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 Located at the interface between estuaries and surrounding uplands, tidal marshes 

are in position to receive and transform material from both adjacent systems.  Of 

particular importance in eutrophic estuarine systems, tidal marshes permanently remove 

nutrients via two mechanisms - denitrification and long-term burial.  Denitrification was 

measured (monthly) in two marshes in a Chesapeake Bay tributary for 7 months, using 

the MIMS technique.  Burial of nitrogen (N) and phosphorus (P) was measured using 

210Pb techniques.  Strong spatial and temporal patterns emerged, and there was a 

Michaelis-Menten type response in denitrification rates to experimentally elevated nitrate 

levels.  Denitrification rates measured may account for removal of 22% of N inputs to the 

upper estuary on an annual basis.  Burial rates could account for 30% of N inputs and 

60% of P inputs.  Based on the cost of nutrient control technologies, Patuxent marsh 

nutrient removal may be valued at $10 to 30 million yr-1. 
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INTRODUCTION: 
NUTRIENTS IN ESTUARINE WATERS AND TIDAL MARSHES 

 

 

EUTROPHICATION 

History, causes and consequences 

The terms “oligotrophic” and “eutrophic,” first introduced to ecology in 1907 to 

describe soil conditions in German bogs, appeared in limnology in 1919 as a scheme for 

the classification of lakes (Hutchinson  1969).   In its early application, the concept of 

eutrophy referred in theory to lake waters with high nutrient content, and in practice to 

lake waters with large phytoplankton communities, but the concept was soon broadened 

to encompass the entire watershed-lake-sediment system (Hutchinson  1969).  Two 

important corollaries have emerged since.  First, eutrophication is not merely a 

phenomenon of ecological succession, but is often an anthropogenic trend.  Second, 

anthropogenic eutrophication occurs not only in lakes, but also in coastal marine and 

estuarine systems (Fisher et al.  in press) previously believed too well flushed to be 

impacted (Schindler  1981). 

As limnological studies with a trophic orientation progressed, it was quickly 

recognized that anthropogenic inputs to lakes enhance both the extent and rate of 

eutrophication.  For example, investigations of German lakes in areas of intense farming 

revealed that eutrophication of these systems was greatly accelerated by domestic sewage 

and agriculture (Ohle  1955).  The effects of anthropogenic inputs on sediment-water 

interactions were also soon discovered.  In noting that the release of iron-bound 

phosphorus (P) from sediments to the water column during anoxia is a mechanism for 
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internal fertilization of phytoplankton, Mortimer (1941) mentioned that this process 

should be readily observable in lakes with substantial “cultural” influences. 

Anthropogenic eutrophication is often referred to as “cultural eutrophication,” but Rodhe 

(1969) wrote that “it is not culture but progress of civilization that is the villain in the 

present tragedy of so many waters.  Our modern civilization has done more harm to lakes 

in a few decades than human culture did during preceding millennia.”  Recently, Castro 

(2003) reported that nitrogen (N) inputs to the Atlantic and Gulf coasts of the USA are 

now up to 20 times greater than during pre-industrial times. 

Though most eutrophication research in the first half of the 20th century focused on 

lacustrine systems, anthropogenic eutrophication is now a well-recognized phenomenon 

in coastal marine and estuarine environments (Nixon  1995).  Eutrophication occurs 

around the globe and has been reported in the Baltic, Adriatic, Black and North Seas, and 

in the coastal waters of Japan, China and Australia (Vitousek et al.  1997; Bricker et al.  

1999).  In the US, 44 estuaries have been identified as highly eutrophic, and a high level 

of human influence is associated with 36 of these (Bricker et al.  1999).   

Nixon (1995) suggested that eutrophication be defined as “an increase in the rate of 

supply of organic matter to an ecosystem.”  It has been shown that the availability of 

nutrients (N in particular) is the dominant control on the rate of organic production in 

marine environments (Ryther and Dunstan  1971; D’Elia et al.  1986; Fisher et al.  1999).  

A number of responses to eutrophication and its primary cause – nutrient loading - have 

been observed, with the most direct and obvious impacts being increased phytoplankton 

biomass and reduced water clarity (Nielsen et al.  2002).  Reduced water clarity and 

consequent decreased light penetration, as well as shading due to vigorous epiphyte 
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growth, have been cited as primary factors in the decline of seagrass populations 

(Neckles  1993; Short et al.  1995).  As phytoplankton populations senesce and settle, 

decomposition can result in bottom water hypoxia and anoxia, with subsequent impacts 

to benthic fauna (Diaz and Rosenburg  1995).  For instance, macrobenthic biomass in 

regions of the Chesapeake Bay affected by low-oxygen conditions is much lower than 

predicted, given the amount of phytoplankton productivity available for food (Kemp et al.  

2005). 

Sediment-water biogeochemical processes are also affected by eutrophication, and in 

particular by low benthic oxygen concentrations, as many biogeochemical reactions are 

redox-dependent.  Large P fluxes from sediments have been observed under low-oxygen 

conditions due to dissolution of P-containing iron-oxides in surface sediments (Krom and 

Berner  1981; Cowan and Boynton  1996).  Large ammonium fluxes have also been 

observed under low-oxygen conditions, which may be attributed to “an ironic sequence 

of interactions” in which nitrification is inhibited, allowing ammonium that would 

normally be converted to nitrate (which could then be denitrified) to remain in its reduced 

form and diffuse out of sediments (Kemp et al.  1990).  Both of these processes represent 

positive feedbacks in which eutrophication creates low-oxygen conditions in sediments, 

causing recycling of N and P to the water column where these nutrients can then fuel 

more organic matter production.   

Less direct and more far-reaching effects of eutrophication are evident in alterations 

of fish community composition.  Fish kills are a common manifestation of hypoxia, 

generally due to loss of habitat and mortality of egg and larval stage fish that are unable 

to move from low-oxygen environments (Breitburg  2002).  Reduced species abundance 
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and reduced rates of growth and reproduction are also attributed to hypoxia (Howell and 

Simpson  1994; Jones and Reynolds  1999).  At the ecosystem scale, it has been 

suggested that the redistribution of fishes according to the impact of increased 

phytoplankton biomass and hypoxia on respective life strategies can alter the ratio of 

pelagic to demersal fish in a system (Caddy 1993; de Leiva Moreno et al.  2000). 

Despite the litany of “negative” impacts of eutrophication on coastal ecosystems, 

there may be some correlation between anthropogenic nutrient subsidies and increased 

secondary production.  In the introduction to the proceedings of the International 

Symposium on Eutrophication (National Academy of Sciences  1969), we are reminded 

that “our first knowledge of eutrophication was derived from efforts to increase 

production of fish ponds through fertilization.”  There is evidence for increased 

production via fertilization in less highly engineered systems as well.  A positive 

relationship between N loading and fisheries yields was reported for the Baltic Sea, and 

loch fertilization experiments in Scotland during WWII produced enhanced 

phytoplankton, zooplankton, infaunal and fish communities (Nixon and Buckley  2002).  

It has also been proposed that through “controlled eutrophication,” it would be possible to 

develop aquaculture systems that produce valuable food while taking up waste nutrients 

from coastal waters (Ryther et al.  1972).  While high nutrient loads are most often 

portrayed as pollutants, an alternative view of nutrients as subsidy also exists. 

Eutrophication in the Chesapeake Bay 

 Though the general symptoms of eutrophication are common, the specific 

response of individual estuaries to eutrophication is influenced by differences in 

freshwater inputs, stratification, bathymetry, climate, and watershed geology and 
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demographics.  The Chesapeake Bay has been characterized as highly eutrophic, and 

currently exhibits high levels of phytoplankton and epiphyte biomass, low dissolved 

oxygen, and severe SAV loss (Bricker et al.  1999).  Chlorophyll-a has increased in 

surface waters of the Bay since the 1950’s and concurrent shifts in phytoplankton 

community composition (including harmful algal blooms) have been reported (Kemp et 

al.  2005).  Physical stratification combines with decomposing algal biomass to create, 

respectively, a spring oxygen decline and summer hypoxia/anoxia in Chesapeake Bay 

bottom waters (Hagy et al.  2004).  In recent years, more extensive hypoxia has been 

observed than predicted from past correlations between nitrate (NO3) inputs and 

dissolved oxygen concentration, suggesting that the Bay may have become more 

vulnerable to N loading (Hagy et al.  2004).  Sediments exposed to hypoxic/anoxic 

conditions tend to exhibit enhanced ammonium and phosphate recycling, as previously 

discussed, and this phenomenon is particularly vigorous in mesohaline regions of the Bay 

(Cornwell and Sampou  1995; Cowan and Boynton  1996).  Low-oxygen conditions in 

the benthos also limit macrofaunal habitat, and severe degradation of benthic 

communities has been reported in mesohaline regions of the Chesapeake Bay and its 

tributaries (Dauer et al.  2000).  Finally, loss of oyster habitat (due in part to 

eutrophication itself) has impeded reestablishment of an important negative control on 

eutrophication  – biofiltration of phytoplankton and suspended particulates by oysters 

(Baird and Ulanowicz  1989; Porter et al.  2004).  

 The geomorphology of the Chesapeake Bay and its watershed also influence 

eutrophication.  The land:water ratio in the Chesapeake watershed is large, which results 

in the funneling of artifacts of human activity over a particularly vast area of land to a 
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relatively small volume of water.  Over 75% of the N load to the Chesapeake Bay estuary 

is of upland origin (Castro et al.  2001).  Terrestrial sources dominate P loading to the 

Bay as well, and diffuse sources are more than twice as large as point sources for both N 

and P (Boynton et al.  1995).  These non-point source inputs are particularly difficult to 

manage first because the steps needed to prevent creation of the pollutants are difficult to 

implement across the many political boundaries within the watershed, and also because 

of the practical dilemma of trapping diffuse pollutants for removal after their creation and 

dispersal.  There does exist, however, a natural vehicle for removal of nutrient loads to 

portions of the Chesapeake Bay – tidal marshes. 
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TIDAL MARSHES 

Marshes of the Chesapeake Bay 

 Tidal marshes cover 826 km2 adjacent to the Chesapeake Bay and its tributaries 

(Reshetiloff  1995).  Marshes on much of  the western shore of the Bay are generally 

accreting, whereas many eastern shore marshes are undergoing rapid submergence and/or 

erosion (Khan and Brush  1994; Ward et al.  1998; Merrill  1999).  Marshes on both 

shores compete with sea level rise to maintain elevation, so differential patterns of marsh 

accretion and erosion can been attributed to differences in sediment inputs, land 

subsidence and herbivore impact.  Sustained sediment inputs to western tributaries due to 

continued development and deforestation provide ample material for marshes to accrete 

at the same pace as, if not faster than, sea level rise (D’Elia et al.  2003).  On the eastern 

shore, land subsidence due to groundwater withdrawal, past herbivory by exotic rodent 

populations, and reduced sediment inputs in lower-estuary marshes have contributed to 

marsh losses (Stevenson et al.  1986; Kearney et al.  1994; Haramis  1997; Ward et al.  

1998).  The Patuxent River, a western Chesapeake Bay tributary (Fig. I-1), provides an 

illustration of the role of terrigenic sediments in forming and maintaining tidal marshes. 

Marshes of the Patuxent River 

 The Patuxent watershed has been inhabited by humans for at least 12,000 years 

(E. Chaney pers. comm.).  Early inhabitants of the watershed numbered in the low 1000’s 

and practiced rotational, slash and burn agriculture with limited impacts to forest area and 

soils (E. Chaney pers. comm.; R. DeFries  1986).  When European settlers arrived in the 

mid 17th century, the Patuxent River was navigable to ocean-going ships 95 km upstream 

of its mouth (Gottschalk  1945).  As the settlers cleared 70-80% of the land to support  
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  Figure I-1. The Patuxent River (main), a Chesapeake Bay (inset) tributary.  The Upper      
  Patuxent Estuary is shown, which includes tidal fresh and oligohaline portions of the    
  river. 
 
grain and tobacco farming, sediment inputs to the river increased by 400%, turning 

harbors into marshes and mudflats (Gottschalk  1945; Khan and Brush  1994).  To a large 

degree, suspended sediment loads are trapped in upper estuaries (Ward et al.  1998), and 

the anthropogenic sediment loads generated by colonial farmers led to high sedimentation 

rates and extensive marsh development in the upper reaches of many Chesapeake Bay 

tributaries (Fig. I-2).  Developments in agricultural technology such as the evolution of  
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the plow from a shallow-penetrating wooden device to a deep-penetrating steel 

implement added to sediment inputs from deforestation (Brush and Hilgartner  2000).  

Today the portion of the Patuxent River navigable to ships drawing more than 8 feet is 

less than half of what it was in the 17th century (~45km; Gottschalk  1945).   

Approximately 30 km2 of tidal marshes exist on the Patuxent today, and in all 

likelihood the formation of these marshes was a direct result of increased sedimentation 

due to human activity.  The vast majority of Patuxent marshes are located in oligohaline 

and tidal fresh reaches (Fig. I-1), where marsh area exceeds the area of the tidal river 

(Fig. I-3; Fisher et al.  2005).  Coincident with sediment loading, modern agricultural 

activities and development have increased N and P loads to the Patuxent nearly 5- and 

20-fold, respectively, with marked ecological effects (Boynton et al.  1995).  Located at 

Original condition of the 
harbor at Port Tobacco,
Maryland.

Present condition of the 
harbor at Port Tobacco,
Maryland.

Original condition of the 
harbor at Port Tobacco,
Maryland.

Present condition of the 
harbor at Port Tobacco,
Maryland.

Figure I-2.  Tidal marsh formation resulting from anthropogenic 
sedimentation in the Port Tobacco River, Maryland.  Similar 
patterns of tidal marsh formation occurred in the Patuxent River 
and other Chesapeake Bay tributaries (modified from Gottschalk  
1945). 
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the interface between land and water, tidal marshes in the Patuxent and other systems are 

believed to play a mitigating role in the movement of nutrients from terrestrial sources to 

estuarine systems (Williams et al.  2005). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
Tidal marshes and nutrient ecology 

Because tidal wetlands are located between a terrestrial landscape on one side and 

estuarine waters on the other, there are two unique interfaces across which these marshes 

can interact with adjacent ecosystems.  The idea that marshes intercept and remove 

nutrients from terrigenous runoff is well accepted (e.g. Gosselink et al.  1973; Simpson et 

al.  1983a).  Additionally, marshes have been employed for decades in engineered 

Figure I-3.  Intertidal marsh area in the Patuxent River, averaged over 5 km  
intervals (Fisher et al.  2005). The majority of tidal marsh area is in tidal fresh  
and oligohaline reaches of the river.  
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systems for wastewater treatment, with excellent results (e.g. Todd and Josephson  1996; 

Bachand and Horne  1998; Mitsch and Jorgensen  2004).  Engineered or natural, marshes 

remove nutrients in at least two ways.  First, inundated marsh sediments foster a complex 

redox environment in which bacteria employ alternate electron acceptors to oxidize 

organic matter in the absence of dissolved oxygen.  In denitrification, NO3 is reduced to 

dinitrogen (N2) gas, which diffuses to the atmosphere and is effectively lost from the 

system.  Though there is no analogous process for the removal of P, it can be sorbed to 

the surface of oxidized metal compounds (Sundby et al.  1992), and both N and P are also 

removed by plant and microbial uptake for growth.  If N and P-containing organic matter 

remains in an accreting marsh after the growing season, it will eventually be buried 

beneath accumulating sediments.  Nutrients in sediments within the plant root zone may 

be remineralized, but below the root zone burial results in long-term removal from the 

system, barring large erosional events.  If, instead of being buried, organic litter is swept 

off the marsh by tidal waters, then N and P losses due to plant uptake are only temporary.  

This seasonal aspect of the uptake and burial process forms the basis for interactions 

across the second marsh interface – that with the estuary. 

Perhaps the most classic and controversial topic in tidal marsh ecology (and 

central to the discussion of marshes as nutrient sinks) is whether tidal marshes act as net 

sources or net sinks for materials and nutrients in adjacent estuaries and coastal waters.  

In an early synthesis on marsh ecology, John Teal (1962) concluded that nearly half of 

the salt marsh production off Sapelo Island, Georgia was removed by tides, making this 

production unavailable to marsh consumers and providing material to consumers in the 

surrounding waters.  Several years later, Odum (1968) put forth the “outwelling 
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hypothesis” in which outwelling of nutrients and organic matter from tidal marshes 

subsidizes production in adjacent waters, much as the upwelling of materials from the 

deep ocean subsidizes surface communities.  It is interesting to note, however, that the 

outwelling hypothesis was actually first presented as a conclusion, and was only later 

referred to as a hypothesis, long after it had become dogma in marsh ecology (Nixon  

1980).  Impetus for questioning the outwelling hypothesis has sprung largely from 

observations of nutrient removal mechanisms in tidal wetlands (e.g. Kaplan et al.  1979; 

Delaune et al.  1981; Simpson et al.  1983a).  Arguments for nutrient removal by tidal 

marshes seem at least as strong as those for subsidy, and simultaneous acceptance of the 

conflicting models by the ecological community led Nixon (1980) to describe current 

thought on tidal marshes as “Orwellian.”  The sink vs. source controversy thrives even 

today, though it could be argued that at the watershed scale, any accreting tidal marsh 

that fosters denitrification and burial of terrigenous nutrients can be designated as a sink, 

regardless of the direction of net flux of other material between the marsh and adjacent 

estuary. 

Role of tidal marshes in Patuxent River nutrient economy 

Recent nutrient modeling and budget construction efforts suggest an important role 

for tidal marshes in Patuxent nutrient dynamics (Merrill  1999; Fisher et al.  2005; W. 

Boynton, unpublished data).  In general, when tidal marsh processes are not explicitly 

included in nutrient models and budgets, model predictions tend to overestimate nutrient 

concentrations in the water column compared to observed values due to underestimates of 

nutrient sinks (Williams et al.  2005; W. Boynton, unpublished data).  There is evidence 
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to suggest that tidal marsh processes can account for some, if not all, of these 

discrepancies (Merrill  1999). 

In a water quality model for the Patuxent River that did not include tidal marshes, 

Fisher et al. (2005) found consistent overpredictions of water column N concentrations 

(Fig. I-4a).  The magnitude of the model error (predicted minus observed values) was 

positively correlated with marsh area (Fig. I-4b).  In another effort, a nitrogen budget for 

the Patuxent River included river bottom N burial and denitrification, but tidal marshes 

were again treated as neutral.   Estimated N outputs from the middle estuary were ~1300 

kg N d-1 less than what was required to balance the estimated inputs (Fig. I-5).  Given 

that tidal marshes are a dominant feature of the landscape in this portion of the river, it is 

likely that marsh processes (e.g. denitrification and long-term N and P burial) impact the 

budgets in a quantitatively important manner.   

Though coastal wetlands have received attention in the nutrient literature, the focus 

has largely been on salt marsh systems like the Great Sippewissett Marsh and Louisiana 

salt marshes (e.g. Kaplan et al.  1979; DeLaune et al.  1981).  Data from these studies 

suggest that tidal salt marshes denitrify and bury nutrients at substantial rates.  However 

there is also evidence for significant export of materials from these marshes to 

surrounding ecosystems (Kaplan et al.  1979; DeLaune et al.  1981; Valiela et al.  2000).  

Far fewer data exist for tidal fresh and oligohaline marshes such as those found in the 

Patuxent (Merrill  1999; Kahn & Brush  1994).  These authors suggest that tidal fresh 

marshes, like salt marshes, denitrify and bury nutrients at substantial rates.   

Additionally, though denitrification has been known to scientists for over a century 

(Zumft  1997), very few rate measurements are present in the literature prior to the 
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Figure I-4.  Comparison of model output and observed data for TN at 
monitoring stations in the Patuxent estuary (a); Relationship between 
marsh area and model output error (b).  Marsh area is expressed as the 
summed marsh area over 5 km intervals, divided by 5 km. Adapted 
from Fisher et al.  2005.   



 

15 

 

 

 

 

 

 

 

 
 
 
 
    Figure I-5.  A simple nitrogen input/output budget for the upper Patuxent  
    estuary, illustrating a large N sink not attributable to subtidal losses or export to  
    the lower estuary (W. Boynton, unpublished data).  Inputs include all  
    atmospheric, terrestrial and upstream riverine sources. 
 

 
1980’s (Fig. I-6).  New techniques have been developed since then and many more 

measurements made, but there is a rather spirited discussion concerning the relative 

merits and shortcomings of each (e.g. Seitzinger et al.  1993; Eyre et al.  2002).  A 

literature review of denitrification measurements made over the past 5 decades in various 

environments (Chapter 1) illustrated that efforts to measure denitrification are growing, 

especially using new techniques (Greene  2005).  The review also revealed that the 

highest natural denitrification rates measured to date have been measured in estuaries, 

and that coastal wetlands appear to denitrify at higher median rates than other 

environments (Greene  2005; Chapter 1). 
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GOALS OF THIS STUDY 

Given the questions raised by nutrient models, and given the uncertainties in 

existing knowledge, there is a need for studies of nutrient removal processes in tidal fresh 

and oligohaline marshes, using the most direct measurement techniques that current 

technology permits.  A large investigation of nutrient biogeochemistry in the mainstem 

Patuxent is currently underway.  Impetus for the project (Sediment Nitrogen And 

Phosphorus Interactions, or SNAPI) stems from the need for information to aid in 

nutrient management in the Patuxent, and specifically from observations that fresh and 

saltwater primary production are limited differently by P and N (Smith 1984).  Since 

estuaries are transition environments between fresh and saltwater, there may be shifts in 

nutrient limitation within the estuary, and the SNAPI project is an examination of 

changes in N and P biogeochemistry along the estuarine salinity gradient (Cornwell et al.  

2002).  To a large extent, the biogeochemical processes that take place in subtidal 

sediments also occur in marshes.  The goal of this thesis is to investigate nutrient 

biogeochemistry (and in particular, removal processes) in Patuxent tidal marshes along a 

portion of the salinity gradient, with attention to factors affecting extrapolation from 

individual study sites to the full Patuxent marsh community for modeling and budget 

applications. 

 Chapter 1 of this thesis deals with denitrification as a removal process for N in 

Patuxent River tidal marshes.  Data from a literature review provided insight into the 

range of denitrification rates that have been measured in diverse environments.  Flux 

experiments were performed with sediment cores from two marshes to determine whether 

or not differences exist between tidal fresh and oligohaline marsh denitrification rates.  



 

18 

Measurements were made during a period of 7 months so that seasonal patterns in 

denitrification could be examined, and samples were taken from different areas of the 

marsh surfaces and marsh creeks to investigate spatial heterogeneity.  In addition, NO3 

loading experiments were performed to investigate the response of marsh denitrification 

rates to increased NO3 availability.  Inorganic nutrient and oxygen fluxes were measured 

in concert with N2 fluxes to elucidate patterns in sediment remineralization and their 

relationship to denitrification. 

The focus of Chapter 2 is an investigation of long-term N and P burial in Patuxent 

tidal marshes.  Since two burial studies have been conducted in Patuxent marshes (Khan 

and Brush  1994; Merrill  1999), measurements for this thesis were made with the goals 

of a) expanding earlier results and b) more closely examining spatial heterogeneity of 

burial within a marsh, which was not resolved by earlier studies.  Toward those ends, 

sediment accretion rates were estimated using 210Pb-dating of cores from the marsh 

surface in an oligohaline Patuxent marsh.  Dated sediments were analyzed for particulate 

nutrient concentrations, and the nutrient data were used in concert with accretion rates to 

estimate burial. 

In Chapter 3, the results of the denitrification and burial studies were synthesized and 

placed in the larger context of a Patuxent River budget focused on the tidal fresh and 

oligohaline portion of the estuary.  Extrapolation of measurements from the two study 

sites to the full Patuxent marsh community was examined, and the size of the potential 

marsh sink relative to other components of the Patuxent nutrient budget is discussed.  

Past and present management efforts, as well as future management implications, were 

also considered. 
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CHAPTER 1: 
NITROGEN DYNAMICS IN TIDAL FRESH AND OLIGOHALINE 

MARSH SEDIMENTS – DENITRIFICATION AND NET  
SEDIMENT-WATER NUTRIENT FLUXES 

 

 

INTRODUCTION 

 Nitrogen is the principal nutrient limiting primary production in most coastal 

marine environments, though P can be limiting on a seasonal or local basis (Ryther and 

Dunstan  1971; Fisher et al.  1999).  Since the industrial revolution, fixation of 

biologically inaccessible N in the atmospheric pool to bioavailable forms in the terrestrial 

pool has doubled (Vitousek et al.  1997).  As a result, N inputs to the coastal ocean have 

increased.  On a global scale, riverine fluxes of N to estuaries sum to around 40 Mt yr-1 

(Tappin  2002), and in the US these fluxes represent a 2 to 20-fold increase over pre-

industrial inputs (Castro et al.  2003).  Elevated N concentrations in coastal waters 

support increased primary productivity, and the direct and indirect effects of enhanced 

production bring about readily observable, ecosystem-scale changes in coastal 

environments (e.g. Nixon  1995; Cloern  2001; Kemp et al.  2005).  Recognition of the 

large impact of enhanced N inputs on coastal systems has fostered interest in removal 

mechanisms for N.  Denitrification, the microbially-mediated conversion of dissolved  to 

gaseous N2, is an important sink in the global N budget (Seitzinger  1988).  This process 

is of special interest in eutrophic coastal ecosystems because of its role in the removal of 

anthropogenic nitrogen. 
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Microbial & ecological significance of denitrification 

 Nitrate can be used by heterotrophic bacteria as an alternative terminal electron 

acceptor (TEA) in the absence of oxygen (O2).  Whether NO3 or a different TEA is used 

depends on the specific redox regime of the environment, as well as the relative 

abundance of the various TEA’s (Santschi et al.  1990).  Bacterial use of NO3 as a TEA 

involves a stepwise reduction to N2, with each step catalyzed by a different enzyme.  Of 

particular interest, and perhaps of greatest ecological significance, is the step in which 

nitrite (NO2) is reduced to nitric oxide (NO).  At this point, N that was in a bioavailable, 

dissolved form becomes a biologically inert gas.  Upon further reduction of NO to N2, the 

N reaches a more chemically stable state and diffuses to the atmosphere.  This closes a 

major loop in the anthropogenic N cycle, as N2 is often removed from the atmosphere by 

humans to make fertilizer.  Nitrogen fixed from the atmospheric N pool for fertilizer is 

moved around the terrestrial landscape and applied to agricultural fields.  Residual, 

biologically active forms of N may then be nitrified to NO3 and move from the terrestrial 

N pool into inland and coastal waters (aquatic/oceanic N pool).  Denitrifiers in aquatic 

and marine sediments return this N to the atmospheric pool as N2.   In addition to 

returning N to the atmospheric pool, the ecological significance of denitrification is that it 

permanently removes from a system N that would otherwise be available for primary 

production.  This sort of loss is of special interest in eutrophic, N-limited systems like the 

Chesapeake Bay where substantial anthropogenic N inputs fuel high primary productivity 

with a host of ecological and economic implications (Kemp et al.  2005).  Denitrification 

is also of interest  because it is the only mechanism (short of physical export) by which N 
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is truly removed from the system; when N is taken up by biota or buried in sediments it 

can be made available again via decomposition or erosion processes.   

Denitrification in aquatic environments 

 An important, initial component of this work was a literature review of 

denitrification measurements, which enabled assessment of the range of denitrification 

rates commonly observed in different environments (Greene 2005).  Since the 1960’s, 

denitrification has been measured in a large variety of terrestrial and aquatic 

environments, both natural and engineered.  Denitrification rates between 10 and 100 

µmoles N m-2 h-1 are most frequently reported, though rates well over 1000 µmoles N m-2 

h-1 have been observed in certain systems (Fig. 1-1; Table 1-1).  Rates near 20,000 

µmoles N m-2 h-1 have been measured in human engineered systems and estuaries, though 

median rates for these environments are not so high as to be outside the range of normally 

measured rates (Table 1-1). 

Median rates appear highest in lakes (37 µmoles N m-2 h-1), estuaries (40 µmoles 

N m-2 h-1) and coastal wetlands (54 µmol N m-2 h-1; Table 1-1).  In estuaries, where more 

measurements of denitrification appear to have been made than in any other environment 

(Table 1-1), the most commonly reported rates were between 1 and 100 µmoles N m-2 h-1 

(Fig. 1-2), and more specifically between 1 and 50 µmoles N m-2 h-1.  The range of rates 

measured in estuaries and was higher than that of any other natural system by an order of 

magnitude (Table 1-1).   
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Figure 1-1.  Number of denitrification measurements reported for 
various ranges of rates.  Data represent a range of environments, 
including estuaries, mudflats, seagrass beds, lagoons, reefs, 
continental shelf, lakes, creeks, wetlands (coastal and inland) and 
human engineered systems (data from Greene  2005). 

Min Max Mean Median Range n
Human engineered 0 24143 695 1 24143 68
Wetlands (fresh) 0 330 39 4 330 52
Creeks (fresh) 0 1200 195 32 1200 20
Lake 0 490 89 37 490 90
Coastal wetland -200 1865 94 54 2065 167
Mudflat 2 213 71 31 211 61
Seagrass Bed 2 167 29 8 165 13
Lagoon -20 290 21 9 310 116
Estuary -93 19616 197 40 19709 1188
Reef 0 533 58 4 533 40
Continental Shelf 0 1658 104 15 1658 113

Table 1-1.  Characteristics of denitrification rate measurements made in various 
environments.  Rates are in µmoles N m-2 h-1 (data from Greene  2005). 
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Denitrification in Chesapeake Bay tributaries and tidal marshes 

 Denitrification in the Chesapeake Bay and in tributaries like the Patuxent River is 

of special interest due to the high degree of N-related eutrophication (D’Elia et al.  2003).  

The incorporation of denitrification (“biological nitrate reduction,” or BNR) into 

wastewater treatment in the Patuxent watershed has led to marked reductions in point 

source N loads to the river and estuary (D’Elia et al. 2003).  However, N loading in the 

Patuxent watershed is primarily non-point (Boynton et al.  1995), so mechanisms by 

which non-point N may be reduced or removed are also of interest.  Tidal fresh and 

oligohaline marshes are located between estuarine waters and the surrounding uplands, in 

a position to receive and transform non-point N runoff before it reaches the estuary.  

Nitrogen from all sources can be removed in tidal marshes via two mechanisms –  
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Figure 1-2.  Frequency distribution of denitrification measurements 
made in estuaries for given rates (data from Greene  2005).  Typical 
Chesapeake Bay rates are slightly higher than the global 
distribution (J. Cornwell, unpublished data). 
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long-term burial (Khan and Brush  1994; Merrill  1999; Chapter 2, this study) and 

denitrification (Merrill  1999). 

Though data on N removal by Patuxent marshes are limited, the role of Patuxent 

River subtidal sediments as a sink for N via denitrification is well established (Jenkins 

and Kemp  1984; J. Cornwell, unpublished data).  Despite a few unusually high rates 

measured in estuaries, denitrification rates of 1-100 µmoles N m-2 h-1 are by far the most 

common rates observed (Fig. 1-2), and Chesapeake sediments appear to denitrify at rates 

favoring the higher portion of this range (J. Cornwell, unpublished data).  On occasions, 

rates in excess of 100 µmoles m-2 h-1 have been observed (J. Cornwell, pers. comm.).  

Boynton et al. (1995) estimated that 380 kg N d-1 were denitrified in subtidal sediments 

of the upper Patuxent River.  Given this estimate, subtidal denitrification may remove 7% 

of N inputs to the upper Patuxent (Fig. 1-3).  Since marsh area exceeds the area of tidal 

river bottom in portions of the upper Patuxent, wetlands may play a similar, or perhaps 

more important, role in N removal (Williams et al.  2005).   

Despite the fact that Patuxent River marshes are intuitively promising 

environments for denitrification, only one attempt to measure the process in Patuxent 

marshes has been made to date.  In that study, a limited number of denitrification 

measurements were made at Jug Bay on a seasonal basis (spring, summer and fall; 

Merrill  1999). Though a growing number of denitrification measurements have been 

made in salt marshes (e.g. Kaplan et al.  1979; Koch et al.  1992; Joye & Paerl  1993; 

Anderson et al.  1997), rates from the previous Patuxent marsh denitrification study were 

the first direct measurements of denitrification in a tidal fresh marsh (Merrill  1999). 
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One reason low salinity marshes may foster denitrification is that they are high 

NO3 environments.  Kemp and Boynton (1984) documented a strong pattern in dissolved 

inorganic nitrogen (DIN) along a salinity gradient in the Patuxent, finding rapid removal 

of DIN by primary producers and other loss mechanisms in tidal fresh and oligohaline 

reaches, with resultant lower DIN concentrations downstream.  Given this pattern, low-

salinity tidal marshes are in a geographic position to receive the highest concentrations of 

DIN, which has positive implications for both denitrification and productivity.   

Productivity, in turn, may exert a positive effect on denitrification.  Primary 

production delivers organic matter to the sediments, which is a direct source of C and an 

indirect source of NO3 (via ammonification and nitrification) for denitrification.  

Decomposition of organic matter also creates the low-O2 conditions necessary for 

denitrification.  Tidal fresh marsh plants appear to decompose even more rapidly than 
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Figure 1-3.  A nitrogen budget for the upper Patuxent estuary, attributing 
the loss of ~7% of N inputs to subtidal denitrification (data from Boynton 
1995 and W. Boynton, unpublished data).  Nitrogen inputs include 
atmospheric, terrestrial and upstream riverine sources.  Loss terms as 
“percent of inputs” are included in parentheses. 
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those of higher salinity marshes (Odum and Heywood  1977), and tidal freshwater 

sediments may also not be subject to the same limitations on nitrification (and hence on 

denitrification) as their saltwater counterparts (Joye and Hollibaugh  1995).  These 

differences between tidal fresh and salt marshes suggest that rates of denitrification in 

tidal fresh marshes may be higher than in those exposed to more saline waters.  However, 

not enough measurements of denitrification have been made in tidal marshes to support 

conclusions one way or the other. 

In all tidal marshes, the cyclical exposure of sediments to air may enhance 

coupled nitrification-denitrification.  The coupling of nitrification and denitrification, 

facilitated by spatial redox gradients, has been suggested for Patuxent River subtidal 

sediments (Jenkins and Kemp  1984).  In particular, infaunal burrowing and plant 

rhizospheres create oxidized zones for nitrification in otherwise anoxic sediments (Reddy 

et al.  1989; Webb and Eyre  2004).  Furthermore, there is evidence for facilitation of 

coupled nitrification-denitrification via temporal redox gradients.  An and Joye (2001) 

reported increased denitrification rates (due to enhanced nitrification) during periods of 

benthic photosynthesis by microalgae.  The pulsed O2 subsidy to marsh surface sediments 

with the tidal cycle may be analogous to the diel pulsing of benthic autotrophs described 

by An and Joye (2001).   

A better understanding of the mechanisms driving denitrification in tidal marshes 

will facilitate efforts to quantify denitrification, which is a primary objective of this 

study.  The central hypothesis to be tested is that denitrification is an important loss term 

in the N economy of the Patuxent River, though spatial and temporal patterns in 
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denitrification and the relative importance of coupled versus direct denitrification 

pathways are also of interest. 

Objectives 

 The following questions will be addressed in this work: 

1. At what rate is denitrification occurring in tidal fresh and oligohaline Patuxent 

marshes, and are these rates comparable to those previously measured? 

2. What seasonal patterns exist in denitrification rates in different marsh 

environments?  What factors appear to cause these patterns? 

3. Is there evidence regarding the importance of the coupled nitrification-

denitrification pathway in Patuxent marshes? 

4. To what extent do marsh denitrification rates respond to elevated water column 

NO3 concentrations? 
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SITE DESCRIPTIONS 

 Two study sites were chosen to reflect the gradient of conditions in upper 

Patuxent estuary marshes.  Jug Bay Wetlands Sanctuary (38° 46' 45" N, 76° 42' 30" W; 

Fig. 1-4) is a tidal fresh environment that typically experiences salinities less than 0.2.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1-4.  Location of study sites, Jug Bay and King’s Landing, on the 
Patuxent River, Maryland.  Tidal fresh, oligohaline and mesohaline 
regions of the river are indicated.  Geographical context for the Patuxent 
River is provided in Figure I-1. 
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Tides at Jug Bay are semi-diurnal with a range of 0.6 m (National Estuarine Research 

Reserve System  2004).  The study area is composed of three local environments – low 

marsh, mid marsh and high marsh.  The low marsh zone, directly adjacent to a tidal 

creek, is inundated the longest of the three marsh environments (8-9 hours during a tidal 

cycle; Khan and Brush  1994).  Low marsh environments at Jug Bay are dominated by 

broadleaved Nuphar advena, while the mid marsh plant community is a mixture of 

Nuphar advena and Sagittaria spp., as well as some Typha spp.  The high marsh zone is 

more diverse, with Typha spp., Phragmites australis, Sagittaria spp. and several 

ericaceous species.  The high marsh sediment contains large pieces of organic matter, and 

this environment is inundated for the shorter periods of time than low and mid marsh 

environments (2-4 hours each tidal cycle; Khan and Brush  1994).   

The marsh creek is unbranched and is characterized by rather compact sediments 

at its head and looser sediments at its mouth.  Large SAV communities (likely composed 

of Hydrilla spp., Ceratophyllum demersum and Najas guadalupensis) form at the mouth 

during the summer growing season.  The marsh plant community changes considerably 

on a seasonal basis, with die-back of vegetation in the fall, flushing of plant litter 

throughout the winter, initial development of broadleaved communities (e.g. Nuphar) in 

the spring, and growth of reeds, rose mallow and other plants throughout the summer. 

 King’s Landing Marsh (38° 37' 29" N, 76° 40' 54" W; Fig. 1-4) is an oligohaline 

environment that typically experiences salinities of 0.2 to 5.  Broadleaved plants are 

much less dominant than at Jug Bay, and the vast majority of the marsh could be 

described as mid marsh, as opposed to Jug Bay where the three marsh zones are 

approximately equal in area.  A visual survey of the Patuxent marsh community revealed 
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that the King’s Landing Marsh is more representative of “typical” Patuxent marshes than 

Jug Bay.  Tides at King’s Landing are semi-diurnal, and low marsh environments 

experience longer periods of inundation than the high marsh.  The low marsh zone is 

small in area and dominated by Peltandra virginica.  Low marsh areas fringe the main 

marsh immediately adjacent to the mainstem creek and also exist in frequently flooded, 

low lying areas of the marsh.  The mid marsh is dominated by Spartina cynosuroides 

with (sometimes large) pockets of Phragmites australis.  The high marsh zone is more 

diverse, but still dominated by Spartina and Phragmites.  Located closer to land and 

receiving more freshwater inputs, the high marsh also includes stands of Typha spp.   

The marsh creek system at King’s Landing is branched, or hierarchical, with a 

main creek that feeds the Patuxent River at its mouth and is itself fed by a fresh stream 

which is embedded in the terrestrial landscape at its head.  Fresher water near the head of 

the main creek may be the cause of higher plant diversity in the high marsh.  As in Jug 

Bay, there is a seasonal succession of plants at King’s Landing, with die-back in the fall, 

flushing in winter (though to a far lesser extent than at Jug Bay), and development of 

broadleaved plants and then reeds, grasses and flowering plants throughout the spring and 

summer.  

 

 

 

 

 

 



 

31 

METHODS 

Field techniques 

 Marsh surface sediments at each site were sampled in low, mid and high marsh 

zones.  At Jug Bay, marsh creek sediments were sampled at the head, middle and mouth 

regions of the creek.  At King’s Landing, samples were taken from first, second and third 

order (mainstem) creeks.  All marsh surface samples were taken by hand using 30 cm 

long (10 cm inner diameter) PVC cores, to a depth of approximately 15 cm.  Marsh creek 

cores were taken with a pole corer, using the same 30 cm PVC cores.  Samples were 

transported to the Chesapeake Biological Laboratory on ice and placed in a temperature 

control room, which was maintained at the temperature of marsh creek water measured in 

the field that day (Table 1-2).  During transport, marsh creek cores had ~5cm of water 

overlying the sediment, whereas marsh surface cores were transported without overlying 

water (and were generally collected without water covering the surface).  The cores were 

placed under water that was collected from the marsh creek and filtered to 0.5 microns.  

Cores were left in the dark with bubblers to equilibrate overnight.   

 

 

 

 

 

 

 
 
 

Table 1-2.  Temperature and salinity of water at Jug Bay (marsh creek) and King’s 
Landing (Patuxent River) at the time of core collection.  Asterisks indicate field trips from 
which cores were used for both routine incubations and NO3 loading experiments. 

Month of Jug Bay King's Landing Incubation
2004 Temperature Salinity Temperature Salinity Temperature
April 9 0.13 11 1.40 9
May 23 0.15 25 0.20 25
June 26 0.10 25 0.32 25
July 28 0.20 26 1.60 27

August 24 0.12 26 0.45 25
September 23 0.17 26* 3.76* 26*

October 15 0.16 15* 2* 14*
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Incubation techniques 

 After ~16 hours of equilibration, core tubes were sealed with polycarbonate lids 

equipped with o-rings, magnetic stirbars and valved sampling ports, with only water (no 

air) in the headspace (Fig. 1-5a).  The cores were arranged around a central magnetic 

“fan” which turned the stirbars at low rpm (Fig. 1-5b,c).  Cores were incubated in the 

dark in this manner for 6 hours (8 hours in April, when water temperature was <12oC).   

Initial aliquots were drawn from the headspace of each core (30 mL for nutrient analyses 

and duplicate 5 mL aliquots for N2 and O2 analyses), and then every 1.5 hours thereafter 

(30 mL for nutrients and single 5 mL aliquots for N2 and O2) for the duration of the 

incubation.  Volumes of water drawn for samples were replaced with water from the bath 

that had been placed in a cubitainer at the beginning of the incubation.  Control core 

tubes without sediment were treated along with the experimental cores.   

Bubbles formed under the lids of the cores on several occasions.  In most cases, 

the source of bubbles appeared to be air pockets in the sediment or from anaerobic 

sediment metabolism over the course of the incubation, as opposed to a faulty seal in the 

lid.  Cores with bubbles were not discarded from the experiment, but time of appearance 

and size was noted for all bubbles that developed. 

N2, O2 and nutrient analyses 

 Water samples for nutrient analysis (NH4, NO3, NO2 and PO4) were collected in 

plastic syringes, filtered to 0.2 microns and immediately frozen.  Samples for N2 analysis 

were collected in gas-tight, ground glass stoppered vials, killed with mercuric chloride 

(HgCl2) and stored underwater at ambient temperature or lower to prevent degassing. 
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Nutrient samples were analyzed by the Chesapeake Biological Laboratory’s Nutrient 

Analytical Services Lab using standard methods (Keefe et al.  2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Sediment-water fluxes for dissolved nutrients were determined according to the following 

formula (Fig. 1-6): 

F = S * h * k, 

where F = net analyte flux in µmoles m-2 h-1, 

           S = slope of the best fit line from linear regression of concentration change on time 

       in µmoles L-1 h-1, 

 h = height of the water column in a given core in cm, 

Figure 1-5.  Equipment for flux experiments. Core with sediment and flux lid (a); 
Incubation tank with filtered water and magnetic stirfan (b); Cores arranged around stir 
fan in tank (c). Images from IAN Symbol Library.  
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      and k = constant (10) derived from the conversion of 1 L to 1000 cm3 and 10,000 cm2 

        to 1 m2.  

 

 

 

 

 

 

 

 

 

 

 

 
Regressions of analytes versus time yielding an r2 of <0.87 (4 observations) or <0.90 (3  

observations) were designated as “not interpretable,” and regressions in which the total 

concentration change was less than twice the limit of detection for that nutrient were 

designated as having a flux of zero.  Single outliers were removed prior to regression 

analysis if a strong pattern was evident in 3 of 4 observations. 

Samples designated for quantification of dissolved gases were analyzed within 2 

weeks of collection using Membrane Inlet Mass Spectrometry (Kana et al.  1994).  Water 

samples were pumped through a gas permeable silicon membrane under high vacuum so 

that dissolved gas molecules from the samples passed into the attached mass 

spectrometer.  Dissolved gas concentrations (N2, O2 and Ar) were determined from the 
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Figure 1-6.  Example of concentration changes with time used to 
calculate fluxes.  Data shown are N2 concentrations generated 
during incubation of mid marsh sediments taken from Jug Bay in 
2004. 
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intensities of mass spectrometer signals at m/e 28, 32 and 40, respectively.  Measuring N2 

and O2 concentrations relative to the concentration of Ar, a conservative gas, allowed an 

order of magnitude increase in measurement precision over measurement of N2 and O2 

alone (Kana et al.  1994).  Data were corrected for instrument background and drift, and 

for differences in gas solubility due to temperature and salinity differences between 

incubations and mass spectrometer standards.  Changes in dissolved gas concentration 

ratios with time were used to calculate sediment-water N2 and O2 fluxes as described 

above for nutrients.  Control core fluxes were noted for each incubation, but received 

separate treatment during data analysis. 

Nitrate loading experiments 

 Two experiments were performed in which cores were incubated with elevated 

NO3 concentrations in overlying water.  For practical reasons, both experiments were 

performed using cores collected for routine incubations.  Cores for the first experiment 

were collected from King’s Landing in September and included 5 mid marsh cores, 1 low 

marsh core and 1 core from the marsh creek.  Cores for the second experiment were 

collected from King’s Landing in October and included 4 high marsh cores, 1 mid marsh 

core, 1 low marsh core and 1 marsh creek core.  In each experiment, KNO3  was added to 

overlying water immediately after cores had undergone routine incubation, in order to 

raise the headspace NO3 concentration to 50 µM (2 cores), 150 µM (2 cores), and 600 

µM (1 core) above ambient concentrations, which were later confirmed to be low.  One 

core with ambient NO3 and 2 control cores were also incubated in each experiment.  

After NO3 addition, cores were left uncapped with bubblers to equilibrate for ~16 hours, 

and then incubated as previously described. 
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RESULTS 

Ambient dissolved oxygen and nutrient fluxes 

Oxygen 

Oxygen (O2) fluxes were directed, without exception, into the sediment.  Fluxes 

of 1000 to 3000 µmoles O2 m-2 h-1 were most commonly observed, with a total range of 

rates from 470 to 5293 µmoles O2 m-2 h-1 (Fig. 1-7).  Control core (water but no 

sediments) fluxes were small (<500 µmoles O2 m-2 h-1, with 2 exceptions) (Table 1-3).  

The majority of fluxes were in the range reported by Boynton and Kemp (1985) for 

oligohaline and mesohaline Chesapeake Bay sediments, but some unusually high rates 

(>4500 µmoles O2 m-2 h-1
) were observed.  More recently, Boynton and Kemp (2005) 

have reported that rates of sediment oxygen consumption (SOC) around 975 µmoles O2 

m-2 h-1 are most common in shallow tidal fresh and oligohaline sediments.  In this study, 

slightly higher SOC fluxes were observed in the high and mid marsh areas than in the low 

marsh and marsh creeks (Fig. 1-8a).  Average monthly SOC increased from April 

through August, then decreased through October (Fig. 1-8b); there was a strong positive 

correlation between SOC and temperature (r2 = 0.84; Fig. 1-9).   
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Figure 1-7. Frequency distribution of dissolved O2 fluxes measured in 
Patuxent River marshes, April through October, 2004.  All fluxes were 
directed into the sediment. 
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Fig. 1-8.  Average spatial (a) and temporal (b) patterns in sediment 
oxygen consumption for Patuxent marshes, April through October 2004.   
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Ammonium  

Fluxes of dissolved inorganic nutrients also exhibited some strong patterns.  

Ammonium fluxes were directed predominantly out of the sediment (positive).  Fluxes of 

0 to +200 µmoles NH4-N m-2 h-1 were most frequently observed, with a total range of  

-118 to +934 µmoles NH4-N m-2 h-1 (Fig. 1-10).  Control core NH4 fluxes were generally 

small, but a large negative flux of 107 µmoles NH4-N m-2 h-1 was observed at King’s 

Landing in April (Table 1-3).  The most frequently observed NH4 fluxes were within the 

range previously reported for oligohaline and mesohaline Chesapeake Bay sediments, but 

the substantial number of observations above 200 µmoles NH4-N m-2 h-1 is somewhat 

unusual (Boynton & Kemp  1985; Bailey  2005).  There was a strong spatial pattern  

Figure 1-9.  Relationship between average monthly SOC and temperature 
observed during routine incubations of cores from Jug Bay and King’s 
Landing. O2 fluxes are directed into sediments.  
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in NH4 fluxes, where marsh creek sediments released the most NH4 and high and mid 

marsh sediments released less by a factor of 4 or more (Fig. 1-11).  At King’s Landing, 

average NH4 fluxes were similar in all months except September, when average flux was 

high due to an observation of 495 µmoles NH4-N m-2 h-1 (Fig. 1-12).  At Jug Bay, average 

fluxes increased from April to May, then decreased through October. 

  

 

 

 

 

Figure 1-10.  Frequency distribution of dissolved NH4 fluxes measured in 
Patuxent River marshes, April through October, 2004. 
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Figure 1-11.  Spatial patterns in NH4 flux rates measured in Jug Bay (a) 
and King’s Landing (b) marshes, April through October, 2004. 
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 Figure 1-12.  Temporal patterns in NH4 flux rates measured in Jug 
Bay (a) and King’s Landing (b) marsh surface and creek sediments. 
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Nitrate 

 Nitrate fluxes were largely into the sediment (negative).  Fluxes of  -1 to  

-100 µmoles NO3-N m-2 h-1 were most commonly observed, but the total range was from  

-276 to +84 µmoles NO3-N m-2 h-1 (Fig. 1-13).  Control core fluxes were small for the  

 

 

 

 

 

 

 

 

 

 

 
 
most part (Table 1-3).  The majority of fluxes were in the range previously reported for 

oligohaline Chesapeake Bay sediments, but the few positive fluxes that were observed in 

this study did not follow a temporal pattern, contrary to results from other studies in 

which NO3 was released from sediments in late summer (Boynton & Kemp  1985). 

Spatial patterns in NO3 fluxes were different between sites (Fig. 1-14).  At Jug Bay fluxes 

were similar in the high marsh, mid marsh and marsh creeks, and directed predominantly 

into the sediments.  Conversely, fluxes in the low marsh were often positive.  At King’s 
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Figure 1-13.  Frequency distribution of NO3 fluxes measured in Patuxent River 
marshes, April through October, 2004. 
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Landing, fluxes were also negative and of similar magnitude in the high and mid marsh, 

but increased in the low marsh and were highest in the marsh creeks.  A weak temporal 

pattern developed in the combined dataset that followed the temporal pattern observed for 

N2 fluxes (Fig. 1-15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-14.  Spatial patterns in NO3 fluxes measured in Jug Bay (a) 
and King’s Landing (b) marshes, April through October, 2004. 
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Phosphate 

Phosphate (PO4) fluxes were very small to negligible, with a few exceptions.  

Fluxes ranged from -26 to +38 µmoles PO4-P m-2 h-1 (Fig. 1-16), but fluxes of 10 µmoles 

PO4-P m-2 h-1 or greater were observed only in Jug Bay marsh surface and King’s 

Landing marsh creek sediments in May through July.  Interpretable, non-zero fluxes were 

predominantly positive (i.e. out of the sediments).  Control core fluxes were negligible 

(Table 1-3). 

 

 

Figure 1-15.  Temporal pattern in NO3 fluxes (from water column to sediments), 
averaged for both King’s Landing and Jug Bay, all marsh environments.  
Temporal pattern was the same at both sites.  Nitrate fluxes exhibit the same 
bimodal temporal pattern as N2 fluxes (see Fig. 1-20 for comparison).  
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Ambient N2 fluxes  

 A broad range of N2 fluxes (-159 to +846 µmoles N m-2 h-1) were measured, with 

negative fluxes indicating net N2 movement into the sediment and positive fluxes 

indicating a net flux to the water column.  Despite the large range of rates measured, rates 

between 10 and 200 µmoles N m-2 h-1 were most commonly observed (Fig. 1-17).  The 

grand mean of all rates measured was 120 µmoles N m-2 h-1.  A literature review of tidal 

wetland denitrification studies (Greene  2005) indicated that rates measured in this study 

were slightly larger than the population of measurements in the literature (t-test, unequal 

variances, P = 0.04; Fig. 1-18).  However, if the single highest rate measured in this study  
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Figure 1-16.  Frequency distribution of PO4 fluxes measured in Patuxent River 
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(846 µmoles N m-2 h-1) is removed from calculations, there is no significant difference 

between rates from this study and those in the literature (t-test, unequal variances, P = 

0.07).  No significant differences were found between rates measured in tidal fresh (Jug 

Bay) versus oligohaline (King’s Landing) sediments (t-test, P >> 0.05; Fig. 1-18).  

Dinitrogen fluxes measured in control cores ranged from -206 to +203 µmoles N m-2 h-1; 

however, most fluxes had an absolute magnitude less than 60 µmoles N m-2 h-1 (Table    

1-3).   

 Since cores were bubbled with air prior to incubation, all cores began incubation 

with roughly the same amount of O2, so relationships between water column O2 

concentration and N2 fluxes could not be explored.  However, there was a positive 

Figure 1-17.  Frequency distribution of denitrification rates measured 
in King’s Landing and Jug Bay marshes, April through October, 
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correlation between N2 fluxes from the sediment and O2 fluxes into the sediment for the 

combined marsh surface and marsh creek datasets (r2 = 0.27; Fig. 1-19a).  The correlation 

between N2 and O2 fluxes measured only in marsh surface sediments (both sites 

combined) was stronger (r2 = 0.41; Fig. 1-19b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-18.  Comparison of denitrification rates measured in this study versus 
rates identified in the literature.  Boxes represent 25th, 50th and 75th percentiles, 
bars represent 5th/95th percentiles and points represent outliers. 
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Figure 1-19.  Relationship between N2 and O2 fluxes in all cores 
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Spatial patterns – marsh habitat 

There was a consistent pattern of decreasing denitrification rate with distance 

from land at both study sites (Fig. 1-20).  Rates were highest in the high marsh, 

decreasing through the mid and low marsh, and lowest in the marsh creeks.  Despite the 

consistent pattern, the only statistically significant difference in rates was between the 

high marsh areas and marsh creeks in the Jug Bay and combined datasets (Bonferroni t-

test P=0.007 and 0.004, respectively).  

Fine scale spatial heterogeneity – marsh environment 

 Spatial heterogeneity at fine scales (<5 m) was high (Table 1-4).  In September, 

replicated N2 flux measurements in the mid marsh areas of Jug Bay and King’s Landing 

exhibited coefficients of variation of 48% and 40%, respectively.  Replicated high marsh 

measurements at King’s Landing in October had a coefficient of variation of 38%.  Due 

to equipment limitations, a more extensive investigation of fine scale heterogeneity was 

not feasible, but these data suggest substantial variation. 

Temporal patterns – marsh environment 

 Temporal patterns in denitrification rates were also observed, though there were 

no statistically significant differences in denitrification rates between months.  At both 

Jug Bay and King’s Landing, denitrification rates declined from April through June, 

increased in July and then declined through September/October (Fig. 1-21).  Rates were 

higher in April than in September/October, even though temperatures were slightly lower 

in April (Table 1-2). 
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Figure 1-20.  Spatial patterns in denitrification rates measured in Jug Bay (a) 
and King’s Landing (b) marsh sediments.  Rates are 7 month averages.  
Grouping of environments according to statistically significant differences in 
mean rates is indicated by letters above columns (“a” and “b”) for Jug Bay; no 
significant differences were found at King’s Landing. 
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*Data suggested near-zero fluxes for non-interpretable results

Table 1-4.  Fine scale heterogeneity in denitrification rates.   
Values are fluxes (in µmoles N m-2 h-1) for replicate cores  
taken <5 m apart.  Range (maximum – minimum rate) and 
coefficient of variation (“C.V.,” as %) are also given. 

Site Values Range C.V.
September,
Mid marsh

King's Landing NI*
76

135
NI
NI

60 40

Jug Bay 43
120
168
179
231

188 48
October,
High marsh

King's Landing 70
106
151
178

108 38
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Figure 1-21.  Temporal patterns in denitrification rates measured in 
Jug Bay (a) and King’s Landing (b) marsh surface and creek 
sediments.  Rates are averages across all marsh environments and 
marsh creeks for the site and month indicated. 
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Figure 1-22.  Denitrification rates measured in Jug Bay (a) and  
King’s Landing (b) marsh creeks, April through October 2004. 

Marsh creeks 

 Marsh creek N2 fluxes ranged from -159 to +181 and -99 to +336 µmoles N m-2  

h-1 at Jug Bay and King’s Landing, respectively.  No strong spatial or temporal patterns 

were evident at either site.  However, negative fluxes (net N-fixation) were observed only 

from July onward, and only in the main creek at King’s Landing and in the creek mouth 

at Jug Bay (i.e. portions of the creeks closest to the mainstem Patuxent) (Fig. 1-22). 
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Relationships between water column NO3 and N2 flux under ambient conditions 

 Interestingly, there was not a strong correlation between NO3 fluxes and N2 fluxes 

on a core by core basis; nor was there a strong correlation between water column NO3 

concentrations and N2 fluxes on a core by core basis in routine incubations, except that 

negative N2 fluxes were observed only at low NO3 concentrations (Fig. 1-23).  There  

 was, however, a strong relationship between monthly average N2 fluxes and water 

column NO3 concentrations at King’s Landing (r2=0.91; Fig. 1-24).  The relationship was 

not as strong at Jug Bay (r2 = 0.30; Fig. 1-24) due to the frequently low NO3 

concentrations in water collected for incubations at this site.  Water collected at Jug Bay 

was drawn from marsh creeks, often during ebb tides, whereas water collected at King’s 

Landing was taken directly from the river.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-23.  Scatter plot of denitrification rates versus initial NO3 
concentrations in overlying waters, observed during routine incubations of 
cores from Jug Bay and King’s Landing.   
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Nitrate loading experiments 

 In general, there was a strong saturation-type response by denitrification rates to 

increased water column NO3 concentrations during loading experiments (Fig. 1-25).  

Dinitrogen fluxes in the first loading experiment increased with NO3 concentrations to 

150 µM in a steep, nearly linear fashion, then increased less sharply at higher substrate 

concentration.  The second loading experiment generated similar results, except that the 

denitrification rate at 600 µM NO3 was similar to the rate at 50 µM.  Denitrification rates 

at 0 and 50 µM added NO3 were almost identical between experiments.  Despite the very 

strong response to elevated water column NO3, and despite the fact that N2 fluxes 
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Figure 1-24.  Relationship between average monthly denitrification rates 
and NO3 concentrations observed during routine incubations of cores from 
Jug Bay and King’s Landing.   
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measured during loading experiments were higher than fluxes generated by the same 

cores during routine incubations, the highest N2 fluxes measured in this study were 

measured during routine incubations, rather than in loading experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-25.  Response of denitrification rate to elevated water column NO3 
concentration.  Each point represents the averaged denitrification rates observed 
in two loading experiments for given NO3 concentrations.  In each experiment, 
there were two cores each with 0, 50 and 150 µM added NO3, and one core 
with 600 µM added NO3. 
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DISCUSSION 

 Denitrification occurred in both tidal fresh and oligohaline marsh environments 

during each of the 7 months in which it was measured.  The rates measured were 

substantial in the context of an ecosystem-scale N budget for the Patuxent River.  For 

example, typical marsh denitrification rates of 40 mg N m-2 d-1 appear to nearly balance 

external N inputs per unit estuarine surface area (on a daily basis) at rates of 43 mg N m-2 

d-1 (W. Boynton, unpublished data; Cronin and Pritchard  1975).  Denitrification rates 

were not uniform in space or time, however, and recognizing spatial and temporal 

patterns is an aid to understanding factors controlling denitrification.  These spatial and 

temporal patterns are also vital to extrapolating rate measurements from study sites to the 

larger marsh community at seasonal to annual timescales.   

Spatial patterns in denitrification 

 Factors controlling denitrification include O2 availability (and thus frequency of 

tidal inundation, physical characteristics of sediments, metabolic rates of aerobic 

heterotrophs and dominant plant community), NO3 availability (and thus water column 

NO3 and NH4 concentrations, nitrification rates and competition due to plant and algal 

uptake), temperature, and the availability of labile organic matter (Seitzinger 1988).  

With respect to factors that may control spatial patterns in marsh denitrification, two of 

the most striking differences between marsh environments (i.e. high, mid and low marsh 

and marsh creeks) are dominant plant community and frequency of tidal inundation.  

These two properties can create differences in the availability of O2, NO3 and C. 
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Impact of plant community 

 Labile C and NO3 availability are important controls on denitrification (Seitzinger  

1988; Brettar and Rheinheimer  1992), and both are influenced to a large degree by 

dominant plant community (Simpson et al.  1983b).  Though some chemoautotrophic 

denitrifiers have been identified, known denitrifiers are largely heterotrophs, and as such 

denitrify in order to oxidize organic matter (Zehr and Ward  2002).  Therefore, plant litter 

is important to denitrification as a source of carbon.  Additionally, though NO3 from 

overlying water is important to denitrification (Kana et al.  1998), ammonification and 

subsequent nitrification of N in plant litter is also a potential source (Caffrey and Kemp  

1992).  Low marsh plants are typically broad-leaved with small stems, and thus have a 

relatively low C:N ratio (Heywood  1977; Traband  2003).  High marsh plants, however, 

are largely reeds, grasses or even ericaceous species with prominent stems, large amounts 

of structural carbon and high C:N ratios (Heywood  1977; Traband  2003).  Plants with 

lower C:N ratios tend to be more labile, and low marsh plants have been shown to 

decompose at significantly higher rates than high marsh vegetation (Odum and Heywood  

1977; Simpson et al.  1983b). 

 The greater lability of plant litter in low marsh environments should, in theory, 

enhance denitrification rates due to greater availability of C and N (NO3).  However, C:N 

ratio does not appear to be a dominant control on denitrification in Patuxent marshes, as 

high marsh environments exhibited higher denitrification rates than low marsh areas in 

this study (Fig. 1-20).  At Jug Bay, sediment C:N ratios do appear slightly lower in low 

marsh than in high marsh environments (Chapter 2), but more striking is the fact that 

there is simply much more organic matter in the high marsh (Khan and Brush  1994).  
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DeLaune et al. (1981) found the same pattern in a Louisiana salt marsh, and there appears 

to be more C and N in the high marsh at King’s Landing as well (Chapter 2).  Given the 

spatial pattern in denitrification observed in this study, total C and N content of sediments 

may be more important than C:N ratio in determining the availability of organic C and 

remineralized NO3 to denitrifiers. 

Impact of tidal flooding 

 In this study, denitrification rates increased with distance from the tidal channel 

(Fig. 1-20).  The body of literature reporting spatial patterns in denitrification rates within 

tidal marshes is not extensive; however, Merrill (1999) reported a similar spatial pattern 

for Jug Bay during the spring of 1997.  Kaplan et al. (1979) measured higher 

denitrification rates in marsh creeks and low marsh environments than in the high marsh 

in a New England Salt marsh.  However, creek bottoms in that marsh received large NO3 

subsidies from groundwater, to which the authors attributed the observed spatial patterns 

in denitrification.  In Patuxent marshes during this study, denitrification rates were 

negatively correlated with duration of tidal inundation (r2 = 0.92; Fig. 1-26). 

Higher order marsh creeks are inundated 100% of the time, and even primary 

creeks are inundated most of the time.  This contrasts sharply with high marsh 

environments, which are inundated least frequently and for the shortest duration of all 

marsh environments, sometimes receiving no tidal waters at all during the neap portion of 

the tidal cycle.  More frequently inundated areas receive new NO3 inputs from tidal 

waters more regularly, which could enhance denitrification rates.  However, while 

providing a regular water column NO3 subsidy to more inundated regions of the marsh, 

tidal pulsing may also create an opposing spatial pattern in sediment NO3 pools from 
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nitrification by draining and aerating surface sediments.  No previous studies of the 

relative importance of water column versus nitrified NO3 in tidal marsh denitrification 

could be identified in a literature review (Greene  2005), though a positive correlation 

between nitrification and denitrification has been reported for salt marshes (Thompson et 

al.  1995).  In theory, if one source of NO3 (water column versus sediment nitrification) is 

sufficiently larger than the other, denitrification rates may follow the same spatial pattern 

as the dominant NO3 source, assuming NO3 availability is an important control.  

Nitrification, denitrification and O2 availability 

Though denitrification is an anaerobic process, the aerobic oxidation of NH4 to 

NO3 (nitrification) can be an important source of NO3 for denitrifiers (Vanderborght and 

Billen  1975; Seitzinger et al.  1984; Kemp et al.  1990).  In wetland sediments, where 

Figure 1-26.  Relationship between measured denitrification rates and 
duration of tidal inundation in Patuxent River marshes. 

r2 = 0.92 
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strong redox boundaries are spatially compressed, nitrification occurring in aerated 

sediments and rhizospheres can supply NO3 to denitrifiers in adjacent anoxic sediments 

via diffusion (Reddy et al.  1989).   Oxygen is an important control on the coupled 

nitrification-denitrification process, and NO3 for denitrification has been reported to 

come almost exclusively from nitrification when O2 is available (indirect denitrification) 

and solely from overlying water when it is not (direct denitrification; Jenkins and Kemp  

1984). 

 Results from this study suggest a key role for nitrification in supplying NO3 to 

denitrifiers in Patuxent marshes.  During most routine incubations, using ambient water 

column NO3, less than half of the N2 flux from the sediments could be attributed to the 

observed NO3 flux from the overlying water into the sediments (Fig. 1-27), indicating  

the presence of an alternate NO3 source. Conversely, during loading experiments (high 

water column NO3), most or all of the N2 fluxes could be attributed to NO3 losses from 

the water column (Fig. 1-27).  These relationships indicate that while direct 

denitrification may dominate when water column NO3
 concentrations are very high, 

coupled nitrification-denitrification is likely to be the dominant pathway for 

denitrification at normal to low NO3 concentrations.  A strong positive relationship for 

nitrification and denitrification has already been established for Chesapeake Bay subtidal 

sediments (Kemp et al.  1990), and it follows that a similar relationship may exist in tidal 

marsh sediments as well. 

If sediment nitrification is the dominant source of NO3 in Patuxent marshes, then 

O2 is an important (positive) control (Jenkins and Kemp  1984; Kemp et al.  1990).  

Therefore, areas with less frequent inundation and more plant roots/rhizomes may foster  
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Figure 1-27.  Frequency distribution of the percent of N2 flux that could 
be attributed to the NO3 flux from the water column in routine 
incubations and loading experiments. 
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more denitrification.  Even though nitrification was not measured directly in this study, 

evidence presented here suggests that this process drives denitrification in Patuxent 

marshes, and controls on nitrification may therefore help to explain the observed spatial 

patterns in denitrification. 

Temporal patterns in denitrification 

 The bimodal pattern in denitrification rates observed during this study suggests 

seasonal changes in controls.  The first feature of the pattern – a general decrease in 

denitrification rates from April through June – is likely explained by water column NO3 

availability.  The Patuxent river receives a large, terrestrially derived N pulse in late 

winter (Kemp and Boynton  1984; Boynton et al.  1998).  Nitrate from this pulse may 

have supported high denitrification rates in the early spring, with rates decreasing in the 

following months as the riverine NO3
 supply decreased.  Increasing competition for N 

from developing macrophyte and epiphyte communities may also have limited 

denitrification in the late spring/early summer (Simpson et al.  1983b).   

 Though the NO3 loading experiments performed in this study were discussed 

initially as evidence for coupled nitrification-denitrification in Patuxent marshes, these 

experiments are perhaps more important as an indication that denitrification rates respond 

to changes in water column NO3 concentration (i.e. availability of NO3 limits 

denitrification rates; Fig. 1-25).  Nitrate concentrations measured in the upper Patuxent 

decreased from April through the end of July in 2004 (Fig. 1-28).  Given the evidence  

that denitrification in Patuxent marshes responds to changes in water column NO3 

concentrations, it is likely that the decreasing trend in marsh denitrification from early 

spring to mid summer was influenced by temporal patterns in Patuxent River NO3 
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concentrations.  This indicates that direct denitrification may dominate during this portion 

of the year (Fig. 1-29a,b). 

 The second feature of the bimodal denitrification pattern was an increase in 

average denitrification rates in July.  Since a corresponding increase in riverine NO3 was 

not observed, this may indicate a shift from predominantly direct denitrification to more 

coupled nitrification-denitrification.  Nutrients and organic matter from decomposition of 

early production could have supplied both organic substrate and NO3 (after 

ammonification of organic N and subsequent nitrification) to support the observed mid-

summer increase in denitrification rates (Kemp and Boynton  1984; Bowden  1986).  The 

increased SOC observed in mid-summer in this study (Fig. 1-8b) supports this idea of 

augmented sediment metabolism and nutrient regeneration.  After the secondary nutrient 

Figure 1-28.  Nitrate concentrations in the Patuxent River water column 
at King’s Landing, 2004.   
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Table 1-5.  Summary of average N2 fluxes (plus or minus 
standard error) measured by Merrill (1999) at Jug Bay in 1997.  
Fluxes are given as µmoles N m-2 h-1.  Non-interpretable data 
(NI), may indicate near-zero fluxes.  “ND” indicates that no 
data were available.   

pulse, the nutrient supply may again have been drawn down or other factors, such as 

decreasing temperature, may have contributed to the downward trend in denitrification 

rates from July through October (Fig. 1-29c,d).  Though a plausible scenario, the above 

discussion is speculative and highlights the need for further investigations regarding 

sources of NO3 for denitrification in Patuxent tidal marshes. 

Previously-reported temporal patterns in Patuxent marsh denitrification 

 Merrill (1999) measured substantial denitrification in all marsh environments at 

Jug Bay in 1997.  Measurements were made once during spring, summer and fall.  In the 

spring, a spatial pattern similar to this study was found, and substantial denitrification 

rates were measured in all marsh environments (Table 1-5).  Few data were available for 

the summer, and much lower rates (net N-fixation in fact) were measured in the fall 

(Table 1-5).  To some extent, Merrill’s findings appear contrary to those in this study, as  

substantial denitrification was observed in all environments during all months of this 

study.   However, sampling frequency was much higher in this study (monthly, versus 

seasonal).  Examining data from single field trips in spring, summer and fall during this 

study leads to the conclusion that denitrification is higher in spring than in summer and 

fall, much as Merrill (1999) described it.   

 

 

 

 

 

 

Spring Summer Fall
Marsh creek -28.4 NI ND
Low marsh 23.6 ± 17.7 33.3 ± 14.6  -8.86 ± 41.8
Mid marsh 30.8 ± 7.64 NI  -27.4 ± 15.1
High marsh 59.2 ± 23.4 NI -22.7 ± 12.3
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Kinetics of denitrification 

 Spatial patterns in Patuxent marsh denitrification appear to correlate strongly with 

frequency of tidal inundation (negative correlation; Fig. 1-26) and to show some positive 

relationship with C and N availability (Chapter 2; further investigation would be useful), 

while temporal patterns correlate (positively) with NO3 availability (Fig. 1-24).  Results 

from NO3 loading experiments provided more detailed information about the relationship 

between denitrification rates and water column NO3 availability.   

When the Michaelis-Menton equation is used to describe enzyme kinetics at the 

molecular level, the substrate concentration at which the reaction rate is half maximal 

(Km) is an inverse indicator of enzyme affinity for that substrate.  By analogy, the Km for 

NO3 being denitrified by marsh bacteria, measured at the community scale, should 

indicate the affinity of that community for NO3.  An important distinction between such 

an analysis and molecular level enzyme kinetics is that when measuring denitrification 

rates in sediments, the reaction rate is plotted against the substrate concentration in the 

overlying water rather than in the immediate vicinity of the enzymes.  Therefore, the Km 

generated by such analyses is an indicator of more than denitrifier affinity for NO3; the 

Km is also an indicator of physical parameters like sediment porosity and chemical 

parameters such as the sediment-water NO3 gradient, all of which influence local NO3 

concentration where denitrification occurs.  Thus, the Km represents the environmental 

affinity for NO3, rather than simple enzyme affinity.  

The response curve generated by NO3 loading experiments in this study follows 

the classic Michaelis-Menten pattern, except that it does not pass through the origin (Fig. 

1-25).  Because water column NO3 concentration is not necessarily reflective of sediment 
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NO3, substantial denitrification can be observed when there is basically no NO3 in the 

water column.  This indicates the presence of an alternative NO3 source, likely 

nitrification.  Since denitrification rates near 50 µmoles m-2 h-1 were observed in both 

loading experiments when water column NO3 concentrations were near zero, any 

discussion of kinetics must be qualified as pertaining only to direct denitrification from 

water column NO3, where: 

Direct denitrification = [Total denitrification – 50 (Coupled denitrification)]. 

Fitting an average response curve of direct denitrification rates from this study to the 

Michaelis-Menten equation yields a Vmax of 238 µmoles N m-2 h-1 and a Km of 93 µM 

NO3 (Fig. 1-30).  Whether the Km is “high” or “low” is in some sense a relative matter, as 

different environments experience different ranges of ambient NO3.  Nitrate 

concentrations of 93 µM are at the mid to high end of the range of concentrations 

commonly reported for the upper Patuxent (Swarth and Peters  1993; Boynton et al.   

1998), and if strictly interpreted, this Km indicates a moderate to low affinity of marsh 

denitrifiers for NO3.   

 Though a useful index, the Km should be interpreted with caution since sediment 

nitrification appears to be important in Patuxent marshes, and since substrate (NO3) 

concentrations were measured in the water column rather than in the immediate vicinity 

of enzymes.  The amount of NO3 actually available to denitrifiers may be more or less 

than what is in the water column, depending on diffusive NO3 fluxes to the sediment and 

existing sediment NO3 pools, which may vary in size.  Also, even though denitrification 

rates measured in loading experiments were higher than rates measured for the same 

cores at in situ NO3 concentrations, the highest of all denitrification rates observed in this 
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       Figure 1-30.  Vmax and Km values for direct denitrification in Patuxent marshes,    
       suggested by response curves from loading experiments.  “V” refers to denitrification  
       rate and “Vmax” indicates maximum predicted denitrification rate.  Km refers to the     
       substrate (NO3) concentration at which V=1/2(Vmax). 
 

 
study were generated by cores from routine incubations, at ambient NO3 concentrations.  

A possible explanation is that denitrification measured during routine incubations may 

have occurred at the expense of sediment N pools, so loading experiments performed on 

fresh cores rather than on cores used in prior incubations might have yielded a higher 

Vmax or different Km.  Finally, a longer equilibration period prior to incubation would 

allow for more diffusion of water column NO3 amendments to the sediment.  Despite 

limitations, the response curves generated in this study provide information regarding 

controls on denitrification in Patuxent marshes and the response of denitrification rates to 

changing levels of NO3 in the environment. 
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Role of N-fixation 

 From the standpoint of the N economy of an estuary, N-fixation is the converse of 

denitrification, bringing atmospheric N2 directly into the system for use by primary 

producers.  To a degree, the techniques used in this study to measure denitrification 

already account for N-fixation in that the net N2 flux between sediments and water 

column was measured, rather than denitrification alone.  Dinitrogen fluxes measured in 

this study were overwhelmingly large and directed into the sediments.  This is an 

indication that denitrification rates far exceed those of N-fixation in Patuxent marshes, at 

least in the dark.  Results from dark incubations like those conducted in this study should 

be interpreted with some caution, however, as Currin et al. (1996) reported daytime 

maxima for N-fixation in a salt marsh, with almost undetectable rates at night, 

particularly in the spring (Currin and Paerl  1998).  In addition, Kaplan et al. (1979) 

reported that N-fixation rates in a New England salt marsh were lower than, but of the 

same order of magnitude as, denitrification rates. Ultimately, a thorough investigation of 

tidal freshwater marsh N-fixation is needed to interpret measured N2 fluxes, since rates 

reported for salt marsh N-fixation are often within one order of magnitude of typical 

denitrification rates (Teal et al.  1979; Wolfenden and Jones  1987; Tyler et al.  2003).  It 

is also important to consider N-fixation when interpreting spatial and temporal patterns in 

marsh denitrification, as the size of the net N2 flux from sediments can increase due to 

increased denitrification or due to decreased N-fixation, and fixation likely varies in 

space and time as well. 
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Other potential indicators of a marsh N sink 

 Data from this study indicate that Patuxent River tidal marshes are N sinks due to 

consistent, ubiquitous denitrification in marsh surface sediments and marsh creeks.  Even 

without measuring denitrification, there is evidence that marshes remove N from tidal 

waters.  Swarth and Peters (1993) reported consistently higher NO3
 concentrations in 

water flooding Jug Bay marshes than in water draining the marshes.  In the South Marsh 

region of Jug Bay, NO3 concentrations were reduced from 30 µM on average at high tide 

to 10 µM  at low tide in the summer, and from 100 µM to 40 µM in winter.  Nitrate 

concentrations in the North Marsh (slightly upstream) were reduced from 120 µM at high 

tide to <10 µM at low tide in the summer, and from 120 µM to ~15 µM in winter (Fig. 1-

31).  Simpson and Whigham (1977) reported a similar pattern in a tidal freshwater marsh 

in New Jersey, attributing at least some of the reductions in NO3 concentration to plant 

uptake.  This may be the dominant NO3
 removal mechanism during the growing season, 

but microbial processes (i.e. denitrification) are likely to be important as well, especially 

in winter and fall when plant uptake ceases.  Substantial denitrification rates (~200 

µmoles N m-2 h-1) have been reported for sediments at low temperatures (0 - 6oC; Koch et 

al.  1992; Dong et al.  2000).   

A final indication that Patuxent marshes remove and/or store N, at least 

temporarily, is that the ratio of O2 uptake to NH4 release by sediments in this study was 

generally far greater than the value expected when decomposition adheres to Redfield 

proportions (Redfield 1934).  Sediment oxygen consumption is an indicator of 

decomposition rates, and Redfieldian decomposition of phytoplankton would yield 

O2:NH4 flux ratios near 13, with values greater than 13 suggesting an alternative fate for 
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N.  In this study, O2:NH4 flux ratios ranged from 25 to 150, with few exceptions (Fig. 1-

32), which suggests that remineralized N is stored or denitrified within the marsh.   

Rethinking the “source vs. sink” debate 

The discussion of removal of NO3
 from tidal waters by marshes evokes the great 

debate as to whether tidal marshes are net exporters or importers of material and energy 

to/from estuaries (e.g. Teal  1962; Nixon and Oviatt  1973; Stevenson et al.  1977; Nixon  

1980).  When system boundaries are drawn at the high tide line, this question is of great 

importance.  Certainly, if a marsh fosters more production than a marshless stretch of 

estuary of the same area, it can provide material and energetic subsidies to the adjacent 

estuary.  From a broader perspective though, it makes more sense to view tidal marshes 

as embedded in a watershed landscape where the marshes are a transition environment, 

receiving and transforming materials as they move from the surrounding land to the 

estuary. From this standpoint, it is somewhat irrelevant whether marshes export N to an 

estuary, as terrigenous N would be entering the estuary in even larger quantities without 

marshes present.  Marshes in which more N is denitrified and buried than is fixed or 

eroded are net removers of N from the system, regardless of the direction of N flux 

between the marsh and estuary, and this is really the relevant question given the large 

anthropogenic influence on the global N cycle. 

Conclusions 

1. All Patuxent marsh environments (high marsh, mid marsh, low marsh and marsh 

creeks) denitrify at substantial rates, at least during 7 months of the year (April – 

October).  Denitrification rates do not appear to differ significantly between tidal 

fresh and oligohaline Patuxent marshes. 
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                    Figure 1-31.  Example from the Jug Bay north marsh of lower NO3   
                    concentrations in tidal waters draining versus flooding the marsh  
                    (data from Swarth and Peters  1993). 
 

 

 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
              
              Figure 1-32.  Sediment SOC:NH4 flux ratios for Patuxent marshes.   
              Values greater than 13 (dashed line) indicate removal or storage of N, 
              relative to decomposition of Redfield-like organic matter.  Four  
              outliers (SOC:NH4 > 300) were removed.  Dashed line indicates  
              stoichiometric balance (SOC:NH4 = 13). 
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2. Nitrification appears to be an important, if not dominant, source of NO3
  for 

denitrification in Patuxent marshes (Fig. 1-27), despite the sometimes high NO3 

concentrations in waters flooding marshes. 

3. Spatially, denitrification rates tend to be highest in the high marsh and decrease 

with distance from land.  Frequency of tidal inundation (i.e. O2 availability for 

nitrification) and distributions of total sediment C and N (i.e. substrate 

availability; Chapter 2) appear to influence this spatial pattern. 

4. Denitrification rates were highest in April, declined throughout the spring, then 

increased in mid-summer and decreased again through the fall.  This pattern may 

be due to a shift from direct denitrification based on allochthonous N to coupled 

nitrification-denitrification from N regenerated in sediments during the summer. 

5. Though the water column was not necessarily the dominant source of NO3, 

changes in water column NO3 concentration elicited a substantial response in 

denitrification rates under experimental conditions. 
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CHAPTER 2:  
LONG-TERM BURIAL OF NUTRIENTS IN TIDAL  

MARSH SEDIMENTS 
 

 

INTRODUCTION 

 Recognition of the Patuxent River as a nutrient-overenriched system has fostered 

interest in managing nutrient inputs and in mechanisms, both natural and man-made, for 

nutrient removal (D’Elia et al.  2003).  Permanent burial of particulate nutrients in river 

bottom sediments is a well-recognized sink in sediment-rich estuaries such as the 

Chesapeake Bay and its tributary rivers (Magnien et al.  1992; Boynton et al.  1995).  

Since recognition of the importance of subtidal nutrient burial in the Chesapeake, more 

attention has focused on tidal marshes as environments that may also bury substantial 

quantities of nutrients (Khan and Brush  1994; Merrill  1999).   

Long-term burial is one of the two major internal removal mechanisms for 

nutrients in estuaries (the other mechanism is denitrification, which only removes N). 

Nutrients taken up by plants and some heterotrophs are removed on a seasonal basis, but 

these can be remineralized and recycled to the water column (Odum  1988; Cowan and 

Boynton  1996).  Nitrogen and phosphorus can also be removed from the estuary in 

fisheries harvests and outmigration of anadromous fish (Deegan  1993), however 

fisheries harvests appear to account for removal of less than 10% of N inputs and less 

than 5% of P inputs to the Chesapeake Bay (Boynton et al.  1995).  Also, nutrient losses 

due to outmigration of anadromous fishes may be balanced in some estuaries by nutrient 

inputs from inmigrating fish (Moore and Schindler  2004).  Burial is by far the largest 
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internal sink for P and one of two major sinks for N in the Chesapeake system (Boynton 

et al.  1995). 

Patuxent River tidal fresh and oligohaline marshes are poised particularly well to 

accumulate sediment and nutrients. They are the first recipients of the high “head of 

estuary” nutrient and sediment loads that constitute an important fraction of the load to 

the estuary, and thus exhibit higher accretion rates than down-estuary marshes (Brush  

1984; Kearney and Ward  1986; Odum  1988; Magnien et al.  1992; Ward et al.  1998).  

Close to 50% of P inputs to the Patuxent are in particulate form, while N inputs are 

mainly dissolved and must be converted to the particulate form if burial is to occur 

(Magnien et al.  1992).  Most particulate P enters the river as inorganic PO4 adsorbed to 

iron oxide compounds, and is directly available for burial.  Phosphorus is also buried due 

to formation of authigenic P-containing minerals (Sundby et al.  1992).  The primary 

burial mechanism for N is incorporation in organic matter, and subsequent burial of the 

organic matter.  High levels of primary productivity in tidal fresh marshes result in the 

rapid conversion of dissolved N to particulate organic forms that are available for burial 

at the end of the growing season.   

An important caveat to the above discussion is that in order for permanent burial 

to occur, marshes must remain in a state of net accretion.  Tidal marsh accretion is not 

keeping pace with sea level rise in all Chesapeake environments (Stevenson et al.  1986).  

Some tidal marshes on the eastern shore of the Chesapeake Bay appear to be submerging 

(Ward et al.  1998), while many tributary marshes (e.g. Patuxent and Choptank Rivers) 

appear to be accreting at sufficient rates to maintain elevation with respect to sea level 

(Flemer et al.  1970; Khan and Brush  1994; J. Cornwell pers. comm.).  Marsh status with 
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respect to accretion/erosion is a pivotal factor determining nutrient burial in these 

environments. 

Patuxent nutrient burial studies 

Rates of sediment accretion and burial of N and P have been reported for Jug Bay, 

a tidal freshwater marsh in the upper Patuxent (Khan and Brush  1994; Table 2-1).   

 
 Table 2-1.  Sediment accretion and nutrient burial rates measured in marshes at Jug Bay 
(tidal fresh) and King’s Landing (oligohaline) during previous studies and in this study.  
Accretion rates are given in kg m-2 yr-1; burial rates are given in g m-2 yr-1. 
 
 

 

 

 

 

 

 

 

 

 
Merrill (1999) also reported burial rates for King’s Landing.  However, accretion and 

burial rates for different marsh environments were based on single cores in both of the 

previous studies (Table 2-1).  Both previous studies reported higher sediment N 

concentrations in the high marsh than in the low marsh, and both reported higher mass-

based accretion rates for low marsh environments.  These trends have also been reported 

by other investigators studying tidal marshes (e.g. DeLaune et al.  1981; Bricker-Urso et 

a Data are from Khan and Brush  1994.  Accretion rates are mean values from rates derived from pollen analyses,
reported for cm depth increments dated 1900 – present.  Burial rates are mean values reported for the same depth 
increments.  Burial rates are reported as ranges for the high marsh, as rates were reported to have increased 
substantially over the past century in this environment.  Rates in the low marsh were more constant.
b Data are from Merrill  1999.  Accretion rates were estimated via 210Pb analysis.
C Data from this study.

Jug Baya Jug Bayb King's Landingb King's Landingc

Accretion High marsh 2.6 1.6 0.3 1.3
Mid marsh ND ND 0.3 3.6
Low marsh 3.1 5.2 3.4 5.9

Burial             N
High marsh 16.0 - 25.0 19.0 5.1 12.0
Mid marsh ND ND 4.0 17.3
Low marsh 9.0 22.0 31.4 32.5

P
High marsh 1.1 - 2.2 1.2 0.2 1.3
Mid marsh ND ND 0.3 4.8
Low marsh 0.7 13.0 3.7 5.9

a Data are from Khan and Brush  1994.  Accretion rates are mean values from rates derived from pollen analyses,
reported for cm depth increments dated 1900 – present.  Burial rates are mean values reported for the same depth 
increments.  Burial rates are reported as ranges for the high marsh, as rates were reported to have increased 
substantially over the past century in this environment.  Rates in the low marsh were more constant.
b Data are from Merrill  1999.  Accretion rates were estimated via 210Pb analysis.
C Data from this study.

Jug Baya Jug Bayb King's Landingb King's Landingc

Accretion High marsh 2.6 1.6 0.3 1.3
Mid marsh ND ND 0.3 3.6
Low marsh 3.1 5.2 3.4 5.9

Burial             N
High marsh 16.0 - 25.0 19.0 5.1 12.0
Mid marsh ND ND 4.0 17.3
Low marsh 9.0 22.0 31.4 32.5

P
High marsh 1.1 - 2.2 1.2 0.2 1.3
Mid marsh ND ND 0.3 4.8
Low marsh 0.7 13.0 3.7 5.9
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al.  1989; Orson et al.  1990; Craft and Richardson  1993; Ward et al.  1998).  However, 

while Merrill (1999) reported more burial of N and P in the low marsh, Khan and Brush 

(1994) calculated higher burial rates for the high marsh, citing slower decomposition and 

less tidal flushing of high marsh plant litter as reasons.   

Burial studies such as these can provide data for estimation of the size of a 

system-wide nutrient sink based on relatively few measurements.  Accretion rates and 

nutrient concentrations measured in representative sediment cores provide the data 

needed to calculate burial rates, and these data can be extrapolated over the entire marsh 

surface to estimate the size of the marsh nutrient burial sink.  However, given that 

differences have been reported in accretion rates and sediment nutrient content between 

high and low marsh environments (e.g. Bricker-Urso et al.  1989; Khan and Brush  1994), 

additional attention to spatial patterns in these factors is needed, especially if efforts to 

extrapolate burial rates of N and P to whole-system spatial scales are to be made. 

Dating sediments and estimating accretion 

To estimate the integrated burial of nutrients by marshes, the spatial distribution 

of sediment accretion rates must be known.  Accretion measurements have been made 

with a variety of techniques, all of which involve assumptions.  The first accretion 

measurements were made by placing a visually distinctive material on the marsh surface 

(e.g. brick dust), above which the accumulation of sediment was measured after some 

number of years (e.g.  Steers  1948; Stoddart et al.  1989; Wood et al.  1989).  However, 

these estimates are subject to error due to artifactual deposition and marker washout.  

The development of the 210Pb isotopic dating technique introduced a new level of 

accuracy to the field (Krishnaswamy et al.  1971; Koide et al.  1972; Armentano and 
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Woodwell  1975).  Lead-210 (210Pb) forms in the atmosphere from the radioactive decay 

of 222Rn, which is produced in the earth’s crust.  If atmospheric creation and deposition of 

210Pb are assumed to occur at a constant rate, the decay of 210Pb in sediments (via 

detection of buildup of the daughter 210Po) can be used to calculate sediment age at 

known depths and thus accretion rates (Koide et al.  1972).  In the upper Patuxent, where 

marsh sediments have accreted largely in the past few centuries, 210Pb dating is an 

especially appropriate technique because of its 22.3 year half-life (Brush  1984; 

Krishnaswamy and Lal  1978; Cornwell et al.  1996).  This technique was used in both 

the study by Merrill (1999) and in this study to estimate accretion rates in Patuxent 

marshes during the past 100 years.  

Other isotopes and techniques have also been used to measure sediment accretion 

rates, including dating with artificial radionuclides, carbon-14 (14C) dating and pollen 

dating.  Radionuclides such as 137Cs were produced in the atmosphere by nuclear 

weapons testing in the late 1950’s and early 1960’s (Krishnaswami and Lal  1978), and 

have been used to estimate sediment accretion in salt and tidal fresh marshes (e.g. 

DeLaune et al.  1989; Newbauer et al.  2001), however these techniques are only useful 

for dating sediments that have accreted since the genesis of the nuclide (generally 50 

years).  Khan and Brush (1994) based their accretion rate estimates at Jug Bay on 14C and 

pollen analyses.  Carbon-14 (useful for dating on relatively long time scales due to its 

5700 year half-life) was used to date the deeper sediments of cores, and pollen analysis 

was used to obtain dates for shallower horizons.  In pollen analysis, dates are assigned to 

sediments at the depth of appearance or disappearance of specific pollens with known 

dates of introduction to or removal from a location.  For example, the shallowest 
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sediments in which chestnut pollen is absent would be dated 1930, the approximate date 

of demise of the American chestnut (Brush 1989).  The fact that methods other than 210Pb 

dating have been used to estimate accretion in Patuxent marshes makes rate comparisons 

at once useful and difficult.  There is utility in measuring processes with more than one 

technique, as all techniques have inherent problems, however data obtained with different 

techniques should be compared with caution for the same reason. 

Objectives 

 Marsh burial of particulate N and P may be a quantitatively important sink for 

anthropogenic nutrients (Merrill and Cornwell  2000).  In each of the marshes where 

denitrification was measured during this study (Chapter 1), a single previous burial study 

laid the groundwork suggesting that these tidal marshes are indeed important sinks for 

nutrients in the Patuxent system (Khan and Brush  1994, Jug Bay; Merrill  1999, King’s 

Landing).  However, there was no replication of measurements in either study, and 

conclusions regarding spatial patterns of nutrient burial were not the same in both cases.  

The objectives of this study, then, are to add to the dataset for oligohaline nutrient burial, 

to further understanding of spatial patterns in burial within marshes, and to synthesize the 

existing data on nutrient burial in Patuxent marshes so that conclusions may be drawn 

about the size of this internal nutrient sink at the spatial scale of the estuary.  To that end, 

the following questions were addressed in this research effort: 

1. What is the N, P and C content of high, mid and low marsh sediments in 

oligohaline marshes of the Patuxent River estuary?   

2. At what rate are high, mid and low marsh sediments accreting? 

3. What are the burial rates for N and P in oligohaline marsh sediments? 
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4. What spatial patterns exist in sediment nutrient content, C:N ratio and accretion 

and burial rates with proximity to the river channel, and how do these compare to 

previously reported patterns?  
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METHODS 

Overview and method theory 

 Sediments for nutrient burial studies were obtained from King’s Landing marsh 

on the Patuxent River (described in Chapter 1).  Particulate N, P and C burial rates were 

estimated from percent N, P and C and accretion rate data for duplicate, 0.5 m sediment 

cores taken from low, mid and high marsh areas of King’s Landing.  Two 1.0 m “deep” 

cores were also collected for the purpose of determining in situ evolution of 210Pb.  Cores 

for burial studies were collected near the coring sites used for denitrification studies 

(Chapter 1).  Concentrations of N, P and C were measured using standard analytical 

methods (Keefe et al.  2004), and accretion rates were estimated from 210Pb radioisotope 

distributions with depth in sediment cores (Flynn  1968; Koide et al.  1972).  Carbon 

concentrations were used primarily to evaluate sediment organic matter content and C:N 

ratios.  Nitrogen, P and C concentrations (mg N, P or C g-1 sediment) were multiplied by 

accretion rates (kg m-2 yr-1) to yield burial estimates for these elements (g N, P or C 

m-2 yr-1).   

 To estimate accretion rates, sediments at specific depths were aged based on the 

radioactive decay of 210Pb.  The original parent of 210Pb is 238U.  Uranium-238, through 

five intermediates, decays to 226Ra in the earth’s crust. Radium-226 decays to gaseous 

222Rn (half-life 3.8 days) which diffuses to the atmosphere and decays to 210Pb.  There is 

also some in situ decay of 222Rn in the ground, which contributes a relatively constant 

background supply of 210Pb, termed “supported 210Pb.”  

Atmospheric 210Pb binds to particles and returns to the earth’s surface via both 

wet and dry deposition.  Atmospherically-derived 210Pb is termed “unsupported 210Pb,” 
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which is the 210Pb of interest for determining sediment age. Due to atmospheric 

deposition, 210Pb is ubiquitous in soils and sediments, where it decays to 210Po.  For 

practical reasons, alpha-particle emitting isotopes like 210Po are more easily measured 

than beta-emitting isotopes (like 210Pb), so accumulation of 210Po is used as a proxy for 

decay of 210Pb.  The half-life of 210Pb is 22.3 years, and it takes 7 half-lives (~150 years) 

for the 210Pb in a sample to reach near-zero activity.  Thus, 210Pb (210Po) analyses are 

useful for aging sediments on a scale of ~100 years.   

 For cores in which the decrease in 210Pb activity is log-linear with depth, a 

constant initial activity (also known as Constant Initial Concentration, or CIC) model can 

be used to calculate accretion rate (Robbins 1978).  Use of this model requires the 

assumption of constant 222Rn release to the atmosphere, constant 210Pb deposition from 

the atmosphere, little or no bioturbation of sediments and a constant supply of particles to 

the estuary (Bricker-Urso et al.  1989).  This final assumption is somewhat tenuous, as it 

has been shown that most of the sediment in the Chesapeake Bay is supplied during 

isolated storm events (Schubel and Hirschberg  1978), and increased sedimentation rates 

associated with storms have also been reported for Patuxent marshes (Khan and Brush  

1994).  To account for non-uniform 210Pb inputs, sedimentation rates can be calculated 

for individual depths in a core using the Constant Rate of Supply (CRS) model (Oldfield 

and Appleby  1984).  However, use of this model requires analysis of large numbers of 

core sections, which was beyond the scope of this study.  Though the assumptions of the 

CIC model can prove problematic in attempts to precisely age sediments at fine scales, 

they were not unreasonable for use in this study since integrated, long-term burial 
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estimates were the goal.  Bricker-Urso et al. (1989) reported no significant difference 

between accretion rates calculated by both models for cores from a tidal salt marsh. 

 Using the CIC model, the natural log of unsupported 210Pb activity was regressed 

on mean cumulative mass to generate sediment accretion rates in terms of annual mass 

burial (g cm-2 yr-1).  Mass-based accretion rates (g cm-3) for each core were divided by 

the average bulk density in a core to yield depth-based accretion rates (cm yr-1).  

Regressions yielding r2 values >0.65 (P<0.05) were considered significant, and the slope 

was then be used to determine accretion rate. 

Field and laboratory techniques 

To obtain sediment for aging and particulate nutrient analysis, samples were 

collected with a McAuley corer and cores were sectioned as follows: 2.5 cm increments 

to 0.2 m, 5 cm increments to 0.5 m, and 10 cm increments to 1 m.  Sections were 

transported in capped 60 mL centrifuge tubes to the laboratory where they were weighed 

and then dried at 60-80oC.  Dry sediments were then weighed again to assure dryness and 

obtain a measure of dry weight, and then homogenized with a mortar and pestle.  

Sediment bulk density was calculated as dry sediment weight per volume, with volume 

determined by water displacement before samples were dried.  Approximately one gram 

of dried, homogenized sediment was taken from selected depth increments for aging and 

one gram for particulate C, N and P analyses.  

Selected core sections were analyzed for total C and N with an automated 

elemental analyzer (Exeter Analytical, Inc. CE-440 elemental analyzer; Keefe et al.  

2004).  Briefly, weighed sediment samples were combusted in pure O2 to achieve a 

homogenous gas mixture, and differences in detector signals for N2 and CO2 before and 
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after exposure to the gas mixture were used to determine the concentrations of N and C, 

respectively, in the original sample.  Sediments for particulate P analysis were heated in a 

muffled furnace at 500 oC and then particulate P was extracted from sediments in acid 

(Keefe et al.  2004). Liquid-phase P was quantified colorimetrically with an autoanalyzer 

(Technicon AutoAnalyzer II).   

Selected core sections were also aged based on 210Pb radioisotopes as described 

by Flynn (1968).  Each 1.0 g sample was dosed with 1 mL of 209Po as a yield tracer.  

Nitric (HNO3) and hydrochloric (HCl) acids were added (10 mL each) to digest organic 

materials and to strip 210Po from the sediments.  Suspended 209Po and 210Po were removed 

from the solution by centrifugation, and the liquid supernatant was then dried overnight.  

Next, HCl was added and the sample evaporated to dryness twice in order to remove 

excess HNO3.  Finally, 209Po and 210Po were put back into solution with 0.1N HCl and 

ascorbic acid was added to prevent iron precipitation.  A silver plate (17 mm x 17 mm, 

back side coated with paint) was added face-up to each Po solution.  Beakers were heated 

overnight at 70oC and then plates were removed and rinsed with deionized water.  

Activity of plated 209,210Po was counted on a four channel alpha spectrometer (Tennelec 

TC-256).   

Polonium-210 activity in decays per minute was plotted against depth and 

supported 210Po activity was determined from the asymptote.  Sediment accretion rates 

were estimated by regressing the natural log of unsupported 210Po activity against depth  

and against cumulative sediment mass with depth.  Accretion rates were multiplied by 

depth-averaged particulate N and P concentrations to yield nutrient burial estimates.   
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RESULTS 

Accretion rates 

Sediment bulk densities increased with depth in low and mid marsh cores, and 

from upper half-meter cores to “deep” cores (Table 2-2).  Bulk densities in upper half-

meter cores were similar to values previously reported for 0 to 50 cm depths.  Higher 

bulk densities at depths >50 cm were likely due to compaction (DeLaune et al.  1981; 

Kearney et al.  1994).  High marsh cores generally exhibited lower bulk densities, 

without significant depth-related changes.   

Lead-210 activity decayed exponentially with depth in all cores except for one 

mid marsh core, which displayed almost no change with depth (Fig. 2-1).  Some mixing 

of sediments appears to have occurred in the top 5 centimeters, but all regressions of 

activity on depth yielded significant slopes (P<0.05).  Sediment accretion rates ranged 

from 4.0 to 17.14 mm y-1 (based on 210Pb activity with depth), or 1.16 to 7.99 kg m-2 y-1 

(based on 210Pb activity with cumulative mass) (Table 2-3).  These rates are similar to 

rates previously reported for Patuxent marshes (Khan and Brush  1994; Merrill  1999; 

Table 2-1).  Accretion rates appear to increase with proximity to the river, with highest 

rates in the low marsh. 

Vertical N, C and P profiles 

 Sediment particulate N concentrations ranged from 3.1 to 10.9 mg N g-1 (mean 

6.4 mg N g-1) in upper half-meter cores, and from 1.7 to 4.2 mg N g-1 (mean = 3.0 mg N 

g-1) in deep cores.  Concentrations in upper cores were significantly higher than deep core 

concentrations (one-tail t-test, P<0.05).  There were changes in N concentration with both 

depth and distance from the river.  In low and mid marsh cores, N concentration was 
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             Table 2-2.  Average bulk density for 10 cm depth intervals  
             in cores from different marsh environments at King’s  
             Landing, an oligohaline Patuxent marsh.  Mean bulk density  
             for each marsh environment is given with standard error in  
             parentheses. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean bulk
Depth (cm)        Bulk density (g cc-1) density (g cc-1)

High marsh A High marsh B
 0-10 0.30 0.27

 10-20 0.30 0.22
 20-30 0.28 0.25
 30-40 0.29 0.32
 40-50 0.28 0.20
mean 0.29 0.25 0.27 (0.01)

Mid marsh A Mid marsh B
 0-10 0.41 0.35

 10-20 0.44 0.51
 20-30 0.43 0.49
 30-40 0.35 0.47
 40-50 0.40 0.54
mean 0.41 0.47 0.44 (0.02)

Low marsh A Low marsh B
 0-10 0.22 0.30

 10-20 0.24 0.33
 20-30 0.34 0.41
 30-40 0.35 0.42
 40-50 0.33 0.40
mean 0.29 0.37 0.33 (0.02)

Deep core A Deep core B
 50-60 0.64 0.48
 60-70 0.67 0.33
 70-80 0.78 0.49
 80-90 0.78 0.54

 90-100 0.61 0.49
mean 0.69 0.47 0.58 (0.04)
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  Figure 2-1.  Exponential decrease of 210Pb with depth in 0.5 m cores. Open symbols    
  indicate data not included in regressions.   
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Table 2-3.  Depth averaged concentrations, sediment accretion rates and burial rates for 
N, P and C in high, mid and low marsh environments in the King’s Landing (oligohaline) 
marsh.   
 
 

 

 

 

 

 
similar and decreased with depth initially, with more stable profiles below 20cm (Fig. 2-

2).  Nitrogen concentrations were significantly higher in the high marsh (t-test, P<0.05). 

Nitrogen profiles tended to show increasing concentration with depth in the high marsh, 

and decreasing concentration with depth in mid and low marsh cores (Fig. 2-2).  

Phosphorus concentrations in upper 0.5 m cores ranged from 0.5 to 3.0 mg P g-1 

(Fig. 2-3).  Mean concentrations were highest in the mid marsh and similar in low and 

high marsh sediments (Fig. 2-3). Differences could not be tested for statistical 

significance due to low sample numbers.  Decreases in P concentration with depth were 

found in all but one upper 0.5 m core, with the sharpest declines in concentration near the 

surface (Fig. 2-3).  The core that did not exhibit decreasing P concentration with depth 

was the same core that displayed anomalous trends in 210Pb activity.  Contrary to the 

decreasing trend observed with depth in upper 0.5 m cores, mean P concentrations were 

significantly lower in these cores (mean 1.14 mg P g-1 ) than in deep cores (mean 1.77 mg 

P g-1; t-test, P<0.05).  Further investigation would be required to resolve this discrepancy, 

as there is no viable explanation based on existing data. 

 

N, P & C concentration                Accretion rate Burial rate 
Location (mg N, P or C g-1 sediment) (kg m-2 y-1) (mm y-1) (g N, P or C m-2 y-1)

N P C N P C
High marsh A 8.54 0.92 124.26 1.16 4.00 9.94 1.07 144.63
High marsh B 9.21 0.97 137.54 1.52 4.11 13.97 1.47 208.46

Mid marsh A  --  --  --  --  --  --  --  -- 
Mid marsh B 4.80 1.34 63.71 3.60 7.66 17.30 4.82 229.61

Low marsh A 6.21 1.03 98.29 3.89 5.61 24.19 4.01 382.56
Low marsh B 5.10 0.98 71.37 7.99 17.14 40.77 7.86 570.60
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                                Figure 2-2.  Nitrogen profiles for cores from high,  
                                mid and low marsh environments in the King’s  
                                Landing marsh. 
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                              Figure 2-3.  Phosphorus profiles for cores from high,  
                              mid and low marsh environments in the King’s  
                              Landing marsh. 
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 Carbon concentrations ranged from 20.2 to 173 mg C g-1, with a mean of 92 mg C 

g-1 in upper 0.5 m cores and 38 mg C g-1 in deep cores (Fig. 2-4).  Concentrations  

decreased in the top few centimeters of high marsh cores and then were relatively 

constant with depth (Fig. 2-4). Low and mid marsh C concentrations decreased and 

increased (respectively) to 30 cm, and then were fairly constant in both environments 

below 30 cm. High marsh sediments exhibited the largest C concentrations, followed by 

the low marsh, though differences were not significant (t-test, P>0.05).  Carbon 

concentrations in general were much lower in deep cores than in the others.   

 Sediment C:N ratios were relatively constant in low and mid marsh cores, both 

vertically and with distance from land. High marsh C:N ratios increased substantially 

with depth (Table 2-4). There were strong differences in N:P ratio between marsh 

environments, with high marsh and low marsh ratios greater than mid marsh ratios by 

factors of 3.3 and 2, respectively (Table 2-4).  In the high and low marsh, N:P ratios 

increased with depth, but they remained relatively constant in the mid marsh (Table 2-4).   

Burial rates 

 Both accretion rates and nutrient concentrations were used in developing burial 

rate estimates.  Since the range in accretion rates was larger than the range in N or P 

content, accretion was the dominant term in the computation.  Burial rates for N ranged 

from 9.94 to 40.77 g N m-2 yr-1 (Table 2-3).  Mid marsh N burial rates were greater than 

high marsh rates, and average low marsh N burial rates were 2-3 times higher on average 

than in any other marsh environment.   Spatial variations in P burial were similar, with 

low marsh areas burying nearly 5 times as much P as the high marsh and ~1.25 times as 
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much P as the mid marsh.  The range of P burial rates was 1.07 to 7.86 g P m-2 yr-1 (Table 

2-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
                        
                                   Figure 2-4.  Carbon profiles for cores from high,  
                                   mid and low  marsh environments in the King’s  
                                   Landing marsh. 
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      Table 2-4.  High, mid and low marsh C:N and N:P ratios from the King’s Landing 
      (oligohaline) marsh. 
 
 

 

 

 
 
 
 

 

 

 

 

 

 

Depth        High marsh        Mid marsh       Low marsh
(cm) C:N N:P C:N N:P C:N N:P
1.25 12 4 13 4 15 4
3.75 12 7 11 3 15 4

13.75 14 12 11 3 15 7
27.5 15 10 13 4 13 6
47.5 17 17 13 2 16 7

mean 14 10 12 3 15 6
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DISCUSSION 

Spatial patterns in sediment nutrient concentration 

Spatial patterns in tidal marsh nutrient burial were the result of the interaction of 

factors controlling both sediment accretion rates and nutrient content.  Plant communities 

influence sediment nutrient content through their own characteristic C, N and P contents 

and via associated microbial and microautotrophic communities.  In this study, both C 

and N concentrations were higher in high marsh zones than in the mid or low marsh, but 

C:N ratios were relatively constant among marsh environments (Figs. 2-2 and 2-4; Table 

2-4).  High marsh reeds and grasses (e.g. Typha, Phragmites, Spartina and ericaceous 

terrestrial plants) have high cellulose (carbon) content in stems, tend to decompose 

slowly and are thus prone to burial (Odum  1988; Khan and Brush  1994).  Broad-leaved 

low marsh genera such as Nuphar and Peltandra tend towards lower C:N ratios, and litter 

generated by these plants tends to be more labile (Odum  1988; Traband 2003).  Plant 

litter that is decomposed more quickly should, in theory, be less prone to burial on the 

marsh surface.  For example, organic solids have been reported to contribute (on a mass 

basis) nearly twice as much to high marsh sediments as to low marsh sediments (Bricker-

Urso et al.  1989), possibly due to more rapid decomposition of the more labile low 

marsh plants.  This may explain the greater C and N content in high marsh than in low 

marsh sediments that appears to be characteristic of both tidal fresh and oligohaline 

Patuxent marshes, and of tidal marshes in general (Table 2-5).  However, while there are 

spatial patterns in sediment C and N content, C:N ratios do not appear to differ between 

high and low marsh environments, or to impact nutrient burial rates in oligohaline 

Patuxent marshes. 



 

98 

 
 
Table 2-5.  Comparison of N and C content in sediments from high versus low  
marsh environments.  Values are given in mg C or N g-1 sediment. 
 

 

 

 

 

 

 
Phosphorus concentrations in this study were highest in the mid marsh, which may be 

explained in part by the fact that particulate inputs from tidal waters are an important 

source of P to the marsh.  Merrill (1999) found higher P concentrations with proximity to 

the tidal channel, and Craft and Richardson (1993) found that P content of peat in the 

Everglades was highest in the most frequently flooded areas of the wetlands.  Craft and 

Richardson (1993) also found that sediment P content increased as water column P 

concentrations increased.  To some extent, this suggests that the size of the marsh sink for 

P is flexible, and has the capacity to increase as P loads increase.  That P concentrations 

in this study were not highest in the low marsh may be due to less favorable conditions 

for P retention in marsh environments undergoing long periods of inundation.  If the 

environment becomes reducing, iron oxides which bind P under oxic conditions tend to 

dissolve, releasing P to the water column (Sundby et al.  1992).   

The extent to which P is bound by iron minerals may also be affected by salinity 

(Froelich  1988).  In reducing environments with some degree of salinity (i.e. oligohaline 

to euhaline marsh sediments), P liberation from oxidized iron compounds is augmented 

                Nitrogen                  Carbon
High marsh Low marsh High marsh Low marsh Reference

 12 - 17  4 - 9 ND ND Merrill  1999

18 4 180 35 Khan and Brush  1994

9 6 156 112 DeLaune et al.  1981

7.8 6.6 139 101 DeLaune et al.  1979 
(cited in Bowden  1984)

9 6 131 85 This study



 

99 

by reduction of SO4 and subsequent formation of reduced iron-sulfide minerals, which 

sequester iron and prevent further binding of P (Roden and Edmonds  1997).  Thus, 

another possible explanation for the higher P concentrations observed in the mid marsh 

than in the low marsh in this study stems from the fact that in addition to more oxic 

conditions due to shorter periods of inundation, mid marsh environments may experience 

slightly lower salinities than low marsh environments, which receive comparatively more 

tidal water and fewer freshwater (terrestrial) inputs.  More reducing conditions coupled 

with greater exposure to sulfur in the low marsh may contribute to lower P retention in 

sediments there. 

Though tidal inundation can be an important source of some materials to a marsh, 

tidal flushing may also play a major role in preventing burial of organic matter.  High 

marsh plant litter is subject to less frequent and less energetic tidal flushing than low 

marsh litter, adding to its tendency to accumulate on the marsh surface (Odum  1988).  It 

has been argued that because of this, low marsh zones may act only as seasonal nutrient 

sinks, with rapid decomposition and flushing of organic matter from the low marsh 

preventing long-term nutrient burial (Khan and Brush  1994).  Though no additional 

evidence to support this hypothesis could be identified in the literature, Taylor and 

Allanson (1995) have speculated that Odum’s (1968) outwelling hypothesis is less 

applicable to high marsh environments than to low marsh environments, based on lower 

measured C export from the high marsh.  With regard to nutrients though, results from 

this study and others tend to refute those arguments, suggesting that inorganic sediment 

accretion rates are more important in determining burial (i.e. nutrient retention) than 
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residence time of organic matter on the marsh (DeLaune et al.  1981; Merrill  1999; this 

study). 

Spatial patterns in sediment accretion rates 

Nutrient burial rates are a function of nutrient and sediment inputs to the burial 

environment, as well as retention of those inputs.  At coarse scales (10’s of kilometers), 

the terrigenous nature of sediment and nutrient inputs to coastal systems creates a pattern 

of decreasing burial with distance from land (Fig. 2-5).  Within intertidal environments 

(10’s of meters), however, proximity to tidal waters with high concentrations of 

suspended sediment can create the opposite pattern – increasing burial with distance from 

land.  Accretion rates are often reported to be highest in low marsh zones due to 

allochthonous sediment inputs (Bricker-Urso et al.  1989; Kearney et al.  1994; Khan and 

Brush  1994; this study).  In this study, low marsh accretion rates were 4 times as high as 

rates in the high marsh (Table  2-3).  High-volume organic matter can add elevation to a 

marsh, but it is the addition of new inorganic sediment by tidal action that predominantly 

determines mass based accretion rates (DeLaune et al.  1989).  Though N and C content 

of sediments is generally reported to increase landwards (DeLaune et al.  1981; Khan and 

Brush; this study), burial appears to follow the same spatial trends as mass based 

accretion (DeLaune et al.  1981; Merrill  1999; this study). 

Sediment nutrient profiles 

 Vertical profiles of sediment particulate nutrient concentrations with depth can 

yield insights into biogeochemical processes and also aid in estimating the capacity of a 

marsh as a sink for particulate nutrients.  Relatively constant N profiles with depth have 

often been reported and may be due to the biological role of N in plant and microbial 
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structural components, which are not highly labile (DeLaune et al.  1981; Bowden  1984).  

Nitrogen in plant litter is initially available for remineralization, denitrification and other 

 

 

 

 

 

 

 

          
 
          
 
 
 
  
              Figure 2-5.  Change in average observed N burial rates with distance from  
              land.  Data are from Larsson et al.  1985; Milliman and Syvitski  1992;  
              Boynton et  al.  1995; Merrill  1999; Nixon et al.  1996 and Muzuka and        
              Hillaire-Marcel 1999.  Figure adapted from Boynton and Kemp  2005 in    
               press. 
 
 
pathways, but within ~7 years this material becomes sufficiently refractory that the 

residue is permanently retained in the sediment (White and Howes 1994).  In the mid and 

low marsh areas sampled for this study, N concentrations decreased with depth to ~30 

cm, then became relatively constant at greater depths (Fig. 2-2).  This pattern suggests 

diagenesis in the biologically active root zone, with more permanent burial of refractory 

material in deeper sediments. 
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The initial declines observed in P concentrations with depth (Fig. 2-3) may have 

been due to plant and microbial uptake of labile, P-rich organic compounds in the 

biologically active root zone (Bowden  1984).  In addition, P bound in Fe-oxide minerals 

may have been released in deeper, more anoxic sediments as P was released due to 

reduction of iron (Krom and Berner  1980).  The upward diffusion of P released from Fe 

minerals would contribute to the observed increases in P in near-surface, more oxic 

regions at the top of the vertical profiles.  This process has been documented in estuarine 

sediments, where upward migration of P produced by the remineralization of organic P 

and by the dissolution of iron oxides contribute to decreasing P concentrations with depth 

in sediments (Sundby et al.  1992). 

Vertical nutrient profiles integrate many biogeochemical factors, including 

biological uptake and transformation of nutrients, advection and diffusion of dissolved 

species, initial nutrient loads to the system, and sediment accretion rates.  Since these 

factors change on shorter timescales than those over which burial rates are calculated, it 

is important to consider such factors when selecting information from a nutrient profile to 

use in calculating burial rates.  For example, in this study, P concentrations measured in 

the top 10 cm were roughly twice those measured at 40-50 cm depth (Fig. 2-2).  By using 

depth-averaged P concentrations in burial calculations, it was possible to avoid large 

underestimates of burial due to ever-increasing loading rates, and to avoid large 

overestimates (especially for P) due to local diagenetic release. 

Tidal marshes as long-term nutrient sinks 

Contrasting views of the ecological role of tidal marshes in the terrestrial-

estuarine landscape have been put forth, such that tidal marshes have been described both 
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as zones of outwelling (e.g. Odum  1968; Simpson et al.  1983a) and as nutrient sinks 

(e.g. Gosselink et al.  1973; Simpson et al.  1983a).  In addition to these competing 

viewpoints, one of the oldest concepts in tidal marsh ecology is the idea that marshes act 

as transformers of nutrients and other materials, taking them up during the growing 

season in inorganic form, and redelivering them to the aquatic system in organic form as 

plant and microbial litter is flushed by tidal waters (Whigham and Simpson  1976; Heinle 

and Flemer  1976; Stevenson et al.  1977; Valiela et al.  1978; Simpson et al.  1983a; 

Wolaver et al.  1983; Baird and Winter  1992).  Data from studies proscribing this view 

highlight the role of  tidal marshes as temporary sinks, or “holding tanks,” that take up 

nutrients at the beginning of the growing season and release them later in the year (e.g. 

Valiela et al.  1978; Wolaver et al.  1983).  Since these nutrients would otherwise be 

available to phytoplankton during the growing season, this function is of special 

importance in eutrophied estuaries like the Chesapeake and its tributaries.   

This study provides evidence that accreting tidal marshes (e.g. Patuxent River 

marshes) can also play the role of permanent nutrient sinks, where nutrients in estuarine 

waters are sequestered via long-term burial in accreting marsh sediments, and are not 

released to the estuary.  Furthermore, results from this study and others indicate that tidal 

marsh nutrient burial is quantitatively important.  Marsh burial rates of 1.1 to 7.9 g P m-2 

yr-1 are 17% to 120% of the estimated rate of P input (per unit estuarine surface area) to 

the Patuxent (Table 2-6).  Results from this study also suggest that tidal marshes have the 

capacity to bury N at 16% to 66% of the rate of N input, and that N burial occurs at 

similar to slightly higher rates than denitrification (Table 2-6).   
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                      Table 2-6.  Comparison of Patuxent marsh  
                      nutrient burial rates measured in this study to  
                      rates of nutrient input to the Patuxent River.   
                      Input data are from Boynton, unpublished data. 
 

 

 

 

 
 
 

Conclusions 

1. Sediment N and C concentrations are greater in high marsh environments than in 

the low marsh, and P concentrations are highest in the mid marsh.   

2. Sediment accretion rates increase from high to low marsh environments and 

appear to be the most important factor in determining burial rates for nutrients. 

3. Burial rates for N and P increase with distance from land in oligohaline Patuxent 

marshes. 

4. Nutrient concentrations and mass-based accretion rates follow similar patterns in 

both tidal fresh and oligohaline Patuxent marshes.   

5. Average burial rates for N and P are similar in tidal fresh and oligohaline 

marshes; it is unclear why tidal fresh rates have been reported to follow a different 

trend with proximity to land than oligohaline rates (at the spatial scale of 

individual marshes). 

 

 

N P
Inputs 62.0 6.6
(g m-2 yr-1)

Marsh burial 9.9 - 40.8 1.1 - 7.9
(g m-2 yr-1)

Burial as 16 - 66 17 - 120
% of inputs
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CHAPTER 3: 
SYNTHESIS OF TIDAL MARSH NUTRIENT REMOVAL – 

ECOSYSTEM AND MANAGEMENT PERSPECTIVES 
 

 

INTRODUCTION 

Data from this study indicate that tidal marshes have the capacity to remove 

substantial portions of N and P loads to the upper Patuxent River on an annual basis.  In 

all likelihood, similar circumstances exist for other Chesapeake Bay tributaries with large 

and stable tidal marsh communities.  Marsh nutrient removal processes are quite 

valuable, as indicated by the cost of nutrient reduction and removal technologies typically 

used by water quality management agencies.  But despite marsh nutrient removal 

processes, anthropogenic nutrient loads continue to contribute to an altered trophic state 

in the Patuxent River.  With respect to point sources, nutrient management in the 

Patuxent watershed has been aggressive and partially successful.  However, non-point 

source nutrient loading has a much longer history and has proven more difficult to 

manage. 
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NUTRIENT LOADING IN THE PATUXENT 

Historical nutrient loading 

Pre-colonization and early settlement 

Nutrient loads to the Patuxent River are estimated to have increased by factors of 

about 5 (N) and 20 (P) since precolonial days (Boynton et al.  1995).  Trends in nutrient 

and sediment inputs to the Patuxent River can be considered in more detail during 4 

periods: pre-European settlement, onset of settlement to the early 20th century, post-

WWII to the 1980’s, and the 1980’s to the present.  Prior to European settlement (mid-

1600’s), Native American inhabitants of the Patuxent watershed numbered in the low 

1000’s and practiced low-impact slash and burn agriculture (E. Chaney pers. comm.).  

From the onset of European settlement through the mid to late 1800’s, higher-impact 

European farming practices were introduced and agricultural land use intensified so that 

by the mid-1800’s, 85% of the Patuxent watershed was in agricultural land use of some 

type (D’Elia et al.  2003).  Sediment loads to the Patuxent increased drastically during 

this period, as evidenced by sedimentation rates derived from dated sediment cores (Khan 

and Brush  1994), and by changes in the crustaceous benthic community (Cronin and 

Vann  2003).   A particularly large increase in sediment loads likely occurred during and 

after the American Revolution, as tobacco markets tilted in favor of grains and more land 

was cleared and ploughed (Curtin et al.  2001). Elevated NO3 and sediment losses have 

been reported for recent clearcuts in experimental forests (Pardo et al.  1995; Eshleman et 

al.  2000), and nutrient and sediment loads to the Patuxent likely increased during this 

period, although the elevated N loads were probably of brief duration.  However, 
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commercial fertilizers were not yet in use, so nutrient loads probably did not increase 

enough to produce a substantial trophic response in the river at this point in time.   

Twentieth century 

In the early 20th century, urban and residential areas expanded in the Patuxent 

watershed and agricultural land use declined, leading to reforestation.  Immediately after 

WWII, however, two developments led to large increases in nutrient inputs to the 

Patuxent River.  First, population began to increase (Maryland Office of Planning  2001), 

and second, the fertilizer industry developed (Smil  1990).  Trends in population growth 

lead to increases in sewage effluent (D’Elia et al.  2003), and intensification of fertilizer 

applications to lawns and croplands resulted in the transport of large amounts of new N 

and P to the Patuxent watershed.  Sewage effluent is generally characterized by an N:P 

ratio of ~8 and a higher ratio, ~50, is common for agricultural runoff (Lee et al.  2001).  

Together, these inputs provide an approximately Redfieldian mixture of N and P, creating 

favorable conditions for elevated aquatic primary production (Fisher pers. comm.).  

Evidence for changing trophic status 

There are several lines of evidence to suggest that the trophic status of the 

Patuxent changed in concert with enhanced nutrient loading from sewage effluent and 

agricultural and residential/urban runoff.  One of these was the observation, beginning in 

the early 1960’s, that dissolved inorganic P (DIP) concentrations measured in the 

Patuxent River were increasing (Hagy et al.  1998).  Phosphorus inputs are linked closely 

with sediment inputs, and these increased as residential and urban development occurred.  

Observations of increasing turbidity were also made during this period (Heinle et al. 

1980).  Increased turbidity may have been caused by enhanced phytoplankton 
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populations, by elevated terrigenous sediment inputs or, more likely, a combination of 

both factors.   

Declining oxygen concentrations, especially in the mesohaline Patuxent, provided 

another line of evidence for changing trophic status of the river.  Summer dissolved 

oxygen concentrations in certain regions of the Patuxent have consistently dropped below 

1 mg l-1 since 1940, compared to no observations below 2 mg l-1 and most above 4 mg l-1 

prior to the 1940’s (Breitburg et al.  2003; D’Elia et al.  2003).  Shifts in benthic 

ostracode community structure towards dominance by anoxia-tolerant species beginning 

in the mid to late 1900’s also suggested low-oxygen conditions (Cronin and Vann  2003).  

A final indicator of changing trophic status in the Patuxent River was the loss of 

submerged aquatic vegetation (SAV), due to development of turbid water and of dense 

epiphyte communities, which began in the 1960’s pursuant to increased nutrient loading 

to the river (Stankelis et al.  2003). Aggressive epiphyte growth has been reported to have 

a negative effect on the ability of SAV to remain healthy, again due to issues related to 

light availability (Drake et al.  2003). 

1980’s to the present 

 As phytoplankton concentrations increased and dissolved oxygen and SAV 

populations declined, the link between nutrient loading and Patuxent water quality 

became apparent.  Nutrient loads to the Patuxent were derived from terrestrial point and 

diffuse sources, as well as from atmospheric wet and dry deposition.  Point sources were 

primarily wastewater treatment plants (WWTP’s), and diffuse (or non-point) sources 

included croplands, livestock facilities, forests and suburban/urban areas.  During the 

initial period of enhanced nutrient inputs (1960’s and 1970’s), point sources were the 
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dominant source of P (60%), and were larger than any other single source of N (50%) 

(Hagy et al.  1998).  Total dissolved concentrations of both N and P in the upper Patuxent 

River increased dramatically from the early 1960’s to early 1980’s, with a near doubling 

of N concentrations, and increases in P concentration by more than a factor of two (Hagy 

et al.  1998).  During the early 1980’s, P concentrations were reduced to early 1960’s 

levels when advanced P removal technology was introduced to Patuxent WWTP’s 

(Boynton et al.  1995).  Elevated N concentrations (largely NO3
- and NO2

-) persisted until 

the early 1990’s, when advanced N removal technology was introduced (D’Elia et al.  

2003).  An evaluation conducted in the mid-1980’s indicated that atmospheric inputs 

were less important than terrestrial nutrient sources, contributing 13% of the TN load and 

5% of the TP load (Boynton et al.  1995).  However, atmospheric N loads appear to be 

following an increasing trend as vehicular and industrial emissions increase (Jordan et al.  

1995).   

Current nutrient loading  

 Currently, N and P loads to the upper Patuxent estuary are 4389 and 468 kg d-1, 

respectively (W. Boynton, unpublished data).  Nutrient loads are influenced by annual 

precipitation, land use patterns and by population size.  The Patuxent watershed has seen 

an order of magnitude population increase in about 50 years, from less than  25,000 

inhabitants in 1960 to over 500,000 at present (Maryland Office of Planning  2001).  As 

populations grow, effluent from WWTP’s and nutrition demands (i.e. agriculture) 

increase, both of which tend to increase nutrient inputs from the watershed.  Nitrogen, P 

and sediment loads have all been reported to increase as the percent developed land in a 

watershed increases, as well as with increased cropland (Nearing et al.  1993;  Smith et 
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al.  1993).  Croplands contribute nutrients due to fertilizer application and N-fixation, and 

increase runoff above levels typically associated with forested lands (Beaulac and 

Reckhow  1982).  Developed land contributes sediment during construction, nutrients due 

to lawn fertilization, and runoff.  Runoff from paved surfaces has been reported to be 40 

times higher than runoff from forested land (Chesapeake Bay Watershed Blue Ribbon 

Finance Panel  2004).   But despite the fact that developed land now covers more area in 

the Patuxent watershed, croplands appear to contribute more inputs to the estuary (Jordan 

et al.  2003; Weller et al.  2003).  Although they comprise only 10% of the watershed, 

croplands supply the majority of most non-point source nutrients to the Patuxent in 

average years, as well as the majority of nutrients from all sources in wet years (Jordan et 

al.  2003).  It is interesting to note that agricultural land use has declined in the Patuxent 

watershed recently, but model-based loading estimates do not support a coincident 

decline in non-point nutrient inputs (Sprague et al.  2000).  This indicates that there may 

be gaps in our understanding of land use impacts on nutrient loading, particularly with 

respect to agriculture.   

Internal nutrient sources 

 In addition to terrestrial and atmospheric nutrient inputs, internal nutrient sources 

can become important during certain seasons (Boynton and Kemp  1985; Magnien et al.  

1992; Boynton et al.  1995; Cowan and Boynton  1996).  Internal recycling of nutrients 

tends to be largest in mesohaline regions of the Chesapeake, generally correlates with 

increased temperature and decreased benthic dissolved oxygen, and is also correlated 

with indices of the magnitude of spring bloom deposition (Cowan and Boynton  1996).  

The dominant pathways for nutrient remobilization are remineralization of N as NH4 



 

111 

         Annual        Summer        Winter
NH4/DIN PO4 NH4/DIN PO4 NH4/DIN PO4

New inputs 3576 243 2541 159 4177 189

Recycle source
       Sediments 1856 309 3739 816 374 81
       Macrozooplankton 1392 193 2574 356 406 ND
       Total 3248 502 6313 1172 780 81

(Kemp et al.  1990) and desorption of PO4 from sediments (Sundby et al. 1992).  These 

processes appear to regenerate nutrients at lower N:P ratios than terrestrial and 

atmospheric loading ratios (Magnien et al.  1992).  This may be the result of reduced N 

remineralization due to denitrification, or because initial P inputs are largely sediment 

bound, making them more susceptible to sedimentation than the primarily dissolved N 

inputs.  Though external sources are a larger portion of the nutrient input signature during 

winter and spring high flow seasons, there is strong evidence that internal remobilization 

becomes the dominant nutrient source during the summer (W. Boynton, unpublished 

data).  In summer, an order of magnitude more bioavailable N and P are supplied by 

recycling than by allochthonous inputs to the upper Patuxent estuary (Table 3-1).  

 
         Table 3-1.  Relative importance of dissolved inorganic nutrient inputs from    
         external sources versus internal recycling in the upper Patuxent estuary  
         (W. Boynton, unpublished data).  Inputs are in kg N or P d-1. 

 

 

 

 

 

Nutrient management in the Patuxent watershed 

With regard to management, a combination of circumstances has made the 

Patuxent unique among Chesapeake Bay tributaries.  The public has recognized the 

presence of eutrophic conditions in the river, and there has been active scientific research 

and monitoring of these conditions.  Also, for many years, eutrophication has been paid 

considerable attention by legislators, and regulatory efforts to address nutrient enrichment 
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have been introduced.  In the late 1970’s and early 1980’s, scientists played a particularly 

large role in influencing policy, and reductions in nutrient inputs to the Patuxent as a 

result of regulatory policies are noticeable.  However, even though a considerable degree 

of control has been exerted over certain nutrient sources, a substantial trophic response in 

river condition has yet to be reported.  The Patuxent watershed is also unique in that 

WWTP contributions to nutrient loads have been substantial.  For the mainstem Bay and 

many of its tributaries, diffuse nutrient sources have strongly dominated nutrient budgets, 

but sewage effluent played a large role in the Patuxent nutrient economy (Boynton et al.  

1995).  To a large degree, this is the reason that early Patuxent management efforts were 

so successful - point sources are simply easier to identify and treat than diffuse sources.   

Early efforts (c.a. 1986) to reduce WWTP inputs focused on P removal due to the 

fact that P had traditionally been regarded as the primary limiting nutrient in aquatic 

systems (Vollenweider  1976), and because P removal techniques were more readily 

available and less costly.  The effect of P removal was visible immediately in the form of 

reduced P concentrations and higher N:P ratios in Patuxent River water (D’Elia et al.  

2003).  However, the insistence of academics on the potential importance of N (Ryther 

and Dunstan  1971) and the development of a cost-effective removal process finally led 

to the application of Biological Nitrogen Removal (BNR) to Patuxent WWTP’s 

beginning in 1991.  The effect of BNR, as with P removal, was immediately obvious in 

the form of altered (lower) N:P ratios and seasonally lower N concentrations in upper 

Patuxent River water (Weideman and Cosgrove  1998).  As a result of nutrient 

management, point source N inputs to the Patuxent have been cut in half and no longer 
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dominate the N budget, and point source P inputs have been reduced by nearly 60%, 

becoming only 33% of the P budget (D’Elia et al.  2003).    

Though it is encouraging that N inputs to the Patuxent have been reduced during 

the warm portion of the year, N inputs during the winter have continued to rise.  Non-

point N inputs to the Patuxent may also be increasing as a result of increased 

anthropogenic emissions of N oxides and continued development of the Patuxent 

watershed.  Indeed, the population in the Patuxent has grown at one of the highest rates in 

the U.S. (Culliton et al.  1990), and percent developed land in the watershed is increasing 

at a faster rate than the population (Year 2020 Panel Report  1988).  The 800 pound 

gorilla looming in the future of nutrient management in the Patuxent is certainly non-

point nutrient sources.    
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NATURAL SINKS FOR NITROGEN 

Substantial nutrient sinks have been identified for the Chesapeake Bay and its 

tributaries.  Both N and P are buried in subtidal sediments and removed from the Bay in 

fisheries harvests, and N is also removed via microbial denitrification (e.g. DeLaune et al.  

1981; Deegan  1993; Cornwell et al.  1999).  Subtidal denitrification is estimated to 

remove 31% of N inputs to the Patuxent River on a yearly basis, with burial and fishery 

yields removing 53% and 3%, respectively (Boynton et al.  1995).  Burial of P and the 

fisheries harvest account for 128% and 1% of P inputs (Boynton et al.  1995).   

Denitrification and nutrient burial also occur in tidal marshes. To the extent that 

some nutrient runoff contacts marshes prior to entering the estuary, marsh denitrification 

and burial have the unique quality of removing nutrients before they can contribute to 

phytoplankton production in estuarine waters.  Another important difference between 

subtidal and marsh denitrification is that while the areal extent of subtidal sediments is 

much higher in the lower Patuxent River (making lower Patuxent nutrient sinks larger), 

the vast majority of marsh area occurs on the upper Patuxent, which suggests a 

particularly important role for tidal marshes in the nutrient economy of the upper estuary.  

In addition, upper Patuxent subtidal sediments tend to denitrify at higher rates than lower 

Patuxent sediments (Boynton et al.  1995), and coastal marshes appear to denitrify at 

higher median rates than subtidal sediments (Greene  2005; Table 1-1).  This suggests 

that upper Patuxent marsh sediments may denitrify at the highest rates of any 

environment in the estuary.  Finally, most trapping of sediment loads tends to occur in 

upper reaches of the Chesapeake Bay and its tributaries (Ward et al.  1998), and tidal 

marshes also appear to bury nutrients at higher rates than subtidal sediments (Fig. 3-1), so 
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upper Patuxent marshes may bury nutrients at the highest rates of any environment in the 

estuary. 

 

    

 

 

 

 

 

 

 

                 
 
                  Figure 3-1.  Average burial rates of particulate organic N for different  
                  coastal environments (data from Boynton, unpublished data). 
 

Denitrification 

During at least 7 months of the year, Patuxent marshes appear to denitrify at average 

rates of 120 µmoles N m-2 h-1, with statistically significant spatial trends and substantial, 

non-linear temporal trends (Chapter 1).  Measurements of denitrification are made at 

spatial scales orders of magnitude smaller than the landscape area covered by marshes, 

but these fine-scale measurements provide the only directly-measured information 

regarding denitrification in these systems.  In order to say anything about denitrification 

at the landscape scale then, one of the greatest challenges in ecology must be confronted:  

“scaling from the miniscule to the monstrous” (Schneider  1994).    



 

116 

A widely used method of scaling up involves simply multiplying rates at the scale of 

measurement by the magnification factor necessary to arrive at the scale of interest. For 

example, extrapolating the grand mean of all denitrification rates measured in this study 

over the 25.8 km2 of marsh in the upper Patuxent yields a daily rate of 1040 kg N d-1.  At 

this rate, tidal marsh denitrification could remove 24% of N inputs to the upper Patuxent 

(accounting for 80% of the “missing sink” discussed in the Introduction).  But simple 

multiplication excludes the fractal nature of so many ecological processes (Schneider  

1994).  For example, a process that occurs in a rapid “burst,” measured at the daily time 

scale, cannot simply be multiplied by 365 days to achieve a rate estimate at the annual 

scale.  In order to extrapolate more accurately, spatial and temporal patterns should be 

considered.   

Spatial patterns in denitrification rates measured in Patuxent marshes in this study 

showed some positive relationships with total sediment C and N content (Chapter 1; 

Table 2-5), and were negatively correlated with duration of tidal inundation (r2 = 0.92; 

Fig. 1-26).  Since the above factors vary from high to low marsh zones, accurate 

extrapolation of denitrification rates requires quantitative data regarding the areal extent 

of different marsh environments.  A rigorous analysis of the areal extent of different 

marsh environments was beyond the scope of this study. However, educated estimates 

were made based on data from a visual survey of Patuxent marshes (Table 3-2).  Most 

Patuxent marshes consist primarily of mid marsh environments, with smaller but 

substantial high marsh and much less low marsh and marsh creek area (Table 3-2).  When 

extrapolating average denitrification rates, the spatial component should include 

weighting according to the relative areal extent of different marsh environments.  
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                                  Table 3-2.  Relative areal extent of  
                                  high, mid and low marsh environments  
                                  in oligohaline and tidal fresh regions  
                                  of the Patuxent River.  Data were  
                                  collected during a visual survey  
                                  conducted aboard the R/V Pisces  
                                  during summer, 2004.  Definitions of  
                                  marsh environments are given in  
                                  Chapter 1. 
 

 

 

 

 

 
Temporal patterns in denitrification rates are available for 7 months of the year, and 

there is evidence to suggest continued denitrification during the other 5 months.  

Denitrification rates were positively correlated with trends in Patuxent River NO3 

concentrations, especially from April through July (Chapter 1), which is relevant for 

several reasons.  First, this relationship could be used for spatial extrapolation up and 

down river from study sites where water column NO3 concentrations appear to vary 

latitudinally.  Second, there are predictive implications of the NO3-denitrification 

relationship, whereby substantial changes in N loads to the Patuxent could alter NO3 

concentrations, in which case denitrification rates might be predicted to change as well.  

Finally, temporal patterns can be used to extrapolate measured denitrification rates in 

time.  Extrapolating on a seasonal basis may not be accurate, as certain trends in 

denitrification rates were expressed within a single season (i.e. sharp increases and 

Marsh Percent total
environment marsh area

High marsh 30

Mid marsh 55

Low marsh & 15
marsh creeks
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declines within a season).  In general, denitrification rates measured in June, September 

and October were just over half of rates measured in April, May and July, with August 

rates displaying intermediate values (rates averaged across both sites; Chapter 1).  Based 

on this pattern, Patuxent marshes appear to denitrify at rates near 170 µmoles N m-2 h-1 

during 3 months of the year (April, May, July), near 90 µmoles N m-2 h-1 for another 3 

months (June, September, October), and at 120 µmoles N m-2 h-1 in August.  

Denitrification rates were not measured in winter in this study, but there is evidence 

that denitrification does occur in Patuxent marshes during winter months.  Heterotrophic 

processes generally exhibit temperature-dependence, and a strong positive relationship 

was observed between sediment oxygen consumption and temperature in Patuxent 

marshes from April through October (Chapter 1; Fig. 1-9).  However, temperature alone 

did not appear to control denitrification in Patuxent marshes during the 7 months of this 

study, as the highest monthly rate for denitrification occurred in the coldest month (April, 

9oC).   In addition, substantial denitrification rates have been reported for Chesapeake 

subtidal sediments in winter (J. Cornwell pers. comm.) and for other systems at near-zero 

temperatures (Greene  2005).  Measurements of winter denitrification rates in Patuxent 

marshes are clearly needed. However, for the purpose of this extrapolation, winter rates 

can be assumed to occur at 12 µmoles N m-2 h-1 (10% of the mean April-October rate). 

Estimation of annual Patuxent marsh denitrification based on observed spatial and 

temporal patterns was accomplished with the following summation: 

            Denitrification (kg N) = W + Σ [(0.3Hi + 0.55Mi + 0.15Li)*A*Di*k] 
                                                                                        i=1 

Where W =  winter marsh denitrification, in kg (95.8, derived from an assumed       

          hourly rate of 12 µmoles N m-2 h-1), 
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            Hi = high marsh denitrification rate for the ith month, in µmoles N m-2 h-1, 

  Mi = mid marsh denitrification rate for the ith month, in µmoles N m-2 h-1, 

  Li = low marsh denitrification rate for the ith month, in µmoles N m-2 h-1, 

             i  = month, April (1) through October (7), 

       A = upper Patuxent marsh area (25.8 km2), 

       Di = number of days in the ith month, and 

       k = constant, to convert rates in µmoles m-2 h-1 to rates in kg km-2 d-1 (0.336). 

After weighting of measured rates based on observed spatial and temporal patterns, 

Patuxent marshes were estimated to remove 3.52 x 105 kg N yr-1, or 964 kg N d-1, which 

is 22% of total N inputs to the upper estuary (Table 3-3).  This estimate is slightly lower 

than the estimate made without spatial and temporal weighting of measured rates.  That 

the weighted estimate is lower than the non-weighted estimate is to be expected, as rates 

were assumed to be quite low for 5 months of the year in the weighted calculation.  That 

the weighted estimate is not very much lower than the unweighted estimate can be 

attributed to the fact that higher rates were measured in environments which comprise a 

greater portion of the marsh surface.  

Nutrient burial 

 Applying the areal weighting scheme previously discussed for marsh 

environments, this study indicates that Patuxent marshes bury N and P at average rates of 

18 g N m-2 yr-1 and 4 g P m-2 yr-1.  Though there is likely a seasonal component to 

nutrient burial, this is already accounted for since accretion rate calculations are made at 

the annual timescale and integrate the contributions of all months of the year.  Data 

collected by Merrill (1999) indicated similar rates for N and P burial at King’s Landing 
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(21.4 and 3.76 g N and P yr-1).  At Jug Bay, Khan and Brush (1994) reported similar 

burial rates for the high marsh, but lower rates for the low marsh.  Extrapolating the 

areal-weighted burial estimates from this study, upper Patuxent marshes were estimated 

to remove 4.64 x 105 kg N yr-1 and 1.03 x 105 kg P yr-1.  This accounts for nearly 30% of 

N inputs to the upper Patuxent (98% of the “missing N sink” described in the 

Introduction) and 60% of P inputs to the entire Patuxent (Table 3-3).   

   
Table 3-3.  Rates of N and P loading to the upper Patuxent estuary, with estimates of N    
and P removal based on measurements made in this study.  The estuarine surface area is  
26.0 km2 and total marsh surface area is 25.8 km2  (used in computation of areal rates). 
 

 

 

 
a Estimate of current N loads to the upper Patuxent estuary are from Boynton, unpublished data.  Rates 
were given by Boynton in kg N d-1. 
b Estimate based on measurements made in this study. Denitrification measurements made in µmoles N 
m-2 h-1; burial measurements made in g N or P m-2 yr-1. 
c Burial and denitrification rates are given in parentheses as % of N or P load to the upper Patuxent estuary. 
 

Future studies 

 One avenue for future work to facilitate more accurate spatial extrapolation of 

nutrient removal rates would be to examine relationships between nutrient removal 

processes and specific plant communities.  If strong enough correlations were found, a 

measurement tool, in some ways analogous to measuring oceanic primary production by 

satellite, could be developed.  More specifically, areal extent of specific plant 

communities in all Patuxent marshes could be quantified with aerial photographs and 

GIS.  Nutrient removal rates associated with each plant community could then be 

summed according to the total area of each community, just as primary production 

                kg d-1                         kg yr-1           g m-2 yr-1

N P N P N P
Loada 4389 468 1.6 x 106 1.7 x 105 62 7

Burialb 1271 (29)c 282 (60) 4.6 x 105 1.0 x 105 18 4

Denitrificationb 964 (22)  -- 3.5 x 105  -- 14  --
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associated with ocean surface color can be summed according to the total number of 

pixels of each color in a satellite photograph.  This summation procedure eliminates some 

of the error associated with multiplying fine-scale rates by large magnification factors. 

Resilience of marsh nutrient removal mechanisms 

 In the face of increasingly intense anthropogenic nutrient inputs, it is important to 

consider how removal mechanisms (both man-made and natural) will respond to 

changing nutrient loads.  Data from this study suggest that marsh denitrification rates 

respond to Patuxent River NO3 concentrations during portions of the year (April through 

June), and that denitrification in general exhibits a positive response to elevated NO3 in 

the water column (Chapter 1; Fig. 1-25).  This does not necessarily indicate that marsh 

denitrification will counteract increased N inputs, as total N inputs have been reported to 

increase without associated increases in NO3-N inputs (Jordan et al.  2003).  Also, though 

denitrification rates appear to increase in concert with water column NO3 concentrations, 

rates only appear to increase in proportion to NO3  to concentrations around 150 µM, 

after which denitrification rates approach an asymptote (Chapter 1).  Despite these 

caveats regarding the capacity of Patuxent marshes to offset increased N inputs, the size 

of the marsh denitrification sink could be expected to increase if NO3 loading were to 

increase.   

It has been demonstrated that P burial increases as concentrations of P in river 

water increase (Craft and Richardson  1993), so the size of the P sink, like that of the N 

sink, might also be expected to increase as loading increases.  Marsh nutrient burial is 

tenuous, however, as it is dependent on continuous accretion of marsh sediments relative 

to sea level changes.  If Patuxent marshes (due to reduced sediment inputs, rising sea 
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level, or other factors) do not continue to accrete, the marsh nutrient sink may diminish, 

disappear, or even become a source of nutrients if substantial erosion begins to occur. 
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VALUING TIDAL MARSH NUTRIENT REMOVAL 

Cost of nutrient control 

The Patuxent watershed is an illustration of successful point source nutrient 

management, and this example suggests that there is hope for controlling point source 

nutrient inputs to other Chesapeake Bay tributaries, even in the face of burgeoning 

populations.  Due to successful point source nutrient control measures, however, non-

point sources now dominate nutrient inputs to the Patuxent and much of the Chesapeake.  

Human activity that contributes to the diffuse nutrient supply is increasing not only due to 

population growth and increased demand for food, but also due to the rising intensity of 

this activity.  For example, in the Chesapeake basin, population increased by 8% during 

the past decade while impervious surface area increased by 41% and vehicle miles 

traveled rose 26% (Chesapeake Bay Watershed Blue Ribbon Finance Panel  2004).  The 

future of nutrient management in the Patuxent and the entire Chesapeake basin clearly 

rests in dealing with non-point source nutrients and with the human activities that 

produce them. 

Several efforts to restore the Chesapeake Bay and its tributaries to a less-impacted 

state are presently underway.  By 2004, nutrient reduction technology of some sort had 

been applied to 55% of the flow from all Chesapeake wastewater facilities; phytase 

additions to poultry feed led to 16% P reductions in poultry litter; nutrient management 

plans were prepared for 85, 45 and 40% of croplands in Maryland, Pennsylvania and 

Virginia, respectively; and limited conservation tillage and cover cropping practices were 

being used on a number of farms (Chesapeake Bay Commission  2004).  A $19 billion 

price tag has been placed on restoring the Chesapeake Bay to a less-impacted state, and 
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the bulk of these funds have been allocated to improving water quality (Chesapeake Bay 

Commission  2004).  To this end, the cost-effectiveness of various nutrient and sediment 

reduction strategies has been assessed (Table 3-4). 

Largely because of examples like the Patuxent, WWTP upgrades are listed as the 

nutrient reduction strategy carrying the highest degree of confidence for consistent, long-

term nutrient reductions (Chesapeake Bay Commission  2004).  State of the art nutrient 

reduction technologies allow N and P reductions to 2 and 0.1 mg L-1 respectively, and 3 

mg L-1 is considered a widely-attainable goal for nitrogen.  Though all facilities would 

not likely strive for the 3 mg L-1 standard initially, substantial reductions could be 

achieved for N and P using less advanced technologies.  Other cost-effective nutrient 

control strategies include adjusting feed formulation for poultry and livestock to reduce N 

and P in excreta; continuation of traditional nutrient management, which is the most 

widespread management practice currently in use and includes prescriptions for timing of 

fertilizer application and other best management practices; enhanced nutrient 

management, which encourages fertilizer application based on typical, rather than ideal 

growing conditions; conservation tillage practices (which could provide 100% of the 

estimated sediment reduction needs in the Chesapeake); and cover crops, both early and 

late season (Chesapeake Bay Commission 2004). 

Valuing ecosystem (marsh) nutrient control 

Valuing ecosystem services like nutrient removal by tidal marshes is an inherently 

difficult undertaking because no ecosystem has ever produced a bill for services rendered 

(e.g. Turner et al.  1993; Costanza  1999).  Constructed wetlands for wastewater  
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Reduction Cost per kg Reduction Cost per kg
potential (kg x 106) ($) potential (kg x 106) ($)

Strategy N N P P

Wastewater treatment 15.91 18.83 1.36 162.80
plant upgrades*

Diet and feed ND ND 0.10 -6.60
adjustments**

Traditional nutrient 6.18 3.65 0.36 62.17
management

Enhanced nutrient 10.77 9.70 0.36 210.74
management

Conservation tillage***,# 5.45 3.45 1.18 0.00

Late cover crops***,# 6.90 7.70 0.10 0.00

Early cover crops***,# 3.68 5.13 0.10 0.00

Total 48.89 3.57

ND = no data were available
*Point source management strategy.  All other strategies are for non-point source nutrients.
**There are potential net savings of $6.60 kg-1 since reduced P inputs would lower the cost of feed; not 
evaluated for N.
***Implementation is the same for both N and P, so after strategies are put in place for N management, P 
management is essentially free.
#These techniques have the added benefit of sediment removal, at 1.68 million tons for conservation tillage and 
0.11 million tons each for late and early cover crops; all benefits accrue at no additional cost after the 
strategies are implemented for N removal

 

 
Table 3-4.  Estimated annual load reductions and costs associated with the six most cost-
effective nutrient management strategies for the Chesapeake Bay (data from Chesapeake 
Bay Commission  2004). 
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treatment constitute a group of wetlands to which traditional economics are more easily 

applied.  During the past 30 years, constructed wetlands have become a frequent option 

 chosen in waste management due to the appeal and potentially lower costs of natural 

technology (Kadlec and Knight  1996).  The costs of treatment wetlands are incurred 

overwhelmingly in the installation phase, and wetlands that remain operational long 

enough (>20 years) are generally a less-expensive waste treatment option than traditional 

technologies serving the same purpose (Steer et al.  2003).  Costs and benefits are more 

easily evaluated for treatment wetlands than for natural wetlands, as there are 

construction costs associated with treatment wetlands, as well as technological analogues. 

Another important distinction between treatment and natural wetlands is that treatment 

wetlands are often designed only to deal with point source nutrients, whereas natural 

wetlands receive (and can remove) diffuse inputs as well.  There are no installation or 

operational costs associated with natural wetlands, and there is no equivalent technology 

for removal of non-point source nutrients (though there are strategies for reduction of 

non-point nutrient discharge).  

The cost associated with removal of N and P by WWTP’s provides a simple 

indicator of the value of point source nutrient removal.  The cost illustrates, in a loose 

sense, societal willingness-to-pay for nutrient removal, and can thus be used as a proxy 

for value.  The costs of advanced N and P removal technologies are incurred primarily 

during the installation/addition phase, rather than during day-to-day operations, so it is 

these initial costs which provide the best indicator of value.  The cost of upgrading 

Chesapeake basin WWTP’s to incorporate advanced nutrient reduction measures has 

been estimated at $18.83 and $162.80 kg-1 for N and P, respectively (Table 3-4).  
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Considering only the cost of point source nutrient removal technology, and the fact that 

upper Patuxent marshes remove 8.14 and 1.03 kg x 105 N and P yr-1, respectively, tidal 

marsh nutrient removal in the upper Patuxent could be valued at $32 million, annually 

(Table 3-5).  

 
Table 3-5.  Valuation of nutrient removal by upper Patuxent marshes based on the cost of 
point source nutrient removal and on the weighted average cost of non-point source 
nutrient reduction (Chesapeake Bay Commission  2004; this study). 
 

 

 

 

 

Tidal marsh nutrient removal is perhaps more appropriately valued based on the 

cost of non-point source nutrient management.  There are five strategies currently under 

consideration for non-point source nutrient management in the Chesapeake basin (Table 

3-6).  Management strategies under serious consideration by policy organizations indicate 

that the most economical non-point nutrient reduction options for the Chesapeake and its 

tributaries range in cost from $3.45 to $9.70 kg-1 for N removal and from -$6.62 to 

+$210.74 kg-1 for P removal.   At the scale of the entire Chesapeake basin, total potential 

for non-point N and P removal using the five most cost-effective strategies is 32.98 x 106 

kg N yr-1 and 2.20 x 106 kg P yr-1 (Table 3-6).  Using the average cost of non-point 

nutrient reduction strategies, weighted according to reduction potential ($6.61  kg-1 N and 

$44.76  kg-1 P), tidal marsh nutrient removal in the upper Patuxent can be valued at $10 

million per year (Table 3-5). 

Non-Point Source Point Source 
Nutrients Nutrients

Cost/value of nutrient removal ($ kg-1 N, $ kg-1 P) 6.60, 44.80 18.80, 162.80

Nutrient removal by upper 8.1, 1.0 8.1, 1.0
Patuxent marshes (kg N yr-1 x 106,kg N yr-1 x 106)

Value of upper Patuxent 10 32
marsh nutrient removal ($ yr-1 x 106) 
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Valuation of nutrient removal by tidal marshes, using the costs of technological 

alternatives as indicators, suggests a range of values for Patuxent marsh nutrient removal 

services.  Which value to use, and even the legitimacy of techniques employed to derive  

these values, are always in question when traditional economics are applied to nature.  

Whatever the price tag one wishes to place on marsh nutrient removal, this study 

demonstrates that tidal marshes perform services for which Chesapeake basin legislators 

and their constituents are willing to pay.  Moreover, marshes provide these services to an 

ecologically significant extent, at no cost.  In a synthesis of current knowledge on the 

history and ecological impacts of eutrophication in the Chesapeake Bay, Kemp et al. 

(2005) wrote, “It is ironic that many of the Bay’s tidal marshes, which arose in the 18th 

century as a consequence of eroding agricultural lands, have become effective buffers 

reducing sediment and nutrient loads from watershed to estuary.”  Perhaps “ironic” is too 

negative a word, at least at this stage of the nutrient story, for the Patuxent River basin. 
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