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Abstract

Background: The Nile tilapia is the second most important fish in aquaculture. It is an excellent laboratory model,
and is closely related to the African lake cichlids famous for their rapid rates of speciation. A suite of genomic
resources has been developed for this species, including genetic maps and ESTs. Here we analyze BAC end-
sequences to develop comparative physical maps, and estimate the number of genome rearrangements, between
tilapia and other model fish species.

Results: We obtained sequence from one or both ends of 106,259 tilapia BACs. BLAST analysis against the genome
assemblies of stickleback, medaka and pufferfish allowed identification of homologies for approximately 25,000
BACs for each species. We calculate that rearrangement breakpoints between tilapia and these species occur about
every 3 Mb across the genome. Analysis of 35,000 clones previously assembled into contigs by restriction
fingerprints allowed identification of longer-range syntenies.

Conclusions: Our data suggest that chromosomal evolution in recent teleosts is dominated by alternate loss of
gene duplicates, and by intra-chromosomal rearrangements (~one per million years). These physical maps are a
useful resource for comparative positional cloning of traits in cichlid fishes. The paired BAC end sequences from
these clones will be an important resource for scaffolding forthcoming shotgun sequence assemblies of the tilapia
genome.

Background
Tilapia (Oreochromis spp.) are among the most impor-
tant species in aquaculture and a primary source of ani-
mal protein for millions of people in the developing
world [1]. Only limited efforts have been made toward
genetic improvement of these species [2]. The sequence
of the tilapia genome will be a fundamental resource
used for genetic selection, on traits such as growth per-
formance and disease resistance, to create strains of fish
optimized for the unique culture conditions of each
country.
Tilapia and other closely related species of African

cichlid fishes are also widely used in basic research.
Because of their intimate physiological relationship with
the environment, tilapia are ideal for studies of ion

regulation [3,4], the accumulation of heavy metals [5],
and detoxification of biotoxins [6]. Nile tilapia expres-
sing a humanized insulin gene are being studied as a
source of islet cells which might be transplanted into
humans for control of type I diabetes [7]. Tilapia are
also an important model for studying environmental
influences on sex differentiation [8]. The closely related
haplochromine cichlids of the East African lakes are a
model system for studying the genetic basis of behavior
[9] and evolutionary processes of adaptation and
speciation [10].

Cichlid genomics
Considerable progress has been made in developing
genomic resources for tilapia and other East African
cichlid fishes. Genetic maps have been published for
tilapia [11], Lake Malawi haplochromines [12], and
Astatotilapia burtoni [13]. There are also extensive col-
lections of ESTs for Lake Victoria haplochromines
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[14,15], A. burtoni [16,17] and Nile tilapia [18]. Several
BAC libraries have been constructed for Nile tilapia
[19], and fingerprinted to construct a physical map [20].
BAC libraries have been constructed also for haplochro-
mine cichlids from lakes Malawi [21], Victoria [22] and
Tanganyika [23].

Comparative physical maps
Comparative maps have been a useful intermediate
resource for many agricultural species before complete
genome sequences were available [24-26]. Most often
these comparative maps have relied on mapping homo-
logous gene markers in radiation hybrid panels [27], but
comparative maps have also been based on analysis of
BAC end sequences [28,29]. Until a complete genome
sequence is available for tilapia, comparative maps to
the genome sequences of model fish species will provide
the best organization of the partial sequence data for
cichlid fishes.
The utility of a comparative map is proportional to

the extent to which synteny exists between the two gen-
omes. Useful comparative maps have been constructed
between cattle and human (100MY divergence) [30].
The divergence among many fish lineages is much
older, creating the potential for more extensive genome
rearrangements. The Ostariophysi (e.g. zebrafish) and
Acanthopterygii (e.g. medaka) diverged ~300MY ago
[31]. Divergence among Percomorph groups (e.g. Tilapia
and pufferfish) occurred more than 100MY ago [32].
The utility of comparative maps across these greater
evolutionary distances is not yet clear.
Early research suggested that the rate of chromosome

evolution is relatively low in non-mammalian vertebrates
[33]. Recently it has been suggested that the rate of
chromosomal rearrangement increases immediately after
episodes of whole-genome duplication [34]. Teleost
fishes experienced an additional round of whole genome
duplication about 300 MY ago [35], and recent papers
have suggested that fishes continue to have a high rate
of chromosomal rearrangement [36]. However, the more
extensive inter-chromosomal rearrangements detected
in the zebrafish genome may be due to unique evolu-
tionary processes in that lineage, and there appear to
have been no major inter-chromosomal rearrangements
in the medaka genome during the last 300MY [37]. The
green pufferfish shows relatively little inter-chromosomal
rearrangement since divergence from the ancestral bony
vertebrate [38]. Most of the changes in the pufferfish
lineage represent fusions that reduced the chromosome
number after whole genome duplications.
The goal of the present study was to construct a com-

parative physical map between tilapia and the latest
sequence assemblies for three other percomorph species:

stickleback, medaka and pufferfish. From this comparative
map we estimate the extent of chromosomal rearrange-
ment during the recent evolution of these species.

Results and Discussion
New BAC library
The BAC library (VMRC-44) constructed at the
Benaroya Research Institute consists of 73,728 clones
(192 384-well plates) with an average insert size of 150
kb. This represents a total of 11 Gbp or approximately
10× coverage of the tilapia genome. The methods used
to prepare this library are presented in Additional file 1.

Sequencing statistics
Genoscope
The construction of the BAC libraries sequenced at
Genoscope was reported previously [19]. A total of
35,000 clones from these libraries (average insert
182 kb, ~5.6× genome coverage), have been restriction
fingerprinted and assembled into 3,600 contigs [20].
Genoscope end sequenced a total of 40,704 clones (52
plates from library 3 and 54 plates from library 4). From
37,383 clones, a total of 68,032 end sequences were
obtained, representing 6.8× clone coverage of the gen-
ome. The mean trimmed length of the sequences was
562.6 bp, for a total dataset of 38,272,386 bp represent-
ing 3.8% sequence coverage of the genome.
Broad
The Broad Institute end sequenced 73,728 clones (192
plates) from the Benaroya library, obtaining a sequence
for at least one end of 68,876 clones, representing 10.0×
clone coverage of the genome. Multiple attempts were
made to sequence some clones and therefore, a total
of 153,216 end sequences were finally submitted to
GenBank. The mean length of the sequences was 757.3
bp, for a dataset of 116,029,366 bp. After quality trim-
ming and vector removal with Lucy, a total of 124,995
sequences remained, with a mean length of 527.3 bp, for
a total of 65,912,624 bp, representing 6.6% sequence
coverage of the genome. These sequences were pre-
viously analyzed for their repeat content [39].

Microsatellites
Microsatellite motifs were identified in 7,230 (3.7%) of
the 193,027 sequences. These included 5,027 dinucleo-
tide, 1,250 trinucleotide, and 953 tetranucleotide repeats
(Additional file 2Table S1). Over half of the repeats
(3,887) were AC dinucleotides. AT and AG dinucleo-
tides were also abundant. AAT was the most frequent
trinucleotide. These microsatellites could be exploited
to develop new genetic markers and could be used
to anchor the FPC-based physical map [20] to the
genetic map [11].
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Genes
A total of 16,636 (8.6%) repeat-masked sequences had a
significant (1e-5) BLASTx hit to the Uniprot database.
We found that 38,020 (19.7%) of the repeat-masked
sequences had a significant (1e-50) BLASTn hit to the
116,899 Nile tilapia EST set [40]. Therefore, 49,823
(25.8%) of the sequences had either a significant
BLASTx hit to Uniprot or a significant BLASTn hit to
the Nile tilapia ESTs. There were 4,833 (2.5%) sequences
that had a significant hit to both Uniprot and the Nile
tilapia ESTs.

Comparative mapping
A total of 193,027 BAC end sequences were BLASTed
against the genome assemblies of stickleback, medaka
and pufferfish. The results are summarized in Table 1.
The proportion of sequences that had hits with e-values
less than e-10 ranged from 11 percent against pufferfish,
15 percent against medaka and 17 percent against stick-
leback. Twenty-eight percent of the BACs had at least
one hit to the stickleback genome assembly.
We classified the BACs into one of four types, accord-

ing to the pattern of BLAST hit. Type 1 clones are
those for which only a single sequence produced a hit
in the target genome. Type 2 clones are those in which
the sequences from the two ends of the BAC hit in the
appropriate opposing orientation within 300 kb in
the target genome. Type 3 clones are those in which the
two end sequences of a BAC hit the same chromosome
in the target genome outside of the 300 kb range. Type
4 BACs are those in which the two sequences hit differ-
ent chromosomes in the target genome.

Since the average BLAST hit rate against the stickle-
back genome is 17%, we expected the proportion of
clones with hits on both ends would be 2.9%. In fact we
observed a slightly greater proportion (3.7%), possibly
reflecting a clustering of conserved sequences in the
genomes. When both ends of a BAC had BLAST hits,
they were most often found within 300 kb on the same
chromosome in the target genome (type 2). A much
smaller proportion (3-5%) were found at larger distances
on the same chromosome in the target genome (type 3).

Conservation of gene order
We can use the ratios of type 2, 3 and 4 hits (Table 1)
to estimate the number of rearrangements between gen-
omes. Across the three species, 27-41% of double hit
clones are type 3 or 4. If the BAC clone inserts average
150 kb, and every third clone has a break in synteny, it
would suggest a breakpoint every 3 × 150 kb = 450 kb
across the genome. This is equivalent to more than
2000 breakpoints across the genome, or about 100
breakpoints per chromosome. We suspect this simple
statistic overestimates the true number of chromosomal
rearrangements.
The best estimate of intra-chromosomal rearrange-

ments is the number of type 3 BACs relative to the num-
ber of type 2 + type 3 BACs. This proportion is between
3 and 6%, suggesting an intra-chromosomal rearrange-
ment every 20 × 150 kb = 3 Mb. If the average chromo-
some is 48 Mb, this suggests about 16 breakpoints (e.g. 8
inversions) per chromosome. We detected a mean of 2.1
breakpoints per chromosome, with at least one rearran-
gement on each stickleback chromosome (Additional file

Table 1 BLAST statistics against three fish genome assemblies

# BACs
one end

# BACs
both ends

Sequences
w/hit

BACs
w/hit

Type 1* Type 2* Type 3* Type 4* 3/(2+3) (3+4)/
(2+3+4)

Stickleback

Genoscope 6,734 30,649 11,229 10,048 7,987 797 54 153 0.063 0.206

Broad 12,758 56,118 21,754 19,510 14,405 1,416 142 633 0.054 0.286

Combined 19,492 86,767 33,053 29,558 22,392 2,213 196 786 0.057 0.259

Medaka

Genoscope 6,734 30,649 9,764 9,278 7,087 469 43 226 0.084 0.364

Broad 12,758 56,118 19,699 17,943 13,907 886 51 624 0.054 0.432

Combined 19,492 86,767 29,463 27,221 20,994 1,355 94 850 0.065 0.410

Tetraodon

Genoscope 6,734 30,649 6,931 6,386 3,879 265 14 62 0.050 0.222

Broad 12,758 56,118 14,260 13,227 7,279 503 19 188 0.036 0.291

Combined 19,492 86,767 21,191 19,613 11,158 768 33 250 0.041 0.269

*Numbers for type 1, 2, 3 & 4 do not include hits to the contigs in the ‘unordered chromosome’ of each genome assembly. Type 2 hits were scored when the
two end sequences of a clone hit within 300 kb of each other in the target genome.
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3Table S2). The observed breakpoints were spanned by
an average of 3.5 BAC clones. Unfortunately, the rela-
tively low clone coverage of the type 3 BACs does not
allow us to identify all of the likely breakpoints, or pre-
cisely map their locations. Still, the high end of these esti-
mates (8 inversions/chromosome) suggests there have
been only 160 inversions since the divergence of tilapia
and stickleback. The type 3 hits are visualized in Circos
plots in Additional files 4, 5, 6, Figures S1-S3.
Type 4 BACs are possible evidence of inter-chromosomal

rearrangements, and represent 24-37% of the two-hit
BACs. This might suggest more than 100 breakpoints in
synteny for each chromosome. However, we do not think
this statistic is an indication of a large number of inter-
chromosomal transfers of genes. Rather, it probably
includes many instances in which one of the BLAST
matches is to a paralog on a second chromosome. For
example, if the syntenic copy of the gene has been lost,
BLAST will identify a paralog on another chromosome as
the best hit. This kind of gene loss is a common feature of
fish genomes, which underwent a whole-genome duplica-
tion about 300MY ago. Alternate loss of even a small pro-
portion of genes from these duplicated regions would be
sufficient to create the pattern. There are about 1,250
genes/chromosome, and if only 5% of them (60 genes/chro-
mosome) were deleted after the whole genome duplication,

it would be sufficient to create the pattern we see in the
BAC data. The fact that type 4 BLAST hits have much
lower e-values than type 2 BLAST hits (Figure 1) tends to
reinforce this view.
We mapped the rearrangements onto a phylogeny of

the four species. The results suggest that approximately
15-20 rearrangements have occurred on each lineage
since they diverged from their common ancestor. There
is no indication that the rate of rearrangement is higher
in one lineage than another.

Comparative physical maps
These BLAST results are displayed in a GBrowse inter-
face at http://www.BouillaBase.org (Figure 2). Separate
tracks display the type 1, 2, 3 and 4 BLAST hits. An
additional track displays the BLAST hits from each of
the fingerprint contigs in the previous physical map
[20]. Because these FPC contigs contain multiple BAC
clones, they help to tie the physical map together at lar-
ger scales than the end sequences of individual clones.

Conclusions
End-sequencing of these BAC libraries was a key step in
preparing the tilapia genome for shotgun sequencing.
Together with the BAC fingerprint database,
these sequences will provide long-range structure for

Figure 1 Distribution of BLAST scores for type 2, 3 and 4 hits of the Broad Institute tilapia BAC end sequences on the stickleback
genome assembly. The distribution was truncated at e-10.
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scaffolding the contigs of genome assemblies to con-
struct a golden path across the genome.
Recent molecular phylogenies appear to have reached

a consensus that cichlids are more closely related to
medaka than to either pufferfish or stickleback [40-42].
Nevertheless, a higher number of the tilapia BAC end
sequences hit stickleback (33,053) than either medaka
(29,463) or pufferfish (21,191). This discrepancy might

be due to variation in the quality of each assembly, or it
might support an alternative phylogenetic reconstruc-
tion. Regardless, it appears that the stickleback sequence
is currently the best reference sequence for building
comparative maps of tilapia [43].
Finally, these data suggest that chromosomal evolution

in recent teleosts is dominated by alternate loss of gene
duplicates, and by intra-chromosomal rearrangements.

Figure 2 Comparative mapping of tilapia data mapped on the stickleback genome assembly displayed in GBrowse at
http://www.BouillaBase.org. a) Type 1 and 2 BLAST hits, b) Type 3 BLAST hits, c) FPC contigs.
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The rate of these rearrangements is relatively slow, on
the order of one per million years. So the prospects are
good for building useful comparative maps between
sequenced genomes and the large number of as yet
unsequenced teleost species of commercial or scientific
importance.

Methods
Sequence trimming
Both trimmed and untrimmed quality scores and FASTA
sequences for the Genoscope library 4 sequences were
available, whereas only trimmed FASTA sequences for
the Genoscope library 3 were available. To achieve essen-
tially the same level of trimming for both Genoscope
libraries and the Broad library, the Genoscope library 4
data was used to determine a set of parameters that
trimmed the data in the same way as had been done for
both the Genoscope libraries. The following Lucy 1.20p
[44] settings were used: -error 0.025 0.02, -bracket 10
0.005, -window 50 0.08 10 0.12, and -vector with the
FASTA sequence of the pBAC-Lac cloning vector [45]
for the Genoscope libraries and the FASTA sequence of
the pCC1BAC cloning vector (Epicentre Biotechnologies)
for the Broad library.

Annotation
Identification of microsatellites
We scanned the BAC end sequences for microsatellites
that might be useful for genetic mapping. We used the
Tandem Repeats Finder http://tandem.bu.edu/trf/trf.
html[46] to identify microsatellite motifs. The BAC ends
containing microsatellites have been color-coded in the
annotation tracks in the GMOD browser.
Identification of genes
The BAC end sequences were masked with RepeatMas-
ker version open-3.2.8 [47] against a combination of the
Repbase [48] RepeatMasker libraries, release 20090604
and tilapia specific repeats [39]. The sequences were
then aligned to the Uniprot database (release-2010_05)
using BLASTx, and a database of 116,899 Sanger ESTs
from Nile tilapia [18] using BLASTn. Significant hits
were defined with an e-value threshold of 1e-5 for
Uniprot, or 1e-50 for the ESTs.

BLAST analysis
Comparative mapping was performed by running
BLASTn against the pufferfish, stickleback and medaka
genome assemblies. The genomes were downloaded from
the UCSC Genome Browser http://hgdownload.cse.ucsc.
edu/downloads.html. The following versions were used
for the respective genomes: Feb. 2004 (Genoscope 7/tet-
Nig1), Feb. 2006 (Broad/gasAcu1), and Oct. 2005 (NIG/
UT MEDAKA1/oryLat2). FASTA sequences were down-
loaded and formatted into BLAST databases for use with

the NCBI BLASTall tool and scripts utilizing BioPerl
were used to parse the results. Type 2 hits were defined
as mate pairs that hit the target genome in opposing
orientation at a distance of 300 kb or less. Type 3 hits
were defined as mate pairs that hit the same chromo-
some, regardless of orientation. Type 4 hits were defined
as mate pairs that hit different chromosomes. The posi-
tions of the BLAST hits were visualized with Circos [49].

Online access to the resource
We used the GMOD browser http://www.gmod.org to
develop a comparative genome server for fishes that
maps tilapia ESTs and BAC end-sequences onto the
genome assemblies of stickleback, medaka and puffer-
fish. This server can be accessed through our www site
http://www.BouillaBase.org.

Additional data files
The Benaroya/Broad BAC end sequences are available in
the NCBI Trace Archive under Center_Project ‘G1447’.
The Genoscope sequences are available as accession
numbers FQ242537 - FQ280267.

Additional material

Additional file 1: Supplemental Methods. Description of methods
used in constructing the BAC library.

Additional file 2: Table S1 Microsatellite motifs identified in the
BAC end sequences.

Additional file 3: Table S2 Number of type 3 BACs spanning
potential recombination breakpoints in the comparative map to
stickleback.

Additional file 4: Figure S1 Circos plot of the type 3 BLAST hits on
the stickleback genome. The chromosomes of the stickleback genome
are represented on the circle. The position of BAC mate pair BLAST hits
are indicated with red arcs.

Additional file 5: Figure S2 Circos plot of the type 3 BLAST hits on
the medaka genome. The chromosomes of the medaka genome are
represented on the circle. The position of BAC mate pair BLAST hits are
indicated with red arcs.

Additional file 6: Figure S3 Circos plot of the type 3 BLAST hits on
the Tetraodon genome. The chromosomes of the Tetraodon genome
are represented on the circle. The position of BAC mate pair BLAST hits
are indicated with red arcs.
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