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Abstract

The problem of the direct design of the closed-loop transfer function matrix is
addressed for multivariable discrete systems. The limitations imposed by unstable
zeros, time delays and the structure associated with these are quantified. A design
procedure is formulated that provides the designer with quantitative measures for
evaluating the tradeoffs between different closed-loop interaction structures and
durations. The problem of intersample rippling is also considered. The proce-
dure requires only linear algebra operations, includes the eventual construction
of the feedback controller in state space and is presented in a way that allows its

straightforward computer implementation.



1. Introduction

One can find in the control literature numerous different types of criteria for
synthesizing or evaluating a control system. In most cases a number of perfor-
mance considerations is lumped together into some objective function, which is
then optimized with respect to the control system. Such approaches have been
proven satisfactory in many cases. However there are situations in which one can-
not simply optimize a single scalar objective function. In process control, such a
case is that of setpoint tracking for multivariable systems. Quite often it is neces-
sary to look at the closed-loop transfer function matrix relating the setpoints to
the process outputs and require that certain elements of the matrix are equal to
zero, so that setpoint changes in some outputs do not upset other important ones.
Also, one may sometimes wish to allow such closed-loop interactions in order to
improve setpoint tracking for the important outputs at the expense of upsetting
less valuable ones. The same arguments carry over to certain cases of distur-
bance rejection. The paper treats setpoint tracking and disturbance rejection in
a uniform way.

2. Achievable Input/Output Mappings

The discretized plant is described by the transfer matrix P(z), which is ob-
tained by adding a zero order hold in front of the continuous plant and then taking

the z—transform P(z) is assumed to be square.
Let H,;(z) denote the transfer matrix between output o and input i. We can

define the following relations with respect to Fig. 1.

H,, =C(I+PC)™! (2.0.1)
.Hud - '—'Hur (2.0.2)

H, = PC(I+ PC)™' = PH,, (2.0.3)
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Hyg=(I+PC)'=I~-Hy =I—-PH,, (2.0.4)

From (2.0.4) it follows that if the control system provides good setpoint tracking
(Hyrr ~ r) then one has also good disturbance rejection (Hyqad = 0), provided
that the disturbance d is of a type similar to the setpoint r. If this is not the case,
then one has to design a Two- Degree-of—-Freedom controller (Vidyasagar, 1985),
whose design can actually be separated into designing two different controllers C,
one for setpoint tracking and one for disturbance rejection and then appropriately
combine them in one unified block structure (see, e.g., Morari et al., 1987). Hence,
it is sufficient to cover here only the design of C (Fig. 1) for good setpoint tracking
or disturbance rejection.

From (2.0.1) we can obtain
C = Hy,(I — PH,,)™! (2.0.5)

and so designing C is equivalent to designing Hy,, which is the IMC controller
(Garcia & Morari, 1982) or the parameter of the Q -Parametrization (Zames,
1981). It can be shown (e.g., Callier and Desoer, 1982) that necessary and suffi-
cient conditions for the internal stability of the system in Fig. 1 are

Condition C1:

i) Hy, stable

ii) PH,, stable

iii) Hy, P stable

iv) (I — PH,, )P stable
Cl.ii,ili,iv are implied by Cl.i if P is stable. Hence the following assumption,
which will be made throughout this paper allows to consider only Cl.i:

Assumption Al: P is stable.

It should be pointed out however, that for setpoint tracking, the above assumption

need not be made. In that case, the use of the Two-Degree—of-Freedom structure
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makes it sufficient to consider C1.i only, even when P is unstable. The problem
is then reduced to the one discussed in this paper in which Al holds (Vidyasagar,
1985; Morari et al. 1987).

The controller C(z) has to be causal since future measurements of the plant
output are not known. It follows from (2.0.5) that an equivalent condition is

Condition C2: H,, causal

One can see from the above discussion that the control objective can be
reduced to finding an Hy,(z) with the desired structure and properties, which can
be produced through (2.0.3) by an Hy,(z) that satisfies Cl.i and C2. However
looking only at Hy,(z) for checking the performance of the control system may be
insufficient because of the phenomenon of intersample rippling. This phenomenon
is present when H,, (z) has poles near (-1,0) which are cancelled by zeros of P(z)
in (2.0.3). Hence, in order to make it sufficient to judge performance by looking
at Hy,(z) only, Hy,(z) must also satisfy the following condition.

Condition C3: H,, cancels no zeros of P that are “near” (-1,0).

One can use a number of different regions on the z—plane to define “near”
(-1,0) (Astrom and Wittenmark, 1984). A simple and satisfactory in practice way
to do that, is to include all zeros with negative real part (Zafiriou and Morari,
1985).

3. Characterization of All Permissible Hy,(z)

From (2.0.3) it follows

H,, =P 'H,, 3.0.1
y

Hence the conditions of section 2 on Hy, can be translated into the following
condition on Hy,:

Condition C4: Hy, is a stable, causal transfer matrix that makes P~1Hy,
causal and cancels the poles of P~! (zeros of P) that are outside the unit circle

or near (-1,0).
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The time delays in P(z), which make P~! non-causal, appear as zeros at
infinity. We shall now exploit this fact to make the treatment of time delays and

undesirable zeros of P uniform. The transformation A = z~! will be used. Define

PO E PN o P(2) (3.0.2)
H, () ¥ H, (A1) & Hy,(2) (303
Let a,...,ays be the zeros of P(z), which according to C4 we do not wish to appear

as poles of P(z) ™' Hy,(z). These will appear in P(A)~! as poles at by,...,bs where

bi=1/a;, i=1,...,f (3.0.4)

The time delays in P(z) will give rise to zeros at 0 in P()\) and consequently
the non—causal terms in P(2)~! will produce poles at 0 in P(A)~!. Hence C4 is
equivalent to:

Condition C5:

i) Hyr(2) is a stable, causal transfer matrix

ii) P(\)~!H,,()\) has no poles at bg,by,...,b;.

In the above the following notation was used:

bo =0 (3.0.5)

Some additional notation and definitions are now needed. P(2) (and P()\)) is
assumed to have dimension r X r and to be of normal rank r. In the following it
will be assumed that 15()\) has no poles at bo,...,bs. This is certainly the case
for by since all elements of P(z) are proper, but in general P(z) may have poles at
ajy,..., oy resulting in poles at by,...,bs in 13()\) The existence of poles and zeros
at the same location is a clearly multivariable characteristic (Kailath, 1980). The

assumption that this is not the case for P(z) serves in considerably simplifying
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the notation and it is not restrictive since such a phenomenon is caused by exact
cancellations in det[P(z)] which will not happen if a slight perturbation in the

terms of P(z) is introduced. Let {ng,n1,...,ns} be a set of integers greater or

equal to zero, such that

P®@®B) =0, ((k=0,...,ni—1),5=0,...,f) (3.0.6)

rank[PU) (b)) #£0, i=0,...,f (3.0.7)

where 13(")()\) is the kth derivative of 13(/\) Also let m;,7 = 0,...,f, be the
order of the zero b; of P(}) as this order is defined from the Smith-McMillan
form of P(\) (Desoer and Schulman, 1974). The computation of m; without

going through the Smith—-McMillan form is briefly discussed in Section 4.2. From

(3.0.6), (3.0.7) and the definition of the order of a zero, it follows that

m; > ng, 1=0,...,f (3.0.8)

The following theorem quantifies C5.ii:
Theorem 1.
Condition C5.ii holds if and only if both (a) and (b) hold:
a) Hy,(\) = (A=) H;(2), $=0,...,f
where H;()) is a rational r x r matrix in A, with no poles at b;.

b) for any ¢ = 0,..., f such that m; > n;, the columns of

1 fI(M;—ns—l)(bi)T]T

7 (0) (3T
[Hs (b’) "'(m,--n.'-l)! t

are in the column space of

ni._,ﬁ(m)(b,-) 0 0
L Plrit1) (b)) L P (b;) 0
A, def | G . : nil . : ' . (3.0.9)
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where the superscript (k) indicates k** derivative and T the transpose of a matrix.

Proof: See Appendix A.

The value of Theorem 1 lies in the fact that it provides a characterization of all
acceptable I;[y, (A) without requiring the inversion of 13(/\) The theorem applies
to the general case. However in practice one is usually faced with a situation
where the order of the zeros ay,...,as of the model P(z) is equal to 1. Hence
of the zeros bo,b1,...,b5 of ﬁ(z\) only by has an order larger than 1. The fact
that bo is equal to zero (Eq. (3.0.5)) can then be used to obtain a simpler form
of Theorem 1. The following two Corollaries describe these situations:

Corollary 1.

Let the order of the zero a; of P(2) be equal to one. Then P(A)~!H, (})
has no poles at b; if and only if the columns of fIy, (b;) are in the column space
of f’(b,-)(z P(a;)).

Proof: It follows directly from Theorem 1 for m, = 1.

Corollary 2.

Let P(z) have the impulse response coefficient description

P(z) =27V (Ao + A1z  + 43272 +..)) (3.0.10)
where
rank[Ag] #0 (3.0.11)
N>0 (3.0.12)
Then
ng = N (3.0.13)
Ao ... 0
M, = : IR (3.0.14)
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and P(\)~'H,,(}) has no poles at by = 0 if and only if both (a) and (b) hold:
a) Hyr(X) = AN Ho()) where Ho()) is a rational matrix in A with no poles
at by = 0.

b) if mo > N, the columns of [H{?(0)T ... m—qj—!flém°_N_l)(0)T]T are
in the column space of Mj.

Proof: From (3.0.2) we get P(A) = P(A~1) = AN (Ag + A1) + A0 +...).
Equations (3.0.13) and (3.0.14) can now be obtained by repeated differentiation
and evaluation at A = 0. The rest follows as a restatement of Theorem 1 for this

special case.

4. Construction of H,(z).

4.1 The Form of H,(z).

Theorem 1 and its Corollaries quantify the restrictions that are imposed on
Hy, from the zeros and time delays. The designer can select any overall transfer
function Hy, he considers appropriate for the particular system, provided that
it satisfies those restrictions. The choice can be made between decoupled and
non-decoupled response and the location of the non-zero elements of Hy,(z) can
be directly specified. A detailed procedure for doing so will be developed in this
section and quantitative criteria for the evaluation of different designs will be
obtained. Before proceeding, the form of the non-zero elements of Hy,(z) should
be discussed. The possibilities are of course infinite but three simple rules will be
stated and the reasoning behind them briefly explained.

Rule 1. For a given set of locations for the non-diagonal elements of Hy,
which are allowed to be non-zero, the design should be such that in each diagonal
element of fIyr (1), every term (X — b;)%5,4 = 0,..., f, has the smallest possible
power K;.

Rule 2. If in a diagonal element of I;Ty,.()\), a factor (A — b;)" has to appear,

(1b7 )" (A—by)"s

then one should use the factor (1=be)m (A1)

if b; has positive real part and
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the term %)1\—:2—:)),;: otherwise.

Rule 3. The non—zero, non—diagonal elements of I;Ty,()\) should have the form
A(Bo +P1A+ ...+ BA)(1 = ]).

The reasoning behind Rule 1 is that one wishes the effect of the undesirable
zeros and time delays on the response of an element of the output vector to the
corresponding setpoint or disturbance, to be as small as possible.

The problem that Rule 2 addresses is exactly the same as the one for the
SISO case. Rule 2 is a rule obtained by Zafiriou and Morari (1985). Briefly, it
introduces the pole at the inverse of the zero in order to minimize the sum of the
squared errors to an external step input. In the case where the zero has negative
real part this action would introduce intersample rippling, which is avoided by
making a deadbeat type selection. At the same time no significant overshoot or
undershoot appears. It is also possible to do the design for external inputs other
than steps. This would result in a different expression for the factor in Rule 2
(Zafiriou and Morari, 1986a), which however can be used without any changes in
the procedure that will be developed in the following sections.

Rule 3 makes sure that the steady-state gain of the non-diagonal elements
of Hy,(z) is zero, by including the term (1 — ) « (1 —271). Also the parameters
Bo, . .., B have physical meaning because z—9 (Bo+Prz71+...+8,7) is the step
response for the corresponding pair of system output and external input. Hence
one wishes to have v small and at the same time the magnitudes of Bg,...,0.
to be small. The trade—off between these two goals will be discussed in section
4.3.iii.

The above three rules are not really restrictive and they will simplify the
design procedure. It should be noted that as a result of those rules, the closed—

loop steady-state gain will be

Hy, (1) =1 (4.1.1)
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Hence the control system will be such that no steady-state offset is produced for
external inputs r (or d) with one pole at z = 1 (step-like inputs). For inputs
with more poles at z = 1 (ramp-like, etc.), the no-offset property holds when the
appropriate factor is used in Rule 2 (Zafiriou and Morari, 1986).
4.2. Zeros of P(z)

The first step towards the construction of Hy, is clearly the computation of
the zeros of P(z) and of their respective orders as well as the computation of the
order mg of the zero bg = 0 of ﬁ(A) For a square system P(z) the zeros can be
computed as the roots of det[P(z)] = 0, provided that there are no cancellations
with any poles. Numerically better techniques for the computation of the zeros
can be found in the literature (Laub and Moore, 1978) and a number of software
packages for this computation exist.

The following theorem provides a method for computing the order of a zero
without having to find the Smith-McMillan form.

Theorem 2. (Van Dooren et al., 1979; rephrased)

Let

Lprad(b;) ... 0
def | :
M = : (4.2.1)
HP®®) ... PRI()
then
m; = min{k|rank[M; ] — rank[M; x_;] = r}, i=0,...,f (4.2.2)

It was mentioned in Section 3 that usually in practice the order of the zeros
by,...,bs is one. Theorem 2 is then useful in computing the order mo of bp. In
this case My can be written in terms of the impulse response matrices defined

in (3.0.10):
Ag ... O
Mor = .o (4.2.3)
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The discussion of some computational aspects is necessary at this point.
Theorem 2 explicitly requires the computation of the rank of M; for all k =
Ni,y...,M4. Also in order to use Theorem 1 effectively in a design procedure it is
necessary to reduce M;(= M m,~1) in (3.0.9) to a form with linearly independent
columns so that a basis for its column space is available. The Singular Value
Decomposition (SVD) is a very reliable method for both purposes. However, its
application on the matrices M;; whose dimension can grow very large might
be difficult and time-consuming. Van Dooren et al. (1979) have exploited the
Toeplitz matrix form of M; ;. to develop a fast recursive algorithm that performs
the rank search in a numerically stable way. In each step the rank of M;; is
computed for some k by obtaining the SVD of an r X r matrix. At the same time
M; i is reduced to a form with linearly independent columns. Hence to obtain m;
and an orthonormal basis for the column space of M; one has to obtain the SVD
of only (m; — n; + 1) matrices of dimension r x r.

4.3 Design of a Column of Hy.(z)

The requirements of Theorem 1 apply to each column of Hy, separately and

so each column can be designed independently. Let us write
Hy (2) = [h1(2) ... h(2)] (4.3.1)
where hj;(z) has dimension r X 1,75 = 1,...,r. Also let
hi(A) = hij(A71) & hy(2), J=1,...,r (4.3.2)

We shall now proceed with the design of iAzJ-(A) for some j. Let U; be a matrix
whose columns form an orthonormal basis for the column space of M; given in

(3.0.9). U; can be obtained from M; with the procedure of Van Dooren et al.

(1979) briefly discussed in Section 4.2. Also let

pi = rank[M;] = rank|U;] (4.3.3)
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According to Theorem 1 we must have

hi(A) = (A —bi)™h;5(}), i=0,...,f (4.3.4)
where
ety 1 2 (mi—n;—
nji = RO 6:)T - plmi—ni=1) () T|T (4.3.5)

(m,- —ng — l)! 7

is a linear combination of the columns of Uj, i.e.,
5 = Uix{ (4.3.6)

where x} is any vector of dimension p;. The freedom allowed in the choice of x}
will now be gradually reduced by requiring certain properties for izj(/\), according
to the designer’s specifications and decisions. First, the limitations imposed by
the desired structure of h; will be quantified. Then, the undesirable zeros and
time delays that have to be present in the diagonal element will be determined
and the design of this element will be reduced to that of a SISO system. Finally,
the non-diagonal elements will be designed so that the closed-loop interactions are
minimized. It should be pointed that if for some ¢ we have m; = n;, then part (b)
of Theorem 1 and therefore (4.3.6) do not apply for that 7 and so all equations in
this section corresponding to that particular ¢ should be ignored.

i) Structure of h;

Let the design specification be that the £;,¢,...,£; elements of h;(z) be

identically equal to zeros, where
g<r—1 (4.3.7)

be#j, k=1,....g (4.3.8)

We shall use £ to denote the set

e {ey,..., 05} (4.3.9)
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Define
£ {1,2,...,r} - {5} - ¢ (4.3.10)

Let

er 0.0 1 0...07 (4.3.11)

where the 1 is the k*” element and ex has dimension r X 1.

Define
T
£y
L (4.3.12)
ez,
Al def diag{et,...,el], 1=1,...,f (4.3.13)
N’

(mi—n;)

In order for the specified elements of h; to be zero, the vector x} must solve:

Afnji=0
or
AfU;x} =0 (4.3.14)
Let
pt = rank[ALM;] = rank[ALU;) (4.3.15)

Then p; > pf. Hence the null space of A!U; has dimension
¢t = pi —pt (4.3.16)

Let Vf be a matrix whose columns form an orthonormal basis for the null space of
AfU;. Both V¢ and pf can be obtained from an SVD of AfU;. Then the solutions
to (4.3.14) are:

xi =Vixi (4.3.17)

where x? can be any vector of dimension Ef when ff #0. If ﬁf = 0 then of course

szOandxi: .
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Hence we must have

;i = UiVix? (4.3.18)

where 7;,; was defined in (4.3.5). Note that (4.3.18) includes the case ¢f = 0,
where V,-‘ = 0 yields n;; = 0.

i) Diagonal element of h;

We shall now proceed with the determination of the jt* element of hj. Up to
this point no assumption has been made on the order of the zeros bo,b1,...,bys.
However if more than one zero has order larger than 1, then the number of possible
choices to be examined at this point could grow enormously. On the other hand,
in practice one is usually faced with a situation where the order and degree (as
defined from the Smith-McMillan form (Desoer and Schulman, 1974); also see
Lemma A.l in Appendix A) of the zeros aj,...,as of P(z) and therefore of the
zeros by,...,by of ﬁ(A), is equal to 1. The following assumption will be made

here to simplify the procedure.

Assumption A2: The degree of the zeros a;,...,a5 of P(z) is equal to 1.

No assumption is made however about the zero by = 0 of P()) corresponding

to time delays in P(z). We shall examine the two cases separately.

a) bi,i=1,...,f

It follows from A2 that for the order of the zeros m; we have m; = 1. Also
since r > 2, A2 implies that n; = 0. Then from (4.3.4), (4.3.5), (4.3.6) it follows
that since 0 is a linear combination of the columns of U;, the highest power of
(A —b;) that is sufficient to include in the elements of &;(\) is (A — b;)!. However
according to Rule 1 we wish to have the smallest possible power in the 7% element,
and that is (A — b;)° = 1. In order for this to be possible, the following equation

must have a solution

T _
€My, =1
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or

U Vi =1 (4.3.19)

where ¢, is defined in (4.3.11). Eq. (4.3.19) will have no solution only if the matrix
el U;V is identically zero. If this happens for some i, then the factor (A —b;) must
be included in the j** element of A;(}). Let us assume that this matrix is zero
only for ¢ = 1,...,¢;. Also let the zeros by,...,bg,(d2 < ¢1) have positive real
part and the zeros by, +1,...,bs, have negative real part. Then according to Rule

2, the factor

b2 - ¢1
_Ba-h(a-b) B (b
so(A) = I}l o0 o 1;[+1 5 (4.3.20)

should be included in the jt* element.

Note that one does not always have to follow Rule 1. One may wish to include
the factor (A —b;) for some i in the 7t element even when one does not have to do
it, if that will result in significantly smaller interactions (non-diagonal elements)
and if the j*# output is not so important. The procedure for determining the
magnitude of the interactions will then be exactly the same (see Section 4.3.iii)
and at the end the designer can decide whether inclusion of (A — b;) pays off. A
simple qualitative way to figure out a priori whether it may pay off, without going
through the whole design procedure, is the following. For m; = 1 and n; = 0
we have rank[U;] = r — 1. U; consists of the first (r — 1) columns of the left
singular vector matrix in an SVD of M;. The rt? column u; is orthogonal to all
the columns of U;. If the j* element of u; is large compared to the k** elements
where k belongs to the set £ defined in (4.3.10), then it is likely that inclusion of

(A — b;) in the 7** element will result in significantly smaller interactions in the

non-zero non—diagonal elements of h;.

b) bo(= 0) (Time delays)
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Define

¢r(A) = A"¢0(A)

(4.3.21)

where 7 is an integer. Then according to Rule 1 we need to find the smallest 7

such that ¢,()) is possible as the j** element of h;0()). From (4.3.5), (4.3.6) it

follows that in order for a 7 to be possible, the following equation must have a

solution
€150 = Zr
or
e;UoVixE = 2,

where

€ = dz'ag[ef, e, e;p

S e’
(mo—ro)

and

Hence one can obtain the smallest possible 7 as
70 = min{r € No|rank|e;UoVE{|Z,] = rank|[e;UsVE]}

where Ny is the set of positive integers, including zero.

(4.3.22)

(4.3.23)

(4.3.24)

(4.3.25)

Still, contrary to Rule 1, one may wish to choose a 7 larger than 7g if that

results in smaller interactions for a given set £. Eq. (4.3.22) should, of course,

have a solution for this 7, i.e., the rank condition in (4.3.25) should hold. In

the following paragraph 7o is used, but any other possible 7 can be used instead,

without affecting the procedure for determining the magnitude of the interactions

in Section 4.3.iii.

The jt* element of fz]-(A) has been completely determined at this point as

eThi(A) = AV ¢ (A)

(4.3.26)
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Let us now quantify the iimitations that the selection of this diagonal element

imposes on x?,7 =0,1,..., f. The following equations have to be satisfied.
UV =b0og (b)), i=1,....f (4.3.27)
e;UoVExt = 2., (4.3.28)
Let X?,i = 0,...,f, be a particular solution for each corresponding equation,

obtained with some method for solving systems of linear equations. Also let
Wt,i=1,..., f be a matrix whose columns form an orthonormal basis for the null
space of e;"-‘UgVi‘, and W¢ the corresponding matrix for e;UoV{. These matrices
and their ranks wf, can be obtained from an SVD. Then the x?’s that solve the

set of equations (4.3.27), (4.3.28) are:
x? = x?+ Wi, i=0,1,...,f (4.3.29)

where x? is any vector of dimension wf, when w! # 0. If wf = 0 then W} = 0
and x? = x?.

From (4.3.18) and (4.3.29) we obtain
nis = UiVEHO + UVIWEE,  i=0,1,...,f (4.3.30)

iii). Non-diagonal elements of h;

The part of the procedure that was developed in Section 4.3.i makes sure that
the elements of h; corresponding to the set £ defined in (4.3.9), are identically equal
to zero. We shall now proceed to compute the terms in the non—zero non-diagonal
elements of hj, i.e., the elements corresponding to the set £, defined in (4.3.10).
To do so the freedom allowed in the choice of x3 will be used.

Let £1,£;,...,€; be the elements of the set £. According to Rule 3 the i

element of h;()\) should be of the form

el hj(X) = Br(A) T X% (Bro + Brgh + ...+ B V) (1= X),  k=1,...,q
(4.3.31)
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From Corollary 2.a it follows:
6k =ng = N, k=1,...,q (4.3.32)

The values of Bko,...,0kv,k = 1,...,q will be computed from (4.3.5) and

(4.3.30). Note that any of the 3’s can be zero, including the first ones, 8o, 81, etc.

Define T
- et_l
| (4.3.33)
T
€4,
g
£ | (4.3.34)
e, |

where €5, is defined as in (4.3.23) for i instead of j. As explained in Section

4.3.ii.a, we have n; = O for i = 1,..., f. From (4.3.4), (4.3.5), (4.3.31), (4.3.32) it

follows:
i By (b;) 01,
enii=| 1 | =diaglvip,...,me]| 1 |, i=L...,f (4.3.35)
BQ(bi) q Hq,u
where
Biw Z (@ -b)0N (1 —bpNTY L (1 -b)p V], i=1,...,f
(4.3.36)
Ok, def (Bro Br1 ... ﬂk,,,]T , k=1,...,q (4.3.37)
It also follows that
B? ol,u
njo=| 1 | = diag[Tu,...,T.] | : (4.3.38)
Bg q9 oq,u
where
BY = [Bro (Bri—Bro) - (Brmo—N—1—Brmo-n—2)1", k=1,...,q

(4.3.39)
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B, =0 for u > v, k=1,...,q (4.3.40)
and T', is a matrix containing the first v + 1 columns of [['000.. .| with
1 0O 0 ... 0 0 O
-1 1 0 ... 0 0 O
r={0 -11 ... 0 0 O (4.3.41)
0 o 0o ... 0 -1 1

(mo—N)X(mo—N)
Then the use of (4.3.30) in (4.3.35), (4.3.38) and combination of the resulting

equations yields:

K8, =T, + T X | (4.3.42)
where
01,1/
6,4 | : (4.3.43)
Oq,0
[ diag[Ty,...,Ty] ]
diag[’)’l,va ey '71,1/]
K, : (4.3.44)
diag[vsus - sV 0
e, e
L q A
def
X0 DT 67T (4.3.45)
eZ_UoVotxg
£y, 1740
e UV,
R R (4.3.46)
eZUfox(f’
T, = diaglefUsVEWS, U VWL, ..., fU VW Y] (4.3.47)
Equation (4.3.42) can also be written as
0,
K| -T3) |y | =Ty (4.3.48)

Hence the smallest possible v for h; and for the particular choice of set £, can be

obtained as the smallest v for which (4.3.48) has a solution, i.e.,

Umin = mun{v € No|rank[K,|— T3] = rank[K, | — T2|T1|} (4.3.49)
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However instead of trying to minimize v, a better alternative to use a larger v
and use the extra degrees of freedom to minimize the sum of the squared errors
for the step response of the fi,...,Z, system outputs to the j** external input

(7t element of r or d). This means minimizing

v

q
T, Y (0 Y BE,) = 07870, (4.3.50)
k=1

pu=0

where ¢g,k = 1,...,q are optional weights (positive real numbers) and
® = diag(¢) L1, ., $1/2 L4 (4.3.51)

where I, is the (v + 1) x (v + 1) identity matrix.

Equation (4.3.42) can be written as
K, 27 Y®0,) =T + T X 4 (4.3.52)

Hence the ®6, that minimizes J, can be obtained as the minimum norm solution
to (4.3.52). For v large enough, K, is full rank, i.e., rank|[K,| = g¢(f + mo — N),

and for a given X, the solution is
0,(X) =@ 'F}(F,F}) Y (T1 + T2 X) (4.3.53)

where

F, ¥ K,0! (4.3.54)

and the superscript * indicates complex conjugate transpose. Note that although
the matrices involved may be complex, the solution #,, will be real because any
complex zeros of P(z) come in complex conjugate pairs. However the form in
which the solution is given in (4.3.53) may cause numerical problems in some
cases. One can avoid them by computing the pseudo-inverse F} = Fj (F,Fy3)~!

from an SVD of F, (Stewart (1973), p. 324).
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One can now compute X by minimizing J, (X) for the solution 6,(X) of

(4.3.53). From (4.3.53) we get
T (X) = (T1 + ToX)* (F, F2)~} (T} + T2 X)
= (T} + T2 X)* (F})* F}(T1 + T2 X) (4.3.55)
By setting the gradient of J,(X) equal to zero we get
T3 (FI) FIT, X = ~T3 (F)*FIT, (4.3.56)

from which a solution X which minimizes J,, (X) can be obtained. The optimum
6, can then be computed from (4.3.53).

It is clear that by increasing v, the value of the obtained minimum of J,
will either be reduced or it will remain the same. Hence the designer has the
option to choose interactions with smaller magnitude in exchange for a longer
duration of the interactions. The knowledge of the value of this minimum at the
limit as ¥ — oo would be quite helpful in making this decision. From (4.3.55)
we see that we need to compute F, F, as v — oo. The fact that the elements of
Viwst = 1,..., f, are terms in a geometric progression, allows us to do so easily
when by, ...,bs are inside the unit circle. We cannot do so however if some of them
are outside the unit circle, i.e., when some of the undesirable zeros of P(z) are
inside the unit circle. This is actually a situation, where for numerical reasons it
would be strongly recommended to compute F} from an SVD of F,, as mentioned
above.

5. Construction of Hy.(z) and C(z)

After the desired Hy,(z) has been designed, Hy,,(z) can be obtained from
(3.0.1):
Hy,(2) = P(2) ' Hy,(2) (3.0.1)

Substitution of (3.0.1) into (2.0.5) yields:

C(2) = Hur (2T — Hye ()] (5.0.1)
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If one attempted to construct Hy,(2) and C(z) from (3.0.1), (5.0.1) by doing
the computations in terms of transfer function matrices, the procedure would
be extremely tedious. Instead, the computations can be made quite simply by
working in the state space. One can obtain realizations of P(z), Hy,(2) to get the

state space descriptions:
P(z) =C(2I- A)"'B+D (5.0.2)

Hyr(z) = CQ(ZI — Ao)—lBo + Dy (5.0.3)

P(z) represents a physical system and so it can be assumed to be strictly proper,
i.e., D = 0. Then from Corollary 2 it follows Dy = 0. Construction of Hy,(z),
C(z) involves the following steps.

Step 1. Inversion of P(z).

Silverman (1969) developed a computationally simple algorithm for the in-
version of a linear multivariable system, whose state space description is known.

The result of the inversion will be

P(2)™' = (C1(2] — A1) "'B1 + D1)(Ko + K1z + ... + Km,2™)2"  (5.0.4)

where
A1=A-BDC (5.0.5)
By = BD™! (5.0.6)
C,=-D"C (5.0.7)
D, =D (5.0.8)

mo is the order of the zero by of P (1) obtained from Corollary 2 and N is defined in
(3.0.10). The matrices C, D, Ko, ..., Km, are determined with Silverman’s (1969)

procedure.



24

Step 2. Computation of Hy,(z).

The following Theorem will be used.

Theorem 3
Let
G(z)=C(2I-A)"'B+D (5.0.9)
then
k
G(2)z* = C(2I — A)7'4*B+ ) CA'Bz* ¢4 D*, vV k>1 (5.0.10)
=1

Proof. See Appendix B.

We can now apply Theorem 3 to P(z)~1, to obtain

mo
P(z)™' =Cy(2I — A))"()_ ATV B, K;)
1=0
mo t+N mo
+Y ) CLAT'BIK L N DK
1=0 £=1 =0

202(21 — A2)~1B2 + Dg,o + Dz,lz + ...+ Dz,m°+sz°+IY5.0.ll)

where
Az = Ay (5.0.12)
Mo .
B, =) AY"VB\K,; (5.0.13)
=0
Cy =Cy (5.0.14)
mg .
Dox =Y CiAN-V*BiK,  k=0,...,N—1 (5.0.15)
1=0
mop .
Dy =D1Kr_n+ Y, C1AN"VFHBIK, k=N,...,N+mo (50.16)
i=k—N+1

Then from (3.0.1), (5.0.3), (5.0.11) we get

Hu,-(Z) = (Cz(ZI — Ag)—leco -+ Dz,QCo) (ZI — Ao)_lBo
mo+N )
+ ( Z Dz,;z')Co(Z[ — Ao)_lBo (5.0.17)

1=1
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Application of Theorem 3 on the second term of the right-hand side yields the

term

mo+N ' mo+N ) Mo+ N—1 )
(Y D2iCodb)(2I— Ao) 'Bo+ D DaiCody Bo+ Y, Wz

i=1 1=1 =1

where the fact (2]~ A4)~1A* = A*¥(2]— A)~! was used. However, by construction,

P(z)~1Hy (2) is proper. Therefore ¥; =0for all: =1,...,mo + N — 1. Hence

Hyr(2) = (Ca2(2I — A2)™'B3Co + D3,0Co
mo+N .
+ Y D2iCoAb)(zI — Ao)~* Bo
1=1
mo+N )
+ Y DyCoAi By (5.0.18)

1=1
All that is necessary now is to compute the product of two proper transfer function

matrices, whose state space descriptions are known. The following Theorem takes

care of that:

Theorem 4. (Doyle, 1984)

Let
Gl(z) = Cl(ZI - Al)—lBl + Dy (5.0.19)
Ga(z) = Ca(2I — A3)"'By + D (5.0.20)
then
G1(2)G2(2) = C(2I — A)"'B+ D (5.0.21)
where

A= |41 BiC2y p_ 1 BiDa| o 101D,c,),D = [D1Dy)
0 Az B,

Application of Theorem 4 on (5.0.18) yields a state space description for Hy,.

Step 3. Computation of C(z)
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All that is needed is to compute a state space description of (I — Hy,(2))!.
After that, application of Theorem 4 on {5.0.1) will give a state-space description

for C(z). From (5.0.3) we get
I - Hy(2) = —Co(2I - Ao) 1 Bo + I (5.0.22)
and a state space description of (I — Hy,(2))~! can be easily computed as
(I — Hyr(2))7! = Co(2I — (Ao + BoCo)) ' Bo + I (5.0.23)

The result of the described procedure is state space descriptions of Hy,(2) and
C(z). One can always obtain a matrix transfer function form, but since the control
law can be easily implemented with a state space description it would be advisable
to avoid further computations by implementing it as such. It is important to point
out however that the realizations obtained for Hy,(z) and C(z) are not minimal.
It is essential to obtain minimal realizations of them before the implementation
so that the undesirable zeros ay,...,as of P(z) do not appear as poles of Hy,(z).

6. Illustrations

The first example in this section is used to illustrate the tradeoff between the
time duration of the closed loop interactions and the magnitude of the sum of
squared errors that they cause. This simple example is also used to demonstrate
the procedure step by step. The second example examines different structures for
Hy, and illustrates how the structure associated with a zero outside the UC can
produce large or small closed-loop interactions, depending on the structure chosen
for H,.

6.1 Example 1

Consider the system

0.6 0.5
Pe) =[50 %] (00
“z-0.5 =2-0.4
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Computation of the roots of det[P(z)] shows that the system has one zero outside
the UC, at z = 1.547. Garcia and Morari (1985) pointed out that an acceptable

lower triangular Hy, is

P 0
Hyr,l(Z) = 3.095(1 _ z__l)z__.l Iz—:;.54:z—1 (6.0.2)
. z—

Clearly the interactions in output 2 for a setpoint change in output 1, are very
large in magnitude (over 300% the setpoint change) although of short duration.
We shall now use the procedure of Section 4.3, to design a lower triangular
H,,(2). For the time delays (bo = 0) we have ng = mg = 1. Hence part (b) of
Theorem 1 (or Corollary 2) does not apply for 1 = 0 and therefore (4.3.6) does
not apply for ¢ = 0. Thus none of the equations or subsections of Section 4.3 that
correspond to ¢ = 0 should be considered. For the zero a; = 1.547 (b; = ai‘l) we

haven; = 0,m; = 1. Also

_ 0.675 def | U3
Ur = [0.739] - [ug] (6.0.3)

and p; = 1.
i) Design of hy(z).

In this case, £ is the empty set and £ = {2}. Hence p}{ = 0 and therefore
¢t = 1,V{ = 1. Thus (4.3.19) has a solution for ¢ = 1 and as a result b; should
not be included in ¢o(A). Thus from (4.3.20) it follows that ¢o(A) = 1. The case
of bo should not be considered as mentioned above. Hence ¢, (A) = ¢o(A) =1 and
from (4.3.26) it follows that the first element of the column (diagonal element) is
equal to A(= z71). Then (4.3.27) need be satisfied for ¢ = 1. Since the null space

of eTU,V} is the empty set, it follows that Wi =0 and
x2=x0=b1/u (6.0.4)

We shall now proceed with the design of the second element of the column. In

(4.3.31), (4.3.32) we have ¢ = 1,¢; = 2,6; = 1. In (4.3.44),(4.3.46) the part
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corresponding to bg is omitted and so from (4.3.36), (4.3.44), (4.3.46), (6.0.4), it

follows:
K, =[(1-b)b1 (1- bl)b% e (1- bl)b'l’+1 ] (6.0.5)
T1 = b1U2/u1 (6.0.6)

From W{ = 0 and (4.3.47) it follows that T, = 0. In this case ® = I and from

(4.3.53) we get

0, = K (K,K})"'Ty (6.0.7)
(4.3.37), (4.3.50), (6.0.5), (6.0.8), (6.0.7) yield

(1 + bl)bjllq .
Bi,j = (T:'E)—?-_le—)u—l, J=0,...,v (6.0.8)

(1+b1)ud
(1 = b1) (1 — b7 "*)uf

Ty = (6.0.9)

For v = 0 we get (1,0 = 3.095, i.e., the design in (6.0.2). However the error caused
by the interactions in this case is Jo = 9.58, which is quite large. Increasing the
duration v of the interactions reduces J, as (6.0.9) indicates. Since b; < 1 we can

compute the limit:

X (14 b1)u?
Jy = ——= = . .
Jim bl 5.58 (6.0.10)

The designer can of course select a relatively small v, for which J,, is sufficiently
close to the limit given by (6.0.10). A plot of J, as a function of v is given in Fig.
2. One can see that a selection of v = 4, is satisfactory. It yields J, = 5.65. For
v = 4, the second element of hy(z) becomes equal to (1.82+ 1.18271 +0.76272 +
0.49272 +0.32274)(1 — 27 1)2~ 1.

ii) Design of ha(z2).

Since we require the first element of the column to be zero, we have £ = {1}

and therefore £ is the empty set. Hence p¢ = 1,¢{ = 0,V = 0. Then (4.3.19) does
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not have a solution for 7 == 1. As a result the second element (diagonal element)

has to have a zero at A = b;. From (4.3.20) we get

_ (-7 (A-b)
¢o(A) = A b)) (6.0.11)

Then, since ¢, (A) = ¢o(A), (4.3.26) implies that the diagonal element is A¢p ().

Substitution of z=! for A and a;{= 1.547) for bl_l, produces the expression in
(6.0.2).

6.2 Example 2.

Consider the system:

0.90 0.50 1 1.00
7035 203 7-0.35
_ 701 80 -1 _0.60 -1
P(z) = | ;%5662 7-0.60~ 2—0.607 (6.0.12)
_0.40 —0.45 1.00_,—1
7-0.50 7-0.50  2-0.50

The computation of the roots of det[P(z)] yields one zero outside the UC at
z = a; = 1.3088. We shall limit ourselves to the design of the first column of Hy,.

Two different structures will be examined:

T z
hi= |z or 0 (6.0.13)
0 z

The SVD of P(a;) yields the following left singular vector matrix:

0.125 —0.700 —0.703
U=| 0992 0.068 0.107 (6.0.14)
—0.0267 —0.711 0.703

The two first columns of U form U;. The third, u, is orthogonal to U;. Then
from Corollary 1 it follows that u*Hy,(a;) = O for all acceptable Hy,’s. (6.0.14)
suggests that if the first structure of (6.0.13) is selected, the value of the non-
diagonal element at z = a3 will have to be larger than the one for the second
structure, because of the smaller corresponding element in u.

The consideration of the time delays (bo) makes the situation even more

favorable for the second structure. We have ng = 1,mg = 2 and

10
Up= {0 0 (6.0.15)
0 1
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The fact that the second row of Uy is zero, allows in the case of the second
structure satisfaction of (4.3.14) for 1 = 0 without using any of the available
degrees of freedom. This results in a nonzero w§ and Tp and the additional
freedom in choosing x3 through (4.3.56) reduces J,, even more.

The above qualitative observations are confirmed from the quantitative re-
sults of the design procedure. The corresponding plots of J, vs. v shown in
Fig. 3 for both structures of (6.0.13) show a huge difference in the closed-loop
interactions for the two structures.

7. Conclusions

The results in this paper quantify the effects of the undesirable zeros and time
delays of a multivariable discrete system on its closed-loop performance, in a way
that can be used for the direct design of the closed loop transfer function matrix.
The designer is provided with quantitative criteria for comparing\ different designs
and evaluating the tradeoffs. The entire procedure is based Aon linear algebra
operations and its implementation on the computer is straightforward.

The design is based on the knowledge of a system model. Hence it may not
be robust to model-plant mismatch. However it can be used in the first step
of the controller design for the standard two-step Internal Model Control design
procedure, in which robustness properties are incorporated in the second step with
the design of a low pass filter. Details on the filter design can be found in the

literature (Zafiriou and Morari, 1986b,c).
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APPENDIX
A) Proof of Theorem 1

The following Lemma will be used in the proof:
Lemma A.1. (Van Dooren et al., 1979; Vandewalleet al., 1974). Let a rational

matrix A()A) of normal rank r have the following Laurent expansion at o:

40) = 3 0= (o) (4)
Define
Ae(a) A_pgpi(e) ...  Ag(a)
e =| o A Al (4.2
0 0 .. A_g(a)
pi(0) ¥ rank|[Ty(a)] — rank[Tx_1 ()] (A.3)

Let p and z be a pole and a zero respectively of 4(}) of orders wp,w, and degrees
6p, 62, as these are defined from the Smith-McMillan form of A(A) (Van Dooren
et al., 1979; Desoer and Schulman, 1974).

The following hold:

i) wp = —min{klpx # 0}

ii) we = min{k|pr = r}

i) 6, = Ypt ., ok

iv) 6, = Y pro(r — pr)

Proof of Theorem 2. P(A)~! has as its poles exactly the zeros of P()) with

the same order and degree (Desoer and Schulman, 1974). Hence since b; is a zero

of P()) of order m;, it is also a pole of P(A\)~1 and we can write

m;

PO) =) (A =b)FRik+ Gi(2), i=0,1,...,f (A.4)
k=1

where

rank|[R; m;] # O, t=0,1,...,f (A.5)
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and G;(}) has no poles at b;,7 =0,1,..., f.

Postmultiplication of (A.4) with H,,()) yields

PO) T Hyr(N) = i(A = bi) T* Rk Hyr (A) + Gi(V) Hyr (A) (4.6)

Now take a partial fraction expansion for each term in the sum of the right-hand

side of (A.6) to obtain:

POV By ) = 3300 89 '°+"R.kh,ﬂ< )(b0) + ReaGE ()] + G () By )
k=1 h=0
= SH - 3 R e 00
k=1

+ i R xGE(X\) + Gi(\) Hyr (V) (A.7)

where G§(\) has no poles at b;. Also recall that G;(A) has no poles at b; either.

Hence in order for Condition C5.ii to hold we must have for all 1 = 0,..., f:

k)!ﬁ,g’,'—k>(bi) =0, k=1,...,m; (A.8)

m; 1
R;
&

Satisfaction of (A.8) is equivalent to requiring that the columns of

(B 6T . mﬂ(m‘—l)( :)T]T are in the null space of N;, where:

(A.9)
R; R;2 ... Rjmn,,
We shall now proceed to determine the null space of N;.

Postmultiply both sides of (A.4) with P(}) to obtain:

= ii()‘ —b:) R Rk P(X) + Gi(X) P(}) (A.10)
k=1
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Since I has no poles at bg,...,bys, taking a partial fraction expansion leads to a

condition similar to (A.8), in exactly the same manner. Hence (A.10) yields

1 ~
: (h=k)(p.) = = :
E R;n = k)!P (bi) =0, k=1,...,m; (A.11)

The equations implied by (A.11) for k = £,...,m; can be put together in the

matrix form:

Nfo...0 PO@p)T PO )T =0, £=1,...,m

(mi — )
(A.12)

The equations obtained from (A.12) for £ = 1,...,m; can be written together as:

N;L; =0, t=0,...,f (A.1_3)
where
PO (p,) 0 0
P (p;) PO)(b,)) . 0
LY . . . . (A.14)

Sl PO (b) L PO A(b) L. PO)(b)
Hence the column space of L; is a subspace of the null space of N;. It will now
be shown that it is exactly the null space of IV;.
As explained earlier, the order w, of the pole b; of P(A)‘l is equal to the

order m; of the zero b; of 15()\), i.e., equal to m;:
wp(bi) = m; (A.15)

Lemma A.1 will now be applied on A(A) = P(A\)~1, for a = b;. From (A.1), (A.4),
(A.5) it follows that £ = m; and A_x = R;x for k = 1,...,m,. By using (A.15)
and Lemma A.1.iii we get

bp(bi) = i pr(bi) = rank|[T_,(b;)] = rank|[N;] (A.16)

k=—m;
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since Tom;~1(bi) = 0 and T_(b;) can be obtained from N; by simply permuting
its rows and columns.

By definition the order w, of the zero b; of I3(>\) is equal to m;:
wz (b)) = m; (A.17)

Lemma A.l will now be applied on A(A) = P()), for @ = b;. In this case, since
13(}\) is assumed to have no poles at b;, we have £ < 0 and Ay = -,%—!ﬁ(k)(bi) for

k=1,...,m— 1. By using (A.17) and Lemma A.l.iv we obtain

5.0 = Sl ph(8)) = 3 (= px(53)
k=0 k=0 -
= m;r — rank|Tm;—1(b;)] = m;r — rank[L;] (A.18)

since from Lemma A.l.ii we have pp,; (b;) = r, and we also have T_;(b;) = 0 and
Tin,—1(bi) can be obtained from L; by permutting its rows and columns.

The degree 6, of the zero b; of P()) is the same as the degree 6, of the pole
b; of P(A)~! and so from (A.16), (A.18) we get

rank[N;] + rank{L;| = m;r (A.19)

But N; and L; are matrices of dimension m,r X m;r. Therefore (A.13) and (A.19)
imply that the column space of L; is exactly the null space of IV,.
Hence from (A.8) it follows that Condition C5.ii is satisfied if and only if the

(m;-1)

columns of [H{D (8:)7... (rTlel_lﬁfIy (5;)T]T are in the column space of L;.
From (3.0.6) it follows that the first n,r rows and the last n;r columns of L; are

identically zero. Hence
AP ®)=0, k=0,...,n;—1

which implies that
Hy, (A) = (A = b)™ Hi()) (A.20)
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where H;()) has no poles at b;. (A.20) completes the proof of part (a) of Theorem
1. If m; = n;, then this is the only requirement since then L; = 0. If however
m; > n; then rank[L;] # 0 and additional requirements on ﬁi(/\) are necessary.

We havefor £ = ny,...,m; — 1:

=H{D(b;) = Z}T (rf) nd B (b) = ﬁf{}‘“"‘)(b;)

and so the requirement on H;()) is that the columns of
B 3:)T ... mﬁf"“—"‘_l) (5;)T)7T are in the column space of M;, where
M; is defined in (3.0.9) . QED

B) Proof of Theorem 3

The proof is by induction

k=1:
G(z2)z = C(zI — A)"'2B + D=z

=C(2I -~ A)"'(A+2I - A)B + Dz

= C(2I~ A)"'AB + CB + Dz
k=n: Let

n N
G(z)z" = C(zI — A)'A"B+ > _CA"'Bz""*+ D" (B.1)
=1

hold.

k =n +1: From (B.1) it follows that

G(2)z"*! = C{2I — A) ' 4"zB + Y  CA'Be"t!17t 4 Dt
=1
and by using the result for £ = 1 we obtain

n-1
G(2)z"! = C(el — A)T1A™TIB + Y CAS'BzmIt 4 D2*t QED
-1

Acknowledgements
Support from the National Science Foundation and the Department of Energy

is gratefully acknowledged.



36

References.
ASTROM, K. J. and B. WITTENMARK, Computer Controlled Systems,
(Englewood Cliffs, NJ: Prentice Hall), 1984.
CALLIER,F. M. and C. A. DESOER, Multivariable Feedback Systems, (New
York: Springer-Verlag), 1982.
DESOER, C. A. and J. D. SCHULMAN, “Zeros and Poles of Matrix Transfer
Functions and Their Dynamical Interpetation”, LE.E.E. Trans. on Circuits
ans Systems, CAS-21, 3, 1974.
DOYLE, J. C., Lecture Notes, ONR /Honeywell Workshop on Advances on
Multivariable Control, 1984.
GARCIA, C. E. and M. MORARI, “Internal Model Control. A Review and

Some New Results”, Ind. and Eng. Chem., Proc. Des. and Dev., 21, 308,
1982.

GARCIA, C. E. and M. MORARI, “Internal Model Contrél 2. Design Pro-
cedure for Multivariable Systems”, Ind. and Eng. Chem., Proc. Des. and
Dev., 24, 472, 1985.

KAILATH, T., Linear Systems, (Englewood Cliffs, NJ:Prentice Hall), 1980.
LAUB, A. J. and B. C. MOORE,“Calculation of Transmission Zeros Using
QZ Techniques”, Automatica, 14, 557, 1978.

MORARI, M., E. ZAFIRIOU and C. G. ECONOMOU, An Introduction to
Internal Model Control (accepted for publication in the series Lecture Notes
in Control and Information Sciences, Springer-Verlag), 1987.

SILVERMAN, L. M., “Inversion of Multivariable Linear Systems”, L. E.E.E.
Trans. on Autom. Control, AC-14, 270, 1969.

STEWART, G. C., Introduction to Matrix Computations, (New York: Aca-
demic Press), 1973.

VANDEWALLE, J. and P. DEWILDE, “On the Determination of the Order



37
and Degree of a Zero of a Rational Matrix”, LE.E.E. Trans. on Autom.
Control, AC-19, 608, 1974.
VAN DOOREN, P.M., P. DEWILDE and J. VANDEWALLE, “On the Deter-
mination of the Smith-McMillan Form of a Rational Matrix from its Laurent
Expansion”, LE.E.E. Trans. on Circuits and Systems, CAS-26, 180, 1979.

VIDYASAGAR, M., Control System Synthesis, MIT Press, Cambridge, MA,
1985.

ZAFIRIOU, E. and M. MORARI, “Digital Controllers for SISO Systems: A
Review and a New Algorithm”, Int. J. of Control, 42, 855, 1985.
ZAFIRIOU, E. and M. MORARI, “Design of Robust Digital Controllers and
Sampling Time Selection for SISO Systems”, Int. J. of Control, 44, 711,
1986a.

ZAFIRIOU, E. and M. MORARI, “Synthesis of the IMC Filter by Using the
Structured Singular Value Approach”, Proc. of the Amer. Control Conf., p.
1, Seattle, WA, 1986b.

ZAFIRIOU, E. and M. MORARI, “Internal Model Control: Robust Digital
Controller Synthesis for Multivariable Open-loop Stable or Unstable Sys-
tems”, submitted to LE.E. Proc., Part D, 1986¢.

ZAMES, G., “Feedback and Optimal Sensitivity: model reference transforma-
tions, Multiplicative semi-norms and approximate inverses”, L. E.E.E. Trans.

Autom. Control, AC-26, 301, 1981.



38

Figure Captions

Figure 1 . Feedback control structure.
Figure 2 . Example 1; J, for column 1.
Figure 3 . Example 2; J, for column 1.
(8) hi={z z 0]
W) hy=]z 0 z]°
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Figure 1 . Feedback control structure.



Figure 2 . Example 1; J,, for column 1.
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Figure 3 . Example 2; J, for column 1.
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