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Abstract.

An essential condition for quasi-Newton optimization methods to converge superlin-
early is that a full step of one be taken close to the solution. It is well known that, when
dealing with constrained optimization problems, line search schemes ensuring global con-
vergence of such methods may prevent this from occurring (the so called “Maratos effect”).
Two types of techniques have been used to circumvent this difficulty. In the watchdog tech-
nique, the full step of one is occasionally accepted even when the line search criterion is
violated; subsequent backtracking is used if global convergence appears to be lost. In a
“bending” technique proposed by Mayne and Polak, backtracking is avoided by performing
a search along an arc whose construction requires evaluation of constraint functions at an
auxiliary point; along this arc, the full step of one is accepted close to a solution.

The main idea in the present paper is to combine Mayne and Polak’s technique with
a nonmonotone line search proposed by Grippo, Lampariello and Lucidi in the context of
unconstrained optimization, in such a way that, asymptotically, function evaluations are
no longer performed at auxiliary points. In a companion paper (part II), it is shown that
a refinement of this scheme can be used in the context of recently proposed SQP-based
methods generating feasible iterates.
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1. Introduction.
Consider the optimization problem

min f(z) s.t. h(z) =0,
g9(z) =0,

where f : R® - R, h: R® - R™°, and g : R® — R™, are smooth functions. Quasi-
Newton methods have been extensively used for the solution of such problems in the
framework of Sequential Quadratic Programming (SQP). Global convergence can be in-
duced via a line search requiring at each step the decrease of a certain merit function.
However, while superlinear convergence requires that a full step of one be taken close to
a solution of (P), such line search may not accept a full step even arbitrarily close to a
solution. This phenomenon has been first pointed out by Maratos in his Ph. D. Thesis [7].
Two types of techniques have been proposed to avoid this undesirable effect. In the watch-
dog technique [3] the step of one is tentatively accepted if sufficient decrease was achieved
at the previous iteration, compared to the lowest value of the merit function obtained so
far. If this lowest value is not improved upon within a given finite number of iterations,
the algorithm restarts from the iterate at which this value was achieved. Under suitable
conditions it is shown that a step of one is always accepted in the vicinity of a “strong”
local solution of (P).2 However, in the early iterations, numerous function and gradient
evaluations may be wasted due to “backtracking”. In an alternative technique proposed by
Mayne and Polak [9], the search direction'is “bent” using a correction based on the value
of the constraints at an auxiliary point, and an arc search is performed. Again, it is shown
that a step of one is eventually accepted. The price paid here is that of an additional
constraint evaluation at each iteration.

The contribution of this paper is to propose and analyze yet another scheme for
avoiding the Maratos effect. The new scheme combines Mayne and Polak’s technique
with a nonmonotone line search used by Grippo, Lampariello and Lucidi in the context
of unconstrained optimization in such a way that, asymptotically, function evaluations are
no longer performed at auxiliary points.

The proposed method is based on the following observation. Let {z;} be a sequence
generated by the basic SQP iteration for (P), i.e., £x4+1 = zx + dp where dj solves the
quadratic program

(P)

min 2 (d, Hid) +(V(zi),d)

s.t. hj(xk)—i—(th(:I:k),d) =0, 7=1,...,m,
gJ((L'k)-l-(VgJ(:IIk),d) <0, 7=1,...,my,

with Hy an approximation of the Hessian of the Lagrangian of (P) in the subspace tangent
to the active constraints. It can be shown that, under suitable assumptions, if z¢ is close

2 This assumes that, when full steps of one are taken, convergence is Q-superlinear. The
watchdog technique could possibly be adapted to the case of mere two-step superlinear
convergence (this is often all one can insure, see [18]) at the expense of possible much more
extensive backtracking.



to a strong local minimizer z* for (P), the exact penalty function w used in [6], defined by
w(z) = f(z) +r Z |hj(z)| + Z max{g;(z),0}
i=1 i=1

for some suitable r > 0, eventually satisfies the condition
w(Tk41) S w(Tk-3) + a{D(zk; Tht1 — k) — w(zk)} (1.1)

where « is any fixed number in (0,1) and where @¥(z;d) is obtained by replacing in the
expression of w(z + d) the functions f,h;, j = 1,...,m¢ and g;, 7 = 1,...,m; by their
first order approximation about z (this will be proved in Theorem 3.8 below). Consider
now instead the iteration zr4; = xx + txd; where t; is computed so as to satisfy?

w(zr + trdr) < Wi + a{d(zk; tedr) — w(zi)}, (1.2)

with
Wh = e v,

A “nonmonotone” line search, based on this type of criterion, has recently been proposed
and analyzed in the unconstrained case by Grippo, Lampariello and Lucidi [5] who proved
global convergence of the resulting algorithm. In view of (1.1), line search criterion (1.2)
will always accept the step tx = 1, close to z*, provided t; = 1 has just been taken three
times in ¢ row. This idea is taken up in this paper. To ensure that three consecutive
steps of one will eventually be taken, we make use of Mayne and Polak’s correction and
arc search whenever (1.2) does not accept the step of one. Global convergence and local
two-step superlinear convergence of the resulting algorithm are proven. Compared to the
technique used in [9], the proposed approach has the advantage of not requiring evaluation
of w at auxiliary points except in the early iterations. On the other hand, in contrast to
the watchdog technique, it does not resort to any backtracking. In a companion paper[2],
it is shown that a refinement of the scheme described in this paper can be used in the
context of recently proposed SQP-based methods generating feasible iterates [10], [11]. In
this case an additional challenge is that of achieving feasibility of the successive iterates,
asymptotically with a full step of one, without resorting to evaluation of the constraints
at auxiliary points. -

The balance of the paper is organized as follows. The algorithm is presented in Section
2. To better highlight the main issues, the convergence analysis carried out in Section 3
is limited to the case when only equality constraints are present. Some examples are
discussed in Section 4. Finally, Section 5 is devoted to concluding remarks.

3 Note that a line search test similar to (1.2) but with W} replaced by w(zy_3) would
often be impossible to satisfy.



2. An algorithm.

A point z* is said to be a Karush-Kuhn-Tucker (KKT) point for (P) if h;(z*) =

0, j =1,...,me, g;{z*) <0, j =1,...,m; and there exist some multipliers A}, j
L...,me, p, j=1,...,m; with u7 >0, such that

— V@) + DA VRi(z) + Y 4 Ves(aT) =0
j=1 1

j=

and
/J‘;gj(x*)z()a J=1...,m.

We present below an algorithm for finding a KKT point for problem (P) For the
computation of a search direction, it makes use of quadratic programs QP(z, H) defined
for z € R and H € R™*" symmetric positive definite by -

) 1
min §(d, Hd) + (Vf(z),d)

s.%. h](:v) + <Vh_7($),d) =0, j=1,...,m, (2'1)

63(2) +{Vg;(2),d) <0, j=1,...,ms.
For simplicity, it is assumed in this paper that the feasible sets of the problems QP(z, H)"
encountered by the algorithm are always nonempty.? In the early iterations, an arc search is

performed based on a correction d obtained by solving the quadratic program aﬁ (z,y, H)
defined for z € R™, y € R™ and H € R™*"™ symmetric positive definite by

d
s.t. hij(z+y)+(Vh(z),d) =0, j=1,...,m

-min %(y +d,Hly +d)) + (Vf(z),y +d)

—~
o
W]

~—

A nondifferentiable penalty function w : R® — R defined by
w(e) = f(z) +r Y |hj(z)| + Y max{g;(z),0} ,
=1 7=1

where r is a positive scalar, is used in the line search. In order to have a consistent
line search, it is assumed that, at each iteration k, r > |\t |, 7 = 1,...,me and r >
bk, V3 =1,...,m;, for multiplier vectors Ay and uj associated with the constraints in
QP(zy, Hy), where zy is the current iterate and Hy the current estimate of the Hessian of

* Mechanisms for dealing with the case where (2.1) has inconsistent constraints have
been proposed by several authors, see, e.g., [4], [12], [15].
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the Lagrangian.® The line search test involves a maximum past value W}, defined over the
last four iterates by

Wi = max w(zTk—¢)

=Uyeeuy

where negative indices that may appear in the early iterations are discarded, as well as a
function &(-;-) defined for z and d € R" by

B(@;d) = f(@)+(VF@)d)+r S Ihy(e)+(Thy(e), )| +r Y max{g;(@)+(Vg;(a), d), 0}.

J=1 Jj=1
Algorithm 2.1.

Parameters. a € (0,%), B € (0,1).

Data. zo € X, Hy € R™™ ", symmetric positive definite.
Step 0. Initialization. Set k = 0. '

Step 1. Computation of a new iterate.

i. Compute d solution of the quadratic program QP(zy, Hy)
1. If dr, =0 stop.

2. If
w(zg + de) < Wi + a{d(zg;dr) — w(zk)}, ) (2.3)
set tx =1 and zx41 = =i + dk-
Otherwise,

. compute dy by solving the quadratic program @T’(zk,dk,H k). If there is no
solution or if ||dg|| > ||dk||, set dix = 0.
- Compute ti, the first number ¢ in the sequence {1, 3, 3?,---} satisfying

w(zy + tdy + tQJk) < Wi + a{d(zg;tdr) — w(zr)} (2.4)

and set Trpy1 = Tx + tpdi + tidk.

Step 2. Updates. Compute a new symmetric positive definite approximation Hyy; to the
Hessian of the Lagrangian. Increase k£ by 1. Go back to Step 1. (|

Remarks

(i) Away from a solution of (P), the correction dj, can always be taken as zero, resulting
in some savings in function evaluations.

(ii) The same theoretical properties would be achieved if the Grippo-Lampariello-Lucidi
line search (2.4) were replaced by, say, an Armijo search. Yet, in conjunction with the
“full step” test (2.3) which is essential, it is natural to use the former.

5 The question of identifying a suitable value of r is not addressed here, see, e.g., [9],

[14].



3. Convergence analysis in the equality constrained case.

As indicated in the introduction, to better highlight the main issues, we consider here
the case when only equality constraints are present. There is no conceptual difficulty in
extending the results to the general case.

Thus let m; = 0 and, for simplicity, denote by m the number of equality constraints,

" i.e., consider the problem
min f(z) s.t. h(z) =0, : (P")

with A : R® — R™.

3.1. Global convergence.
In this section, global convergence of Algorithm 2.1 is proven under the following
standard assumptions.
A1l. The functions f, h;, j =1,...,m are continuously differentiable.
A2. Theset {x € R" | w(z) < w(zo)} is compact.
A3. For any z € R", 2%(z) has full row rank.

We also assume that there exist oy, o2 > 0 such that
o1]|z||? < (2, Hez) < og||z]|?, Vz € R™, Vke N. (3.1)

Note that Assumption A3 implies that for any vector z and symmetric positive definite
matrix H, the quadratic program QP(z,H) has a nonempty feasible set, and hence a
unique solution d and a unique multiplier vector A € R™ satisfying

Hd+Vf(z)+ > AjVhi(z) =0
j=1
hj(z) + (Vhj(z),d) =0, j =1,...,m.

(3.2)

Finally, we assume th‘at, for every k£ € IN, the multiplier vector \; associated with the
solution of QP(z, Hy) satisfies

Akl <r J=1,...,m. (3.3)

Proposition 3.1.

Let d and z be some vectors in R", and H be a symmetric positive definite matrix
in R®™™. Then (i) if d = 0 solves QP(z, H), then z is a KKT point for (P'). Moreover if
d # 0 solves QP(z, H), if A is the associated multiplier vector, then (1)

(2 td) — w(@) < —t{(d, Hd) +7 Y |hy(@)] = 3 Ashs(@)} Ve [0,1]

and, if r satisfies |A;| <7, j =1,...,m, then (i)

w(z +td + t2d) — w(z)
w(z;td) — w(z)

— 1, ast — 0, t>0.



Proof.

The first claim follows directly from the optimality conditions (3.2) associated with
QP(z,H). Next, as a function of ¢, w(z;td) is convex. Thus, for t € [0, 1],

w(z;td) — w(z) < t{(z;d) — w(x)}.

Using the optimality conditions (3.2) we then obtain

b(z;d) — w(z) = (Vf(2),d) +r Y _(Ihj(z) + (Vhj(z),d)| - |h;(e)])

7=1
= ~{d, Hd) = 3 \;(Vhj(@),d) =7 3 |hj()|
= —{ (d, Hd) +T'Z |hj(z)| — Z/\jhj(l')

thus proving (:2). That (:2z) holds follows directly from the definition of @ and the fact
that under the current assumptions, in view of (i1), w(z;td) — w(zx) # 0 V¢ > 0. 0

It follows readily from Proposition 3.1 (¢7) and (3.3) that, whenever di # 0, the direc-
tional derivative of w at z; in direction di is negative. Proposition 3.1 (3i7) then implies
that (2.4) holds for all ¢ small enough so that the line seéarch in Step 1 7ii, whenever it is
performed, is well defined. Thus Algorithm 2.1 is well defined. In view of Proposition 3.1
(2), if the algorithm stops at Step 1 i1, the last iterate z; is a KKT point of (P'). From
now on, we will assume that stop at Step 1 iz never occurs so that an infinite sequence
{zk} is generated. :

The-following property, which holds true even though monotone decrease is not en-
forced by the line search rule, is a key to global convergence.

Proposition 3.2.

The sequence {z:} is bounded and the sequences {txdx} and {||zx+1 — zx||} both
converge to zero.

Proof.

This statement can be proven similarly to what is done in the first part of the proof of
the Theorem in [5], provided one first shows that, if @W(zk;trds) — w(zr) converges to zero
on a subsequence, then, on that same subsequence, txdy and ||zx+1 — zi|| also converge
to zero. Thus, to complete the proof, assume that @(zx;trdi) — w(zk) goes to zero on
a subsequence. Then, on the same subsequence, the following holds. First, in view of
Proposition 3.1 (¢7) and of (3.1) and (3.3), #x]|dk||? goes to zero. Next, boundedness of
tr yields that #xd; goes to zero. Finally the fact that, whenever it is defined, dj satisfies
ldi|| < ||dk||, implies that ||zr41 — zx|| converges to zero. O



Theorem 3.3.

Let z* be an accumulation point of the sequence generated by the algorithm and
{zk}kex be any subsequence converging to z*. Then, z* is a KKT point of (P) and the
subsequence {di}rex converges to zero.

Proof.

In view of (3.1), we may assume, without loss of generality that the subsequence
{Hi}rex converges to some symmetric positive definite matrix H*. In view of Assumption
A3, QP(z*, H*) has a unique solution d* and {di}rex goes to d*. If d* = 0 the claim
follows from Proposition 3.1 (z). Proceeding by contradiction, suppose now that d* # 0.
In view of (3.3) and of the fact that, by construction ||di|| < |]dk|| for all k, there is no loss
of generality in assuming that {)\k} rek converges to the unique mu1t1p11er A* associated
with QP(z*, H*) which thus satisfies [A\]| <r, j =1,...,m, and that {dy}rex converges
to some d*. In view of Proposition 3.1 (ii) — (441) it follows that for some t > 0,z > ¢t
for all £ € K large enough. Proposition 3.2 then implies that {dy}rex goes to zero, a
contradiction. |
3.2. Superlinear convergence.

In order to prove superlinear convergence, we assume some more regularity on the
functions involved. Assumptlon Al is replaced by

A1l'. The functions f, hj, 7 =1,...,m are three times continuously differentiable.

Let z* be an accumulation point of the sequence generatéd by the algorithm (known to
exist in view of Proposition 3.2). In view of Theorem 3.3, * is a KKT point for (P’). We
denote by A* the optimal multipliers vector at z* and we suppose that

Ni<r, j=1,...,m

(strict inequality). Finally, we assume that the second order sufficiency conditions are
satisfied at z*, i.e., that V ,L(z*, A*) is positive definite on the subspace

{p|(v}l]‘($*),p> =0, j= 17‘-'vm} )

where L(z,\) denotes the Lagrangian function
Lz, A) = f(2) + 3 Ashy(2)
=1

Proposition 3.4.
The entire sequence {z} converges to z*.
Proof.

From the assumptions on z*, there exists a neighborhood N(z*) of z* such that
Vo € N(z*), there exists no KKT point other than z* in N(z*) [16]. Since d; becomes
arbitrarily small close to * (Theorem 3.3), the entire sequence {z;} converges to z*. []

It follows from (3.2) that the sequence of multipliers {A;} converges to A*.
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Assume now that the approximations Hj to the Hessian of the Lagrangian at z*

satisfy
| Pe(Hi = Vi, L(z*, A*)) Prdi|

1|
where the matrices Py are defined by

—0 ask — oo

Po=1- T (Fe0Fe@)) Sr@.

(Note that, in view of Assumption A3, 2&(z;)8L(z4)7 is invertible.) We will show that a
step of one is always accepted for k large enough and that two-step superlinear convergence
occurs. The following result will be instrumental.

Lemma 3.5.
Direction di computed in Step 1 i of Algorithm 2.1 can be decomposed into d =
Prdy + di with A
lldill = O(l|A(z#)I])

Proof.
Optimality condition (3.2) for QP(z, Hy) yields

h(a:k) = —%(wk)dk

Thus

) Oh oh, . Oh ! an
&= (1= Pody = @) (Goenge (@) goleeds
oh Oh, Oh -
= @) (G @) e
The result then follows from Assumption A3 and boundedness of {z}. M

In order for superlinear convergence to take place, it is necessary that the line search
eventually accept the step of one whenever it is performed. The next proposition asserts
that it is indeed the case here. The proof is 1nsp1red from that of Proposition 15 in [8].

Proposition 3.6.

(1) The unique solution di of QP(z,dk, Hi) (known to exist in view of Assumption
A3) satisfies

= O(lld|I*) (3.4)

and (7¢) for k large enough, a step of one is accepted whenever the line search is performed.

Proof.
The vector Dy = dj, + dy is solution of the quadratic program

min -21-(D,HkD) + (Vf(z4), D)
s.t. h]-(:ck) + <th(:l:k),D) = hj(:l:k) + (th(xk),dk) — hj(a:k +di), 7=1,...,m.

9



Using second order expansions about zx of hj(zx + di), 7 = 1,. ..,m, one can see that
Dy, is solution a quadratic program similar to QP(xk, Hy) with right hand side perturbed
by O(]|dk]|?). It follows that Dy = di + O(]|dk||?), so that di = O(||dk||?). Next, in view
of the above, for k large enough, if a line search is performed the correction dp solutlon of
QP(zy, ds, Hk) satisfies ||dk|| < ||dk|| and thus is used in the line search. Proceeding as in
the proof of Proposition 15 in [8], using (3.4), one obtains,

w(zk + di + di) — w(zg + di) — a(b(zr; dp) — w(zr)) < {% - a} {b(zk; di) — w(zk)}

%L
(dk, {357 (=8 Ak) = Hiddi) + O(Jlde|1*).
Decomposing dj as in Lemma 3.5 and making use of Proposition 3.1 and of the fact that
M| <r, j=1,...,m, we obtain

w(zk + di + di) — w(ze + di) — a((zr; i) — w(zp)) <

1 1 0L
{a _ 5} (A, Hude) + 5 (dh, Pul 57 (kM) — Hik Pedi) + O(lds ).

In view of (3.1), of the fact that o < 1 and of the convergence of the projection of Hy, on the
subspace orthogonal to the gradients of the active constraints at z* to the corresponding
projection of the Hessian of the Lagrangian at z*, for k£ large enough the right hand side
of the last ihequality is negative. 0O
Theorem 3.7.

Under the stated assumptions, the convergence is two-step superlinear, i.e.,

. |Teq2 — |
k—oo ||zk — z*|

= 0.

Moreover,
k1 — 2% = O(||lze — 2*]) -

Proof.

This result can be proven via a slight modification of Theorem 1 in [13] or Theorem
4 in [17], taking into account the facts established in Proposition 3.6 that, a step of one is
taken close to z* and that whenever it is needed the correction dj sat1sﬁes dp = O(|ldk||*)
so that the good properties of the direction d are also enjoyed by di + d.

Finally, we show that Algorithm 2.1 improves on the anti-Maratos effect scheme of [9]
in that the constraints are evaluated at auxiliary points in the early iterations only.

Theorem 3.8.
For k large enough, correction dy is not computed.
Proof.

10



We show that, for k& big enough, we always have '
w(zk + di) — a((zr; die) — w(zk)) < w(Tk-3). (3.5)
From the definition of w and @, since
hi(zx) + (Vhj(zk),di) =0, j=1,...,m (3.6)

we have

w(zk +di) — a(@(zr; di) — w(zk)) = flzr + die) + '"Z |hj(zk + di)]

=1
—a((Vf(zk),dk) - Z (ze)]) -
From (3.6) again, we have
hi(zk +di) = O(||di[|*) (3.7)

and, since for given k either Tk = Tpoy + diey +dp—y OF Tk = Tp_y + dp_1 (Proposition
3.6),
hi(zk) = O(lde-11?)- (3.8)

‘ Thefefore,

w(x +di) — a((zr; di) —w(zk)) = f(zr +di) = a(V f(zx), di) + Ol de-1 I*) + O(l|d [|*).
(3.9)
Expanding f(zy + di) to first order about z* yields

flae +di) = f(z*) + (V") 2k + di = &) + O(||zx + di — 2™ ||*)
which gives, from the KKT conditions associated with z*,
flzk +di) = f(z*) — Z AH{(Vhj(z*), o + di — %) 4+ O(||zk + di — *||?). (3.10)
Jj=1
Since h(z*) = 0, expansion of hj, j =1,...,m, to first order about z* yields
(th(z*),a:k +di — CC*> = hj(.’l:k + dk) + O(H:L‘k + dy — .7:*‘[2), j=1,...,m.

Substituting in (3.10) we obtain

m

flzy + di) = f(z*) Z i(zk + di) + O(||lzx + di — z*)?). (3.11)

11



Now, since d satlsﬁes the optimality conditions (3.2) associated Wlth QP(zy, Hy), we
have, in view of (3.1)

(VFede) = 3 Aeghs(as) + Ol (3.12)

ij=1

From (3.11) and (3.12), we have,
flar + di) — a(V f(er), di) = f(z*) = D Mjhj(er +di) =« ) Ak iz
1=1 j=1

+O0(llzi + di — =*||*) + O([ldi||*)-

so that, using (3.7) and (3.8) and the boundedness of {A;} (since {Az} converges to A*),
we get

flzr +dr) — a(V f(zx), dk) = f(z*) + O(llzk + di — 2"||*) + O(lldi—1I*) + O(ldi [I).
Substituting in (3.9) and using Theorem 3.7, we obtain,
w(zk + di) — a(@(zr; ) — w(zk)) < f(z*) + o ||lzr—s — z*[|*). (3.13)

Finally it is shown in [3, Lemma 1] with assumptions equivalent to ours that, there exists
a positive scalar C such that, for z close enough to z*,

w(z) 2 f(z*) + Cllz — 2%

This, together with (3.13), implies (3.5). O
4. Some numerical examples.

To obtain a preliminary assessment of the practical value of the new algorithm, numer-
- ical tests were performed on two small size problems previously used in related literature.
The first problem was considered in [3] to illustrate the fact that the Maratos effect can

potentially be very damaging. The second one was produced in [18] as a case where mere
two-step superlinear convergence occurs.

In all the numerical tests, we used the parameter values a = 0.3, # = 0.8 and r = 10,
the matrices H; were updated according to Powell’s modified BFGS formula [12] and
execution was terminated when the condition [|d}|| < 10~% was satisfied. The examples
were run on a SUN™ 3/110.

Example 4.1 [3]
min  —z; + 10(z? 4+ 25 — 1)

s.t. x§+x§——1=0,

with solution (1,0)7.

12



An analysis in [3] indicates that the Maratos effect can very seriously affect the perfor-
mance of an SQP algorithm on this problem. Numerical results with VF02AD [1] reported
by Powell [14] with initial points (0.8,0.6)7 confirm this diagnostic.

Algorithm 2.1 terminated after 5 iterations at the point (1.000000, 1.550916 - 10’7)T,~
with a total of 11 evaluations of the objective and 11 evaluations of the constraint. The d
correction was used only in the first two iterations. In this example both nonmonotone line
search and initialization via the d correction were instrumental in the good behavior of the
algorithm. First while the full step of one was taken at all but the first iteration, this did
require an increase of the merit function at the second iteration. Second, when we reran
the test without making use of the d correction, the Maratos effect was clearly visible: the
total number of iterations increased significantly, though less dramatically than when in
addition the nonmonotone line search was replaced by an Armijo-type line search.

Example 4.2 [18]

min f(z)
s.t. g(z) =0
where
! 2 1 3 2 2
f(z) = 5&:2 — 12 + m{—‘l(mg —21)° = 6(zy — 21)*(z1 — 25)
24
~12(sz = 2)(e1 - o) - 17(ar — o) + 32 E0
and

9(2) = 11+ g l(er = 21)? + (a2 = )1 = 23) 4 2(e1 — 23)?),
2
with solution (0,0)7.

On this problem, starting at the point (0.01,0.1)7, Algorithm 2.1 terminated after 5
iterations at the point (1.012154.10~%, —7. 667375 10— 8)T A full step of one was taken at
each iteration and dy was never used. Here again, occasional increase of the merit function
was observed indicating a beneficial effect of the nonmonotone line search.

From the initial point (0.01,0.5)7 Newton’s method does not converge [18] and the
stabilizing role of the line search becomes essential. Algorithm 2.1 converged in 14 iter-
ations and 31 evaluations of both the objective and the constraint function to the point
(8.506928 - 1071%, —4.578437 - 10~%)T. A full step of one was taken at the last 9 itera-
tions (again with occasional increase of the merit function). Correction dk was computed
at iterations 1,3 and 5. At iterations 3 and 5, however, the condition ||d|| < ||dk| was
violated, so that dy, was not used and no additional function evaluation was performed.

5. Concluding remarks

The key ideas behind Algorithm 2.1 are that, in conjunction with a two-step superlin-
early convergent SQP iteration, (i) a nonmonotone (more precisely, “four-step monotone” )
line search can prevent occurrence of the Maratos effect, provided the process is suitably

initialized, and (u7) such initialization can be performed at the expense of a few addi-
tional function evaluations in the early iterations. A crucial result, uncovered by Grippo,
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Lampariello and Lucidi in the context of unconstrained minimization, is that global con-
vergence is ensured despite occasional increase of the merit function. While, for the sake
of clarity, the exposition has focused on a simple-minded SQP iteration, it should be clear
that similar consideration apply to more sophisticated schemes.

Besides resulting in avoidance of the Maratos effect, the nonmonotone line search often
speeds up convergence by allowing a full step of one to be taken early on. This aspect is
stressed in [5] and is clearly apparent from our numerical tests.

Acknowledgements. The authors wish to thank Dr. J.F. Bonnans for his helpful com-
ments.
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