ABSTRACT

Title of dissertation:CAPILLARY ISOELECTRIC FOCUSING-BASED
MULTIDIMENSIONAL PEPTIDE/PROTEIN
SEPARATIONS FOR PROTEOMICS ANALYSIS

Yueju Wang, Doctor of Philosophy, 2005

Dissertation directed by: Professor Cheng S. Lee Department of Chemistry and Biochemistry

With the completion of the human genome project, the proteomics has become the focus of research interest for better understanding the complex biological processes. The mass spectrometry (MS) detection of vast number and broad dynamic range of the proteins requires that sample fractionation and separation be performed prior to MS analysis. Realizing the limitations of gel-based proteomic techniques, capillarybased and gel free separation technologies are presented as attractive alternatives holding the promises of high separation efficiency and resolution, broad dynamic range, easy system automation as well as high throughput.

Coupled with laser free microdissection technology, the combination of CIEF with nano-RPLC in an automated and integrated platform was employed for comprehensive and sensitive proteome studies of limited protein quantities obtained from tissue samples. The peptides were first separated and concentrated by CIEF and were sequentially fractionated. All the CIEF fractions were further resolved by nano-RPLC, followed by tandem MS analysis. A total of 6,866 fully tryptic peptides were detected, leading to the identification of 1,820 distinct proteins.

Due to limited peptide sequence coverage of identified proteins, the bottom-up approaches provide very limited molecular information about the intact proteins, particularly towards the detection of post-translational modifications. In contrast, top-down methods are advantageous for the detection of protein modifications. To improve separation efficiency and resolution of nano-RPLC separations for intact proteins, various chromatography conditions, including the chain length of the stationary phase, the column temperature, and the ion-pairing agent utilized in the mobile phase, were optimized using model proteins.

Building upon the experience in the development of automated and integrated multidimensional peptide separation platform and the optimization of protein chromatography separation, a top-down proteome characterization of yeast cell lysates was further evaluated. An overall system capacity of 4,320-7,200 was achieved and a total of 534 distinct yeast protein masses were measured, yet required a protein loading of only 9.6 μ g. This protein loading is two to three orders of magnitude less than those used in current top-down proteome techniques, illustrating the potential usage of this proteome technology for the analysis of protein profiles within small cell populations or limited tissue samples.

CAPILLARY ISOELECTRIC FOCUSING-BASED MULTIDIMENSIONAL PEPTIDE/PROTEIN SEPARATIONS FOR PROTEOMICS ANALYSIS

By

Yueju Wang

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2005

Advisory Committee:

Professor Cheng S. Lee, Chair Professor Daniel E. Falvey Professor Catherine C. Fenselau Professor Sang Bok Lee Professor William E. Bentley

TABLE OF CONTENTS

LIST C	DF FIGURES	iii
LIST C	DF TABLES	iv
CHAP	FER 1 RECENT ADVANCES IN CAPILLARY SEPARATIONS FOR	
	PROTEOMICS	1
1.1	INTRODUCTION TO PROTEOMICS	1
1.2	CAPILLARY SEPARATIONS IN PROTEOMICS	4
1.3	PROJECT DESCRIPTION	. 16
1.4	ACKNOWLEDGEMENT	. 20
CHAP	FER 2 PROTEOME ANALYSIS OF MICRODISSECTED TUMOR	
	TISSUE USING A CAPILLARY ISOELECTRIC FOCUSING-	•
	BASED MULTIDIMENSIONAL SEPARATION PLATFORM	
	COUPLED WITH ESI-TANDEM MS	. 21
2.1	INTRODUCTION	. 21
2.2	EXPERIMENTAL SECTION	. 25
2.3	RESULTS AND DISCUSSION	. 30
2.4	CONCLUSION	. 42
2.5	ACKNOWLEDGEMENT	. 44
CHAP	FER 3 EFFECTS OF CHROMATOGRAPHY CONDITIONS ON INTAC	T
	PROTEIN SEPARATIONS FOR TOP-DOWN PROTEOMICS	5 45
3.1	INTRODUCTION	. 45
3.2	EXPERIMENTAL SECTION	. 48
3.3	RESULTS AND DISCUSSION	. 51
3.4	CONCLUSION	. 62
3.5	ACKNOWLEDGEMENT	. 63
CHAP	FER 4 INTEGRATED CAPILLARY ISOELECTRIC FOCUSING/NANC)-
	REVERSED PHASE LIQUID CHROMATOGRAPHY	
	COUPLED WITH ESI-MS FOR CHARACTERIZATION OF	
4 1	INTACT YEAST PROTEINS	. 64
4.1		. 64
4.2	EXPERIMENTAL SECTION	. 68
4.3	RESULTS AND DISCUSSION	. 72
4.4		. 82
4.5	AUKNUW LEDGEMEN I	. 84
	IEK 5 CUNCLUSIUN	. 85
APPEN	DIA	. YI
KEFEF	UNCES	127

LIST OF FIGURES

Figure 2-1	
Figure 2-2	
Figure 2-3	
Figure 2-4	
Figure 2-5	
Figure 2-6	40
Figure 3-1	
Figure 3-2	54
Figure 3-3	
Figure 3-4	
Figure 3-5	59
Figure 4-1	74
Figure 4-2	75
Figure 4-3	76
Figure 4-4	80
Figure 4-5	81
-	

LIST OF TABLES

Table 1	4	41	1
---------	---	----	---

CHAPTER 1

RECENT ADVANCES IN CAPILLARY SEPARATIONS FOR PROTEOMICS

Jonathan W. Cooper, Yueju Wang, and Cheng S. Lee

Electrophoresis 25, 3913-3926 (2004)

1.1 INTRODUCTION TO PROTEOMICS

As the sequence of the human genome continuously achieves further confidence, the door has already opened toward an effort at the fundamental understanding of complex biological processes, including development, differentiation, and signal transduction. These processes generally involve the coordinated expression and interaction of multiple genes and proteins in a synergistic effort. The identification and quantification of the multiple proteins that constitute and control a particular process is fundamental toward understanding the regulation of that biological system. Additionally, the ability to monitor the presence or absence of particular proteins, an increase or decrease in protein expression, a change in protein microheterogeneity, or a combination of these modifications may be useful toward the early detection and diagnosis of a wide spectrum of known diseases [1,2].

The information gained through proteomics, the large-scale analysis of gene products and their covalent modifications contained within a specific cell type at a particular cell state, will contribute greatly to our understanding not only of gene function, but also of the role that individual proteins, and protein-protein complexes play in biological systems. For example, the transformation of a normal cell into a cancer cell requires multiple genetic modifications or changes, such as alterations in cell cycles specific for protein modifications or mechanisms of DNA repair. The identification of gene products either distinctive to cancers, or those playing a role related to their development, will help define the sequence of molecular events that eventually lead to cancer. It is clear that a profound impact will be made directly on disease related research ranging from the ability to enhance early detection and diagnosis of disease to the identification of biologically relevant targets for drug development and screening.

Mass spectrometry employing matrix-assisted (MS) laser desorption/ionization (MALDI) [3,4] and electrospray ionization (ESI) [5] has evolved to become an essential tool in the bioanalytical laboratory for the identification and sequencing of protein [6]. The vast number and broad dynamic range of the proteins present in the expressed proteome of a typical organism requires that several fractionation and/or separation steps be performed on the sample prior to MS analysis. Twodimensional polyacrylamide gel electrophoresis (2-D PAGE) has seemingly remained the method of choice for separating thousands of proteins in a single run [7-10] while simultaneously offering a "differential display" analysis of protein expression. The two dimensions of a 2-D PAGE separation are isoelectric focusing in a pH gradient and sodium dodecyl sulfate (SDS)-PAGE. Each protein spot provides a rough measure of isoelectric point (pI) and molecular weight of the protein within 5-10%. However, 2-D PAGE is a relatively slow, labor intensive, and cumbersome technology. 2-D PAGE results from different laboratories can be difficult to compare, and sensitivity is limited

by the amount of a protein needed to visualize a spot, typically in the low-nanogram range for silver staining.

Gel protein identification and the study of protein modifications generally involve gel spot excision, proteolytic digestion, peptide extraction/concentration, MS analysis of each protein spot. Unfortunately, many of the most important regulatory proteins, expressed at extremely low levels, are excluded in the combined 2-D PAGE-MS technique unless extensive fractionation of large quantities of protein together with the processing of a large number of narrow-range gels [11]. The disadvantage of these strategies, however, is that they all require much larger amounts of proteins, and therefore may be impractical for studies of small cell populations or tissue samples. Furthermore, the 2-D PAGE-MS approach still struggles in the degree of demonstrated coverage for a given proteome (i.e. for proteins with isoelectric points (pIs), molecular masses, or hydrophobicity at the extremes), sensitivity, and throughput [11,12].

1.2 CAPILLARY SEPARATIONS IN PROTEOMICS

Recognizing the severe constrains of gel-based separation techniques, a considerable effort has been focused on the development of liquid phase-based or non-gel proteome technologies enabling the rapid, broad, and sensitive analysis of complex proteomic samples through the combination of various chromatography methods with MS or tandem MS analysis [13-18]. Not surprisingly, much of this work has centered on the evaluation of capillary chromatography separations for the analysis of peptide mixtures obtained from proteolytic digestion of cell lysates. While direct analysis of peptide mixtures obtained from the digestion of complex cell lysates offers a greater potential for the identification of lower abundance proteins than 2-D PAGE [13,16], this bottom-up (shotgun) approach [13-18] provides very limited molecular information about the intact proteins, particularly for the detection of post-translational modifications (PTMs) [19]. PTMs include co- or post-translation covalent modifications to the protein structure and proteolytic processing of the translated protein. Such modifications may be overlooked in analyses using peptide-based proteome technique, where only a fraction of the total theoretical peptide population of a given protein may be identified [13,14,18].

The top-down method [17,20-23], in which intact proteins rather than peptides are measured, may be advantageous for the detection of PTMs. Furthermore, the top-down approach to protein sequence analysis using tandem MS may allow complete protein characterization far more efficiently than shotgun proteome technology using tryptic peptides. Realization of the potentials of the top-down technique, however, requires the processing and the separation of intact proteins to be brought to the similar level as those routinely achieved in shotgun proteomics for peptides [13-18].

Single Dimension Capillary Separations

The utilization of high-efficiency capillary reversed-phase liquid chromatography (CRPLC) has become increasingly attractive for the analysis of complex peptide mixtures [24]. Smith and co-workers have developed a series of high-efficiency separations based on the combination of various capillary chromatography columns with inner diameters ranging from 15 to 150 μ m [24,25]. Employing commercially available switching valves containing 150 µm channels, narrow bore separation columns operating at 10,000 psi were coupled with larger solid phase extraction columns. The integrated system offers an increase in sample processing capacity roughly 400 fold as to sample solution volume and roughly 10 fold for sample mass loading for both soluble and membrane protein tryptic digests. The ability to identify 1,100-1,500 unique peptides in a 5-hr period while covering a hydrophobicity range approaching 98% of all possible tryptic peptides in the sample was demonstrated using an 11.4 Tesla Fourier transform ion cyclotron (FTICR)-MS [25]. The high resolution and sensitivity, and, of particular utility, high mass accuracy of FTICR together with reproducible CRPLC separation made possible a new concept of "accurate mass-time tags" that could largely eliminate the need for time-consuming tandem MS measurements [26].

Horvath and co-workers [27,28] have employed displacement chromatography to achieve selective enrichment of trace analytes during reversed-phase separations. Based on the retention behavior of peptide components in the elution mode, selective analyte enrichment and high-resolution separation were achieved in a single step by the combination of an organic eluant such as acetonitrile with the displacer in elution-modified displacement chromatography. Accordingly, the sensitive ESI-MS detection of a protein kinase A peptide substrate at low fmol levels, which was added as a trace marker component to a tryptic digest of bovine serum proteins or to a human growth hormone peptide digest, was achieved at a concentration ratio of $1:10^5$ or $1:10^6$.

In addition to the separation of complex peptide mixtures, single dimension separation techniques, including isoelectric focusing gel [29], capillary isoelectric focusing (CIEF) [30,31], capillary zone electrophoresis (CZE) [20], and RPLC [32,33], have been employed for processing protein mixtures prior to MS analysis. One characteristic inherent to capillary electrophoresis is the small sample volume that can be successfully applied to obtain a high-resolution analysis. As a good portion of the important proteins contained in a proteomic sample may be present at low levels, it becomes important to combine sample preparation/concentration in-line with the subsequent electrophoretic separations while avoiding analyte loss or dilution due to manual handling and transfer procedures.

For protein samples in high conductivity media, an on-capillary sample stacking method has been developed by Wei and Yeung [34] without the need for sample desalting. By employing an etched porous joint not only as a molecular sieve, but also as an electrical junction, proteins and peptides may be concentrated in the discreet plug determined by the size of the etched region. After stacking, the narrow sample zone was introduced into the separation portion of the capillary by either hydrodynamic or electrokinetic forces, and CZE was then completed for resolution of the concentrated analytes. Additionally, Janini and co-workers [35] have demonstrated an on column sample enrichment technique utilizing a C_{18} impregnated solid phase extraction disk within the capillary flow path to collect and enrich the sample to be studied.

While CIEF involves the application of a mixture containing protein/peptide analytes and carrier ampholytes in the entire capillary, the column volume still limits sample loading. To increase sample loading and, in turn, the final concentrations of focused analytes, an approach based on the dynamic electrokinetic injection of proteins/peptides from a solution reservoir was demonstrated by Chen et al. [36]. The charged proteins and peptides continuously migrated into the column whereupon they encountered the pH gradient established by preexisting carrier ampholytes for focusing and separation. The dynamic introduction and focusing was directly controlled by various electrokinetic conditions, including applied electric field strength and the injection time. An increase in the loading capacity of yeast peptide was determined to range from 8 to 45-fold of that obtained in conventional CIEF, and an overall concentration factor of 1400-7700 was achieved in comparison with the concentrations of dilute yeast peptides originally present in the sample.

Still, the use of only a single separation dimension may not provide sufficient peak capacity for the resolution of complex protein and peptide mixtures, putting significant constraints on the detection sensitivity and dynamic range of the MS. It should be emphasized that the peak capacity of 2-D separation is the product of the peak capacities of the individual one-dimensional methods [37]. Thus, various non-gel-based 2-D separation schemes have been developed recently in an effort to alleviate the shortcomings in 2-D PAGE while reserving the ability to resolve complex peptide/protein mixtures prior to MS analysis.

Multidimensional Capillary Separations

Capillary liquid chromatography-capillary liquid chromatography. Yates and co-workers have demonstrated a shotgun proteomics approach named multidimensional protein identification technology which [14,15], combines multidimensional liquid chromatography with ESI-tandem MS. The combination of strong cation exchange chromatography with high-efficiency nano-RPLC was employed by Shen and co-workers to obtain ultra-high-resolution of peptide mixtures in conjunction with tandem MS for characterization of the human plasma proteome [38]. The use of multidimensional chromatography separations has resulted in better utilization of the MS dynamic range and reduced discrimination among peptides during ionization, thus achieving a dynamic range of greater than 8 orders of magnitude in relative protein abundance. By using a total of 365 µg of human plasma, 800-1682 human proteins were identified, dependent on criteria used for the identification.

The selective detection of phosphopeptides from proteolytic digests is a challenging and highly relevant task in many proteomics applications. Phosphopeptides are generally present in small amounts with the need for selective isolation or enrichment before identification. Selective enrichment of phosphopeptides can be achieved using immobilized metal affinity chromatography (IMAC), followed by base elution [39]. Unfortunately, this method often results in the isolation of many nonphosphorylated peptides via nonspecific interactions. The selectivity of the IMAC toward phosphopeptides was significantly enhanced by converting all peptides to their corresponding methyl esters, drastically eliminating confounding binding via carboxylate groups [40]. Furthermore, Pinkse and co-workers [41] reported an automated method for

the enrichment of phosphopeptides from protein digests employing a 2-D column setup, with titanium oxide-based solid-phase as the first dimension and reversed-phase as the second dimension. Proteolytic digests of three different autophosphorylation forms of the 153 kDa homodimeric cGMP-dependent protein kinase were analyzed, and eight phosphorylation sites were identified, including two previously uncharacterized sites, namely, Ser-26 and Ser-44.

In addition to performing protein isoelectric focusing in a preparativescale Rotofor [42-44], Yan et al. [45] have employed an anion exchange column to achieve protein fractionation in a chromatofocusing mode using a pH-gradient in the mobile phase. The collected fractions eluted from a pH gradient of 4-7 were injected into a nonporous reversed-phase column as the second separation dimension for further analysis. The proteins eluted from the reversed-phase column were identified using both on-line ESI-MS and off-line faction collection followed by proteolytic digestion prior to MALDI-MS. Recently, Meng et al. have demonstrated combination of preparative-scale acid-labile surfactant-PAGE with RPLC for protein fractionation [22,23]. Proteins eluted from RPLC were subjected to protein sequence analysis using tandem MS to facilitate the detection of incorrectly predicted translational start sites and proteolytic processing of proteins such as removal of signal peptides or activation of pro-proteins to create functional proteins. These approaches currently require the use of FTICR-MS/MS for obtaining protein-sequencing measurements [20-23] and are also limited by the relative scarcity of bioinformatic tools to efficiently analyze this type of data, although these are under development [21].

Capillary liquid chromatography-capillary electrophoresis. On-line coupling of size-exclusion chromatography with CZE was achieved by Stroink et al. via a reversed-phase trap column [46,47]. The size-resolved fraction retained in the trap column was then eluted into CZE for further analysis. A 2-D RPLC-CZE technique was developed by Issaq and co-workers [48,49] and employed towards the rapid and broad mapping of complex samples, including tryptic digests of cell extracts. Fractions from a micro-RPLC separation were collected every 30 s by an automated fraction collector into a 96-well microtiter plate. After concentration by drying under vacuum, the fractions were reconstituted with deionized water, and each was analyzed simultaneously in the second dimension by a 96-array CZE system based on charge-to-size ratio, and detected by UV absorption or laser-induced fluorescence.

Instead of using UV or fluorescence detection, Janini et al. [50] have combined RPLC-CZE separations with ESI-tandem MS towards the identification of peptides in complex mixtures. A serum sample was depleted of high-abundance proteins, digested with trypsin, and then separated by RPLC and collected into 96 fractions. These fractions, collected off-line from the RPLC separation, were subjected to sequential CZE separations through a sheathless ESI interface that was integrated on the separation capillary. A key feature of this work is the employment of RPLC in lieu of ion exchange fractionation, where there is a large degree of overlap. The CZE-MS results demonstrated less than 15% overlap between neighboring RPLC fractions, leading to a more sensitive proteome analysis.

Capillary electrophoresis-liquid chromatography. On-line combination of CIEF with CRPLC has been developed by Chen et al. [51,52]. In addition to analyte

focusing and concentration, CIEF as the first separation dimension resolves peptides on the basis of their differences in pI and offers greater resolving power than that achieved in strong cation exchange of a multidimensional liquid chromatography system [14,15]. The grouping of two highly resolving and completely orthogonal separation techniques of CIEF and CRPLC, together with analyte focusing and concentration, significantly enhances the dynamic range and sensitivity of MS toward the identification of lower abundance proteins.

Capillary electrophoresis-capillary electrophoresis. By using a dialysis interface, Yang et al. [53,54] have constructed a 2-D capillary electrophoresis system consisting of CIEF coupled with either CZE or capillary gel electrophoresis (CGE) for the analysis of model proteins. Mohan and co-workers [55,56] have developed an integrated multidimensional electrokinetic-based separation/concentration platform employing a microdialysis junction as the interface for on-line combination of CIEF with transient capillary isotachophoresis (CITP)/CZE coupled with ESI-FTICR-MS for achieving the high resolution and sensitive analysis of complex proteome mixtures. In addition to the high-resolving power afforded by both the CIEF and CZE separations, the electrokinetic focusing/stacking effects of CIEF and CITP greatly enhance the dynamic range and detection sensitivity of MS for protein identification. This multidimensional electrokinetic-based platform offers overall peak capacity comparable to those obtained using multidimensional liquid chromatography system, but with a much shorter run time and no need for column regeneration. Most importantly, a total of 1,174 unique proteins, corresponding to 26.5% proteome coverage, were identified from the cytosolic fraction of S. oneidensis, while requiring <500 ng of proteolytic digest loaded in the CIEF capillary.

The sensitive capabilities of the multidimensional electrokinetic-based approach are attributed to the concentration effect in CIEF, the electrokinetic stacking of CITP, the nanoscale peak volume in CZE, the "accurate mass tag" strategy for protein/peptide identification, and the high-sensitivity, high-resolution, and high-mass measurement accuracy of FTICR-MS.

Sheng and Pawliszyn [57] demonstrated a 2-D electrokinetic separation system by coupling micellar electrokinetic chromatography (MEKC) in the first dimension with CIEF in the second dimension. To afford the combination of these orthogonal separation mechanisms, a 10-port valve with two conditioning loops was employed to collect the fractions eluting from the first dimension, provide the dialysis desalting of each surfactant rich fraction, and also act as the direct interface between MEKC and CIEF. Within the dialysis loop, salt and other unwanted first dimension effluent components were eliminated and carrier ampholytes were added prior to the second dimension separation. Peak broadening during the dialysis did not have significant impact on the second dimension separation due to the inherent concentrating effect in CIEF.

Michaels and co-workers [58] detailed a 2-D electrokinetic separation system by combining submicellar capillary electrophoresis in the first dimension with CZE in the second dimension for high sensitivity protein analysis. Protein fractions from the first dimension separation were transferred to a second dimension capillary through an injection interface, where CZE was performed and followed by laser-induced fluorescence detection. Hu et al. [59] further combined capillary sieving electrophoresis on the basis of a SDS-pullulan buffer system with MEKC for the study of protein expression in single mammalian cells. After a 6-min-long size-based separation, over 100 transfers of fractions from the first capillary were introduced into a second capillary for further separation by MEKC over an approximately 3.5-hr-long period. The ability to achieve sensitive protein profiling was demonstrated through the generation of protein fingerprints from single native MC3T3-E1 osteoprogenitor cells and MC3T3-E1 cells transfected with the human transcription regulator TWIST.

Multidimensional proteome separations using microfluidics. Thermal time constants in microfluidics tend to be extremely small due to the large surface area to volume ratio, reducing the onset of significant Joule heating during electrokinetic separations and thus allowing higher separation voltages for shorter analysis times and equivalent or better separation resolution than capillary-based techniques toward complex mixtures. In addition to reduced size and power requirements leading to improved portability, microfluidic systems also hold great promise for realizing multidimensional separations in a single integrated system. To this end, several research groups have explored the application of microfluidics to perform multidimensional peptide and protein separations.

Ramsey and co-workers have demonstrated 2-D separation of peptide mixtures in a microfluidic device using MEKC and CZE as the first and second dimensions, respectively [60,61]. Gottschlich et al. have also fabricated a spiral shaped glass channel coated with a C₁₈ stationary phase for performing RPLC separation of trypsin-digested peptides [62]. By employing a cross interface, the eluted peptides from MEKC [60,61] or RPLC [62] were sampled by a rapid CZE separation in a short glass microchannel. Additionally, Herr and co-workers have coupled CIEF with CZE for 2-D separations of model proteins using plastic microfluidics [63]. Instead of using a cross interface [60-63], Wang et al. have combined CIEF with CZE or CGE using microfluidic valves [64].

In each of these examples, the multiple separation dimensions are performed serially, without the ability to simultaneously sample all proteins or peptides separated in the first dimension for parallel analysis in the second dimension. As an early step toward this goal, a microfabricated quartz device has been proposed by Becker and co-workers with a single channel for the first dimension and an array of 500 parallel channels with submicron dimensions as the second dimension positioned orthogonally to the first dimension channel [65]. In a further step, Chen et al. described a 2-D capillary electrophoresis system based on a 6-layer poly (dimethylsiloxane) (PDMS) microfluidic system [66]. The system consisted of a 25 mm-long microchannel for performing CIEF, with an intersecting array of parallel 60 mm-long microchannels for achieving CGE. This 6-layer PDMS microfluidic device, however, required the alignment, bonding, removal, re-alignment, and re-bonding of various combinations of the six layers to perform a full 2-D protein separation.

An integrated protein concentration/separation system, combining CIEF with CGE on a single-layer 2-D microfluidic network, has been reported by Li and coworkers [67]. The ability to introduce and isolate multiple separation media in plastic microfluidic network was one of two key requirements for achieving multidimensional protein separations. The second requirement resided in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from CIEF, focused proteins were electrokinetically transferred into an array of orthogonal microchannels and further resolved by CGE in a parallel and high throughput format. Resolved proteins were monitored using non-covalent, environment-sensitive, fluorescent probes such as SYPRO Red. A 2-D protein separation was completed in less than 10 min with an overall peak capacity of around 1,700 using a chip with planar dimensions of as small as 2 cm x 3 cm.

1.3 PROJECT DESCRIPTION

The sequencing of several organisms' genomes, including the human's one, has opened the way for the so-called postgenomic era, which is now routinely coined as "proteomics". The most basic task in proteomics remains the detection and identification of proteins from a biological sample, and the most traditional way to achieve this goal consists of protein separations performed by 2-D PAGE. Still, the 2-D PAGE-MS approach remains lacking in proteome coverage (for proteins having extreme pIs or molecular masses as well as for membrane proteins), dynamic range, sensitivity, and throughput. Consequently, considerable efforts have been devoted to the development of non-gel-based proteome separation technologies in an effort to alleviate the shortcomings in 2-D PAGE while reserving the ability to resolve complex protein and peptide mixtures prior to MS analysis.

It should be emphasized that the extremely high resolution of 2-D PAGE for protein separation is mostly contributed by isoelectric focusing in the first separation dimension. By transferring isoelectric focusing separation from gel to capillary format, it has been demonstrated that the focusing effect of CIEF not only contributes to high resolution protein/peptide separation [68,69], but also provides significant enhancement in analyte concentration. It should be noted that the entire CIEF capillary is initially filled with a solution containing proteins/peptides and carrier ampholytes for the creation of a pH gradient inside the capillary. Upon completion of analyte focusing, the selfsharpening effect greatly restricts analyte diffusion and contributes to analyte stacking in narrow focused bands. This project therefore aims to further develop and optimize on-line combination of CIEF with nano-RPLC in an integrated platform for performing multidimensional separations of complex peptide and protein mixtures toward comprehensive and sensitive proteome studies. Chapter 2 demonstrates the ability to perform sensitive proteome analysis on the limited protein quantities available through tissue microdissection. CIEF combined with nano-RPLC in an automated and integrated platform not only provides systematic resolution of complex peptide mixtures based on their differences in pI and hydrophobicity, but also eliminates peptide loss and analyte dilution. In comparison with strong cation exchange chromatography [13-18], the significant advantages of electrokinetic focusing-based separations include high resolving power, high concentration and narrow analyte bands, and effective usage of ESI-tandem MS toward peptide identifications.

Through the use of CIEF-based multidimensional peptide separations, a total of 6,866 fully tryptic peptides were detected, leading to the identification of 1,820 distinct proteins. These high mass accuracy and high confidence identifications were generated from 3 proteome runs of a single glioblastoma multiforme tissue sample, each run consuming only 10 μ g of total protein, an amount corresponding to 20,000 selectively isolated cells. Instead of performing multiple runs of multidimensional separations, the overall peak capacity can be greatly enhanced for mining deeper into tissue proteomics by increasing the number of CIEF fractions without an accompanying increase in sample consumption.

Building upon the experience in the development of CIEF-based multidimensional peptide separation platform, research efforts are later directed toward

17

the application of combined CIEF with nano-RPLC for concentrating and resolving intact proteins from complex cell lysates. To improve the peak capacity of nano-RPLC for the resolution of protein mixtures within individual CIEF fractions, effects of various chromatography conditions, including alkyl chain length in the stationary phase, capillary column temperature, and ion-pairing agent, on the resolution of intact proteins are studied and reported in Chapter 3. Optimal chromatography conditions include the use of C_{18} column heated at 60 0 C and the addition of trifluoroacetic acid instead of heptafluorobutyric acid as the ion-paring agent in the mobile phase. Under optimized chromatography conditions, there are no significant differences in the separation performance of yeast cell lysates present in the native versus denatured states.

An integrated protein concentration/separation platform, combining CIEF with nano-RPLC, is developed and presented in Chapter 4 to provide significant protein concentration and high resolving power for the analysis of complex protein mixtures. Upon completion of protein focusing, the proteins are sequentially and hydrodynamically loaded into individual trap columns using a group of microinjection and microselection valves. Repeated protein loadings and injections into trap columns are carried out automatically until the entire CIEF capillary content is sampled and fractionated. Each CIEF fraction "parked" in separate trap columns is further resolved using nano-RPLC, and the eluants are analyzed using ESI MS.

By taking only 9 CIEF fractions, an overall system capacity of 4,320-7,200 is achieved in this study for the analysis of intact proteins obtained from the soluble fraction of yeast cell lysates. Further enhancement to the overall system capacity can be realized by increasing the number of CIEF fractions and slowing the solvent gradient in nano-RPLC at the expense of analysis time. The CIEF-based multidimensional concentration/separation platform enables the measurement of 534 distinct yeast protein masses over a mass range of 5-70 kDa, yet requires a protein loading of only 9.6 µg. This protein loading is two to three orders of magnitude less than those used in current 2-D PAGE and top-down proteome techniques [22,23,42-45], illustrating the potential usage of this proteome technology for the analysis of protein profiles within small cell populations or limited tissue samples.

1.4 ACKNOWLEDGEMENT

We thank the National Cancer Institute (CA107988 and CA103086) for supporting portions of our research reviewed in this article.

CHAPTER 2

PROTEOME ANALYSIS OF MICRODISSECTED TUMOR TISSUE USING A CAPILLARY ISOELECTRIC FOCUSING-BASED MULTIDIMENSIONAL SEPARATION PLATFORM COUPLED WITH ESI-TANDEM MS

Yueju Wang, Paul A. Rudnick, Erin L. Evans, Jie Li, Zhengping Zhuang, Don L.DeVoe, Cheng S. Lee, and Brian M. BalgleySubmitted to Analytical Chemistry for Consideration of Publication

2.1 INTRODUCTION

Biological systems are typically multi-tiered and exhibit complex interdependent interactions. Thus, it is widely accepted that instead of the classic single gene or single marker approach, molecular profiling has supplanted the single gene approach enabling the simultaneous expression monitoring of many genes or proteins. Tissue specific genomics or proteomics data can only be generated if the samples investigated consist of homogenous cell populations, in which no unwanted cells of different types and/or developmental stages obscure the results. One of the main problems with the analysis of tissue samples, either at the level of genes or proteins, is the heterogeneous nature of the sample; many different cell types are typically present in tissue biopsies, and in the case of diseased tissue, small numbers of abnormal cells may lie within or adjacent to unaffected areas. Infrared laser capture microdissection (LCM) technology [70,71] provides a straightforward method for procuring homogeneous subpopulations of cells or tumor structures for biochemical and molecular biological analyses [72]. LCM is the technique of choice for selectively isolating diseased cells from normal cells within a tissue specimen, followed by microgenomic analysis using oligonucleotide and cDNA arrays [73-75]. Through subsequent application of recently developed approaches of mRNA amplification in a pool of isolated total RNA, it is now possible to perform complex highthroughput mRNA expression profiling by microdissecting and processing even singlecell samples [76-78]. All of these molecular profiling tools may be applied to generate specific genetic fingerprints for defined and individual lesions and for certain stages of a disease, as well as for characterizing transitional and developmental changes.

Proteomics studies offer a powerful complementary approach to nucleic acid-based investigation. In the absence of protein amplification techniques, proteomic analysis of tissue specimens procured by LCM and other microdissection techniques [79-82] is severely constrained by limiting sample amounts ranging from 10^3 - 10^5 cells, corresponding to a total protein content of 0.1-10 µg [71]. Cells isolated and captured by LCM have been directly analyzed using MALDI-MS [83-85]. The *m/z* signals or peaks obtained from MALDI-MS are correlated with protein distribution within a specific region of the tissue sample and can be used to construct ion density maps or specific molecular images for virtually every signal detected in the analysis. Additionally, Surface-enhanced laser desorption/ionization-mass spectrometry (SELDI-MS) has been reported as a relatively simple and rapid protein biomarker analysis tool with potential clinical utility [86-89]. Although SELDI-MS spectral peaks do not provide protein

identifications, the resulting fingerprint patterns have been explored for diagnostic applications including the early detection of several types of cancers. However, reproducibility of sample preparation and mass spectra among different laboratories has been problematic for both methodological and biological reasons, and little physical meaning can be attributed to the spectral peaks in the absence of identification [89].

Current proteome separation platforms, including 2-D PAGE and shotgunbased multidimensional liquid chromatography separations [13-18], however, require large cellular samples which are generally incompatible with the protein quantities obtained from LCM samples. While limited 2-D PAGE analyses of LCM-derived tissue samples have been attempted [90-93], these studies involve significant manual effort and time (from 3 hr to 4 days, depending on tissue type) to extract sufficient amounts of protein for obtaining good visual quality of gel patterns, while providing little proteome information beyond a relatively small number of high abundance protein identifications. In addition, the 2-D PAGE-MS approach suffers from low throughput and poor reproducibility, and remains lacking in proteome coverage, dynamic range, and sensitivity [11].

Peak capacity improvements in multidimensional liquid chromatography separations [13-18] have increased the number of detected peptides and proteins identified as a result of better use of the MS dynamic range and reduced discrimination during ionization. However, the minimal quantity of available sample from LCM captured cells has restricted analysis to the use of only a single chromatography separation prior to tandem MS analysis in recent studies [94,95] and limited the ability for mining deeper into the tissue proteome. Since the sizes of human tissue biopsies are becoming significantly smaller due to early detection and diagnosis, a more effective discovery-based proteome technology is critically needed to enable sensitive studies of protein profiles within tissue specimens procured by LCM and other microdissection techniques [79-82].

As demonstrated in our previous studies [52,56], the key to establishing sensitive proteome analysis is attributed to high analyte concentrations in small peak volumes as the result of electrokinetic focusing/stacking and high resolving, multidimensional separation techniques in an integrated platform, thereby enhancing the dynamic range and detection sensitivity of MS. Our research efforts in this work further characterize and optimize the on-line combination of CIEF with nano-RPLC. Comparisons of peptide separations using CIEF versus strong cation exchange chromatography as the first separation dimension in multidimensional protein identification technology [13-18] are studied for their impacts on subsequent ESI-MSbased peptide identification. The capabilities of CIEF-based multidimensional separations for the analysis of protein profiles within small cell populations are demonstrated using a microdissected glioblastoma multiforme tissue sample.

2.2 EXPERIMENTAL SECTION

Materials and Reagents

Fused-silica capillaries (100 μm i.d./365 μm o.d. and 50 μm i.d./365 μm o.d.) were acquired from Polymicro Technologies (Phoenix, AZ). Acetic acid, ammonium hydroxide, high resolution ampholyte 3-10, dithiothreitol (DTT), and iodoacetamide (IAM) were obtained from Sigma (St. Louis, MO). Acetonitrile, hydroxypropyl cellulose (average MW 100,000), tris(hydroxymethyl)aminomethane (Tris), and urea were purchased from Fisher Scientific (Pittsburgh, PA). Heptafluorobutyric acid (HFBA) was acquired from Pierce (Rockford, IL). All solutions were prepared using water purified by a Nanopure II system (Dubuque, IA) and further filtered with a 0.22 μm membrane (Costar, Cambridge, MA).

Tissue Microdissection and Protein Digestion

Tumor tissues of glioblastoma multiforme were collected at the time of surgery. The tissue was completely covered with optimal cutting temperature medium, immediately frozen in liquid nitrogen, and stored at -80 $^{\circ}$ C until analyzed. Selective tissue microdissection was performed as previously described [82]. Briefly, a single 10µm-thick section was taken and stained with hematoxylin and eosin for histological evaluation. A semi-quantitative cell count was performed on tumor-rich (> 90% tumor cells) areas that were not compromised by inflammation, necrosis, or stromal or endothelial proliferation.

Subsequently, these areas were subjected to selective tumor dissection from serial sections. A fine needle rigidly attached to a 3-axis micromanipulator was used to mechanically mill tissue around the periphery of the selected regions. The depth of cut was progressively increased by changing the z-axis on the manipulator while navigating along the desired path, until the region was fully separated from the bulk tissue. The needle could then be used to remove the small section from the cover slip for placement in a sample vial. This simple approach is analogous to traditional manual tissue dissection, but with a miniature cutting tool replacing the dissection scalpel, and a micropositioner suitable for automation used for cutting depth and path control. The primary goal was to selectively enrich 100,000 tumor cells from each tissue sample in less than 30 min, using 5-10 consecutive sections. These serial sections were not stained and tissue microdissection was performed under strict morphologic control. Procurement of normal brain or areas of inflammation, necrosis, hemorrhage, or stromal or vascular proliferation was strictly avoided.

The microdissected cells were placed directly into a microcentrifuge tube containing 20 mM Tris at pH 8.0. The cellular proteins were collected in the supernatant by centrifugation at 20,000g for 20 min. Proteins in the supernatant were denatured and reduced in solution containing 8 M urea and 10 mg/mL DTT. IAM was added to 20 mg/mL and the solution was incubated at 37 °C for 1 hr in the dark. The solution was then diluted 4-fold with 100 mM ammonium acetate at pH 8.0. Trypsin was added at a 1:50 enzyme to substrate ratio and the solution was incubated at 37 °C overnight. Tryptic digests were desalted using a Peptide MacroTrap column (Michrom Bioresources, Auburn, CA), lyophilized to dryness using a SpeedVac (Thermo, San Jose, CA), and then stored at -37 °C.

Integrated CIEF/Nano-RPLC Multidimensional Peptide Concentration/Separation

An on-line combination of CIEF with nano-RPLC has been developed and described in detail in previous work [52] and was employed for systematically resolving peptide digests based on their differences in pI and hydrophobicity. To perform multidimensional peptide separations, a 80-cm CIEF capillary (100 μ m i.d./365 μ m o.d.) was coated with hydroxypropyl cellulose for the elimination of electroosmotic flow and protein adsorption onto the capillary wall [96]. The capillary was initially filled with a solution containing 2% ampholyte 3-10 and 1.67 mg/mL tryptic peptides.

Solutions of 0.5% ammonium hydroxide at pH 10.5 and 0.1 M acetic acid at pH 2.5 were employed as the catholyte and the anolyte, respectively. Focusing was performed at an electric field strength of 300 V/cm over the entire CIEF capillary. The current decreased continuously as the result of peptide focusing. Once the current reduced to ~10% of the original value, usually within 30 min, the focusing was considered to be complete. The focused peptides were sequentially and hydrodynamically fractionated into either 14 or 28 unique fractions. Nano-RPLC of each CIEF fraction was performed using an Ultimate pump (Dionex, Sunnyvale, CA) connected to a 15-cm pulled-tip fused silica capillary (50 μ m i.d./365 μ m o.d.) packed with 5- μ m porous C₁₈ reversed-phase particles. Peptides were eluted using a 60-min linear gradient from 5 to 45% acetonitrile containing 0.02% HFBA and 0.02% formic acid at a flow rate of 200 nL/min. The eluants were monitored using a qTOF micro (Waters, Milford, MA) mass spectrometer and mass spectra were acquired from 500-1900 m/z for 1 sec, followed by 3 data dependent MS/MS scans from 50-1900 m/z for 3 sec each.

Peptide Data Analysis

The resulting MS data files were analyzed by ProteinLynx Global Server 2.0 (Waters) to de-isotope and lock-mass correct the raw data into peak list file suitable for database searching. Peptide and protein identifications were made using MASCOT 2.0 (Matrix Science, London, UK). Protein identifications are based on peptide identifications in the human International Protein Index (2.28) distributed and maintained by the European Bioinformatics Institute (http://www.ebi.ac.uk/IPI/IPIhuman.html). MASCOT searches were carried out at a precursor mass tolerance of 60 ppm, a 0.2 Da fragment mass tolerance; enzyme was trypsin (full); allowing 1 missed cleavage; carbamidomethyl as a fixed modification; and oxidized methionine, Y, S and T phosphorylations, and N-term and K acetylations as a variable modifications.

Because MASCOT does not consider mass accuracy when assigning significance scores, an empirical threshold in place of the MASCOT Identity Threshold was calculated using a reversed database search [97]. This threshold was calculated by searching the same data files with the same search parameters against a reversed human International Protein Index database. Hits to the reversed database, with the exception of those peptides occurring in the forward search or to peptides containing residues with mass differences beyond the resolution limits of the instrument (Q->K, I->L), were considered false positive. A threshold score corresponding to a user defined false positive rate can then be extrapolated from a simple linear regression of and exponential plot of MASCOT ions score versus the false positive rate. Runs containing >1,000 spectra typically produce a linear regression with an R^2 value of >0.98. In this study, the false positive rate was kept to less than 5%. Mass accuracy based thresholds (MATH) have been shown to accurately reduce false negative identifications, while controllably limiting false positive identifications, and improve the predictive power of a typical MASCOT search using qTOF data sets [97]. MASCOT results were parsed using MP.pm (Calibrant Biosystems, Rockville, MD) and stored for reporting and data visualization in proteome BiNDR databases accessible by web-interface (Calibrant Biosystems).

2.3 **RESULTS AND DISCUSSION**

Gliomas are the most common primary tumors of the brain, with an incidence in the United States of nearly 20,000-25,000 new cases per year. Half of all gliomas, including the anaplastic astrocytomas and glioblastoma multiforme, exhibit aggressive behavior. In this study, a single 10- μ m-thick tissue section was taken from a glioblastoma multiforme sample and stained with hematoxylin and eosin for histological evaluation (Fig. 2-1). A semiquantitative cell count was performed on tumor-rich areas (> 90% tumor cells) that were not compromised by inflammation, necrosis, or stromal or endothelial proliferation. Subsequently, these areas were subjected to careful tumor microdissection [82]. Selective enrichment of approximately 100,000 tumor cells was obtained from the microdisection of 5 -10 consecutive sections in each tissue sample.

Figure 2-1 Optical microscope photograph of stained glioblastoma multiforme tissue section
These microdissected cells contained roughly 50 µg protein for analysis. A 80-cm long capillary with a 100 µm i.d. employed in this study offered a peptide loading of 10 µg for each proteome analysis using a 1.67 mg/mL peptide digest solution prepared from the microdissection-procured tissue sample. As shown in Fig. 2-2, the CIEF separation performance of tryptic peptides obtained from the protein extract of glioblastoma multiforme was evaluated by hydrodynamically mobilizing focused proteins passing a UV detector placed near the cathodic end of the capillary. Initially, the entire content of the CIEF capillary was split into 14 individual fractions. All CIEF fractions were further resolved by nano-RPLC and the eluants were measured using ESI-tandem MS. Displayed in Fig. 2-3 are the base peak chromatograms of a representative CIEF/nano-RPLC analysis of tryptic peptides obtained from the microdissection of a glioblastoma multiforme sample.

The percentage of identified peptides present in more than one CIEF fraction was only around 10-15%, significantly less than 40-80% obtained from the multidimensional LC system using strong cation exchange coupled with reversed-phase separations [14]. A high degree of peptide overlapping in the first dimension unnecessarily burdens the subsequent separation and greatly reduces the overall peak capacity in a multidimensional separation system. The presence of high abundance peptides in multiple fractions negatively impacts the selection of low abundance peptides for tandem MS identification. Additionally, the poor resolution of low abundance peptides adversely affects their final concentrations in the eluting peaks prior to the ESI-MS analysis.

Figure 2-2 CIEF-UV analysis of tryptic peptides obtained from microdissection-procured glioblastoma multiforme tissue sample. Capillary: hydroxypropyl cellulose coating, 80 cm x 100 µm i.d. x 365 µm o.d.; anolyte: 0.1 M acetic acid at pH 2.5; catholyte: 0.5% w/w ammonium hydroxide at pH 10.5; electric field strength: 300 V/cm; hydrodynamic mobilization; detection: UV absorbance at 280 nm, 7 cm from cathodic end.

Figure 2-3Base peak chromatograms of a representative CIEF/nano-RPLC
multidimensional separation of 10 µg peptide digest prepared from
microdissection-procured glioblastoma multiforme tissue sample. Each
number represents the sequence of CIEF fractions further analyzed by
nano-RPLC from basic to acid pHs.

The high resolution nature of pI-based separations, including CIEF [52,69], was further supported by Stephenson and co-workers [98,99] who employed immobilized pH gradient gels in the first dimension, followed by RPLC and subsequent tandem MS analysis. The pI values of peptides identified in each CIEF fraction were calculated using the "iep" program developed by the European Molecular Biology Open Source Software Suite (EMBOSS) group. As shown in Fig. 2-4, the CIEF separation was able to cover a wide pH range of 3.1-10.8 using a 2% ampholyte 3-10 solution. In comparison with immobilized pH gradient gels [98,99], the significant advantages of CIEF include the ability to use higher electric fields resulting in rapid and ultrahigh resolution separations, improved reproducibility in pI fractions resulting from the use of gel free separation medium, and the amenability to automation and seamless coupling with nano-RPLC in an integrated platform while avoiding potential sample loss, analyte dilution, and any post-gel peptide extraction/concentration procedures.

Figure 2-4 Distribution of peptide's pI and solution charge state in each CIEF fraction.

In addition to the significant peptide fraction overlap resulting from strong cation exchange chromatography, peptides are separated in a mixed-mode based on their ionic charge and hydrophobicity [18]. The majority of doubly charged peptides are eluted over approximately 25% of the entire salt gradient [18]. Typically 70-90% of peptide identifications in shotgun proteomics are made through tandem MS fragmentation of doubly charged ions [14,18]. Therefore, fractions containing the majority of peptide identifications tend to be clustered at the early part of the salt elution gradient, corresponding to the presence of doubly charged peptides [18,99]. In contrast, CIEF provides an even distribution of doubly charged peptides over the entire pH gradient (Fig. 2-4), thereby maximizing the informative potential of MS measurements.

Due to the limited protein quantities extracted from microdissectionprocured tissue specimens, a single RPLC separation was performed in recent studies [94,95] for the analysis of selected cell populations. However, the use of only a single separation dimension may not provide sufficient peak capacity for the resolution of complex peptide mixtures, putting significant burdens on the detection sensitivity and dynamic range of the MS. By employing CIEF-based multidimensional separations, a total of 6,866 fully tryptic peptides were detected, leading to the identification of 1,820 distinct proteins (see APPENDIX). These identifications were generated from 3 runs of a single glioblastoma multiforme tissue sample, with each run consuming only 10 µg of total protein and were based on high mass accuracy (60 ppm) and high confidence (5% false positive) hits to fully tryptic peptides.

This ultrasensitive capability of CIEF-based multidimensional separations may enable the use of proteome analysis for the assessment of specimen quality and reproducibility procured from the same tissue, and in turn, allow the evaluation and optimization of microdissection technologies [70,71,79-82] and tissue sample preparation. In addition to tracking the cumulative totals of protein identifications, the percentage of overlapping proteins was approximately 70% across any two runs (Fig. 2-5). A total of 700 proteins, corresponding to 38.5% of collective data set, were found in all three runs. For each additional run, the percentage increase in cumulative protein identifications was approximately 25-35% and decreased with increasing numbers of analysis runs. This percentage increase in cumulative protein identifications was higher than 10-15% obtained from the analysis of yeast cell lysates using multidimensional liquid chromatography separations [100], likely as a result of the complexity of the human tissue proteome.

Figure 2-5The overlap in the proteins identified from three CIEF-nano-RPLC-ESIMS/MS runs using a single glioblastoma multiforme tissue sample.

The intrinsic high resolution of CIEF allows the number of fractions sampled in the first separation dimension to be further increased. The excellent reproducibility together with straightforward fractionation enables user discretion as to which fractions are to be analyzed in the off-line approach, and interesting fractions may be revisited (reanalyzed) or repeatedly accumulated for identification of extremely low abundance peptides. By comparing the results obtained from runs containing 14 and 28 CIEF fractions, the number of distinct proteins identified from a single proteome experiment of 28 CIEF fractions was comparable or slightly higher than the cumulative data set achieved using two runs of 14 CIEF fractions. For the proteome analysis of limited tissue samples, further enhancement in the overall peak capacity for mining deeper into the proteome can therefore be realized by simply increasing the number of CIEF fractions without an accompanying increase in sample consumption. In contrast, Peng and co-workers [18] have significantly increased the number of strong cation exchange chromatography fractions, but obtained comparable numbers of peptide and protein identifications as those reported by Washburn and colleagues [13].

A variety of protein classes, including structural proteins, metabolic enzymes, receptors, and proteins involved in transcription, translation, and posttranslational modification of gene products, were identified from microdissectionprocured glioblastoma multiforme tissue samples. A number of biologically relevant proteins, such as annexin I and nestin, were unambiguously identified. A total of 18 unique peptides (peptides matching on single database entry) (Table 2-1), corresponding to greater than 50% protein sequence coverage, led to the identification of annexin I which is related to tumor aggressiveness and angiogenesis, and found exclusively in tumor vessels [101,102]. On the other hand, nestin, which is linked to neural stem cell differentiation [103,104], was identified by 16 unique peptides (sequence in "italic" in Table 2-1) out of a total of 19 distinct peptide identifications. Examples of tandem MS spectra leading to peptide identifications are shown in Fig. 2-6.

For the identification of peptides eluted from multidimensional separations, tandem MS instruments such as a qTOF mass spectrometer employed in this study acquire peptide MS/MS spectra which encode the peptide sequences. Traditionally, this acquisition has been done in a data-dependent way, whereby the instrument relies on a preliminary scan, performed as the peptides enter the instrument, to select peptides for fragmentation and generation of tandem MS spectra. However, data-dependent scanning

cannot acquire spectra fast enough to identify all the peptides as they enter the MS instrument, so many peptide and subsequent protein identifications are missed. Newly introduced rapid-scanning linear ion-trap instruments can acquire MS/MS spectra up to five times faster than earlier generations of MS instruments. Furthermore, parallel, rather than serial, collision-induced dissociation (CID) of peptides has been demonstrated by several research groups [105-109] for increasing the mass spectrometric duty cycle. Thus, the use of rapid-scanning MS instruments or parallel (or data-independent) CID coupled with CIEF-based multidimensional separations should greatly increase the sequence coverage of identified proteins and total proteome coverage within limited tissue samples or small cell populations.

Figure 2-6 MS/MS spectra of (A) WGPGSSVGSLQALSSSQR and (B)

KGTDVNVFNTILTTR leading to the identification of nestin and annexin

I, respectively.

Table 1

	Exp.	Error	Error	
Peptide Sequence	Mass	(Da)	(ppm)	Score
Nestin				
EESEAEAPR	1016.45	0.0060	5.9	43.00
SLEEDLETLK	1175.61	0.0151	12.9	47.54
AHADDELAALR	1180.59	0.0048	4.1	56.57
SAGQENLETLK	1188.62	0.0189	15.9	39.53
VGLNAQAACAPR	1226.64	0.0183	14.9	47.46
SLETEILESLK	1260.69	0.0114	9.0	62.59
EIQDSQVPLEK	1284.68	0.0208	16.2	51.25
DNLAEELEGVAGR	1371.67	0.0119	8.7	75.51
GEGEGQIWGLVEK	1400.70	0.0088	6.2	90.97
TLENQSHETLER	1455.70	0.0005	0.3	84.51
QGLQSQIAQVLEGR	1525.83	0.0087	5.7	58.40
VAIPASVLPGPEEPGGQR	1772.93	0.0166	9.3	66.26
VAIPASVLPGPEEPGGQR	1772.94	0.0016	0.9	52.76
WGPGSSVGSLQALSSSQR	1802.89	0.0018	1.0	106.42
DLEEAGGLGTEFSELPGK	1847.88	0.0003	0.2	64.77
SLEEEGQELPQSADVQR	1913.87	0.0219	11.5	59.02
SLDQEIARPLENENQEFLK	2272.14	0.0051	2.3	44.52
LGSLLPVLSPTSLPSPLPATLETPVPAFLK	3054.74	0.0233	7.6	27.71
SLEGNLETFLFPGTENQELVSSLQENLESLTALEK	3878.87	0.0655	16.9	57.72
Annexin I				
CLTAIVK	803.46	0.0006	0.7	31.89
VLDLELK	828.49	0.0092	11.1	34.98
NALLSLAK	828.50	0.0099	12.0	44.68
AMVSEFLK	965.48	0.0092	9.6	52.36
DITSDTSGDFR	1212.53	0.0078	6.4	57.74
TPAQFDADELR	1261.61	0.0190	15.1	76.96
CATSKPAFFAEK	1355.67	0.0157	11.6	46.84
GVDEATIIDILTK	1386.77	0.0123	8.9	72.57
GVDEATIIDILTKR	1542.86	0.0008	0.5	67.23
ALTGHLEEVVLALLK	1604.96	0.0112	7.0	90.92
KGTDVNVFNTILTTR	1677.88	0.0297	17.7	129.34
GLGTDEDTLIEILASR	1701.87	0.0088	5.2	129.79
KALTGHLEEVVLALLK	1733.09	0.0452	26.1	79.72
SEDFGVNEDLADSDAR	1738.73	0.0041	2.4	83.35
AAYLQETGKPLDETLK	1775.92	0.0060	3.4	62.79
AAYLQETGKPLDETLKK	1904.04	0.0117	6.1	76.35
MYGISLCQAILDETKGDYEK	2333.08	0.0122	5.2	31.02
GGPGSAVSPYPTFNPSSDVAALHK	2355.16	0.0090	3.8	103.65

List of Peptides Identified for Nestin and Annexin I

2.4 CONCLUSION

To address the issue of cell heterogeneity in the tissue section, LCM [70,71] and other microdissection techniques [79-82] have been developed to provide a rapid and straightforward method for isolating selected subpopulations of cells for downstream molecular analysis, effectively enabling purification of the molecules of interest by eliminating DNA, RNA, or protein interference from the surrounding tissue. However, a more significant problem of microdissection-based tissue sample preparation is the lack of sample availability for mining deeper into the proteome using current 2-D PAGE [90-93] and shotgun technologies [13-18,94,95], greatly impacting the efforts toward the assessment of sample quality and the discovery of tumor biomarkers.

Coupled with the laser-free microdissection technology [82], CIEF-based multidimensional peptide separations were employed to enable the analysis of protein profiles within small cell populations procured from glioblastoma multiforme tissue samples. Compared with strong cation exchange chromatography utilized as the first dimension in multidimensional protein identification technology [13-18], CIEF not only contributed to high resolution peptide separation based on their differences in pI, but also allowed effective usage of MS-based peptide identifications by even distribution of doubly charged peptides over the entire pH gradient. Instead of performing multiple runs of multidimensional separations, comparable or even better proteome results can be achieved by simply increasing the number of CIEF fractions due to the intrinsic high resolution nature of electrokinetic focusing. This unique feature is particularly important for the proteome analysis of limited tissue samples.

The analysis of a single glioblastoma multiforme tissue sample led to the identification of a total of 6,866 fully tryptic peptides, corresponding to 1,820 distinct protein identifications. To greatly enhance the sequence coverage of identified proteins and total proteome coverage within limited tissue samples or small cell populations, our future work will focus on the application of rapid-scanning linear ion-trap instrumentation and/or data-independent CID [105-109] for increasing the mass spectrometric duty cycle. In addition to biomarker discovery, the ability to perform comprehensive and sensitive tissue proteome analysis will also allow the evaluation of sample quality and reproducibility for the validation and optimization of microdissection technologies.

2.5 ACKNOWLEDGEMENT

We thank the National Cancer Institute (CA103086 and CA107988) and the National Center for Research Resources (RR21239) for supporting portions of this research.

CHAPTER 3

EFFECTS OF CHROMATOGRAPHY CONDITIONS ON INTACT PROTEIN SEPARATIONS FOR TOP-DOWN PROTEOMICS

Yueju Wang, Brian M. Balgley, Paul A. Rudnick, and Cheng S. Lee

Journal of Chromatography A, 1073, 35-41 (2005)

3.1 INTRODUCTION

The vast number of proteins present in the proteome of a typical organism requires that separations be performed on the mixture prior to introduction into the mass spectrometer. 2-D PAGE is still the method of choice for separating thousands of proteins in a single run [7-10] while offering a "differential display" of protein expression. However, the identification of gel resolved proteins and the study of protein modifications typically involve the separate excision, proteolytic digestion, peptide extraction/concentration, and MS analysis of each protein spot [110,111]. All of these procedures, even when semi-automated using the commercially available robotic sample and liquid handling systems, are time-consuming tasks prone to significant sample loss and analyte dilution. Thus, the 2-D PAGE-MS approach remains lacking in proteome coverage, dynamic range, sensitivity, and throughput [11,12].

Consequently, considerable efforts have been devoted to the development of non-gel-based and bottom-up (or shotgun) proteome technologies through the combination of various chromatography methods with MS or tandem MS analysis [13-18]. These peptide separation techniques fully exploit the sensitivity achievable with conventional mass spectrometers (roughly 10^{-16} mol as opposed to 10^{-14} mol in conjunction with 2-D PAGE), allowing many additional proteins to be identified. However, the bottom-up approaches provide very limited molecular information about the intact proteins where only a fraction of the total theoretical peptide population of a given protein may be identified.

By comparing with shotgun methodologies, the top-down proteome techniques [20-23], in which intact proteins rather than peptides are measured, are advantageous for the detection of PTMs [19]. PTMs include co- or post-translation covalent modifications to the protein structure and proteolytic processing of the translated protein. Furthermore, the top-down approaches to protein sequence analysis using tandem MS may allow complete protein characterization far more efficiently than shotgun proteome technologies using protein digests. In order to achieve the full potential of topdown approaches, the processing and separation of intact proteins still have to be brought to a similar level as those routinely achieved in shotgun proteomics.

A variety of separation technologies, including gel-based isoelectric focusing [29], CIEF [30,31], CZE [20], and RPLC [32,33], have been utilized for resolving intact proteins prior to MS analysis. The application of only a single separation dimension, however, provides insufficient peak capacity for the resolution of complex protein mixtures. Thus, several recent attempts have involved off-line combinations of preparative scale isoelectric focusing [42-44] or acid-labile surfactant-based polyacrylamide gel electrophoresis [22,23] with RPLC in the development of multidimensional protein separation platforms. The collected protein fractions from either isoelectric focusing or gel electrophoresis were further resolved using RPLC as the second separation dimension prior to MS analysis.

46

It is clear that RPLC plays a major role in both single and multidimensional protein separation platforms in an effort to increase the overall peak capacity for the resolution of complex intact protein mixtures such as cell lysates. Total peak capacity improvements in protein separations contribute to increased number of proteins identified in top-down proteomics due to better use of the MS dynamic range and reduced discrimination during ionization. Thus, the main objective of the present study is to carefully examine the effects of various chromatography conditions, including alkyl chain length in the stationary phase, capillary column temperature, and ion-pairing agent, on the resolution of intact proteins. By using nano-RPLC-ESI MS, we further investigate potential differences in chromatography separation and ESI measurement of yeast intact proteins as the result of the protein denaturation process. Denatured proteins collected in RPLC fractions can be directly subjected to proteolytic digestion for obtaining their corresponding peptides and peptide sequences, particularly toward the MS identification of high molecular mass proteins [42-45].

3.2 EXPERIMENTAL SECTION

Materials and Chemicals

Fused-silica capillaries (50 μm i.d./365 μm o.d.) were acquired from Polymicro Technologies (Phoenix, AZ). Model proteins, including bovine serum albumin (bovine, pI 5.60, 66,433.0 Daltons), cytochrome c (equine, pI 9.59, 12,362.0 Daltons), myoglobin (equine, pI 7.36, 16,951.5 Daltons), and ribonuclease A (bovine, pI 8.64, 13,688.1 Daltons), DTT, and IAM were obtained from Sigma (St. Louis, MO). Acetonitrile, DNase, formic acid, glycerol, magnesium chloride, TFA, Tris, and urea were purchased from Fisher Scientific (Pittsburgh, PA). HFBA was acquired from Pierce (Rockford, IL). All solutions were prepared using water purified by a Nanopure II system (Dubuque, IA) and further filtered with a 0.22 μm membrane (Costar, Cambridge, MA).

Soluble Fraction of Intact Proteins from S. cerevisiae

The yeast cells (Sigma) were suspended in a buffer which consisted of 10 mM Tris (pH 7.0), 5 mM magnesium chloride, 0.1 mM DTT, and 10% glycerol. The cells were disrupted by sonication for the release of cellular proteins. After sonication, DNase was added with a final concentration of 50 μ g/mL for the cleavage and removal of nucleic acids. The cellular proteins were collected in the supernatant by centrifugation at 20,000g for 10 min. The protein solution was then desalted using a regenerated cellulose membrane (Millipore, Bedford, MA) with a 5,000 molecular weight cutoff.

Yeast cytosol proteins were denatured and reduced in a 20 mM Tris buffer containing 8 M urea and 0.1 M DTT for 2 hr at 37 0 C under a nitrogen atmosphere. Proteins were alkylated by adding excess IAM with a final concentration of 50 mM and

the reaction was allowed to proceed for 30 min at room temperature in the dark. A PD-10 size exclusion column (Amersham Pharmacia Biotech, Uppsala, Sweden) was employed for buffer exchange and proteins were eluted in a solution containing 2 M urea and 10 mM Tris at pH 8.0. The total protein concentration was determined using the Bradford method (Bio-Rad, Richmond, CA) and was around 2 mg/mL.

Nano-RPLC-ESI-MS Analysis of Model Proteins and Soluble Fraction of Intact Proteins from *S. cerevisiae*

The tip at the end of a 16-cm-long fused silica capillary (50 μ m i.d. x 365 μ m o.d.) was flame-pulled and packed with 13 cm of 5- μ m C₄- or C₁₈-bonded particles (Phenomenex, Torrance, CA). The C₁₈-bonded particles in methanol were introduced into the capillary by gradually increasing the pressure from 100 to 2,000 psi using an Agilent 1100 capillary LC pump (Avondale, PA). The packed capillary was left under pressure for 10 hr and then depressurized overnight. A microcross (Upchurch Scientific, Oak Harbor, WA) containing a platinum electrode was employed to apply an ESI voltage of 1.8 kV and reduce the flow of Agilent 1100 capillary LC pump from 2 μ L/min to an effective flow rate of 200 nL/min. A 30-min linear gradient from 10% to 65% acetonitrile (containing 0.1% TFA or 0.02% HFBA) was utilized to perform intact model protein separations. The linear gradient was further extended from 30- to 60-min for the analysis of complex yeast cell lysates.

The eluants from nano-RPLC were monitored using a Micromass qTOF micro mass spectrometer (Manchester, United Kingdom). Mass spectra were collected from 600 to 1900 m/z using a scan time of 2.0 s. Automated analysis of the nano-RPLC-

ESI-MS data files were performed using Protein Trawler software (Bioanalyte, Portland, ME) [112,113]. The program summed all data within a specified time interval, utilized Micromass MaxEnt 1 to deconvolute multiply charged ions, centered the results, carried out a threshold selection, and reported the mass, intensity, and retention time of each protein in a text file. The program repeated this process across sequential portions of the chromatogram.

3.3 **RESULTS AND DISCUSSION**

The reduction of column i.d. from few hundred μ m [13] to as small as 15 μ m [24] in capillary liquid chromatography has resulted in higher peptide concentrations within smaller peak volumes, thus enabling more sensitive MS detection. Nano-RPLC equipped with a 50 μ m i.d. capillary column was therefore employed in this study to evaluate the effects of various chromatography conditions on intact protein separations and allow ultrasensitive characterization of model proteins and yeast cell lysates using ESI-MS. Due to the use of ESI-MS detection, the differences in chromatography separation and protein intensity were further revealed among the samples containing the soluble fraction of yeast cell lysates in the native versus denatured/reduced/alkylated states.

Effect of Alkyl Chain Length in the Stationary Phase on Intact Protein Separations

Four model proteins, including bovine serum albumin, cytochrome c, myoglobin, and ribonuclease A, were prepared in 10 mM Tris at pH 7.0 with a final concentration of 0.1 μ M for each model protein. The effect of alkyl chain length in the stationary phase on chromatography separation of model proteins was studied and shown in Figs. 3-1A and 3-1B as the base peak chromatograms acquired from capillary columns packed with 5- μ m C₄- and C₁₈-bonded particles, respectively. All protein peaks were directly identified on the basis of mass spectra of protein analytes taken from the average of scans under the peaks.

Figure 3-1Comparison of model protein separations using (A) C_4 and (B) C_{18} columns.Column temperature: 25 0 C; elution order: 1-ribonuclease A, 2-cytochromec, 3-bovine serum albumin, and 4-myoglobin; mobile phase: a 30-min lineargradient from 10% to 65% acetonitrile (containing 0.1% TFA) at a flow rateof 200 nL/min; sample loading: 100 femtomole for each model protein (1 μ L injection of 0.1 μ M protein solution).

As anticipated [114], the elution time of model proteins increased with increasing alkyl chain length. Furthermore, the reconstructed ion chromatograms were obtained using the most intense m/z ions from each protein envelope and displayed in Figs. 3-2A and 3-2B for the separations carried out by the C₄ and C₁₈ columns, respectively. Both the separation efficiency and resolution of model proteins achieved in the C₁₈ column were considerably better than those obtained from the C₄ column, particularly for early eluted proteins such as ribonuclease A and cytochrome c. Still, potential sample loss due to irreversible protein adsorption onto the C₁₈ stationary phase may outweigh the benefits of better separation performance and may adversely impact the ability to perform comprehensive proteome analysis, particularly toward the identification of low abundance proteins. Thus, both C₄ and C₁₈ reversed phase columns have been utilized by several research groups for the analysis complex protein mixtures such as cell lysates in top-down proteomics [22,23,42-45,112,113].

Effect of Ion-Pairing Agent on Intact Protein Separations

To improve chromatography separations, ion-pairing agents are commonly used to sharpen peak shapes [115]. In contrast to ion pairing agents of alkanesulfonic acids, perfluorinated carboxylic acids up to four carbon atoms are known to be volatile and therefore well suited for ESI-MS detection. The downside to the use of perfluorinated carboxylic acids is their ionization suppression effect. Some of the decrease in MS sensitivity, however, can be regained through increased analyte concentrations in sharpened peaks due to the "concentration sensitive" behavior of nano-ESI-MS [116].

Figure 3-2 Reconstructed ion chromatograms of model protein separations using (A)
C₄ and (B) C₁₈ columns. Each model protein is represented using its most intense m/z ion from the ESI protein envelope: m/z 893.7 for myoglobin, m/z 1332.9 for bovine serum albumin, m/z 825.4 for cytochrome c, and m/z 1245.7 for ribonuclease A.

In shotgun proteomics, Yates and co-workers [13,14] have substituted acetic acid with 0.02% HFBA for the analysis of a trypsin-digested sample of soluble proteins from *S. cerevisiae* using strong cation exchange chromatography coupled with RPLC. By comparing with an acetic acid buffer system, more than three times as many peptides were identified using HFBA in their work. Adding HFBA improved the dynamic range of the analysis and allowed for the acquisition of more low-abundance peptides. By using a C_{18} column, the effect of ion-paring agent on intact protein separations was investigated by adding either 0.1% TFA (Fig. 1B) or 0.02% HFBA (Fig. 3-3) into the mobile phase. In contrast to the conclusion obtained from shotgun proteome studies [13,14], the use of 0.02% HFBA as ion-pairing agent resulted in significant deterioration of separation resolution among model proteins, particularly between bovine serum albumin and myoglobin. Further increase in HFBA concentration contributed to dramatic reduction in protein ion intensities measured by ESI-MS (data not shown).

Effect of Column Temperature on Intact Protein Separations

At high column temperatures, the mobile phase viscosity is reduced, and concomitantly, the diffusivity of the analyte is enhanced. More importantly, the sorption kinetics of the analyte is also accelerated with increasing temperature. Consequently, the column efficiency is expected to be higher at elevated column temperatures [117,118]. Thus, the effect of column temperature on intact protein separation performance was evaluated by raising the column temperature from 25 to 60 $^{\circ}$ C using a column heater. By comparing with the results shown in Fig. 3-1B, the base peak chromatogram displayed in Fig. 3-4 not only demonstrated improved separation resolution and efficiency among

various protein conformers at high column temperature, but also presented strong protein ion intensities as the result of enhanced ESI prior to MS detection. Due to the limitation on MS scan speed, no attempts were pursued in increasing the mobile phase flow rate for further enhancing the column efficiency and achieving high speed chromatography separations.

Figure 3-3 Base peak chromatogram for illustrating the effect of ion-paring agent on nano-RPLC-ESI-MS separation of model proteins. C₁₈ column temperature: 25 ⁰C.; elution order: 1-ribonuclease A, 2-cytochrome c, 3-bovine serum albumin, and 4-myoglobin; mobile phase: a 30-min linear gradient from 10% to 65% acetonitrile (containing 0.02% HFBA) at a flow rate of 200 nL/min; sample loading: 100 femtomole for each model protein (1 μL injection of 0.1 μM protein solution).

Figure 3-4 Base peak chromatogram for illustrating the effect of column temperature on nano-RPLC-ESI-MS separation of model proteins. C_{18} column temperature: 60 ⁰C.; elution order: 1-ribonuclease A, 2-cytochrome c, 3bovine serum albumin, and 4-myoglobin; mobile phase: a 30-min linear gradient from 10% to 65% acetonitrile (containing 0.1% TFA) at a flow rate of 200 nL/min; sample loading: 100 femtomole for each model protein (1 μ L injection of 0.1 μ M protein solution).

Nano-RPLC-ESI-MS Analysis of Native and Denatured/Reduced/Alkylated Yeast Cell Lysates

In addition to the characterization of model proteins, the soluble fraction of intact proteins from *S. cerevisiae* in the native state was analyzed using nano-RPLC-ESI-MS in this study. As shown in Fig. 3-5A, the peak width (4σ) for a protein eluting from the column is as small as 10 s which corresponds to a peak capacity of 360 over a gradient run time of 60 min. Further enhancement in the peak capacity can be realized by slowing the solvent gradient in nano-RPLC and increasing the column length at the expense of analysis time [24]. Still, the peak capacity of any single dimension separations is insufficient for processing the number of proteins that expected from even a eukaryotic organism such as *S. cerevisiae* proteome (> 6,000 proteins).

It has been estimated that up to 10,000 proteins may be commonly present in human serum, most of which would be present at very low relative abundance [119]. The large variation of protein relative abundances having potential biological significance in mammalian systems (> 6-9 orders of magnitude) also presents a major analytical challenge for proteomics. Thus, the use of multidimensional protein separations, including combinations of isoelectric focusing [42-44,120] or polyacrylamide gel electrophoresis [22,23] with RPLC, not only contributes to reduction in protein complexity prior to MS analysis, but also increases the number of proteins identified due to better use of the MS dynamic range and reduced discrimination during ionization.

Figure 3-5 Base peak chromatograms for the soluble fraction of yeast cell lysates in the (A) native and (B) denatured states using nano-RPLC-ESI MS. C_{18} column temperature: 60 ⁰C.; mobile phase: a 60-min linear gradient from 10% to 65% acetonitrile (containing 0.1% TFA) at a flow rate of 200 nL/min; sample loading: 2 µg of total yeast protein (1 µL injection of 2 mg/mL yeast protein solution) spiked with ribonuclease A. Eluted ribonuclease A peaks are marked with * and the mass spectra taken from the average of scans under the peaks are shown as insets.

Top-down proteome approaches offer excellent molecular level information for the intact proteins, but currently require the use of FTICR-MS/MS for obtaining protein-sequencing measurements [20-23]. Furthermore. top-down technologies are also limited by the relative scarcity of bioinformatic tools to efficiently analyze this type of data, although these are under development [21]. Thus, on-line proteolytic digestion of eluted proteins or off-line fraction collection of resolved proteins followed by subsequent digestion [42-45] can greatly facilitate protein identification through peptide mass mapping or peptide sequences obtained from tandem MS using conventional mass spectrometers. Instead of spreading proteolytic peptides over the entire multidimensional separation in the bottom-up approach, the peptides and their sequences can be directly linked with the corresponding proteins in this combined topdown/bottom-up methodology, possibly resulting in increased peptide sequence coverage of identified proteins.

In order to implement the combined top-down/bottom-up proteome analysis in our future work, we therefore investigated potential differences in chromatography separation and ESI-MS measurement of yeast intact proteins present in the native versus denatured states. This is because these denatured, reduced, and alkylated proteins eluted from nano-RPLC can be directed toward to a miniaturized trypsin membrane reactor [121] for performing on-line and real time proteolytic digestion prior to MS analysis. The chromatography separation results obtained from the same yeast protein sample which was further denatured, reduced, and alkylated (Fig. 3-5B) were compared with the analysis using yeast proteins in the native state (Fig. 3-5A). In general, there were no significant differences in the separation efficiency and resolution of native versus denatured proteins using nano-RPLC. The elution time of denatured, reduced, and alkylated proteins was slightly earlier than that of corresponding native proteins.

This is evidenced by comparing the elution times of ribonuclease A (labeled by * in Figs. 3-5A and 3-5B) which was spiked into the yeast protein samples. By comparing with the ESI protein envelope of native ribonuclease A (inset in Fig. 3-5A), the mass spectrum of denatured and alkylated ribonuclease A (inset in Fig. 3-5B) not only confirmed complete alkylation, but also displayed an increase in its average charge state as the result of denaturation process. The deconvoluted masses of native and alkylated ribonuclease A were measured as 13,690.7 and 14,147.5 daltons, respectively. The alkylation of each cysteine residue results in addition mass of 57.0 daltons. Thus, the difference in protein mass between native and alkylated ribonuclease A corresponds to the alkylation of all eight cysteines present in ribonuclease A. Furthermore, the protein denaturation process often results in improved MS intensity as the denatured state of a protein exhibits an open conformation and accepts more protons than the native state.

3.4 CONCLUSION

For top-down proteomics, total peak capacity improvements in protein separations will clearly contribute to increased number of proteins identified due to better use of the MS dynamic range and reduced discrimination during ionization. Thus, the effects of various chromatography conditions, including alkyl chain length in the stationary phase, capillary column temperature, and ion-pairing agent, on the resolution of intact proteins are examined in this study using nano-RPLC-ESI-MS. Optimal chromatography conditions include the use of C_{18} column heated at 60 0 C and the addition of trifluoroacetic acid instead of heptafluorobutyric acid as the ion-paring agent in the mobile phase.

We further investigate potential differences in chromatography separation and ESI measurement of yeast intact proteins as the result of the protein denaturation process. Under optimized chromatography conditions, there are no significant differences in the separation performance of yeast cell lysates present in the native versus denatured states. Denatured yeast proteins resolved and eluted from nano-RPLC can be subjected to proteolytic digestion in an on- or off-line approach to provide improved protein sequence coverage toward protein identification in a combined top-down/bottom-up proteome platform. Due to the complexity of typical cell lysates, protein digests related to individual protein peaks resolved and eluted from nano-RPLC may require further separations prior to MS analysis. In this regard, the capillary format of the nanoscale trypsin membrane reactor recently developed in our laboratory [121] lends itself to further peptide concentration and separation using high speed capillary isotachophoresis/capillary zone electrophoresis prior to ESI-MS.

3.5 ACKNOWLEDGEMENT

Support for this work by the National Cancer Institute (CA107988) is gratefully acknowledged.

CHAPTER 4

INTEGRATED CAPILLARY ISOELECTRIC FOCUSING/NANO-REVERSED PHASE LIQUID CHROMATOGRAPHY COUPLED WITH ESI-MS FOR CHARACTERIZATION OF INTACT YEAST PROTEINS

Yueju Wang, Brian M. Balgley, Paul A. Rudnick, Don L. DeVoe, Cheng S. Lee

Journal of Proteome Research 4, 36-42 (2005)

4.1 INTRODUCTION

The vast number of proteins present in the proteome of a typical organism requires that separations be performed on the mixture prior to introduction into a mass spectrometer for protein identification and quantification. While direct analysis of peptide mixtures obtained from the digestion of complex cell lysates in current shotgun (bottom-up) proteome technologies [13-18,122,123] offers greater potential for the analysis of low abundance proteins than 2-D PAGE, bottom-up approaches provide very limited molecular information about the intact proteins, particularly towards the detection of PTMs [19]. Such modifications may be overlooked in analyses using peptide-based approaches, where only a fraction of the total theoretical peptide population of a given protein may be identified.

For example, the average number of unique peptides leading to each protein identification has been reported to be around 3.73-5.01 for the yeast proteome analysis together with 33.9%-42.1% of yeast proteins identified by only a single peptide

[13,14,18]. To enhance the ability of shotgun proteome approaches toward the identification of PTMs, Yates and co-workers have combined the proteolytic cleavage activities of different enzymes to generate overlapping peptides [124]. In such experiments, a protein mixture is digested using three different enzymes: trypsin that cleaves in a site-specific manner and two others (subtilisin and elastase) that cleave nonspecifically. The use of multiple enzymes for increased sequence coverage of proteins was further demonstrated by Choudhary et al. [125] for the analysis of human plasma.

In contrast, the top-down proteome techniques [20-23,126,127], in which intact proteins rather than peptides are measured, are advantageous for the detection of PTMs. Furthermore, top-down approaches to protein sequence analysis using tandem mass spectrometry (MSⁿ) may allow complete protein characterization far more efficiently than shotgun proteome technologies using protein digests. Realizing the potential of top-down approaches, however, requires that the processing and separation of intact proteins be brought to a similar level as those routinely achieved in shotgun proteomics.

Single dimension protein separations, including isoelectric focusing gel [29], CIEF [30,31], CZE [20], and RPLC [32,33], have been employed for processing protein mixtures prior to MS analysis. However, the use of only a single separation dimension may not provide sufficient peak capacity for the resolution of complex mixtures, putting significant constraints on the detection sensitivity and dynamic range of the MS.

Recent developments in multidimensional protein separations have been based on off-line combinations of preparative scale isoelectric focusing [42-44] or gel electrophoresis [22,23,126] with RPLC for processing complex protein mixtures. Lubman and co-workers have performed isoelectric focusing in a Rotofor using approximately 10 mg of protein from whole cell lysates over a 5 hr period [42-44]. They have also employed an anion exchange column to achieve protein fractionation in a chromatofocusing mode [45] over a pH range of 4-7 due to the difficulty in obtaining reproducible, wide range pH-gradients. Additionally, acid-labile surfactant-based preparative polyacrylamide gel electrophoresis was utilized by Kelleher and co-workers for processing 1-300 [22,23,126] mg of total yeast proteins. The collected protein fractions from either isoelectric focusing or gel electrophoresis were further resolved using RPLC as the second separation dimension prior to MS analysis.

As demonstrated in our previous studies [52,56], the key to establishing ultrasensitive proteome analysis is attributed to high analyte concentrations in small peak volumes as the result of electrokinetic focusing/stacking and high-resolving multidimensional separation techniques, thereby effectively exploiting the dynamic range and detection sensitivity of MS. Building upon the experience in the development of CIEF-based shotgun proteome techniques [52-56], our research efforts in this work present the application of combined CIEF with nano-RPLC for concentrating and resolving intact proteins. The grouping of two highly resolving and completely orthogonal separation techniques greatly enhances the system peak capacity for analyzing complex protein mixtures while eliminating protein loss and dilution in an integrated and automated platform. Beyond the characterization of model proteins achieved by Zhou and Johnston [128], our results clearly illustrate the ability of CIEF/nano-RPLC coupled with ESI-MS to provide the detection of a large number of yeast protein envelopes and
deconvoluted molecular masses. Most significantly, all these measurements are carried out with a protein loading which is two to three orders of magnitude lower than those employed by the current top-down proteome separation techniques [22,23,42-45,126].

4.2 EXPERIMENTAL SECTION

Materials and Reagents

Fused-silica capillaries (100 μm i.d./365 μm o.d. and 50 μm i.d./365 μm o.d.) were acquired from Polymicro Technologies (Phoenix, AZ). Acetic acid, ammonium hydroxide, DTT, and IAM were obtained from Sigma (St. Louis, MO). Acetonitrile, DNase, formic acid, glycerol, hydroxypropyl cellulose (average MW 100,000), magnesium chloride, thiourea, TFA, Tris, and urea were purchased from Fisher Scientific (Pittsburgh, PA). Pharmalyte 3-10 was acquired from Amersham Pharmacia Biotech (Uppsala, Sweden). All solutions were prepared using water purified by a Nanopure II system (Dubuque, IA) and further filtered with a 0.22 μm membrane (Costar, Cambridge, MA).

Soluble Fraction of Intact Proteins from S. cerevisiae

The yeast cells (Sigma) were suspended in a buffer which consisted of 10 mM Tris (pH 8.0), 5 mM magnesium chloride, 0.1 mM DTT, and 10% glycerol. The cells were disrupted by sonication for the release of cellular proteins. After sonication, DNase was added to a final concentration of 50 μ g/mL for the cleavage and removal of nucleic acids. The soluble proteins were collected in the supernatant by centrifugation at 20,000g for 10 min. The protein solution was then desalted using a regenerated cellulose membrane (Millipore, Bedford, MA) with a 5,000 Da molecular weight cutoff.

Yeast cytosolic proteins were denatured and reduced in a 10 mM Tris buffer containing 8 M urea and 100 mM DTT for 2 hr at 37 ⁰C under a nitrogen atmosphere. Proteins were alkylated by adding excess IAM to a final concentration of 250 mM and the reaction was allowed to proceed for 30 min at room temperature in the dark. A PD-10 size exclusion column (Amersham Pharmacia Biotech) was employed for buffer exchange and proteins were eluted in a solution containing 10 mM Tris. The total protein concentration was determined using the Bradford method (Bio-Rad, Richmond, CA) and was around 2 mg/mL.

Integrated CIEF/Nano-RPLC Multidimensional Protein Concentration/Separation Platform

An on-line combination of CIEF with nano-RPLC has been developed and described in detail in previous work [52] and was employed for systematically resolving complex peptide mixtures based on their differences in pI and hydrophobicity. To perform multidimensional protein separations, a 60-cm CIEF capillary (100 µm i.d./365 µm o.d.) was coated with hydroxypropyl cellulose for the elimination of electroosmotic flow and protein adsorption onto the capillary wall [96]. The capillary was initially filled with a solution containing 1% pharmalyte 3-10, 4 M urea, 2 M thiourea, and 2 mg/mL intact proteins obtained from the soluble fraction of yeast cell lysates. There were no column performance changes for more than 20 runs of CIEF separations using the coated capillary. The stability of hydroxypropyl coated capillaries has been further supported by the work of Shen and Smith [96].

Solutions of 0.5% ammonium hydroxide at pH 10.5 and 0.1 M acetic acid at pH 2.5 were employed as the catholyte and the anolyte, respectively. Focusing was performed at an electric field strength of 300 V/cm over the entire CIEF capillary. The current decreased continuously as the result of protein focusing. Once the current reduced to ~10% of the original value, usually within 30 min, the focusing was considered to be complete. The focused proteins were sequentially and hydrodynamically loaded into an injection loop in a 6-port microinjection valve (Upchurch Scientific, Oak Harbor, WA). The loaded proteins were then injected into a C_{18} reversed-phase trap column using a Harvard Apparatus 22 syringe pump (Holliston, MA) through a 6-port microselection valve (Upchurch Scientific).

Repeated protein loadings and injections into various trap columns were automated and controlled using LabView (National Instruments, Austin, TX) until the entire CIEF capillary content was sampled into 9 unique fractions. No significant band broadening in the CIEF capillary was anticipated over the entire protein loading and injection process for a period of approximately 10 min based on limited protein diffusion. Trap columns were prepared "in-house". The effluent end of a 8-cm-long fused-silica capillary (100 μ m i.d./365 μ m o.d.) was connected to an inline microfilter assembly (Upchurch Scientific). The C₁₈-bonded particles (5- μ m diameter, 300-Å pores, Phenomenex, Torrance, CA) in methanol were introduced into the capillary by gradually increasing the pressure from 100 to 2,000 psi using an Agilent 1100 capillary LC pump (Avondale, PA). The capillary packed with 3 cm of C₁₈-bonded particles was left under pressure for 10 hr and then depressurized overnight.

Due to the highly charged and hydrophilic nature of carrier ampholytes (Pharmalyte 3-10) employed for the generation of a pH gradient during the CIEF step, ampholytes were eluted from the trap columns into a waste reservoir prior to the nano-RPLC separations using a 0.1% TFA solution. An Agilent 1100 capillary LC pump was then employed to generate a 40-min linear gradient from 10% to 65% acetonitrile (containing 0.1% TFA and 0.3% formic acid) at a flow rate of 200 nL/min. Through the use of a second 6-port microselection valve (Upchurch Scientific), the mobile phase was delivered into the individual trap column, followed by a 13-cm-long capillary column (50 μ m i.d. x 365 μ m o.d.) packed with 5- μ m porous C₁₈ reversed-phase particles.

All 9 isoelectric focusing fractions collected in the trap columns were analyzed in sequence from acidic to basic pI and the eluants from nano-RPLC were monitored using a Micromass qTOF mass spectrometer (Manchester, United Kingdom). A microcross (Upchurch Scientific) containing a platinum electrode was employed to apply an ESI voltage of 1.8 kV and was placed in-line with and upstream of the chromatography column. Mass spectra were collected from 600 to 1900 m/z using a scan time of 1.0 s. Automated analysis of the nano-RPLC-ESI MS data files were performed using Protein Trawler software (Bioanalyte, Portland, ME) [112,113].

Approximately 40-min of each nano-RPLC run was divided into 80 30-s slices. The mass spectra of these 30-s slices were summed and averaged, and Micromass MaxEnt1 was employed as the deconvolution algorithm over a mass range of 5-100 kDa. No baseline subtraction or smoothing was used, as these manipulations were empirically determined to interfere with protein mass deconvolution. Post-processing of the deconvoluted protein peaks was performed using routines provided with Protein Trawler. Briefly, peaks within 30 Da and occurring within 90-s were only included once and were considered to be the result of bleeding or band broadening of the same protein. Post-processing also included the elimination of 1/2 and 2X mass peaks which are common artifacts of the deconvolution algorithm

4.3 **RESULTS AND DISCUSSION**

CIEF Separations of Intact Proteins from Soluble Fraction of Yeast Cell Lysates

Preparative scale isoelectric focusing separations have been performed using a Rotofor cell containing a solution pH gradient [42-44], micro anion exchange chromatography combined with pH gradient elution [45], and gel membranes containing the desired pHs [98,99,129,130] for processing mgs of protein samples obtained from cell lysates. By taking advantage of the large surface area to volume ratio in fused-silica capillaries for effectively dissipating joule heating at high electric fields, CIEF not only establishes a rapid and high resolution protein/peptide separation, but also affords a typical concentration factor of at least 100 times as the result of the focusing effect. Furthermore, CIEF provides a direct capillary interface for on-line combination with nano-RPLC in an integrated and multidimensional separation platform for resolving complex peptide and protein mixtures as demonstrated in our previous studies [52] and this work, respectively.

As shown in Fig. 4-1, the CIEF separation performance of intact proteins from the soluble fraction of yeast cell lysates was initially evaluated by hydrodynamically mobilizing focused proteins passing a UV detector placed near the cathodic end of the capillary. Protein bandwidth after focusing was as small as 2.0 mm inside a 60-cm long CIEF capillary by applying electric field strength of 300 V/cm over a pH gradient from 3 to 10. This yielded to a sample concentration factor of ~300 and a baseline resolution (resolution, R_s, of 1.5) of ~ 200 peaks. Furthermore, a 60-cm long capillary with a 100 μ m i.d. employed in this study offered a sample loading volume of ~4.8 μ L and a total protein loading of ~9.6 μ g using a 2 mg/mL yeast protein solution. Further enhancement in sample loading can be achieved using the dynamic introduction and focusing approach demonstrated in our previous work [131].

Integrated CIEF/Nano-RPLC Separations of Intact Proteins from Yeast Cell Lysates

Instead of using the "stop and go" mode for on-line coupling of CIEF with capillary RPLC in the characterization of model proteins [128], a combination of computer controlled microinjection and microselection valves was utilized for automatically and reproducibly loading focused protein fractions into individual trap columns for the subsequent second dimension nano-RPLC analyses. As shown in Fig. 4-2, the yeast proteins were systematically resolved based on their differences in pI and hydrophobicity using the combined CIEF/nano-RPLC separations in an integrated platform.

The peak width for a protein eluting from the chromatography column (Fig. 4-2) was as small as 10 s which corresponds to a peak capacity of 160 over a gradient run time of 40 min. Further improvement in the peak capacity can be realized by slowing the solvent gradient in nano-RPLC and increasing the column length [24]. Because the separation mechanisms in CIEF and nano-RPLC are completely orthogonal, the overall peak capacity of multidimensional CIEF/nano-RPLC separations was estimated to be around 1,440 (9 fractions from CIEF x 160 from CRPLC) over a run time of approximately 6 hr. By acquiring and confidently deconvoluting 3-5 ESI protein envelopes (Fig. 4-3) over the elution of any single peak from nano-RPLC using qTOF-

MS, an overall system capacity of 4,320-7,200 was achieved in this study for the analysis of complex protein mixtures such as yeast cell lysates.

Figure 4-1 CIEF-UV Analysis of intact proteins in the soluble fraction obtained from *S. cerevisiae* cell lysates. Capillary: hydroxypropyl cellulose coating, 60 cm x 100 µm i.d. x 365 µm o.d.; anolyte: 0.1 M acetic acid at pH 2.5; catholyte: 0.5% w/w ammonium hydroxide at pH 10.5; electric field strength: 300 V/cm; hydrodynamic mobilization; detection: UV absorbance at 280 nm, 7 cm from cathodic end.

Figure 4-2 Base peak chromatograms of a representative CIEF/nano-RPLC multidimensional separation of 9.6 µg of yeast intact proteins obtained from the soluble fraction of cell lysates. Each number represents the sequence of CIEF fractions further analyzed by nano-RPLC from acidic to basic pHs.

Figure 4-3 The mass spectrum of a chromatography peak eluted at 35.7 min for the nano-RPLC separation of the second CIEF fraction. The inset presents deconvoluted protein masses which are labeled together with the corresponding protein envelopes using *, +, and #, respectively.

Reproducibility of protein separation and identification using the combined CIEF/nano-RPLC-ESI MS approach was examined by performing multiple runs of identical yeast protein samples. For two analyses performed on consecutive days, the elution times of the same proteins in CRPLC differed by less than 0.3 min (data not shown). The elution times were slightly different, the shifts, however, were consistent across the analysis. The slight variation in elution times was mainly contributed by the difficulty in generating the same nanoflow rate using the current capillary LC pump equipped with an external flow splitter.

The intrinsic high resolution of CIEF allows the number of protein fractions sampled in the first separation dimension to be further increased. The excellent reproducibility of CIEF separation, together with the use of trap columns for "parking" the CIEF fractions in an automated platform, enables user discretion as to which fractions are to be analyzed in the off-line approach, and interesting fractions may be revisited (reanalyzed) or repeatedly accumulated for identification of extremely low abundance proteins. Further enhancement in the overall system capacity can be realized by increasing the number of CIEF fractions and slowing the solvent gradient in nano-RPLC at the expense of analysis time. To significantly reduce the overall run time, the ability to deposit eluted peptides/proteins onto MALDI target for subsequent MS analysis offers a promising platform for high-throughput proteome studies using a multiplexed LC system [132]. Recently, Ericson and co-workers have developed an automated non-contact deposition interface by employing a pulsed electric field for transferring the eluants from multiple parallel columns directly onto MALDI targets [133].

ESI-MS Analysis of Intact Proteins Eluted from CIEF/Nano-RPLC Multidimensional Protein Separations

The Protein Trawler program was utilized to automatically sum all data within a specified time interval, deconvolute multiply charged ions, carry out a threshold selection, eliminate deconvolution artifacts, and report protein mass, intensity, and retention time in a text file. The program repeated this process across sequential portions of the chromatogram of each nano-RPLC-ESI MS run. As a result, a total of 534 distinct protein masses between 5 and 70 kDa were identified from the CIEF/nano-RPLC-ESI MS analysis of intact proteins obtained from the soluble fraction of yeast cell lysates.

A 2-D map of identified protein masses is displayed in Fig. 4-4 with the estimated pI ranges for each CIEF fraction. By using 1% Pharmalyte 3-10, the CIEF separation was able to cover a wide pH range of 3.3-9.6. The pI range analyzed in this study was comparable to those reported using a Rotofor cell containing a solution pH gradient [42-44] and gel membranes containing immobilized pHs [98,99,129,130], but significantly wider than that obtained from micro anion exchange chromatography combined with pH gradient elution [45]. However, very basic proteins with pIs equal to or greater than 10 may not be resolved or could be lost to the catholyte using the currently available carrier ampholytes.

The competitive advantages of CIEF/nano-RPLC protein separations are mostly attributed to the high resolving power and analyte concentration effect in CIEF together with the elimination of analyte loss and dilution in an automated and integrated platform. The amount of intact proteins employed for performing yeast proteome analysis was around 9.6 μ g (2 mg/mL x 4.8 μ L of capillary volume in CIEF) which is two to three orders of magnitude less than those utilized in current 2-D PAGE and top-down proteome techniques [22,23,42-45,126]. Instead of using significantly higher amounts of sample materials and additional sample fractionation procedures, the combination of analyte focusing/concentration with two highly resolving and orthogonal separation mechanisms in an integrated platform significantly enhances both the dynamic range and the sensitivity of MS toward the proteome analysis.

A database dump file "protein_properties.tab" containing computed molecular masses and pIs of translated yeast open reading frames (ORFs) was downloaded from the Saccharomyces Genome Database at Stanford University. By excluding ORFs with a "dubious" classification, a total of 5,792 "characterized" and "uncharacterized" gene products were used as the constituents of the predicted yeast proteome. The ratio of the number of deconvoluted protein masses to the number of predicted proteins in each molecular mass region was summarized in Fig. 4-5 from 5 to 70 kDa. Approximately 74% of predicted yeast proteins exhibit molecular masses within the range of 5-70 kDa. Due to the discrimination of the ESI process against MS detection of medium to high molecular weight proteins, the percentage of yeast proteome coverage was around 14%-58% in the molecular mass from 30 to 70 kDa. Such bias against high molecular mass proteins is in agreement with those reported using top-down protein identification and sequence measurements [22,23,42-45,126].

Figure 4-42-D map of deconvoluted protein masses versus pI within each CIEFfraction for the analysis of yeast cell lysates using CIEF/nano-RPLC-ESIMS. The logarithm of protein intensity is represented in gray scale on themap.

Improvements in protein detection can be achieved by enhancements in the deconvolution process for the ESI-multiply charged envelopes and employment of ultrahigh resolution and sensitivity of Fourier transform ion cyclotron resonance (FTICR)-MS. In comparison with shotgun proteomics [13-18,122,123], the lack of effective ESI of intact proteins may still adversely impact the ability to perform comprehensive proteome analysis using top-down techniques [20-23,126,127], particularly in the identification of low abundance proteins. As reported by Meng and coworkers [23], most of the 117 yeast gene products identified and characterized today are highly abundant proteins in the 5-39 kDa range.

Figure 4-5 The ratio of the number of deconvoluted protein masses to the number of predicted yeast proteins in individual molecular mass regions from 5 to 70 kDa.

4.4 CONCLUSION

As an automated and integrated approach, the on-line combination of CIEF with nano-RPLC offers analyte focusing for concentrating dilute protein samples of biological origin while providing excellent resolving power for the characterization of complex protein mixtures based on differences in pI and hydrophobicity. By obtaining a peak capacity of 1,440 from combined CIEF/nano-RPLC separations and acquiring 3-5 ESI protein envelopes over the elution of any chromatography peak using qTOF-MS, an overall system capacity of 4,320-7,200 is achieved in this study for the analysis of intact proteins obtained from the soluble fraction of *S. cerevisiae*. The intrinsic high resolution of CIEF allows the number of fractions sampled in the first separation dimension to be further increased. More CIEF fractions can be obtained by increasing the number of microselection valves and trap columns, or by employing microselection valves with a higher number of ports.

By using only the soluble fraction of yeast cell lysates, a total of 534 distinct protein masses were identified over a wide protein mass range of 5-70 kDa, requiring a protein loading of less than 10 µg. This protein loading is two to three orders of magnitude less than those utilized in current 2-D PAGE and top-down proteome techniques [22,23,42-45,126]. Future work includes directly coupling of CIEF/nano-RPLC separations with a newly developed nanoscale trypsin membrane reactor [121] for enabling real-time and effective digestion of resolved proteins in a combined top-down/bottom-up proteome analysis. Instead of spreading proteolytic peptides over the entire multidimensional separation as in shotgun proteomics, the proposed top-down/bottom-up proteome technology will allow direct correlation of the peptides and

their sequences with the corresponding proteins and measured protein masses, and will greatly facilitate the characterization of proteins containing PTMs.

4.5 ACKNOWLEDGEMENT

Support for this work by the National Cancer Institute (CA107988 and CA103086) is gratefully acknowledged.

CHAPTER 5

CONCLUSION

The sequencing of several organisms' genomes, including the human's one, has opened the way for the so-called postgenomic era, which is now routinely coined as "proteomics". The most basic task in proteomics remains the detection and identification of proteins from a biological sample, and the most traditional way to achieve this goal consists of protein separations performed by 2-D PAGE. Still, the 2-D PAGE-MS approach remains lacking in proteome coverage (for proteins having extreme isoelectric points or molecular masses as well as for membrane proteins), dynamic range, sensitivity, and throughput.

Consequently, considerable efforts have been devoted to the development of non-gel-based proteome separation technologies in an effort to alleviate the shortcomings in 2-D PAGE while reserving the ability to resolve complex protein and peptide mixtures prior to mass spectrometry analysis. Thus, this dissertation first reviewed recent advances in capillary-based separation techniques, including capillary liquid chromatography and capillary electrophoresis, and combinations of multiples of these separation mechanisms. In comparison with 2D-PAGE, the capillary-based separation technologies offer the capabilities of system automation, high throughput analysis, and increased detection dynamic range, and are becoming effective front-end tools for MS-based proteome analysis.

By transferring isoelectric focusing separation from gel to capillary format, it has been demonstrated that the focusing effect of CIEF not only contributes to high resolution protein/peptide separation, but also provides significant enhancement in analyte concentration. Besides the analysis of tryptic peptides obtained from yeast cell lysates in our previous studies, CIEF-based multidimensional peptide separation platform was further developed and optimized in this work for enabling comprehensive and ultrasensitive characterization of protein profiles within limited tissue samples. In addition to establishing a micro-sample introduction technique, a combination of computer controlled microinjection and microselection valves was utilized for automatically and reproducibly fractionating pI-resolved peptides for the subsequent second dimension analyses. By using the combination of various carrier ampholytes, the separation range of CIEF has been extended to at least pI 12. The reduction of chromatography column inner diameter to as small as 50 µm together with the increase in the number of CIEF fractions significantly enhance both the overall separation peak capacity and the dynamic range and detection sensitivity of MS critically needed for performing comprehensive proteome studies.

In this study, protein profiles within small cell populations procured from glioblastoma multiforme tissues were analyzed using combined CIEF-nano-RPLC separations equipped with ESI-qTOF-MS. In comparison with strong cation exchange as the first separation dimension in current multidimensional chromatography system, CIEF not only exhibited higher separation resolution and less degree of peptide overlapping among fractions, but also allowed more effective usage of MS-based peptide identifications by providing an even distribution of doubly charged peptides over the entire pH gradient. Moreover, because of the high resolving power of CIEF, the number of peptide and protein identifications can be greatly increased by simply increasing the number of pI fractions instead of performing multiple proteome runs. The ability to mine deep into the proteome of limited samples can therefore be realized without an accompanying increase in sample consumption.

Realizing the shortcomings of limited protein sequence coverage and thus limited intact molecular information obtained from bottom-up (shotgun) approaches, research efforts have also been made toward the development of top-down proteome techniques. Top-down methods, in which intact proteins rather than peptides are measured, are advantageous for the analysis of protein modifications. Building upon the experience in the development of CIEF-based shotgun proteome technologies, this project further aimed to expand the applications of combined CIEF-nano-RPLC separations for the analysis of complex protein mixtures such as yeast cell lysates.

As a first step toward the optimization of multidimensional protein separations, effects of various chromatography conditions, including alkyl chain length in the stationary phase, capillary column temperature, and ion-pairing agent, on the resolution of intact proteins have been studied using nano-RPLC-ESI MS. Optimal chromatography conditions included the use of C_{18} column heated at 60 0 C and the addition of trifluoroacetic acid instead of heptafluorobutyric acid as the ion-paring agent in the mobile phase. Under optimized chromatography conditions, there were no significant differences in the separation performance of yeast cell lysates present in the native versus denatured states. As one of research directions in future proteome studies, denatured proteins resolved and eluted from nano-RPLC can be subjected to proteolytic digestion in an on- or off-line approach to provide improved protein sequence coverage toward protein identification in a combined top-down/bottom-up proteome platform. As an automated and integrated approach, the on-line combination of CIEF with nano-RPLC offers analyte focusing for concentrating dilute protein samples of biological origin while providing excellent resolving power for the characterization of complex protein mixtures based on differences in pI and hydrophobicity. A key feature of combined CIEF-nano-RPLC separations in an integrated platform includes the elimination of analyte loss and dilution as the result of many manually operated sample handling, protein separation, and transfer steps in the current top-down processes. Sample loss and dilution may adversely impact the ability to perform comprehensive proteome analysis, particularly toward the identification of low abundance proteins.

By obtaining a peak capacity of 1,440 from combined CIEF/nano-RPLC separations and acquiring 3-5 ESI protein envelopes over the elution of any chromatography peak using qTOF-MS, an overall system capacity of 4,320-7,200 has been achieved in this study for the analysis of intact proteins obtained from the soluble fraction of yeast cell lysates. The CIEF-based multidimensional concentration/separation platform enabled the measurement of 534 distinct yeast protein masses over a mass range of 5-70 kDa, yet required a protein loading of only 9.6 µg. This protein loading is two to three orders of magnitude less than those used in current 2-D PAGE and top-down proteome techniques, illustrating the potential usage of this proteome technology for the analysis of protein profiles within small cell populations or limited tissue samples.

In conclusion, my research goal is to develop the novel bioanalytical technologies and tools that support comprehensive survey of proteins in cells and tissues, particular for the analysis of low abundance proteins. Instead of using significantly higher amounts of protein materials and additional sample fractionation procedures, the key to establishing ultrasensitive proteome analysis is attributed to attain high analyte concentrations in small peak volumes as the result of electrokinetic focusing and high resolving multidimensional separation techniques in an integrated platform, thus enhancing the dynamic range and detection sensitivity of MS measurements. Future work includes the investigation of combined top-down and bottom-up approaches in order to leverage the unique capabilities provided by both approaches in an integrated platform. The integrated top-down/bottom-up proteome technology is expected to significantly increase the peptide sequence coverage of identified proteins and greatly facilitate the analysis of protein modifications. Realizing the potential of integrated top-down/bottomup proteome technology, however, requires the development of novel bioinformatics tools to allow direct correlation of the peptides and their sequences with the corresponding proteins and measured protein masses in a single proteome analysis.

APPENDIX

Protein Number	ID	Description	Mass	pl	Peptide Hits	Distinct Peptides	% Coverage
1	IPI00025363.1	GLIAL FIBRILLARY ACIDIC PROTEIN, ASTROCYTE.	49880	5.2	217	41	77.55
2	IPI00007752.1	TUBULIN BETA-2 CHAIN.	49831	4.52	179	22	72.13
3	IPI00022434.1	SERUM ALBUMIN PRECURSOR.	69367	6.21	175	39	65.35
4	IPI00031370.1	TUBULIN, BETA POLYPEPTIDE.	49953	4.52	174	21	68.31
5	IPI00160897.1	HYPOTHETICAL PROTEIN.	49586	4.51	173	21	71.4
6	IPI00220286.1	POLYUBIQUITIN UBC.	77039	7.94	172	6	65.11
7	IPI00021439.1	ACTIN, CYTOPLASMIC 1.	41737	5.15	171	20	63.47
8	IPI00021440.1	ACTIN, CYTOPLASMIC 2.	41793	5.16	170	20	63.47
9	IPI00013475.1	BETA TUBULIN (TUBULIN, BETA POLYPEPTIDE) (DJ40E16.7.1) (NOVEL PROTEIN SIMILAR TO TUBULIN BETA POLYPEPTIDE.	49907	4.52	167	21	68.31
10	IPI00142634.1	TUBULIN BETA-5 CHAIN.	49671	4.52	166	19	62.16
11	IPI00011654.1	TUBULIN BETA-1 CHAIN.	49759	4.49	160	17	53.15
12	IPI00180675.3	TUBULIN, ALPHA 3.	52312	4.82	155	25	59.02
13	IPI00328696.7	HEMOGLOBIN ALPHA CHAIN.	15126	9.09	149	12	95.74
14	IPI00387144.2	TUBULIN ALPHA-1 CHAIN.	50152	4.7	148	25	61.64
15	IPI00396304.1	TUBULIN, ALPHA, UBIQUITOUS.	50152	4.7	148	25	61.64
16	IPI00023598.1	TUBULIN BETA-5 CHAIN.	49631	4.54	146	19	64.86
17	IPI00218816.1	BETA GLOBIN.	15998	7.32	146	12	93.88
18	IPI00218343.3	TUBULIN ALPHA-6 CHAIN.	52631	5.13	145	23	50.74
19	IPI00179709.4	SPLICE ISOFORM 1 OF Q13748 TUBULIN ALPHA-2 CHAIN.	49960	4.74	134	19	48
20	IPI00375289.1	SIMILAR TO TUBULIN ALPHA-3/ALPHA-7 CHAIN (ALPHA-TUBULIN 3/7).	50839	4.74	134	19	47.06
21	IPI00334432.1	none found in database	15396	7.9	128	8	73.76
22	IPI00257508.4	DIHYDROPYRIMIDINASE RELATED PROTEIN-2.	62294	6.33	126	24	66.96
23	IPI00013683.2	TUBULIN BETA-4 CHAIN.	50433	4.57	122	15	47.11
24	IPI00152453.1	HYPOTHETICAL PROTEIN.	88382	5.69	120	14	23.21
25	IPI00384697.1	SIMILAR TO ALPHA-FETOPROTEIN.	47360	6.29	120	24	58.99
26	IPI00216976.1	ALDOLASE C, FRUCTOSE-BISPHOSPHATE.	39456	6.86	119	23	75
27	IPI00015786.2	SPECTRIN ALPHA CHAIN, BRAIN.	284897	5.05	116	61	34.32
28	IPI00021428.1	ACTIN, ALPHA SKELETAL MUSCLE.	42051	5.05	116	12	31.3
29	IPI00023006.1	ACTIN, ALPHA CARDIAC.	42019	5.05	116	12	31.3
30	IPI00218345.1	SPLICE ISOFORM 2 OF Q13748 TUBULIN ALPHA-2 CHAIN.	46112	4.78	115	16	44.26
31	IPI00007750.1	TUBULIN ALPHA-4 CHAIN.	49924	4.69	113	22	55.13
32	IPI00003865.1	SPLICE ISOFORM 1 OF P11142 HEAT SHOCK COGNATE 71 KDA PROTEIN.	70898	5.16	112	26	43.96
33	IPI00328163.1	SIMILAR TO TUBULIN ALPHA 2.	37218	4.62	110	19	71.64
34	IPI00216773.3	SIMILAR TO SERUM ALBUMIN PRECURSOR.	45297	6.15	109	22	59.05
35	IPI00177441.4	SIMILAR TO TUBULIN ALPHA-3/ALPHA-7 CHAIN (ALPHA-TUBULIN 3/7).	49859	4.77	106	13	38.89
36	IPI00385560.1	ACTIN ALPHA 1 SKELETAL MUSCLE PROTEIN.	28151	5.96	104	10	37.01
37	IPI00008603.1	ACTIN, AORTIC SMOOTH MUSCLE.	42009	5.05	103	10	28.38
38	IPI00025416.1	ACTIN, GAMMA-ENTERIC SMOOTH MUSCLE.	41877	5.16	103	10	28.46
39	IPI0000816.1	14-3-3 PROTEIN EPSILON.	29174	4.36	100	18	70.2
40	IPI00154491.1	none found in database	44980	6.71	100	6	62.41
41	IPI00215736.2	ALPHA ENOLASE.	47038	7.46	100	24	65.36
42	IPI00328602.3	HEAT SHOCK 90KDA PROTEIN 1, ALPHA.	84674	4.66	99	29	41.8
43	IPI00382950.1	BETA-GLOBIN GENE FROM A THALASSEMIA PATIENT.	18931	6.78	99	10	65.14
44	IPI00383815.1	HYPOTHETICAL PROTEIN.	36299	5.52	96	21	56.78
45	IPI00037070.1	SPLICE ISOFORM 2 OF P11142 HEAT SHOCK COGNATE 71 KDA PROTEIN.	53921	5.8	95	21	46.68
46	IPI00328347.1	PYRUVATE KINASE, M2 ISOZYME.	57783	7.93	95	29	69.81
47	IPI00022977.1	CREATINE KINASE, B CHAIN.	42644	5.3	94	22	71.65

48	IPI00383237.1	PYRUVATE KINASE, M1 ISOZYME.	58168	7.93	93	28	66.23
49	IPI00387164.1	HYPOTHETICAL PROTEIN FLJ32377.	43649	6.22	93	6	61.86
50	IPI00180818.2	FRUCTOSE-BISPHOSPHATE ALDOLASE A.	39289	8.2	89	17	61.98
51	IPI00395757.1	ALDOLASE A.	39420	8.2	89	17	61.81
52	IPI00219018.1	GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE.	36053	8.73	88	16	58.21
53	IPI00021263.1	14-3-3 PROTEIN ZETA/DELTA.	27745	4.43	86	16	71.02
54	IPI00220644.5	PYRUVATE KINASE 3 ISOFORM 2.	58293	7.78	86	27	62.66
55	IPI00010728.3	MICROTUBULE-ASSOCIATED PROTEIN 2 ISOFORM 3.	202759	4.59	85	41	33.21
56	IPI00003842.1	SPLICE ISOFORM MAP2B OF P11137 MICROTUBULE-ASSOCIATED PROTEIN 2.	199611	4.55	83	40	33.17
57	IPI00334775.1	HYPOTHETICAL PROTEIN.	84843	5.01	82	24	35.41
58	IPI00034283.1	SIMILAR TO TUBULIN, BETA, 4.	49857	4.51	81	11	33.18
59	IPI00166768.1	HYPOTHETICAL PROTEIN.	36649	8.02	81	14	41.54
60	IPI00029111.1	DIHYDROPYRIMIDINASE RELATED PROTEIN-3.	61963	6.45	77	20	51.05
61	IPI00216005.3	TUBULIN ALPHA-8 CHAIN.	52591	4.91	75	13	32.63
62	IPI00180776.1	none found in database	27742	4.36	74	13	54.29
63	IPI00216318.1	TYROSINE 3-MONOOXYGENASE/TRYPTOPHAN 5-MONOOXYGENASE ACTIVATION	28082	4.47	74	14	66.26
64	IPI00024067.1	PROTEIN, BETA POLYPEPTIDE. CLATHRIN HEAVY CHAIN 1.	191615	5.42	73	28	22.93
65	IPI00383331.1	none found in database	15921	8.27	70	4	34.25
66	IPI00216171.1	ENOLASE 2.	47269	4.65	67	16	58.99
67	IPI00021369.1	ALPHA CRYSTALLIN B CHAIN.	20159	7.38	65	14	80.57
68	IPI00169383.1	PHOSPHOGLYCERETE KINASE 1.	44615	8.27	65	18	54.68
69	IPI00295540.1	PHOSPHOGLYCERATE KINASE 1.	44597	8.27	65	18	54.68
70	IPI00220642.1	TYROSINE 3-MONOOXYGENASE/TRYPTOPHAN 5-MONOOXYGENASE ACTIVATION	28303	4.52	64	15	63.97
71	IPI00006664.4	PROTEIN, GAMMA POLYPEPTIDE. PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A	17881	7.97	62	14	82.32
72	IPI00010154.1	RAB GDP DISSOCIATION INHIBITOR ALPHA	50583	4.75	62	20	57.49
73	IPI00012011.1	COFILIN. NON-MUSCLE ISOFORM.	18502	8.29	60	12	72.89
74	IPI00245171.3		19496	8.24	60	9	57.06
75	IPI00021716.1	TRANSKETOLASE	67878	7 73	59	17	40.45
76	IPI00328807.3	TRIOSEPHOSPHATE ISOMERASE	26538	6.91	59	16	77 42
77	IPI00306589 1		25762	7.6	58	6	66 38
78	IPI00333602 1		49640	4 45	58	8	21 27
79	IPI00384875 1		9689	8.52	58	5	66.29
80	IPI00016801 1		61398	7.91	56	20	44.62
91	IP100018146 1		27764	4.41	56	14	44.02
82	IPI00335160 1		49595	4.63	56	7	15 16
92	IP100333100.1		45555	5.03	55	14	41.02
0.0	ID100202406.4		40776	4.50	55	7	41.02
95	IP100292450.1		19107	7.07	55	13	70.06
00	IP100302043.1		63353	4.75	55	20	40.62
00	IP100362470.1		71024	4.75	59	20	40.03
87	IP100182840.2		11234	5.13	53	6	9.09
00	IP100256679.2		41001	5.56	52	0	13.1
89	IP100027350.1		21092	5.76	51	0	33.33
90	IPI00174849.2		48278	4.73	51	6	12.01
91	IP100374080.1		20754	0.30	51		00.00
92	1003/5400.1		15989	0.53	51	8	44.9
93	IPI00017855.1	ACONTRATE MYDRATASE, MITOCHONDRIAL PRECURSOR.	85425	7.65	50	19	34.23
94	IPI00385209.1	none round in database	90518	8.19	50	19	32.25
95	IPI00374165.1	SIMILAR IO POTE PROTEIN.	116971	6.69	46	9	8.96
96	IPI00385600.1	none round in database	69976	7.22	46	17	36.16
97	IPI00219446.1	PROSTATIC BINDING PROTEIN.	21057	7.65	44	12	83.42
98	IPI00384084.1	none found in database	15980	8.72	44	4	31.51
99	IPI00385497.1	none found in database	18522	9.04	44	11	65.12

100	IPI00005614.2	SPLICE ISOFORM LONG OF Q01082 SPECTRIN BETA CHAIN, BRAIN 1.	275518	5.28	43	30	17.5
101	IPI00248359.2	SIMILAR TO POTE PROTEIN.	108369	6.84	42	7	7.08
102	IPI00385244.1	PHOSPHOGLYCERATE MUTASE 1 (BRAIN).	28804	7.22	42	13	70.87
103	IPI00291006.1	MALATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.	35531	8.9	41	13	52.07
104	IPI00010182.1	SPLICE ISOFORM A 1 OF P07108 ACYL-COA-BINDING PROTEIN.	9913	6.54	40	6	73.26
105	IPI00216319.1	TYROSINE 3/TRYPTOPHAN 5 - MONOOXYGENASE ACTIVATION PROTEIN, ETA	28219	4.47	40	8	32.52
106	IPI00027146.1	POLYPEPTIDE. GLUTAMATE DEHYDROGENASE 2, MITOCHONDRIAL PRECURSOR.	61434	8.67	38	14	25.27
107	IPI00031461.1	RAB GDP DISSOCIATION INHIBITOR BETA.	50663	6.39	38	10	25.84
108	IPI00218836.1	SPLICE ISOFORM 2 OF P07108 ACYL-COA-BINDING PROTEIN.	11793	5.24	38	5	53.85
109	IPI00383071.1	none found in database	26943	8.21	38	9	33.33
110	IPI00384026.1	HUMAN FULL-LENGTH CDNA 5-PRIME END OF CLONE CS0DN005Y108 OF ADULT	29031	4.84	38	7	24.43
111	IPI00182680.3	BRAIN OF HOMO SAPIENS. SIMILAR TO ALPHA-TUBULIN.	37407	4.53	37	9	22.94
112	IPI00003269.1	SIMILAR TO CYTOPLASMIC BETA-ACTIN.	42003	5.29	36	4	11.17
113	IPI00007702.1	HEAT SHOCK-RELATED 70 KDA PROTEIN 2.	70021	5.42	36	10	15.02
114	IPI00018511.1	TUBULIN BETA-4Q CHAIN.	48435	4.91	36	5	10.14
115	IPI00027388.3	none found in database	17989	7.51	36	9	44.17
116	IPI00160552.1	TENASCIN-R.	149548	4.44	36	15	15.39
117	IPI00303476.1	ATP SYNTHASE BETA CHAIN, MITOCHONDRIAL PRECURSOR.	56560	5.07	36	14	44.23
118	IPI00328230.1	SPLICE ISOFORM SHORT OF Q01082 SPECTRIN BETA CHAIN, BRAIN 1.	253113	5.16	36	27	17.02
119	IPI00374162.1	SIMILAR TO POTE PROTEIN.	116972	6.99	36	6	5.01
120	IPI00376456.1	SIMILAR TO FKSG30.	60497	5.62	36	6	9.74
121	IPI00013890.1	14-3-3 PROTEIN SIGMA.	27774	4.39	35	4	12.5
122	IPI00025447.1	ELONGATION FACTOR 1-ALPHA 1.	50141	9.5	35	8	21.21
123	IPI00219524.2	SIMILAR TO PHOSPHOGI YCERATE MUTASE 1 (PHOSPHOGI YCERATE MUTASE	22850	6.04	35	11	75.25
124	IPI00333015.1	ISOZYME B) (PGAM-B) (BPG-DEPENDENT PGAM 1). BETA-SPECTRIN 2 ISOFORM 2.	251419	5.25	35	26	16.47
125	IPI00386513 1	SIMILAR TO STRATIFIN	24336	4 47	35	4	14.35
126	IPI00216312.1	VIMENTIN	53686	4.77	34	17	40.99
127	IPI00307063 1	TRUNCATED BETA-GLOBIN	6542	9.37	34	3	45.76
128	IPI00184899 4	DIHYDROPYRIMIDINASE RELATED PROTEIN-1	62184	7.03	33	9	23.95
129	IPI00329351 3		61213	5 55	33	14	35.48
130	IPI00006510 1	TURB1 HUMAN RETA TURUI IN 1 CLASS VI (D.1543.119.4) (BETA TURUI IN 1 CLASS VI	50327	4.82	32	4	6.43
131	IPI00200300.1	S100 CALCILIM-BINDING PROTEIN BETA	10713	4.25	32	3	40.22
132	IPI00018352.1		24824	5.18	31	8	55 61
132	IPI00397176 1		47499	4 72	31	15	30.02
134	IPI00026110.2		117840	5.5	30	17	25.61
134	IP100020113.2		24545	4.12	30	0	25.01
135	IF100219301.3		10901	4.13	30	9	55.24
130	IF100296547.1		19091	5.00	30	0	00.07
137	IF100333116.1		40424	0.20	30	0	21.00
130	IP100004358.2		90090	6.60	20	15	22.00
139	IP100008668.3	LC1].	270620	4.44	20	20	12.00
140	IP100163249.3		63392	5.78	28	0	13.24
141	IP100220483.1	SPLICE ISOFORM BTOF 722026 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS A2/B1.	43349	9.72	28	11	34.31
142	IPI00291099.2	SPLICE ISOFORM LONG OF P234/1 RECEPTOR-TYPE PROTEIN-TYROSINE PHOSPHATASE ZETA PRECURSOR.	260427	4.63	28	g	4.61
143	IP100374770.1	MICROTUBULE-ASSOCIATED PROTEIN 1B ISOFORM 2.	256710	4.43	28	20	13.24
144	IP100396378.1	SPLICE ISOFORM AZ OF P22026 HE LEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS A2/B1.	41925	9.58	28	11	35.34
145	IPI00014850.2	ASTROCYTIC PHOSPHOPROTEIN PEA-15.	15040	4.66	27	8	70.77
146	IPI00067590.1	rione round in database	9644	9.29	27	4	56.18
147	IPI00220327.1		66067	8.33	27	8	13.66
148	IPI00384970.1		14066	4.4	27	5	32.31
149	IPI00386715.1		37087	7.19	27	7	21.19
150	IPI00014424.1		50470	9.5	26	5	11.66
151	IPI00022774.1	TRANSITIONAL ENDOPLASMIC RETICULUM ATPASE (TER ATPASE) (15S MG(2+)- ATPASE P97 SUBUNIT) (VALOSIN CONTAINING PROTEIN) (VCP) [Contains: VALOSIN].	89322	4.89	26	16	25.43

152	IPI00033946.1	HEAT SHOCK 70KDA PROTEIN 1B.	70025	5.31	26	13	29.64
153	IPI00216283.1	SPLICE ISOFORM SHORT OF P23471 RECEPTOR-TYPE PROTEIN-TYROSINE PHOSPHATASE ZETA PRECURSOR.	163444	4.85	26	8	6.53
154	IPI00216691.1	PROFILIN 1.	15054	8.46	26	9	87.86
155	IPI00304925.1	HEAT SHOCK 70 KDA PROTEIN 1.	70052	5.31	26	13	29.64
156	IPI00024323.3	SIMILAR TO FKSG30.	77208	7.25	25	4	5.99
157	IPI00031523.1	HEAT SHOCK PROTEIN 86.	35674	4.27	25	5	15.71
158	IPI00219757.6	GLUTATHIONE S-TRANSFERASE P.	24677	5.81	25	7	47.75
159	IPI00234002.2	SIMILAR TO HEAT SHOCK COGNATE 71 KDA PROTEIN.	65588	5.44	25	8	12.03
160	IPI00015671.1	HYPOTHETICAL PROTEIN FLJ21665.	49909	5.96	24	6	11.66
161	IPI00233214.2	CALMODULIN.	16706	3.84	24	8	94.59
162	IPI00293683.1	MICROTUBULE-ASSOCIATED PROTEIN TAU ISOFORM 4.	36760	10.06	24	9	40.34
163	IPI00333562.1	none found in database	36748	6.98	24	2	5.15
164	IPI00007682.2	VACUOLAR ATP SYNTHASE CATALYTIC SUBUNIT A, UBIQUITOUS ISOFORM.	68304	5.16	23	9	17.18
165	IPI00027175.1	SORCIN.	21676	5.2	23	7	61.11
166	IPI00075248.1	CALMODULIN 2.	17557	3.89	23	7	66.45
167	IPI00081025.1	CALMODULIN.	17163	3.82	23	7	67.76
168	IPI00163984.2	none found in database	33366	5.2	23	8	30.74
169	IPI00181828.3	COFILIN, MUSCLE ISOFORM.	23759	8.2	23	5	27.98
170	IPI00220171.1	SPLICE ISOFORM FETAL-TAU OF P10636 MICROTUBULE-ASSOCIATED PROTEIN	32813	10.77	23	8	37.46
171	IPI00220173.1	SPLICE ISOFORM TAU-B OF P10636 MICROTUBULE-ASSOCIATED PROTEIN TAU.	39589	9.17	23	8	31.05
172	IPI00220174.1	SPLICE ISOFORM TAU-C OF P10636 MICROTUBULE-ASSOCIATED PROTEIN TAU.	42472	7.43	23	8	28.85
173	IPI00220362.2	10 KDA HEAT SHOCK PROTEIN, MITOCHONDRIAL.	15224	10.05	23	5	39.01
174	IPI00334215.1	none found in database	45330	6.29	23	5	6.86
175	IPI00386854.1	HYPOTHETICAL PROTEIN.	28412	4.51	23	8	36.55
176	IPI00013769.1	ALPHA ENOLASE, LUNG SPECIFIC.	49477	5.97	22	5	13.54
177	IPI00157721.4	none found in database	42109	5.59	22	3	7.18
178	IPI00258965.2	SIMILAR TO ELONGATION FACTOR 1 ALPHA.	45401	7.1	22	3	8.35
179	IPI00291005.2	CYTOSOLIC MALATE DEHYDROGENASE.	36426	7.45	22	6	26.05
180	IPI00293276.3	MACROPHAGE MIGRATION INHIBITORY FACTOR (GLYCOSYLATION-INHIBITING	12476	8.05	22	2	17.39
181	IPI00383758.1	GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE, MUSCLE.	35876	7.07	22	7	19.46
182	IPI00386621.1	SIMILAR TO CALMODULIN 2.	16507	4.08	22	6	66.67
183	IPI00396248.1	SORCIN ISOFORM B.	20345	4.92	22	6	36.07
184	IPI00019683.3	none found in database	48356	4.9	21	2	6.7
185	IPI00022881.1	SPLICE ISOFORM 1 OF P53675 CLATHRIN HEAVY CHAIN 2.	187030	5.67	21	7	5.37
186	IPI00024102.1	TRANSALDOLASE.	37540	6.8	21	8	25.52
187	IPI00027497.2	GLUCOSE-6-PHOSPHATE ISOMERASE.	63147	8.55	21	7	21.51
188	IPI00100470.1	ALPHA-TUBULIN ISOTYPE H2-ALPHA.	10899	3.91	21	4	48.98
189	IPI00217506.1	NUCLEOLIN.	76344	4.31	21	8	16.12
190	IPI00300446.1	SPLICE ISOFORM 2 OF P53675 CLATHRIN HEAVY CHAIN 2.	180296	5.58	21	7	5.56
191	IPI00385804.1	HYPOTHETICAL PROTEIN FLJ34423.	74325	4.26	21	8	16.59
192	IPI00017454.1	HYPOTHETICAL PROTEIN FLJ13940.	27546	8.59	20	2	11.62
193	IPI00024915.2	PEROXIREDOXIN 5, MITOCHONDRIAL PRECURSOR.	22026	8.77	20	8	51.87
194	IPI00026836.1	MICROTUBULE-ASSOCIATED PROTEIN TAU ISOFORM 3.	40007	10.13	20	8	33.94
195	IPI00027429.1	HYPOTHETICAL PROTEIN.	18829	5.68	20	6	33.13
196	IPI00179330.2	UBIQUITIN AND RIBOSOMAL PROTEIN S27A PRECURSOR.	17965	10.25	20	6	34.62
197	IPI00215747.1	FATTY ACID BINDING PROTEIN 7, BRAIN.	14889	5.25	20	6	41.67
198	IPI00219010.1	FERRITIN, HEAVY POLYPEPTIDE 1.	22178	6.34	20	5	31.05
199	IPI00219568.2	PHOSPHOGLYCERATE KINASE 2.	44796	8.82	20	4	11.27
200	IPI00220828.1	THYMOSIN, BETA 4.	5053	4.72	20	4	59.09
201	IPI00296120.1	SIMILAR TO SIMILARITY TO MONOUBIQUITIN/CARBOXY-EXTENSION PROTEIN	11722	11.17	20	6	52.94
202	IPI00337838.1	UBIQUITIN-52 AMINO ACID FUSION PROTEIN.	14728	10.51	20	6	42.19
203	IPI00376164.1	THYMOSIN-LIKE 2.	5040	6.82	20	4	59.09

204	IPI00395917.1	none found in database	22077	6.34	20	5	31.22
205	IPI00006663.1	ALDEHYDE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.	56381	7.05	19	8	24.95
206	IPI00015964.3	NEUROMODULIN.	28398	4.67	19	9	54.48
207	IPI00021841.1	APOLIPOPROTEIN A-I PRECURSOR.	30778	5.5	19	9	34.83
208	IPI00025499.1	MICROTUBULE-ASSOCIATED PROTEIN TAU ISOFORM 2.	45850	8.62	19	7	24.04
209	IPI00215965.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 ISOFORM B.	38747	9.46	19	8	26.61
210	IPI00216049.1	SPLICE ISOFORM 1 OF Q07244 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN	50976	5.18	19	9	26.13
211	IPI00216746.1	K. SPLICE ISOFORM 2 OF Q07244 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN	51028	4.94	19	9	26.08
212	IPI00217976.3	K. MICROTUBULE-ASSOCIATED PROTEIN TAU ISOFORM 1.	78878	6.69	19	7	13.98
213	IPI00220175.1	SPLICE ISOFORM TAU-E OF P10636 MICROTUBULE-ASSOCIATED PROTEIN TAU.	42836	9.53	19	7	25.79
214	IPI00220301.1	PEROXIREDOXIN 6.	25035	6.29	19	8	50.45
215	IPI00220342.1	DIMETHYLARGININE DIMETHYLAMINOHYDROLASE 1.	31122	5.61	19	7	27.72
216	IPI00258419.2	SIMILAR TO HEAT SHOCK COGNATE 71 KDA PROTEIN.	68249	4.91	19	7	11.27
217	IPI00301277.1	HEAT SHOCK 70 KDA PROTEIN 1-HOM	70375	5.82	19	7	15.6
218	IPI00328348.2		16175	10.6	19	5	34.75
210	IDI00223785 1		20074	6.33	10	1	5 50
213	IDI00275919 1		19007	6.67	10	6	40.04
220	IF100373616.1	(GDH).	24400	0.07	19	0	40.94
221	IP100376990.2		34196	9.63	19	0	30.94
222	IP100396395.1	NG,NG-DIMETHYLARGININE DIMETHYLAMINOHYDROLASE 1.	30991	5.61	19	,	27.82
223	IP100396492.1		2/4/8	4.8	19	4	13.58
224	IPI00025252.1	PROTEIN DISULFIDE ISOMERASE A3 PRECURSOR.	56782	6.28	18	10	28.91
225	IPI00105585.5	none found in database	21666	4.14	18	6	46.63
226	IPI00173781.3	SIMILAR TO HEAT SHOCK PROTEIN HSP 90-ALPHA (HSP 86).	64432	8.19	18	5	7.94
227	IPI00247601.2	SIMILAR TO GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE, LIVER (GAPDH).	72249	8	18	3	4.15
228	IPI00333470.1	none found in database	40503	6.04	18	2	4.63
229	IPI00334610.1	none found in database	41064	5.92	18	2	4.61
230	IPI00375306.1	PEROXIREDOXIN 5 PRECURSOR ISOFORM B.	17394	9.01	18	7	57.06
231	IPI00018939.1	BA92K2.2.	17967	10.03	17	5	24.36
232	IPI00027230.1	ENDOPLASMIN PRECURSOR.	92469	4.48	17	9	16.19
233	IPI00142798.2	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	15631	9.78	17	6	43.97
234	IPI00176590.2	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX- DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE	32353	7.32	17	7	26.73
235	IPI00218570.1	PROTEIN A1) (HDP). PHOSPHOGLYCERATE MUTASE 2 (MUSCLE).	28850	9.33	17	4	14.23
236	IPI00329801.5	ANNEXIN A5.	35806	4.66	17	8	31.66
237	IPI00376165.1	THYMOSIN-LIKE 4.	5113	4.72	17	3	45.45
238	IPI00000874.1	PEROXIREDOXIN 1.	22110	8.31	16	4	19.6
239	IPI00010130.1	GLUTAMINE SYNTHETASE.	42064	6.88	16	7	21.72
240	IPI00027499.1	SPLICE ISOFORM 1 OF P06748 NUCLEOPHOSMIN.	32575	4.39	16	7	30.95
241	IPI00030809.1	GAMMA-G GLOBIN.	16969	6.34	16	1	6.45
242	IPI00031012.2	SIMILAR TO HEMOGLOBIN, GAMMA G.	16126	7.23	16	1	6.8
243	IPI00217471.1	EPSILON GLOBIN.	16203	9.1	16	1	6.8
244	IPI00220706.1	SIMILAR TO HEMOGLOBIN, GAMMA A.	16128	7.23	16	1	6.8
245	IPI00220740.1	SPLICE ISOFORM 2 OF P06748 NUCLEOPHOSMIN.	29465	4.22	16	7	34.34
246	IPI00332720.1	HEMOGLOBIN GAMMA-A AND GAMMA-G CHAINS.	16009	7.23	16	1	6.85
247	IPI00339269.1	HEAT SHOCK 70 KDA PROTEIN 6	71028	6.01	16	6	11.04
248	IPI00375307 1	PEROXIREDOXIN 5 PRECI IRSOR ISOFORM C	12837	9 4 9	16	5	50.4
249	IPI00382844 1		65347	7 92	16	5	12 33
250	IPI00003362 1	78 KDA GLUCOSE-REGULATED PROTEIN PRECURSOR	72333	4 79	15	8	18.2
251	IPI00004532 1		56557	7 68	15	7	17
252	IPI00016639 1		50751	9.56	15	5	15 10
252	IPI00021766 2		120021	4 14	15	۵ ۵	12.13
254	IPI00021700.3		42284	4.59	15	3	12.04
255	IPI00101125 4		65300	4.50	15		12.00
200	11 100 101 100.1	G EHONET NOTEIN.	00000	J	15		20.03

256	IPI00177728.2	CYTOSOLIC NONSPECIFIC DIPEPTIDASE.	52954	5.81	15	9	26.47
257	IPI00240029.5	STATHMIN.	17171	5.8	15	6	35.14
258	IPI00299024.4	BRAIN ACID SOLUBLE PROTEIN 1.	22562	4.3	15	8	53.54
259	IPI00333941.1	none found in database	22028	8.48	15	6	33.33
260	IPI00386492.1	SIMILAR TO TRANSALDOLASE 1.	35329	9.41	15	5	17.92
261	IPI00395947.1	4-AMINOBUTYRATE AMINOTRANSFERASE PRECURSOR.	62284	8.87	15	7	15.29
262	IPI00012507.1	GTP-BINDING NUCLEAR PROTEIN RAN.	24423	7.59	14	6	34.72
263	IPI00032826.1	HSC70-INTERACTING PROTEIN.	41332	4.92	14	6	21.14
264	IPI00042578.2	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX- DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE PROTEIN A1) (HDP).	30383	8.2	14	5	19.08
265	IPI00046057.1	HUNC18B.	68736	6.76	14	10	20.4
266	IPI00063228.3	SIMILAR TO EUKARYOTIC TRANSLATION ELONGATION FACTOR 1 ALPHA 2.	41980	7.8	14	2	5.19
267	IPI00077402.2	SIMILAR TO UBIQUITIN AND RIBOSOMAL PROTEIN S27A PRECURSOR.	22190	9.9	14	3	12.18
268	IPI00084828.1	SPLICE ISOFORM 1 OF Q64320 SYNTAXIN BINDING PROTEIN 1.	67569	6.96	14	10	20.71
269	IPI00156444.4	SIMILAR TO HEAT SHOCK PROTEIN HSP 90-BETA (HSP 84) (HSP 90).	53868	4.79	14	8	18.03
270	IPI00164463.3	none found in database	18122	6.66	14	6	43.11
271	IPI00183526.1	SIMILAR TO NUCLEOLIN.	51357	4.43	14	5	14.26
272	IPI00218733.1	SUPEROXIDE DISMUTASE 1, SOLUBLE.	15936	6.07	14	8	55.84
273	IPI00289396.1	HYPOTHETICAL PROTEIN FLJ30394.	42500	6.39	14	8	26.06
274	IPI00332208.2	none found in database	23852	6.79	14	7	36.28
275	IPI00382804.1	EEF1A PROTEIN.	24196	10.24	14	2	8.81
276	IPI00383405.1	none found in database	21680	8.32	14	7	41.27
277	IPI00385358.1	none found in database	23812	7.11	14	7	37.14
278	IPI00395637.1	none found in database	34937	8.92	14	7	23.56
279	IPI00396452.1	none found in database	24387	4.41	14	4	19.25
280	IPI00003406.1	DREBRIN.	71425	4.1	13	7	14.48
281	IPI00009802.1	SPLICE ISOFORM V0 OF P13611 VERSICAN CORE PROTEIN PRECURSOR.	372820	4.15	13	7	2.59
282	IPI00012048.1	NUCLEOSIDE DIPHOSPHATE KINASE A.	17149	6.11	13	5	41.45
283	IPI00014398.1	SKELETAL MUSCLE LIM-PROTEIN 1.	31895	8.37	13	5	22.86
284	IPI00018206.1	ASPARTATE AMINOTRANSFERASE, MITOCHONDRIAL PRECURSOR.	47476	9.38	13	6	16.74
285	IPI00047642.3	none found in database	43066	9.43	13	3	6.3
286	IPI00176692.2	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX-	28788	9.73	13	4	17.31
287	IPI00215629.1	DES TABLIZING PROTEIN (DINGLES) TRAND BINDING PROTEIN) (MINNP CORE PROTEIN AI) (HDP-1) (DOPOISOMERSE-INHIBITOR SUPPRESED). SPLICE ISOFORM V2 OF P13611 VERSICAN CORE PROTEIN PRECURSOR.	182062	4.52	13	7	5.36
288	IPI00215631.1	SPLICE ISOFORM VINT OF P13611 VERSICAN CORE PROTEIN PRECURSOR.	369688	4.13	13	7	2.61
289	IPI00219029.1	ASPARTATE AMINOTRANSFERASE 1.	46247	7.01	13	8	26.63
290	IPI00337778.2	SIMILAR TO PHYTANOYL-COA HYDROXYLASE INTERACTING PROTEIN.	39066	7.15	13	7	25
291	IPI00374732.1	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	19330	8.77	13	5	35.75
292	IPI00374975.2	PUTATIVE PHOSPHOGLYCERATE MUTASE 3.	28777	6.63	13	4	24.8
293	IPI00375531.1	NM23-H1.	19654	5.29	13	5	35.59
294	IPI00375839.1	SIMILAR TO PHOSPHOGLYCERATE MUTASE 1 (PHOSPHOGLYCERATE MUTASE	21007	6.16	13	3	11.58
295	IPI00396476.1	none found in database	58771	4.94	13	2	3.92
296	IPI00001453.2	ALPHA-INTERNEXIN.	55391	5.09	12	7	14.83
297	IPI00001734.2	SPLICE ISOFORM 1 OF Q9Y617 PHOSPHOSERINE AMINOTRANSFERASE.	40423	7.77	12	6	18.11
298	IPI00007765.2	STRESS-70 PROTEIN, MITOCHONDRIAL PRECURSOR.	73680	6.01	12	11	20.47
299	IPI00011107.2	ISOCITRATE DEHYDROGENASE [NADP], MITOCHONDRIAL PRECURSOR.	50909	8.95	12	7	18.58
300	IPI00026260.1	NUCLEOSIDE DIPHOSPHATE KINASE B.	17298	8.69	12	5	42.11
301	IPI00107634.2	CHONDROITIN SULFATE PROTEOGLYCAN BEHAB/BREVICAN.	99148	4.28	12	8	10.98
302	IPI00163187.6	HYPOTHETICAL PROTEIN.	55136	7.26	12	7	15.6
303	IPI00172579.1	4-TRIMETHYLAMINOBUTYRALDEHYDE DEHYDROGENASE.	53802	5.61	12	6	15.18
304	IPI00180730.1	none found in database	50154	9.41	12	3	8.01
305	IPI00186036.2	none found in database	19050	8.35	12	5	17.42
306	IPI00215628.1	SPLICE ISOFORM V1 OF P13611 VERSICAN CORE PROTEIN PRECURSOR.	265050	4.17	12	6	3.28

307	IPI00215630.1	SPLICE ISOFORM V3 OF P13611 VERSICAN CORE PROTEIN PRECURSOR.	74293	7.38	12	6	12.06
308	IPI00216900.1	SIMILAR TO MICROTUBULE-ASSOCIATED PROTEIN 2.	58954	10.4	12	5	16.99
309	IPI00218319.1	SPLICE ISOFORM 2 OF P06753 TROPOMYOSIN ALPHA 3 CHAIN.	29033	4.44	12	6	27.02
310	IPI00218320.1	SPLICE ISOFORM 3 OF P06753 TROPOMYOSIN ALPHA 3 CHAIN.	28955	4.46	12	6	27.13
311	IPI00218474.2	BETA ENOLASE.	47003	7.84	12	4	11.95
312	IPI00219478.1	SPLICE ISOFORM 2 OF Q9Y617 PHOSPHOSERINE AMINOTRANSFERASE.	35189	6.66	12	6	20.68
313	IPI00261068.2	none found in database	16467	8.76	12	4	18.67
314	IPI00332474.1	none found in database	18152	9.09	12	4	19.39
315	IPI00374327.1	MICROTUBULE-ASSOCIATED PROTEIN 2 ISOFORM 4.	52874	10.3	12	5	18.92
316	IPI00374399.1	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX-	24239	9.6	12	5	26.84
317	IPI00374686.1	DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE PROTEIN A1) (HDP). SIMILAR TO HYPOTHETICAL PROTEIN MGC37309.	18838	8.9	12	5	28.66
318	IPI00382894.1	TPMSK3.	28809	4.41	12	6	27.13
319	IPI00386739.2	CHONDROITIN SULFATE PROTEOGLYCAN BEHAB/BREVICAN.	99118	4.28	12	8	10.98
320	IPI00013808.1	ALPHA-ACTININ 4.	104854	5.12	11	7	11.75
321	IPI00020599.1	CALRETICULIN PRECURSOR.	48142	4.04	11	6	23.02
322	IPI00021383.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A3.	39686	8.77	11	5	14.78
323	IPI00021828.1	CYSTATIN B.	11140	7.73	11	3	45.92
324	IPI00025366.1	CITRATE SYNTHASE. MITOCHONDRIAL PRECURSOR.	51706	8.21	11	5	12.23
325	IPI00030144.1		18182	9.76	11	4	20.73
326	IPI00031045.1	DESTRIN	18506	7 97	11	4	23.64
327	IPI00062200 1		17008	6.39	11	2	5 1
220	IP100002203.1		07551	5.01	11	2	20.99
320	IF100174700.2	DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE PROTEIN 41) (HDP)	27551	5.21		5	20.00
329	IPI00335314.1	none found in database	34736	5.34	11	2	2.53
330	IPI00374137.1	SIMILAR TO PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN (PEBP) (PROSTATIC BINDING PROTEIN) (HCNPPP) (NEUROPOLYPEPTIDE H3) (RAF KINASE INHIBITOR	10844	5.7	11	2	22.92
331	IPI00383539.1	PROTEIN) (RKIP). CITRATE SYNTHASE PRECURSOR ISOFORM B.	44703	7.2	11	5	14.25
332	IPI00386685.2	CITRATE SYNTHASE PRECURSOR ISOFORM A.	55633	8.96	11	5	11.24
333	IPI00006482.1	SPLICE ISOFORM LONG OF P05023 SODIUM/POTASSIUM-TRANSPORTING ATPASE	112896	5.15	10	6	7.82
334	IPI00012007.2	ALPHA-1 CHAIN PRECURSOR. ADENOSYLHOMOCYSTEINASE.	47716	6.29	10	5	16.2
335	IPI00013944.2	SPLICE ISOFORM C2 OF P07910 HETEROGENEOUS NUCLEAR	33688	4.69	10	5	19.28
336	IPI00019359.2	RIBONUCLEOPROTEINS C1/C2. KERATIN, TYPE I CYTOSKELETAL 9.	62064	4.89	10	7	13.96
337	IPI00025318.1	SH3 DOMAIN-BINDING GLUTAMIC ACID-RICH-LIKE PROTEIN.	12774	4.91	10	3	28.95
338	IPI00027107.3	TU TRANSLATION ELONGATION FACTOR, MITOCHONDRIAL	49875	7.68	10	8	25.27
330	IPI00020028 1		22017	8 53	10	3	18 56
340	IPI00055606 2		36263	0.00	10	3	11 15
241	IP100033000.2		33490	3.15	10	3	17.02
242	IP100002377.1		07744	6.70	10	7	7 11
342	IF100092170.2	PROTEIN, EPSILON POLYPEPTIDE.	45000	5.00	10	2	20.00
343	IPI00107555.1	PROFILIN 2 ISOFORM B.	15088	5.88	10	3	29.29
344	IPI00165579.3		43908	6.44	10	ь	22.19
345	IPI00168184.1	HYPOTHETICAL PROTEIN FLJ34068.	56803	5.4	10	8	21.22
346	IPI00168839.1	FAM10A5.	41378	4.68	10	4	12.74
347	IPI00176715.2	SIMILAR TO FERRITIN HEAVY CHAIN (FERRITIN H SUBUNIT).	27186	6.5	10	3	16.1
348 349	IPI00216592.1	SPLICE ISOFORM C1 OF P07910 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS C1/C2. PROFULN 2 ISOFORM A	32356	4.68	10 10	5	20.14
349	IF100219400.1		13040	0.07	10	3	29.29
350	IF100230240.2		41023	18.0	10	3	0.92
350	IFI00209002.3		40362	4.39	10	4	11.04
352	IPI00293579.1	SPLICE ISOFORM MAPZC OF P11137 MICROTUBULE-ASSOCIATED PROTEIN 2.	49768	10.19	10	4	17.83
353	IPI00301311.1	SET PRUTEIN.	32103	3.85	10	4	18.77
354	IPI00302840.1	SODIUM/POTASSIUM-TRANSPORTING ATPASE ALPHA-3 CHAIN.	111735	5.02	10	6	8.79
355	IPI00328587.4	SIMILAR TO ENOLASE 1,.	42342	5.71	10	5	8.51
356	IPI00385025.1	ISOCITRATE DEHYDROGENASE.	46815	7.21	10	6	17.42
357	IPI00385372.1	none found in database	34547	4.97	10	5	21.29

358	IPI00003021.1	SODIUM/POTASSIUM-TRANSPORTING ATPASE ALPHA-2 CHAIN PRECURSOR.	112265	5.33	9	5	6.47
359	IPI00003479.1	MITOGEN-ACTIVATED PROTEIN KINASE 1.	41390	6.99	9	5	15.83
360	IPI00013881.4	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H.	49229	6.25	9	4	13.36
361	IPI00021304.1	KERATIN, TYPE II CYTOSKELETAL 2 EPIDERMAL.	65865	8.17	9	3	5.58
362	IPI00022463.1	SEROTRANSFERRIN PRECURSOR.	77050	7.13	9	6	11.03
363	IPI00024919.1	THIOREDOXIN-DEPENDENT PEROXIDE REDUCTASE, MITOCHONDRIAL	27693	7.88	9	6	26.95
364	IPI00025054.1	PRECURSOR. SPLICE ISOFORM LONG OF Q00839 HETEROGENOUS NUCLEAR	90479	5.8	9	6	10.44
365	IPI00164792.1	RIBONUCLEOPROTEIN U. PROTHYMOSIN ALPHA.	11828	3.38	9	5	36.11
366	IPI00180240.1	THYMOSIN-LIKE 3.	5235	4.72	9	2	26.09
367	IPI00218038.1	ST13-LIKE TUMOR SUPPRESSOR.	27407	4.72	9	4	22.5
368	IPI00219209.1	SPLICE ISOFORM 4 OF Q9NQC3 RETICULON 4.	106360	4.13	9	7	11.98
369	IPI00220503.4	DYNACTIN 2.	44820	4.81	9	7	23.89
370	IPI00295624.1	HYPOTHETICAL PROTEIN.	71595	4.17	9	5	9.52
371	IPI00299633.1	DJ1071L10.1.	5043	4.72	9	2	27.27
372	IPI00302898.1	PROTHYMOSIN ALPHA.	12072	3.41	9	5	35.45
373	IPI00332603.1	none found in database	34063	8.19	9	4	19.11
374	IPI00374151 1	PEROXIREDOXIN 3 ISOFORM B	25839	7 54	9	6	28.99
375	IPI00376163 1		5071	4 72	9	2	27.27
376	IPI00376205 1		41404	7.16	9	5	15.93
370	IP100370230.1		22624	4.60	9	5	17.05
270	IP100304303.1		90724	4.03	9	5	10.59
370	IF100300491.2	RIBONUCLEOPROTEIN U.	09724	1.00	9	0	10.56
379	IP100396479.1		24078	4.39	9	4	22.9
380	IPI00003815.1		23207	4.74	8	3	30.88
381	IP100003881.1		45672	5.31	8	4	13.73
382	IPI00004574.1		11609	5.68	8	3	51.89
383	IPI00010779.1	SPLICE ISOFORM 1 OF P0/226 TROPOMYOSIN ALPHA 4 CHAIN.	28522	4.36	8	4	15.73
384	IPI00013508.2	ALPHA-ACTININ 1.	102974	5.04	8	4	5.49
385	IPI00018140.2	GRY-RBP.	69633	8.88	8	5	9.79
386	IPI00022314.1	SUPEROXIDE DISMUTASE [MN], MITOCHONDRIAL PRECURSOR.	24722	8.45	8	4	20.27
387	IPI00027165.1	SPLICE ISOFORM R-TYPE OF P30613 PYRUVATE KINASE, ISOZYMES R/L.	61830	7.83	8	2	2.96
388	IPI00027223.2	ISOCITRATE DEHYDROGENASE [NADP] CYTOPLASMIC.	46659	7	8	4	15.22
389	IPI00027442.1	ALANYL-TRNA SYNTHETASE.	106801	5.13	8	6	10.23
390	IPI00028888.1	SPLICE ISOFORM 1 OF Q14103 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN D0.	38434	8.01	8	5	18.31
391	IPI00048940.3	none found in database	29068	8.13	8	3	14.18
392	IPI00074333.1	HYPOTHETICAL PROTEIN.	25826	5.61	8	5	24.35
393	IPI00107117.1	PEPTIDYLPROLYL ISOMERASE B.	23743	10.07	8	4	16.2
394	IPI00152471.1	GUANINE NUCLEOTIDE-BINDING PROTEIN G(O), ALPHA SUBUNIT 2.	40087	5.69	8	4	14.69
395	IPI00164416.3	none found in database	17889	7.88	8	3	16.46
396	IPI00174920.2	SIMILAR TO CITRATE SYNTHASE PRECURSOR.	51440	7.23	8	4	9.87
397	IPI00179589.1	MYOTROPHIN.	12895	5.18	8	5	63.56
398	IPI00181260.1	PHOSPHOFRUCTOKINASE, MUSCLE.	85183	8.07	8	5	7.56
399	IPI00217465.1	H1 HISTONE FAMILY, MEMBER 2.	21365	11.71	8	3	18.31
400	IPI00218115.3	SPLICE ISOFORM 1 OF P06753 TROPOMYOSIN ALPHA 3 CHAIN.	32950	4.38	8	4	13.33
401	IPI00218407.4	ALDOLASE B.	39473	7.96	8	1	1.92
402	IPI00219585.1	SPLICE ISOFORM 2 OF P08237 6-PHOSPHOFRUCTOKINASE, MUSCLE TYPE.	81644	7.68	8	5	7.89
403	IPI00220281.1	GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN), ALPHA ACTIVATING	40051	5.19	8	4	14.69
404	IPI00220684.1	SPLICE ISOFORM 3 OF Q14103 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN	32835	8.43	8	5	21.24
405	IPI00220827.1	THYMOSIN, BETA 10.	5026	5.02	8	3	63.64
406	IPI00243603.2		55507	6.45	8	5	10.16
407	IPI00291928.1	RAS-RELATED PROTEIN RAB-14.	23927	6.13	8	4	22.79
408	IPI00304824.3	HYPOTHETICAL PROTEIN.	24750	8.45	8	4	20.27
409	IPI00332370.3	PYRUVATE KINASE L.	65043	7.75	8	2	2.81

410	IPI00334441.1	none found in database	10362	9.08	8	3	30.53
411	IPI00334779.1	SPLICE ISOFORM L-TYPE OF P30613 PYRUVATE KINASE, ISOZYMES R/L.	58494	7.05	8	2	3.13
412	IPI00374228.1	SIMILAR TO MGC37309 PROTEIN.	29623	8.26	8	3	12.46
413	IPI00375401.1	PEROXIREDOXIN 2 ISOFORM C.	15819	9.49	8	2	13.38
414	IPI00375676.1	HYPOTHETICAL PROTEIN DKFZP686L19147.	26825	5.61	8	5	23.24
415	IPI00385058.1	HYPOTHETICAL PROTEIN.	25702	7.7	8	3	23.31
416	IPI00385732.1	none found in database	18987	8.78	8	5	26.49
417	IPI00386745 1		103058	5.07	8	4	5.49
410	IDI00205552 1		10764	5.07 E 19	0	-	64.4
410	IP100395055.1		F9726	7.65	0	5	11 57
419	IF100395915.1		050730	7.05	0	5	00.5
420	IPI00396072.1		25674	8.45	8	3	23.5
421	IPI00010810.1	ELECTRON TRANSFER FLAVOPROTEIN ALPHA-SUBUNIT, MITOCHONDRIAL PRECURSOR.	35080	8.57	7	5	24.62
422	IPI00014177.1	SEPTIN 2.	41487	6.58	7	3	10.8
423	IPI00015139.2	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX- DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE PROTEIN A1) (HDP).	25124	6.42	7	3	11.45
424	IPI00015550.3	PROTHYMOSIN ALPHA.	11954	3.42	7	4	22.94
425	IPI00015842.1	RETICULOCALBIN 1 PRECURSOR.	38890	4.61	7	5	20.24
426	IPI00020956.1	HEPATOMA-DERIVED GROWTH FACTOR.	26788	4.39	7	6	37.92
427	IPI00020984.1	CALNEXIN PRECURSOR.	67568	4.21	7	6	12.5
428	IPI00023504.1	RAS-RELATED PROTEIN RAB-3A.	24984	4.62	7	3	17.73
429	IPI00024990.6	METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE [ACYLATING],	57840	8.69	7	5	11.59
430	IPI00026230.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H'.	49264	6.25	7	3	9.58
431	IPI00029997.1	6-PHOSPHOGLUCONOLACTONASE.	27547	5.95	7	3	27.13
432	IPI00046595.2	SIMILAR TO PYRUVATE KINASE, M1 ISOZYME (PYRUVATE KINASE MUSCLE	38068	6.51	7	2	4.31
433	IPI00056467.6	ISOZYME) (CYTOSOLIC THYROID HORMONE-BINDING PROTEIN) (CTHBP) (THBP1). SIMILAR TO TEMPLATE ACYIVATING FACTOR-I ALPHA.	25908	4.73	7	3	18.3
434	IPI00076042.2	SHORT HEAT SHOCK PROTEIN 60 HSP60S2.	27096	4.34	7	3	14.34
435	IPI00100160.1	HYPOTHETICAL PROTEIN.	136376	5.54	7	5	4.55
436	IPI00101645 1	PLITATIVE ADENOSYLHOMOCYSTEINASE 3	66721	7.39	7	4	6.55
437	IPI00159175 1		66668	7 44	7	4	67
438	IPI00176607 3		20153	8.21	7	3	15 15
430	IPI00170155 1		23133	4 99	7	3	24.35
439	IP100179155.1		24013	4.99	7	4	24.33
440 441	IPI00179377.2	SIMILAR TO 60 KDA HEAT SHOCK PROTEIN, MITOCHONDRIAL PRECURSOR (HSP60) (60 KDA CHAPERONIN) (CPN60) (HEAT SHOCK PROTEIN 60) (HSP-60) (MITOCHONDRIAL MATRIX PROTEIN P1) (P60 LYMPHOCYTE PROTEIN) (HUCHA60). SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HEUX- DEGATAPIT (HEAD PROTEIN) (HUCHA60).	30103	6.4	7	4	11.93
140	IDI00402020.2	DESTABLIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE PROTEIN A1) (HDP-1) (TOPOISOMERASE-INHIBITOR SUPPRESSED).	74054	0.44	7	4	6.40
442	IF100162936.3		07750	0.11	-	4	0.12
443	IP100186290.3		97752	0.82	-	4	6.35
444	IPI00215761.3	ATP-DEPENDENT UNA HELICASE II, 70 KDA SUBUNIT.	69712	6.61	/	ь	12.99
445	IPI00216134.1	SPLICE ISOFORM 2 OF P09493 TROPOMYOSIN 1 ALPHA CHAIN.	26549	4.47	7	3	13.66
446	IPI00216757.1	SPLICE ISOFORM SHORT OF P05023 SODIUM/POTASSIUM-TRANSPORTING ATPASE ALPHA-1 CHAIN PRECURSOR.	74140	5.87	7	3	5.73
447	IPI00216947.2	SIMILAR TO HEAT SHOCK 70KD PROTEIN BINDING PROTEIN.	34791	4.62	7	3	13.18
448	IPI00217466.1	H1 HISTONE FAMILY, MEMBER 3.	22350	11.79	7	2	10.41
449	IPI00217467.1	H1 HISTONE FAMILY, MEMBER 4.	21865	11.8	7	2	10.5
450	IPI00217473.1	ZETA GLOBIN.	15637	8.51	7	1	4.93
451	IPI00220683.1	SPLICE ISOFORM 2 OF Q14103 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN	36272	8.34	7	4	15.48
452	IPI00220685.1	SPLICE ISOFORM 4 OF Q14103 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN	30672	8.73	7	4	18.12
453	IPI00220766.1	GLYOXALASE I.	20720	5.08	7	3	25.54
454	IPI00243289.4	HYPOTHETICAL PROTEIN XP_292029.	30355	5.04	7	1	2.6
455	IPI00253411.2	none found in database	38301	5.79	7	1	3.54
456	IPI00290982.5	DYNEIN HEAVY CHAIN, CYTOSOLIC.	532367	6.36	7	5	1.74
457	IPI00298289.1	SPLICE ISOFORM 2 OF Q9NQC3 RETICULON 4.	40318	4.41	7	3	13.67
458	IPI00300020.3	EXCITATORY AMINO ACID TRANSPORTER 2.	62104	6.51	7	4	6.79
459	IPI00328108.5	DESMIN.	53530	4.94	7	3	5.76
460	IPI00328188.1	FATTY ACID SYNTHASE.	273427	6.41	7	5	3.03

461	IPI00335276.3	HYPOTHETICAL PROTEIN.	43255	4.41	7	3	12.75
462	IPI00337654.1	PROTHYMOSIN ALPHA.	8030	3.44	7	3	34.72
463	IPI00374113.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	50546	8.56	7	2	2.79
464	IPI00374247.1	SIMILAR TO HEAT SHOCK PROTEIN HSP 90-BETA (HSP 84).	11111	4.02	7	2	14.58
465	IPI00376110.1	SIMILAR TO RHO GDP-DISSOCIATION INHIBITOR 1 (RHO GDI 1) (RHO-GDI ALPHA).	25377	6.3	7	2	13.9
466	IPI00376262.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	27042	8.22	7	2	5.31
467	IPI00376272.1	SIMILAR TO CYCLOPHILIN-LC.	23765	9.24	7	3	9.22
468	IPI00376415.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	19047	10.51	7	2	7.56
469	IPI00376771.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	19737	9.31	7	2	7.1
470	IPI00382617.1	P37 AUF1.	31481	7.45	7	4	18.18
471	IPI00382931.1	PLACENTA IMMUNOREGULATORY FACTOR PLIF.	19490	8.79	7	2	13.94
472	IPI00386068.1	HYPOTHETICAL PROTEIN.	85409	5.16	7	5	7.27
473	IPI00395343.1	THYROID AUTOANTIGEN 70KDA (KU ANTIGEN).	69843	6.61	7	6	12.97
474	IPI0000230.1	HYPOTHETICAL PROTEIN.	34944	4.5	6	3	8.77
475	IPI00003370.1	SPLICE ISOFORM 1 OF Q16623 SYNTAXIN 1A.	33023	4.88	6	5	28.13
476	IPI00005719.1	SPLICE ISOFORM 1 OF P11476 RAS-RELATED PROTEIN RAB-1A.	22678	6	6	3	17.07
477	IPI00006612.1	CLATHRIN COAT ASSEMBLY PROTEIN AP180.	92502	4.45	6	3	5.4
478	IPI00008529.1	60S ACIDIC RIBOSOMAL PROTEIN P2.	11665	4.14	6	4	69.57
479	IPI00008964.1	RAS-RELATED PROTEIN RAB-1B.	22171	5.38	6	3	17.41
480	IPI00009865.1	KERATIN, TYPE I CYTOSKELETAL 10.	59519	4.87	6	4	10.46
481	IPI00010796.1	PROTEIN DISULFIDE ISOMERASE PRECURSOR.	57116	4.49	6	5	18.31
482	IPI00011229.1	CATHEPSIN D PRECURSOR.	44552	6.5	6	4	11.65
483	IPI00013991.1	SPLICE ISOFORM 1 OF P07951 TROPOMYOSIN BETA CHAIN.	32851	4.36	6	2	6.69
484	IPI00014230.1	COMPLEMENT COMPONENT 1, Q SUBCOMPONENT BINDING PROTEIN,	31362	4.47	6	3	9.57
485	IPI00014581.1	MITOCHONDRIAL PRECURSOR. SPLICE ISOFORM 1 OF P09493 TROPOMYOSIN 1 ALPHA CHAIN.	32709	4.39	6	3	9.51
486	IPI00016513.1	RAS-RELATED PROTEIN RAB-10.	22541	8.61	6	2	11
487	IPI00019888.1	SUCCINATE SEMIALDEHYDE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.	57215	8.37	6	4	10.09
488	IPI00021751.2	NEUROFILAMENT TRIPLET H PROTEIN.	112479	6	6	2	1.36
489	IPI00024107.1	SPLICE ISOFORM 1 OF P37840 ALPHA-SYNUCLEIN.	14460	4.37	6	2	13.57
490	IPI00028196.2	SIMILAR TO KIAA1765 PROTEIN.	104424	9.71	6	2	3.01
491	IPI00029091.1	PUTATIVE NUCLEOSIDE DIPHOSPHATE KINASE.	15529	8.83	6	3	27.01
492	IPI00032904.1	BETA-SYNUCLEIN.	14288	4.09	6	2	14.18
493	IPI00045410.2	SIMILAR TO NUCLEOPHOSMIN 1.	32995	4.34	6	2	6.73
494	IPI00073958.1	HYPOTHETICAL PROTEIN.	18648	8.18	6	2	23.78
495	IPI00140827.2	SIMILAR TO SMT3 SUPPRESSOR OF MIF TWO 3 HOMOLOG 2.	17755	6.25	6	2	13.75
496	IPI00165028.1	PROTHYMOSIN ALPHA.	11349	3.41	6	3	24.76
497	IPI00175108.2	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN K ISOFORM A.	50289	4.89	6	3	6.54
498	IPI00175156.2	SIMILAR TO HEAT SHOCK 70KD PROTEIN BINDING PROTEIN.	42873	5.05	6	3	10.68
499	IPI00176998.2	SIMILAR TO TROPOMYOSIN 3.	28884	4.38	6	4	18.15
500	IPI00178083.1	HYPOTHETICAL PROTEIN FLJ35393.	21697	4.51	6	4	24.46
501	IPI00180954.2	COLD-INDUCIBLE RNA-BINDING PROTEIN.	18648	9.82	6	3	26.74
502	IPI00185362.1	SIMILAR TO NEURAL CELL ADHESION MOLECULE 1.	66271	4.52	6	4	7.62
503	IPI00215902.1	ALDO-KETO REDUCTASE FAMILY 1, MEMBER B1.	35853	6.99	6	4	11.71
504	IPI00215916.1	CYTOCHROME C.	11749	10.16	6	2	27.62
505	IPI00216975.1	SPLICE ISOFORM 2 OF P07226 TROPOMYOSIN ALPHA 4 CHAIN.	32723	4.38	6	2	6.69
506	IPI00218467.1	SPLICE ISOFORM 2-4 OF P37840 ALPHA-SYNUCLEIN.	11372	8.88	6	2	16.96
507	IPI00218667.1	STATHMIN 2.	24926	9.02	6	2	8.68
508	IPI00218793.2	PARATHYMOSIN.	11530	3.83	6	3	22.55
509	IPI00218820.1	SPLICE ISOFORM 3 OF P07951 TROPOMYOSIN BETA CHAIN.	28684	4.29	6	2	7.66
510	IPI00220271.1	ALDO-KETO REDUCTASE FAMILY 1, MEMBER A1.	36573	6.79	6	4	18.46
511	IPI00220709.3	SPLICE ISOFORM 2 OF P07951 TROPOMYOSIN BETA CHAIN.	32990	4.32	6	2	6.69
512	IPI00220737.1	SPLICE ISOFORM N-CAM 120 OF P13592 NEURAL CELL ADHESION MOLECULE 1, 120 KDA ISOFORM PRECURSOR.	83770	4.5	6	4	6.04

513	IPI00221222.1	ACTIVATED RNA POLYMERASE II TRANSCRIPTION COFACTOR 4.	14365	10.32	6	4	37.01
514	IPI00258810.2	none found in database	29189	9.77	6	3	12.02
515	IPI00259825.2	SIMILAR TO NUCLEOPHOSMIN 1.	43866	4.97	6	2	4.95
516	IPI00295684.1	KERATIN 10.	58827	4.82	6	4	10.62
517	IPI00299149.1	UBIQUITIN-LIKE PROTEIN SMT3B.	10871	5.16	6	2	23.16
518	IPI00302448.1	NEURAL CELL ADHESION MOLECULE 1, 140 KDA ISOFORM PRECURSOR.	93361	4.5	6	4	5.42
519	IPI00332161.1	IG GAMMA-1 CHAIN C REGION.	36106	8.31	6	3	13.33
520	IPI00333730.2	none found in database	27500	5.01	6	3	19.84
521	IPI00334144.1	none found in database	22353	6.37	6	3	24.14
522	IPI00334545.2	none found in database	46431	4.7	6	1	1.68
523	IPI00336008.1	ALDEHYDE DEHYDROGENASE 5A1 PRECURSOR ISOFORM 1.	58653	8.16	6	4	9.85
524	IPI00374397.1	SIMILAR TO TROPOMYOSIN 4.	24982	4.87	6	2	8.84
525	IPI00374519.1	SIMILAR TO RAB1B, MEMBER RAS ONCOGENE FAMILY.	22017	5.05	6	3	17.41
526	IPI00374689.1	SIMILAR TO ATP-DEPENDENT DNA HELICASE II, 70 KDA SUBUNIT (LUPUS KU AUTOANTIGEN PROTEIN P70) (KU70) (70 KDA SUBUNIT OF KU ANTIGEN) (THYROID- LUPUS AUTOANTIGEN) (TLAA) (CTC BOX BINDING FACTOR 75 KDA SUBUNIT) (CTCBF) (CTC75).	54430	8.87	6	5	13.68
527	IP100375315.1		19507	4.44	0	2	12.2
526	IP100376005.1		20170	7.02	0	3	25.54
529	IP100376012.1	SIMILAR TO HYPOTHETICAL PROTEIN MGC37309.	23413	9.19	6	3	11.66
530	IPI00376379.1	KERATIN 1B.	61801	5.78	6	1	2.08
531	IPI00376794.1	SIMILAR TO THYMOSIN-LIKE 4.	13915	4.7	6	1	4.8
532	IPI00383445.1	SIMILAR TO APOBEC-1 COMPLEMENTATION FACTOR.	46268	9.19	6	3	8.29
533	IPI00384938.1	HYPOTHETICAL PROTEIN DKFZP686N02209.	52852	8.61	6	3	9.13
534	IPI00385332.1	HYPOTHETICAL PROTEIN.	51204	8.28	6	3	9.36
535	IPI00385621.1	PROTHYMOSIN ALPHA.	11679	3.46	6	3	24.3
536	IPI00386314.1	FLJ00064 PROTEIN.	30383	5.38	6	3	22.1
537	IPI00395322.1	EUKARYOTIC TRANSLATION INITIATION FACTOR 5A.	16701	4.86	6	3	30.72
538	IPI00395738.1	none found in database	18721	9.95	6	3	26.59
539	IPI00395871.1	HUMAN FULL-LENGTH CDNA CLONE CS0DA009YK08 OF NEUROBLASTOMA OF HOMO SAPIENS.	25230	4.35	6	4	21.24
540	IPI00001593.1	LYSOSOMAL PRO-X CARBOXYPEPTIDASE PRECURSOR.	55800	7.23	5	3	9.88
541	IPI00002966.1	HEAT SHOCK 70 KDA PROTEIN 4.	94300	4.9	5	3	5.6
542	IPI00003925.3	PYRUVATE DEHYDROGENASE E1 COMPONENT BETA SUBUNIT, MITOCHONDRIAL PRECURSOR.	39219	6.63	5	4	14.21
543	IPI00005089.1	NEURONAL TROPOMODULIN.	39595	4.93	5	2	7.41
544	IPI00007102.1	CGI-150 PROTEIN.	55012	8.86	5	4	11.9
545	IPI00008994.2	SPLICE ISOFORM 1 OF Q9UN36 NDRG2 PROTEIN.	40798	4.87	5	5	21.56
546	IPI00009476.2	SPLICE ISOFORM C OF P13592 NEURAL CELL ADHESION MOLECULE 1, 120 KDA ISOFORM PRECURSOR.	83985	4.6	5	3	4.34
547	IPI00011134.1	HEAT SHOCK 70 KDA PROTEIN 7.	26907	7.62	5	2	11.74
548	IPI00011515.1	PROTEIN KINASE C AND CASEIN KINASE SUBSTRATE IN NEURONS PROTEIN 1.	50966	4.89	5	3	8.56
549	IPI00012074.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN R.	70943	8.32	5	4	7.9
550	IPI00012503.1	SPLICE ISOFORM SAP-MU-0 OF P07602 PROACTIVATOR POLYPEPTIDE PRECURSOR [Contains: SAPOSIN A (PROTEIN A); SAPOSIN B (SPHINGOLIPID ACTIVATOR PROTEIN 1) (SAP-1) (CEREBROSIDE SULFATE ACTIVATOR) (CSACT) (DISPERSIN) (SULFATIDE/GM1 ACTIVATOR); SAPOSIN C (CO-BETA-G	58113	4.82	5	3	6.68
551	IPI00013004.1	SPLICE ISOFORM 1 OF 000764 PYRIDOXAL KINASE.	35102	6.05	5	2	10.26
552	IPI00013894.1	STRESS-INDUCED-PHOSPHOPROTEIN 1.	62639	6.78	5	3	7.73
553	IPI00018853.1	TROPOMYOSIN ISOFORM.	28420	4.59	5	2	7.82
554	IPI00022799.1	SPLICE ISOFORM 2 OF P55087 AQUAPORIN 4.	34830	7.75	5	3	11.15
555	IPI00026781.1	FATTY ACID SYNTHASE (EC 2.3.1.85) [Includes: EC 2.3.1.38; EC 2.3.1.39; EC 2.3.1.41; EC 1.1.1.100; EC 4.2.1.61; EC 1.3.1.10; EC 3.1.2.14].	273102	6.64	5	3	1.68
556	IPI00027117.1	SIMILAR TO RAN-SPECIFIC GTPASE-ACTIVATING PROTEIN (RAN BINDING PROTEIN 1) (RANBP1).	23351	4.87	5	2	10.95
557	IPI00027569.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN C-LIKE DJ845024.4.	32142	4.67	5	3	11.6
558	IPI00027834.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN L.	60187	7.13	5	4	8.24
559	IPI00028946.1	RETICULON PROTEIN 3.	25609	8.76	5	1	4.66
560	IPI00032458.4	SIMILAR TO SODIUM/POTASSIUM-TRANSPORTING ATPASE ALPHA-4 CHAIN (SODIUM PUMP 4) (NA+/K+ ATPASE 4).	110885	5.62	5	2	2.4
561	IPI00032575.1	HYPOTHETICAL PROTEIN.	34793	5.28	5	4	19.17
562	IPI00033600.1	YEAST SDS22 HOMOLOG.	41564	4.55	5	2	8.06

563	IPI00064001.2	none found in database	26127	8.44	5	1	5.53
564	IPI00073603.2	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	23310	7.93	5	3	8.65
565	IPI00076129.3	none found in database	38230	5.25	5	2	6.48
566	IPI00106604.3	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	19225	8.5	5	2	6.11
567	IPI00161971.1	HYPOTHETICAL PROTEIN.	10870	5.73	5	1	12.63
568	IPI00165677.1	DJ681N20.2 (NOVEL PROTEIN SIMILAR TO FERRITIN, LIGHT POLYPEPTIDE.	20075	5.56	5	3	22.86
569	IPI00168728.1	FLJ00385 PROTEIN.	56111	7.64	5	2	5.89
570	IPI00177423.2	SIMILAR TO RETICULON PROTEIN 3 (NEUROENDOCRINE-SPECIFIC PROTEIN-LIKE	25523	8.76	5	1	4.66
571	IPI00186711.2	2) (NSP-LINE PROTEIN II) (NSPLII). SIMILAR TO PLECTIN 1, INTERMEDIATE FILAMENT BINDING PROTEIN, 500KD.	531990	5.76	5	5	1.3
572	IPI00215884.1	SPLICING FACTOR, ARGININE/SERINE-RICH 1 (SPLICING FACTOR 2, ALTERNATE	27745	10.77	5	4	16.53
573	IPI00215914.1	ADP-RIBOSYLATION FACTOR 1.	20697	6.8	5	2	19.89
574	IPI00215917.1	ADP-RIBOSYLATION FACTOR 3.	20601	7.6	5	2	19.89
575	IPI00216135.1	SPLICE ISOFORM 3 OF P09493 TROPOMYOSIN 1 ALPHA CHAIN.	32876	4.42	5	2	6.69
576	IPI00216320.1	SPLICE ISOFORM 2 OF 000764 PYRIDOXAL KINASE.	31808	5.82	5	2	11.27
577	IPI00216393.1	SPLICE ISOFORM NON-BRAIN OF P09496 CLATHRIN LIGHT CHAIN A.	23662	4.17	5	4	20.64
578	IPI00217903.2	SIMILAR TO TUBULIN BETA.	21641	4.54	5	2	12.77
579	IPI00218108.1	SPLICE ISOFORM 2 OF Q9UN36 NDRG2 PROTEIN.	39289	5.05	5	5	22.41
580	IPI00218109.1	SPLICE ISOFORM 3 OF Q9UN36 NDRG2 PROTEIN.	39679	5.06	5	5	22.22
581	IPI00218591.1	SPLICE ISOFORM ASF-2 OF Q07955 SPLICING FACTOR, ARGININE/SERINE-RICH 1.	31868	5.7	5	4	14.09
582	IPI00218592.1	SPLICE ISOFORM ASF-3 OF Q07955 SPLICING FACTOR, ARGININE/SERINE-RICH 1.	22329	8.16	5	4	20.5
583	IPI00218919.1	ATPASE, H+/K+ EXCHANGING, ALPHA POLYPEPTIDE.	114091	5.54	5	2	2.71
584	IPI00219824.1	SPLICE ISOFORM SAP-MU-6 OF P07602 PROACTIVATOR POLYPEPTIDE	58356	4.77	5	3	6.65
585	IPI00219825.1	PRECURSOR [Contains: SAPOSIN A (PROTEIN A); SAPOSIN B (SPHINGOLIPID ACTIVATOR PROTEIN 1) (SAP-1) (CEREBROSIDE SULFATE ACTIVATOR) (CSACT) (DISPERSIN) (SULFATIDE/GM1 ACTIVATOR); SAPOSIN C (CO-BETA-G SPLICE ISOFORM SAP-MU-9 OF P07602 PROACTIVATOR POLYPEPTIDE PRECURSOR [Contains: SAPOSIN A (PROTEIN A); SAPOSIN B (SPHINGOLIPID ACTIVATOR PROTEIN 1) (SAP-1) (CEREBROSIDE SULFATE ACTIVATOR) (CSACT)	58484	4.77	5	3	6.64
586	IPI00221098.1	(DISPERSIN) (SOLFATIDE/GM1 ACTIVATOR); SAPOSIN C (CO-BETA-G SPLICE ISOFORM 2 OF Q16623 SYNTAXIN 1A.	29632	4.54	5	4	25.77
587	IPI00221099.1	SPLICE ISOFORM 3 OF Q16623 SYNTAXIN 1A.	28995	5.2	5	4	26.69
588	IPI00221189.1	SPLICE ISOFORM 1 OF P55087 AQUAPORIN 4.	32300	6.86	5	3	11.96
589	IPI00239077.1	HISTIDINE TRIAD NUCLEOTIDE BINDING PROTEIN 1.	13802	6.96	5	2	34.92
590	IPI00239540.2	none found in database	36517	4.73	5	1	2.14
591	IPI00243604.2	SIMILAR TO HEAT SHOCK 70KD PROTEIN BINDING PROTEIN.	34413	4.9	5	2	7.47
592	IPI00247185.2	none found in database	30007	9.92	5	3	12.69
593	IPI00247776.2	SIMILAR TO GLUTAMINE SYNTHETASE (GLUTAMATEAMMONIA LIGASE).	36070	6.44	5	2	6.01
594	IPI00256777.2	none found in database	12235	8.23	5	2	10.81
595	IPI00259350.2	SIMILAR TO ACONITASE 2.	84975	6.98	5	2	3.9
596	IPI00259901.2	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	49928	9.15	5	2	7.62
597	IPI00296039.5	SPLICE ISOFORM 4 OF P09493 TROPOMYOSIN 1 ALPHA CHAIN.	32848	4.4	5	2	6.69
598	IPI00299147.4	UBIQUITIN-LIKE PROTEIN SMT3A.	14817	7.62	5	1	8.96
599	IPI00301563.3	RAN-SPECIFIC GTPASE-ACTIVATING PROTEIN.	28792	8.49	5	2	8.73
600	IPI00305457.3	ALPHA-1-ANTITRYPSIN PRECURSOR.	46737	5.31	5	4	15.31
601	IPI00333204.1	none found in database	45209	5	5	2	5.54
602	IPI00333592.1	none found in database	84896	6.47	5	3	5.61
603	IPI00333982.2	HUMAN FULL-LENGTH CDNA CLONE CS0DI019YF20 OF PLACENTA OF HOMO	57486	8.05	5	2	5.75
604	IPI00375339.2	SPLICE ISOFORM 1 OF Q13733 SODIUM/POTASSIUM-TRANSPORTING ATPASE	114166	6.61	5	2	2.33
605	IPI00375381.1	none found in database	20961	4.8	5	1	6.01
606	IPI00376170.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	19942	6.85	5	2	10.33
607	IPI00376651.1	SIMILAR TO SMT3 SUPPRESSOR OF MIF TWO 3 HOMOLOG 2.	10814	7.52	5	1	12.63
608	IPI00377005.1	none found in database	28823	4.45	5	3	13.77
609	IPI00382606.1	FACTOR VII ACTIVE SITE MUTANT IMMUNOCONJUGATE.	75553	7.01	5	2	4.42
610	IPI00383556.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN UP2.	24198	7.93	5	3	20.44
611	IPI00383795.1	MUTANT BETA-GLOBIN.	1952	7.36	5	1	44.44
612	IPI00383842.1	HYPOTHETICAL PROTEIN.	18605	9.11	5	1	9.09
613	IPI00384653.1	PROTHYMOSIN A14.	11058	3.41	5	2	10.89
-----	---------------	--	--------	-------	---	---	-------
614	IPI00395700.1	none found in database	78434	9.06	5	3	6.13
615	IPI00395771.1	PROTEIN PHOSPHATASE-1 REGULATORY SUBUNIT 7 ALPHA2.	36837	4.85	5	2	9.15
616	IPI00395912.1	HYPOTHETICAL PROTEIN.	57156	7.76	5	2	5.76
617	IPI00396462.1	none found in database	20500	5.39	5	2	6.88
618	IPI00003971.1	SPLICE ISOFORM RTN1-A OF Q16799 RETICULON 1.	83618	4.33	4	2	2.32
619	IPI00004618.1	IG GAMMA-4 CHAIN C REGION.	35941	7.41	4	1	4.89
620	IPI00005981.1	NEURONAL PROTEIN.	31454	8	4	3	14.89
621	IPI00007346.1	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE H.	19208	8.22	4	1	3.39
622	IPI00007812.1	VACUOLAR ATP SYNTHASE SUBUNIT B, BRAIN ISOFORM.	56501	5.55	4	4	13.11
623	IPI00009790.1	6-PHOSPHOFRUCTOKINASE, TYPE C.	85596	7.6	4	3	4.46
624	IPI00011454.1	GLUCOSIDASE II ALPHA SUBUNIT.	109438	6.18	4	4	7.04
625	IPI00013164.1	PERIPHERIN.	53878	5.22	4	2	4.03
626	IPI00014263.1	SPLICE ISOFORM LONG OF Q15056 EUKARYOTIC TRANSLATION INITIATION	27385	7.36	4	2	16.94
627	IPI00014587.1	FACTOR 4H. SPLICE ISOFORM BRAIN OF P09496 CLATHRIN LIGHT CHAIN A.	27077	4.15	4	3	9.68
628	IPI00014898.1	SPLICE ISOFORM 1 OF Q15149 PLECTIN 1.	531737	5.74	4	4	0.98
629	IPI00016666.1	METALLOTHIONEIN-III.	6927	4.5	4	2	47.06
630	IPI00016832.1	SPLICE ISOFORM SHORT OF P25786 PROTEASOME SUBUNIT ALPHA TYPE 1.	29556	6.6	4	3	15.21
631	IPI00017763.3	NUCLEOSOME ASSEMBLY PROTEIN 1-LIKE 4.	42823	4.32	4	2	7.47
632	IPI00018067.1	SYNTAXIN 1B.	33431	5.74	4	3	13.54
633	IPI00019376.1	HYPOTHETICAL PROTEIN FLJ10849.	49398	6.8	4	4	9.32
634	IPI00019755.1	GLUTATHIONE TRANSFERASE OMEGA 1.	27566	6.54	4	2	9.13
635	IPI00019952.1	NEURONAL MEMBRANE GLYCOPROTEIN M6-A.	31210	4.95	4	1	5.04
636	IPI00021840.1	40S RIBOSOMAL PROTEIN S6.	28681	11.52	4	3	9.24
637	IPI00022640.1	NEUROGRANIN.	7618	8.06	4	2	19.23
638	IPI00023860.1	NUCLEOSOME ASSEMBLY PROTEIN 1-LIKE 1.	45374	4.09	4	2	6.91
639	IPI00024129.1	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE C.	22763	8.69	4	1	2.83
640	IPI00024993.1	ENOYL-COA HYDRATASE, MITOCHONDRIAL PRECURSOR.	31371	8.19	4	3	18.28
641	IPI00025491.1	EUKARYOTIC INITIATION FACTOR 4A-I.	46154	5.12	4	4	11.08
642	IPI00026154.1	PROTEIN KINASE C SUBSTRATE, 80 KDA PROTEIN, HEAVY CHAIN.	59296	4.05	4	3	5.88
643	IPI00026268.1	GUANINE NUCLEOTIDE-BINDING PROTEIN G(I)/G(S)/G(T) BETA SUBUNIT 1.	37377	5.85	4	3	11.47
644	IPI00029623.1	PROTEASOME SUBUNIT ALPHA TYPE 6.	27399	6.74	4	3	14.23
645	IPI00029631.1	ENHANCER OF RUDIMENTARY HOMOLOG.	12259	5.72	4	1	10.58
646	IPI00031141.1	40S RIBOSOMAL PROTEIN SA.	32854	4.51	4	3	16.95
647	IPI00031169.1	RAS-RELATED PROTEIN RAB-2A.	23546	6.51	4	3	19.81
648	IPI00031820.1	PHENYLALANYL-TRNA SYNTHETASE ALPHA CHAIN.	57564	7.96	4	2	4.92
649	IPI00032230.2	SPLICE ISOFORM A OF Q9Y2J2 BAND 4.1-LIKE PROTEIN 3.	120678	4.84	4	3	3.5
650	IPI00032256.1	ALPHA-2-MACROGLOBULIN PRECURSOR.	163278	6.39	4	4	3.19
651	IPI00032808.1	RAS-RELATED PROTEIN RAB-3D.	24267	4.53	4	2	11.87
652	IPI00061114.1	RAS-RELATED PROTEIN RAB-3C.	25952	4.85	4	2	11.45
653	IPI00062037.1	SIMILAR TO RIKEN CDNA 6720463E02 GENE.	10350	7.5	4	3	42.7
654	IPI00107552.1	SIMILAR TO HEAT SHOCK 70KD PROTEIN BINDING PROTEIN.	41305	4.98	4	2	7.05
655	IPI00147581.1	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	19853	9.05	4	2	6.67
656	IPI00157890.1	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A.	17712	6.14	4	2	7.55
657	IPI00159927.1	NEUROCAN CORE PROTEIN PRECURSOR.	142973	5.03	4	1	1.59
658	IPI00164538.1	none found in database	15558	6.02	4	1	7.35
659	IPI00167953.3	BTB AND KELCH DOMAIN CONTAINING 3.	69839	5	4	1	1.14
660	IPI00173720.2	none found in database	18469	7.97	4	1	3.59
661	IPI00182986.3	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN C (C1/C2).	32215	4.53	4	2	7.51
662	IPI00183968.1	HYPOTHETICAL PROTEIN FLJ35371.	28223	4.41	4	3	11.52
663	IPI00184471.2	SIMILAR TO DESTRIN - PIG.	11561	4.95	4	2	20.39
664	IPI00215716.1	SPLICE ISOFORM B OF Q9Y2J2 BAND 4.1-LIKE PROTEIN 3.	96514	5.1	4	3	4.62

665	IPI00215780.1	40S RIBOSOMAL PROTEIN S19.	21585	11.6	4	3	16.24
666	IPI00215942.1	SPLICE ISOFORM 2 OF Q15149 PLECTIN 1.	518447	5.46	4	4	1.01
667	IPI00215943.1	SPLICE ISOFORM 3 OF Q15149 PLECTIN 1.	518006	5.45	4	4	1.01
668	IPI00217296.1	SPLICE ISOFORM 3 OF Q15257 PROTEIN PHOSPHATASE 2A, REGULATORY	33481	6.24	4	2	7.14
669	IPI00217872.1	SUBUNIT B'. SPLICE ISOFORM 2 OF P36871 PHOSPHOGLUCOMUTASE.	61928	5.72	4	3	7.79
670	IPI00217966.1	LACTATE DEHYDROGENASE A.	36689	8.45	4	3	9.94
671	IPI00218491.1	SPLICE ISOFORM LONG OF P25786 PROTEASOME SUBUNIT ALPHA TYPE 1.	30239	7	4	3	14.87
672	IPI00218493.1	HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE 1	24579	6.67	4	2	10.55
673	IPI00218728.1	PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE. ISOFORM IB. ALPHA	46638	7.4	4	3	8.54
674	IPI00219328.1	SUBUNIT (45KD). SPLICE ISOFORM 3 OF Q12906 INTERLEUKIN ENHANCER-BINDING FACTOR 3.	82848	8.26	4	3	4.58
675	IPI00219329.1	SPLICE ISOFORM 4 OF Q12906 INTERLEUKIN ENHANCER-BINDING FACTOR 3	75554	8.58	4	3	5.01
676	IPI00219330 1	SPLICE ISOFORM 5 OF Q12906 INTERLEUKIN ENHANCER-BINDING FACTOR 3	74653	8 37	4	3	5.07
677	IPI00219525.3		53140	7.25	4	3	8 4 9
678	IPI00210526.2		61318	6.73	4	3	7.84
670	IP100213320.2		25200	0.75	4	2	10.40
079	IF100220694.1	FACTOR 4H.	25200	0.41	4	2	10.42
080	IP100221130.3		10992	0	4	2	18.62
681	IP100243423.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	17570	8.61	4	2	7.5
682	IPI00248321.4	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	23482	7.96	4	3	17.76
683	IPI00258866.2	SIMILAR TO GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE, LIVER (GAPDH).	76394	4.74	4	1	2.01
684	IPI00293102.3	SPLICE ISOFORM 2 OF Q15257 PROTEIN PHOSPHATASE 2A, REGULATORY SUBUNIT B'.	40682	5.8	4	2	5.87
685	IPI00298788.3	SPLICE ISOFORM 1 OF Q12906 INTERLEUKIN ENHANCER-BINDING FACTOR 3.	95384	9.02	4	3	3.91
686	IPI00298789.1	SPLICE ISOFORM 2 OF Q12906 INTERLEUKIN ENHANCER-BINDING FACTOR 3.	76079	7.81	4	3	4.99
687	IPI00300562.2	RAS-RELATED PROTEIN RAB-3B.	24758	4.61	4	2	11.87
688	IPI00301364.2	S-PHASE KINASE-ASSOCIATED PROTEIN 1A ISOFORM B.	18658	4.15	4	2	15.95
689	IPI00301975.1	PLACENTAL RIBONUCLEASE INHIBITOR.	49842	4.44	4	2	8.04
690	IPI00328127.4	VESICLE-ASSOCIATED MEMBRANE PROTEIN 2.	12518	8.48	4	2	28.7
691	IPI00328328.2	EUKARYOTIC INITIATION FACTOR 4A-II.	46394	5.13	4	4	11.06
692	IPI00333105.1	none found in database	33270	8.54	4	3	8.9
693	IPI00333411.5	SPLICE ISOFORM 1 OF Q15257 PROTEIN PHOSPHATASE 2A, REGULATORY SUBLINIT B'.	36789	6.25	4	2	6.5
694	IPI00334738.1	none found in database	21933	6.1	4	2	13.33
695	IPI00374056.1	SIMILAR TO FERRITIN HEAVY CHAIN (FERRITIN H SUBUNIT).	23034	7.28	4	1	4.93
696	IPI00376109.1	SIMILAR TO PROLYL 4-HYDROXYLASE, BETA SUBUNIT.	69727	4.74	4	3	7.96
697	IPI00376531.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	16359	9.41	4	2	8.05
698	IPI00376539.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	12140	8.76	4	1	5.31
699	IPI00376592.1	SIMILAR TO TUC-4B.	16598	9.15	4	1	7.74
700	IPI00382995.1	CYTOPLASMIC PROTEIN NDR1.	39531	7.02	4	4	15.73
701	IPI00383020.1	SIMILAR TO 6-PHOSPHOGLUCONOLACTONASE.	20237	10.32	4	2	22
702	IPI00383111.1	KERATIN 10.	57247	4.72	4	2	5.53
703	IPI00383182.1	PP3895.	14799	8.61	4	2	23.7
704	IPI00383581.1	ALPHA GLUCOSIDASE II ALPHA SUBUNIT.	106874	6.06	4	4	7.2
705	IPI00383751.1	CALRETICULIN=CALCIUM BINDING PROTEIN.	24455	4.17	4	2	19.16
706	IPI00386819.1	VACUOLAR ATP SYNTHASE CATALYTIC SUBUNIT A, OSTEOCLAST ISOFORM.	68178	4.91	4	1	2.44
707	IPI00395027.1	CHONDROITIN SULFATE PROTEOGLYCAN BEHAB/BREVICAN.	71671	4.11	4	2	3.13
708	IPI00395742.1	none found in database	40316	7.22	4	4	15.47
709	IPI00395884.1	none found in database	22145	9.15	4	2	10.61
710	IPI00000861.1	LIM AND SH3 DOMAIN PROTEIN 1.	29717	7.07	3	3	13.79
711	IPI00003348.1	GUANINE NUCLEOTIDE-BINDING PROTEIN G(I)/G(S)/G(T) BETA SUBUNIT 2.	37331	5.85	3	2	6.18
712	IPI00003420.1	T-CELL ACTIVATION PROTEIN.	37031	5.28	3	1	3.06
713	IPI00003856.1	VACUOLAR ATP SYNTHASE SUBUNIT E.	26145	8.37	3	1	6.19
714	IPI00004902.1	ELECTRON TRANSFER FLAVOPROTEIN BETA-SUBUNIT.	27844	8.31	3	3	12.55
715	IPI00005705 1	SPLICE ISOFORM GAMMA-1 OF P36873 SERINE/THREONINE PROTEIN	36984	6.5	3	2	10 84
716	IPI00005978 1	PHOSPHATASE PP1-GAMMA CATALYTIC SUBUNIT. SPLICING FACTOR, ARGININE/SERINE-RICH 2	25575	12.38	3	2	14 93
				. =.00	~	-	

717	IPI00006935.1	EUKARYOTIC TRANSLATION INITIATION FACTOR 5AII.	16793	5.28	3	1	7.84
718	IPI00006980.1	PROTEIN C14ORF166.	28068	6.64	3	2	11.48
719	IPI00008161.2	POTASSIUM-TRANSPORTING ATPASE ALPHA CHAIN 2.	115899	6.52	3	1	1.25
720	IPI00008274.1	ADENYLYL CYCLASE-ASSOCIATED PROTEIN.	51673	8.2	3	3	6.95
721	IPI00008453.1	CORONIN 1C.	53249	7.09	3	2	8.86
722	IPI00008586.1	NEUROGLYCAN C.	57025	4.01	3	1	2.41
723	IPI00009032.1	LUPUS LA PROTEIN.	46837	7.14	3	2	7.6
724	IPI00010204.1	SPLICE ISOFORM LONG OF P23152 SPLICING FACTOR, ARGININE/SERINE-RICH 3	19330	12.14	3	2	15.85
725	IPI00010470 1	SPI ICE ISOFORM SNAP-25B OF P13795 SYNAPTOSOMAI -ASSOCIATED PROTEIN 25	23315	4 39	3	2	10.68
726	IPI00010740.1	SPLICE ISOFORM LONG OF P23246 SPLICING FACTOR, PROLINE-AND GLUTAMINE-	76149	9.95	3	2	4.53
727	IPI00011200.2	RICH. D-3-PHOSPHOGI YCERATE DEHYDROGENASE	56650	67	3	3	7.88
728	IPI00011253.1		26688	10.26	3	2	10.7
729	IPI00012493 1		13373	10.20	3	2	10.33
720	IPI00012493.1		23604	10.12	3	- 1	7 31
730	IF100013043.1		23094	10.12	2	1	7.31
731	IP100015473.3		59572	8.69	3	1	2.21
732	IPI00016342.1	RAS-RELATED PROTEIN RAB-7.	23490	6.59	3	3	18.36
733	IPI00016786.1	SPLICE ISOFORM 2 OF P21181 CELL DIVISION CONTROL PROTEIN 42 HOMOLOG.	21259	6.51	3	3	20.42
734	IPI00017597.1	MICROTUBULE-ASSOCIATED PROTEIN RP/EB FAMILY MEMBER 3.	31982	5.23	3	1	3.56
735	IPI00019329.1	DYNEIN LIGHT CHAIN 1, CYTOPLASMIC.	10366	7.5	3	2	17.98
736	IPI00019599.1	DNA-BINDING PROTEIN (EC 6.3.2.19) (DJ1185N5.1.4) (UBIQUITIN- CONJUGATING ENZYME E2 VARIANT 1.	25797	8.47	3	3	13.12
737	IPI00019901.1	SPLICE ISOFORM 1 OF P35611 ALPHA ADDUCIN.	80955	5.61	3	1	1.36
738	IPI00019982.5	VESICLE-ASSOCIATED MEMBRANE PROTEIN 3.	11178	9.26	3	1	17.17
739	IPI00020356.2	MICROTUBULE-ASSOCIATED PROTEIN 1A (MAP 1A) (PROLIFERATION-RELATED PROTEIN P80) IContains: MAP1 LIGHT CHAIN LC21.	306642	4.57	3	3	1.64
740	IPI00021347.1	UBIQUITIN-CONJUGATING ENZYME E2-18 KDA UBCH7.	17862	8.79	3	1	14.29
741	IPI00021842.1	APOLIPOPROTEIN E PRECURSOR.	36154	5.42	3	1	4.73
742	IPI00022007.1	WISKOTT-ALDRICH SYNDROME PROTEIN FAMILY MEMBER 1.	61652	6.43	3	1	1.61
743	IPI00022134.1	PUTATIVE SMALL GTP-BINDING PROTEIN.	18659	10.24	3	1	6.75
744	IPI00022970.1	NUCLEOPROTEIN TPR.	265601	4.72	3	2	0.64
745	IPI00024282.1	RAS-RELATED PROTEIN RAB-8B.	23584	9.54	3	1	5.31
746	IPI00024638.1	CREATINE KINASE, UBIQUITOUS MITOCHONDRIAL PRECURSOR.	47037	8.47	3	2	4.32
747	IPI00024911.1	ENDOPLASMIC RETICULUM PROTEIN ERP29 PRECURSOR.	28993	7.49	3	2	7.66
748	IPI00024989.4	SPLICE ISOFORM 1 OF P22061 PROTEIN-L-ISOASPARTATE(D-ASPARTATE) O-	27373	8.32	3	2	9.88
749	IPI00025849.1	METHYLTRANSFERASE. ACIDIC LEUCINE-RICH NUCLEAR PHOSPHOPROTEIN 32 FAMILY MEMBER A.	28585	3.72	3	3	16.06
750	IPI00026133.1	PARATHYROID HORMONE RECEPTOR PRECURSOR.	62236	7.09	3	1	1.27
751	IPI00026182.1	CAPPING PROTEIN (ACTIN FILAMENT) MUSCLE Z-LINE, ALPHA 2.	32949	5.65	3	3	16.43
752	IPI00026271.1	40S RIBOSOMAL PROTEIN S14.	16273	10.79	3	3	29.14
753	IPI00026546.1	PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB BETA SUBUNIT.	25569	5.8	3	3	28.38
754	IPI00027423.1	SERINE/THREONINE PROTEIN PHOSPHATASE PP1-ALPHA 1 CATALYTIC SUBUNIT.	37512	6.25	3	2	10.61
755	IPI00028481.1	RAS-RELATED PROTEIN RAB-8.	23668	9.54	3	1	5.31
756	IPI00028627.3	P PROTEIN.	92894	7.18	3	1	0.72
757	IPI00029744.1	SINGLE-STRANDED DNA-BINDING PROTEIN, MITOCHONDRIAL PRECURSOR.	17260	10.04	3	2	20.27
758	IPI00029992.2	SIMILAR TO 67 KDA LAMININ RECEPTOR	30715	4.2	3	2	14.44
759	IPI00030296 1	BM-010	36153	7.55	3	3	9 94
760	IPI00030363 1	ACETYL-COA ACETYLTRANSFERASE MITOCHONDRIAL PRECLIRSOR	45200	9.21	3	2	7.03
761	IPI00030962.6		19228	8.45	3	3	17.06
762	IPI00031022.0	SIMILAR TO HEAT SHOCK PROTEIN 110 KDA	15689	4 38	3	2	21.62
762	IDI00031022.1		36345	9.50	3	<u>ح</u>	21.02
764	IF100030033.8		20022	0.07	3	1	3.24
704	IPI00038378.2		20933	4.4	3	2	13.03
705			24622	1.97	3	1	5.16
700	IPI00061178.1	SIMILAR TO KNA BINDING MUTH PRUTEIN, X CHRUMOSOME.	42142	10.21	3	3	8.21
/67	IPI00069363.1	SIMILAR TO EUKARYOTIC INITIATION FACTOR 5A.	16789	4.61	3	1	7.79
768	IPI00070778.1	none found in database	21273	7.21	3	3	20.42

769	IPI00073180.5	RAS-RELATED PROTEIN RAB-37.	24684	6.28	3	1	4.95
770	IPI00098624.1	HYPOTHETICAL PROTEIN KIAA0968.	59022	7.47	3	2	5.88
771	IPI00107625.1	SPLICE ISOFORM SNAP-25A OF P13795 SYNAPTOSOMAL-ASSOCIATED PROTEIN 25.	23336	4.47	3	2	10.68
772	IPI00140696.3	none found in database	30066	8.06	3	3	8.99
773	IPI00144127.2	SIMILAR TO HEAT SHOCK 70KD PROTEIN BINDING PROTEIN.	41649	5.11	3	2	8.13
774	IPI00150205.1	SIMILAR TO OCULOCUTANEOUS ALBINISM II (PINK-EYE DILUTION.	90520	7.26	3	1	0.74
775	IPI00150520.4	none found in database	36881	4.32	3	1	3.15
776	IPI00151594.4	SIMILAR TO KERATIN 8.	58664	7.24	3	2	3.88
777	IPI00163974.2	none found in database	18957	4.14	3	1	7.19
778	IPI00165284.2	HYPOTHETICAL PROTEIN.	44123	4.17	3	1	2.31
779	IPI00169392.2	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II GAMMA.	66963	8.52	3	2	5.13
780	IPI00172450.1	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II GAMMA ISOFORM 3.	58365	7.19	3	2	5.98
781	IPI00172452.1	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II GAMMA ISOFORM 6.	56944	7.31	3	2	6.15
782	IPI00172636.1	HYPOTHETICAL PROTEIN.	54128	7.27	3	2	6.49
783	IPI00176663.2	SIMILAR TO ELONGATION FACTOR 1-ALPHA 1 (EF-1-ALPHA-1) (ELONGATION	19883	9.66	3	1	4.81
784	IPI00176873.1	FACTOR 1 A-1) (EEF1A-1) (ELONGATION FACTOR TU) (EF-TU). none found in database	17875	8.04	3	1	14.29
785	IPI00179415.3	SERINE/THREONINE PROTEIN PHOSPHATASE 2B CATALYTIC SUBUNIT, ALPHA	63068	5.82	3	3	5.66
786	IPI00182944.2	ISOFORM. SPLICE ISOFORM 3 OF Q13554 CALCIUM/CALMODULIN-DEPENDENT PROTEIN	54074	7.16	3	2	6.47
787	IPI00183066.2	KINASE TYPE II BETA CHAIN. SPLICE ISOFORM 7 OF Q13554 CALCIUM/CALMODULIN-DEPENDENT PROTEIN	50955	7.43	3	2	6.9
788	IPI00183356.1	KINASE TYPE II BETA CHAIN. RAS-RELATED PROTEIN RAB-4A.	31568	9.61	3	1	3.81
789	IPI00184363.1	GLYCOLIPID TRANSFER PROTEIN.	23850	7.49	3	1	7.18
790	IPI00185565.6	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE TYPE II DELTA CHAIN.	56297	7.42	3	2	6.21
791	IPI00187143.1	HYPOTHETICAL PROTEIN.	27506	6.28	3	1	4.44
792	IPI00215638.2	ATP-DEPENDENT RNA HELICASE A.	140877	6.76	3	2	2.28
793	IPI00215715.1	SPLICE ISOFORM B OF Q9UQM7 CALCIUW/CALMODULIN-DEPENDENT PROTEIN	55262	7.65	3	2	6.34
794	IPI00215802.1	KINASE TYPE II ALPHA CHAIN. SPLICE ISOFORM SHORT OF P23152 SPLICING FACTOR, ARGININE/SERINE-RICH 3.	14203	10.5	3	2	20.97
795	IPI00215983.1	CARBONIC ANHYDRASE I.	28870	7.14	3	2	15.71
796	IPI00216131.1	SPLICE ISOFORM 2 OF P22061 PROTEIN-L-ISOASPARTATE(D-ASPARTATE) O-	24562	6.51	3	2	11.01
797	IPI00216184.1	METHYLTRANSFERASE. SPLICE ISOFORM II OF Q13492 PHOSPHATIDYLINOSITOL-BINDING CLATHRIN	68899	7.72	3	1	1.89
798	IPI00216298.1	ASSEMBLY PROTEIN. THIOREDOXIN	11693	4.42	3	1	12.38
799	IPI00216311.4	VILLIN 2	69413	6.17	3	3	6.48
800	IPI00216378 1	CALCUM/CALMODULIN-DEPENDENT PROTEIN KINASE II GAMMA ISOEORM 1	62165	7 44	3	2	5.58
801	IPI00216613.1		72263	9.74	3	2	4 78
802	IPI00217236.2	GLUTAMINE- RICH.	12855	4 94	3	2	18 52
803	IPI00217207.1		31850	6.42	3	- 1	2.95
804	IPI00217297.1	SUBUNIT B'. NEUROEILAMENT 3 (150KDA MEDILIM)	102448	4.59	3	1	0.08
90F	IP100217307.3		16773	4.50	2	1	7 70
806	IPI00210004.2		97092	7.03	3	2	3 33
807	IP100210130.1		37032	F 00	2	2	10.30
808	IF100210107.1	PHOSPHATASE PP1-GAMMA CATALYTIC SUBUNIT.	40224	7.00	3	2	0.09
000	IF100210230.3		40321	7.23	3	2	9.03
809	IP100218414.1		29246	0.00	3	3	10
810	IP100219067.1		25745	0.29	3	2	14.22
811	IPI00219165.1	SPLICE ISOFORM 2 OF Q13554 CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE TYPE II BETA CHAIN.	56379	7.43	3	2	6.16
812	IP100219100.1	KINASE TYPE II BETA CHAIN.	58009	7.31	3	2	5.96
013	IPI00219205.1		53704	5.26	3	2	4.14
014	IP100219622.1		20899	1.55	3	1	8.12
815	IPI00219684.1		14858	6.8	3	2	17.29
816	IPI00219812.1		38950	4.9	3	1	3.65
817	IPI00219813.1	SPLICE ISOFORM RIN1-C OF Q16/99 RETICULON 1.	23576	9.25	3	1	6.25
818	IPI00220158.1		84303	5.79	3	1	1.3
819	IPI00220991.1	SIMILAR TO ADAPTOR-RELATED PROTEIN COMPLEX 2, BETA 1 SUBUNIT.	105692	4.98	3	3	4.94
820	IPI00221234.1	ANTIQUITIN.	55366	6.85	3	3	7.44

821	IPI00221305.2	SPLICE ISOFORM 4 OF Q13554 CALCIUM/CALMODULIN-DEPENDENT PROTEIN	72727	7.93	3	2	4.67
822	IPI00233929.2	SIMILAR TO ALDOSE REDUCTASE (AR) (ALDEHYDE REDUCTASE).	35858	8.02	3	2	6.01
823	IPI00237671.1	SIMILAR TO NEUROFILAMENT, LIGHT POLYPEPTIDE 68KDA.	61517	4.32	3	1	1.66
824	IPI00246022.2	none found in database	49438	6.26	3	1	2.64
825	IPI00251507.1	SPLICE ISOFORM SYNAPSIN IB OF P17600 SYNAPSIN I.	69876	10.44	3	3	7.17
826	IPI00253279.1	SPLICE ISOFORM 2 OF P35611 ALPHA ADDUCIN.	69985	6.41	3	1	1.58
827	IPI00259367.2	SIMILAR TO ATPASE, H+ TRANSPORTING, LYSOSOMAL 31KD, V1 SUBUNIT E	26093	8.4	3	1	6.19
828	IPI00259889.2	ISOFORM 1. SIMILAR TO AHCY PROTEIN.	54363	7.48	3	1	2.62
829	IPI00260188.2	SIMILAR TO HEAT SHOCK 70KD PROTEIN BINDING PROTEIN.	38191	5.73	3	1	4.08
830	IPI00290738.1	SPLICE ISOFORM I OF Q13492 PHOSPHATIDYLINOSITOL-BINDING CLATHRIN	70695	7.71	3	1	1.84
831	IPI00290928.2	ASSEMBLY PROTEIN. GUANINE NUCLEOTIDE-BINDING PROTEIN, ALPHA-13 SUBUNIT.	44050	8.13	3	1	2.92
832	IPI00293126 1		27326	4 78	3	3	15 16
833	IPI00294304.4	HISTONE H10	20732	11.6	3	2	11 02
834	IDI00206053 2		54694	0.17	3	2	6.95
034	IF100290055.2		54094	3.17	2	2	5.00
835	IP100296678.1	CALCIUM/CALMODULIN-DEPENDENT PROTEIN NINASE (CAM NINASE) II GAMMA.	59048	7.77	3	2	0.00
836	IP100298090.1	SPLICE ISOFORM 6 OF 013554 CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE TYPE II BETA CHAIN.	55223	7.44	3	2	6.3
837	IPI00299571.2	PROTEIN DISULFIDE ISOMERASE A6 PRECURSOR.	48212	4.7	3	3	9.52
838	IPI00299977.1	14 KDA PHOSPHOHISTIDINE PHOSPHATASE.	13833	5.98	3	2	24.8
839	IPI00300096.2	RAS-RELATED PROTEIN RAB-35.	26927	9.24	3	1	4.64
840	IPI00300568.3	SPLICE ISOFORM SYNAPSIN IA OF P17600 SYNAPSIN I.	73954	10.41	3	3	6.81
841	IPI00302030.2	RAS-RELATED PROTEIN RAB-30.	23058	4.61	3	1	5.42
842	IPI00304802.3	DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT OF 2-OXOGLUTARATE DEHYDROGENASE COMPLEX, MITOCHONDRIAL PRECURSOR.	48640	9.19	3	1	3.09
843	IPI00306351.2	ESTERASE D.	31463	7.02	3	1	7.8
844	IPI00306959.5	KERATIN 7.	51419	5.14	3	2	4.26
845	IPI00328744.2	GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN) ALPHA 12.	44251	10.42	3	1	2.89
846	IPI00329441.1	RAB11B.	23339	5.35	3	1	5.19
847	IPI00332724.1	none found in database	38675	8	3	1	2.47
848	IPI00332970.1	SIMILAR TO RAB37, MEMBER OF RAS ONCOGENE FAMILY.	24169	6.36	3	1	5.09
849	IPI00333383.1	ADAPTER-RELATED PROTEIN COMPLEX 2 BETA 1 SUBUNIT.	104553	5.02	3	3	5.02
850	IPI00333769.1	none found in database	29617	8.75	3	3	9.06
851	IPI00333776.1	SPLICE ISOFORM 1 OF Q92823 NEURONAL CELL ADHESION MOLECULE	143894	5.37	3	2	1.99
852	IPI00333777.1	PRECURSOR. SPLICE ISOFORM 2 OF Q92823 NEURONAL CELL ADHESION MOLECULE	136618	5.82	3	2	2.1
853	IPI00333778.1	PRECURSOR. SPLICE ISOFORM 3 OF Q92823 NEURONAL CELL ADHESION MOLECULE	130668	5.9	3	2	2.2
854	IPI00333779.1	PRECURSOR. SPLICE ISOFORM 4 OF Q92823 NEURONAL CELL ADHESION MOLECULE	131046	5.6	3	2	2.2
855	IPI00333781.1	PRECURSOR. SPLICE ISOFORM 5 OF Q92823 NEURONAL CELL ADHESION MOLECULE	144379	5.37	3	2	1.99
856	IPI00334174.1	PRECURSOR. SPLICE ISOFORM 2 OF P11476 RAS-RELATED PROTEIN RAB-1A.	15331	8.3	3	2	17.02
857	IPI00334271.1	SPLICE ISOFORM 1 OF Q13554 CALCIUM/CALMODULIN-DEPENDENT PROTEIN	60387	7.31	3	2	5.72
858	IPI00334344 1	KINASE TYPE II BETA CHAIN. SPI ICE ISOEORM 1 OF 013555 CALCIUM/CALMODULUN-DEPENDENT PROTEIN	53011	7 38	3	2	6.57
850	IDI00334587 1		35968	6.95	3	-	4 22
860	IP100334307.1	A/B. SPLICE ISOFORM 2 OF 000720 HETEROCENEOUS NUCLEAR RIBONOCLEOF ROTEIN	30599	0.35	2	1	4.22
000	IF100334713.1	A/B.	30366	0.10	3	1	4.91
001	IP100335789.1		73208	7.41	3	2	4.63
862	IPI00336118.1	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II GAMMA ISOFORM 4.	55961	7.19	3	2	6.26
863	IPI00374126.1	SIMILAR TO 40S RIBOSOMAL PROTEIN SA (P40) (34/67 KDA LAMININ RECEPTOR) (COLON CARCINOMA LAMININ-BINDING PROTEIN) (NEM/1CHD4) (MULTIDRUG	27902	4.62	3	2	9.24
864	IPI00375127.1	RESISTANCE-ASSOCIATED PROTEIN MGR1-AG). SIMILAR TO KIAA0038.	32604	9.23	3	1	4.42
865	IPI00375900.1	SIMILAR TO PROTEIN 40KD.	17887	4.4	3	2	14.02
866	IPI00376220.1	ADDUCIN 1 (ALPHA) ISOFORM D.	73333	6.52	3	1	1.51
867	IPI00376561.1	SIMILAR TO TEMPLATE ACYIVATING FACTOR-I ALPHA.	34608	4.24	3	1	3.28
868	IPI00377060.1	REGULATORY SUBUNIT PR 53 OF PROTEIN PHOSPHATASE 2A ISOFORM C.	15387	7.14	3	1	6.06
869	IPI00377174.1	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE IIB ISOFORM 4.	57938	7.31	3	2	6
870	IPI00377175.1	SIMILAR TO ESTERASE D.	32424	7.49	3	1	7.59
871	IPI00377185.1	CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II DELTA ISOFORM 2.	54114	7.13	3	2	6.49
872	IPI00382475.1	PNAS-20.	9025	12.05	3	2	21.52
			-				

873	IPI00382793.1	none found in database	25223	9.28	3	1	6.48
874	IPI00384016.1	HUMAN FULL-LENGTH CDNA 5-PRIME END OF CLONE CS0DJ009YL13 OF T CELLS	29625	8.5	3	1	5.02
875	IPI00384121.1	HUMAN FULL-LENGTH CDNA CLONE CS0DC015YM23 OF NEUROBLASTOMA OF	36455	5.02	3	3	14.16
876	IPI00384514.1	UEV1BS.	17084	8.01	3	3	19.21
877	IPI00385112.1	SIMILAR TO RAB41.	24162	9.2	3	1	5.12
878	IPI00385140.1	MASA.	23759	4.65	3	2	16.19
879	IPI00385786.1	HYPOTHETICAL PROTEIN FLJ35170.	23195	12.33	3	2	16.42
880	IPI00385962.1	none found in database	37493	6.68	3	3	9.51
881	IPI00386604.1	HYPOTHETICAL PROTEIN.	51774	4.76	3	3	6.55
882	IPI00386803.1	LIM AND SH3 PROTEIN 1.	36014	8.73	3	3	11.15
883	IPI00394706.1	PHAPI PROTEIN.	15325	4.2	3	3	29.85
884	IPI00394880.1	ALPHA GLUCOSIDASE II ALPHA SUBUNIT.	85834	6.22	3	3	6.23
885	IPI00396440.1	SIMILAR TO HYPOTHETICAL PROTEIN.	58871	9.36	3	1	1.1
886	IPI00396468.1	none found in database	42695	6.38	3	2	3.27
887	IPI00396539.1	RAS-RELATED PROTEIN RAB-4B.	23587	5.86	3	1	5.16
888	IPI00000335.1	HIT-17KDA.	17162	9.61	2	1	12.27
889	IPI00000581.1	HSPC263	31686	4.64	2	2	9.09
890	IPI0000875.1	ELONGATION FACTOR 1-GAMMA	50119	6.64	2	2	5.26
891	IPI00000949 1	MILCRYSTALLIN HOMOLOG	33776	4 79	2	-	6 69
892	IPI00001683 1	SPLICE ISOCORM LONG OF ORVERS TAXOL RESISTANT ASSOCIATED PROTEIN 3	14409	10.58	2	1	4 72
803	IPI00001813 3		179055	0.23	2	1	0.42
804	IPI00001816.1		55545	7.47	2	1	2.04
805	IPI00002375 1		40569	4 74	2	1	3.06
806	IPI00002373.1		40303	12.22	2	1	5.99
090	IF100003377.1		205245	6.42	2	1	0.19
897	IP100003391.2		305245	6.43	2	1	0.18
800	IP100003935.1		13769	5 5 5	2	2	20.8
999	IP100004534.3	PROSPROKIBUSTEFORMITEGET CINAMIDINE STINI RASE.	144004	5.55	2	1	1.04
900	IP100004839.1		33777	0.73	2	1	3.90
901	IP100005159.1		44761	6.72	2	2	4.57
902	IP100005250.1	REGULATOR OF G-PROTEIN SIGNALING 17.	24359	5.43	2	1	2.38
903	IP100005859.1		59504	7.87	2	1	2.18
904	IPI00006443.1	LAMBDA-CRYSTALLIN HOMOLOG.	34301	6.34	2	1	3.55
905	IPI00007189.1	SPLICE ISOFORM 1 OF P21181 CELL DIVISION CONTROL PROTEIN 42 HOMOLOG.	21311	5.83	2	2	11.52
906	IPI00007423.1	ACIDIC LEUCINE-RICH NUCLEAR PHOSPHOPROTEIN 32 FAMILY MEMBER B.	28788	3.67	2	2	11.55
907	IPI00007906.1	MYOSIN-REACTIVE IMMUNOGLOBULIN HEAVY CHAIN VARIABLE REGION.	13695	7.24	2	1	4.13
908	IPI00008040.1	PROTEIN-ARGININE DEIMINASE TYPE I.	74607	6.46	2	1	1.36
909	IPI00008433.2	40S RIBOSOMAL PROTEIN S5.	22876	10.31	2	2	15.69
910	IPI00008527.1	60S ACIDIC RIBOSOMAL PROTEIN P1.	11514	3.95	2	1	14.04
911	IPI00009439.1	SYNAPTOTAGMIN I.	47573	8.33	2	2	4.98
912	IPI00009867.1	KERATIN, TYPE II CYTOSKELETAL 5.	62461	8.25	2	1	2.03
913	IPI00010271.1	SPLICE ISOFORM A OF P15154 RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1.	21450	8.65	2	2	12.5
914	IPI00010320.1	CHROMOBOX PROTEIN HOMOLOG 1.	21418	4.57	2	1	5.95
915	IPI00010405.3	SPLICE ISOFORM LONG OF Q01973 TYROSINE-PROTEIN KINASE TRANSMEMBRANE RECEPTOR ROR1 PRECURSOR.	104313	7.17	2	1	0.75
916	IPI00010720.1	T-COMPLEX PROTEIN 1, EPSILON SUBUNIT.	59671	5.34	2	2	6.1
917	IPI00011604.1	GLYCINE CLEAVAGE SYSTEM H PROTEIN, MITOCHONDRIAL PRECURSOR.	18911	4.56	2	1	11.56
918	IPI00011666.2	SIMILAR TO HYPOTHETICAL PROTEIN KIAA0415.	164677	8.46	2	1	0.66
919	IPI00011932.3	SIMILAR TO HEAT SHOCK 70 KDA PROTEIN 12A.	79538	7.41	2	2	3.61
920	IPI00011937.1	PEROXIREDOXIN 4.	30540	6.24	2	1	2.95
921	IPI00012136.1	SPLICE ISOFORM BI-1-GGCAG OF 000555 VOLTAGE-DEPENDENT P/Q-TYPE CALCIUM CHANNEL ALPHA-1A SUBUNIT.	282365	9.1	2	2	0.68
922	IPI00012388.1	TRANSCRIPTION INTERMEDIARY FACTOR 1-BETA.	88550	5.55	2	1	3.59
923	IPI00013075.1	P60 KATANIN.	55965	6.88	2	1	1.02
924	IPI00013157.1	C367G8.3 (NOVEL PROTEIN SIMILAR TO RPL23A.	17508	10.92	2	1	8.33

925	IPI00013179.1	PROSTAGLANDIN-H2 D-ISOMERASE PRECURSOR.	21029	7.94	2	2	17.37
926	IPI00013193.1	SPLICE ISOFORM 1 OF Q13402 MYOSIN VIIA.	254406	8.74	2	1	0.23
927	IPI00013698.1	ACID CERAMIDASE PRECURSOR.	44650	7.71	2	2	8.61
928	IPI00013838.1	51C PROTEIN.	126809	9.16	2	1	0.44
929	IPI00013877.2	SPLICE ISOFORM 1 OF P31942 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN	36926	6.87	2	2	7.8
930	IPI00013896.1	H3. GIBININE NUCLEOTIDE -BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3.	35077	7.77	2	2	7.26
931	IPI00013917.1	40S RIBOSOMAL PROTEIN S12.	14395	6.75	2	1	7.63
932	IPI00014312.1	SPLICE ISOFORM 1 OF Q13618 CULLIN HOMOLOG 3.	88930	8.7	2	1	0.65
933	IPI00014589.1	SPLICE ISOFORM BRAIN OF P09497 CLATHRIN LIGHT CHAIN B.	25190	4.28	2	2	13.97
934	IPI00015029.1	TELOMERASE-BINDING PROTEIN P23.	18697	4.11	2	1	7.5
935	IPI00015141.1	CREATINE KINASE, SARCOMERIC MITOCHONDRIAL PRECURSOR.	47520	8.31	2	1	1.43
936	IPI00015911.1	DHYDROLIPOAMIDE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.	54150	7.76	2	1	2.75
937	IPI00016621.2	ADAPTER-RELATED PROTEIN COMPLEX 2 ALPHA 2 SUBUNIT.	105162	6.82	2	2	4.84
938	IPI00016932.1	INOSITOL POLYPHOSPHATE 5-PHOSPHATASE.	138585	6.49	2	1	0.4
939	IPI00017340.5	PLACENTAL THROMBIN INHIBITOR.	42590	4.93	2	2	7.98
940	IPI00017448.1	40S RIBOSOMAL PROTEIN S21.	9111	8.75	2	1	12.05
941	IPI00017596.1	MICROTUBULE-ASSOCIATED PROTEIN RP/EB FAMILY MEMBER 1.	29999	4.76	2	2	10.45
942	IPI00017726.1	SPLICE ISOFORM 1 OF Q99714 3-HYDROXYACYL-COA DEHYDROGENASE TYPE II.	26923	7.94	2	2	14.18
943	IPI00018259.3	GROUP IID SECRETORY PHOSPHOLIPASE A2 PRECURSOR	16546	8.27	2	-	3.45
944	IPI00018524.1	HISTONE H2A.E.	13805	11.53	2	1	14.96
945	IPI00018534 1	HISTONE H2B C	13821	11	2	2	20.8
946	IPI00018952 1	1/2 SMALL NUCLEAR RIBONUCI EOPROTEIN AUXILIARY FACTOR 35 KDA SUBUNIT	57643	9.9	2	-	1 04
047	IPI00010512.2	RELATED-PROTEIN 1.	220028	5.25	2	2	0.66
0/8	IPI00019512.2	HEAVY CHAIN, TYPE B) (NONMUSCLE MYOSIN HEAVY CHAIN-B) (NMMHC-B).	16363	9.43	2	2	13 70
040	IP100010642.1		115927	6.7	2	2	2.06
949	IF100019042.1		27025	6.75	2	2	5.00
950	IF100019927.2		12775	0.75	2	2	20.20
951	IP100020101.1		04400	5.70	2	2	20.8
952	IP100020436.2		24400	5.73	2	2	9.17
953	IP100020850.1	B, BETA ISOFORM.	51710	6.4	2	1	3.16
954	IP100020906.1		30189	4.91	2	2	13
955	IPI00020955.1	3-OXO-5-BETA-STEROID 4-DEHYDROGENASE.	3/3//	7.58	2	1	1.84
956	IPI00021266.1	60S RIBOSOMAL PROTEIN L23A.	17695	11.16	2	1	8.33
957	IPI00021794.2	LYSOSOMAL PROTECTIVE PROTEIN PRECURSOR.	54466	6.59	2	1	1.25
958	IPI00022004.1	SPLICE ISOFORM 2 OF Q92556 ENGULFMENT AND CELL MOTILITY PROTEIN 1.	28742	6.37	2	1	2.43
959	IPI00022082.2	SIMILAR TO SEPTIN KIAA0202B.	84898	9.51	2	1	1.44
960	IPI00022334.1	ORNITHINE AMINOTRANSFERASE, MITOCHONDRIAL PRECURSOR.	48535	7.05	2	1	2.51
961	IPI00022892.2	THY 1 MEMBRANE GLYCOPROTEIN PRECURSOR.	17935	8.93	2	1	9.32
962	IPI00023591.1	TRANSCRIPTIONAL ACTIVATOR PROTEIN PUR-ALPHA.	34911	6.39	2	1	9.01
963	IPI00023785.2	DEAD BOX POLYPEPTIDE 17 ISOFORM P82.	80272	8.37	2	2	2.74
964	IPI00024157.1	FK506-BINDING PROTEIN 3.	25177	9.96	2	1	4.91
965	IPI00024913.1	SPLICE ISOFORM LONG OF P30042 ES1 PROTEIN HOMOLOG, MITOCHONDRIAL PRECURSOR.	28142	8.4	2	2	13.06
966	IPI00026216.3	PUROMYCIN-SENSITIVE AMINOPEPTIDASE.	103302	5.44	2	2	2.5
967	IPI00026272.1	HISTONE H2A.M.	14041	11.66	2	1	14.73
968	IPI00026516.1	SUCCINYL-COA:3-KETOACID-COENZYME A TRANSFERASE, MITOCHONDRIAL PRECURSOR.	56158	7.52	2	2	4.42
969	IPI00026958.1	SPLICE ISOFORM SHORT OF P22570 NADPH:ADRENODOXIN OXIDOREDUCTASE, MITOCHONDRIAL PRECURSOR.	53809	8.4	2	1	1.02
970	IPI00027139.1	INOSITOL POLYPHOSPHATE 1-PHOSPHATASE.	43998	4.91	2	1	3.01
971	IPI00027464.1	SPLICE ISOFORM 1 OF P06705 CALCINEURIN B SUBUNIT ISOFORM 1.	19169	4.4	2	1	5.92
972	IPI00027487.1	CREATINE KINASE, M CHAIN.	43101	7.28	2	1	1.57
973	IPI00027770.1	SYNAPTOPHYSIN.	33845	4.41	2	2	7.03
974	IPI00027809.1	SPLICE ISOFORM 1 OF P16299 SERINE/THREONINE PROTEIN PHOSPHATASE 2B CATALYTIC SUBUNIT, BETA ISOFORM.	59024	5.75	2	2	3.44
975	IPI00028006.1	PROTEASOME SUBUNIT BETA TYPE 2.	22836	7.04	2	1	5.47
976	IPI00028508.1	RAS-RELATED PROTEIN RAB-11A.	24394	6.53	2	2	9.26

977	IPI00029751.1	SPLICE ISOFORM 1 OF Q12860 CONTACTIN PRECURSOR.	113320	5.69	2	1	0.88
978	IPI00031128.1	SIMILAR TO RIKEN CDNA 2610024G14 GENE.	78458	8.86	2	1	0.72
979	IPI00031562.1	H2A HISTONE FAMILY, MEMBER L.	14121	11.66	2	1	14.62
980	IPI00032234.1	HISTONE H2B.	13890	11	2	2	20.63
981	IPI00033025.1	SEPTIN 7.	48787	9.14	2	2	8.37
982	IPI00033153.1	NUCLEAR RNA EXPORT FACTOR 1.	70182	8.7	2	1	0.81
983	IPI00043499.1	PROBABLE UROCANATE HYDRATASE.	74831	6.78	2	1	0.74
984	IPI00044779.1	TC4 PROTEIN.	12233	9.8	2	2	26.61
985	IPI00045512.1	HEMICENTIN.	613704	6.44	2	1	0.09
986	IPI00048961.2	SIMILAR TO 60S RIBOSOMAL PROTEIN L7A (SURFEIT LOCUS PROTEIN 3) (PLA-X	23850	10.75	2	1	5.16
987	IPI00056357.1	POLYPEPTIDE). HYPOTHETICAL PROTEIN.	18795	6.68	2	1	6.36
988	IPI00059685 1		44004	77	2	2	8 74
989	IPI00062003 1		17201	10.57	2	-	10.49
000	IP100062003.1		42067	4 71	2	2	0.45
990	IF100003234.1		43007	4.71	2	2	0.9
991	IP100063472.2	SIMILAR TO PROTEASOME SUBUNIT ALPHA TITLE & (PROTEASOME IOTA CHAIN) (MACROPAIN IOTA CHAIN) (MULTICATALYTIC ENDOPEPTIDASE COMPLEX IOTA CHAIN) (27 KDA DEOSOMAL DEOTEIN) (PDOS 27) (P27K)	35166	10.07	2	I	4.19
992	IPI00065073.1	HYPOTHETICAL PROTEIN FLJ25413.	16636	9.01	2	1	4.11
993	IPI00073442.4	SIMILAR TO RIKEN CDNA 1600013K19.	24867	10.82	2	1	2.25
994	IPI00075558.4	SIMILAR TO 60S RIBOSOMAL PROTEIN L7A (SURFEIT LOCUS PROTEIN 3) (PLA-X	21549	10.99	2	1	5.85
995	IPI00081836.1	DJ86C11.1.	13906	11.53	2	1	14.84
996	IPI00082404.2	SIMILAR TO 60S RIBOSOMAL PROTEIN L7A (SURFEIT LOCUS PROTEIN 3) (PLA-X	21953	11.22	2	1	5.7
997	IPI00088730.3	POLYPEPTIDE). none found in database	30919	9.18	2	1	2.42
998	IPI00101405.1	FARNESYL DIPHOSPHATE SYNTHASE.	48275	6.02	2	2	7.16
999	IPI00102165.1	H2A HISTONE FAMILY, MEMBER J ISOFORM 1.	16610	10.88	2	1	12.26
1000	IPI00104450.2	SIMILAR TO PHOSPHOSERINE AMINOTRANSFERASE ISOFORM 1.	40331	5.98	2	2	6.78
1001	IPI00145399.2	SIMILAR TO 67 KDA LAMININ RECEPTOR.	27169	4.54	2	1	5.33
1002	IPI00145540.3	SIMILAR TO TROPOMYOSIN 3	24801	4.17	2	1	6.67
1003	IPI00148061 2	SIMILAR TO LACTATE DEHYDROGENASE 1 A CHAIN	25626	8.01	2	1	5 13
1004	IPI00151138.1		10091	4.26	2	1	16.67
1005	IPI00152635 1		121100	8.00	2	1	0.46
1005	IDI00152000.1	D 1402242.2	12006	0.09	2	2	20.40
1000	IF100152765.1		13900		2	2	20.03
1007	IP100152906.1		13805		2	2	20.8
1008	IPI00154852.1	FLJ00246 PROTEIN.	15/811	4.72	2	1	0.4
1009	IPI00156689.1	HYPOTHETICAL PROTEIN.	41920	6.25	2	2	7.89
1010	IPI00163147.4	none found in database	44915	5.01	2	2	4.6
1011	IPI00163328.3	GLYCOGEN PHOSPHORYLASE, LIVER FORM.	97208	7.17	2	1	1.42
1012	IPI00163743.2	HYPOTHETICAL PROTEIN KIAA0169.	195699	6.71	2	2	0.86
1013	IPI00164623.2	COMPLEMENT C3 PRECURSOR [Contains: C3A ANAPHYLATOXIN].	187235	6.34	2	2	1.56
1014	IPI00165049.1	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX- DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE	34495	9.51	2	1	2.18
1015	IPI00166293.1	PROTEIN A1) (HDP-1) (TOPOISOMERASE-INHIBITOR SUPPRESSED). HYPOTHETICAL PROTEIN FLJ33901.	13908	11	2	2	20.63
1016	IPI00166342.1	HYPOTHETICAL PROTEIN FL. 133648	27035	5.06	2	1	2.07
1017	IPI00167313 1		65287	9 17	2	1	0.89
1018	IPI00168895 1	FORKHEAD TRANSCRIPTION FACTOR	18064	77	2	1	3.36
1010	IPI00170645 1		13088	11.55	2	1	14 73
1013	IDI00171974 1		79222	6 70	2	1	0.97
1020	IF100171074.1	AS GUANTE RELEASING FROTEINS.	70332	0.79	2	1	0.07
1021	19100175039.2		10100	1.39	2	1	0.71
1022	IPI00175190.2	SIMILAR TO DJ/02J19.1 (GLYCINE CLEAVAGE SYSTEM PROTEIN H (AMINOMETHYL CARRIER)).	18883	4.4	2	1	11.56
1023	IPI00176593.1	SIMILAR TO ACTIN-RELATED PROTEIN 2.	44705	6.33	2	2	4.57
1024	IPI00176610.1	SIMILAR TO UNACTIVE PROGESTERONE RECEPTOR, 23 KD.	18694	4.16	2	1	7.5
1025	IPI00176755.2	SIMILAR TO 60S RIBOSOMAL PROTEIN L23A.	17707	11.16	2	1	8.33
1026	IPI00176799.1	SIMILAR TO HYPOTHETICAL PROTEIN.	85105	4.55	2	2	4.15
1027	IPI00178188.3	DYNEIN LIGHT CHAIN 2B, CYTOPLASMIC.	10855	7.68	2	2	21.88

1028	IPI00178416.1	RAS GUANYL RELEASING PROTEIN 3 (CALCIUM AND DAG-REGULATED).	78203	6.79	2	1	0.87
1029	IPI00179437.3	RHO-SPECIFIC GUANINE NUCLEOTIDE EXCHANGE FACTOR P114.	118022	6.74	2	1	0.48
1030	IPI00180277.3	SIMILAR TO KERATIN 8, TYPE II CYTOSKELETAL - HUMAN.	42608	4.46	2	1	2.9
1031	IPI00180671.2	DKFZP564O123 PROTEIN.	30196	10.17	2	1	1.82
1032	IPI00181738.1	PROTEIN PHOSPHATASE 3 CATALYTIC SUBUNIT BETA3.	58081	6.01	2	2	3.5
1033	IPI00182180.1	CGI-77 PROTEIN.	33813	5.93	2	1	1.71
1034	IPI00184845.1	UNCHARACTERIZED HEMATOPOIETIC STEM/PROGENITOR CELLS PROTEIN	14995	7.99	2	1	10.22
1035	IPI00185361.3	MDS026. SIMILAR TO RIKEN CDNA 2810021H22 GENE.	68501	9.89	2	2	1.33
1036	IPI00215717.1	SPLICE ISOFORM C OF Q9Y2J2 BAND 4.1-LIKE PROTEIN 3.	69521	6.16	2	2	4.41
1037	IPI00215753.1	SPLICE ISOFORM 2 OF Q13402 MYOSIN VIIA.	250489	8.87	2	1	0.23
1038	IPI00215756.1	SPLICE ISOFORM 5 OF Q13402 MYOSIN VIIA.	240657	9	2	1	0.24
1039	IPI00215758.1	SPLICE ISOFORM 6 OF Q13402 MYOSIN VIIA.	250982	8.58	2	1	0.23
1040	IPI00215759.1	SPLICE ISOFORM 7 OF Q13402 MYOSIN VIIA.	249977	8.58	2	1	0.23
1041	IPI00215907.1	SPLICE ISOFORM 2 OF Q16629 SPLICING FACTOR, ARGININE/SERINE-RICH 7.	15573	10.08	2	1	10.37
1042	IPI00216106.1	SPLICE ISOFORM 3 OF Q9NTK5 PUTATIVE GTP-BINDING PROTEIN PTD004.	31440	8.01	2	1	5.4
1043	IPI00216313.1	VISININ-LIKE 1.	22142	4.76	2	2	12.04
1044	IPI00216347.1	SPLICE ISOFORM 2B OF 013409 DYNEIN INTERMEDIATE CHAIN 2. CYTOSOLIC	70645	4.88	2	2	4.91
1045	IPI00216348 1	SPLICE ISOFORM 2C OF Q13409 DYNEIN INTERMEDIATE CHAIN 2, CYTOSOLIC	68426	4 95	2	2	5.07
1046	IPI00216349 1	SPLICE ISOFORM 2D OF Q13409 DYNEIN INTERMEDIATE CHAIN 2, CYTOSOLIC	67552	4 77	2	2	5.12
1047	IPI00216403.1		11367	11 91	2	1	11.65
1047	IP100210403.1		12074	11.51	2	1	14.72
1040	IF100210450.2		13974	11.00	2	1	14.73
1049	IP100216457.3		14095	11.55	2	1	14.62
1050	IP100216459.1		13969		2	2	20.63
1051	IPI00216492.1	H3.	35239	6.87	2	2	8.16
1052	IPI00216493.1	SPLICE ISOFORM 3 OF P31942 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H3.	31525	7.36	2	2	9.09
1053	IPI00216494.1	SPLICE ISOFORM 4 OF P31942 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H3.	22322	5.51	2	2	12.56
1054	IPI00216495.1	SPLICE ISOFORM 5 OF P31942 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H3.	16084	6.39	2	2	18.62
1055	IPI00216496.1	SPLICE ISOFORM 6 OF P31942 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN H3.	15413	6.39	2	2	19.42
1056	IPI00216641.1	SPLICE ISOFORM 2 OF Q12860 CONTACTIN PRECURSOR.	111867	5.52	2	1	0.89
1057	IPI00216731.1	H1 HISTONE FAMILY, MEMBER T, TESTIS-SPECIFIC.	22019	12.28	2	1	5.31
1058	IPI00217423.3	HYALURONAN BINDING PROTEIN.	56575	4.13	2	1	1.72
1059	IPI00217442.1	MULTIPLE ANKYRIN REPEATS SINGLE KH DOMAIN PROTEIN ISOFORM 2.	277175	5.69	2	1	0.23
1060	IPI00217469.1	H1 HISTONE FAMILY, MEMBER 1.	21842	11.76	2	1	5.12
1061	IPI00217497.1	SPLICE ISOFORM BI-1(V1) OF O00555 VOLTAGE-DEPENDENT P/Q-TYPE CALCIUM CHANNEL ALPHA-1A SUBUNIT.	256777	8.56	2	2	0.75
1062	IPI00217498.1	SPLICE ISOFORM BI-1(V1)-GGCAG OF 000555 VOLTAGE-DEPENDENT P/Q-TYPE CALCUM CHANNEL ALPHA-14 SUBLINIT	282209	9.08	2	2	0.68
1063	IPI00217499.1	SPLICE ISOFORM BI-1(V2) OF 000555 VOLTAGE-DEPENDENT P/Q-TYPE CALCIUM CHANNEL AL PHA-1A SUBUNIT	280944	8.92	2	2	0.68
1064	IPI00217906.1	SIMILAR TO GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN), ALPHA	38473	5.14	2	1	3.54
1065	IPI00218445.1	SPLICE ISOFORM SHORT OF Q9Y5P2 TAXOL RESISTANT ASSOCIATED PROTEIN 3.	12654	10.3	2	1	5.45
1066	IPI00218468.1	SPLICE ISOFORM 2-5 OF P37840 ALPHA-SYNUCLEIN.	13109	4.18	2	1	4.76
1067	IPI00218482.1	SPLICE ISOFORM SHORT OF P30042 ES1 PROTEIN HOMOLOG, MITOCHONDRIAL	24729	8.25	2	2	14.77
1068	IPI00218767.1	PRECURSOR. SPLICE ISOFORM 2 OF P35557 HEXOKINASE D.	52136	4.78	2	1	1.07
1069	IPI00218768.1	SPLICE ISOFORM 3 OF P35557 HEXOKINASE D.	52035	4.88	2	1	1.08
1070	IPI00218862.1	SPLICE ISOFORM 2 OF P16299 SERINE/THREONINE PROTEIN PHOSPHATASE 2B	58013	5.34	2	2	3.5
1071	IPI00219005.1	CATALYTIC SUBUNIT, BETA ISOFORM. FK506-BINDING PROTEIN 4.	51805	5.11	2	2	7.63
1072	IPI00219153.1	RIBOSOMAL PROTEIN L22 PROPROTEIN.	14787	9.75	2	1	8.59
1073	IPI00219218.2	LACTATE DEHYDROGENASE C.	36253	7.86	2	1	3.61
1074	IPI00219219.1	BETA-GALACTOSIDASE BINDING LECTIN PRECURSOR.	14716	5.15	2	2	22.96
1075	IPI00219304.1	SPLICE ISOFORM 2 OF P06705 CALCINEURIN B SUBUNIT ISOFORM 1.	24979	4.81	2	1	4.63
1076	IPI00219448.1	SPLICE ISOFORM 2 OF 000154 CYTOSOLIC ACYL COENZYME A THIOESTER	27041	7	2	2	10.98
1077	IPI00219532.1	HYDROLASE. SPLICE ISOFORM 1 OF Q92556 ENGULFMENT AND CELL MOTILITY PROTEIN 1.	83829	6.22	2	1	0.83
1078	IPI00219563.1	SPLICE ISOFORM A OF Q9NQ66 1-PHOSPHATIDYLINOSITOL-4.5-BISPHOSPHATE	138567	6.12	2	1	0.41
1079	IPI00219593.1	PHOSPHODIESTERASE BETA 1. PROTEIN KINASE, CAMP-DEPENDENT, REGULATORY. TYPE II. BETA.	46346	4.55	2	1	3.83

1080	IPI00219675.1	SPLICE ISOFORM B OF P15154 RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1.	23467	8.82	2	2	11.37
1081	IPI00219774.1	PROTEIN KINASE, CAMP-DEPENDENT, REGULATORY, TYPE II, ALPHA.	45518	4.7	2	2	8.42
1082	IPI00219953.1	UMP-CMP KINASE.	25855	8.1	2	1	6.58
1083	IPI00220067.6	LEUCINE AMINOPEPTIDASE.	56049	7.8	2	2	6.36
1084	IPI00220403.1	H2B HISTONE FAMILY, MEMBER F.	13950	11	2	2	20.63
1085	IPI00220578.1	GUANINE NUCLEOTIDE BINDING PROTEIN (G PROTEIN), ALPHA INHIBITING	40532	5.37	2	1	3.39
1086	IPI00220803.1	ACTIVITY POLYPEPTIDE 3. MARCKS-LIKE PROTEIN.	19529	4.34	2	2	14.36
1087	IPI00220834.4	ATP-DEPENDANT DNA HELICASE II.	82705	5.58	2	2	4.1
1088	IPI00220855.1	SIMILAR TO H2A HISTONE FAMILY, MEMBER O.	14019	11.55	2	1	14.73
1089	IPI00221118.1	SPLICE ISOFORM LONG OF P22570 NADPH:ADRENODOXIN OXIDOREDUCTASE,	54451	8.33	2	1	1.01
1090	IPI00232721.2	MITOCHONDRIAL PRECURSOR. SIMILAR TO NUCLEAR RNA EXPORT FACTOR 2.	102429	8.02	2	1	0.65
1091	IPI00232796.2	SIMILAR TO STRESS-INDUCED-PHOSPHOPROTEIN 1 (STI1) (HSP70/HSP90-	60808	6.66	2	1	2.43
1092	IPI00235690.2	ORGANIZING PROTEIN) (TRANSFORMATION-SENSITIVE PROTEIN IEF SSP 3521). SIMILAR TO TEMPLATE ACYIVATING FACTOR-I ALPHA.	34369	4	2	1	4.38
1093	IPI00239692.1	SIMILAR TO 40S RIBOSOMAL PROTEIN SA (P40) (34/67 KD LAMININ RECEPTOR).	9847	10.06	2	1	14.29
1094	IPI00240020.5	KERATIN, TYPE II CYTOSKELETAL 6A.	59914	8.16	2	1	2.13
1095	IPI00241841.4	KERATIN 6L.	57836	7.22	2	1	2.24
1096	IPI00244083.3	SPLICE ISOFORM 1 OF P35557 HEXOKINASE D.	55643	5.16	2	1	1.01
1097	IPI00246053.1	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	24298	8.68	2	2	4.91
1098	IPI00246188.1	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE	18294	8.75	2	2	6.55
1099	IPI00246616.1		112981	6.76	2	2	3.13
1100	IPI00246673.2	SIMU AR TO CYTOKERATIN 8	59070	5.63	2	-	2.1
1101	IPI00247620.2		51100	10.78	2	1	2.1
1107	IP100247023.2		60657	9.01	2	1	1.00
1102	IP100251211.2	DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN A1 (HELIA- DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE PROTEIN A1)	62657	8.01	2	I	1.23
1103	IPI00251464.2	HYPOTHETICAL PROTEIN XP_294997.	33925	6.93	2	1	1.63
1104	IPI00255316.1	HISTONE 1, H2AD.	14107	11.55	2	1	14.62
1105	IPI00257462.2	HISTONE H2B.H.	13805	11	2	2	20.8
1106	IPI00258043.1	none found in database	11621	10.09	2	2	23.81
1107	IPI00259806.2	none found in database	29109	7.13	2	2	8.55
1108	IPI00260178.2	SIMILAR TO KERATIN 8, TYPE II CYTOSKELETAL - HUMAN.	53411	4.87	2	1	2.28
1109	IPI00260388.3	PHD FINGER PROTEIN 2.	121232	9.72	2	1	0.54
1110	IPI00290078.1	KERATIN, TYPE II CYTOSKELETAL 4.	57295	6.55	2	1	2.06
1111	IPI00290416.1	SPLICE ISOFORM 1 OF Q9NTK5 PUTATIVE GTP-BINDING PROTEIN PTD004.	44744	7.99	2	1	3.79
1112	IPI00290566.1	T-COMPLEX PROTEIN 1, ALPHA SUBUNIT.	60344	5.96	2	2	4.5
1113	IPI00291262.2	CLUSTERIN PRECURSOR.	55192	6.57	2	2	4.83
1114	IPI00291347.1	SPLICE ISOFORM BI-1(V2,V3) OF 000555 VOLTAGE-DEPENDENT P/Q-TYPE CALCIUM	282651	9.1	2	2	0.68
1115	IPI00291373.1	CHANNEL ALPHA-1A SUBUNIT. ADRENOLEUKODYSTROPHY PROTEIN.	82909	9.2	2	1	0.67
1116	IPI00291383.1	HEMICENTIN.	613518	6.48	2	1	0.09
1117	IPI00291419.2	CYTOSOLIC ACETOACETYL-COENZYME A THIOLASE.	41296	6.7	2	1	2.77
1118	IPI00291764.1	H2A HISTONE FAMILY, MEMBER C.	14091	11.55	2	1	14.62
1119	IPI00293655.2	ATP-DEPENDENT HELICASE DDX1.	86436	7.04	2	2	3.85
1120	IPI00293665.4	KERATIN, TYPE II CYTOSKELETAL 6B.	59868	8.16	2	1	2.13
1121	IPI00293867.3	D-DOPACHROME TAUTOMERASE.	12712	7.42	2	1	11.02
1122	IPI00294178 1	SERINE/THREONINE PROTEIN PHOSPHATASE 24, 65 KDA REGULATORY SUBUNIT	66201	4 57	2	1	3
1123	IPI00295542 1	A, BETA ISOFORM. NUCLEOBINDIN 1 PRECURSOR	53821	4 92	2	2	7 81
1124	IPI00296350 3		59936	8 16	2	-	2 13
1124	IPI00290330.3	CAMMA-SYNUCLEIN	13301	4.62	2	2	2.13
1120	IF100297714.1		250044	4.02	2	2	22.03
1120	IFI00290300.3		20700	0.75	2	1	0.10
112/	11100298363.2		12109	0.05	2	2	3.25
1128	IP100299076.1	RECEFTOR DINUTING CANCER ANTIGEN EXPRESSED ON SISU CELLS.	24377	80.0	2	1	2.35
1129	IPI00299145.4		60025	8.16	2	1	2.13
1130	IP100299573.4		29996	11.32	2	1	4.14
1131	IPI00300725.2	KERATIN, TYPE II CYTOSKELETAL 6C.	60069	8.16	2	1	2.13

1132	IPI00301909.3	HYPOTHETICAL PROTEIN.	36629	9.67	2	1	1.57
1133	IPI00302712.1	SPLICE ISOFORM 2A OF Q13409 DYNEIN INTERMEDIATE CHAIN 2, CYTOSOLIC.	71755	4.92	2	2	4.84
1134	IPI00302925.1	T-COMPLEX PROTEIN 1, THETA SUBUNIT.	59621	5.3	2	2	4.01
1135	IPI00303133.3	HISTONE H2B.J.	13761	11	2	2	20.8
1136	IPI00303315.1	H2A HISTONE FAMILY, MEMBER A.	14135	11.66	2	1	14.62
1137	IPI00304490.3	HYPOTHETICAL PROTEIN KIAA1764.	119885	6.17	2	1	0.78
1138	IPI00304692.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN G.	42332	10.39	2	2	6.14
1139	IPI00305692.2	THIOREDOXIN-LIKE PROTEIN.	35546	4.88	2	2	11.95
1140	IPI00306301.1	PYRUVATE DEHYDROGENASE E1 COMPONENT ALPHA SUBUNIT, SOMATIC FORM,	43296	8.14	2	1	3.33
1141	IPI00328202.2	GUANINE NUCLEOTIDE-BINDING PROTEIN G(I), ALPHA-2 SUBUNIT.	40320	5.2	2	1	3.39
1142	IPI00328343.6	PROBABLE ATP-DEPENDENT RNA HELICASE P47.	53243	5.51	2	2	6.44
1143	IPI00329665.2	HISTONE H2B.S.	13813	11.05	2	2	20.8
1144	IPI00329717.3	HISTONE H2B.R.	13773	11	2	2	20.8
1145	IPI00332418.2	RIBOSOMAL PROTEIN L7A.	27358	11.16	2	1	4.56
1146	IPI00332452.3	HYPOTHETICAL PROTEIN FLJ20288.	73616	8.19	2	1	0.87
1147	IPI00332511.4	SERINE/THREONINE PROTEIN PHOSPHATASE 2A, 55 KDA REGULATORY SUBUNIT	58255	7.23	2	1	2.76
1148	IPI00333841.3	SEPTIN KIAA0202D.	52498	6.66	2	1	2.43
1149	IPI00334168.1	none found in database	49350	4.85	2	1	2.49
1150	IPI00335053.1	none found in database	37874	9.99	2	1	1.98
1151	IPI00335449.1	PROTEIN PHOSPHATASE 2 (FORMERLY 2A), REGULATORY SUBUNIT A (PR 65),	73585	4.69	2	1	2.7
1152	IPI00336094.1	SPLICE ISOFORM 2 OF Q99714 3-HYDROXYACYL-COA DEHYDROGENASE TYPE II.	25984	7.29	2	2	14.68
1153	IPI00337415.1	GUANINE NUCLEOTIDE-BINDING PROTEIN G(I), ALPHA-1 SUBUNIT.	41147	6.27	2	1	3.32
1154	IPI00339230.1	SPLICE ISOFORM 3 OF Q16629 SPLICING FACTOR, ARGININE/SERINE-RICH 7.	15257	9.88	2	1	10.61
1155	IPI00339285.1	HISTONE H2B.N.	13776	10.89	2	2	20.8
1156	IPI00373922.1	SIMILAR TO 60S RIBOSOMAL PROTEIN L7A (SURFEIT LOCUS PROTEIN 3) (PLA-X	27765	11.35	2	1	4.49
1157	IPI00373935.1	SIMILAR TO APRING RIBOSOMAL PROTEIN SA (P40) (34/67 KDA LAMININ RECEPTOR)	30638	4.43	2	2	13.5
1158	IPI00374199 1	RESISTANCE-ASSOCIATED PROTEIN MGR1-AG).	19174	4 45	2	1	8 24
1159	IPI00374249 1	SIMILAR TO ENSANGP00000025329	26487	10.87	2	1	4.7
1160	IPI00374259 1	ATAXIA TEL ANGIECTASIA MI ITATED PROTEIN ISOEORM 2	195978	6.75	2	1	0.29
1161	IPI00374876.1	HYPOTHETICAL PROTEIN XP 353305.	21818	10.24	2	1	2.65
1162	IPI00375843.1	HYPOTHETICAL PROTEIN DKFZP686J1375.	54176	5.05	2	1	2.26
1163	IPI00376041.1	HYPOTHETICAL PROTEIN.	63446	4.69	2	1	0.89
1164	IPI00376493.1	PHD FINGER PROTEIN 2 ISOFORM B.	120992	10.07	2	1	0.54
1165	IPI00376647.1	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A.	17978	6.27	2	2	6.96
1166	IPI00376664.1	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A.	14624	6.08	2	2	8.15
1167	IPI00376688.1	N-ACYLSPHINGOSINE AMIDOHYDROLASE (ACID CERAMIDASE) 1 ISOFORM B.	46494	7.97	2	2	8.27
1168	IPI00376972.1	BETA ISOFORM OF REGULATORY SUBUNIT 855, PROTEIN PHOSPHATASE 2	52017	7.02	2	-	3.14
1169	IPI00376973.1	ISOFORM B. BETA ISOFORM OF REGULATORY SUBUNIT B55, PROTEIN PHOSPHATASE 2	49333	6.7	2	1	3.31
1170	IPI00376974.1	ISOFORM C. BETA ISOFORM OF REGULATORY SUBUNIT B55, PROTEIN PHOSPHATASE 2	50371	6.58	2	1	3.24
1171	IPI00376997.1	ISOFORM D. HISTONE H2B.L.	13805	11	2	2	20.8
1172	IPI00377199.1	HISTONE H2B.D.	17842	11.46	2	2	16.46
1173	IPI00382458.1	SPLICE ISOFORM 2 OF Q13618 CULLIN HOMOLOG 3.	86234	8.1	2	1	0.67
1174	IPI00382459.1	SPLICE ISOFORM 3 OF Q13618 CULLIN HOMOLOG 3.	81093	8.72	2	1	0.71
1175	IPI00382480.1	IG HEAVY CHAIN V-III REGION BRO.	13227	6.49	2	1	4.17
1176	IPI00382536.1	IG HEAVY CHAIN V-II REGION MCE.	13792	8.76	2	1	4
1177	IPI00382725.1	CEI-A PROTEIN PRECURSOR.	19292	11.9	2	1	2.81
1178	IPI00383317.1	PR02275.	13097	9.66	2	1	15
1179	IPI00383853.1	HYPOTHETICAL PROTEIN.	40660	7.4	2	2	5.48
1180	IPI00384339.2	KATNA1 PROTEIN.	41120	10.09	2	-	1.38
1181	IPI00384365.1	SIMILAR TO CHROMOSOME 8 OPEN READING FRAME 2.	25355	8.57	2	1	3.93
1182	IPI00384536.1	HYPOTHETICAL PROTEIN KIAA1764.	108166	5.6	2	1	0.86
1183	IPI00385149.1	HYPOTHETICAL PROTEIN.	14577	3.63	2	2	10.29
						-	

1184	IPI00385216.1	LAMBDA-CRYSTALLIN.	35419	6.1	2	1	3.45
1185	IPI00385314.1	TRIM28 PROTEIN.	79474	5.85	2	1	3.98
1186	IPI00385447.1	DJ224A6.1.2 (CELL DIVISION CYCLE 42.	26643	6.51	2	2	9.44
1187	IPI00385928.1	HYPOTHETICAL PROTEIN FLJ90472.	78431	8.86	2	1	0.72
1188	IPI00386438.2	KERATIN, TYPE II CYTOSKELETAL 6D.	42468	5.05	2	1	3.13
1189	IPI00394837.1	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1 ISOFORM RAC1C.	16797	9.23	2	2	16.22
1190	IPI00395319.1	HYPOTHETICAL PROTEIN KIAA1595.	54113	10	2	2	1.7
1191	IPI00395561.1	SPLICE ISOFORM B OF Q9NQ66 1-PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE	133703	6.35	2	1	0.43
1192	IPI00000051.2	PHOSPHODIESTERASE BETA 1. PREFOLDIN SUBUNIT 1.	14210	6.81	1	1	9.02
1193	IPI00000494.1	MSTP030.	34363	10.21	1	1	4.71
1194	IPI00000534.2	SIMILAR TO KIAA1671 PROTEIN.	193711	8.64	1	1	0.28
1195	IPI00000760.1	NG.NG-DIMETHYLARGININE DIMETHYLAMINOHYDROLASE 2.	29644	5.9	1	1	5.61
1196	IPI00001348.4	HYPOTHETICAL PROTEIN KIAA0542.	144083	11.42	1	1	0.41
1197	IPI00002135.1	TRANSFORMING ACIDIC COILED-COIL-CONTAINING PROTEIN 3	90360	4.69	1	1	0.6
1198	IPI00002647 2	WISKOTT-AI DRICH SYNDROME PROTEIN FAMILY MEMBER 4	68189	6.68	1	1	1 12
1100	IDI00002040.5		52314	4.93	1	1	2.77
1200	IP100002343.3		20456	7.35	1	1	12.00
1200	IF100003327.1	ADE-RIDOSTEATION FACTOR-LIKE FROTEIN 3.	20450	1.55	1	4	0.70
1201	IP100003399.1		20652	4.55	1	1	0.79
1202	IP100004203.5	HYPOTHETICAL PROTEIN FLUZZU59.	98900	8.11	1	1	0.78
1203	IPI00004290.1	HYPOTHETICAL PROTEIN DJ434014.5.	87055	5.72	1	1	0.66
1204	IPI00004408.1	SPLICE ISOFORM 2 OF Q9UEY8 GAMMA ADDUCIN.	79155	6.26	1	1	1.7
1205	IPI00004450.1	TESTES SPECIFIC HETEROGENOUS NUCLEAR RIBONUCLEOPROTEIN G-T.	42784	10.72	1	1	3.57
1206	IPI00004488.1	VACUOLAR ATP SYNTHASE SUBUNIT F.	13358	5.19	1	1	10.08
1207	IPI00004501.1	SPLICE ISOFORM 1 OF P11277 SPECTRIN BETA CHAIN, ERYTHROCYTE.	246322	4.9	1	1	0.47
1208	IPI00004557.3	SIMILAR TO KIAA0367.	315796	4.05	1	1	0.17
1209	IPI00004656.1	BETA-2-MICROGLOBULIN PRECURSOR.	13715	6.51	1	1	8.4
1210	IPI00004838.1	SPLICE ISOFORM CRK-II OF P46108 PROTO-ONCOGENE C-CRK.	33872	5.44	1	1	5.59
1211	IPI00004924.1	DEF-6 PROTEIN.	73910	5.89	1	1	1.58
1212	IPI00005198.1	NF45 PROTEIN.	44697	8.32	1	1	2.71
1213 1214	IPI00005474.3	PHOSPHOLYSINE PHOSPHOHISTIDINE INORGANIC PYROPHOSPHATE PHOSPHATASE. WILCSC'H D.IORAFOR 1 PROTEIN	29193 15751	6.36 11.6	1	1	7.78
1015	IP100005646.1		00212	F 64	1	1	1.00
1215	IP100005824.1		25007	0.1	1	1	6.97
1210	IP100005824.1		25997	9.1	1	1	5.07
1217	IP100005969.1		32923	5.42	1	1	5.94
1218	IPI00006079.1	HYPOTHETICAL PROTEIN KIAA0164.	106122	10.61	1	1	1.96
1219	IPI00006158.1		62093	5.74	1	1	1.44
1220	IPI00006254.1	PERIPHERAL BENZODIAZEPINE RECEPTOR INTERACTING PROTEIN.	200150	4.78	1	1	0.27
1221	IPI00006328.1	ATPASE INHIBITOR, MITOCHONDRIAL PRECURSOR.	12249	10.05	1	1	9.43
1222	IPI00006504.1	SPLICE ISOFORM 1 OF Q9NR50 TRANSLATION INITIATION FACTOR EIF-2B GAMMA SUBUNIT.	50240	6.41	1	1	1.11
1223	IPI00007087.1	F-BOX ONLY PROTEIN 2.	33257	4.01	1	1	4.07
1224	IPI00007834.1	SPLICE ISOFORM 1 OF Q01484 ANKYRIN 2.	430344	4.77	1	1	0.2
1225	IPI00007847.1	UEV1AS.	11842	9.46	1	1	8.74
1226	IPI00007926.1	RCL.	19108	4.69	1	1	9.77
1227	IPI00008055.1	HYPOTHETICAL PROTEIN KIAA1285.	87733	6	1	1	0.51
1228	IPI00008200.1	HYPOTHETICAL PROTEIN KIAA1197.	157165	9.54	1	1	0.54
1229	IPI00008332.1	MYELIN TRANSCRIPTION FACTOR 1.	122329	4.53	1	1	0.89
1230	IPI00008418.1	SPLICE ISOFORM 1 OF Q9NR28 SMAC PROTEIN, MITOCHONDRIAL PRECURSOR.	27131	5.72	1	1	5.02
1231	IPI00008511.1	NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5.	67027	9.32	1	1	1.16
1232	IPI00008524.1	POLYADENYLATE-BINDING PROTEIN 1.	70671	10	1	1	1.73
1233	IPI00008998.1	HSPC121.	44423	9.47	1	1	5.63
1234	IPI00009159.2	SIMILAR TO 40S RIBOSOMAL PROTEIN S6 (PHOSPHOPROTEIN NP33).	28425	10.82	1	1	2.38
1235	IPI00009227.2	BCL-2-ASSOCIATED TRANSCRIPTION FACTOR SHORT FORM.	100216	10.57	1	1	2.07

1236	IPI00009328.2	PROBABLE ATP-DEPENDENT HELICASE DDX48.	46871	6.69	1	1	1.95
1237	IPI00009468.3	SIMILAR TO VACUOLAR PROTEIN SORTING 35.	140263	7.25	1	1	0.8
1238	IPI00009887.1	SPLICE ISOFORM 2 OF Q9HBY8 SERINE/THREONINE-PROTEIN KINASE SGK2.	47604	7.5	1	1	1.17
1239	IPI00009922.1	DC50.	12349	11	1	1	5.5
1240	IPI00009995.2	ETS TRANSCRIPTION FACTOR.	62711	6.68	1	1	0.86
1241	IPI00010270.1	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 2.	21429	7.7	1	1	5.21
1242	IPI00010402.1	SH3 DOMAIN-BINDING GLUTAMIC ACID-RICH-LIKE PROTEIN 3.	10438	4.56	1	1	10.75
1243	IPI00010415.2	SPLICE ISOFORM 1 OF 000154 CYTOSOLIC ACYL COENZYME A THIOESTER	41796	8.66	1	1	3.16
1244	IPI00010420.1	HYDROLASE. HYPOTHETICAL PROTEIN.	35022	10.46	1	1	3.49
1245	IPI00010496.1	HYPOTHETICAL PROTEIN KIAA1045.	48030	5.88	1	1	3.98
1246	IPI00010970.2	HYPOTHETICAL PROTEIN KIAA1617.	101667	6.68	1	1	0.55
1247	IPI00011274.1	JKTBP2.	46438	9.98	1	1	3.81
1248	IPI00011603.2	26S PROTEASOME NON-ATPASE REGULATORY SUBUNIT 3.	60978	8.75	1	1	0.94
1249	IPI00011702.2	PROTEIN KIAA0406.	122069	5.85	1	1	0.92
1250	IPI00011730.2	SIMILAR TO ELASTIN MICROFIBRIL INTERFACE LOCATED PROTEIN 5.	82647	7.76	1	1	0.78
1251	IPI00011964.1	ADDUCIN 2 ISOFORM F.	56350	5.3	1	1	2.38
1252	IPI00011982.1	ADDUCIN 2 ISOFORM G.	46168	5.26	1	1	2.91
1253	IPI00012341.1	SPLICE ISOFORM SRP40-1 OF Q13243 SPLICING FACTOR, ARGININE/SERINE-RICH	31264	12.1	1	1	1.84
1254	IPI00012345.2	5. SPLICE ISOFORM SRP55-1 OF Q13247 SPLICING FACTOR, ARGININE/SERINE-RICH	39587	11.94	1	1	2.62
1255	IPI00012441.1	6. SPLICE ISOFORM 1 OF O43426 SYNAPTOJANIN 1.	173346	7.44	1	1	0.83
1256	IPI00012451.1	GUANINE NUCLEOTIDE-BINDING PROTEIN BETA SUBUNIT 4.	37567	5.85	1	1	2.94
1257	IPI00012682.1	SIMILAR TO DEATH-ASSOCIATED PROTEIN.	11880	10.72	1	1	7.48
1258	IPI00012751.1	40S RIBOSOMAL PROTEIN S28.	7841	11.33	1	1	13.04
1259	IPI00012893.2	SPLICE ISOFORM 1 OF 043566 REGULATOR OF G-PROTEIN SIGNALING 14.	64601	9.25	1	1	0.67
1260	IPI00013290.1	SIMILAR TO HEPATOMA-DERIVED GROWTH FACTOR, RELATED PROTEIN 2.	74230	7.62	1	1	2.24
1261	IPI00013296.1	40S RIBOSOMAL PROTEIN S18.	17719	11.6	1	1	7.24
1262	IPI00013396.1	U1 SMALL NUCLEAR RIBONUCLEOPROTEIN C.	17394	10.14	1	1	7.55
1263	IPI00013415.1	40S RIBOSOMAL PROTEIN S7.	22127	10.86	1	1	11.34
1264	IPI00013485.1	40S RIBOSOMAL PROTEIN S2.	31324	10.9	1	1	4.44
1265	IPI00013860.1	3-HYDROXYISOBUTYRATE DEHYDROGENASE, MITOCHONDRIAL PRECURSOR.	35329	8.26	1	1	5.65
1266	IPI00013888.1	INTEGRAL MEMBRANE PROTEIN 2A.	29741	5.49	1	1	1.52
1267	IPI00013949.1	SMALL GLUTAMINE-RICH TETRATRICOPEPTIDE REPEAT-CONTAINING PROTEIN.	34063	4.51	1	1	2.88
1268	IPI00014151.1	26S PROTEASOME NON-ATPASE REGULATORY SUBUNIT 6.	45531	5.29	1	1	3.86
1269	IPI00014439.1	DIHYDROPTERIDINE REDUCTASE.	25804	7.45	1	1	7.38
1270	IPI00014455.3	R31167 1. PARTIAL PROTEIN	53887	5.07	1	1	1
1271	IPI00014537.1	SPLICE ISOFORM 1 OF 043852 CALUMENIN PRECURSOR	37107	4.23	1	1	3.49
1272	IPI00014754.3	SIMILAR TO 40S RIBOSOMAL PROTEIN SA (P40) (34/67 KDA LAMININ RECEPTOR)	23486	4.21	1	1	2.83
		(COLON CARCINOMA LAMININ-BINDING PROTEIN) (NEM/1CHD4) (MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN MGR1-AG).					
1273	IPI00014925.1	ATP-DEPENDENT DNA HELICASE Q4.	133077	8.12	1	1	0.83
1274	IPI00015018.1	INORGANIC PYROPHOSPHATASE.	32660	5.64	1	1	3.46
1275	IPI00015115.1	SIMILAR TO AC45.	25310	9.99	1	1	4.46
1276	IPI00015148.3	RAS-RELATED PROTEIN RAP-1B.	20825	5.39	1	1	6.52
1277	IPI00015157.1	HYPOTHETICAL PROTEIN.	16313	10.38	1	1	9.03
1278	IPI00015180.1	APICAL-LIKE PROTEIN.	176410	7.09	1	1	0.37
1279	IPI00015351.1	AD039.	24178	5.56	1	1	4.27
1280	IPI00015526.2	SPLICE ISOFORM 1 OF Q9H9B1 HISTONE-LYSINE N-METHYLTRANSFERASE, H3	138182	5.83	1	1	0.39
1281	IPI00015730.1	PROSTAGLANDIN F2-ALPHA RECEPTOR.	40055	9.11	1	1	1.67
1282	IPI00015826.1	ATP-BINDING CASSETTE, SUB-FAMILY B, MEMBER 10, MITOCHONDRIAL	79099	10.41	1	1	0.81
1283	IPI00015891.1	PREFOLDIN SUBUNIT 4.	15314	4.15	1	1	8.96
1284	IPI00015973.1	BAND 4.1-LIKE PROTEIN 2.	112588	5.13	1	1	1
1285	IPI00016456.1	ADENOVIRUS 5 E1A-BINDING PROTEIN.	66203	8.3	1	1	1.6
1286	IPI00016664.1	FORKHEAD BOX PROTEIN E2.	52389	11.25	1	1	1
1287	IPI00016734.1	HOMEOBOX PROTEIN ENGRAILED-1.	40101	10.09	1	1	1.28

1288	IPI00016768.1	L-LACTATE DEHYDROGENASE A-LIKE.	41943	8.89	1	1	1.57
1289	IPI00016783.1	NUCLEAR TRANSITION PROTEIN 2.	15641	12.14	1	1	4.35
1290	IPI00017025.2	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	21072	7.74	1	1	2.55
1291	IPI00017297.1	MATRIN 3.	94623	6.19	1	1	2.48
1292	IPI00017367.1	RADIXIN.	68564	6.3	1	1	1.54
1293	IPI00017704.1	COACTOSIN-LIKE PROTEIN.	15945	5.31	1	1	11.27
1294	IPI00017870.1	BA13B9.3.	55152	4.55	1	1	1.8
1295	IPI00018195.1	MITOGEN-ACTIVATED PROTEIN KINASE 3.	43136	6.74	1	1	3.96
1296	IPI00018214.1	SPLICE ISOFORM 1 OF P25912 MAX PROTEIN.	18275	6.25	1	1	6.25
1297	IPI00018262.1	ACIDIC LEUCINE-RICH NUCLEAR PHOSPHOPROTEIN 32 FAMILY MEMBER C.	26762	3.86	1	1	4.7
1298	IPI00018272.1	PYRIDOXINE-5'-PHOSPHATE OXIDASE.	29988	7.09	1	1	3.45
1299	IPI00018342.2	ADENYLATE KINASE ISOENZYME 1.	21635	8,99	1	1	7.22
1300	IPI00018398.2	26S PROTEASE REGULATORY SUBUNIT 6A.	49204	4.87	1	1	3.19
1301	IPI00018465.1	T-COMPLEX PROTEIN 1. ETA SUBUNIT	59367	7.73	1	1	2.58
1302	IPI00018590 1		40925	9.71	1	1	1.63
1302	IPI00018603 1		35616	8.06	1	1	1.00
1204	IP100010055.1		26192	6.41	1	1	5.06
1304	IF100010700.1		20103	0.41	1	1	0.20
1305	IP100018871.1		21539	8.62		1	12.37
1306	IP100018931.2		91707	5.17	1	1	1.26
1307	IPI00018963.1	SPLICE ISOFORM 1 OF Q9NVD7 ALPHA-PARVIN.	42244	5.74	1	1	1.34
1308	IPI00019171.1	SH3-CONTAINING GRB2-LIKE PROTEIN 2.	39962	5.14	1	1	4.55
1309	IPI00019345.1	RAS-RELATED PROTEIN RAP-1A.	20987	6.55	1	1	6.52
1310	IPI00019355.1	REGULATORY PROTEIN TSC-22.	15680	4.87	1	1	8.33
1311	IPI00019884.1	ALPHA-ACTININ 2.	103854	5.13	1	1	1.68
1312	IPI00019904.1	SPLICE ISOFORM 1 OF P35612 BETA ADDUCIN.	80854	5.73	1	1	1.65
1313	IPI00019997.1	HYPOTHETICAL PROTEIN FLJ11215.	21834	8.7	1	1	8.12
1314	IPI00020008.1	UBIQUITIN-LIKE PROTEIN NEDD8.	9072	9	1	1	17.28
1315	IPI00020075.1	HYPOTHETICAL PROTEIN FLJ11342.	33933	8.77	1	1	6.21
1316	IPI00020273.1	ATP-SENSITIVE INWARD RECTIFIER POTASSIUM CHANNEL 10.	42508	8.2	1	1	1.32
1317	IPI00020546.1	ASH1.	332768	9.95	1	1	0.2
1318	IPI00021034.1	COLLAGEN ALPHA 1(IV) CHAIN PRECURSOR.	160611	8.42	1	1	0.3
1319	IPI00021122.1	OLFACTORY RECEPTOR 17-1.	32021	10.42	1	1	2.02
1320	IPI00021338.1	DIHYDROLIPOAMIDE ACETYLTRANSFERASE COMPONENT OF PYRUVATE	65781	5.95	1	1	2.44
1321	IPI00021396.1	VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 2 PRECURSOR.	151527	5.64	1	1	0.37
1322	IPI00021435.1	PROTEASOME 26S ATPASE SUBUNIT 2.	48634	5.65	1	1	2.54
1323	IPI00021808.1	HISTIDYL-TRNA SYNTHETASE.	57410	5.56	1	1	0.98
1324	IPI00021819.1	CYTOCHROME P450 2D6.	55802	7.26	1	1	1.21
1325	IPI00021885.1	SPLICE ISOFORM ALPHA-E OF P02671 FIBRINOGEN ALPHA/ALPHA-E CHAIN	94973	5.87	1	1	1.73
1326	IPI00021954.1	GOLGI-SPECIFIC BREFELDIN A-RESISTANCE GUANINE NUCLEOTIDE EXCHANGE	206446	5.5	1	1	0.32
1327	IPI00022326.1	OLFACTORY RECEPTOR 10A5.	35519	8.94	1	1	1.58
1328	IPI00022432.1	TRANSTHYRETIN PRECURSOR.	15887	5.58	1	1	8.84
1329	IPI00023004.2	EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, Y-CHROMOSOMAL.	16311	4.84	1	1	7.69
1330	IPI00023048.2	ELONGATION FACTOR 1-DELTA.	31122	4.63	1	1	3.2
1331	IPI00023138.1	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 3.	21379	8.27	1	1	5.21
1332	IPI00023258.2	SIMILAR TO TRANSCRIPTION INITIATION FACTOR TFIID 105 KDA SUBUNIT (TAFII-	101928	9.88	1	1	0.73
1333	IPI00023601.1	105) (TAFII105). PROTEOGLYCAN LINK PROTEIN PRECURSOR.	40166	7.45	1	1	3.39
1334	IPI00024664.1	SPLICE ISOFORM LONG OF P45974 UBIQUITIN CARBOXYL-TERMINAL HYDROLASE	95786	4.65	1	1	1.86
1335	IPI00024670.2	5. POLYPOSIS LOCUS PROTEIN 1.	21133	8.29	1	1	5.95
1336	IPI00024920.1	ATP SYNTHASE DELTA CHAIN, MITOCHONDRIAL PRECURSOR.	17490	5.19	1	1	8.33
1337	IPI00025084 1	CALCIUM-DEPENDENT PROTEASE, SMALL SUBUNIT	28316	4.82	1	1	8.58
1338	IPI00025329 1	60S RIBOSOMAL PROTEIN L19.	23466	12.03	1	1	8 67
1339	IPI00025340 1		31698	6.51	1	1	4 72
1000	.1 100020040.1		01030	0.01			4.73

1340	IPI00025477.2	SPLICE ISOFORM ALPHA-1B-1 OF Q00975 VOLTAGE-DEPENDENT N-TYPE CALCIUM	264305	8.75	1	1	0.47
1341	IPI00025710.1	PROTEIN C210RF59.	33224	7.55	1	1	1.72
1342	IPI00025961.1	HYPOTHETICAL PROTEIN KIAA1411.	170604	5.1	1	1	0.39
1343	IPI00026138.2	SIMILAR TO RIBOSOMAL PROTEIN S3A.	29847	10.3	1	1	3.79
1344	IPI00026167.1	NHP2-LIKE PROTEIN 1.	14174	8.64	1	1	8.59
1345	IPI00026314.1	GELSOLIN PRECURSOR, PLASMA.	85698	6.19	1	1	1.66
1346	IPI00026519.1	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR.	22040	9.95	1	1	2.42
1347	IPI00026533.4	HYPOTHETICAL PROTEIN FLJ20032.	130277	7.85	1	1	0.43
1348	IPI00027500.1	TRANSFORMING PROTEIN RHOA.	21768	5.89	1	1	5.18
1349	IPI00027626.1	T-COMPLEX PROTEIN 1, ZETA SUBUNIT.	58024	6.65	1	1	3.95
1350	IPI00027717.1	COMPONENT OF GEMS 4.	119990	6	1	1	0.66
1351	IPI00027860.1	PROBABLE SERINE PROTEASE HTRA4 PRECURSOR.	50979	8.07	1	1	1.05
1352	IPI00027862.2	PROBABLE SERINE PROTEASE HTRA3 PRECURSOR.	48608	7.1	1	1	3.97
1353	IPI00027996.1	70 KDA WD-REPEAT TUMOR REJECTION ANTIGEN HOMOLOG.	100575	5.55	1	1	1.19
1354	IPI00028004.2	PROTEASOME SUBUNIT BETA TYPE 3.	22949	6.51	1	1	7.8
1355	IPI00028277.2	SIMILAR TO KIAA1752 PROTEIN.	61383	4.83	1	1	2.6
1356	IPI00028448.1	BRAIN-SPECIFIC ANGIOGENESIS INHIBITOR 3 PRECURSOR.	171491	7.06	1	1	0.33
1357	IPI00028454.1	HYPOTHETICAL PROTEIN KIAA1692.	97050	6.65	1	1	0.7
1358	IPI00028951.2	POTENTIAL PHOSPHOLIPID-TRANSPORTING ATPASE VA.	167688	8.43	1	1	0.33
1359	IPI00028975.2	SPLICE ISOFORM II OF Q14141 SEPTIN 6.	49717	6.65	1	1	2.3
1360	IPI00029208.1	MYOSIN LIGHT CHAIN ALKALI, SMOOTH-MUSCLE ISOFORM.	16830	4.19	1	1	8.67
1361	IPI00029413.1	OLFACTORY RECEPTOR 10A1.	25309	8.94	1	1	2.2
1362	IPI00029485.2	SPLICE ISOFORM P150 OF Q14203 DYNACTIN 1.	141695	5.58	1	1	1.72
1363	IPI00029534.1	AMIDOPHOSPHORIBOSYLTRANSFERASE PRECURSOR.	57399	6.74	1	1	1.16
1364	IPI00029626.1	ELF-1 RELATED PROTEIN.	70984	6.08	1	1	0.75
1365	IPI00029717.1	SPLICE ISOFORM ALPHA OF P02671 FIBRINOGEN ALPHA/ALPHA-E CHAIN	69757	8.17	1	1	2.33
1366	IPI00030023.1	PRECURSOR [Contains: FIBRINOPEPTIDE A]. HISTAMINE N-METHYLTRANSFERASE.	33295	4.98	1	1	3.42
1367	IPI00030126.1	PROBABLE G PROTEIN-COUPLED RECEPTOR GPR18	38062	9.65	1	1	1.21
1368	IPI00030154.1	PROTEASOME ACTIVATOR COMPLEX SUBUNIT 1	28723	5.83	1	1	4.82
1369	IPI00030267.1		180827	6.72	1	1	0.3
1370	IPI00030536.2	SPLICE ISOFORM 1 OF Q9HCH5 SYNAPTOTAGMIN-LIKE PROTEIN 2	102666	8.15	1	1	0.66
1371	IPI00030907.1	AI PHA-2 CATENIN	105282	5.53	1	1	0.52
1372	IPI00031422 3	CARDIAC SODI IM CHANNEL ALPHA SUBUNIT NAV1 5	226812	5 15	1	1	0.45
1373	IPI00031519 1	SPI ICE ISOFORM 1 OF P26358 DNA (CYTOSINE-5)-METHYLTRANSFERASE 1	183165	7.81	1	1	0.37
1374	IPI00031522.2		83000	9.52	1	1	1.83
107.1	11 10000 1022.2	ALPHA) (78 KDA GASTRIN-BINDING PROTEIN) [Includes: LONG-CHAIN ENOYL-COA HYDRATASE (EC 4.2.1.17): LONG CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE	00000	0.02	•		1.00
1375	IPI00031812.1	(EC 1.1.1.35)]. NUCLEASE SENSITIVE ELEMENT BINDING PROTEIN 1.	35924	10.31	1	1	5.86
1376	IPI00032050.2	WW DOMAIN BINDING PROTEIN 2.	28087	5.72	1	1	3.83
1377	IPI00032461.1	GUANINE DEAMINASE.	51003	5.45	1	1	2.64
1378	IPI00033904.2	SIMILAR TO RIBOSOMAL PROTEIN S3A.	29971	10.47	1	1	3.79
1379	IPI00034319.1	DIVALENT CATION TOLERANT PROTEIN CUTA.	16833	4.87	1	1	17.31
1380	IPI00035766.2	SIMILAR TO PEPTIDYL-PRO CIS TRANS ISOMERASE.	17525	7.89	1	1	3.14
1381	IPI00037283.1	DYNAMIN-LIKE PROTEIN DYMPLE ISOFORM.	78061	6.68	1	1	1
1382	IPI00037448.1	GLYOXYLATE REDUCTASE.	35668	7.44	1	1	5.49
1383	IPI00043606.1	HYPOTHETICAL PROTEIN FLJ31030.	66043	9	1	1	0.7
1384	IPI00045051.1	PUR-BETA	33241	5.06	1	1	4.17
1385	IPI00045396.1	SPLICE ISOFORM 2 OF 043852 CALUMENIN PRECURSOR	37135	4.18	1	1	3.49
1386	IPI00045438 1	SOLUTE CARRIER FAMILY 26. MEMBER 9 ISOFORM A	86988	8.33	1	1	0.63
1387	IPI00045498.1	JKTBP1DELTA6.	27191	8.99	1	1	6.56
1388	IPI00045527.1	PROTEOGLYCAN LINK PROTEIN.	40894	6.5	1	1	3.33
1389	IPI00045729.1	HYPOTHETICAL PROTEIN FLJ14981.	48585	5.33	1	1	1.11
1390	IPI00045864.1	HYPOTHETICAL PROTEIN FLJ14710.	65622	9.1	1	1	1.04
						•	

1391	IPI00047526.3	SIMILAR TO 40S RIBOSOMAL PROTEIN S3A (V-FOS TRANSFORMATION EFFECTOR	22075	10.46	1	1	5.18
1392	IPI00050096.4	SIMILAR TO MITOCHONDRIAL ACONITASE.	41937	10.03	1	1	2.71
1393	IPI00050933.5	SIMILAR TO PHOSPHOSERINE AMINOTRANSFERASE ISOFORM 1.	41929	8.04	1	1	2.88
1394	IPI00052316.2	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A.	16975	6.59	1	1	3.31
1395	IPI00056312.1	HYPOTHETICAL PROTEIN FLJ25628.	22502	4.56	1	1	4.5
1396	IPI00056521.1	SPLICE ISOFORM 1 OF Q969W9 TRANSMEMBRANE PROSTATE ANDROGEN-	31609	6.89	1	1	1.74
1397	IPI00058448.3	SIMILAR TO PROTEIN TYROSINE PHOSPHATASE.	70608	8.12	1	1	1.3
1398	IPI00059975.1	SPLICE ISOFORM 2 OF Q9HCH5 SYNAPTOTAGMIN-LIKE PROTEIN 2.	42736	9.42	1	1	1.6
1399	IPI00060031.1	SIMILAR TO HYPOTHETICAL PROTEIN FLJ10702.	21416	7.93	1	1	12.37
1400	IPI00060762.2	SIMILAR TO RIBOSOMAL PROTEIN L7.	33826	10.99	1	1	3.09
1401	IPI00063849.1	SPLICE ISOFORM 2 OF Q9NP97 DYNEIN LIGHT CHAIN 2A, CYTOPLASMIC.	5060	5.71	1	1	19.15
1402	IPI00064239.1	HYPOTHETICAL PROTEIN KIAA1784.	127547	5.18	1	1	0.43
1403	IPI00064351.1	HYPOTHETICAL PROTEIN FLJ14825.	43273	5.12	1	1	1.32
1404	IPI00064352.1	HYPOTHETICAL PROTEIN FLJ14824.	17023	7.68	1	1	8.11
1405	IPI00064579.3	BTB/POZ DOMAIN CONTAINING PROTEIN 6.	45925	5.33	1	1	1.46
1406	IPI00066374.1	SMOOTH MUSCLE AND NON-MUSCLE MYOSIN ALKALI LIGHT CHAIN ISOFORM 4.	12939	4.53	1	1	11.21
1407	IPI00068174.2	SIMILAR TO PEPTIDYLPROLYL ISOMERASE A (CYCLOPHILIN A).	38117	9.04	1	1	1.44
1408	IPI00070907.4	HYPOTHETICAL PROTEIN XP_351183.	32585	5.97	1	1	2.01
1409	IPI00074224.8	none found in database	17143	4.84	1	1	7.33
1410	IPI00074962.1	ANKYRIN 2 ISOFORM 1.	433745	4.79	1	1	0.2
1411	IPI00075272.1	HYPOTHETICAL PROTEIN FLJ32194.	44434	6.79	1	1	3.72
1412	IPI00076579.3	SIMILAR TO T-COMPLEX PROTEIN 1, ALPHA SUBUNIT (TCP-1-ALPHA) (CCT- ALPHA).	54758	6.73	1	1	1.98
1413	IPI00083938.1	SIMILAR TO 40S RIBOSOMAL PROTEIN S16.	16412	10.6	1	1	7.53
1414	IPI00084423.4	SIMILAR TO 60S RIBOSOMAL PROTEIN L17 (L23) (AMINO ACID STARVATION-	13053	10.85	1	1	12.28
1415	IPI00091258.4	INDUCED PROTEIN) (ASI). SIMILAR TO 3-5 RNA EXONUCLEASE.	81440	5.07	1	1	0.94
1416	IPI00097447.4	SIMILAR TO ADENYLYL CYCLASE-ASSOCIATED PROTEIN 1 (CAP 1).	49300	8.01	1	1	2.44
1417	IPI00097790.1	WAS PROTEIN FAMILY, MEMBER 2.	54284	5.16	1	1	1.41
1418	IPI00098756.2	SIMILAR TO ADAPTOR-RELATED PROTEIN COMPLEX 2, BETA 1 SUBUNIT.	100424	5.95	1	1	1.22
1419	IPI00101968.1	HYPOTHETICAL PROTEIN FLJ14461.	49042	4.72	1	1	2.51
1420	IPI00102498.2	SOLUTE CARRIER FAMILY 26, MEMBER 9 ISOFORM B.	101680	8.63	1	1	0.54
1421	IPI00102896.1	RAS-RELATED PROTEIN RAB-2B.	24214	7.97	1	1	5.56
1422	IPI00103616.1	DYSLEXIA SUSCEPTIBILITY 1 CANDIDATE GENE 1 PROTEIN.	48455	9.27	1	1	1.43
1423	IPI00103647.1	CILIARY DYNEIN HEAVY CHAIN 7.	461143	5.82	1	1	0.17
1424	IPI00104136.2	SIMILAR TO NUCLEAR RNA HELICASE. DECD VARIANT OF DEAD BOX FAMILY.	49130	5.39	1	1	2.34
1425	IPI00104899.2	SIMILAR TO 60S RIBOSOMAL PROTEIN L17 (L23).	12755	10.8	1	1	9.01
1426	IPI00105119.1	HYPOTHETICAL PROTEIN FLJ25373.	46520	6.62	1	1	1.21
1427	IPI00106663.1	HYPOTHETICAL PROTEIN KIAA0849.	107911	5.22	1	1	0.52
1428	IPI00140345.3	SIMILAR TO 40S RIBOSOMAL PROTEIN SA (P40) (34/67 KDA LAMININ RECEPTOR).	36157	4.69	1	1	2.99
1429	IPI00141564.1	HYPOTHETICAL PROTEIN.	78194	6.6	1	1	0.84
1430	IPI00141809.2	SIMILAR TO HIGH MOBILITY GROUP PROTEIN HOMOLOG HMG4	23922	10.34	1	1	2.84
1431	IPI00141925.1	ZINC FINGER PROTEIN 342	50810	8.98	1	1	1.05
1432	IPI00144153 1	SIMILAR TO PROTEIN 40KD	14077	7.68	1	1	7 75
1433	IPI00145331.2	BA317E16.3	14167	11	1	1	8.66
1434	IPI00146260.1	SIMILAR TO ACTIVATED RNA POLYMERASE II TRANSCRIPTIONAL COACTIVATOR	14229	10.39	1	1	11.02
1435	IPI00146935 1	P15 (PC4) (P14). DYNAMIN-I IKE PROTEIN	81891	6.8	1	1	0.95
1436	IPI00148255 1		22284	5.73	1	1	6 15
1437	IPI00152108 1	DELTA, PRECURSOR. E-BOX ONLY PROTEIN 2.	33328	4 01	1	1	4 05
1438	IPI00152242 1		19735	10 27	1	1	7.56
1439	IPI00154890 1	PROTEIN SERINE/THREONINE PHOSPHATASE 4 SUBJINIT PP/RMEG	107004	4.38	1	1	0.53
1440	IPI00156774 2	SIMILAR TO RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1 ISOFORM RAC1	21543	9,14	1	1	7 29
1441	IPI00157556 5		64711	8.57	1	1	0.85
1442	IPI00157913 4	MAX PROTEIN	15305	7 9/	1	1	7 16
1442	11100137013.1	WAAT NOTEN.	10090	1.24		1	1.40

1443	IPI00158128.1	SPLICE ISOFORM 3 OF P25912 MAX PROTEIN.	12099	5.93	1	1	9.71
1444	IPI00160587.2	SIMILAR TO 40S RIBOSOMAL PROTEIN S6 (PHOSPHOPROTEIN NP33).	26351	11.05	1	1	2.59
1445	IPI00160836.3	none found in database	42157	4.58	1	1	2.67
1446	IPI00161313.2	SIMILAR TO FOLATE HYDROLASE.	88682	6.06	1	1	0.5
1447	IPI00161846.2	SIMILAR TO PROTEIN 40KD.	19072	7.51	1	1	5.71
1448	IPI00164007.1	SMALL GTP-BINDING PROTEIN.	6306	5.56	1	1	15.09
1449	IPI00165222.2	none found in database	11625	6.51	1	1	6.67
1450	IPI00165486.5	SIMILAR TO RIBOSOMAL PROTEIN S2.	45408	10.48	1	1	3.06
1451	IPI00166058.1	SIMILAR TO HYPOTHETICAL GENE LOC136555.	12255	9.65	1	1	3.6
1452	IPI00166250.1	HYPOTHETICAL PROTEIN FLJ37882.	44031	9.96	1	1	1.6
1453	IPI00166271.1	HYPOTHETICAL PROTEIN FLJ34952.	13616	11.47	1	1	4.72
1454	IPI00166825.1	SIMILAR TO HYPOTHETICAL PROTEIN FLJ14981.	50662	5.48	1	1	1.06
1455	IPI00167002.2	ETS-RELATED TRANSCRIPTION FACTOR ELF-1.	67456	4.84	1	1	0.81
1456	IPI00167400.4	HYPOTHETICAL PROTEIN FLJ40200.	58798	6.55	1	1	1.93
1457	IPI00167491.2	SIMILAR TO ZINC FINGER PROTEIN 432	71162	10.05	1	1	0.8
1458	IPI00167784.1	HYPOTHETICAL PROTEIN FL. J36749.	27957	8.61	1	1	2.4
1459	IPI00167879 1		15015	8 14	1	1	3.52
1460	IPI00167067 1		24855	8.1	1	1	2.64
1400	IPI00167907.1		24000	7.04	1	1	2.04
1401			34237	0.04	1	4	2.17
1462	IP100166436.1		104070	9.00	1	1	3.9
1463	IP100168509.2	HYPOTHETICAL PROTEIN FLJ13/25.	131873	6.24	1	1	0.49
1464	IPI00170744.1	MYELOID ELF-1 LIKE FACTOR.	70730	5.3	1	1	0.75
1465	IPI00170796.1	SPLICE ISOFORM 1 OF Q9UBQ0 VACUOLAR PROTEIN SORTING 29.	20506	6.79	1	1	7.14
1466	IPI00171160.1	SIMILAR TO 37 KDA LEUCINE-RICH REPEAT (LRR) PROTEIN.	51800	8.34	1	1	1.36
1467	IPI00171230.1	HYPOTHETICAL PROTEIN KIAA1081.	115109	6.24	1	1	0.9
1468	IPI00171480.1	HYPOTHETICAL PROTEIN FLJ90246.	69856	7.12	1	1	0.77
1469	IPI00171741.2	PIGGYBAC TRANSPOSABLE ELEMENT DERIVED 4.	67004	9.62	1	1	1.2
1470	IPI00171903.1	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN M.	77516	9.1	1	1	2.19
1471	IPI00172421.3	S-PHASE KINASE-ASSOCIATED PROTEIN 1A ISOFORM A.	18063	4.08	1	1	8.75
1472	IPI00172585.1	SERINE/THREONINE-PROTEIN KINASE SGK3.	57108	6.92	1	1	1.01
1473	IPI00173565.3	none found in database	28163	5.27	1	1	2.77
1474	IPI00175146.2	HYPOTHETICAL PROTEIN KIAA0546.	218331	8.12	1	1	0.26
1475	IPI00175151.2	SIMILAR TO HYPOTHETICAL PROTEIN.	223811	8.03	1	1	0.25
1476	IPI00176219.1	SIMILAR TO NEPHRONECTIN SHORT ISOFORM.	61907	8.38	1	1	0.88
1477	IPI00176375.1	HYPOTHETICAL PROTEIN.	185782	6.9	1	1	0.36
1478	IPI00176686.2	SIMILAR TO RIBOSOMAL PROTEIN L6.	32336	10.93	1	1	2.79
1479	IPI00176721.1	SIMILAR TO RIBOSOMAL PROTEIN S2.	31392	11.08	1	1	4.47
1480	IPI00176823.1	SIMILAR TO 60 KDA HEAT SHOCK PROTEIN, MITOCHONDRIAL PRECURSOR (HSP60)	12103	8.44	1	1	11.82
4 4 0 4	10100470044 4	(60 KDA CHAPERONIN) (CPN60) (HEAT SHOCK PROTEIN 60) (HSF-60) (MITOCHONDRIAL MATRIX PROTEIN P1) (P60 LYMPHOCYTE PROTEIN) (HUCHA60).	40000	4.50			0.4
1461	IP100176641.1	SIMILAR TO S-PHASE KINASE-ASSOCIATED PROTEIN TA ISOFORM A.	16920	4.53	1	1	9.4
1482	IPI00176996.2	none found in database	26168	7.97	1	1	2.94
1483	IPI00177010.2	SIMILAR TO TRANSLATION INITIATION FACTOR EIF-44 II - MOUSE.	46056	4.64	1	1	3.42
1484	IPI00178607.5	BH3 INTERACTING DOMAIN DEATH AGONIST ISOFORM 1.	31798	6.91	1	1	5.28
1485	IPI00179076.1	DJ1172N10.1 (UBIQUITIN SPECIFIC PROTEASE 9, X CHROMOSOME.	172064	5.47	1	1	0.4
1486	IPI00179357.1	TITIN.	3.82E+06	6.25	1	1	0.01
1487	IPI00180139.3	none found in database	55267	8.39	1	1	1.22
1488	IPI00180384.1	HYPOTHETICAL PROTEIN KIAA0944.	461773	5.82	1	1	0.17
1489	IPI00181391.4	SIMILAR TO MENINGIOMA EXPRESSED ANTIGEN 5.	110453	6.21	1	1	0.61
1490	IPI00181684.1	ELKS.	108793	6.57	1	1	0.95
1491	IPI00181771.1	none found in database	10322	8.32	1	1	5.62
1492	IPI00181921.1	ADDUCIN 2 ISOFORM C.	46551	4.98	1	1	2.85
1493	IPI00183349.6	R31155_1.	84252	10.02	1	1	1.22
1494	IPI00183643.1	GOLIATH PROTEIN.	46405	9.05	1	1	2.63

1495	IPI00183664.2	none found in database	42485	9.5	1	1	2.48
1496	IPI00183679.2	SPLICE ISOFORM 2 OF Q969W9 TRANSMEMBRANE PROSTATE ANDROGEN-	27900	6.51	1	1	1.98
1497	IPI00184119.2	none found in database	106202	8.98	1	1	0.62
1498	IPI00184284.2	SPLICE ISOFORM 2 OF Q9UBQ0 VACUOLAR PROTEIN SORTING 29.	20927	7.07	1	1	6.99
1499	IPI00184799.2	none found in database	24156	8.94	1	1	3.88
1500	IPI00185197.3	SIMILAR TO CGI-55 PROTEIN.	40188	6.87	1	1	1.36
1501	IPI00185238.3	none found in database	62594	8.38	1	1	0.88
1502	IPI00185256.2	SEX COMB ON MIDLEG HOMOLOG 1 ISOFORM 2.	72072	9.68	1	1	0.77
1503	IPI00185798.2	none found in database	34164	6.97	1	1	5.97
1504	IPI00186101.2	none found in database	32528	8.22	1	1	2.99
1505	IPI00186586.4	SIMILAR TO HYPOTHETICAL PROTEIN FLJ10101.	54698	8.17	1	1	1.21
1506	IPI00186815.2	SPLICE ISOFORM 2 OF 043566 REGULATOR OF G-PROTEIN SIGNALING 14.	38536	8.46	1	1	1.13
1507	IPI00187110.2	SIMILAR TO SEX COMB ON MIDLEG-LIKE 1.	73354	9.71	1	1	0.76
1508	IPI00215719.1	60S RIBOSOMAL PROTEIN L18.	22659	12.28	1	1	5.5
1509	IPI00215879.1	SPLICE ISOFORM SRP55-3 OF Q13247 SPLICING FACTOR, ARGININE/SERINE-RICH	38419	11.56	1	1	2.69
1510	IPI00215911.1	6. APEX NUCLEASE.	35554	8.26	1	1	5.35
1511	IPI00215918.1	ADP-RIBOSYLATION FACTOR 4.	20511	7.26	1	1	11.67
1512	IPI00215919.1	ADP-RIBOSYLATION FACTOR 5.	20530	6.79	1	1	11.67
1513	IPI00215948.1	ALPHA2(E)-CATENIN.	102776	6.25	1	1	0.54
1514	IPI00216139.1	SPLICE ISOFORM I OF Q14141 SEPTIN 6.	48873	6.8	1	1	2.34
1515	IPI00216141.1	SPLICE ISOFORM V OF Q14141 SEPTIN 6.	49167	6.8	1	1	2.33
1516	IPI00216163.3	SPLICE ISOFORM 1 OF Q9NP97 DYNEIN LIGHT CHAIN 2A, CYTOPLASMIC.	13364	9.89	1	1	10.26
1517	IPI00216256.1	SPLICE ISOFORM SHORT OF 075083 WD-REPEAT PROTEIN 1.	58002	6.89	1	1	3
1518	IPI00216443.1	SPLICE ISOFORM 3 OF Q9H9B1 HISTONE-LYSINE N-METHYLTRANSFERASE, H3	125404	5.74	1	1	0.43
1519	IPI00216470.1	LYSINE-9 SPECIFIC 5. PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5-KINASE TYPE II BETA.	47378	7.37	1	1	3.37
1520	IPI00216472.1	SPLICE ISOFORM NON-BRAIN OF P09497 CLATHRIN LIGHT CHAIN B.	23181	4.34	1	1	4.74
1521	IPI00216704.1	SPLICE ISOFORM 2 OF P11277 SPECTRIN BETA CHAIN, ERYTHROCYTE.	267680	5.03	1	1	0.43
1522	IPI00216719.1	ELKS EPSILON.	128086	5.8	1	1	0.81
1523	IPI00216720.1	ELKS GAMMA.	81967	6.6	1	1	1.25
1524	IPI00217009.1	FK506-BINDING PROTEIN 1A.	15727	10.14	1	1	9.72
1525	IPI00217154.1	SPLICE ISOFORM 1 OF Q9HBY8 SERINE/THREONINE-PROTEIN KINASE SGK2.	41175	6.73	1	1	1.36
1526	IPI00217683.1	SPLICE ISOFORM 2 OF Q02952 A-KINASE ANCHOR PROTEIN 12.	181647	4.1	1	1	1.19
1527	IPI00217691.1	SIMILAR TO NUCLEAR FACTOR.	110097	6.52	1	1	0.51
1528	IPI00218013.3	TRIPIN.	144718	8.2	1	1	0.4
1529	IPI00218075.1	PROTEIN FAM9B.	22438	5.08	1	1	2.69
1530	IPI00218242.1	SPLICE ISOFORM ALPHA-2 OF O15165 PROTEIN C180RF1.	32072	6.59	1	1	1.74
1531	IPI00218243.1	SPLICE ISOFORM BETA-1 OF O15165 PROTEIN C18ORF1.	27600	7.57	1	1	2.02
1532	IPI00218244.1	SPLICE ISOFORM BETA-2 OF O15165 PROTEIN C18ORF1.	25772	8.34	1	1	2.17
1533	IPI00218310.1	EXOSOME COMPLEX EXONUCLEASE RRP41.	27637	6.6	1	1	1.95
1534	IPI00218371.1	PHOSPHORIBOSYL PYROPHOSPHATE SYNTHETASE 1-LIKE 1.	34839	6.31	1	1	4.09
1535	IPI00218782.1	F-ACTIN CAPPING PROTEIN BETA SUBUNIT.	30629	5.78	1	1	4.78
1536	IPI00218847.1	ACID PHOSPHATASE 1 ISOFORM B	17977	6.88	1	1	6.96
1537	IPI00219077.1		69285	6.1	1	1	2.13
1538	IPI00219114.1	SPLICE ISOFORM P135 OF Q14203 DYNACTIN 1	127404	5.09	1	1	1.92
1539	IPI00219126.2	SPLICE ISOFORM 3 OF 043566 REGULATOR OF G-PROTEIN SIGNALING 14	64745	8.82	1	1	0.67
1540	IPI00219127.1	SPLICE ISOFORM 4 OF 043566 REGULATOR OF G-PROTEIN SIGNALING 14	21781	10.15	1	1	1.99
1541	IPI00219157 1	RIBOSOMAL PROTEIN L27A	16561	11 64	1	1	7 43
1542	IPI00219207 1	SPLICE ISOFORM 3 OF O9NOC3 RETICULON 4	22395	9,78	1	1	7 04
1543	IPI00219274 1	SYNAPTOTAGMIN II	46830	8 12	1	1	2 30
1544	IPI00219365 1	MOESIN	67820	6.32	1	1	1.56
1545	IPI00210300.1		38001	8 47	1	1	3 49
1546	IPI00219452.1	HYDROLASE. SPLICE ISOFORM 6 OF 000154 CYTOSOLIC ACYL COENZYME A THIOESTER HYDROLASE.	36568	7.88	1	1	3.65

1547	IPI00219616.1	PHOSPHORIBOSYL PYROPHOSPHATE SYNTHETASE 1.	34834	6.98	1	1	4.09
1548	IPI00219861.1	ACID PHOSPHATASE 1 ISOFORM C.	18042	6.73	1	1	6.96
1549	IPI00219865.1	SPLICE ISOFORM 2 OF Q9NR28 SMAC PROTEIN, MITOCHONDRIAL PRECURSOR.	21233	4.48	1	1	6.45
1550	IPI00219929.1	SPLICE ISOFORM 2 OF P25912 MAX PROTEIN.	17202	6.52	1	1	6.62
1551	IPI00220002.1	SPLICE ISOFORM 2 OF O75781 PARALEMMIN.	37157	4.62	1	1	4.08
1552	IPI00220026.1	SPLICE ISOFORM 2 OF P22303 ACETYLCHOLINESTERASE PRECURSOR.	69909	6.91	1	1	0.93
1553	IPI00220323.5	SPLICE ISOFORM ALPHA-1 OF O15165 PROTEIN C180RF1.	36484	6.82	1	1	1.52
1554	IPI00220365.2	EUKARYOTIC TRANSLATION INITIATION FACTOR 4 GAMMA, 1 ISOFORM 4.	154805	4.82	1	1	0.71
1555	IPI00220373.1	INSULYSIN.	118022	6.74	1	1	0.59
1556	IPI00220412.1	S100 CALCIUM BINDING PROTEIN A1.	10546	4.13	1	1	22.34
1557	IPI00220431.1	SPLICE ISOFORM ALPHA-1B-2 OF Q00975 VOLTAGE-DEPENDENT N-TYPE CALCIUM	251759	8.59	1	1	0.49
1558	IPI00220573.1	MYOSIN REGULATORY LIGHT CHAIN MRCL3.	19794	4.4	1	1	6.43
1559	IPI00220617.1	HYPOTHETICAL PROTEIN.	90203	7.88	1	1	1.81
1560	IPI00220738.1	SPLICE ISOFORM CRK-I OF P46108 PROTO-ONCOGENE C-CRK.	22936	4.96	1	1	8.33
1561	IPI00220754.1	SPLICE ISOFORM 1 OF Q9UEY8 GAMMA ADDUCIN.	75671	6.8	1	1	1.78
1562	IPI00220791.1	SPLICE ISOFORM 2 OF P49418 AMPHIPHYSIN.	71929	4.37	1	1	1.53
1563	IPI00220918.1	SPLICE ISOFORM 2 OF P26358 DNA (CYTOSINE-5)-METHYLTRANSFERASE 1.	184819	7.92	1	1	0.37
1564	IPI00220919.1	SPLICE ISOFORM 3 OF P26358 DNA (CYTOSINE-5)-METHYLTRANSFERASE 1.	144465	7.48	1	1	0.47
1565	IPI00220993.1	SPLICE ISOFORM CNPI OF P09543 2',3'-CYCLIC NUCLEOTIDE 3'-	45099	8.76	1	1	2.74
1566	IPI00221088.1	PHOSPHODIESTERASE. RIBOSOMAL PROTEIN S9.	22591	11.32	1	1	5.67
1567	IPI00221089.1	RIBOSOMAL PROTEIN S13.	17222	11.19	1	1	9.93
1568	IPI00221092.1	RIBOSOMAL PROTEIN S16.	16445	10.81	1	1	7.53
1569	IPI00221225.1	ANNEXIN IV.	36085	5.9	1	1	2.18
1570	IPI00221286.1	SPLICE ISOFORM SRP40-2 OF Q13243 SPLICING FACTOR, ARGININE/SERINE-RICH	12528	10.56	1	1	4.67
1571	IPI00221287.1	5. SPLICE ISOFORM SRP40-4 OF Q13243 SPLICING FACTOR, ARGININE/SERINE-RICH	30663	12.18	1	1	1.86
1572	IPI00221354.1	5. SPLICE ISOFORM SHORT OF P35637 RNA-BINDING PROTEIN FUS.	53355	9.59	1	1	2.29
1573	IPI00221391.1	NADH DEHYDROGENASE SUBUNIT 5.	67012	9.32	1	1	1.16
1574	IPI00232416.2	SIMILAR TO TAU TUBULIN KINASE 2.	51904	8.27	1	1	1.95
1575	IPI00232533.2	EUKARYOTIC TRANSLATION INITIATION FACTOR 1A, X-CHROMOSOMAL.	22218	9.37	1	1	5.61
1576	IPI00232922.1	SPLICE ISOFORM 6 OF P07202 THYROID PEROXIDASE PRECURSOR.	67293	7.96	1	1	0.98
1577	IPI00232923.1	SPLICE ISOFORM 2-3 OF P07202 THYROID PEROXIDASE PRECURSOR.	96475	7.33	1	1	0.69
1578	IPI00232924.1	SPLICE ISOFORM 2-4 OF P07202 THYROID PEROXIDASE PRECURSOR.	92031	7.01	1	1	0.72
1579	IPI00233255.2	SIMILAR TO PROTEIN-TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 11	64013	6.74	1	1	1.43
		(PROTEIN-TYROSINE PHOSPHATASE 2C) (PTP-2C) (PTP-1D) (SH-PTP3) (SH- PTP2) (SHP-2).					
1580	IPI00233820.2	CATALASE.	59625	7.41	1	1	1./1
1581	IPI00234131.2	SIMILAR TO 60 KDA HEAT SHOCK PROTEIN, MITOCHONDRIAL PRECURSOR (HSP60) (60 KDA CHAPERONIN) (CPN60) (HEAT SHOCK PROTEIN 60) (HSP-60)	61092	4.91	1	1	1.57
1582	IPI00235352.1	(MITOCHONDRIAL MATRIX PROTEIN P1) (P60 LYMPHOLYTE PROTEIN) (HUCHA60). SIMILAR TO PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5-KINASE, TYPE II, BETA.	32317	9.91	1	1	4.98
1583	IPI00235412.1	DYNAMIN 1-LIKE.	79442	6.92	1	1	0.99
1584	IPI00236274.2	SIMILAR TO KH-TYPE SPLICING REGULATORY PROTEIN (FUSE BINDING PROTEIN	85529	10.18	1	1	1.25
1585	IPI00237806.1	2). SPLICE ISOFORM 3 OF P11277 SPECTRIN BETA CHAIN, ERYTHROCYTE.	242656	4.99	1	1	0.47
1586	IPI00237884.1	A-KINASE ANCHOR PROTEIN 12 ISOFORM 1.	191482	4.07	1	1	1.12
1587	IPI00239789.1	HYPOTHETICAL PROTEIN.	47921	6.91	1	1	2.82
1588	IPI00242253.4	SIMILAR TO RETICULOCALBIN 1 PRECURSOR.	36289	4.46	1	1	5.18
1589	IPI00243499.2	SIMILAR TO AMINOPEPTIDASE PUROMYCIN SENSITIVE.	30397	4.47	1	1	3.68
1590	IPI00243595.2	FLJ00153 PROTEIN.	54312	8.78	1	1	1.41
1591	IPI00243913.3	SIMILAR TO NEUROFILAMENT-LIKE PROTEIN.	115538	4.56	1	1	0.56
1592	IPI00244116.1	SIMILAR TO HYPOTHETICAL PROTEIN MGC27277.	50892	8.49	1	1	1.4
1593	IPI00244567.2	GUANINE NUCLEOTIDE-BINDING PROTEIN G(I)/G(S)/G(O) GAMMA-2 SUBUNIT.	7719	8.22	1	1	22.86
1594	IPI00246067.2	SIMILAR TO KERATIN 8, TYPE II CYTOSKELETAL - HUMAN.	45740	5.03	1	1	2.13
1595	IPI00246556.2	none found in database	17536	6.53	1	1	3.92
1596	IPI00246975.2	GLUTATHIONE S-TRANSFERASE MU 3.	26428	5.19	1	1	7.59
1597	IPI00247493.1	HYPOTHETICAL PROTEIN KIAA0679.	103071	4.56	1	1	0.65

1598	IPI00248099.2	SIMILAR TO CHROMATIN ASSEMBLY FACTOR 1 SUBUNIT C (CAF-1 SUBUNIT C) (CHROMATIN ASSEMBLY FACTOR I P48 SUBUNIT) (CAF-148 KDA SUBUNIT) (CAF- IP48) (RETINOBLASTOMA BINDING PROTEIN P48) (RETINOBLASTOMA-BINDING PROTEIN 4) (RBBP-4) (MSI1 PROTEIN HOMOLOG)	48212	4.9	1	1	3.04
1599	IPI00248597.2	none found in database	8151	4.52	1	1	6.85
1600	IPI00248708.3	none found in database	148561	9.04	1	1	0.37
1601	IPI00248956.1	SPLICE ISOFORM A OF Q9UH03 NEURONAL-SPECIFIC SEPTIN 3.	39345	7.22	1	1	3.48
1602	IPI00249627.2	none found in database	29061	8.71	1	1	3.37
1603	IPI00249656.1	SIMILAR TO RIKEN CDNA 2310039E09.	41899	8.64	1	1	2.75
1604	IPI00252153.1	HYPOTHETICAL PROTEIN FLJ33253.	63244	8.17	1	1	1.26
1605	IPI00254157.3	none found in database	44064	5	1	1	3.33
1606	IPI00256143.2	none found in database	27979	5.78	1	1	2.77
1607	IPI00256684.1	SPLICE ISOFORM B OF O95782 ADAPTER-RELATED PROTEIN COMPLEX 2 ALPHA 1 SUBUNIT.	105370	7.72	1	1	1.88
1608	IPI00257898.2	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN G (HNRNP G) (RNA BINDING MOTIF PROTEIN, X CHROMOSOME) (GLYCOPROTEIN P43).	41987	9.61	1	1	2.56
1609	IPI00257932.1	SIMILAR TO HYPOTHETICAL PROTEIN MGC15737.	23307	4.45	1	1	4.37
1610	IPI00258370.2	SIMILAR TO CALCIUM-BINDING TRANSPORTER.	28389	6.99	1	1	1.95
1611	IPI00258514.2	SIMILAR TO 78 KDA GLUCOSE-REGULATED PROTEIN PRECURSOR (GRP 78) (IMMUNOGLOBULIN HEAVY CHAIN BINDING PROTEIN) (BIP) (ENDOPLASMIC RETICULUM LUMENAL CA(2+) BINDING PROTEIN GRP78).	67459	4.94	1	1	3.45
1612	IP100200904.2		56020	0.40	1	1	2.91
1614	IF100200715.2		66200	9.49	1	1	2.17
1014	IP100200755.2	SIMILAR TO DUTIOUTIS.4 (PUTATIVE REOGAP DOMAIN CONTAINING PROTEIN).	00290	7.00	1	1	0.84
1010	IP100289348.1		27508	7.29	1	1	2.04
1616	IPI00289551.1		35645	8.77	1	1	1.89
1617	IP100289572.1		102931	6.75	1	1	0.64
1618	IPI00289573.3	SPLICE ISOFORM 2 OF P07202 THYROID PEROXIDASE PRECURSOR.	96667	6.79	1	1	0.68
1619	IPI00289575.1	SPLICE ISOFORM 4 OF P07202 THYROID PEROXIDASE PRECURSOR.	98295	6.94	1	1	0.67
1620	IPI00289576.3	SPLICE ISOFORM 5 OF P07202 THYROID PEROXIDASE PRECURSOR.	84549	6.33	1	1	0.79
1621	IPI00289819.2	CATION-INDEPENDENT MANNOSE-6-PHOSPHATE RECEPTOR PRECURSOR.	274966	5.82	1	1	0.24
1622	IPI00290461.1	EUKARYOTIC TRANSLATION INITIATION FACTOR 3 SUBUNIT 1.	29062	4.45	1	1	4.26
1623	IPI00290462.3	CARBONYL REDUCTASE 3.	30850	6.06	1	1	5.78
1624	IPI00290557.1	SIMILAR TO UBIQUITIN UBF-FL.	65644	9.19	1	1	1.04
1625	IPI00290842.2	MICROTUBULE-ASSOCIATED PROTEIN 4 ISOFORM 4.	109619	4.82	1	1	1.06
1626	IPI00290857.1	KERATIN, TYPE II CYTOSKELETAL 3.	64511	6.41	1	1	1.59
1627	IPI00291165.2	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE 1.	86456	7.86	1	1	0.89
1628	IPI00291579.4	KINESIN FAMILY MEMBER 23 ISOFORM 1.	112994	8.84	1	1	0.71
1629	IPI00291922.2	PROTEASOME SUBUNIT ALPHA TYPE 5.	26411	4.45	1	1	5.39
1630	IPI00291993.1	SPLICE ISOFORM M4 OF P52272 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN M.	77469	9.29	1	1	2.19
1631	IPI00292434.3	SPLICE ISOFORM M1-M2 OF P52272 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN M.	73575	9.45	1	1	2.32
1632	IPI00292776.1	HYPOTHETICAL PROTEIN KIAA1508.	65597	8.95	1	1	0.7
1633	IPI00293080.1	HYPOTHETICAL PROTEIN.	140183	8.58	1	1	0.39
1634	IPI00293338.5	SMC5 PROTEIN.	131136	8.53	1	1	0.62
1635	IPI00293380.2	SUPERFAST MYOSIN REGULATORY LIGHT CHAIN 2.	21332	4.43	1	1	3.14
1636	IPI00293884.4	KINESIN-LIKE PROTEIN KIF23.	101041	8.83	1	1	0.79
1637	IPI00293975.1	GLUTATHIONE PEROXIDASE 1.	21899	6.5	1	1	8.96
1638	IPI00294158.1	BILIVERDIN REDUCTASE A PRECURSOR.	33428	6.41	1	1	4.73
1639	IPI00294566.1	HYPOTHETICAL PROTEIN.	55210	7.23	1	1	1.98
1640	IPI00294632.1	PUTTIVE DYNEIN LIGHT CHAIN PROTEIN DJ8B22.1.	10535	6.93	1	1	5.62
1641	IPI00294980.1	PEPSINOGEN.	8716	10.47	1	1	5.48
1642	IPI00295386.3	CARBONYL REDUCTASE 1.	30375	8.49	1	1	5.78
1643	IPI00295392.3	60S RIBOSOMAL PROTEIN L3.	45978	10.89	1	1	2.99
1644	IPI00295461.1	SPLICE ISOFORM 1 OF Q12884 SEPRASE.	87821	6.87	1	1	0.66
1645	IPI00295589.1	EUKARYOTIC TRANSLATION INITIATION FACTOR 4GI.	175535	5.01	1	1	0.63
1646	IPI00296191.1	VACUOLAR ATP SYNTHASE SUBUNIT H.	55883	6.44	1	1	4.76
1647	IPI00296241.3	HISTO-BLOOD GROUP ABO SYSTEM TRANSFERASE (NAGAT) [Includes: GLYCOPROTEIN-FUCOSYLGALACTOSIDE ALPHA-N- ACETYLGALACTOSAMINYLTRANSFERASE (EC 2 4.1.40) (FUCOSYLGLYCOPROTEIN ALPHA-N-ACETYLGALACTOSAMINYLTRANSFERASE) (HISTO-BLOOD GROUP A	40934	9.24	1	1	1.41

TRANSFERASE) (A TRANSFERA	E) (A TRANSFERA
---------------------------	-----------------

1648	IPI00296291.1	HP1-BP74 PROTEIN.	61436	10.26	1	1	0.72
1649	IPI00297587.1	HYPOTHETICAL PROTEIN FLJ25874.	32161	8.14	1	1	1.71
1650	IPI00297597.1	NUCLEAR RNA HELICASE.	49078	5.67	1	1	2.34
1651	IPI00298237.1	TRIPEPTIDYL-PEPTIDASE I PRECURSOR.	61229	6.42	1	1	2.49
1652	IPI00298347.1	PROTEIN-TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 11.	68011	7.31	1	1	1.35
1653	IPI00298394.2	SIMILAR TO HYPOTHETICAL PROTEIN.	123425	6.65	1	1	0.54
1654	IPI00298497.3	FIBRINOGEN BETA CHAIN PRECURSOR [Contains: FIBRINOPEPTIDE B].	55928	8.38	1	1	3.05
1655	IPI00299000.1	PROLIFERATION-ASSOCIATED PROTEIN 2G4.	43787	6.52	1	1	4.31
1656	IPI00299155.3	PROTEASOME SUBUNIT ALPHA TYPE 4.	29484	7.86	1	1	8.43
1657	IPI00299608.2	26S PROTEASOME NON-ATPASE REGULATORY SUBUNIT 1.	108488	5.06	1	1	1.94
1658	IPI00299755.1	PHOSPHATIDYLINOSITOL 3-KINASE.	100988	6.7	1	1	0.68
1659	IPI00300285.2	HYPOTHETICAL PROTEIN DKFZP564D1378.	29776	6.17	1	1	7.78
1660	IPI00300587.2	SIMILAR TO HP4 OLFACTORY RECEPTOR.	38231	8.89	1	1	1.46
1661	IPI00301023.3	SPLICE ISOFORM 1 OF O75781 PARALEMMIN.	42076	4.64	1	1	3.62
1662	IPI00301154.1	POLYADENYLATE-BINDING PROTEIN 3.	70031	10.2	1	1	1.74
1663	IPI00301288.2	HYPOTHETICAL PROTEIN FLJ90754.	178834	5.11	1	1	0.31
1664	IPI00301610.3	HYPOTHETICAL PROTEIN KIAA1994.	113760	5.47	1	1	1.07
1665	IPI00302227.3	HYPOTHETICAL PROTEIN FLJ23447.	56555	10.15	1	1	1.17
1666	IPI00302309.2	HYPOTHETICAL PROTEIN FLJ10890.	108741	5.79	1	1	0.52
1667	IPI00302966.2	HYPOTHETICAL PROTEIN FLJ10890.	129687	6.56	1	1	0.44
1668	IPI00303335.1	NEBULIN.	773214	9.49	1	1	0.1
1669	IPI00304111.1	EXTRACELLULAR SIGNAL-RELATED KINASE 1C.	38249	6.14	1	1	4.48
1670	IPI00304577.3	SPLICE ISOFORM A OF 095782 ADAPTER-RELATED PROTEIN COMPLEX 2 ALPHA 1	107555	7.06	1	1	1.84
1671	IPI00304911.3	SUBUNIT. VACUOLAR ATP SYNTHASE SUBUNIT B, KIDNEY ISOFORM.	56980	5.52	1	1	3.9
1672	IPI00305092.2	PYM PROTEIN.	28286	10.71	1	1	3.13
1673	IPI00305461.1	INTER-ALPHA-TRYPSIN INHIBITOR HEAVY CHAIN H2 PRECURSOR.	106596	6.94	1	1	0.63
1674	IPI00305469.1	SIMILAR TO V-CRK AVIAN SARCOMA VIRUS CT10 ONCOGENE HOMOLOG.	22906	5.13	1	1	8.33
1675	IPI00305486.1	SPLICE ISOFORM 1 OF P49418 AMPHIPHYSIN.	76257	4.28	1	1	1.44
1676	IPI00305491.3	HYPOTHETICAL SERINE/THREONINE PROTEIN PHOSPHATASE.	58129	6.97	1	1	1.76
1677	IPI00306667.2	SPLICE ISOFORM CNPII OF P09543 2',3'-CYCLIC NUCLEOTIDE 3'-	51085	9.59	1	1	2.4
1678	IPI00306840.1	PHOSPHODIESTERASE. SPHINGOSINE-1-PHOSPHATE PHOSPHATASE 1.	48889	9.18	1	1	1.36
1679	IPI00306870.1	DJ148E22.2 (NOVEL PABPC1.	33332	9.29	1	1	3.77
1680	IPI00306929.4	SPLICE ISOFORM 1 OF Q8IUG5 MYOSIN XVIIIB.	285185	6.88	1	1	0.19
1681	IPI00307219.2	none found in database	52180	9.67	1	1	1.27
1682	IPI00307516.4	HYPOTHETICAL PROTEIN FLJ32752.	122765	7.23	1	1	0.54
1683	IPI00307702.1	H53 GS1.	58017	8.33	1	1	1.12
1684	IP100328268.5	EIE4GIL	176652	5.02	1	1	0.63
1685	IPI00328319.4	CHROMATIN ASSEMBLY FACTOR 1 SUBUNIT C.	50614	4.65	1	1	2.86
1686	IPI00329276.1	B-CELL NOVEL PROTEIN ISOFORM 3	77401	8.71	1	1	0.86
1687	IPI00329389.2		32597	11 29	1	1	2 79
1688	IPI00329391.1	SIMILAR TO DIHYDROLIPOAMIDE S-ACETYL TRANSFERASE PRECURSOR	68997	7.94	1	1	2.32
1689	IPI00329442 1		87713	6.63	1	1	0.66
1690	IPI00329607.5	ZINC FINGER PROTEIN 93 (ZINC FINGER PROTEIN HTE34).	53858	10.26	1	1	1.06
1691	IPI00329633.3	THREONYL-TRNA SYNTHETASE	83435	6.64	1	1	1 24
1692	IPI00332047 1	none found in database	10605	4 79	1	1	8.51
1693	IPI00332128 1	none found in database	48426	47	1	1	2.3
1694	IPI00332371 1	6-PHOSPHOERUCTOKINASE, LIVER TYPE	85048	7.38	1	1	1 92
1695	IPI00332570 3	POLYADENYLATE-BINDING PROTEIN 2.	58518	9,77	1	1	2 11
1696	IPI00332604 1	FLJ00140 PROTEIN.	64716	10.19	1	1	1.04
1697	IPI00333134 2	SPLICE ISOFORM 2 OF 043426 SYNAPTOJANIN 1	144887	7.34	1	1	0.99
1698	IPI00333196 1	none found in database	56744	8,49	1	1	1.19
					-	•	

1699	IPI00333323.1	none found in database	45158	10.72	1	1	3.4
1700	IPI00333763.5	SIMILAR TO RIKEN CDNA 2900070E19 GENE.	16628	6.78	1	1	8.92
1701	IPI00334255.1	HYPOTHETICAL PROTEIN FLJ39802.	69109	8	1	1	0.97
1702	IPI00334272.2	SIMILAR TO MYOSIN:SUBUNIT=REGULATORY LIGHT CHAIN.	31859	6.24	1	1	3.91
1703	IPI00334324.1	none found in database	26794	10.04	1	1	3.69
1704	IPI00334763.1	none found in database	42146	8.37	1	1	2.9
1705	IPI00334877.1	none found in database	15754	10.25	1	1	7.97
1706	IPI00335168.4	SMOOTH MUSCLE AND NON-MUSCLE MYOSIN ALKALI LIGHT CHAIN ISOFORM 1.	16930	4.29	1	1	8.61
1707	IPI00335186.3	SPLICE ISOFORM 3 OF P07202 THYROID PEROXIDASE PRECURSOR.	102739	7.25	1	1	0.65
1708	IPI00335929.1	SERUM/GLUCOCORTICOID REGULATED KINASE-LIKE ISOFORM 2.	53306	7.24	1	1	1.08
1709	IPI00337584.1	SCAVENGER RECEPTOR CLASS A, MEMBER 3 ISOFORM 1.	70062	6.66	1	1	0.92
1710	IPI00337806.1	none found in database	153097	4.94	1	1	0.72
1711	IPI00337814.1	HYPOTHETICAL PROTEIN.	55244	7.23	1	1	1.98
1712	IPI00373980.1	SIMILAR TO CG11206-PA	71306	7.2	1	1	0.77
1713	IPI00373982 1	SIMILAR TO 40S RIBOSOMAL PROTEIN \$16	14346	10.41	1	1	8 53
1714	IPI00374005 1		10312	10.22	1	1	8 51
1715	IP100374003.1		17557	4.24	1	1	0.01
1715	IP100374119.1	SINUS IT MUSCLE AND NON-MUSCLE WITCHIN ALARLI LIGHT CHAIN ISOFORM 5.	42244	4.24	1	1	0.20
1716	IP100374239.1	SIMILAR TO 405 RIBOSOMAL PROTEIN 53.	13211	5.17	1	1	10.74
1/1/	IPI00374318.1	SIMILAR TO 60S RIBOSOMAL PROTEIN L27A.	12538	12.1	1	1	9.73
1718	IPI00374566.1	SIMILAR TO PROTEIN 40KD.	17755	4.47	1	1	6.1
1719	IPI00374734.1	SIMILAR TO MITOCHONDRIAL IMPORT RECEPTOR SUBUNIT TOM22 HOMOLOG (TRANSLOCASE OF OUTER MEMBRANE 22 KDA SUBUNIT HOMOLOG) (HTOM22) (1C9-2).	32926	4.63	1	1	1.68
1720	IPI00374918.1	HYPOTHETICAL PROTEIN XP_353349.	10953	9.56	1	1	4.95
1721	IPI00374976.1	ELKS DELTA.	124904	5.91	1	1	0.83
1722	IPI00375145.1	SPLICE ISOFORM SHORT OF P45974 UBIQUITIN CARBOXYL-TERMINAL HYDROLASE 5.	93308	4.71	1	1	1.92
1723	IPI00375210.1	SIMILAR TO RIBOSE-PHOSPHATE PYROPHOSPHOKINASE III (PHOSPHORIBOSYL PYROPHOSPHATE SYNTHETASE III) (PRS-III).	38356	6.7	1	1	3.72
1724	IPI00375223.1	HYPOTHETICAL PROTEIN LOC255743.	55697	8.61	1	1	0.98
1725	IPI00375731.1	HYPOTHETICAL PROTEIN DKFZP686E2459.	110338	6.12	1	1	1.31
1726	IPI00375802.1	HYPOTHETICAL PROTEIN DKFZP781B1340.	65111	5.4	1	1	0.86
1727	IPI00375907.2	HYPOTHETICAL PROTEIN LOC200186.	74180	7.01	1	1	0.71
1728	IPI00375927.1	HYPOTHETICAL PROTEIN DKFZP686F07114.	123331	6.7	1	1	0.54
1729	IPI00376018.1	CYTOPLASMIC DYNEIN LIGHT CHAIN 2A ISOFORM B.	7342	7.53	1	1	19.05
1730	IPI00376108.1	SIMILAR TO AMINOPEPTIDASE PUROMYCIN SENSITIVE.	46093	4.66	1	1	2.44
1731	IPI00376139.1	PHOSPHOINOSITIDE-3-KINASE, CLASS 3.	101549	6.79	1	1	0.68
1732	IPI00376426.1	SIMILAR TO HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1 (HELIX- DESTABILIZING PROTEIN) (SINGLE-STRAND BINDING PROTEIN) (HNRNP CORE	21265	6.25	1	1	5.82
1733	IPI00376452.1	PROTEIN A1) (HDP-1) (TOPOISOMERASE-INHIBITOR SUPPRESSED). SIMILAR TO 40S RIBOSOMAL PROTEIN S20.	14339	10.53	1	1	9.45
1734	IPI00376740.1	SIMILAR TO GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE.	26342	8.9	1	1	2.48
1735	IPI00376747.1	SIMILAR TO HYPOTHETICAL PROTEIN.	232554	6.84	1	1	0.28
1736	IPI00376825.1	SIMILAR TO DJ834A16.1 (SIMILAR TO PGAM).	14527	4.64	1	1	7.75
1737	IPI00376841.1	SIMILAR TO GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE, LIVER (GAPDH).	21168	7.66	1	1	3.63
1738	IPI00376910.1	HYPOTHETICAL PROTEIN XP 352987.	15467	10.35	1	1	3.6
1739	IPI00376992.1	MLL/SEPTIN6 FUSION PROTEIN.	63143	8.15	1	1	1.79
1740	IPI00377006.1	SODIUM CHANNEL PROTEIN TYPE V ALPHA SUBUNIT.	227485	5.18	1	1	0.45
1741	IPI00377087.1	GELSOLIN ISOFORM B.	80641	5.6	1	1	1.78
1742	IPI00377132 1	BH3 INTERACTING DOMAIN DEATH AGONIST ISOFORM 3	11263	10.22	1	1	15 15
1743	IPI00377238 1		3.82E±06	6.25	1	1	0.01
1744	IPI00382560 1		25011	8.05	1	1	2.2
17/5	IPI00392574 4		13/63	5.50	1	1	10.17
1740	IF 100302374.1		10403	3.00	1	1	10.17
1740	IF100362629.2		10400	1.09	1	1	0.44
1747	IPI00362632.1		10183	50.6	1	1	6.13
1748	IPI00382644.1	PUTATIVE EUKARYUTIG TRANSLATION INITIATION FACTOR 1A.	16329	4.73	1	1	7.69
1749	IPI00382716.1	none tound in database	11418	9.85	1	1	6.86

1750	IPI00382803.2	SPLICE ISOFORM 1 OF P27816 MICROTUBULE-ASSOCIATED PROTEIN 4.	126443	5.39	1	1	0.91
1751	IPI00382869.1	FARNESYL PYROPHOSPHATE SYNTHETASE LIKE-4 PROTEIN.	39750	4.61	1	1	3.45
1752	IPI00383134.1	SIMILAR TO BA92K2.2 (SIMILAR TO UBIQUITIN).	16874	9.67	1	1	3.36
1753	IPI00383234.1	AMPHIPHYSIN I VARIANT CT2.	60634	3.81	1	1	1.76
1754	IPI00383296.1	RIBONUCLEOPROTEIN.	73621	9.29	1	1	2.32
1755	IPI00383323.1	none found in database	35570	10.05	1	1	5.97
1756	IPI00383607.1	HYPOTHETICAL PROTEIN.	200087	6.54	1	1	0.28
1757	IPI00383660.2	KIAA1508 PROTEIN.	68838	8.74	1	1	0.67
1758	IPI00383752.1	DELTA 3, DELTA 2-ENOYL-COA ISOMERASE.	12656	8.51	1	1	3.45
1759	IPI00383786.1	NEBULIN.	111660	9.61	1	1	0.72
1760	IPI00383911.1	HYPOTHETICAL PROTEIN FLJ36307.	20450	10.4	1	1	8.6
1761	IPI00384065.1	HYPOTHETICAL PROTEIN FLJ90034.	58059	6.94	1	1	0.79
1762	IPI00384187.1	HYPOTHETICAL PROTEIN.	40100	6.8	1	1	3.43
1763	IPI00384282.1	CYTOVILLIN 2.	16302	9.83	1	1	6.38
1764	IPI00384366.1	SIMILAR TO RIKEN CDNA 5133400G04 GENE.	20847	10.09	1	1	2.66
1765	IPI00384463.1	EUKARYOTIC TRANSLATION INITIATION FACTOR 4 GAMMA.	153361	4.9	1	1	0.72
1766	IPI00384476.1	E74-LIKE FACTOR 1.	67498	4.84	1	1	0.81
1767	IPI00384504.1	SIMILAR TO BCL-2-ASSOCIATED TRANSCRIPTION FACTOR.	57763	11.73	1	1	3.55
1768	IPI00384544.1	MYOSIN REGULATORY LIGHT CHAIN.	19779	4.44	1	1	6.4
1769	IPI00384582.2	SIMILAR TO MICROTUBULE-ASSOCIATED PROTEIN 4.	89580	10.27	1	1	1.28
1770	IPI00384584.1	B-CELL NOVEL PROTEIN ISOFORM 2.	72185	8.11	1	1	0.92
1771	IPI00384585.1	B-CELL NOVEL PROTEIN ISOFORM 1.	73779	8.4	1	1	0.9
1772	IPI00384758.1	HYPOTHETICAL PROTEIN FLJ39514.	69992	6.76	1	1	0.94
1773	IPI00385001.1	HYPOTHETICAL PROTEIN DKFZP686L1653.	182480	6.89	1	1	0.37
1774	IPI00385055.1	HYPOTHETICAL PROTEIN.	100447	5.72	1	1	0.55
1775	IPI00385120.1	HYPOTHETICAL PROTEIN.	6196	10.36	1	1	16.67
1776	IPI00385347.1	HYPOTHETICAL PROTEIN DKFZP7790048.	12455	8.75	1	1	10
1777	IPI00385371.1	B-IND1 PROTEIN.	43543	8.19	1	1	5.68
1778	IPI00385399.1	MITOGEN-ACTIVATED PROTEIN KINASE 3.	43109	6.74	1	1	3.96
1779	IPI00385414.1	HYPOTHETICAL PROTEIN.	66055	7.28	1	1	1.01
1780	IPI00385659.1	HYPOTHETICAL PROTEIN.	16156	8.48	1	1	5.84
1781	IPI00385699.1	NUCLEASE SENSITIVE ELEMENT BINDING PROTEIN 1.	35369	9.5	1	1	5.94
1782	IPI00385860.1	GPR18-ISO.	38034	9.75	1	1	1.2
1783	IPI00386245.1	AMPHIPHYSIN I VARIANT NC1.	62173	3.83	1	1	1.72
1784	IPI00386350.1	HYPOTHETICAL PROTEIN FLJ13874.	19784	9.33	1	1	5.52
1785	IPI00386445.1	RIBOSOMAL PROTEIN S2.	21721	11.51	1	1	6.4
1786	IPI00386533.1	EUKARYOTIC TRANSI ATION INITIATION FACTOR 4 GAMMA 1 ISOFORM 3	158517	4.86	1	1	0.7
1787	IPI00386534.1	EUKARYOTIC TRANSLATION INITIATION FACTOR 4 GAMMA, 1 ISOFORM 2	166589	4.86	1	1	0.66
1788	IPI00386623.1	HYPOTHETICAL PROTEIN.	34580	7.23	1	1	6.71
1789	IPI00386631.1		145331	7.69	1	1	0.99
1790	IPI00386639.1	ELASTIC TITIN	883025	5.19	1	1	0.06
1791	IPI00386795 1	SIMILAR TO DIFFERENTIALLY EXPRESSED IN FDCP (MOUSE HOMOLOG) 6	69043	5.65	1	1	1 69
1792	IPI00387125 1	BA196N14.4.2 (PRO1085 PROTEIN ISOEORM 2 SIMILAR TO PROTEIN	38508	6.05	1	1	1.5
1793	IPI00395423.1	SERINE/THREONINE PHOSPHATASE 4 REGULATORY SUBUNIT 1. HYPOTHETICAL PROTEIN FL.114719.	94705	6.77	1	1	0.72
1794	IPI00395469 1		42728	10.1	1	1	3.02
1795	IPI00395532 1	HYDROLASE. PRO3063	26233	4.53	1	1	47
1796	IPI00395643 1		61575	8.47	1	1	0.71
1797	IPI00395748 1		49170	10.05	1	1	2.65
1798	IPI00395750 1	HYDROLASE. SPLICE ISOFORM LONG OF 075083 WD-REPEAT PROTEIN 1	67541	6.67	1	1	2.00
1799	IPI00395788 1	BH3 INTERACTING DOMAIN DEATH AGONIST	26556	6.78	1	1	6.28
1800	IPI00395835 1	PUTATIVE C-MYC-RESPONSIVE ISOFORM 2	16187	6.79	1	1	11 49
1801	IPI00395865 1	HISTONE ACETYL TRANSFERASE TYPE B SUBLINIT 2	51576	5.07	1	1	2 84
1001	11000000000.1	monore moenterivinor envicentine biobonin z.	51570	0.01			2.04

1802	IPI00395972.1	none found in database	152969	4.94	1	1	0.72
1803	IPI00395982.1	none found in database	55277	8.31	1	1	1.22
1804	IPI00395998.1	RIBOSOMAL PROTEIN L32.	15860	11.9	1	1	9.63
1805	IPI00396023.1	COMPLEXIN 1.	15030	4.63	1	1	10.45
1806	IPI00396111.1	CYLD PROTEIN.	107316	5.27	1	1	0.52
1807	IPI00396152.1	MICROTUBULE-ASSOCIATED PROTEIN 4 ISOFORM 3.	119232	4.94	1	1	0.97
1808	IPI00396171.1	MICROTUBULE-ASSOCIATED PROTEIN 4 ISOFORM 2.	122596	5.14	1	1	0.94
1809	IPI00396265.1	NERF-1B.	57389	9.43	1	1	0.94
1810	IPI00396293.1	PMEPA1 VARIANT A PROTEIN.	26201	6.85	1	1	2.11
1811	IPI00396344.1	none found in database	41771	7.8	1	1	1.25
1812	IPI00396426.1	HYPOTHETICAL PROTEIN.	33285	7.08	1	1	1.71
1813	IPI00396437.1	SIMILAR TO SRC HOMOLOGY 3 DOMAIN-CONTAINING PROTEIN HIP-55.	48294	4.72	1	1	2.55
1814	IPI00396482.1	none found in database	24793	9.8	1	1	5.43
1815	IPI00396485.1	none found in database	50183	7.42	1	1	2.41
1816	IPI00396508.1	DNAJ (HSP40) HOMOLOG, SUBFAMILY C, MEMBER 6.	102814	8.08	1	1	0.64
1817	IPI00396540.1	SCAVENGER RECEPTOR CLASS A, MEMBER 3 ISOFORM 2.	57359	6.11	1	1	1.17
1818	IPI00396558.1	SIMILAR TO MEMBRANE PROTEIN OF CHOLINERGIC SYNAPTIC VESICLES.	32559	6.72	1	1	4.67
1819	IPI00396589.1	INTERLEUKIN ENHANCER BINDING FACTOR 2, 45KD.	43062	4.93	1	1	2.82
1820	IPI00396653.1	SEX COMB ON MIDLEG HOMOLOG 1.	68325	9.91	1	1	0.81

REFERENCES

- Persidis, A. (1998). "An ambitious drug development platform attempts to link gene sequence to expressed phenotype under various physiological states," *Nat. Biotech.* 16, 393-394.
- 2. Hood, L. (2002). "A personal view of molecular technology and how it has changed biology," *J. Prot. Res.* 1, 399-409.
- 3. Hillenkamp, F., Karas, M., Beavis, R. C., and Chait, B. T. (1991). "Matrixassisted laser desorption/ionization mass spectrometry of biopolymers," *Anal. Chem.* 63, 1193A-1202A.
- Fenselau, C. (1997). "MALDI-MS and strategies for protein analysis," *Anal. Chem.* 69, 661A-665A.
- Kebarle, P., Tang, L. (1993). "From ions in solution to ions in the gas phase," Anal. Chem. 65, 972A-986A.
- Yates, J. R. III (1998). "Mass spectrometry and the age of the proteome," J. Mass Spectrom. 33, 1-19.
- Klose, J., Kobalz, U. (1995). "Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome," *Electrophoresis* 16, 1034-1059.
- Jungblut, P., Thiede, B., Zimny-Arndt, U., Muller, E.-C., Scheler, C., Wittmann-Liebold, B., and Otto, A. (1996). "Resolution power of twodimensional electrophoresis and identification of proteins from gels," *Electrophoresis* 17, 839-847.

- Rabilloud, T. (2000). "Detecting proteins separated by 2-D gel electrophoresis," *Anal. Chem.* 72, 48A-55A.
- 10. Righetti, P. G., Castagna, A., and Herbert, B. (2001). "Prefractionation techniques in proteome analysis," *Anal. Chem.* 73, 320A-326A.
- Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. (2000).
 "Evaluation of two-dimensional gel electrophoresis based proteome analysis technology," *Proc. Natl. Acad. Sci. USA* 97, 9390-9395.
- Smith, R. D. (2000). "Probing proteomes-seeing the whole picture," Nat. Biotech. 18, 1041-1042.
- Washburn, M. P., Wolters, D., and Yates, J. R. III (2001). "Large-scale analysis of the yeast proteome by multidimensional protein identification technology," *Nat. Biotech.* 19, 242-247.
- Wolters, D. A., Washburn, M. P., and Yates, J. R. III (2001). "An automated multidimensional protein identification technology for shotgun proteomics," *Anal. Chem.* 73, 5683-5690.
- Washburn, M. P., Ulaszek, R., Deciu, C., Schieltz, D. M., and Yates, J. R. III (2002). "Analysis of quantitative proteomic data generated via multidimensional protein identification technology," *Anal. Chem.* 74, 1650-1657.
- Gygi, S. P., Rist, B., Griffin, T. J., Eng, J., and Aebersold, R. (2002). "Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags," *J. Prot. Res.* 1, 47-54.
- 17. VerBerkmoes, N. C., Bundy, J. L., Hauser, L., Asano, K. G., Razumovskaya, J., Larimer, F., Hettich, R. L., and Stephenson, J. J. Jr. (2002). "Integrating top-

down and bottom-up mass spectrometric approaches for proteomic analysis of *Shewanella Oneidensis,*" J. Prot. Res. 1, 239-252.

- Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003).
 "Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome," *J. Prot. Res.* 2, 43-50.
- Mann, M., Jensen, O. N. (2003). "Proteomics analysis of post-translational modifications," *Nat. Biotech.* 21, 255-261.
- Valaskovic, G. A., Kelleher, N. L., and Mclafferty, F. W. (1996). "Attomole protein characterization by capillary electrophoresis mass spectrometry," *Science* 273, 1199-1202.
- Meng, F., Cargile, B. J., Miller, L. M., Forbes, A. J., Johnson, J. R., and Kelleher, N. L. (2001). "Informatics and multiplexing of intact protein identification in bacteria and the archaea," *Nat. Biotech.* 19, 952-957.
- Meng, F., Cargile, B. J., Patrie, S. M., Johnson, J. R., McLoughlin, S. M., and Kelleher, N. L. (2002). "Processing complex mixtures of intact proteins for direct analysis by mass spectrometry," *Anal. Chem.* 74, 2923-2929.
- Meng, F., Du, Y., Miller, L. M., Patrie, S. M., Robinson, D. E., and Kelleher, N. L. (2004). "Molecular-level description of proteins from *Saccharomyces cerevisiae* using quadrupole FT hybrid mass spectrometry for top down proteomics," *Anal. Chem.* 76, 2852-2858.
- 24. Shen, Y., Moore, R. J., Zhao, R., Blonder, J., Auberry, D. L., Masselon, C., Paša-Tolić, L., Hixson, K. K., Auberry, K. J., and Smith, R. D. (2003). "High-

efficiency on-line solid-phase extraction coupling to 15-150-µm-i.d. liquid chromatography for proteome analysis," *Anal. Chem.* 75, 3596-3605.

- Shen, Y., Tolic, N., Masselon, C., Paša-Tolić, L., Camp, D. G., Hixson, K. K., Zhao, R., Anderson, G. A., and Smith, R. D. (2004). "Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS," *Anal. Chem.* 76, 144-154.
- Petritis, K., Kangas, L. J., Ferguson, P. L., Anderson, G. A., Paša-Tolić, L., Lipton, M. S., Auberry, K. J., Strittmatter, E. F., Shen, Y., Zhao, R., and Smith, R. D. (2003). "Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analysis," *Anal. Chem.* 75, 1039-1048.
- 27. Wilkins, J. A., Xiang, R., and Horvath, C. (2002). "Selective enrichment of lowabundance peptides in complex mixtures by elution-modified displacement chromatography and their identification by electrospray ionization mass spectrometry," *Anal. Chem.* 74, 3933-3941.
- Xiang, R., Horvath, C., and Wilkins, J. A. (2003). "Elution-modified displacement chromatography coupled with electrospray ionization-MS: on-line detection of trace peptides at low-femtomole level in peptide digests," *Anal. Chem.* 75, 1819-1827.
- Ogorzalek Loo, R. R., Cavalcoti, J. D., VanBogelen, R. A., Mitchell, C., Loo, J. A., Moldover, B., and Andrews, P. C. (2001). "Virtual 2-D gel electrophoresis: visualization and analysis of the *E. Coli* proteome by mass spectrometry," *Anal. Chem.* 73, 4063-4070.

- Tang, Q., Harrata, A. K., and Lee, C. S. (1997). "Two-dimensional analysis of recombinant *E. Coli* proteins using capillary isoelectric focusing-electrospray ionization mass spectrometry," *Anal. Chem.* 69, 3177-3182.
- Jensen, P. K., Pasa-Tolic, L., Anderson, G. A., Horner, J. A., Lipton, M. S., Bruce, J. E., and Smith, R. D. (1999). "Probing proteomes using capillary isoelectric focusing-electrospray ionization fourier transform ion cyclotron resonance mass spectrometry," *Anal. Chem.* 71, 2076-2084.
- 32. Li, W., Hendrickson, C. L., Emmett, M. R., and Marshall, A. G. (1999). "Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC-ESI infrared multiphoton dissociation fourier transform ion cyclotron resonance mass spectrometry," *Anal. Chem.* 71, 4397-4402.
- Lee, S.-W., Berger, S. J., Martinovic, S., Pasa-Tolic, L., Anderson, G. A., Shen, Y., Zhao, R., and Smith, R. D. (2002). "Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR," *Proc. Natl. Acad. Sci. USA* 99, 5942-5947.
- Wei, W., Yeung, E. S. (2002). "On-line concentration of proteins and peptides in capillary zone electrophoresis with an etched porous joint," *Anal. Chem.* 74, 3899-3905.
- Janini, G. M., Zhou, M., Yu, L., Blonder, J., Gignac, M., Conrads, T. P., Issaq,
 H. J., and Veenstra, T. D. (2003). "On-column sample enrichment for capillary electrophoresis sheathless electrospray ionization mass spectrometry: evaluation for peptide analysis and protein identification," *Anal. Chem.* 75, 5984-5993.

- Chen, J., Gao, J., and Lee, C. S. (2003). "Dynamic enhancements of sample loading and analyte concentration in capillary isoelectric focusing for proteome studies," *J. Prot. Res.* 2, 249-254.
- Giddings, J. C. (1991). United Separation Science, John Wiley & Sons, New York.
- Shen, Y., Jacobs, J. M., Camp, D. G. II, Fang, R., Moore, R. J., Smith, R. D., Xiao, W., Davis, R. W., and Tompkins, R. G. (2004). "Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome," *Anal. Chem.* 76, 1134-1144.
- 39. Porath, J., Olin, B. (1983). "Immobilized metal ion affinity adsorption and affinity chromatography of biomaterials," *Biochem.* 22, 1621-1630.
- Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002). "Phosphoproteome analysis by mass spectrometry and its application to *Saccharomyces cerevisiae*," *Nat. Biotech.* 20, 301-305.
- 41. Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B., and Heck, A. J. (2004).
 "Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns," *Anal Chem.* 76, 3935-3943.
- Wall, D. B., Kachman, M. T., Gong, S., Hinderer, R., Parus, S., Misek, D. E., Hanash, S. M., and Lubman, D. M. (2000). "Isoelectric focusing nonporous RP HPLC: a two-dimensional liquid-phase separation method for mapping of

cellular proteins with identification using MALDI-TOF mass spectrometry," *Anal. Chem.* 72, 1099-1111.

- Kachman, M. T., Wang, H., Schwartz, D. R., Cho, K. R., and Lubman, D. M. (2002). "A 2-D liquid separations/mass mapping methods for interlysate comparison of ovarian cancers," *Anal. Chem.* 74, 1779-1791.
- 44. Zhu, K., Kim, J., Yoo, C., Miller, F. R., and Lubman, D. M. (2003). "High sequence coverage of proteins isolated from liquid separations of breast cancer cells using capillary electrophoresis-time-of-flight MS and MALDI-TOF MS mapping," *Anal. Chem.* 75, 6209-6217.
- 45. Yan, F., Subramanian, B., Nakeff, A., Barder, T. J., Parus, S. J., and Lubman,
 D. M. (2003). "A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2-D liquid separation mapping method based upon chromatofocusing PI fractionation," *Anal. Chem.* 75, 2299-2308.
- 46. Stroink, T., Wiese, G., Teeuwsen, J., Lingeman, H., Waterval, J. C. M., Bult, A., de Jong, G. J., and Underberg, W. J. M. (2003). "On-line coupling of sizeexclusion chromatography and capillary zone electrophoresis via a reversedphase C18 trapping column for the analysis of structurally related enkephalins in cerebrospinal fluid," *Electrophoresis* 24, 897-903.
- 47. Stroink, T., Schravendijk, P., Wiese, G., Teeuwsen, J., Lingeman, H., Waterval, J. C. M., Bult, A., de Jong, G. J., and Underberg, W. J. M. (2003). "On-line coupling of size-exclusion chromatography and capillary zone electrophoresis via a reversed-phase C18 trapping column for the determination of peptides in biological samples," *Electrophoresis* 24, 1126-1134.

- 48. Issaq, H. J., Chan, K. C., Liu, C. S., and Li, Q. (2001). "Multidimensional high performance liquid chromatography – capillary electrophoresis separation of a protein digest: an update," *Electrophoresis*22, 1133 -1135.
- He, Y., Yeung, E. S., Chan, K. C., Issaq, H. J. (2002). "Two dimensional mapping of cancer cell extracts by liquid chromatography-capillary electrophoresis with ultraviolet absorbance detection," *J. Chromatogr. A* 979, 81-89.
- Janini, G. M., Chan, K. C., Conrads, T. P., Issaq, H. J., and Veenstra, T. D. (2004). "Two-dimensional liquid chromatography-capillary zone electrophoresis-sheathless electrospray ionization-mass spectrometry: evaluation for peptide analysis and protein identification," *Electrophoresis* 25, 1973-1980.
- 51. Chen, J., Baehrecke, E. H., Shen, Y., Smith, R. D., and Lee, C. S. (2002).
 "Integration of capillary isoelectric focusing with capillary reversed-phase liquid chromatography for two-dimensional proteomics separation," *Electrophoresis*23, 3143 -3148.
- 52. Chen, J., Balgley, B. M., DeVoe, D. L., and Lee, C. S. (2003). "Capillary isoelectric focusing-based multidimensional concentration/separation platform for ultrasensitive proteome analysis," *Anal Chem.* 75, 3145-3152.
- 53. Yang, C., Liu, H., Yang, Q., Zhang, L., Zhang, W., and Zhang, Y. (2003). "Online hyphenation of capillary isoelectric focusing and capillary gel electrophoresis by a dialysis interface," *Anal Chem.* 75, 215-218.

- Yang, C., Zhang, L., Liu, H., Zhang, W., and Zhang, Y. (2003). "Twodimensional capillary electrophoresis involving capillary isoelectric focusing and capillary zone electrophoresis," *J. Chromatogr A*. 1018, 97-103.
- 55. Mohan, D., Shen, Y., Smith, R. D., and Lee, C. S. (2002). "On-line coupling of capillary isoelectric focusing with transient isotachophoresis/zone electrophoresis: a two-dimensional separation system for proteomics," *Electrophoresis* 23, 3160-3167.
- Mohan, D., Paša-Tolić, L., Masselon, C. D., Tolic, N., Bogdanov, B., Hixson, K. K., Smith, R. D., and Lee, C. S. (2003). "Integration of electrokinetic-based multidimensional separation/concentration platform with ESI-FTICR-MS for proteome analysis of *Shewanella oneidensis*," *Anal Chem.* 75, 4432-4440.
- 57. Sheng, L., Pawliszyn, J. (2002). "Comprehensive two dimensional separation based on coupling micellar electrokinetic chromatography with capillary isoelectric focusing," *Analyst* 127, 1159-1163.
- Michels, D. A., Hu, S., Schoenherr, R. M., Eggertson, M. J., and Dovichi, N. J. (2002). "Fully automated two-dimensional capillary electrophoresis for high sensitivity protein analysis," *Mol. Cell Proteomics* 1, 69-74.
- Hu, S., Michels, D. A., Fazal, M. A., Ratisoontorn, C., Cunningham, M. L., and Dovichi, N. J. (2004). "Capillary sieving electrophoresis/micellar electrokinetic capillary chromatography for two-dimensional protein fingerprinting of single mammalian cells," *Anal Chem.* 76, 4044-4049.

- Rocklin, R. D., Ramsey, R. S., and Ramsey, J. M. (2000). "A microfabricated fluidic device for performing two-dimensional liquid phase separations," *Anal. Chem.* 72, 5244-5249.
- Ramsey, J. D., Jacobson, S. C., Culbertson, C. T., and Ramsey, J. M. (2003).
 "High efficiency, two-dimensional separations of protein digests on microfluidic devices," *Anal. Chem.* 75, 3758-3764.
- Gottschlich, N., Jacobson, S. C., Culbertson, C. T., and Ramsey, J. M. (2001).
 "Two-dimensional electrochromatography/capillary electrophoresis on a microchip," *Anal. Chem.* 73, 2669-2674.
- Herr, A. E., Molho, J. I., Drouvalakis, K. A., Mikkelsen, J. C., Utz, P. J., Santiago, J. G., and Kenny, T. W. (2003). "On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations," *Anal. Chem.* 75, 1180-1187.
- 64. Wang, Y.-C., Choi, M. H., and Han, J. (2004). "Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves," *Anal. Chem.* 76, 4426-4431.
- Becker, H., Lowack, K., and Manz, A. (1998). "Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications," *J. Micromech. Microeng.* 8, 24-28.
- 66. Chen, X., Wu, H., Mao, C., and Whitesides, G. M. (2002). "A prototype twodimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane)," *Anal. Chem.* 74, 1772-1778.

- 67. Li, Y., Buch, J. S., Rosenberger, F., DeVoe, D. L., and Lee, C. S. (2004).
 "Integration of isoelectric focusing with parallel SDS gel electrophoresis for multidimensional protein separations in a plastic microfluidic network," *Anal. Chem.* 76, 742-748.
- Conti, M., Gelfi, C., and Righetti, P. G. (1995). "Screening of umbilical cord blood hemoglobins by isoelectric focusing in capillaries," *Electrophoresis* 16, 1485-1491.
- 69. Shen, Y., Berger, S. J., Anderson, G. A., and Smith, R. D. (2000). "Highefficiency capillary isoelectric focusing of peptides," *Anal. Chem.* 72, 2154-2159.
- Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A., and Liotta, L. A. (1996). "Laser capture microdissection," *Science* 274, 998-1001.
- Bonner, R. F., Emmert-Buck, M. R., Cole, K., Pohida, T., Chuaqui, R. F., Goldstein, S. R., and Liotta, L. A. (1997). "Laser capture microdissection: molecular analysis of tissue," *Science* 278, 1481-1483.
- 72. Wittliff, J. L., Erlander, M. G. (2002). "Laser capture microdissection and its applications in genomics and proteomics," *Methods Enzym.* 356, 12-25.
- 73. Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F., and Maronpot,
 R. R. (1999). "Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue," *Mol. Carcinog.* 25, 86-91.
- 74. Kitahara, O., Furukawa, Y., Tanaka, T., Kihara, C., Ono, K., Yanagawa, R., Nita, M. E., Takagi, T., Nakamura, Y., and Tsunoda, T. (2001). "Alterations of

gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser capture microdissection of tumor tissues and normal epithelia," *Cancer Res.* 61, 3544-3549.

- 75. Taylor, T. B., Nambiar, P. R., Raja, R., Cheung, E., Rosenberg, D. W., and Anderegg, B. (2004). "Microgenomics: identification of new expression profiles via small and single-cell sample analyses," *Cytometry* 59, 254-261.
- Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990). "Amplified RNA synthesized from limited quantities of heterogeneous cDNA," *Proc. Natl. Acad. Sci. USA* 87, 1663-1667.
- 77. Luo, L., Salunga, R. C., Guo, H., Bittner, A., Joy, K. C., Galindo, J. E., Xiao, H., Rogers, K. E., Wan, J. S., Jackson, M. R., and Erlander, M. G. (1999).
 "Gene expression profiles of laser-captured adjacent neuronal subtypes," *Nat. Med.* 1, 117-122.
- Kabbarah, O., Pinto, K., Mutch, D. G., and Goodfellow, P. J. (2003).
 "Expression profiling of mouse endometrial cancers microdissected from ethanol-fixed paraffin-embedded tissues," *Am. J. Pathol.* 162, 755-762.
- Wong, M. H., Saam, J. R., Stappenbeck, T. S., Rexer, C. H., and Gordon, J. I. (2000). "Genetic mosaic analysis based on cre recombinase and navigated laser capture microdissection," *Proc. Natl. Acad. Sci. USA* 97, 12601-12606.
- Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., and Gutstein,
 H. B. (2003). "Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples," *Proteomics* 3, 610-615.
- DeSouza, A. I., McGregor, E., Dunn, M. J., and Rose, M. L. (2004).
 "Preparation of human heart for laser microdissection and proteomics," *Proteomics* 4, 578-586.
- Furuta, M., Weil, R. J., Vortmeyer, A. O., Huang, S., Lei, J., Huang, T.-N., Lee, Y.-S., Bhowmick, D. A., Lubensky, I. A., Oldfield, E. H., and Zhuang, Z. (2004). "Protein patterns and proteins that identify subtype of glioblastoma multiforme," *Oncogene* 23, 6806-6814.
- Xu, B. J., Caprioli, R. M., Sanders, M. E., and Jensen, R. A. (2002). "Direct analysis of laser capture microdissected cells by MALDI mass spectrometry," J. Am. Soc. Mass Spectrom. 13, 1292-1297.
- Bhattacharya, S. H., Gal, A. A., and Murray, K. K. (2003). "Laser capture microdissection MALDI for direct analysis of archival tissue," *J. Prot. Res.* 2, 95-98.
- Chaurand, P., Sanders, M. E., Jensen, R. A., and Caprioli, R. M. (2004).
 "Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue section," *Am. J. Pathol.* 165, 1057-1068.
- Paweletz, C. P., Trock, B., Pennanen, M., Tsangaris, T., Magnant, C., Liotta, L. A., and Petricoin, E. F. (2001). "Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer," *Dis. Markers* 17, 301-307.
- Petricoin, E. F., Zoon, K. C., Kohn, E. C., Barrett, J. C., and Liotta, L. A. (2002). "Clinical proteomics: translating benchside promise into bedside reality," *Nat. Rev. Drug Discovery* 1, 683-695.

- 88. Wulfkuhle, J. D., Liotta, L. A., and Petricoin, E. F. (2003). "Proteomic applications for the early detection of cancer," *Nat. Rev. Cancer* 3, 267-275.
- Cottingham, K. (2003). "Clinical proteomics: are we there yet," *Anal. Chem.* 75, 472A-476A.
- Ornstein, D. K., Gillespie, J. W., Paweletz, C. P., Duray, P. H., Herring, J., Vocke, C. D., Topalian, S. L., Bostwick, D. G., Linehan, W. M., Petricoin, E. F., and Emmert-Buck, M. R. (2000). "Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines," *Electrophoresis* 21, 2235-2242.
- 91. Craven, R. A., Banks, R. E. (2001). "Laser capture microdissection and proteomics: possibilities and limitation," *Proteomics* 1, 1200-1204.
- 92. Craven, R. A., Totty, N., Harnden, P., Selby, P. J., and Banks, R. E. (2002).
 "Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations," *Am. J. Pathol.* 160, 815-822.
- 93. Ahram, M., Flaig, M. J., Gillespie, J. W., Duray, P. H., Linehan, W. M., Ornstein, D. K., Niu, S., Zhao, Y., Petricoin, E. F., and Emmert-Buck, M. R. (2003). "Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications," *Proteomics* 3, 413-421.
- 94. Wu, S.-L., Hancock, W. S., Goodrich, G. G., and Kunitake, S. T. (2003). "An approach to the proteomic analysis of a breast cancer cell line (SKBR-3)," *Proteomics* 3, 1037-1046.

- Zang, L., Toy, D. P., Hancock, W. S., Sgroi, D. C., and Karger, B. L. (2004).
 "Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and ¹⁶O/¹⁸O isotopic labeling," *J. Prot. Res.* 3, 604-612.
- Shen, Y. F., Smith, R. D. (2002). "High-resolution capillary isoelectric focusing of proteins using highly hydrophilic-substituted cellulose-coated capillaries," *J. Microcol. Sep.* 12, 135-141.
- 97. Rudnick, P. A., Wang, Y., Evans, E. L., Lee, C. S., and Balgley, B. M. (2005).
 "Large scale interpretation of MASCOT results using a mass accuracy based threshold effectively reduces false negative identifications," submitted to *J. Prot. Res.*
- 98. Cargile, B. J., Talley, D. L., and Stephenson, J. L. Jr. (2004). "Immobilized pH gradients as a first separation dimension in shotgun proteomics and analysis of the accuracy of pI predictability of peptides," *Electrophoresis* 25, 936-945.
- 99. Essader, A. S., Cargile, B. J., Bundy, J. L., and Stephenson, J. L. Jr. (2005). "A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics," *Proteomics* 5, 24-34.
- 100. Liu, H., Sadygov, R. G., Yates, J. R. III (2004). "A model for random sampling and estimation of relative protein abundance in shotgun proteomics," *Anal. Chem.* 76, 4193-4201.

- 101. Wang, Y., Serfass, L., Roy, M. O., Wong, J., Bonneau, A. M., and Georges, E. (2004). "Annexin-I expression modulates drug resistance in tumor cells," *Biochem. Biophys. Res. Commun.* 314, 565-570.
- 102. Cicek, M., Samant, R. S., Kinter, M., Welch, D. R., and Casery, G. (2004).
 "Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells," *Clin. Exp. Metastasis* 21, 149-157.
- 103. Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., Wersto, R. P., Boheler, K. R., and Wobus, A. M. (2004). "Nestin expression a property of multi-lineage progenitor cells?," *Cell. Mol. Life Sci.* 61, 2510-2522.
- 104. Thomas, S. K., Messam, C. A., Spengler, B. A., Biedler, J. L., and Ross, R. A. (2004). "Nestin is a potential mediator of malignancy in human neuroblastoma cells," *J. Biol. Chem.* 279, 27994-27999.
- 105. Masselon, C., Anderson, G. A., Harkewicz, R., Bruce, J. E., Pasa-Tolic, L., and Smith, R. D. (2000). "Accurate mass multiplexed tandem mass spectrometry for high-throughput polypeptide identification from mixtures," *Anal. Chem.* 72, 1918-1924.
- 106. Williams, J. D., Flanagan, M., Lopez, L., Fischer, S., and Miller, L. A. D. (2003). "Using accurate mass electrospray ionization-time-of-flight mass spectrometer with in-source collision-induced dissociation to sequence peptide mixtures," *J. Chromatogr. A* 1020, 11-26.

- 107. Purvine, S., Eppel, J.-T., Yi, E. C., and Goodlett, D. R. (2003). "Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer," *Proteomics* 3, 847-850.
- 108. Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A., and Yates, J. R. III (2004). "Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra," *Nat. Methods* 1, 39-45.
- 109. Wilson, J., Vachet, R. W. (2004). "Multiplexed MS/MS in a quadrupole ion trap mass spectrometer," *Anal. Chem.* 76, 7346-7353.
- 110. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). "Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels," *Anal. Chem.* 68, 850-858.
- 111. Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., Mortensen, P., Shevchenko, A., Boucherie, H., and Mann, M. (1996).
 "Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels," *Proc. Natl. Acad. Sci. USA* 93, 14440-14445.
- 112. Williams, T. L., Leopold, P., and Musser, S. (2002). "Automated postprocessing of electrospray LC/MS data for profiling protein expression in bacteria," *Anal. Chem.* 74, 5807-5813.
- Williams, T. L., Callahan, J. H., Monday, S. R., Feng, P. C. H., and Musser, S. M. (2004). "Relative quantitation of intact proteins of bacterial cell extracts using coextracted proteins as internal standards," *Anal. Chem.* 76, 1002-1007.

- 114. Wilce, M. C. J., Aguilar, M.-I., and Hearn, M. T. W. (1995). "Physicochemical basis of amino acid hydrophobicity scales" evaluation of four new scales of amino acid hydrophobicity coefficients derived from RP-HPLC of peptides," *Anal. Chem.* 67, 1210-1219.
- 115. Apffel, A., Fischer, S., Goldberg, G., Goodley, P. C., and Kuhlmann, F. E. (1995). "Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the presence of signal suppression due to trifluoroacetic acid-containing mobile phases,"*J. Chromatogr. A* 712, 177-190.
- 116. Juraschek, R., Dulcks, T., and Karas, M. (1999). "Nanoelectrospray more than just a minimized-flow electrospray ionization source," J. Am. Soc. Mass Spectrom. 10, 300-308.
- 117. Chloupek, R. C., Hancock, W. S., Marchylo, B. A., Kirkland, J. J., Boyes, B. E., and Snyder, L. R. (1994). "Temperature as a variable in reversed-phase high-performance liquid chromatographic separations of peptide and protein samples : II. selectivity effects observed in the separation of several peptide and protein mixtures," *J. Chromatogr. A* 686, 45-59.
- 118. Chen, H., Horvath, Cs. (1995). "High speed high-performance liquid chromatography of peptides and proteins," *J. Chromatogr. A* 705, 3-20.
- 119. Adkins, J. N., Varnum, S. M., Auberry, K. J., Moore, R. J., Angell, N. H., Smith, R. D., Springer, D. L., and Pounds, J. G. (2002). "Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry," *Mol. Cell. Proteomics* 1, 947-955.

- Wang, Y., Balgley, B. M., Rudnick, P. A., Evans, E. L., DeVoe, D. L., and Lee,
 C. S. (2005). "Integrated capillary isoelectric focusing/nano-reversed phase
 liquid chromatography coupled with ESI-MS for characterization of intact yeast
 proteins," *J. Prot. Res.* 4, 36-42.
- 121. Cooper, J. W., Chen, J., Li, Y., and Lee, C. S. (2003). "Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry," *Anal. Chem.* 75, 1067-1074.
- 122. Wu, S.-L., Choudhary, G., Ramstrom, M., Bergquist, J., and Hancock, W. S. (2003). "Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or fourier transform mass spectrometry," *J. Prot. Res.* 2, 383-393.
- 123. Corbin, R. W., Paliy, O., Yang, F., Shabanowitz, J., Platt, M., Lyons, C. E., Root, K., McAuliffe, J., Jordan, M. I., Kustu, S., Soupene, E., and Hunt, D. F. (2003). "Toward a protein profile of *Escherichia coli*: comparison to its transcription profile," *Proc. Natl. Acad. Sci. USA* 100, 9232-9237.
- 124. MacCoss, M. J., McDonald, W. H., Saraf, A., Sadygov, R., Clark, J. M., Tasto, J. J., Gould, K. L., Wolters, D., Washburn, M., Weiss, A., Clark, J. I., and Yates, J. R. III (2002). "Shotgun identification of protein modifications from protein complexes and lens tissue," *Proc. Nat. Acad. Sci. USA* 99, 7900-7905.
- 125. Choudhary, G., Wu, S.-L., Shieh, P., and Hancock, W. S. (2003). "Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS," *J. Prot. Res.* 2, 59-67.

- 126. Du, Y., Meng, F., Patrie, S. M., Miller, L. M., and Kelleher, N. L. (2004)."Improved molecular weight-based processing of intact proteins for interrogation by quadrupole-enhanced FT MS/MS," *J. Prot. Res.* 3, 801-806.
- 127. Amunugama, R., Hogan, J. M., Newton, K. A., and McLuckey, S. A. (2004)."Whole protein dissociation in a quadrupole ion trap: identification of a priori unknown modified protein," *Anal. Chem.* 76, 720-727.
- 128. Zhou, F., Johnston, M. V. (2004). "Protein characterization by on-line capillary isoelectric focusing, reversed-phase liquid chromatography, and mass spectrometry," *Anal. Chem.* 76, 2734-2740.
- 129. Zuo, X., Echan, L., Hembach, P., Tang, H. Y., Speicher, K. D., Santoli, D., and Speicher, D. W. (2001). "Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins," *Electrophoresis* 22, 1603-1615.
- 130. Zuo, X., Speicher, D. W. (2002). "Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis," *Proteomics* 2, 58-68.
- Chen, J., Gao, J., and Lee, C. S. (2003). "Dynamic enhancements in sample loading and analyte concentration for capillary isoelectric focusing," *J. Prot. Res.* 2, 249-254.
- 132. Lee, H., Criffin, T. J., Gygi, S. P., Rist, B., and Aebersold, R. (2002)."Development of a multiplexed microcapillary liquid chromatography system for high-throughput proteome analysis," Anal. Chem. 74, 4353-4360.

Ericson, C., Phung, Q. T., Horn, D. M., Peters, E. C., Fitchett, J. R., Ficarro, S. B., Salomon, A. R., Brill, L. M., and Brock, A. (2003). "An automated noncontact deposition interface for liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry," *Anal. Chem.* 75, 2309-2315.