations. We will always assume n is large

and analyze algorithms as n goes to infinity: e.g., if x ≤ 1 − (1 − 2/n)n, we will

just write this as “x ≤ 1 − 1/e2” instead of the more-accurate “x ≤ 1 − 1/e2 +

1The edge realization process is independent for different edges. At each step, the algorithm
“probes” an edge. With probability pe the edge e exists and with the remaining probability it does
not. Once realization of an edge is determined, it does not affect the random realizations for the
rest of the edges. We consider the query-commit model where an edge that is probed and found
to exist must be matched.
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o(1)”. These suppressed o(1) terms will subtract at most o(1) from our competitive

ratios. Algorithms can be adaptive or non-adaptive. When v arrives, an adaptive

algorithm can modify its online actions based on the realization of the online vertices

(and edges in the stochastic rewards model) thus far, but a non-adaptive algorithm

has to specify all of its actions before the start of the online phase. Throughout, we

use “WS” to refer to the worst case instance for various algorithms.

Competitive Ratio. Competitive ratio is a commonly-used metric to evaluate

the performance of online algorithms. Consider an online maximization problem for

example. Let ALG(I) = EI∼I [ALG(I)] denote the expected performance of ALG

on an input I, where the expectation is taken over the random arrival sequence I.

Let OPT(I) = E[OPT(I)] denote the expected offline optimal, where OPT(I) refers

to the optimal value after we observe the full arrival sequence I. Then, competitive

ratio is defined as minI
ALG(I)
OPT(I) . It is a common technique to use an LP to upper

bound the OPT(I) (called the benchmark LP) and hence get a valid lower bound

on the target competitive ratio.

3.3 Overview and Related work

Online Matching. The Online Matching (OM) was first introduced by Karp

et al. [28]. Suppose we have an unweighted bipartite graph G = (U, V,E) where U

and V represent the offline and online parties respectively. We have a time horizon,

say T rounds, and during each round t ∈ [T ]
.
= {1, 2, . . . , T} a vertex v ∈ V arrives.

Upon the arrival of v, we observe its neighbors δ(v) ⊆ U and need to make an
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immediate and irrevocable decision: either reject v or match v to one its neighbor

u ∈ δ(v) (in this case u will be not available afterwards). Our task is to design a

matching algorithm such that the expected size of the final matching is maximized.

Note that we have no any idea in advance regarding V and the arrival pattern in

each round, which we refer to as the adversarial order or adversarial when context

is clear.

For the unweighted OM under adversarial, Karp et al. [28] gave an optimal

algorithm with an online competitive ratio of (1 − 1/e). Two other variants of

OM under adversarial are also studied which can be viewed as generalizations of

the unweighted case: vertex-weighted (each offline vertex has a specific weight) and

edge-weighted while the goal is updated to maximization of the total expected weight

in the final matching. The vertex-weighted was introduced by Aggarwal et al. [24],

where they gave an optimal
(
1− 1

e

)
ratio. Feldman et al. [23] introduced the edge-

weighted version, where they consider an additional relaxation of “free-disposal”;

otherwise the ratio can be arbitrarily bad.

Two other well-studied variants of OM, Adwords and Display Ads, have re-

ceived lots of attention as well. The models of Adwords and Display Ads generalize

the matching constraint in OM in two different ways. In Adwords, each edge has a

bid we ≥ 0 and each u has a budget Bu; each time after matching e = (u, v), we gain

a profit of we while the budget of u is reduced by we; our goal is to maximize the

expected total profit obtained. In contrast, Display Ads has a flavor of B-matching:

each u has a capacity of Bu ∈ Z+ and each edge has a weight we ≥ 0; each time

when matching e = (u, v), we obtain a profit of we while the capacity of u is reduced
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by 1; the goal is to maximize the total profit. These two models can be viewed as a

generalization of OM. As for the arrival setting, there are several other alternatives

in addition to the adversarial arrival order. The following is a brief summarization.

1. Adversarial Order: the adversary can arrange the arrival order of all items

in an arbitrary way (e.g., Online Stochastic Matching [28, 29] and Adwords

[30,31]).

2. Random Arrival Order: all items arrive in a random permutation order (e.g., On-

line Stochastic Matching [32,33] and Adwords [34,35]).

3. Unknown Distributions: in each round, each vertex is sampled from a fixed

but unknown distribution. If the sampling distributions are required to be

the identical and independent during each round, we refer to it as Unknown

Identical and Independent Distributions (UIID) (e.g., [36, 37]); otherwise, we

call it unknown adversarial distributions (e.g., [36])2.

4. Known Distributions: in each round, an item is sampled from a known distri-

bution. In particularly, we have KIID (e.g., [38–42]) and known adversarial

distributions (e.g., [43, 44]), depending on if the sampling distributions are

allowed to be different over time.

For each of the above four categories, we list only a few examples. For a more

complete list, please refer to the book [22].

In this paper, we focus on OM under KIID. Here are a few related work.

Feldman et al. [38] considered the unweighted OM case and they were the first to

2In [36,37], it is referred to as adversarial stochastic input.
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beat 1− 1/e with a competitive ratio of 0.67. Later, Manshadi et al. [40] improved

that ratio to 0.705 and they showed no algorithm could achieve a ratio better than

1− e−2 ≈ 0.86 with integral arrival rate (the expected total arrivals of each vertex

is integral). Finally, Jaillet et al. [41] presented a strengthened LP to achieve a

ratio of 0.725 and 1 − 2e−2 ≈ 0.729 for the vertex-weighted and unweighted case

respectively. As for the edge-weighted case, Haeupler et al. [39] were the first to beat

1 − 1/e by achieving a competitive ratio of 0.667. They use a discounted LP with

tighter constraints than the basic matching LP (a similar LP can be seen in (3.1))

and they employ the power of two choices by constructing two matchings offline to

guide their online algorithm.

Online Matching with Stochastic Rewards. Mehta et al. [25] introduced an

interesting variant to OM: each edge e is associated with a Bernoulli random reward,

which is equal to some we ≥ 0 with probability pe ≥ 0 and 0 otherwise. This model

can be viewed as a combination of the Stochastic Matching and Online Matching,

which was called as as Online Matching with Stochastic Rewards (OM-SR) in [25].

Mehta et al. [25] focused on the simple case when we = 1 and pe = p for all

edges e under the setting of adversarial arrival order and they gave a deterministic

algorithm which achieves a ratio of 1/0.567 for vanishing probabilities (p → 0).

Mehta et al. [26] considered the same setting but each e is allowed to have a distinct

probability pe. They gave a 1/0.534-approximation algorithm when all pe → 0.
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3.4 Main Techniques and Our Results

In this paper, we focus on the edge-weighted OM under KIID with integral

arrival rates. For each e, let fe be the probability that e is added in the offline

optimal. For each vertex w ∈ U ∪ V , let ∂(w) be the set of edges adjacent to and

let fw =
∑

e∈∂(w) fe. Consider the following benchmark LP, which is used to upper

bound the offline OPT for the unweighted version:

maximize
∑
e∈E

fe (3.1)

subject to
∑
e∈∂(u)

fe ≤ 1 ∀u ∈ U (3.2)

∑
e∈∂(v)

fe ≤ 1 ∀v ∈ V (3.3)

0 ≤ fe ≤ 1− 1/e ∀e ∈ E (3.4)

fe + fe′ ≤ 1− 1/e2 ∀e, e′ ∈ ∂(u),∀u ∈ U (3.5)

Here are a few variants. The objective function is maximization of∑
u∈U

∑
e∈∂(u) fewu in the vertex-weighted version and that of

∑
e∈E fewe in the

edge-weighted version, where wu and we refer to the weight on vertex u and edge e

respectively.

Constraint (3.2) is the matching constraint for vertices in U . Constraint (3.3)

is valid because each vertex in V has an arrival rate of 1. Constraint (3.4) is used

in [40] and [39]. It captures the fact that the expected number of matches for any

edge is at most 1 − 1/e. This is valid for large n because the probability that a
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given vertex doesn’t arrive after n rounds is 1/e. Constraint (3.5) is similar to the

previous one, but for pairs of edges. For any two neighbors of a given u ∈ U , the

probability that neither of them arrive is 1/e2. Therefore, the sum of variables for

any two distinct edges in ∂(u) cannot exceed 1− 1/e2. Notice that constraints (3.4)

and (3.5) reduces the gap between the optimal LP solution and the performance of

the optimal online algorithm.

Feldman et al. [38] first proposed the idea of “two suggested matchings” and

they used it to attack unweighted OM under KIID and beat the golden ratio of

1 − 1/e. Later Haeupler et al. [39] generalized this idea to attack the weighted

version and get current best ratio of 0.667. We generalize this idea further by

generating the two matchings in a random way and improve the ratio to 0.688 for

the the edge-weighted version. Here is the main picture. First we solve the LP (3.1)

and let f = {fe} be an optimal solution. Second we apply the dependent rounding

in [14] to 2 ∗ f and suppose we get an integral vector F. Let GF be the sparse graph

induced by F where each edge e has Fe copies. Note that since each fe ≤ 1 − 1/e,

we have Fe ∈ {0, 1, 2} and from the property of dependent rounding, we see each

vertex on GF has a degree at most 2. We then apply Hall’s Theorem to GF and

decompose it into two matchings. The formal description of all algorithm is shown

as below.

Theorem 3.4.1. Algorithm 5 achieves a ratio of 0.688 for the edge-weighted online

stochastic matching with integral arrival rates.

Inspired from the work [25,26], we introduce the model of OM-SR under KIID
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Algorithm 5: Edge-weighted Online Matching under KIID

1 Construct and solve the benchmark LP (3.1) for the input instance.
2 Let f be an optimal fraction solution vector. Apply dependent rounding to

2 ∗ f to get an integral vector F.
3 Create the graph GF with Fe copies of each edge e ∈ E and decompose it

into two matchings.
4 Randomly permute the matchings to get a random ordered pair of matchings,

say [M1,M2].
5 When a vertex v arrives for the first time, try to assign v to some u1 if

(u1, v) ∈M1; when v arrives for the second time, try to assign v to some u2 if
(u2, v) ∈M2.

6 When a vertex v arrives for the third time or more, do nothing in that step.

with arbitrary arrival rates. For each edge e and vertex v, let fe be the probability

that e gets matched in an offline optimal and rv be the expected total arrivals.

Consider the following benchmark LP:

max
∑
e∈E

wefepe : (3.6)

s.t.
∑
e∈∂(u)

fepe ≤ 1,∀u ∈ U (3.7)

∑
e∈∂(v)

fe ≤ rv,∀v ∈ V (3.8)

We present a very simple non-adaptive algorithm, which achieves a ratio of

1− 1/e. Note that Manshadi et al. [40] show that no non-adaptive algorithm could

possibly achieve a ratio better than (1− 1/e) for the non-integral arrival rates, even

for the case of all pe = 1. Thus, our algorithm is an optimal non-adaptive algorithm

for this model.

Theorem 3.4.2. Algorithm 6 achieves a ratio of 1 − 1/e for the edge-weighted

OM-SR under KIID with arbitrary arrival rates. This is an optimal non-adaptive

algorithm.
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Algorithm 6: OM-SR under KIID with arbitrary arrival rates

1 Construct and solve LP (3.6). WLOG assume {fe|e ∈ E} is an optimal
solution.

2 When a vertex v arrives, assign v to each of its neighbor u with a probability
f(u,v)
rv

.

3.5 Proofs of Theorems 3.4.1 and 3.4.2

We show that Algorithm 5 achieves a competitive ratio of 0.688. Let [M1,M2]

be our randomly ordered pair of matchings. Note that there might exist some edge

e which appears in both matchings if and only if fe > 1/2. Therefore, we consider

three types of edges. We say an edge e is of type ψ1, denoted by e ∈ ψ1, if and

only if e appears only in M1. Similarly e ∈ ψ2, if and only if e appears only in M2.

Finally, e ∈ ψb, if and only if e appears in both M1 and M2.

Let P1, P2, and Pb be the probabilities of getting matched for e ∈ ψ1, e ∈ ψ2,

and e ∈ ψb, respectively. According to the result in Haeupler et al. [27], Lemma 3.5.1

bounds these probabilities.

Lemma 3.5.1 (Proof details in section 3 of [27]). Given M1 and M2, in the worst

case (1) P1 = 0.5808; (2) P2 = 0.14849 and (3) Pb = 0.632.

We can use Lemma 3.5.1 to prove that Algorithm 5 achieves a ratio of 0.688

by examining the probability that a given edge becomes type ψ1, ψ2, or ψb.

Proof of Theorem 3.4.1.

Proof. Consider the following two cases.
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• Case 1: 0 ≤ fe ≤ 1/2: By the marginal distribution property of dependent

rounding, there can be at most one copy of e in GF and the probability of

including e in GF is 2fe. Since an edge in GF can appear in either M1 or M2

with equal probability 1/2, we have Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = fe. Thus, the

ratio is (feP1 + feP2)/fe = P1 + P2 = 0.729.

• Case 2: 1/2 ≤ fe ≤ 1 − 1/e: Similarly, by marginal distribution, Pr[e ∈

ψb] = Pr[Fe = d2fee] = 2fe − b2fec = 2fe − 1. It follows that Pr[e ∈ ψ1] =

Pr[e ∈ ψ2] = (1/2)(1− (2fe− 1)) = 1− fe. Thus, the ratio is (noting that the

first term is from case 1 while the second term is from case 2) ((1− fe)(P1 +

P2)+(2fe−1)Pb)/fe ≥ 0.688, where the WS is for an edge e with fe = 1−1/e.

Proof of Theorem 3.4.2.

Proof. Let B(u, t) be the event that u is safe at beginning of round t and A(u, t)

be the event that vertex u is matched during the round t conditioned on B(u, t).

From the algorithm, we know Pr[A(u, t)] ≤
∑
v∼u

rv
n

fu,v
rv
pe ≤ 1

n
, which is followed by

Pr[B(u, t)] = Pr
[∧t−1

i=1(¬A(u, i))
]
≥
(
1− 1

n

)t−1
.

Consider an edge e = (u, v) in the graph. Notice that the probability that e

gets matched in Algorithm 6 should be as follows.

Pr[e is matched] =
n∑
t=1

Pr[v arrives at t and B(u, t) ] · fepe
rv

≥
n∑
t=1

(
1− 1

n

)t−1
rv
n

fepe
rv
≥
(

1− 1

e

)
fepe
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Note that Manshadi et al. [40] show that no non-adaptive algorithm could

possibly achieve a ratio better than (1 − 1/e) for the non-integral arrival rates,

even for the case of all pe = 1. Thus, our algorithm is optimal among all possible

non-adaptive algorithms.

3.6 Open Problems and Future Directions

Consider the simple case of OM-SR under KIID but with integral arrival rates.

We observe that the LP (3.6) is updated to

max
∑
e∈E

wefepe : (3.9)

s.t.
∑
e∈∂(u)

fepe ≤ 1,∀u ∈ U (3.10)

∑
e∈∂(v)

fe ≤ 1, ∀v ∈ V (3.11)

Given an instance I, let LP(I) be the optimal value over I and OPT(I) be

the performance of an optimal (adaptive) algorithm on I. For a given LP, we define

the Stochasticity Gap (StochGap) as the maximum ratio of LP(I)/OPT(I) over all

possible feasible instances. For the above LP (3.9), we can show its StochGap is

equal to 1/(1− 1/e).

Lemma 3.6.1. The StochGap of LP (3.9) is equal to 1
1−1/e .

Proof. Consider such an instance I∗: G = (U, V,E), where G is a unweighted com-

plete star graph; |U | = 1, |V | = T = n, pe = 1/n, rv = 1 for v ∈ V and all

we = 1. We can verify that LP(I∗) = 1 and OPT(I∗) = 1− 1/e. This implies that
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the StochGap of LP (3.9) is at least 1/(1 − 1/e). From Theorem 3.4.1, we see the

StochGap is at most 1/(1− 1/e). Summarizing all analysis we reach our claim.

An interesting question is: can we beat 1− 1/e for the edge-weighted OM-SR

under KIID with integral arrival rates? The first task facing us might be to add

some extra constraints to tighten the StochGap for the LP (3.9).

Chapter 4: An Application of Online Matching in Ridesharing

4.1 Introduction

In bipartite matching problems, agents on one side of a market are paired

with agents, contracts, or transactions on the other. Classical matching problems—

assigning students to schools, papers to reviewers, or medical residents to hospitals—

take place in a static setting, where all agents exist at the time of matching, are

simultaneously matched, and then the market concludes. In contrast, many match-

ing problems are dynamic, where one side of the market arrives in an online fashion

and is matched sequentially to the other side.

Online bipartite matching problems are primarily motivated by Internet ad-

vertising. In the basic version of the problem, we are given a bipartite graph

G = (U, V,E) where U represents the offline vertices (advertisers) and V repre-

sents the online vertices (keywords or impressions). There is an edge e = (u, v) if
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advertiser u bids for a keyword v. When a keyword v arrives, a central clearinghouse

must make an instant and irrevocable decision to either reject v or assign v to one

of its “neighbors” (i.e., set of incident edges) u and obtain a profit we for the match

e = (u, v). When an advertiser u is matched, it is no longer available for matches

with other keywords (in the most basic case) or its budget is reduced. The goal is

to design an efficient online algorithm such that the expected total weight (profit)

of the matching obtained is maximized. Following the seminal work of [28], there

has been a large body of research on related variants (overviewed by [22]). One

particular flavor of problems is Online Matching with Known Identical Independent

Distributions (OM-KIID) [38–42]. In this flavor, agents arrive over T rounds, and

their arrival distributions are assumed to be identical and independent over all T

rounds; additionally, this distribution is known to the algorithm beforehand.

Apart from the Internet advertising application, online bipartite matching

models have been used to capture a wide range of online resource allocation and

scheduling problems. Typically we have an offline and an online party representing,

respectively, the service providers (SP) and online users; once an online user arrives,

we need to match it to an offline SP immediately. In many cases, the service is

reusable in the sense that once an SP is matched to a user, it will be gone for some

time, but will then rejoin the system afterwards. Besides that, in many real settings

the arrival distributions of online users do change from time to time. Consider the

following motivational examples.

Taxi Dispatching Services and Ridesharing Systems. Traditional taxi ser-
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vices and rideshare systems like Uber and Didi Chuxing match drivers to would-be

riders [45–48]. Here, the offline SPs are different vehicle drivers. Once an online

request (potential rider) arrives, the system matches it to a nearby driver instantly

such that the rider’s waiting time is minimized. In most cases, the driver will rejoin

the system and can be matched again once she finishes the service. Additionally, the

arrival rates of requests changes dramatically across the day. Consider the online

arrivals during peak hours and off-peak hours for example: the arrival rates in the

former case can be much larger than the latter.

Organ Allocation. Chronic kidney disease affects tens of millions of people world-

wide at great societal and monetary cost [49, 50]. Organ donation—either via a

deceased or living donor—is a lifesaving alternative to organ failure. In the case

of kidneys, a donor organ can last up to 15 years in a patient before failing again.

Various nationwide organ donation systems exist and operate under different ethi-

cal and logistical constraints [51–53], but all share a common online structure: the

offline party is the set of patients (who reappear every 5 to 15 years based on donor

organ longevity), and the online party is the set of donors or donor organs, who

arrive over time.

Similar scenarios can be seen in other areas such as wireless network connection

management (SPs are different wireless access points) [54] and online cloud com-

puting service scheduling [55,56]. Inspired by the above applications, we generalize

the model of OM-KIID in the following two ways.

Reusable Resources. Once we assign v to u, u will rejoin the system after Ce
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rounds with e = (u, v), where Ce ∈ {0, 1, . . . , T} is an integral random variable with

known distribution. In this paper, we call Ce the occupation time of u w.r.t. e.

In fact, we show that our setting can directly be extended to the case when Ce is

time sensitive: when matching v to u at time t, u will rejoin the system after Ce,t

rounds. This extension makes our model adaptive to nuances in real-world settings.

For example, consider the taxi dispatching or ride-sharing service: the occupation

time of a driver u from a matching with an online user v does depend on both the

user type of v (such as destination) and the time when the matching occurs (peak

hours can differ significantly from off-peak hours).

Known Adversarial Distributions (KAD). Suppose we have T rounds and that

for each round t ∈ [T ], a vertex v is sampled from V according to an arbitrary

known distribution D where the marginal for v is {pv,t} such that
∑

v∈V pv,t ≤ 1 for

all t. Also, the arrivals at different times are independent (and according to these

given distributions). The setting of KAD was introduced by [43, 44] and is called

Prophet Inequality matching.

We call our new model Online Matching with (offline) Reusable Resources

under Known Adversarial Distributions (OM-RR-KAD, henceforth). Note that the

OM-KIID model can be viewed as a special case when Ce is a constant (with respect

to T ) and {pv,t|v ∈ V } are the same for all t ∈ [T ].
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4.2 Related Work

Despite the fact that our model is inspired by online bipartite matching, it also

overlaps with stochastic online scheduling problems (SOS) [57–59]. We first restate

our model in the language of SOS: we have |U | nonidentical parallel machines and

|V | jobs; at every time-step a single job v is sampled from V with probability pv,t;

the jobs have to be assigned immediately after its arrival (or rejected right away);

additionally each job v can be processed non-preemptively on a specific subset of

machines; once we assign v to u, we get a profit of we and u will be occupied for

Ce rounds with e = (u, v), where Ce is a random variable with known distribution.

Observe that the key difference between our model and SOS is in the objective: the

former is to maximize the expected profit from the completed jobs, while the latter

is to minimize the total or the maximum completion time of all jobs.

Research in ridesharing platforms and similar allocation problems is an ac-

tive area of research within multiple fields, including computer science, operations

research and transportation engineering. State-independent policies were studied

previously using theory from control and queuing systems [60–62]. The role of pric-

ing in the dynamics of drivers in ridesharing platforms is also an active area of

research in computational economics and AI/ML (e.g., [63–68]). Our problem is a

form of online matching in dynamic environments, which is an active area of research

within the AI/ML community. In particular, [45,46,52,69] have studied algorithms

for matching in various dynamic bipartite markets such as kidney exchange, spatial

crowdsourcing, labor markets, and so on. Similar line of work on general graphs is
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also prominent in the literature (e.g., [70–73]).

4.3 Main Model and Techniques

4.3.1 Main Model

In this section, we present a formal statement of our main model. Suppose we

have a bipartite graph G = (U, V,E) where U and V represent the offline and online

parties respectively. We have a finite time horizon T (known beforehand) and for

each time t ∈ [T ], a vertex v will be sampled (we use the term v arrives) from a

known probability distribution {pv,t} such that
∑

v∈V pv,t ≤ 11 (noting that such a

choice is made independently for each round t). The expected number of times v

arrives across the T rounds,
∑

t∈[T ] pv,t, is called the arrival rate for vertex v. Once

a vertex v arrives, we need to make an irrevocable decision immediately: either to

reject v or assign v to one of its neighbors in U . For each u, once it is assigned to some

v, it becomes unavailable for Ce rounds with e = (u, v), and subsequently rejoins

the system. Here Ce is an integral random variable taking values from {0, 1, . . . , T}

and the distribution is known in advance. Each assignment e is associated with a

weight we and our goal is to design an online assignment policy such that the total

expected weights of all assignments made is maximized. Following prior work, we

assume |V | � |U | and T � 1. Throughout this paper, we use edge e = (u, v) and

assignment of v to u interchangeably.

For an assignment e, let xe,t be the probability that e is chosen at t in any

1Thus, with probability 1−
∑

v∈V pv,t, none of the vertices from V will arrive at t.
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offline optimal algorithm. For each u (likewise for v), let Eu (Ev) be the set of

neighboring edges incident to u (v). We use the LP (4.1) as a benchmark to upper

bound the offline optimal. We now interpret the constraints. For each round t, once

an online vertex v arrives, we can assign it to at most one of its neighbors. Thus,

we have: if v arrives at t, the total number of assignments for v at t is at most 1; if

v does not arrive, the total is 0. The LHS of (4.2) is exactly the expected number of

assignments made at t for v. It should be no more than the prob. that v arrives at

t, which is the RHS of (4.2). Constraint (4.3) is the most novel part of our problem

formulation. Consider a given u and t. In the LHS, the first term (summation over

t′ < t and e ∈ Eu) refers to the prob. that u is not available at t while the second

term (summation over e ∈ Eu) is the prob. that u is assigned to some worker at t,

which is no larger than prob. u is available at t. Thus, the sum of the first term

and second term on LHS is no larger than 1.2 This argument implies that the LP

forms a valid upper-bound on the offline optimal solution, which is formally stated

in the below lemma.

Lemma 4.3.1. The optimal value to LP (4.1) is a valid upper bound for the offline

optimal.

Extension from Ce to Ce,t. Consider the case when the occupation time of u from

e is sensitive to t. In other words, each u will be unavailable for Ce,t rounds from the

assignment e = (u, v) at t. We can accommodate the extension by simply updating

the constraints (4.3) on u in the benchmark LP (4.1) to the following. We have that

2We would like to point out that our LP constraint (4.3) on u is inspired by [74]. The proof is
similar to that by [43] and [44].
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maximize
∑
t∈[T ]

∑
e∈E

wexe,t (4.1)

subject to
∑
e∈Ev

xe,t ≤ pv,t ∀v ∈ V, t ∈ [T ] (4.2)∑
t′<t

∑
e∈Eu

xe,t′ Pr[Ce > t− t′] +
∑
e∈Eu

xe,t ≤ 1 ∀u ∈ U, t ∈ [T ] (4.3)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ] (4.4)

∀u ∈ U, t ∈ [T ],

∑
t′<t

∑
e∈Eu

xe,t′ Pr[Ce,t′ > t− t′] +
∑
e∈Eu

xe,t ≤ 1 (4.5)

The rest of our algorithm remains the same as before. We can verify that LP (4.1)

with constraints (4.3) replaced by (4.5) is a valid benchmark.

4.3.2 A Simulation-Based Algorithm

Now we present a simulation-based algorithm. The main idea is as follows.

Let x∗ denote an optimal solution to LP (4.1). Suppose we aim to develop an

online algorithm achieving a ratio of γ ∈ [0, 1]. Consider an assignment e = (u, v)

when some v arrived at time t. Let SFe,t be the event that e is safe at t, i.e., u is

available at t. By simulating the current strategy up to t, we can get an estimation

of Pr[SFe,t], say βe,t, within an arbitrary small error. Therefore in the case where e

is safe at t, we can sample it with probability
x∗e,t
pv,t

γ
βe,t

, which leads to the fact that e

is sampled with probability γx∗e,t unconditionally. Hence, we call any algorithm that

satisfies γ ≤ βe,t as valid. At the outset, this looks similar to the Inverse Propensity
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Scoring (IPS) used in the multi-armed bandit literature [75]. However, there is a

key difference between IPS estimates and our estimates. In the bandit literature,

one usually scales the value by the probability of playing an action, since this is

the cost of observing only bandit feedback. However, here we scale by a quantity

that depends on the probability of a certain event happening during the run of the

algorithm, because of playing other actions. The linear program gives a distribution

over the edges assuming that all the neighbors are available. Hence this scaling can

be interpreted as the cost the algorithm needs to incur when some neighbors are

already matched.

The simulation-based attenuation technique has been used previously for other

problems, such as stochastic knapsack [74] and stochastic matching [76]. Throughout

the analysis, we assume that we know the exact value of βe,t := Pr[SFe,t] for all t

and e. (It is easy to see that the sampling error can be folded into a multiplicative

factor of (1 − ε) in the competitive ratio by standard Chernoff bounds and hence,

ignoring it leads to a cleaner presentation.). The formal statement of our algorithm,

denoted by ADAP(γ), is as follows. For each v and t, let Ev,t be the set of safe

assignments for v at t.

Algorithm 7: Simulation-based adaptive algorithm (ADAP(γ))

1 For each time t, let v denote the request arriving at time t.

2 If Ev,t = ∅, then reject v; otherwise choose e ∈ Ev,t with prob.
x∗e,t
pv,t

γ
βe,t

where

e = (u, v).

Here are two main theoretical results regarding the algorithm ADAP(γ) and

our model.
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Theorem 4.3.1. LP (4.1) is a valid benchmark for OM-RR-KAD. There exists an

online algorithm, based on LP (4.1), achieving an online competitive ratio of 1
2
− ε

for any given ε > 0.

Theorem 4.3.2. No non-adaptive algorithm, based on benchmark LP (4.1), can

achieve a competitive ratio better than 1
2

+ o(1) 3 even when all Ce are constants.

4.4 Proofs of Theorems 4.3.1 and 4.3.2

4.4.1 Proof of Theorem 4.3.1

Lemma 4.4.1. ADAP(γ) is valid with γ = 1
2
.

Proof. We show by induction on t as follows. When t = 1, βe,t = 1 for all e = (u, ∗),

we are done. This is because of the following.

∑
e∈Ev,t

x∗e,t
pv,t

γ

βe,t
≤
∑
e∈Ev

x∗e,t
pv,t

γ ≤ 1

2

Assume for all t′ < t, βe,t′ ≥ 1/2 and ADAP(γ) is valid for all rounds t′. In

other words, each e is assigned with probability exactly equal to x∗e,t′ ∗ 1
2

for all t′ < t.

Now consider a given e = (u, v). Observe that e is unsafe at t iff u is assigned with

some v′ at t′ < t such that the assignment e′ = (u, v′) makes u unavailable at t.

Therefore

1− βe,t = 1− Pr[SFe,t] =
∑
t′<t

∑
e∈Eu

x∗e,t′

2
Pr[Ce > t− t′]

3o(1) is a vanishing term when both of Ce and T/Ce are sufficiently large.
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Thus from the constraints (4.3) in our benchmark LP, we have the following.

βe,t = 1−
∑
t′<t

∑
e∈Eu

x∗e,t′

2
Pr[Ce > t− t′] ≥ 1

2
+

1

2

∑
e∈Eu

x∗e,t ≥
1

2

Hence we have,
∑

e∈Ev,t

x∗e,t
pv,t

γ
βe,t
≤
∑

e∈Ev

x∗e,t
pv,t
≤ 1 and thus we are done.

The main Theorem 4.3.1 follows directly from Lemmas 4.3.1 and 4.4.1.

4.4.2 Proof of Theorem 4.3.2

Consider a complete bipartite graph G = (U, V,E) where |U | = K, |V | = n2.

Suppose we have T = n rounds and pv,t = 1
n2 for each v and t. In other words, in

each round t, each v is sampled uniformly from V . For each e, let Ce be a constant

of K, which implies that each u will be unavailable for a constant K rounds after

each assignment. Assume all assignments have a uniform weight (i.e., we = 1 for all

e). Split the whole online process of n rounds into n−K + 1 consecutive windows

W = {W`} such that W` = {`, ` + 1, . . . , ` + K − 1} for each 1 ≤ ` ≤ n −K + 1.

The benchmark LP (4.1) then reduces to the following.

max
∑
t∈[T ]

∑
e∈E

xe,t (4.6)

s.t.
∑
e∈Ev

xe,t ≤
1

n2
∀v ∈ V, t ∈ [T ] (4.7)

∑
t∈W`

∑
e∈Eu

xe,t ≤ 1 ∀u ∈ U, 1 ≤ ` ≤ n−K + 1 (4.8)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ] (4.9)
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We can verify that an optimal solution to the above LP is as follows: x∗e,t =

1/(n2K) for all e and t with the optimal objective value of n. We investigate

the performance of any optimal non-adaptive algorithm. Notice that the expected

arrivals of any v in the full sequence of online arrivals is 1/n. Thus for any non-

adaptive algorithm NADAP, it needs to specify the allocation distribution Dv for

each v during the first arrival. Consider a given NADAP parameterized by {αu,v ∈

[0, 1]} for each v and u ∈ Ev such that
∑

u∈Ev
αu,v ≤ 1 for each v. In other words,

NADAP will assign v to u with probability αu,v when v comes for the first time and

u is available.

Let βu =
∑

v∈Eu
αu,v ∗ 1

n2 , which is the probability that u is matched in each

round if it is safe at the beginning of that round, when running NADAP. Hence,

∑
u∈U

βu =
∑
u∈U

∑
v∈Eu

αu,v ·
1

n2
=
∑
v∈V

∑
u∈Ev

αu,v ·
1

n2
≤ 1

Consider a given u with βu and let γu,t be the probability that u is available

at t. Then the expected number of matches of u after the n rounds is
∑

t βuγu,t. We

have the recursive inequalities on γu,t as in Lemma 4.4.2, with γu,t = 1, t = 1.

Lemma 4.4.2. ∀1 < t ≤ n, we have

γu,t + βu
∑

t−K+1≤t′<t

γu,t′ = 1

Proof. The inequality for t = 1 is due to the fact that u is safe at t = 1. For each time

t > 1, Let SFu,t be the event that u is safe at t and Au,t be the event that u is matched
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at t. Observe that for each window of K time slots, {SFu,t, Au,t′ , t−K + 1 ≤ t′ < t}

are are mutually exclusive and collectively exhaustive events. Therefore,

1 = Pr[SFu,t] +
∑

t−K+1≤t′<t

Pr[Au,t′ ]

= γu,t + βu
∑

t−K+1≤t′<t

γu,t

Note that the OPT of our benchmark LP is n while the performance of NADAP

is
∑

u

∑
t βuγu,t. The resulting competitive ratio achieved by an optimal NADAP is

captured by the following maximization problem.

max

∑
u

∑
t βuγu,t
n

(4.10)

s.t.
∑
u∈U

βu ≤ 1 (4.11)

γu,t + βu
∑

t−K+1≤t′<t

γu,t′ = 1 ∀1 < t ≤ n, u ∈ U (4.12)

βu ≥ 0, γu,1 = 1 ∀u ∈ U (4.13)

We prove the following Lemma which implies Theorem 4.3.2.

Lemma 4.4.3. The optimal value to the program (4.10) is at most 1
2−1/K + o(1)

when K = o(n).

Proof. Focus on a given vertex u ∈ U . Notice that γu,t + βu
∑

t−K+1≤t′<t γu,t′ = 1
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for all 1 ≤ t ≤ n. Summing both sides over t ∈ [n], we have the following.

(
1 + βu(K − 1)

)∑
t∈[n]

γu,t = n+ βu(K − 1)γu,n + βu(K − 2)γu,n−1 + · · ·+ βuγu,n−K+2

≤ n+K − 1

Therefore we have,

∑
t∈[n]

γu,t ≤
n

1 + βu(K − 1)
+

K − 1

1 + βu(K − 1)
≤ n

1 + βu(K − 1)
+

1

βu

DefineHu
.
=
∑

t βuγu,t. From the above analysis, we have thatHu ≤ nβu
1+βu(K−1)+

1. Thus the objective value in the program (4.10) can be upper-bounded as follows.

∑
u

∑
t βuγu,t
n

=
∑
u∈U

Hu

n
≤
∑
u∈U

βu
1 + βu(K − 1)

+
K

n

We claim that the optimal value to the program (4.10) can be upper bounded

by the following maximization program.

max
∑
u∈[U ]

βu
1 + βu(K − 1)

+
K

n
:
∑
u∈U

βu = 1, βu ≥ 0,∀u ∈ U


According to our assumption K = o(n), the second term can be ignored. Let

g(x) = x/(1 + x(K − 1)). For any K ≥ 2, it is a concave function, which implies

that maximization of g subject to
∑

u βu = 1 will be achieved when all βu = 1/K.

The resultant value is 1
2−1/K + o(1). Thus we are done.
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4.5 Experiments

To validate the approaches presented in this paper, we use the New York

City Yellow Cabs dataset,4 which contains the trip records for trips in Manhattan,

Brooklyn, and Queens for the year 2013. The dataset is split into 12 months. For

each month we have numerous records each corresponding to a single trip. Each

record has the following structure. We have an anonymized license number which is

the primary key corresponding to a car. For privacy purposes a long string is used

as opposed to the actual license number. We then have the time at which the trip

was initiated, the time at which the trip ended, and the total time of the trip in

seconds. This is followed by the starting coordinates (i.e., latitude and longitude)

of the trip and the destination coordinates of the trip.

Assumptions. We make two assumptions specific to our experimental setup.

Firstly, we assume that every car starts and ends at the same location, for all

trips that it makes. Initially, we assign every car a location (potentially the same)

which corresponds to its docking position. On receiving a request, the car leaves

from this docking position to the point of pick-up, executes the trip and returns

to this docking position. Secondly, we assume that occupation time distributions

(OTD) associated with all matches are identically (and independently) distributed,

i.e., {Ce} follow the same distribution. Note that this is a much stronger assump-

tion than what we made in the model, and is completely inspired by the dataset (see

Section 4.5.2). We test our model on two specific distributions, namely a normal

4http://www.andresmh.com/nyctaxitrips/
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distribution and the power-law distribution (see Figure 4.5). The docking position

of each car and parameters associated with each distribution are all learned from

the training dataset (described below in the Training discussion).

4.5.1 Experimental Setup

For our experimental setup, we randomly select 30 cabs (each cab is denoted by

u). We discretize the Manhattan map into cells such that each cell is approximately

4 miles (increments of 0.15 degrees in latitude and longitude). For each pair of

locations, say (a, b), we create a request type v, which represents all trips with

starting and ending locations falling into a and b respectively. In our model, we

have |U | = 30 and |V | ≈ 550 (variations depending on day to day requests with low

variance). We focus on the month of January 2013. We split the records into 31

parts, each corresponding to a day of January. We choose a random set of 12 parts

for training purposes and use the remaining for testing purposes.

The edge weight we on e = (u, v) (i.e., edge from a car u to type v) is set as a

function of two distances in our setup. The first is the trip distance (i.e., the distance

from the starting location to the ending location of v, denoted L1) while the second

is the docking distance (i.e., the distance from the docking position of u to the

starting/ending location of v, denoted L2). We set we = max(L1−αL2, 0), where α

is a parameter capturing the subtle balance between the positive contribution from

the trip distance and negative contribution from the docking distance to the final

profit. We set α = 0.5 for the experiments. We consider each single day as the
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time horizon and set the total number of rounds T = 24∗60
5

= 288 by discretizing

the 24-hour period into a time-step of 5 minutes. Throughout this section, we use

time-step and round interchangeably.

Training. We use the training dataset of 12 days to learn various parameters. As

for the arrival rates {pv,t}, we count the total number of appearances of each request

type v at time-step t in the 12 parts (denote it by cv,t) and set pv,t = cv,t/12 under

KAD (Note that cv,t is at most 12 and hence this value is always less than 1). When

assuming KIID, we set pv = pv,t = (cv/12)/T where we have cv =
∑

t∈[T ] cv,t (i.e., the

arrival distributions are assumed the same across all the time-steps for each v). The

estimation of parameters for the two different occupation time distributions are

processed as follows. We first compute the average number of seconds between two

requests in the dataset (note this was 5 minutes in the experimental setup). We then

assume that each time-step of our online process corresponds to a time-difference of

this average in seconds. We then compute the sample mean and sample variance of

the trip lengths (as number of seconds taken by the trip divided by five minutes) in

the 12 parts. Hence we use the normal distribution obtained by this sample mean

and standard deviation as the distribution with which a car is unavailable. We

assign the docking position of each car to the location (in the discretized space) in

which the majority of the requests were initiated (i.e., starting location of a request)

and matched to this car.
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Figure 4.1: OTD is normal distribution
under KIID

Figure 4.2: OTD is normal distribution
under KAD

Figure 4.3: OTD is power law distribu-
tion under KAD

Figure 4.4: The number of requests of a
given type at various time-steps. x-axis:
time-step, y-aixs: number of requests

4.5.2 Justifying The Two Important Model Assumptions

Known Adversarial Distributions. Figure 4.4 plots the number of arrivals of a

particular type at various times during the day. Notice the significant increase in the

number of requests in the middle of the day as opposed to the mornings and nights.

This justified our arrival assumption of KAD which assumes different arrival distri-

butions at different time-steps. Hence the LP (and the corresponding algorithm)

can exploit this vast difference in the arrival rates and potentially obtain improved
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Figure 4.5: Occupation time distribution
of all cars. x-axis: number of time-steps,
y-axis: number of requests

Figure 4.6: Occupation time distribution
of two different cars. x-axis: number of
time-steps, y-axis: number of requests

results compared to the assumption of Known Identical Independent Distributions

(KIID). This is confirmed by our experimental results shown in Figures 4.1 and 4.2.

Identical-Occupation-Time Distribution. We assume each car will be available

again via an independent and identical random process regardless of the matches

it received. The validity of our assumptions can be seen in Figures 4.5 and 4.6,

where the x-axis represents the different occupation time and the y-axis represents

the corresponding number of requests in the dataset responsible for each occupation

time. It is clear that for most requests the occupation time is around 2-3 time-steps

and dropping drastically beyond that with a long tail. Figure 4.6 displays occupation

times for two representative (we chose two out of the many cars we plotted, at

random) cars in the dataset; we see that the distributions roughly coincide with

each other, suggesting that such distributions can be learned from historical data

and used as a guide for future matches.
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4.5.3 Results

Inspired by the experimental setup by [45,77], we run five different algorithms

on our dataset. The first algorithm is the ALG-LP. In this algorithm, when a

request v arrives, we choose a neighbor u with probability x∗e,t/pv,t with e = (u, v) if

u is available. Here x∗e,t is an optimal solution to our benchmark LP and pv,t is the

arrival rate of type v at time-step t. The second algorithm is called ALG-SC-LP.

Recall that Ev,t is the set of “safe” or available assignments with respect to v when

the type v arrives at t. Let xv,t =
∑

e∈Ev,t
x∗e,t. In ALG-SC-LP, we sample a safe

assignment for v with probability x∗e,t/xv,t. The next two algorithms are heuristics

oblivious to the underlying LP. Our third algorithm is called GREEDY which is as

follows. When a request v comes, match it to the safe neighbor u with the highest

edge weight. Our fourth algorithm is called UR-ALG which chooses one of the

safe neighbors uniformly at random. Finally, we use a combination of LP-oblivious

algorithm and LP-based algorithm called ε-GREEDY. In this algorithm when a

type v comes, with probability ε we use the greedy choice and with probability 1− ε

we use the optimal LP choice. In our algorithm, we optimized the value of ε and

set it to ε = 0.1. We summarize our results in the following plots. Figures 4.1, 4.2,

and 4.3 show the performance of the five algorithms and OPT (optimal value of the

benchmark LP) under the different assumptions of the OTD (normal or power law)

and online arrives (KIID or KAD). In all three figures the x-axis represents test

data-set number and the y-axis represents average weight of matching.

Discussion. From the figures, it is clear that both the LP-based solutions, namely

63



ALG-LP and ALG-SC-LP, do better than choosing a free neighbor uniformly at

random. Additionally, with distributional assumptions the LP-based solutions out-

perform greedy algorithm as well. We would like to draw attention to a few inter-

esting details in these results. Firstly, compared to the LP optimal solution, our

LP-based algorithms have a competitive ratio in the range of 0.5 to 0.7. We believe

this is because of our experimental setup. In particular, we have that the rates are

high (> 0.1) only in a few time-steps while in all other time-steps the rates are very

close to 0. This means that it resembles the structure of the theoretical worst case

example we showed in Section 4.4.2. In future experiments, running our algorithms

during peak periods (where the request rates are significantly larger than 0) may

show that competitive ratios in those cases approach 1. Secondly, it is surprising

that our algorithm is fairly robust to the actual distributional assumption we made.

In particular, from Figures 4.2 and 4.3 it is clear that the difference between the

assumption of normal distribution versus power-law distribution for the unavailabil-

ity of cars is negligible. This is important since it might not be easy to learn the

exact distribution in many cases (e.g., cases where the sample complexity is high)

and this shows that a close approximation will still be as good.

Simulation based algorithm. We omit the results of the simulation based al-

gorithm, since the performance was similar to the algorithm without the scaling

(i.e., ALG-LP). Here we briefly describe the implementation details on performing

the simulations efficiently in practice. The estimates are computed even before the

start of the algorithm. We first simulate the entire sequence of T requests, δ times.
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Using these δ samples we first compute the estimates for the first time-step. We

now re-use the same δ samples and the computed estimates in the first time-step

to obtain the estimates for the second time-step. Hence in a sequential manner, we

compute estimates at time t using the samples from time-steps 1, 2, . . . , t− 1. The

overall run-time of this implementation is O(δT+δTκ), where κ denotes the running

time of ADAP in every time-step. Hence during the online phase, the running time

of ADAP is same as that of ALG-LP.

4.6 Conclusion and Future Directions

In this work, we provide a model that captures the application of assignment

in ride-sharing platforms. One key aspect in our model is to consider the reusable

aspect of the offline resources. This helps in modeling many other important applica-

tions where agents enter and leave the system multiple times (e.g., organ allocation,

crowdsourcing markets [78], etc.). Our work opens several important research direc-

tions. The first direction is to generalize the online model to the batch setting. In

other words, in each round we assume multiple arrivals from V . This assumption is

useful in crowdsourcing markets (for example) where multiple tasks—but not all—

become available at some time. The second direction is to consider a Markov model

on the driver starting position. In this work, we assumed that each driver returns

to her docking position. However, in many ride-sharing systems, drivers start a new

trip from the position of the last-drop off. This leads to a Markovian system on the

offline types, as opposed to the assumed static types in the present work. Finally,

65



pairing our current work with more applied stochastic optimization and reinforce-

ment learning approaches would be of practical interest to policymakers running

taxi and bikeshare services [46,79–82].

Chapter 5: More Applications of Online Matching

In this chapter, we briefly discuss applications of online matching models

in several other matching markets, such as online recommendation systems, taxi-

dispatching platforms, and online task assignment platforms.

Online Recommendations. Most prior research on online matching focuses on

maximizing the total weight of the final matching [22], which captures the qual-

ity/relevance of all the matches. In many matching markets, we also care about

the diversity of the final matching along with relevance. Consider the example of

matching academic papers to potential reviewers: just maximizing the relevance

(the quality of each match) could potentially assign a paper to multiple scholars in

a single lab due to shared expertise, which is undesirable. Instead, we want to assign

each paper to relevant experts with diverse backgrounds to obtain comprehensive

feedback. Maximizing diversity1 is of particular importance in various recommenda-

tion systems, ranging from recommendations of new books and movies on eBay [84]

to returning search-engine queries [85]. A common strategy to address diversity is to

1Both individual and aggregate diversity [83].
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first formulate a specific objective (typically maximization over a submodular func-

tion) capturing the balance of diversity and relevance and then design an efficient

algorithm—typically a greedy one—to solve it (e.g., [86] and references within).

We proposed a new model, Online Submodular bipartite matching, which effec-

tively captures notions such as relevance and diversity in matching markets. Many

applications such as advertising, hiring diverse candidates, recommending movies

or songs naturally fit within this framework. We designed two algorithms, one

based on contention-resolution schemes and the other based on using the solution of

the mathematical program directly; we gave theoretical guarantees on their perfor-

mance. The algorithm using the mathematical program directly is essentially tight

even for the special case of linear objectives. We also showed that our algorithms do

well in practice via intensive synthetic and real experiments. Additionally, we pro-

posed heuristics, some of which perform well on specialized submodular functions,

and showed that our general algorithm is competitive with such algorithms as well.

More details can be checked in the paper [87].

Taxi-Dispatching Platforms. It is important for taxi dispatching platforms to

account for human factors such as preferences of workers and tasks. Prior work has

integrated the preferences of either workers or tasks into the optimization objectives.

For example, some researchers propose to minimize the sum of distances between

the origin of each task and the matched worker over all matches [88–90]. This

way the overall waiting time of all passengers is reduced. Others maximize the

total utility obtained through all successful matches, where the utility is defined to
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depict the workers’ preference on payment [91, 92]. Despite these pioneer studies,

the preference of only one side (workers or tasks) is considered. We argue that the

matching policies should reflect the preferences of both sides (workers and tasks),

which we will illustrate via the following example.

Image during the rush hours of Monday, Alice requested a taxi on Uber to take

her from home to office for a short-distance trip. At the same time, Bob appeared

on Uber as driver and he happened to be close to Alice’s home. To minimize the

waiting time of Alice, Uber should match Alice and Bob. However, this might hurt

Bob’s interest. This is because during rush hours passengers far outnumber drivers.

Thus Bob preferred to wait for requests of long-distance rides to earn more profit.

A question arises whether Uber should reject Alice or assign her to Bob. This is a

common example in on-demand taxi dispatching platforms, where the preferences of

workers and tasks may differ or even conflict with each other. That is, a passenger

may prefer to be picked up immediately by a driver nearby while the driver may

prefer to wait for long-distance rides. A natural question is: How can we design

matching policies to reconcile the preferences of both the workers and tasks such

that they are satisfied to a best degree?

We proposed an online stable matching model under KIID to address the

preference-aware task assignment problem in taxi-dispatching applications. The

model features two objectives: maximization of the total profit and minimization

of the overall dissatisfaction about preferences among workers and tasks. We con-

structed an LP, which proves to be a valid upper bound on the expected maximum

profit on the offline optimal stable matching. We further proposed an LP-based on-
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line algorithm, which achieves an online ratio of at least 1−1/e on the first objective

and maintains the ratio of the expected number of total blocking edges to that of

the total edges at most 0.6. More details can be see in the paper [93].

Online Task Assignment Platforms. In most matching models for online task

assignment problems, we assume that tasks are static (known in advance). This fails

to capture various applications where the tasks are not all available at once and come

in an online manner similar to the workers. This is a common scenario in spatial

crowdsourcing platforms. [94] considered a practical worker-task assignment under

a converse setting to that in a typical crowdsourcing human resource market, where

the spatial tasks come dynamically while the workers are static. The worker has

to travel to the specific location of the task to finish it. [45] studied a generalized

setting where both workers and tasks come online which was motivated from a

spatial crowdsourcing platform on university campus, where anyone on campus can

both post micro-tasks, (e.g., buying drinks or collecting a package), and perform

tasks as a worker. They assumed that the arrivals is sampled from the distribution

over all permutations of both workers and tasks together and is unknown to the

algorithm. They tested their algorithms on two real-world crowdsourcing datasets,

namely gMission [95] and EverySender.

Inspired by the above work ( [45,94]), we proposed the online task assignment

with two-sided arrival where both workers and tasks come online but under the

arrival setting of KIID. Let us first briefly review a typical setting of task assignment

under KIID — a known bipartite graph G = (U, V,E) is given as input (this graph is
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also called the compatibility graph throughout this paper), where U and V represent

the respective set of worker-types and task-types; we have a finite time horizon of T

in which vertices in U are revealed step-by-step in each time-step (while all vertices

in V are already given). In every time-step a worker of a particular type is sampled

from a known distribution over U and the samples are independent across all the T

rounds. We generalized the KIID setting from one-sided arrival to two-sided arrival

in the following natural way — in each round (for a total of T rounds) a worker of

type u is sampled from a known distribution over U , while simultaneously a task of

type v is sampled from another known distribution over V independently.

We presented an optimal non-adaptive algorithm which achieves an online

competitive ratio of 0.295. For the special case where the reward is a function of

just the worker type, we present an improved algorithm (which is adaptive) and

achieves a competitive ratio of at least 0.343. On the hardness side, along with

showing that the ratio obtained by our non-adaptive algorithm is the best possible

among all non-adaptive algorithms, we further show that no (adaptive) algorithm

can achieve a ratio better than 0.581 (unconditionally), even for the special case

with homogenous tasks (i.e., all rewards are same). At the heart of our analysis lies

a new technical tool (which is a refined notion of the birth-death process), called

the two-stage birth-death process. We also performed numerical experiments on

two real-world datasets obtained from crowdsourcing platforms to complement our
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theoretical results. More details can be seen in the paper [96].

Chapter 6: Conclusion and Future Work

This dissertation presented two fundamental matching models, namely stochas-

tic matching and online matching, and an application of online matching in rideshar-

ing platforms. It offers examples regarding we utilize online matching techniques to

leverage those estimations from machine learning to optimize the matching policy

in various matching markets. In the following, we brief list a few future directions.

The first direction is to remove the independence from the arrival assumption.

Current literature mainly considers the following three arrival assumptions: adver-

sarial (no information is known for the full arrival sequence), random arrival order

(the full arrival sequence forms a random permutation order) and known distribu-

tions (each time a vertex is sampled from a known distribution and the sampling

is independent over time). My current research primarily focuses on the last one

and in the future, I plan to consider the following variant of known distributions:

what if the sampling distributions are dependent across different time-steps? The

correlation on the arrivals of different types of online agents (e.g., users, workers

and tasks) can often be observed in real datasets. That will be a great challenge to

online algorithm design.

The second direction is about variance reduction in online algorithm design.
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Due to the nature of online algorithms, it can be implemented only once and thus,

the optimization over the expected performance (often captured by maximization

or minimization an expectation) is far from enough. We hope to design an online

algorithm, which achieves not only high expected performance (i.e., effectiveness)

but also low variance (i.e., robustness). How to balance these two objectives? Is

there any tradeoff between the two, similar to the bias-variance tradeoff common in

machine learning?

72



Bibliography

[1] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua
Gong, Jieping Ye, and Zhenhui Li. Deep multi-view spatial-temporal network
for taxi demand prediction. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, pages 2588–2595, 2018.

[2] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu.
Multi-task representation learning for travel time estimation. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1695–1704, 2018.

[3] Zheng Wang, Kun Fu, and Jieping Ye. Learning to estimate the travel time. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 858–866, 2018.

[4] Vijay V Vazirani. Approximation algorithms. Springer Science & Business
Media, 2013.

[5] David P Williamson and David B Shmoys. The Design of Approximation Al-
gorithms. Cambridge University Press, 2011.

[6] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on
some partially ordered sets. Comm. Math. Phys., 22(2):89–103, 1971.

[7] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan,
and Atri Rudra. When LP is the cure for your matching woes: Improved bounds
for stochastic matchings. Algorithmica, 63(4):733–762, 2012.

[8] H. Shachnai and A. Srinivasan. Finding large independent sets in graphs and
hypergraphs. SIAM Journal on Discrete Mathematics, 18:488–500, 2004.

[9] Noga Alon and Joel H Spencer. Wiley interscience series in discrete mathemat-
ics and optimization. The probabilistic method, pages 353–354, 2008.

73



[10] Ning Chen, Nicole Immorlica, Anna R Karlin, Mohammad Mahdian, and Atri
Rudra. Approximating matches made in heaven. Automata, Languages and
Programming, pages 266–278, 2009.

[11] Marek Adamczyk. Greedy algorithm for stochastic matching is a 2-
approximation. arXiv preprint arXiv:1007.3036, 2010.

[12] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan,
and Atri Rudra. When LP is the cure for your matching woes: Improved bounds
for stochastic matchings. Algorithmica, 63(4):733–762, 2012.

[13] Brian C Dean, Michel X Goemans, and Jan Vondrák. Approximating the
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