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Given two images of a scene, the problem of finding a map relating the points in the

two images is known as the correspondence problem. Stereo correspondence is a special

case in which corresponding points lie on the same row in the two images; optical flow is

the general case. In this thesis, we argue that correspondence is inextricably linked to other

problems such as depth segmentation, occlusion detection and shape estimation, and can-

not be solved in isolation without solving each of these problems concurrently within a

compositional framework. We first demonstrate the relationship between correspondence

and segmentation in a world devoid of shape, and propose an algorithm based on con-

nected components which solves these two problems simultaneously by matching image

pixels. Occlusions are found by using the uniqueness constraint, which forces one pixel in

the first image to match exactly one pixel in the second image. Shape is then introduced

into the picture, and it is revealed that a horizontally slanted surface is sampled differently

by the two cameras of a stereo pair, creating images of different width. In this scenario,

we show that pixel matching must be replaced by interval matching, to allow intervals of

different width in the two images to correspond. A new interval uniqueness constraint is

proposed to detect occlusions. Vertical slant is shown to have a qualitatively different char-

acter than horizontal slant, requiring the role of vertical consistency constraints based on



non-horizontal edges. Complexities which arise in optical flow estimation in the presence

of slant are also examined. For greater robustness and flexibility, the algorithm based on

connected components is generalized into a diffusion-like process, which allows the use

of new local matching metrics which we have developed in order to create contrast invari-

ant and noise resistant correspondence algorithms. Ultimately, it is shown that temporal

information can be used to assign correspondences to occluded areas, which also yields

ordinal depth information about the scene, even in the presence of independently mov-

ing objects. This information can be used for motion segmentation to detect new types of

independently moving objects, which are missed by state-of-the-art methods.
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Chapter 1

Introduction

The field of Computational Vision has experienced tremendous growth in the past thirty

years. This was due in part to the wide range of applications that may be realized if one

understands to some degree how vision works, and partly due to the desire to understand

how the brains of biological systems are designed. The field has seen several novel theo-

ries regarding the solution to core problems such as stereo matching [SS02], computation

of image motion (optical flow) [BFB94, BB95, MB96, LHH+98, GMN+98], shape from tex-

ture [BL76, Wit81, Alo88, BA89, SB95], structure from motion [Fau93, HN94, MSKS04], and

so on (the references given here are mostly surveys and books; see thesis chapters for de-

tailed references). There has also been significant progress in understanding the geometric

constraints underlying multiview vision [HZ00]. Despite the tremendous progress, we are

still unable to effectively deal with a variety of inputs which are encountered in the real

world. For example, although the field has advanced a great deal in the estimation of

image motion, state of the art algorithms have difficulty finding occlusions, i.e. places in

the scene that were visible at some instant of time and became invisible at the next time

instant, or vice versa. Similarly, many stereo algorithms fail when presented with an input

where there are few features (i.e. large untextured areas), strongly slanted surfaces (e.g.

the corridor walls in the top row of Figure 1.1), when the contrast of one image differs

significantly from another (e.g. bottom row of Figure 1.1), or when noise is present in one

or more frequency channels. Motion segmentation algorithms, i.e. techniques for finding

independently moving objects in a video taken by a camera moving in an unrestricted

manner, fail miserably when the background motion is similar to the independent motion.

One may consider these cases as exceptional and hardly an obstacle to the realization

of practical robust systems. This is, however, not true. Consider the following application

of extreme relevance to the automotive industry. Imagine that a pair of cameras (a stereo

system) is installed on a car with the goal of finding a spatial layout of the environment in

front of the car, as well as the location of independently moving objects, i.e. other vehicles

or humans and animals. Imagine that we are driving towards the North in the morning

1



Figure 1.1: Top row: stereo images of a scene with slanted untextured surfaces. Bottom
row: stereo pair with mismatched contrast

hours, with the sun to our left. The stereo pair of images that the system will acquire will

probably be such that the left image will be much brighter than the right one. Unequal

contrast may also result due to differences in aperture and exposure for the two cameras.

Matters are complicated further by the presence of large untextured slanted regions such as

roads, walls of buildings or surfaces of other vehicles. Most stereo algorithms will simply

fail in this case. Imagine further (see Figure 1.2), that as we drive along, on the periphery

of the left camera which is not visible in the right camera, a car appears from behind a

truck, both moving in the opposite direction as our own. Existing motion segmentation

algorithms will miss such a moving object, classifying it as part of the background, which

also moves in the same direction.

Thus, it becomes essential to reexamine basic visual processes that lie at the heart of

low or intermediate level vision. These are the well known processes of image correspon-

dence including stereo matching and optical flow, shape from X, structure from motion,

motion segmentation, and the like. They are the processes responsible for creating de-
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Figure 1.2: Two images at successive time instants of a car emerging from behind a truck.
All the objects including the background move to the left.

scriptions of the surfaces surrounding us, their boundaries and discontinuities, as well as

descriptions of the movements of the observer or of other objects. These are descriptions

of a non-cognitive nature and their recovery depends on the appropriate utilization of the

underlying geometry and physics. The central question is: what are the major issues which

are preventing us from making these processes more robust and accurate?

1.1 Modularity vs. Compositionality

Given a complex multifaceted problem, we often use a modular approach which breaks up

the larger problem into multiple modules or black boxes which are then connected together

to solve the original problem. Like much of engineering, contemporary computer vision

often works in such a modular manner. Consider the example of structure from motion.

We have as an input at least two images of a scene taken from two different viewpoints

(e.g. a video taken by a moving camera), and would like to develop a three dimensional

model of the scene in view. First, the images are matched, by solving the correspondence

problem. After this, the 3D camera motion (or the rigid transformation between the views)

is estimated using the correspondence and geometric constraints. After this step, one can

place the cameras in the world, i.e. we know the viewpoints from which the images were

taken. The last step amounts to a triangulation: knowing the correspondence and the rigid

transformation between the views, we can compute the location of each point of the scene

in view and build a 3D model of the scene structure. One notices immediately that the
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processing has a modular character, and information is passed from one module to the

next in a feedforward manner.

Consider now the same problem in the presence of independently moving objects,

the so-called motion segmentation problem. Finding the scene structure requires that we

know the camera motion (the egomotion). Computing the camera motion requires us to

first find the background, i.e. parts of the scene which are not independently moving.

Finding the background, however, is equivalent to locating the independently moving ob-

jects, which cannot be done without first knowing the camera motion and the structure.

The three problems of egomotion estimation, structure estimation and moving object de-

tection are completely entangled in a chicken-and-egg loop.

Now let us focus our attention on the correspondence problem, which is required to

solve the motion problem mentioned above. Local properties such as color or intensity

alone are not sufficient to solve the point correspondence problem between two images,

since matching based on these properties alone yields a large set of possibilities. Ad-

ditional assumptions about scene smoothness are necessary to obtain unique solutions.

However, in order to obtain the best results, we need to use smoothness constraints but

respect depth discontinuities at the same time. Hence, depth segmentation (in the image

space, not 3D) is needed in order to solve the correspondence problem accurately. On the

other hand, we do not know the segmentation beforehand, but we could compute it if we

knew the correspondence map by searching for discontinuities. Thus, we have another set

of chicken-and-egg problems whose solutions depend on each other.

Now assume that we have a stereo system viewing a planar patch in the scene which

is horizontally slanted. The slant causes the patch to be sampled differently by the two

cameras, creating images of different width (notice the width of the slanted left wall of

the corridor shown in Figure 1.1). If we knew the slant of the patch, we could stretch

(or unwarp) one of the images to equalize the sampling, so that we could solve for the

correspondence accurately, perhaps by applying signal processing operations for accurate

matching. But we do not know the slant beforehand, so how can we find it? We can

find it if we knew the correspondence. Thus, estimation of shape is also a part of the

chicken-and-egg loop containing correspondence and segmentation. Another example of

a chicken-and-egg pair are the processes of texture segmentation and shape from texture.

The list goes on and on. If you consider a process from the low and intermediate level
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vision repertoire, the chances are that you will find that it depends on another process,

which in turn depends on the original process and perhaps other related processes.

It appears then that vision, at least at the low and intermediate level, is a compositional

problem, consisting of several subprocesses which are parts of an elaborate set of feedback

loops. Our role as computational vision theorists is then to discover and implement such

loops. The word discover is used since vision is a physical process which exists in the

biological world. One of the remarkable discoveries in neuroscience is the presence of

extensive feedback between different parts of the visual system. Many details are known

about this architecture, but we are far from a complete understanding of how the system

functions as a whole. Thus, a theory of vision considered as a compositional process will

not only contribute to robust artificial vision systems, but can also serve as a source of

hypotheses that can be addressed with specific experiments in the neurosciences.

Although there exist many interdependent processes in single image analysis as well,

in this dissertation, we shall concentrate on processes that involve more than one image.

This is because the positions of corresponding image points in different images are gov-

erned by well known geometric principles, which makes problem formulation easier, and

better reveals some of the compositional relations involved as compared to the harder

problem of analyzing a single image. As far as low and intermediate level vision is con-

cerned, the problem of correspondence, i.e. matching images is considered one of the most

basic problems, as it represents the foundation of a large number of higher level processes.

In this dissertation, we shall concentrate on the relationships between the correspondence

problem and well known problems such as segmentation, shape estimation and occlusion

detection. (By segmentation, we mean the process which detects discontinuities in well-

defined properties such as disparity, flow or 3D motion.) We shall develop solutions which

extend the state of the art to deal with inputs which currently pose serious problems. This

dissertation shows how the new framework allows us to build a number of retinotopic

maps for a binocular observer in motion, including stereo disparity, image motion (opti-

cal flow), occlusions, shape, ordinal depth, and motion segmentation. In the next section,

we shall describe how the compositionality framework is progressively developed in the

dissertation, and provide a road map of the ideas which will be introduced.
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1.2 Organization: a road map of the thesis

Given two images of the same scene from different viewpoints, the dense point correspon-

dence problem deals with finding a piecewise continuous map which relates points in one

image to points in the other image. We begin in Chapter 2 by examining the problem in

a world which contains no slanted surfaces. In such a fronto-parallel Flatland, two stereo

images of the same surface have the same width, which allows us to solve the pixel corre-

spondence problem instead of the point correspondence problem. In this shapeless world,

we show how correspondence (stereo and optical flow) and segmentation can be solved

together in a compositional fashion by using connected components. Occlusions are also

found using the pixel uniqueness constraint. In Chapter 3, we introduce shape into the

picture, to show how a horizontally slanted object projects onto stereo images of different

width, causing problems due to uneven sampling and lack of a pixel uniqueness constraint

for finding occlusions. These problems are addressed by presenting a compositional algo-

rithm which solves for correspondence, shape and slant simultaneously. We also address

problems caused by the presence of untextured regions and vertically slanted surfaces, and

discuss the difficulties involved in formulating smoothness constraints for optical flow in

the presence of slant. In Chapter 4, we generalize our algorithm based on connected com-

ponents into a diffusion formulation, which increases robustness, and allows for a broader

selection of local matching metrics. In Chapter 5, we develop local metrics which per-

form matching in a manner which is invariant to the contrast of the two images. One

of these local metrics is biologically motivated and uses multiple spatial frequency chan-

nels to improve robustness with respect to noise in one of the channels. In Chapter 6, we

demonstrate how occluded regions can be filled by optical flow values from neighboring

regions even in the presence of independently moving objects. The underlying method

uses segmentation obtained from previous frames, thereby presenting another case for the

presence of feedback over time. We also show that if the occlusions can be filled, then

ordinal depth relations can easily be derived between different regions of the scene, even

if the scene contains independent motion. In Chapter 7, occlusion and ordinal depth in-

formation obtained in previous chapters is used to find a novel solution to the motion

segmentation problem. In fact, if motion information is available, then the problems of

formulating smoothness constraints for optical flow are alleviated. Hence, knowledge of
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the egomotion can actually help us find the correct correspondence, which testifies to the

feedback of information all the way back to the roots. In this thesis, we shall present ro-

bust correspondence algorithms which find discontinuities, deal with untextured regions,

handle slanted surfaces, find occlusions and ordinal depth, and are able to perform in the

presence of large non-uniform changes in contrast between two images. Finally Chapter 8

explores open problems and possible avenues of further research.
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Chapter 2

Correspondence and Segmentation in Flatland

The dense correspondence problem (also referred to as the matching problem) consists of

finding a unique mapping between the points belonging to two images of the same scene.

If the camera geometry is known, the images can be rectified ([Fau93, HZ00]), and the

problem reduces to the stereo correspondence problem, where points in one image can

correspond only to points along the same horizontal line in the other image. If the geome-

try is unknown, then we have the optical flow estimation problem. In both cases, regions

in one image which have no counterparts in the other image are referred to as occlusions

(or more correctly as half-occlusions).

2.1 Previous work

There exists a considerable body of work on the dense stereo correspondence problem.

Scharstein and Szeliski [SS02] have provided an exhaustive review and comparison of

dense stereo correspondence algorithms. Dense matching algorithms generally utilize lo-

cal measurements such as image intensity (or color) and phase, and aggregate information

from multiple pixels using smoothness constraints. The simplest method of aggregation is

to minimize the matching error within rectangular windows of fixed size [OK93]. Better

approaches utilize multiple windows [GLY92, FRT97], adaptive windows [KO94] which

change their size in order to minimize the error, shiftable windows [BI99, TSK01], or pre-

dicted windows [MD00], all of which give performance improvements at discontinuities.

Global approaches to solving the stereo correspondence problem rely on the extrem-

ization of a global cost function or energy. The energy functions which are used include

terms for local property matching (‘data term’), additional smoothness terms, and in some

cases, penalties for occlusions. Depending on the form of the energy function, the most

efficient energy extremization scheme can be chosen. These include dynamic program-

ming [OK85], simulated annealing [GG84, Bar89], relaxation labeling [Sze90], non-linear

diffusion [SS98], maximum flow [RC98] and graph cuts [BVZ01, KZ01]. Maximum flow
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and graph cut methods provide better computational efficiency than simulated anneal-

ing for energy functions which possess a certain set of properties. Some of these algo-

rithms treat the images symmetrically and explicitly deal with occlusions (eg. [KZ01]).

The uniqueness constraint [MP79] is often used to find regions of occlusion. Egnal and

Wildes [EW02] provide comparisons of various approaches for finding occlusions. Re-

cently, some algorithms [BT99] have explicitly incorporated the estimation of slant while

performing the estimation of horizontal disparity. Lin and Tomasi [LT03] explicitly model

the scene using smooth surface patches and also find occlusions; they initialize their dis-

parity map with integer disparities obtained using graph cuts, after which surface fitting

and segmentation are performed repeatedly.

As is the case with stereo correspondence, there exists a large body of literature de-

voted to the understanding of the optical flow problem, including the dense flow estima-

tion problem. Beauchemin et al [BB95] and Mitiche et al [MB96] provide surveys of the

various techniques for optical flow estimation, while Barron et al [BFBB94], and more re-

cently, Galvin et al [GMN+98] and Liu et al [LHH+98], provide performance comparisons

between various optical flow algorithms. Mitiche et al [MB96] also discuss the problems

of finding motion based segmentation and occlusions, and survey related approaches.

There also exists some very interesting recent work on explicitly finding occlusions and

motion discontinuities [BF00, ADPS02], and also regarding the spectral properties of oc-

clusions [BB00] in the context of optical flow.

2.2 Flatland

When we compute the disparity map or the optical flow from a given pair of images, the

desirable property of such a map is that it should explain the observed images while mini-

mizing the number of discontinuities. In other words, we would like to model the disparity

(or the optical flow) as a piecewise continuous function which is consistent with the observed

images and has the minimum possible number of pieces. To simplify the problem compu-

tationally, we often choose more restrictive versions of the general model of a piecewise

continuous function. The simplest but most restrictive version models the disparity map

as a piecewise constant function. An obvious improvement is to model the depth map as a

piecewise linear (ie. planar) function. We can proceed in this manner towards progressively
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complex models in an attempt to get closer to the true property of piecewise continuity.

One aspect to keep in mind is that when we speak of segmentation, we mean depth

segmentation on the image. However, surfaces which are connected in the 3D scene may

project to multiple disconnected regions due to self overlap. We are not attempting to find

the 3D continuity of such surfaces, which may involve other principles.

In this chapter, we shall begin with the simplest but most restrictive case of trying to

model the disparity as a piecewise constant function. This assumption models the scene as

a shapeless world consisting of a collection of flat fronto-parallel surfaces, hence the name

Flatland. We assign unique correspondences to each pixel and do not deal with transparent

surfaces. In this world, we show that correspondence and segmentation are chicken-and-

egg problems which can only be solved simultaneously.

2.3 Chicken-and egg problems

Establishing correspondence between two images of a scene involves first selecting a local

metric, such as the intensity (gray level) or color of a pixel which forms the basis for lo-

cal comparisons. However, matching on the basis of such local information alone is almost

impossible since many pixels have similar intensity or color. To reduce the correspondence

possibilities for a pixel to a single possibility, regions around that pixel must be used along

with additional continuity or smoothness assumptions about the scene. Thus, informa-

tion around a pixel must be aggregated to obtain a unique match. Enforcing smoothness

without a prior knowledge of depth discontinuities (segmentation) will inevitably lead to

errors, especially near the discontinuities. Hence, prior knowledge of the segmentation is

essential in order to correctly define regions around a pixel for information aggregation.

Conversely, if exact correspondence is known, the segmentation may be easily deduced.

Thus, if we knew the segmentation, then we could better estimate the correspondence.

But we need correspondence in order to achieve segmentation. Correspondence and seg-

mentation are chicken-and-egg problems: we need one in order to solve the other. Any

recipe for solving such cyclic problems must involve feedback, either implicitly or explic-

itly. In the following section, we present a method which does not separate the problem of

finding correspondence from the problem of finding the segmentation at any stage, and ex-

plicitly demonstrates the interdependence of correspondence and segmentation. Recently,
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Figure 2.1: Top row: Left image, Right image, True disparity (black denotes 0, gray denotes
2). Bottom row: Absolute intensity difference of left and right images for horizontal shift
δx = 0, 1, 2

we have found that a method similar to our own but using different vertical consistency

constraints also exists in the stereo literature [BVZ98].

2.4 Connected matching regions

Let I1(x, y) and I2(x, y) be a given pair of rectified stereo images. The absolute intensity

difference between the two images is found using equation 2.1, where δx denotes the rela-

tive horizontal shift between the two input images. For the case of optical flow, the shifts

will be two dimensional.

∆I(x, y, δx) = |I1(x, y) − I2(x + δx, y)| (2.1)

The first row of Figure 2.1 shows a random dot pair of stereo images and the true

disparity map. The second row shows the absolute intensity difference images for three

horizontal shifts δx = 0, 1, 2. If we observe the intensity difference images (second row), we

notice that large connected regions of matching pixels (shown in black) appear for certain

values of the shift. By the word ‘match’, we mean that the absolute intensity difference is

below a certain threshold t.
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∆I(x, y, δx) < t (2.2)

The appearance of large connected sets of matching pixels is the first observation of interest.

In the case of the random-dot pair, the background matches for δx = 0 forming a large

connected region, and the central square matches for δx = 2. We know from the true

disparity map that these shifts correspond to the correct disparities of the background and

the square. However, we also notice that some pixels in the central square will match and

form smaller connected regions even when the shift is wrong (not equal to 2). The same is

true for the background pixels. Thus, a pixel may form a part of a connected matching region

even when the shift does not correspond to the true shift. So how do we choose the correct shift

for a pixel?

2.5 Boundaries and connectivity maximization

Recall our definition of Flatland - a world containing only fronto-parallel surfaces. Con-

sider a uniformly colored region R1 in image I1 having a disparity δx. It corresponds to

a region R2 in the image I2. Thus, if we shift image I1 by δx and overlay it on I2, then

regions R1 and R2 will overlap and match perfectly and yield a connected region having

an area equal to the size of R1(which is the same as R2). However, if the shift is not δx

but has some other value, parts of R1 and R2 may still overlap and yield some connected

matching region.

The area of overlap will be maximum only when the boundaries of R1 and R2 match perfectly,

which occurs only for the true shift δx.

For all other shifts, the connected matching area will be less. Similarly, in case the re-

gion R1 (and hence R2) is textured, connected matching regions will also be obtained for

shifts other than the true shift δx. For example, if the regions contain a periodic texture

such as a checkerboard, with square size λ, then we will obtain connected matching re-

gions even if the shifts are δx + 2mλ, where m is an integer. Even if this happens, the

largest connected region will occur only when the boundaries of R1 and R2 match, which

happens only if the shift equals the true shift δx. It is clear that only the knowledge of

region boundaries allows us to assign correct shifts to the interior pixels. Maximizing the

area of connected matching regions around a pixel is intimately related to the matching of
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region boundaries.

From another perspective, we can see that maximizing the size of matching regions is

an attempt to minimize the segmentation. This is similar in spirit to the idea of a Minimum

Description Length (MDL). As we had discussed earlier, our aim in Flatland is to find a

piecewise constant disparity map which is consistent with the input images, and which has

the least number of pieces. In order to get the least number of pieces, each piece must be as

large as possible, which provides justification for the connectivity maximization criterion

introduced above. Thus, in Flatland, we can assert that for any image pixel (x, y), the correct

disparity δx maximizes the area A(x, y, δx) of the connected matching region containing that pixel.

2.6 Vertical connectivity

In Figure 2.2, we see a stereo pair of images having a gray background which has zero

disparity, and a white square in front which has a non-zero disparity. On the right of the

figure, we show the absolute intensity difference between the two images for zero relative

shift. The black portion of this image indicates regions whose intensities match perfectly

for zero relative shift. Notice that a part of the white foreground object also matches for

zero shift, and is connected to the large matching background region. This will cause the

entire black portion visible in the right hand side image to be labeled with zero disparity,

which is clearly an incorrect result.

The problem lies in the propagation of connectivity vertically across horizontal edges.

In a stereo pair, if two single colored regions with different disparity are separated by an

horizontal edge, then as we try out different horizontal shifts, points on both sides of the

horizontal edge will always match regardless of the shift being tried. Thus, when we build

connected components, regions on the two sides of the horizontal edge will form part of

the same connected component, which causes both sides to be eventually assigned the

same disparity.

Thus, in an image, if two single colored regions are separated by a horizontal intensity

edge, then we must treat them as potentially having different disparities. Hence, before

we build connected components on our thresholded intensity difference images, we must

explicitly sever connections across horizontal edges. In the case of optical flow, the shifts

we shall try will be two dimensional and the corresponding definition of a horizontal edge
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Figure 2.2: Vertical connectivity must not be established across horizontal edges

is different for each shift. Thus, if we are considering shift (δx, δy), then edges parallel to

this direction are the horizontal edges.

In Chapter 3, we shall examine vertical connectivity in an even broader context which

deals with the effects of shape on correspondence. We shall show that vertical connectivity

must only be established across non-horizontal edges. This is more restrictive than the

condition described above which severs connections across pixels separated by horizontal

edges, because it also precludes the establishment of connections between a pixel and its

vertical neighbor if they have the same intensity/color.

2.7 Occlusions and uniqueness

The uniqueness constraint enforces a one-to-one correspondence between pixels in the two

images. Hence, a pixel in one image may match exactly one pixel in the other image and

vice-versa. There exists a competition between pairs of pixels (pL, pR), where pL is a pixel

in the left image, and pR is a pixel in the right image. If a pair (pL, pR) wins, it automatically

excludes the existence of all pairs of the form (pL, pR′) and (pL′ , pR), such that pL′ �= pL

and pR′ �= pR. Some pixels, which do not form a part of any of the winning pairs, are the

occlusions. It is possible to enforce the uniqueness constraint within the correspondence

search itself as it progresses: whenever we assign a new partner to a given pixel, we make

sure that it’s previous partner (if it was previously paired) is marked as unpaired.
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2.8 An algorithm for Flatland

Our algorithm for Flatland is outlined in Figure 2.3. Basically, the algorithm consists of the

following steps:

1. For every shift δx ∈ {δ1, δ2, ..., δk}, do

(a) Shift the left image ILhorizontally by δxto get I ′L

(b) Match I ′Lwith IR

(c) Sever vertical connections across horizontal edges

(d) Build connected components and compute a connectivity metric

(e) For each pixel, if the connectivity increases, update left and right disparity

maps, preserving uniqueness.

For edge detection, we use the Canny edge detector. For the case of optical flow, the only

difference is that the shifts are two dimensional, and in step (c), we sever connections using

the appropriate definition of a horizontal edge for each shift.

For d possible shifts and an image with N pixels, the total running time is Θ(Nd). In

our implementation, we use the technique of Birchfield and Tomasi [BT98] to calculate the

absolute intensity differences for matching. For color images, matching two pixels implies

matching all their color components. Measures of connectivity other than the area may also

be used leading to minor improvements; for example, we may use a combination of the

area of the connected component and the total intensity difference inside the connected

component, to reduce the sensitivity to threshold selection. Also, pixels which locally

match for k shifts out of d possible shifts can be assigned to have an area of 1/k; this

ensures that pixels which match frequently do not dominate the estimation.

In Chapter 4, we show that connectivity is merely a mechanism for propagating the

influence of one pixel to another, which can be generalized to a diffusion process for greater

robustness and wider choice of non-binary matching metrics.

2.9 Experimental Results

Figure 2.4 shows the disparity maps for four standard test sequences (obtained from the

website www.middlebury.edu/stereo), created by Scharstein and Szeliski [SS02]. Figure 2.5
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Figure 2.4: Top row: left images from four stereo pairs tsukuba, sawtooth, venus and map.
Second row: true disparity maps. Third row: our results with occlusions filled in as re-
quired by the Scharstein and Szeliski evaluation. Bottom row: the detected occlusions are
shown separately.

shows the results of using the above algorithm to compute optical flow on two frames of

the table-vase sequence, while Figure 2.6 shows the results on two standard test sequences:

the yosemite sequence, and the sofa sequence, which shows a rotating object.

Real world scenes are quite unlike Flatland, since they rarely consist of fronto-parallel

surfaces. In the next chapter, we shall identify new issues which arise in the presence of

slanted surfaces, which require us to alter our definitions of correspondence and introduce

novel constraints for detecting occlusions. In Figure 2.4, notice the errors in the computed

disparity in the venus sequence for the untextured regions of the slanted plane on the left.

In the next chapter, we shall how untextured vertically slanted surfaces require us to mod-

ify our vertical consistency constraints in order to obtain the correct disparity.
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Figure 2.5: Top row: two frames of the table-vase sequence. Second row: computed optical
flow field.
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Figure 2.6: First and second rows: Two frames of the yosemite sequence and the computed
optical flow. Third and fourth rows: Two frames of the sofa sequence and the computed
optical flow.
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Chapter 3

Shape and Correspondence

Previously, we mentioned that the desirable property of a disparity map (or optical flow)

is that it should explain the observed images while minimizing the number of disconti-

nuities. Ideally, we would like to model the disparity (or the optical flow) as a piecewise

continuous function which is consistent with the observed images and has the minimum

possible number of pieces. In the previous chapter, we chose the simplest but most re-

strictive approximation to piecewise continuity, which modeled the disparity map as a

piecewise constant function. We termed this world as Flatland, since the scene was modeled

as a collection of flat fronto-parallel surfaces. In this chapter, we leave behind the shape-

less Flatland, and introduce slant into the picture, thereby progressing to a piecewise linear

model.

We begin by highlighting a known but unexploited geometric fact: a horizontally

slanted surface (ie. having depth variation in the direction of the separation of the two

cameras) will appear horizontally stretched in one image as compared to the other image.

Thus, while corresponding two images, N pixels on a scanline in one image may corre-

spond to a different number of pixels M in the other image. This leads to three important

modifications to existing stereo algorithms: (a) due to unequal sampling, existing intensity

matching metrics must be modified, (b) unequal numbers of pixels in the two images must

be allowed to correspond to each other, and (c) the uniqueness constraint, which is often

used for detecting occlusions, must be changed to an interval uniqueness constraint. These

ideas on horizontal slant appeared recently in our paper [OA04] in CVPR 2004. We also

discuss the asymmetry between vertical and horizontal slant, and the central role of non-

horizontal edges in the context of vertical slant. Using experiments and comparisons, we

discuss cases where existing algorithms fail, and how the incorporation of new constraints

provides correct results.

In this context, it is important to mention recent efforts [BT99, LT03] to explicitly in-

corporate the estimation of slant while performing the estimation of horizontal dispar-

ity. In particular, Lin and Tomasi [LT03] explicitly model the scene using smooth surface
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Figure 3.1: (a) unequal projection lengths of a horizontally slanted line (b) equal projection
lengths of a fronto-parallel line

patches and also find occlusions; they initialize their disparity map with integer dispari-

ties obtained using graph cuts, after which surface fitting and segmentation are performed

repeatedly.

3.1 Horizontal slant

Let us begin by introducing horizontally slanted surfaces into the scene, ie. the depth on

such surfaces changes as we move along the X-axis (horizontally), and does not change

if we move along the Y-axis. Let us also assume for simplicity that we are using a stereo

system with a parallel viewing geometry and in which the cameras are separated only by

a translation along the X-axis. Our system therefore provides us with rectified images.

3.1.1 Unequal projection lengths and interval matching

Figure 3.1(a) shows that a horizontally slanted line AB in the scene projects onto the line

segment a1b1 in camera C1, and a2b2 in camera C2. Clearly, the lengths of a1b1 and a2b2

are not equal. Assume that the cameras have focal length equal to 1. Let the point A have
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coordinates (XA, ZA) in space with respect to camera 1, and point B have coordinates

(XB, ZB), where the X-axis is along the scanline, and the Z-axis is normal to the scanline.

Then, if the cameras are separated by a translation t, we can immediately find the lengths

L1 and L2 of the projected line segments in the two cameras.

L1 = XB/ZB − XA/ZA

L2 = (XB − t)/ZB − (XA − t)/ZA

(3.1)

Clearly, in general, L1and L2 are not equal. For the fronto-parallel line shown in Fig-

ure 3.1(b), ZA = ZB = Z, hence

L1 = L2 = (XB − XA)/Z (3.2)

Thus, we have the following:

• Except for the fronto-parallel case, horizontally slanted line segments in space will always

project onto segments of different lengths in the two cameras.

• Consequently, N pixels on a scanline in one image can correspond to a different number of

pixels M on a scanline in the other image.

We must ensure that our stereo algorithms permit unequal correspondences of this nature;

hence, an interval on a scanline in one image must be matched to an interval on a scanline

in the other image, where the two intervals being matched may have different lengths.

Note that the scanline is treated as a continuous entity rather than a discrete pixelized

entity.

Conclusion: We must perform interval matching instead of pixel matching.

3.1.2 Slant affects Sampling

Since a horizontally slanted line segment in space has different projection lengths in the

two cameras, it’s intensity function is also sampled differently by the two cameras as

shown in Figure 3.2. Birchfield and Tomasi [BT98] have provided a very useful method

for matching pixel intensities, which is used by many of the best performing stereo algo-

rithms. Let us briefly describe what this procedure does: Given two scanlines IL(x) and

IR(x), we have to find the absolute intensity difference between pixel xL in the left scanline
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Figure 3.2: Sampling problem for a horizontally slanted line

and pixel xR in the right scanline. We first find IL(xL − 1/2), IL(xL + 1/2), IR(xR − 1/2)

and IR(xR + 1/2) by a simple linear interpolation. These values are used to find Imin
L =

min{IL(xL−1/2), IL(xL), IL(xL +1/2)}, Imax
L = max{IL(xL−1/2), IL(xL), IL(xL +1/2)},

and similarly Imin
R and Imax

R . The left difference is dL = max{0, IL(xL) − Imax
R , Imin

R −
IL(xL)} and the right difference is dR = max{0, IR(xR) − Imax

L , Imin
L − IR(xR)}. Finally,

the absolute intensity difference between the pixels is d = min{dL, dR}. The procedure is

therefore symmetric and linearly interpolates the intensity function between neighboring

pixels. Such a matching procedure cannot be applied directly in the presence of horizontal

slant, due to the unequal sampling.

We must first resample each scanline correctly, and then apply the Birchfield-Tomasi

matching method. In other words, we first stretch one of the scanlines, by an amount

related to the horizontal slant we are considering, and then match this stretched scanline

with the other unstretched scanline using the Birchfield-Tomasi matching method as usual.

For example, if we are considering the linear correspondence function xR = mxL + d be-

tween points of camera L and R, then we must stretch the image of camera L by a factor

m before performing the intensity based matching. Thus, we first compute Imin
L and Imax

L
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(a) Initial correspondence (b) Insert new pair of matching intervals

(c) Enforce uniqueness constraint (d) Final correspondence

Figure 3.3: The modified uniqueness constraint operates by preserving a one-to-one corre-
spondence between intervals on the left and right scanlines, instead of pixels.

for the unstretched scanline IL, then stretch all three by a factor m, and then apply the

remainder of the Birchfield-Tomasi method. As we try various values of the slant, we ap-

propriately resample the scanlines before matching. Figure 3.4 shows how corresponding

line segments of unequal length attain the same length after stretching one of the images.

Conclusion: Stretch one of the images first and then match .

3.1.3 Occlusions and the new interval uniqueness constraint

The uniqueness constraint [MP79] is often used to find occlusions. In its present form, the

uniqueness constraint forces a one-to-one correspondence between pixels in the two im-

ages. In the end, the unpaired pixels are the occlusions. However, since horizontal slant

allows N pixels in one image to match with a different number of pixels M in the other

image, we can no longer impose a one-to-one correspondence for finding occlusions. We

propose a new uniqueness constraint which enforces a one-to-one mapping between contin-

uous intervals (line segments) in the two scanlines, instead of pixels. An interval in one

scanline may correspond to an interval of a different length in the other scanline, as long

as the correspondence is unique. This is equivalent to enforcing uniqueness in the scene

space instead of the image space, hence we may also refer to this constraint as the 3D
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Figure 3.4: Stretch and match
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dashed regions indicate occlusions

Stretch Shrink

Left Right

Figure 3.5: Top: stereo pair of images. Bottom: Corresponding intervals on the left and
right scanlines can have different length. The order (left-right) of matching intervals can
also change (see the blue and gray intervals).

uniqueness constraint. Figure 3.5 shows using a real example how intervals of different

length correspond to each other, leaving behind the occlusions.

Figure 3.3 shows how the new uniqueness constraint can be used. Part (a) shows an

existing one-to-one correspondence between intervals on the left and right scanlines. This

denotes an intermediate state in the progress of a stereo matching and segmentation algo-

rithm. Notice that the intervals may correspond in any order (ie. the ordering constraint

is not needed). Now, in part (b), we wish to insert a new pair of corresponding intervals,

shown in blue. (This new pair of matching intervals improves upon the existing matches

according to some energy metric which depends on the stereo algorithm being used). In

part (c), we see that the insertion of this pair of intervals conflicts with existing intervals

(shown in red). In order to enforce uniqueness, the red pair of intervals on the right must

be removed, while the red pair of intervals on the left must be resized. In part (d), we see

the new correspondences. The interval pair which was resized is shown in green, and the
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newly inserted pair is shown in blue.

Figure 3.5 shows the idea of interval mapping and occlusions detection using a real

example. In this figure, we see how intervals of unequal length can correspond uniquely

to yield occlusions.

Conclusion: There exists a one-to-one mapping between intervals (possibly having unequal

lengths), and not between pixels.

3.1.4 An algorithm to deal with horizontal slant

We now describe a simple scanline algorithm which implements the ideas presented above;

this algorithm also uses the concept of connectivity maximization presented in Chapter 2

along scanlines instead of the whole image, and simultaneously searches the space of pos-

sible disparities and horizontal slants. It processes a pair of scanlines IL(x) and IR(x) at a

time without using any vertical consistency constraints. Horizontal disparities ∆L(x) are

assigned to the left scanline within a given range [∆1, ∆2], and ∆R(x) to the right scanline

in the range [−∆2,−∆1]. The disparities are not assigned to pixels, but continuously over

the whole scanline. The disparities are not directly estimated, but instead, we search for

functions mL(x) and dL(x) for the left scanline, and mR(x) and dR(x) for the right scan-

line, such that given a point xL on the left scanline, its corresponding point xR in the right

scanline would be

xR = mL(xL) · xL + dL(xL) (3.3)

and reciprocally:

xL = mR(xR) · xR + dR(xR)

Clearly,

mR(xR) = 1/mL(xL)

dR(xR) = −dL(xL)/mL(xL)

The disparities are then computed as:

∆L(xL) = xR − xL = (mL(xL) − 1) · xL + dL(xL)

∆R(xR) = xL − xR = (mR(xR) − 1) · xR + dR(xR)
(3.4)

The functions mL and mR are the horizontal slants, which allow line segments of differ-
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ent length in the two scanlines to correspond. The scanlines are represented continuously

by linearly interpolating intensities between pixel locations. Thus, if mL = 2, then the left

scanline is stretched (resampled) by a factor of 2, and then matched with the unstretched

right scanline using the Birchfield-Tomasi method. Due to the stretching of one scanline

before performing the intensity based matching, we are automatically modifying the tradi-

tional Birchfield-Tomasi method to properly deal with horizontal slant. For each possible

mL and dL, absolute intensity differences between corresponding points are computed,

and thresholded by a threshold t. The best value of mL and dL for a point is chosen such

that it maximizes the size of the matching line segment containing that point (ie. the max-

imum connectivity approach of Chapter 2 applied to one dimension).

The values of the horizontal slant which are to be examined are provided as inputs, ie.

mL,mR ∈ M , where M = {m1,m2..., mk}, such that m1,m2, ...,mk ≥ 1. Since mL = 1/mR,

when we try a value mL = mi, we are implicitly trying mR = 1/mi. Hence, the specified

set of slants M contains only values greater than 1, since the reciprocal values are implic-

itly tried. The disparity search range [∆1, ∆2] is also provided as an input. In order to find

the occlusions, we enforce the uniqueness constraint in its modified form as shown in Fig-

ure 3.3. We maintain a one-to-one correspondence between intervals in the two scanlines.

Hence, at any stage of the process, we have a set SL of non-overlapping intervals in the

left scanline and a set SR of non-overlapping intervals in the right scanline. An interval i is

of the form [x1, x2). The uniqueness constraint enforces a one-to-one mapping U between

the elements of SL and the elements of SR. When a new corresponding pair of intervals

iL and iR is found, the segment previously corresponding to iL is removed if present, and

the same is done for iR. Then, iL is added to SL, and iR to SR, and the one-to-one map-

ping in U is updated. Thus, we always ensure that a line segment in the left scanline

uniquely maps to a line segment in the right scanline. In the end, line segments which

remain unmapped are the occlusions. In our implementation, we have used hash-tables

to maintain the interval information and detect overlaps. The skeleton of the algorithm is

shown below.

1. For all mL ∈ M , ∆L ∈ [∆1, ∆2], do

(a) stretch IL by mL to get I ′L

i. find range for dL using given range for ∆L and eqn. 3.4
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ii. for every dL, match I ′L and IR and find connected matching segments and

their sizes; update correspondence map while enforcing the uniqueness

constraint.

2. For all mR ∈ M , ∆R ∈ [−∆2,−∆1], do

(a) stretch IR by mR to get I ′R

i. find range for dR using given range for ∆R and eqn. 3.4

ii. for every dR, match I ′R and IL and find connected matching segments and

their sizes; update correspondence map while enforcing the uniqueness

constraint

3. mL = mR = 1

(a) for every dL ∈ [∆1, ∆2], match IR and IL and find connected matching segments

and their sizes; update correspondence map while enforcing the uniqueness

constraint

3.2 Vertical slant

3.2.1 Fundamental differences between vertical and horizontal slant

Assume that we are given a rectified stereo pair of images. Due to the discrete (pixelized)

nature of the images, changes in disparity as we move from left to right along a scanline

may be caused by one of two factors:

• There exists a depth discontinuity (as seen in Figure 3.6(a)), or

• The pixels form a part of a horizontally slanted surface (Figure 3.6(b)).

In this case, we can distinguish between these two possibilities because only a true depth

discontinuity will cause an occlusion to appear (as seen in Figure 3.6(a)). However, if we

move vertically and find a disparity change (as seen in Figure 3.6(c)), we have no way of

distinguishing whether the vertical change is caused by a discontinuity or by a vertically

slanted surface, since neither causes occlusions to appear. Thus, there is a fundamental

difference between horizontal and vertical slant.
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O -2 -1+1+2

(a) Horizontal change in horizontal disparity

(due to depth discontinuity; no slant)

Left disparity map Right disparity map

(b) Horizontal change in horizontal disparity

(due to horizontal slant)

Left disparity map Right disparity map

Interval A Interval B

Matching intervals of unequal length

No occlusions

O indicates occlusion

xL = 0 xL = 1 xL = 2 xR = 2 xR = 3

xR=(1/2) xL+ 2

L= xR- xL = (-1/2) xL+2

-2 -1+1+2 +1.5

xL= 2xR - 4

R= xL- xR = xR - 4

+1
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+1

+2

-1

-2

-1

-2

Left disparity map Right disparity map

(c) Vertical change in horizontal disparity

(due to vertical slant or depth discontinuity)

No occlusions

Figure 3.6: Top: Horizontal changes in horizontal disparity due to a discontinuity create an
occlusion. Middle: Horizontal changes in horizontal disparity due to horizontal slant lead
to stretching/shrinking but no occlusions. Bottom: Vertical changes in horizontal disparity
due to discontinuity and vertical slant cannot be distinguished (since no occlusions occur
in either case).
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3.2.2 Vertical connectivity and non-horizontal edges

Since we cannot distinguish whether purely vertical changes in disparity are due to a true

discontinuity or due to a vertically slanted surface, additional assumptions must be em-

ployed if we are to enforce any vertical consistency constraints on the disparity map. Con-

sider this example: in the image, if we have a horizontal intensity edge (a horizontal line),

we have two possibilities (a) this edge corresponds to a depth discontinuity, and pixels

separated by it do not lie on the same surface, or (b) the edge is just an intensity edge, and

pixels separated by it lie on the same surface. If we commit the error of assuming that the

pixels separated by the horizontal edge are connected and it happens to be a discontinuity,

our solution will yield a disparity map without the depth discontinuity, which is clearly

incorrect. It is safer to assume that such pixels are not connected, to allow the possibility

that there may be a depth discontinuity.

Therefore, vertical neighbors separated by a horizontal edge or no edge at all should not be

connected.

Also, as shown in Figure 3.7, if we have two images of a single-colored object, and we

assume vertical connections in the interior, then we will get a single disparity in the entire

interior (when maximum overlap of the images takes place) instead of a vertical gradient.

Thus, we cannot assume that disparity is vertically constant even if two vertical neighbors

have the same color/intensity. Disparity can change even when there is no change in color or

intensity. (Note that we can assume that disparity is continuous, but not necessarily constant,

if intensity or color do not vary in a region.)

However, if we have a non-horizontal edge running across the image, it will cause

occlusions to appear if it is a discontinuity, and no occlusions will appear if both sides of it

lie on the same surface. This distinguishing ability allows us to make the assumption that:

Vertical neighbors lying on non-horizontal edges should be connected (Figure 3.8).

3.2.3 Cue integration along the vertical direction

We have examined the differences in the character of vertical and horizontal slant in the

previous sections. It is clear that if there are vertical changes in the horizontal disparity,

we cannot distinguish whether we have a discontinuity or a vertically slanted surface.

Hence, the computation of smooth vertical slant may be performed after disparities have
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Figure 3.7: Top: images of a vertically slanted plane. Middle: images overlaid to maximize
overlap. Bottom: area of largest overlap

32



Magnified view Edges

Connections

Figure 3.8: Vertical connections between pixels are established only along non-horizontal
edges
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been computed by a smoothing or fitting process. Another promising avenue for com-

puting smooth vertical shape is by using edge based methods which rely on orientation

disparities and contour continuity of non-horizontal edges [LZ03]. The resulting method

would be a combination of area based and edge based methods. In this situation, it is

also conceivable that inputs from ‘Shape from X’ modules (eg. shape from texture, shape

from shading) are critical to establish vertical consistency and construct vertically smooth

models of the scene shape and structure. We believe that such other cues may strongly in-

fluence the estimation of vertical slant in the human visual system, although not so much

the horizontal slant. There exists some support for this idea in studies dealing with the

perception of slanted surfaces by humans, which conclude that there is an anisotropy in

the perception of stereoscopic slant [RG83, MM90, GR92, CR93, RG94], ie. a horizontally

slanted surface and a vertically slanted surface having the same slant are perceived dif-

ferently. If shape from disparity is being integrated with other cues such as shape from

texture more strongly in the vertical direction than the horizontal, such an anisotropy in

slant perception may arise.

3.3 Revisiting the principle of minimum segmentation

Let us return once more to the principle of minimum segmentation first introduced in

Chapter 2. When we compute the depth map of a real scene, the desirable property of such

a depth map is that it should explain the observed images while minimizing the number

of discontinuities. In other words, we would like to model the depth map as a piecewise

continuous function which is consistent with the observed images and has the minimum

possible number of pieces. This principle of minimum segmentation implies that we desire

each segment to have the maximum possible size, which is consistent with the ideas on

connectivity maximization presented previously.

To simplify the problem computationally, we often choose more restrictive versions of

the general model of a piecewise continuous depth map. We have already discussed the

piecewise constant approximation and the piecewise linear (ie. planar) approximation. We

can proceed in this manner towards more complex models of the depth and shape, such

as quadratic and cubic models, in an attempt to get closer to the true property of piecewise

continuity. However, these models progressively increase the dimensionality of the search
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space.

3.4 Shape and motion: problems with optical flow

We have discussed the effects of vertical and horizontal slant on the stereo correspondence

problem. Firstly, we have seen why disparity continuity constraints cannot be enforced

across horizontal edges, since we do not know a priori if the regions on either side of the

horizontal edge constitute a single smooth surface. In order to generalize this idea to op-

tical flow, we must closely examine the definition of a horizontal edge in the case of the

stereo problem. As seen in Figure 3.9(a), a horizontal edge is an edge where the disparity

change across the edge is parallel to the edge. Figure 3.9(b) shows a vertical edge where

the disparity change is perpendicular to the edge. Note that the definition of a horizontal

or vertical edge is actually related to the flow difference across it, rather than the flow itself.

But in the case of stereo problem, the disparity difference is always parallel to the disparity itself

(since both are horizontal).

Hence, for the case of stereo, we can define the edge relative to the direction of the

disparity instead of the disparity difference. But as shown in Figure 3.9(c), in the case of

optical flow, the flow difference is parallel to the edge but the direction of the flow itself is not.

In the case of stereo, we severed connections across horizontal edges. But for the case of

flow, if we are trying a candidate shift (δx, δy), since the flow difference may be unrelated to

this direction, we cannot be certain which connections to sever. Thus, there is an additional

ambiguity in the case of optical flow which was not present for the case of stereo.

Figure 3.9(d) shows a shear in the flow parallel to the edge, which may be due to ver-

tical slant or a vertical discontinuity. Figure 3.9(e) shows a change in the flow component

perpendicular to the edge, which may be due to horizontal slant or a horizontal disconti-

nuity, distinguishable by the presence of occlusion. Thus, although the effects of slant are

identical to the stereo case, distinguishing slant from discontinuities is more difficult in the

case of optical flow.

3.5 Experimental results

We have shown in the previous sections that horizontal and vertical slant play a critical role

in the estimation of correspondence and occlusions. The first row of Figure 3.10 shows a
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Figure 3.9: Stereo: disparity difference on two sides of (a) horizontal edge, and (b) vertical
edge. Optical flow: (c) components of optical flow parallel and perpendicular to an edge.
(d) change in parallel flow component across the edge. (e) change in perpendicular flow
component across the edge.
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Figure 3.10: Columns 1 to 4: Left image, right image, graph cuts result for the left disparity
map, our result for left disparity map. Row 1: horizontally slanted object, Row 2: vertically
slanted object. Occlusions are shown in red.

stereo pair of images in which the blue object is horizontally slanted (ie. depth varies from

left to right), and the second row shows a stereo pair in which the blue object is vertically

slanted. The third column of this figure shows the results of the graph cuts [KZ01] algo-

rithm, while the fourth column shows our results for each of these stereo pairs. In these

results, occlusions are shown in red. The graph cuts result was obtained using software

kindly provided by the authors (www.cs.cornell.edu/People/vnk/software.html). It is clear that

for both these stereo pairs, the graph cuts result gives a constant disparity for the blue

object, while our result correctly shows the slant and still finds the occlusions.

We expect that the constraints presented above will improve the results of many exist-

ing dense stereo algorithms in both qualitative and quantitative ways. However, for the

sake of completeness, we compare our results with other algorithms using the test proce-

dure created by Scharstein and Szeliski [SS02] available at www.middlebury.edu/stereo. They

compare the disparity map dout generated by an algorithm to the true disparity dtrue, and

the pixels which deviate by more than 1 unit from their true disparity are labeled as ‘bad’

pixels. The percentage of bad pixels in the entire image, in the untextured regions and

near depth discontinuities are used to compare the results of various algorithms. The per-

centages of bad pixels are reported in Table 3.1, which was generated by submitting our

disparity maps (Figure 3.12) to the web-based evaluation program created by Scharstein
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Figure 3.11: Visual problems such as correspondence, depth segmentation, and shape es-
timation must be solved simultaneously

and Szeliski. Our algorithm (‘connectivity-slant’) ranks sixth overall, while the ranks in

each column are showed in brackets, below the error percentages. For the bottom left of

the Venus sequence, it is not possible to assign correct disparities, since the corresponding

points in the second image lie outside the image. Scharstein and Szeliski exclude a ten

pixel boundary before evaluation, but it is not adequate to remedy this situation (a twenty

pixel left boundary will suffice).

Figure 3.13 shows the results for two more stereo pairs: the tree branch pair and the

corridor pair. The tree branch illustrates the ability of the algorithm to correctly handle

thin overlapping objects. The corridor scene contains many untextured surfaces which

are strongly slanted and specular. Note the correctness of the results for the walls, and

especially for the left wall, which has a very large slant.

We have analyzed the effects of shape in establishing dense point correspondence. As

shown in Figure 3.11, we have shown that correspondence, segmentation, occlusion de-

tection, and shape estimation influence each other and have to be solved in concert, with

other modalities such as ‘Shape from X’ or orientation disparity possibly influencing the

computation of vertical shape.
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Figure 3.12: Top row (Left frames), Middle row (ground truth), Bottom row (our results).
Occlusions were filled in as required by the evaluation procedure.

Left Right Disparity map

-60

-120

0

-25

occ

Figure 3.13: Top row: tree stereo pair and disparity map. Bottom row: Corridor stereo pair
with the disparity map and occlusions (blue regions). Note the disparity variation for the
left and right walls of the corridor.
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Table 3.1: Performance comparison from the Middlebury Stereo Vision Page (overall rank
is 6’th among 28 algorithms). The table shows only the top ten algorithms. Error percent-
ages and rank (in brackets) in each column is shown.

Rank Algorithm Tsukuba Sawtooth Venus Map 

all untex disc. all untex disc. all untex disc. all disc.

1 Layered 1.58

(4)

1.06

(7)

8.82

(5)

0.34

(1)

0.00

(1)

3.35

(1)

1.52

(8)

2.96

(17)

2.62

(2)

0.37

(11)

5.24

(11)

2 Belief prop 1.15

(1)

0.42

(2)

6.31

(1)

0.98

(8)

0.30

(13)

4.83

(5)

1.00

(4)

0.76

(4)

9.13

(12)

0.84

(18)

5.27

(12)

3 Multcam GC 1.85

(8)

1.94

(13)

6.99

(4)

0.62

(6)

0.00

(1)

6.86

(10)

1.21

(6)

1.96

(8)

5.71

(6)

0.31

(8)

4.34

(10)

4 GC+occl.  1.19

(2)

0.23

(1)

6.71

(2)

0.73

(7)

0.11

(7)

5.71

(8)

1.64

(11)

2.75

(15)

5.41

(5)

0.61

(14)

6.05

(13)

5 Impr.Coop.   1.67

(5)

0.77

(4)

9.67

(9)

1.21

(12)

0.17

(10)

6.90

(11)

1.04

(5)

1.07

(5)

13.68

(17)

0.29

(6)

3.65

(7)

6 connectivity

-slant

1.77

(6)

0.95

(5)

9.48

(7)

0.61

(4)

0.17

(11)

5.05

(6)

3.00

(20)

5.22

(20)

7.63

(8)

0.21

(2)

3.01

(4)

7 GC+occl.   1.27

(3)

0.43

(3)

6.90

(3)

0.36

(2)

0.00

(1)

3.65

(2)

2.79

(19)

5.39

(21)

2.54

(1)

1.79

(21)

10.08

(20)

8 Disc. pres. 1.78

(7)

1.22

(9)

9.71

(10)

1.17

(10)

0.08

(6)

5.55

(7)

1.61

(10)

2.25

(11)

9.06

(11)

0.32

(9)

3.33

(6)

9 Graph cuts 1.94

(10)

1.09

(8)

9.49

(8)

1.30

(14)

0.06

(5)

6.34

(9)

1.79

(14)

2.61

(14)

6.91

(7)

0.31

(7)

3.88

(8)

10 Symbiotic  2.87

(13)

1.71

(11)

11.90

(11)

1.04

(9)

0.13

(8)

7.32

(13)

0.51

(2)

0.23

(2)

7.88

(9)

0.50

(13)

6.54

(14)

28 Max. surf. 11.10

(28)

10.70

(26)

41.99

(28)

5.51

(28)

5.56

(28)

27.39

(27)

4.36

(23)

4.78

(19)

41.13

(27)

4.17

(27)

27.88

(27)
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Chapter 4

Connectivity and Diffusion

In chapter 2, we have seen how the connectivity between pixels proves to be an effective

measure for deciding the assignment of correspondences. We have presented an algo-

rithm which uses connected components labeling on thresholded absolute intensity dif-

ference images. The problem lies in the use of hard thresholds on the absolute intensity

differences; changing the threshold by small amounts can alter the connectivity of pixels

and change the connected components labeling significantly. In this chapter, we explore

an alternate definition of connectivity, based on diffusion, which operates directly on the

intensity differences, without binarizing them first with a threshold. We also show how

this new representation of connectivity, which is more general, reduces to the connected

components model from the earlier chapter.

4.1 Connectivity becomes diffusion

Let us recap our approach to finding the best correspondence. Given two images I1 and I2,

we seek to assign disparities or flows to the pixels in these images. Candidate disparities

or flows are assigned from a given set S of candidates. For each shift �δ in the set S, we find

the absolute intensity difference

∆I�δ
(�x) =

∣∣∣I1(�x) − I2(�x − �δ)
∣∣∣ (4.1)

and decide which pixels are matching by thresholding with a value t. We then build con-

nected components on these binary images, and for each pixel, the best shift �δ is the one

which maximizes the size of the connected component containing it. Thus, the size of

the connected component is the measure which we use to decide the assignment of cor-

respondences. Let us then ask ourselves: what exactly is the size of the connected component

measuring?

To answer this question, let us take a closer look at the matching process. For a given

shift �δ, we are using the absolute intensity differences and thresholding to create a binary
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image which says whether a pair of pixels from the two images I1(�x) and I2(�x− �δ) matches

(indicated by the binary value 1) or not (indicated by the binary value 0). Then, on this

binary image, we are performing connected components labeling and for each pixel, we

find the size of the connected component containing it. Equivalently, this means that if a

pixel p and a pixel q both have the label 1, and if there exists a path of matching pixels

connecting pixel p to pixel q, then pixel p contributes the value 1 to the pixel q and vice-

versa. Thus, a pixel p in the image which matches for shift �δ supports the assignment

of this shift �δ to all other matching pixels in the image which are connected to it. This

influence of the matching pixel p on other pixels can be thought of as being propagated

by surrounding matching pixels until all possible pixels have been reached. Thus, for any

pixel p, the connected component size is equivalent to the sum of the influence of all other

matching pixels in the image on it, after diffusing through the intermediate pixels.

Connected components are therefore a special case of diffusion of information from one

pixel to another. In the more general case, we can use diffusion to facilitate the conduction

of information from one pixel to another, where the information being propagated is not

necessarily binary as in the case of the connected components (match or no match). This

generalization to diffusion allows us to use a non-binary continuous measure of matching

(such as the absolute intensity difference values themselves without thresholding).

4.2 Fast diffusion along scanlines

In this section, we examine in greater detail the generalization of connected components

to diffusion by examining the one dimensional problem of matching pixels in two corre-

sponding scanlines from a stereo pair of images. The one dimensional problem allows us

to directly establish the link between diffusion and connected components using examples.

Given two scanlines I1(x) and I2(x), assume that we wish to compute a goodness mea-

sure G(x, δ) for each pixel x and each shift δ, such that for each x, we can choose the shift

δ which maximizes G(x, δ). First, we need a method of performing local matching, so that

we can extract a local measure M(x, δ) which tells us how well pixels I1(x) and I2(x − δ)

match. This measure M(x, δ) may be I1(x)I2(x − δ) (correlation), |I1(x) − I2(x − δ)| < t

(thresholded absolute differences), phase differences, or any suitable local measure. We

must also define a conductivity C(x, δ) at each pixel, which allows us to propagate the

42



influence of a pixel to its neighbors in the following manner:

1. A pixel is influenced by pixels on its left (via GLeft) and pixels on its right (via GRight).

G(x, δ) = GLeft(x, δ) + GRight(x, δ) − M(x, δ) (4.2)

2. From the left to the right, we compute GLeft as follows:

GLeft(x, δ) = GLeft(x − 1, δ)C(x, δ) + M(x, δ) (4.3)

3. Similarly, from the right to the left,

GRight(x, δ) = GRight(x + 1, δ)C(x, δ) + M(x, δ) (4.4)

Note that in G(x, δ), we subtract M(x, δ) to avoid counting it twice. Note that like M(x, δ),

the conductivity C(x, δ) is also a local metric.

Figure 4.1 shows that this diffusion process reduces to the connected components match-

ing by choosing:

M(x, δ) = |I1(x) − I2(x − δ)| < t ; C(x, δ) = M(x, δ) (4.5)

The top of the figure shows the absolute intensity differences for some δ. The left hand

side shows how G(x, δ) is computed using the diffusion process, and the right hand side

shows how the same result is obtained using the connected components labeling (In the

connected components approach, G(x, δ) is the size of the connected component).

In the one dimensional case, diffusion is able to improve the robustness of the matching

process, without any change in the computational efficiency. In the two dimensional case,

such an efficient non-iterative metamorphosis of connected components into diffusion has

not been discovered, although restricted definitions of connectivity permit efficient exten-

sions.
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(A) Local matches M(x) with threshold = 5
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(C) Left to Right (GLEFT)

GLEFT (x) = GLEFT(x-1)*C(x) + M(x)

12340123

(D) Right to Left (GRIGHT)

GRIGHT(x) = GRIGHT(x+1)*C(x) + M(x)
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(E) Total influence

G(x) = GLEFT(x) + GRIGHT(x) – M(x)
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(P) Local matches M(x) with threshold = 5
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(Q) Connected component labels

(R) Connected component sizes

Absolute intensity differences for some shift 

Diffusion Connected components

Equal

results

Figure 4.1: Connected components is a special case of diffusion. On the left (A to E),
we show how a measure of the influence of matching pixels on each other is computed
using diffusion. On the right, we see how the same measure is obtained using connected
component sizes. Note that M(x) is used to denote M(x, δ), C(x) for C(x, δ), and so on,
for the sake of brevity.
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4.3 An algorithm for matching by using diffuse connectivity

In this section, we shall describe a stereo matching algorithm based on the notion of diffuse

connectivity outlined in the previous section. The input to the algorithm consists of two

image scanlines I1(x) and I2(x) and a set S of possible shifts.

Algorithm DiffuseMatching (I1, I2, S) returns shifts d

1. for each shift δ ∈ S, do

(a) M(x, δ) = m(I1(x), I2(x − δ)) where m is a local matching function

(b) C(x, δ) = c(I1(x), I2(x − δ)) where c is a local function taking on values from 0

to 1

(c) From left to right, find Gleft(x, δ) using GLeft(x, δ) = GLeft(x − 1, δ)C(x, δ) +

M(x, δ)

(d) From right to left find Gright(x, δ) using GRight(x, δ) = GRight(x + 1, δ)C(x, δ) +

M(x, δ)

(e) Compute G(x, δ) = GLeft(x, δ) + GRight(x, δ) − M(x, δ)

2. For each pixel x, find d(x) = argmax
δ

[G(x, δ)]

In the actual implementation, step 2 of the above algorithm also implements the unique-

ness constraint, which enforces a one-to-one matching between pixels in the two scanlines,

in order to find occlusions.

In the experimental results shown in the next section, we use the functions

m(I1(x), I2(x − δ)) = c(I1(x), I2(x − δ)) = exp (−λ |I1(x) − I2(x − δ)|) (4.6)

The absolute intensity differences are normalized to lie in the range [0, 1]. The parame-

ter λ can be chosen to alter the smoothing effect of the diffusion. It is also possible to use a

sigmoid function which can mimic the effect of thresholding the intensity differences. In a

later chapter on contrast invariance, we shall develop local metrics which are invariant to

the contrast of the images.
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Table 4.1: Performance of scanline diffusion. Numbers indicate percentage of bad pixels
overall, in untextured regions and at discontinuities. Numbers in brackets indicate rank in
each column (overall rank is 14).

Algorithm Tsukuba Sawtooth Venus Map 

all untex disc. all untex disc. all untex disc. all disc.

Scanline

Diffusion

2.13

(10)

1.52

( 9)

10.57

( 10)

1.11

(9)

1.27

(19)

8.68

(15)

3.31

(20)

5.99

(21)

12.81

(13)

0.26

(4)

3.65

(6)

4.4 Experimental results

Figure 4.2 shows the disparity maps for four standard test sequences (obtained from the

website www.middlebury.edu/stereo) computed with the parameter value λ = 20 used in

equation 4.6. In the test procedure devised by Scharstein and Szeliski [SS02], the disparity

map dout generated by an algorithm is compared to the true disparity dtrue, and the pixels

which deviate by more than 1 unit from their true disparity are labeled as ‘bad’ pixels. The

percentages of bad pixels in the entire image, in the untextured regions and near depth

discontinuities are used as a measure of performance of an algorithm. In Table 4.1, we

provide the error percentages for the results shown in Figure 4.2.

The connected components algorithm presented in Chapter 2 seems to perform slightly

better than the scanline diffusion algorithm with the above choice of matching functions,

however, from an application standpoint, the diffusion algorithm has the advantage of

being able to work with a broader class of continuous matching metrics. Moreover, it’s

results are not sensitive to the choice of the input parameter λ, for this particular choice of

matching functions.
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Figure 4.2: Top row: left images from four stereo pairs tsukuba, sawtooth, venus and map.
Second row: true disparity maps. Third row: results of scanline diffusion with occlusions
filled in as required by the Scharstein and Szeliski evaluation. Bottom row: the detected
occlusions are shown separately.
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Chapter 5

Contrast Invariance

In the previous chapters, we have used absolute intensity differences as a measure of local

similarity between two pixels. Intensity difference based matching metrics are popular lo-

cal matching metrics which are often used inside a global extremization framework with

additional smoothness constraints to resolve the best correspondence. The sum of squared

intensity differences (SSD) in a small window is another example of such an intensity dif-

ference measure. However, any change in the contrast of the images leads to poor or in-

correct matching using these difference metrics. (see Scharstein et al [SS02] for a summary

of matching metrics commonly used in machine vision).

The intensity of corresponding points in two images obtained from a stereo pair of

cameras may not necessarily match even if identical hardware is used; the reasons for this

include differences in internal parameters of the cameras and also the specular properties

of scene surfaces. The internal camera parameters such as aperture, exposure time and

gain are often dynamically adjusted depending on the view, hence different viewpoints

can lead to different settings for the two cameras. Due to the difficulty of obtaining and

maintaining precise intensity or color calibration between the two cameras, contrast in-

variance becomes an extremely desirable property of correspondence algorithms.

In this chapter, we shall discuss two approaches which have been developed after a

preliminary investigation into the issue of contrast invariance; the first approach is closer

in spirit to local metrics commonly used in machine vision, while the second approach is

motivated by biological vision.

5.1 Local linear fitting - a first step towards contrast invariance

Given two images, the left image Il(x) and the right image Ir(x), we seek a local matching

function F (x, d), which determines if the function Il(x) matches Ir(x + d) at the position

x. In order to obtain a contrast invariant matching function, let us locally allow a linear

relationship between the left and right intensities. Hence, if we are examining the pixel at

48



location x for a candidate disparity d, then we can write

a Il(x − 1) + b Ir(x − 1 + d) + c = 0

a Il(x) + b Ir(x + d) + c = 0 (5.1)

a Il(x + 1) + b Ir(x + 1 + d) + c = 0

The above linear system can be solved to compute the values of a, b and c upto a

constant multiplying factor. Here, a, b and c are local constants whose values are different

for various positions and disparities, i.e.

a ≡ a(x, d)

b ≡ b(x, d) (5.2)

c ≡ c(x, d)

We choose the constant multiplying factor such that

a(x, d)2 + b(x, d)2 = 1 (5.3)

In order to obtain the local matching at position x for a disparity d, we can use a simple

criterion that the numbers a(x, d) and b(x, d) must have opposite sign. This is because if

a(x, d) and b(x, d) have the opposite sign, then if Il increases, Ir will also increase, and

vice-versa, which indicates a similarity in the local intensity variations in the two images.

Otherwise, if they have the same sign, then an increase in Il is accompanied by a decrease

in Ir and vice-versa, and there is no match. See Figure 5.1 to see a pictoral depiction of the

above argument. The following function S(x, d) measures the degree to which the signs of

a(x, d) and b(x, d) are opposite:

S(x, d) = −a(x, d) · b(x, d) (5.4)

Note that we can use equation 5.3 to show that S(x, d) lies in the range [−0.5, 0.5]. In

this context, it is important to mention that the residual of the linear fit can also be used as
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Figure 5.1: Top row: the local intensity around a pixel in the left image and the right
image is shown. The plot on the extreme right is an intensity-intensity plot, which is a
straight line with positive slope, indicating a match. Middle row: another pair of left and
right intensity profiles with similar variations also yields an intensity-intensity plot with
positive slope. Bottom row: a mismatched pair of intensity profiles is shown.
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a goodness measure for matching, but it is not used since it does not distinguish between

the sign of the contrast in the two images (i.e. it will indicate good matching even if the

local intensities are anti-correlated).

In chapter 4, we have defined the conductivity C(x, d) for position x and disparity d,

such that C(x, d) had values in the range [0, 1]. We have also defined a local measure of

matching M(x, d), which describes how well the left image Il(x) matches the shifted right

image Ir(x + d). To obtain a contrast invariant matching algorithm, we can choose

C(x, d) = 0.5 + S(x, d) (5.5)

M(x, d) = C(x, d) (5.6)

In our implementation, we follow the method of Birchfield and Tomasi [BT98] to allow

a pixel’s intensity value to vary in a range determined by interpolating its left and right

neighbors, and perform a weighted least squares solution to the equation 5.1, instead of an

ordinary least squares solution. Figures 5.2 and 5.3 show the results of the above algorithm

on a few stereo pairs with different left and right image contrasts.

5.2 Contrast invariance in biological vision

If we observe the stereo pairs given in Figures 5.2, 5.3, 5.4 and 5.5 by fusing the image

pairs (by parallel viewing), we can immediately perceive depth, even though the two im-

ages have vastly different contrast. It is a well known fact that human observers can still

perceive depth even when the contrast of the image seen by one eye is quite different from

the contrast of the image seen by the other eye [Jul71]. Hubel and Wiesel [HW68] were the

first to describe binocular interactions exhibited by simple cells in the cat’s visual cortex,

followed by an abundance of literature on physiological investigations into the mecha-

nisms underlying stereopsis (see [FO90] for a review). One of the most interesting results

is that Gabor filters can be used to adequately describe the properties of simple cells in the

visual cortex [Mar80, Dau85, JP87].

Studies performed by Freeman and his co-workers [FO90, ODF90, DOF91] on the pri-

mary visual cortex of the cat revealed [FO90, ODF90] that the response of a binocular

simple cell can, to a good approximation, be described by the following equation:
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(a) (b) (c)

(d) (e)

(f)

Figure 5.2: (a) and (b) denote a left and right image from the map sequence with different
contrasts. (c) shows the result of the linear fit algorithm. (d) and (e) are a stereo pair
of images from the tree sequence, and (f) shows the resulting disparity map. Note that
occlusions are colored white in the disparity maps.
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(a) (b)

(c)

(d) (e)

(f)

Figure 5.3: (a) and (b) denote a left and right image from the pentagon sequence, with only
a part of the right image having different contrast. (c) shows the result of the linear fit
algorithm. (d) and (e) are a random dot stereo pair of images, with a quadratic variation
in contrast across the left image, (f) shows the resulting disparity map. Occlusions are
colored white in the disparity maps.
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rs =

+∞∫
−∞

dx (fl(x)Il(x) + fr(x)Ir(x)) (5.7)

where Il(x) and Ir(x) are the left and right images respectively. The receptive field

profiles of the cell for the left and right eye are denoted by fl(x) and fr(x), and are well

described by Gabor functions (see Nomura et al [NMF90]). The equations below give the

example of Gabor functions centered at x = 0.

fl(x) = e−x2/2σ2
cos(ωx + φl) (5.8)

fr(x) = e−x2/2σ2
cos(ωx + φr) (5.9)

They also showed that the response of a complex cell can be modeled by summing the

squared responses of two simple cells in quadrature (see [AB85, WA85, ODF90, Qia94]) as

follows:

rc = (rs,1)2 + (rs,2)2 (5.10)

Qian [Qia94] further showed that if the stimulus disparity D is much smaller than the

receptive field width, then the response of a complex cell becomes

rc ≈ (1 − γ)2ρ2 + 4γρ2cos2

(
φl − φr

2
+

ωD

2

)
(5.11)

where ρ2 is the power (amplitude squared) in the frequency channel and γ is the con-

trast ratio between the two images. Qian further argues that as little as two complex cells

with different (φl−φr) are sufficient to determine the disparity at any location using a par-

ticular frequency channel. This basically amounts to the separation of the amplitude of the

response (i.e. the power) from the phase difference, thereby allowing the use of the phase

difference for disparity computation. Hence, although the Gabor convolution itself does

not yield contrast invariance, using the phase does achieve this goal. Thus, the underlying

theme of using phase differences in various frequency channels is of primary interest to

us when we attempt to design a biologically motivated contrast invariant local matching

metric. There exist a large number of techniques in the literature which compute disparity
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by making use of phase differences explicitly [San88, JJ88, FJJ91, Wen94] or implicitly via

phase correlation [KH75, GK89, OP89]. Of particular interest to us in the next section is the

method of Fleet [Fle94], which uses phase correlation to compute disparity maps.

Large disparities cannot be encoded by high frequency channels in a pure phase shift

model. On the other hand, high frequency channels are clearly essential in order to obtain

good localization of the depth boundaries. Hence, a hybrid model involving position and

phase shifts needs to be used. Anzai et al. [AOF97] have discussed the experimental obser-

vations vis-a-vis phase and positional shifts, and have concluded that although binocular

disparity is mainly encoded through the phase disparity, position disparity may play a

significant role in the case of high frequency channels. The model which we discuss in the

next section goes to the other extreme of using position shifts alone.

5.3 Multiple spatial frequency channels

In this section, we discuss our approach for finding correspondence in a contrast invari-

ant manner, which is inspired by the ideas presented in the previous section on biological

vision. We use pure positional shifts, maintaining our approach in previous chapters of

searching over a disparity space. However, we use phase differences from various fre-

quency channels to determine the degree of local matching.

Let us examine the problem in one dimension for purposes of explanation. Given two

scanlines Il(x) and Ir(x) from the left and right images, we apply complex valued Gabor

filters of the form Gx0,ω(x), where the filter is centered at x0 in space, and at ω in the

frequency domain. For example, the filter centered at x = 0 having a frequency ω is given

by:

G0,ω(x) = e−x2/2σ2
eiωx (5.12)

The real and imaginary part of this complex valued filter form a quadrature pair. We

select σ to ensure a constant one octave bandwidth in the frequency domain. The space

frequency domain can be sampled by a complete set of functions obtained by translation

and scaling of this basic filter. In the two dimensionsal case, rotation is also present, since

the filters are oriented. Let us denote the output of the filter Gx0,ω(x) at position x with

x0 = x on the left image by
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Lω(x) = Gx,ω(x) ⊗ Il(x) (5.13)

and on the right image by

Rω(x) = Gx,ω(x) ⊗ Ir(x) (5.14)

If the phase difference between the right and left response at position x and disparity

d is denoted by ∆φω,d(x), then

ei∆φω,d(x) =
Lω(x)R∗

ω(x + d)
|Lω(x)R∗

ω(x + d)| (5.15)

Notice that we are explicitly shifting the right image by the candidate disparity d before

taking the product, and hence if the left and right images locally match in this frequency

channel, we would expect the phase difference to be zero. As we shall see below, the

deviation of the phase difference from zero can be implicitly used as a measure of local

matching.

Phase correlation can be thought of as a voting scheme [Fle94], such that when we

take the inverse Fourier transform, each channel casts a vote in a sinusoidal manner in the

spatial domain. The inverse Fourier transform using the outputs of filters centered at a

spatial position x0 is given by (ignoring the spatial extents of the filters for the moment):

Gx0d(x) =
∫

ei∆φω,d(x0)eiω(x−x0)dω (5.16)

Ideally, the real parts of all the sinusoids would sum to create a single peak at a cer-

tain position, and the imaginary parts would all cancel out. To find the degree of local

matching, we want to measure the likelihood that this peak lies at the center position of

the applied filters, i.e. at x = x0. To achieve this, we can simply use the real part of the

function Gx0,d(x0) at x = x0 as a measure of the likelihood that the peak lies at x = x0.

Thus, if we are applying N filters to the images, and the phase difference at location

x from channel i for disparity d is denoted by ∆φi,d(x), then as per the above discussion,

we can define a function which sums the real parts of the inverse Fourier transform in the

discrete case:
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H(x, d) =
1
N

∑
N channels

cos(∆φω,d(x)) (5.17)

Note that the factor 1/N is used to ensure that H(x, d) has the same range as the cosine

function, i.e. [−1, 1]. Since phase relationships can become unreliable if the power in the

selected frequency channels is close to zero, we define another function G(x, d) as follows:

G(x, d) = W (x, d) · H(x, d) + (1 − W (x, d)) · (1) (5.18)

W (x, d) = exp(−αP (x, d)) (5.19)

P (x, d) =
∑
ω

|Lω(x)R∗
ω(x + d)| (5.20)

Here, P (x, d) denotes the sum of the magnitudes (power) of all the filter responses,

and W (x, d) is a weight which exponentially decays to zero as P (x, d) increases. Hence,

as P (x, d) tends to zero, the weighting function reduces the importance of the phase dif-

ference function H(x, d) and forces G(x, d) closer to the value 1, which indicates good

matching. Thus, if the phase responses are unreliable due to the nonexistence of local vari-

ations in the intensity, we take the default position that there exists a local match. Note

that G(x, d) also lies in the range [−1, 1].

In chapter 4, we have defined the conductivity C(x, d) for position x and disparity d,

such that C(x, d) had values in the range [0, 1]. We have also defined a local measure of

matching M(x, d), which describes how well the left image Il(x) matches the shifted right

image Ir(x + d). To obtain a contrast invariant matching algorithm, we can choose

C(x, d) =
G(x, d) + 1

2
(5.21)

M(x, d) = C(x, d) (5.22)

Other choices for C(x, d) and M(x, d) are certainly possible, but the above choice is

arguably the simplest. Figure 5.4 shows the results of the above algorithm on a few stereo

pairs with different left and right image contrasts. We perform the Gabor convolutions
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in two dimensions using an efficient implementation by Nestares et al [NNPT98] at four

different scales and four different orientations.

In Figure 5.5, we have added noise in the high frequency region of the right image. The

linear fit algorithm discussed in Section 5.1 uses only the high frequency channel, leading

to large errors in the computed disparity map. The algorithm discussed in this section uses

multiple frequency channels, and is relatively robust to the addition of noise in some of the

channels.
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Figure 5.4: Row 1: Tsukuba stereo pair with a quadratic contrast variation across the left
image. The disparity map is shown on the right. Row 2: Sawtooth stereo pair with different
image contrasts. Row 3: Random dot pair with a Gaussian contrast variation across the
left image. Row 4: Leopard stereo pair with different contrast in a square patch in the right
image.
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(a) (b)

(c)

(d)

(e)

Figure 5.5: (a) Left image from the map sequence. (b) Right image with lower contrast and
the addition of noise in the high frequency channel. The noise causes upto 25% variation in
the original intensity. (c) shows a portion of a scanline in the right image, where the solid
line shows the intensity values before addition of the noise, and the dotted line shows the
values after addition of the noise. (d) shows the results of the linear fit algorithm. (e) shows
the results of the multiple frequency channel algorithm.
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Chapter 6

Occlusions and ordinal depth

In the previous chapters, we have explored methods of performing stereo disparity estima-

tion and optical flow estimation concurrently with segmentation and occlusion detection.

In this chapter, we show how our knowledge of occlusions can be used in order to find

an ordinal depth order between different regions of an image. We will demonstrate that

in order to find ordinal depth, occlusions must not only be known, but they must also be

filled. We present a novel algorithm for occlusion filling and deducing ordinal depth using

three frames of a video sequence. This algorithm functions even in the presence of inde-

pendently moving objects. This ordinal depth computed by this algorithm will be put to

use in Chapter 7 to facilitate the detection of new types of independently moving objects.

6.1 Why occlusions must be filled?

Given two frames from a video, occlusions are points in one frame which have no corre-

sponding point in the other frame. However, merely knowing the occluded regions is not

sufficient to deduce ordinal depth. In Figure 6.1, we show a situation where an occluded

region O is surrounded by two regions R1 and R2 which are visible in both frames.

If the occluded region O belongs to region R1, the we know that R1 must be behind R2, and

vice-versa.

This statement is extremely significant, since it holds true even when the camera un-

dergoes general motion, and even when we have independently moving objects in the

scene! Thus, we need to know ‘who occluded what’ as opposed to merely knowing ‘what

was occluded’. Since optical flow estimation provides us with a segmentation of the scene

(regions of continuous flow), we now have to assign flows to the occluded regions, and merge

them with existing segments. Having done this, we can then deduce ordinal depth rela-

tions between segments.
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Figure 6.1: If the occluded region belongs to R1, then R1 is behind R2 and vice-versa.

6.2 Occlusion filling (rigid scene, no independently moving objects)

Let us first consider how occlusion filling may be performed using two frames, if we know

that there are no independently moving objects. Here is a simple example: if the camera

translates horizontally to the right, then all the scene objects will move to the left. Hence,

as shown in Figure 6.2(a), if object A is in front of object B, then object A moves more to

the left than B, causing a part of B on the left of A to become occluded. It is easy to see

that in the case where the camera translates horizontally to the right, occluded parts in the

first frame always belong to segments on their left. In the case of generalized rotation and

translation, if the focus of expansion (FOE) or contraction (FOC) is known, occlusions are

filled in as follows: first, draw a line L from the FOE/FOC to an occluded pixel O, then:

(A) as shown in Figure 6.2(b), if we have a focus of expansion, the flow of the occluded

pixel is obtained from the flow at the nearest visible pixel P on this line L, such that O lies

between P and the FOE.

(B) As shown in Figure 6.2(c), if we have a focus of contraction, then fill in with the

nearest pixel Q on line L, such that Q lies between O and the FOC.

Thus, the knowledge of the FOE helps us devise a simple occlusion filling strategy.

An important note in this regard is that camera rotation does not change visibility of objects and

cannot cause occlusions [SSV01], hence knowing the FOE is enough. (Also, knowledge of the

occlusions can be used to reduce the motion valley). But what do we do when the FOE is

unknown and we have independently moving objects?
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Figure 6.2: Occlusion Filling: from left (a) to (c). Gray regions indicate occlusions (portions
which disappear in the next frame)

6.3 Generalized occlusion filling (in the presence of moving objects)

In the presence of moving objects, even the knowledge of the FOE will provide little as-

sistance in the filling of occlusions, since the occlusions will no longer obey the criteria

presented in the previous section. A more general strategy must be devised to deal with

occlusion filling in the presence of moving objects. The simplest idea which comes to

mind is the following: if an occluded region O lies between regions R1 and R2, then we

can decide how to fill O based on its similarity with R1 and R2. However, similarity is

an ill-defined notion in general, since it may mean similarity of gray value, color, texture

or some other feature. Thus, using a similarity measure to decide how to fill occlusions

will create many failure modes. We shall now present a novel and robust strategy for fill-

ing occlusions in the general case using three frames instead of two, without relying on

similarity.

Given three consecutive frames F1, F2, F3 of a video sequence, we use our optical flow

algorithm (see Chapter 2) to compute the following:

1. Using F1 and F2, we find flow �u12 from frame F1 to F2, the reverse flow �u21 from

frame F2 to F1. The algorithm also gives us occlusions O12 which are regions of

frame F1 which are not visible in frame F2. Similarly, we also have O21.

2. Using frames F2 and F3, we find �u23 and �u32, and O23 and O32.

Our objective is to fill the occlusions O21 and O23 in frame F2 to deduce ordinal depth. The

idea is simple:

O23 denotes areas of F2 which have no correspondence in F3. However, these areas were visible

in both F1 and F2, hence in �u21, these areas have already been grouped with their neighboring
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regions. Therefore, we can use the segmentation of flow �u21 to fill the occluded areas O23 in the flow

field �u23.

Similarly, we can use the segmentation of �u23 to fill the occluded areas O21 in the flow

field �u21. This method of occlusion filling is robustly able to fill the occlusions. After filling,

deducing ordinal depth is straightforward: if an occlusion is bounded by R1 and R2 and if

R1was used to fill it, then R1 is below R2.

If our flow segmentation consists of N regions, then we can create an ordinal depth

matrix OrdM of size N × N , such that if OrdM(i, j) = 1, then region i is above region

j. OrdM(i, j) = 0 denotes that no relation was found between regions i and j. If this

matrix is treated as the adjacency matrix of a directed acyclic graph (DAG) of N nodes, we

can deduce secondary relations between regions by using a method functionally similar to

topological sort. This method infers relations like: if region i is above j, and j is above k, then i

is above k.

The occlusion filling strategy mentioned above functions even in the presence of inde-

pendently moving objects. It can also be used in conjunction with a different optical flow

algorithm which deals with non-rigid objects, to handle such cases as well.

6.4 Experiments

Figure 6.3 shows an example of ordinal depth estimation using three frames of the flower-

garden video sequence. The top of the figure shows three frames of the sequence, in which

a region marked by a yellow color is visible in frames F1 and F2, and becomes occluded

by the tree in frame F3. Since the yellow region is visible in both frames F1 and F2, it

has already been segmented in flow �u21 as part of the background, and not the tree. This

segmentation can be used in conjuction with the flow values in �u23 to fill in the occluded

region, and deduce ordinal depth relations. The last row of the figure shows one of the

deduced relations, in which the tree trunk (colored green) is found to be in front of the red

background region.

In the next chapter, we shall use our ability to deduce ordinal depth from occlusions to

help us detect new types of independently moving objects.
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reverse flow x-component u(x)
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Use
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and occlusions
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(c) Fill occlusions
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(green in front of red)
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(a)

Figure 6.3: Generalized occlusion filling and ordinal depth estimation. (a) Three frames of
a video sequence. The yellow region which is visible in F1 and F2 disappears behind the
tree in F3. (b) Forward and reverse flow (only the x-components are shown). Occlusions
are colored white. (c) Occlusions in �u23 are filled using the segmentation of �u21. Note
that the white areas have disappeared. (d) Deduced ordinal depth relation. In a similar
manner, we can also fill occlusions in �u21 using the segmentation of �u23 to deduce ordinal
depth relations for the right side of the tree.
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Chapter 7

Motion segmentation

Motion segmentation is the problem of finding independently moving objects in a video.

This process is conceptually simple when the camera is stationary, and a variety of so-

lutions exist in today’s literature under the general heading of background subtraction.

However, if the camera itself is moving, a general and robust solution is still elusive. In

the case of the stationary camera, the motion field on the image is only caused by moving

objects, but in the case of a moving camera, the motion field is generated by the com-

bined effect of camera motion, structure and the independent motion of objects. Isolating

the contribution of each of these three factors is needed to solve the independent motion

problem completely.

7.1 Previous work

Prior research can mostly be classified into two groups: (a) the approaches relying, prior

to 3D motion estimation, on 2D motion field measurements only [BK94, BBH+89, OB95,

Wei97]. The limitations of these techniques are well understood. Depth discontinuities and

independently moving objects both cause discontinuities in the 2D optical flow, and it is

not possible to separate these factors without 3D motion estimation. (b) approaches which

assume that partial or full information about egomotion is available or can be recovered.

Adiv [Adi85] first segments on the basis of optical flow, and then groups the segments by

searching for agreeable 3D motion parameters. Zhang et al [ZFA88] utilize rigidity con-

straints on a sequence of stereo images to find egomotion and moving objects. Thompson

and Pong’s [TP90] first method finds inconsistencies between the egomotion and the flow

field by using the motion epipolar constraint, while the second method relies on external

depth information. Nelson [Nel91] discusses two approaches, the first of which is similar

to Thompson and Pong, while the second relies on acceleration detection. Sinclair [Sin93]

uses the angular velocity field and the premise that independently moving objects violate

the epipolar constraint. Torr and Murray [TM94] find a set of fundamental matrices to
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describe the observed correspondences by hypothesizing clusters using robust statistics.

Costeira and Kanade [CK95] use the factorization method along with a feature grouping

step (block diagonalization of the shape interaction matrix).

Some techniques, such as [WM97], which address both 3D motion estimation and mov-

ing object detection, are based on alternate models of image formation, such as weak per-

spective. Such additional constraints can be justified for domains such as aerial imagery. In

this case, the planarity of the scene allows a registration process [TPHA00, ASB94, WB95,

ZC93], and uncompensated regions correspond to independent movement. This idea has

been extended to cope with general scenes by selecting models depending on the scene

complexity [Tor98], or by fitting multiple planes using the plane plus parallax constraint

[IA98, SGK00]. The former [IA98] uses the best of 2D and 3D techniques, progressively

increasing the complexity based on the situation. The latter [SGK00] also develops con-

straints on the structure using three frames. Clearly, improvement in motion detection can

be gained using temporal integration. Yet questions related to the integration of 3D motion

and scene structure are not yet well understood, as the extension of the rigidity constraint

to multiple frames is non-trivial.

Most of the techniques presented above detect independently moving objects based on

the 3D motion estimates, either explicitly or implicitly. Some utilize inconsistencies be-

tween egomotion estimates and the observed flow field. Some techniques utilize external

information such as depth from stereo, or partial egomotion from other sensors. Never-

theless, the central problem faced by all motion based techniques is that in general, it is

nearly impossible to uniquely estimate 3D motion. Due to the confusion between rotation

and translation for a camera with a restricted field of view (FOV) undergoing a small mo-

tion between frames, a set of egomotion solutions (translation-rotation values) instead of

a unique solution is consistent with the observed (noisy) flow field. The occurrence of dis-

joint sets of motion solutions, which permits explicit or implicit motion based clustering,

is required by many of the above algorithms.

In this chapter, we show that this is not often possible, primarily due to inherent am-

biguities in 3D motion estimation. Instead, we turn the problem on its head by assuming

the existence of ambiguities in the 3D motion estimation, and demonstrate the existence of

different categories of moving objects which are classified on the basis of the constraints re-

quired for their detection. In Section 7.2, we discuss the ambiguities involved in estimating
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the egomotion for a camera with a small FOV undergoing a small motion between frames.

Section 7.3 describes the different categories of moving objects along with the constraints

required for their detection. We emphasize the important role of occlusions in motion seg-

mentation and motion estimation, and utilize the methods of Chapter 6 to deduce ordinal

depth from occlusions. Section 7.4 discusses our method of detecting moving objects based

on motion clustering. Section 7.5 describes the complete algorithm for detecting moving

objects. Finally, in Section 7.6, we present experiments with a real scene to illustrate the

presence of each type of moving object and how it is detected.

7.2 Ambiguities in 3D motion estimation

Given the knowledge of optical flow, there exist many techniques in the literature [HZ00]

which estimate the 3D motion. Several studies have addressed the issue of noise sensitivity

in structure from motion. In particular, it is known that for a moving camera with a small

field of view viewing a scene with insufficient depth variation, translation and rotation

are easily confused [Adi89, DS97]. This can be intuitively understood by examining the

differential flow equation:

u = −txf+xtz
Z + αxy

f − β
(

x2

f + f
)

+ γy

v = −tyf+ytz
Z + α

(
y2

f + f
)
− β xy

f − γx
(7.1)

In the above equation, (u, v) is the optical flow, (tx, ty, tz) is the translation, (α, β, γ)

is the rotation and Z(x, y) is the depth map. Notice that for a planar scene, upto zeroeth

order, we have u ≈ −txf/Z − βf and v ≈ −tyf/Z + αf . Intuitively, we can see how trans-

lation along the x-axis tx can be confused with rotation β along the y-axis, and ty with α for

a small field of view. Furthermore, Maybank [May87] and Heeger and Jepson [HJ92] show

that if the scene is sufficiently nonplanar, then the minima of the cost function resulting

from the epipolar constraint lie along a line in the space of translation directions, which

passes through the true translation direction and the viewing direction. These ideas have

been formalized in [FA00] and an algorithm independent stability analysis of the structure

from motion problem has been carried out.

Given a noisy flow field, any motion estimation technique will yield a region of solu-

tions in the space of translations, instead of a unique solution. We refer to this region of
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Figure 7.1: Motion valley (red) visualized as an error surface in the 2D space of directions
of translation. The error is found after finding the optimal rotation and structure for each
translation direction.
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solutions as the motion valley. Each translation direction in the motion valley, along with

its best corresponding rotation and structure estimate, will agree with the observed noisy

flow field. Figure 7.1 shows a typical error function obtained using the method of Brodsky

et al [BFA00] plotted on the 2D spherical surface of translational directions. The best solu-

tions lie in the red area of the surface. The error surface makes it evident that attempting

to pick a single solution in this valley is futile. Since such valleys are ubiquitous, motion

based clustering can only succeed if a scene entity has a motion which lies in a valley

which is separate from the valley containing the background motion. In the next section,

we go beyond motion based clustering to show that even if motion estimation yields a

single valley, there are certain types of moving objects which can still be detected.

7.3 Types of independently moving objects

We now discuss three distinct classes of independently moving objects; the moving objects

belonging to Class 1 can be detected using motion based clustering, the objects in Class

2 are detected by detecting conflicts between depth from motion and ordinal depth from

occlusions, and objects in Class 3 are detected by finding conflicts between depth from

motion and depth from another source (such as stereo). Any specific case will consist of a

combination of objects from these three classes. Figure 7.2 shows illustrative examples of

the three classes.

7.3.1 Class 1: 3D motion based clustering

The first row of Figure 7.2 shows a situation in which the background objects (non-independently

moving) are translating horizontally, while the red object is moving vertically. In this sce-

nario, motion based clustering approaches will be successful, since the motion of the red

object is not contained in the motion valley of the background. Thus, Class 1 objects can be

detected using motion alone. Our strategy for quickly performing motion based clustering

and detecting Class 1 objects is discussed in Section 7.4.

7.3.2 Class 2: Ordinal depth conflict between occlusions and structure from motion

The second row of Figure 7.2 shows a situation in which the background objects are trans-

lating horizontally to the right, and the red object also moves towards the right. In this

70



Class 1

Class 2

Class 3

Figure 7.2: Toy examples of three classes of moving objects. In each case, the independently
moving object is red colored. Portions of objects which disappear in the next frame (i.e.
occlusions) are shown in a dashed texture.
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scenario, motion estimation will not be sufficient to detect the independently moving ob-

ject, since motion estimation yields a single valley of solutions. An additional constraint,

which may be termed as the ordinal depth conflict or the occlusion-structure from motion (SFM)

conflict needs to be used to detect the moving object.

Notice the occluded areas in the figure: we can use our knowledge of these occlusions

to develop ordinal depth (ie. front/back) relationships between regions of the scene (see

Chapter 6). In this example, the occlusions tell us that the red object is behind the black

object. However, if we compute structure from motion, since the motion is predominantly

a translation, the result would indicate that the red object is in front of the black object

(since the red object moves faster). This conflict between ordinal depth from occlusions

and structure from motion permits the detection of Class 2 moving objects. Note that the

given example is one of the simplest cases of Class 2 moving objects, and that more com-

plicated examples involving large camera rotation can also be devised.

7.3.3 Class 3: Cardinal depth conflict

The third row of Figure 7.2 shows a situation similar to the second row, except that the

black object which was in front of the red object has been removed. Due to this situation,

the ordinal depth conflict which helped us detect the red object in the earlier scenario is no

longer present. In order to detect the moving object in this case, we must employ cardinal

comparisons between structure from motion, and structure from another source (such as

stereo) to identify deviant regions as Class 3 moving objects. In our experiments, we have

used a calibrated stereo pair of cameras to detect objects of Class 3. The calibration allows

us to compare the depth from motion directly with the depth from stereo upto a scale. We

use k-means clustering (with k = 3) on the depth ratios to detect the background (the largest

cluster). The reason for using k=3 is to allow us to find three groups: the background,

pixels with depth ratio greater than the background, and pixels with depth ratio less than

the background. Pixels not belonging to the background cluster are the Class 3 moving

objects. At this point, it may be noted that alternative methods exist in the literature (e.g.

[ZFA88]) for performing motion segmentation on stereo images, which can also be used to

detect Class 3 moving objects.
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7.4 Motion based clustering

Motion based clustering is in itself a difficult problem, since the process of finding the

background motion and finding the independently moving clusters has to performed con-

currently. A chicken-and-egg aspect of this problem is as follows: if we knew the back-

ground pixels, we could find the background motion accurately. Similarly, knowing the

background motion accurately would enable us to better detect independently moving

regions. The dilemma is in choosing how to begin.

The camera motion is described by five parameters, two for the direction of translation

and three for the rotation. To bootstrap the process and find a subset of the background that

will allow 3D motion estimation, we use a signal processing technique that will uncover

four parameters, not directly related to the five parameters of the camera motion. The

technique amounts to performing phase correlation in successive video frames, both in the

cartesian and the logpolar domain. The technique is described in detail in Appendix A.

Not only does it allow us to start the process, but it also stabilizes the video.

Thus, our method consists of two simple steps:

1. Use phase correlation [RC96] on the two images in the cartesian representation (to

find 2D translation tx, ty) and in the logpolar representation (to find scale S and

z-rotation γ), giving us a four parameter transformation. Phase correlation can be

thought of as a voting approach [Fle94], and hence we find that these four parame-

ters depend primarily on the dominant background motion even in the presence of

moving objects. This assumption is true as long as the background texture domi-

nates the textures on the moving objects. This four parameter transform predicts a

flow direction at every point in the image. We select points in the image whose true

flow direction lies within a cone of 45 degrees about the predicted direction or its

exact opposite direction.

2. The optical flow at the points selected using the earlier procedure are used to esti-

mate the background motion valley using the technique of Brodsky et al [BFA00]. In

addition, the positive depth constraint is used to reduce the size of the valley by only

keeping translations for which the computed depth at all points is positive. Since all

points in the valley predict similar flows on the image (that is why the valley exists

in the first place), we can pick any solution in the valley and compare the reprojected
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flow with the true flow. Regions where the two flows are not within 45 degrees of

each other are considered to be Class 1 independently moving objects.

The first step helps us to quickly select a subset of the image which contains mostly back-

ground pixels, so that accurate egomotion estimation can be performed without iterative

processes. The second step then uses the egomotion to find the moving objects. The vot-

ing nature of phase correlation helps us to get around the chicken-and-egg aspect of the

problem. It may be noted that other algorithms for motion based clustering (discussed in

Section 7.1) can also be used to realise this motion clustering step.

7.5 Algorithm summary

1. Input video sequence: V = {F1, F2, ..., Fn}

2. foreach Fi ∈ V , do

(a) find forward �ui,i+1 and reverse �ui,i−1 flows with occlusions Oi,i+1 and Oi,i−1

(b) select a set S of pixels using phase correlation between Fi and Fi+1

(c) find background motion valley using the flows for pixels in S

(d) detect Class 1 moving objects and background B1

(e) find ordinal depth relations using results of step (a)

(f) for pixels in B1, detect Class 2 moving objects, and new background B2

(g) if depth from stereo is available, detect Class 3 objects present in B2

7.6 Experimental results

Figure 7.3 shows a situation in which the background is translating horizontally, while a

teabox is moved vertically. In this scenario, since the teabox is not contained in the motion

valley of the background, it is detected as a Class 1 moving object.

Figure 7.4 shows a situation in which the background is translating horizontally to the

right, and the leopard is dragged (by a person who is not in the frame) towards the right.

There is a red box in front of the leopard, which is a part of the static (non independently
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Figure 7.3: Class 1: (a,b,c) shows three frames of the teabox sequence. (d,e) show X and
Y components of the optical flow using frames (b) and (c). Occlusions are colored white.
(f) shows the computed motion valley for the background. (g) shows the cosine of the
angular error between the reprojected flow (using the background motion) and the true
flow. (h) shows detected Class 1 moving object after thresholding angular error (greater
than 45 degrees).
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 7.4: Class 2: (a,b,c) show three frames F1, F2, F3 of the leopardA sequence. (d) shows
X-component of the optical flow �u21 from frame F2 to F1. Y-component (not shown) is
zero. White regions denote occlusions (e) shows X-component of the optical flow �u23 from
frame F2 to F3. Y-component (not shown) is zero. (f) shows an example of ordinal depth
(green in front, red behind) obtained by filling �u21 using the segmentation of �u23. (g) shows
another example of ordinal depth (green in front, red behind) obtained by filling �u23 using
the segmentation of �u21. (h) shows the Class 2 moving object detected using the ordinal
depth conflict. (i) shows the computed motion valley. (j) shows the structure from motion
which puts the leopard in front of the red box, whereas occlusions (see (g)) show that the
leopard is behind the box.
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Figure 7.5: Class 3: (a,b,c) show three frames F1, F2, F3 of the leopardB sequence. (d) shows
computed motion valley. (e,f) show X and Y components of the flow �u23 between F2 and
F3. White regions denote occlusions (g) shows inverse depth from motion. (h) shows 3D
structure from motion.
(p,q) show rectified stereo pair of images. (q) is the same as (b). (r) shows inverse depth
from stereo. (s) shows 3D structure from stereo. Compare (s) with (h) to see how the
background objects appear closer to the leopard in (s) than in (h).
(x) shows the histogram of depth ratios and clusters detected by k-means (k=3). (y) shows
cluster labels: cluster 2 (yellow) is the background, cluster 3 (red) is the leopard, cluster 1
(light blue) is mostly due to errors in the disparity. (z) shows the moving objects of Class 3
(clusters other than 2).
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moving) background. Since the motion of the leopard is in the same valley as the back-

ground, Class 1 detection (motion-based clustering) cannot succeed. Our method is able to

detect the leopard as a Class 2 moving object using conflicts between occlusions and struc-

ture from motion. A handwaving analysis indicates that the leopard is moving faster than

the red box, hence the computed motion (which is predominantly a translation) naturally

suggests that the leopard is in front of the box. However, the occlusions clearly suggest

that the leopard is behind the box, thereby generating a conflict.

Finally, Figure 7.5 shows a situation in which the background is translating horizontally

to the right, and the leopard is dragged horizontally towards the right. In this case, a

single motion valley is found, the depth estimates are all positive, and no ordinal depth

conflicts are present. (Although this case shows the simplest situation, we can also imagine

the same situation as Figure 7.4, with the exception that the leopard does not move fast

enough to the right so as to appear in front of the red box and generate an occlusion-motion

conflict). In this case, depth information from stereo (obtained using a calibrated stereo

pair of cameras) was compared with depth information from motion. k-means clustering

(with k = 3) of the depth ratios was used to detect the background (the largest cluster).

The pixels which did not belong to the background cluster are labeled as Class 3 moving

objects.

For the interested reader, Appendix B provides details about our mobile experimental

setup which was designed to capture synchronized video from multiple cameras in the lab

and outdoors.

7.7 Summary

We have classified moving objects into three classes, and discussed constraints for detect-

ing each class of objects: Class 1 is detected using motion alone, Class 2 is detected using

conflicts between ordinal depth from occlusions and depth from motion, while Class 3 re-

quires cardinal comparisons between depth from motion and depth from another source.

The key contribution is the detection of Class 2 moving objects using the ordinal depth

conflict. This tool is of general use in video processing and can be used in a variety of

applications including video compression.
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Chapter 8

Conclusion and Future Work

This thesis represents an attempt to highlight the interdependence of low level visual prob-

lems, such as correspondence, segmentation, occlusions and shape. We have argued that

the solution of any one problem requires us to solve a host of related problems as well. In

fact, such strong relationships seem to be a general feature of problems in artificial intel-

ligence, which makes these problems difficult or sometimes impervious to modular anal-

ysis. Under these circumstances, modularity is often the enemy; compositionality, which

seeks to mix problems and solve them together, seems to be the right approach. In the

preceding chapters, we have discussed compositional solutions and algorithms for image

correspondence and related problems. Let us briefly review the main ideas that were pre-

sented earlier, along with possible directions for future research.

The aim of establishing dense correspondence between the points in two images of the

same scene is to obtain a piecewise continuous map relating the two point sets. In Chap-

ter 2, we examined the dense correspondence problem in a world without slanted surfaces,

in which it was sufficient to compute a piecewise constant map. In this Flatland of fronto-

parallel surfaces, we showed that correspondence and segmentation are chicken-and-egg

problems which can be solved together using a compositional approach. This approach

relied on matching the two images for different shifts and identifying and maximizing

connected regions of matching pixels, subject to vertical connectivity restrictions. In this

world, horizontal distances remained constant from one image to the next, thereby allow-

ing us to correspond pixels instead of points. We used the uniqueness constraint to enforce

a one-to-one matching between image pixels to find the occlusions.

In Chapter 3, we introduced shape into the problem; in particular, we showed that

horizontally slanted surfaces project onto images of different width in the two cameras of

a stereo system. This stretching and shrinking of horizontal line segments from one im-

age to the other required us to change course from one-to-one pixel matching to matching

intervals on corresponding rows, in order to allow N pixels in one image to match M pix-

els in the other image. Using unique interval matching, we were able to solve problems
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concerning unequal sampling and lack of pixel uniqueness for finding occlusions. The

resulting algorithm is a compositional effort to solve for image correspondence, segmen-

tation and horizontal slant. Further extensions would include the use of a more complex

model of shape than simple planes in order to model curved surfaces. On the experi-

mental side, if biological vision systems also address the problems with horizontal slant,

especially sampling differences, then we would expect to find binocular (simple) cells with

left and right receptive fields tuned to different spatial frequencies and scales, and not just

be phase shifted filters with the same spatial frequency. This may be an interesting avenue

for further exploration by experimentalists.

In this chapter, we also showed how horizontal slant and horizontal depth disconti-

nuities can be distinguished using occlusions, unlike vertical slant and vertical disconti-

nuities. This forced us to alter our vertical consistency constraints, and argue about the

difficulties of computing vertically smooth shape. Our approach thus far was able to ex-

plicitly model and estimate horizontal slant, but not vertical slant. Scene surfaces which

are vertically slanted appear as discrete steps in the result instead of a smooth surface. We

believe that future efforts need to focus on constraints regarding vertical slant; in this con-

text, we find orientation disparities and contour continuity of non-horizontal edges to be

promising candidates for obtaining vertically smooth shape. The resulting method would

be a union of area based and edge based estimation methods. Shape from X methods such

as shape from texture can also be integrated with stereo disparity in the vertical direction

in order to obtain smooth surfaces. In Chapter 3, we also discussed the effects of shape

on optical flow estimation and presented arguments about problems in finding the correct

flow continuity constraints across edges. Much further investigation will be needed in or-

der to truly understand the effects of shape in establishing correspondence in the presence

of general motion. Knowledge of the egomotion will help considerably in enforcing the

right continuity constraints, since the problem becomes similar to the stereo problem in

this case. Therefore, feedback from motion estimation is an important direction for further

exploration.

Until Chapter 4, we were using thresholded absolute intensity differences between

the two images for various relative shifts to enable us to build connected components of

matching regions, and using their size to select the correct correspondence for each pixel.

However, in this chapter, we showed that connectivity between pixels is only a quick way
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of diffusing local matching information about one pixel to other image pixels such that this

information influences the decision of selecting the correct correspondence for these other

pixels. We presented a general diffusion model which allowed us to use non-binary local

matching metrics instead of binary thresholded intensity differences, and was relatively

robust to parameter selection. Further work is needed to find a fast two dimensional gen-

eralization of the diffusion model. Another possible direction of research is to recast the

diffusion model into a differential framework, thereby bridging the gap between differen-

tial and discrete methods. This would require a reformulation of the continuity constraints

arising from shape in the differential context. From a larger perspective, we see that op-

tical flow magnitudes can be broadly divided into three regimes: differential (subpixel),

small (few pixels), and large (tens of pixels). In the differential case, we can use efficient

energy extremization techniques to search our energy surface. The small regime forces us

to search our energy surface exhaustively to avoid local extrema and find the best corre-

spondences, while in the large regime, the size of the search space leaves us with no option

but to compute gross quantities only by using techniques such as phase correlation. Fu-

ture efforts must be directed at finding techniques which are able to deal with all the three

regimes, instead of having different unrelated techniques for each case.

In Chapter 5, we used the diffusion model with alternative local matching metrics

which were invariant to the contrast of the two images. One of the methods for con-

trast invariance performed local matching using filters tuned to different spatial frequency

channels, thereby transforming the correspondence problem to a space-frequency prob-

lem, and adding signal processing to the compositional framework. Further investigation

is needed to obtain improvements at depth discontinuities, especially in the presence of

a noisy high frequency channel. Furthermore, the metric we developed combined the re-

sults of various frequency channels to estimate a single disparity at every point. However,

it is possible to have multiple disparities at every point, which leads to the phenomenon of

transparency. To model transparency, each frequency channel must be treated separately

to compute different disparities at the same point. One possibility is to compute a dispar-

ity for each frequency channel and combine the results by using a voting mechanism. The

votes would not only weigh the perceived disparities, but also the texture perceived to be

present at each disparity. We have also found that the problem of transparency is further

complicated by the presence of shape, leading to multiple scene models (one with trans-
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parency, the other with slant) which explain the same scene. Preliminary experiments by

presenting such ambiguous scenes to human observers seem to indicate that the human

observer prefers the solution which has a lesser degree of segmentation (usually the trans-

parent solution), and if both explanations yield the same segmentation, then the shape

model is preferred. However, much further work is needed to fully understand the com-

plexities associated with transparency.

In Chapter 6, we demonstrated a method of filling occluded regions with flow val-

ues from neighboring regions by using segmentation information from previous frames.

This method can successfully fill occlusions even in the presence of independently mov-

ing objects in the scene. We then showed that if occlusions can be filled, the ordinal depth

order of neighboring scene regions can be obtained. This method showed us the need for

maintaining knowledge of the segmentation across time in order to compute dense cor-

respondence in the entire image, including the occluded regions. In fact, future research

also needs to focus on ways of solving for the optical flow across longer time intervals by

further developing such segmentation consistency constraints. From an application stand-

point, knowing the disparities or the flow in occluded regions is especially important for

applications such as image based rendering, which interpolate two views based on the

correspondence. It is also important for motion estimation modules in video compression

algorithms, which generally face problems near discontinuities and occlusions. Knowl-

edge of ordinal depth in a general motion scenario can prove to be very useful for video

manipulation applications which add virtual objects inside a real scene.

In Chapter 7, we used ordinal depth from occlusions to help solve another composi-

tional set of problems - moving object detection, egomotion estimation and structure esti-

mation. We have discussed the ambiguities involved in egomotion estimation. Knowledge

of ordinal depth provides an additional constraint which can be used to narrow the ambi-

guity considerably. It also allows us to detect a new category of moving objects based on

conflicts between structure from motion and ordinal depth from occlusions. This new cat-

egory of moving objects is frequently encountered in scenarios such as automotive vision,

and cannot be detected by using traditional motion clustering methods.

Feedback from motion estimation to optical flow computation is an important avenue

for future research. In fact, as we have mentioned earlier, if the egomotion is known, the

difficulties arising in the computation of optical flow in the presence of shape are allevi-
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ated, since the problem becomes similar to stereo matching and the ambiguity in defining

flow continuity constraints across edges is removed. Hence, it is not just that optical flow

and occlusions are used to solve the motion segmentation and egomotion problem, but

knowledge of the egomotion also lets us impose correct continuity constraints during op-

tical flow estimation. Thus, the dependence exists in both directions.

All these chapters together paint a picture which reveals some of the relationships and

dependencies between correspondence, segmentation, shape, occlusions, signals, struc-

ture and 3D motion. We have presented robust correspondence algorithms which find dis-

continuities, deal with untextured regions, handle slanted surfaces, find occlusions, and

are able to perform in the presence of large non-uniform changes in contrast between two

images. Possible immediate avenues for further research have been described above. The

compositional philosophy can be extended and applied to many other sets of related prob-

lems. In fact, even in the most abstract sense, the sensation, cognition and action faculties

of living things appear to be intimately related and perhaps inseparable entities. In other

words, feedback and compositionality seem to be omnipresent in the brain.
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Appendix A

Phase correlation

In this appendix, we review the technique of phase correlation discussed in [RC96], which

is generally used for video stabilization, and has also been used by us in Chapter 7 for

initializing motion segmentation.

A.1 Basic process

Consider an image which is moving in plane, i.e. every point on the image has the same

flow. Thus, if the image I2(x, y) is such a translated version of the original image I1(x, y),

then we can use phase correlation to recover the translation in the following manner:

If I2(x, y) = I1(x + tx, y + ty), then their Fourier transforms are related by:

f2(ωx, ωy) = f1(ωx, ωy)e−i(ωxtx+ωyty) (A.1)

The phase correlation PC(x, y) of the two images is then given by:

PC(x, y) = F−1

[
f∗
1 · f2

|f∗
1 · f2|

]
= F−1

[
e−i(ωxtx+ωyty)

]
(A.2)

PC(x, y) = δ(x − tx, y − ty) (A.3)

Note that F−1 is the inverse Fourier transform, and δ is the delta function. Thus, if we

use phase correlation, we can recover this global image translation (tx, ty) since we get a

peak at this position (see example in Figure A.1).

A.2 Logpolar coordinates

The logpolar coordinate system (s, γ) is related to the cartesian coordinates (x, y) by the

following transformation:
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Figure A.1: An example of a peak generated by the phase correlation method.

x = eρcos(γ) (A.4)

y = eρsin(γ) (A.5)

If the image is transformed into the logpolar coordinate system (see Figure A.2), then

changes in scale and rotation about the image center in the cartesian coordinates are trans-

formed into translations in the logpolar coordinates. Hence, if we perform the phase cor-

relation procedure mentioned above in the logpolar domain, we can also recover the scale

change s, and a rotation about the center γ, between two images.

A.3 Four parameter estimation

Given two images which are related by 2D translation, rotation about the center and scal-

ing all together, we can perform phase correlation both the cartesian domain and logpolar

domains to compute a four parameter transformation T between the two images:

T =

⎡
⎢⎢⎢⎣

s · cos(γ) s · sin(γ) tx

−s · sin(γ) s · cos(γ) ty

0 0 1

⎤
⎥⎥⎥⎦ (A.6)
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Figure A.2: An image in cartesian coordinates (left) and its logpolar representation (right).

In practice, initializing this process is tricky, since dominant 2D translation will cause

problems in the logpolar phase correlation by introducing many large additional peaks,

and similarly, dominant scaling and rotation will cause problems in the cartesian phase

correlation.

To address this, we first perform phase correlation in both the cartesian and logpolar

representations on the original images. Then, for each of the results, we find the ratio of

the magnitude of the tallest peak to the overall median peak amplitude. If this ratio is

greater for the cartesian computation, it means that translation is dominant over scaling

and rotation, and must be removed first. Then we can estimate scaling and rotation again

on the corrected images. Similarly, if the ratio is greater for the logpolar computation, we

perform the correction the other way around.

A.4 Results

Figure A.3 shows results on a pair of test images which are related by significantly large

values of translation, rotation and scaling. These results can be improved to subpixel ac-

curacy by using the method of Foroosh et al [FZB02]. We have applied the method men-

tioned above to video sequences and have achieved good stabilization over long dura-

tions, even in the presence of independently moving objects. Some results can be found at

www.cfar.umd.edu/users/ogale/research/phase/phase.html.
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Figure A.3: Top row shows two input images I1 and I2. Image I2 was created from I1 by
rotating by 5 degrees, scaling by a factor of 1.2, and translating by (-10,20) pixels. Bottom
row: The left image shows image I ′2 obtained by unwarping I2 using the results of the
phase correlation. The right hand side shows the absolute intensity difference between I1

and the unwarped image I ′2 to reveal the accuracy of the registration.
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Appendix B

Design of a mobile Argus Eye with nine synchronized cameras

Camera networks are becoming an important tool for use in computer vision. In order to

study these networks, it is necessary to engineer systems which can handle the high band-

widths of multiple cameras with inexpensive off-the-shelf hardware and open source soft-

ware. This chapter explains the engineering of a mobile system designed to synchronously

capture nine IEEE1394 digital cameras at a resolution of 1024x768 at 15 fps. This work was

performed in collaboration with Patrick Baker (pbaker@cfar.umd.edu). My contribution to

this work is the development of the complete capture software system, the details of which

are described below.

B.1 Introduction

Camera networks have great potential for applications of computer vision to surveillance,

model building, navigation, and many others. Before they become widespread, the prob-

lems of data acquisition, calibration, synchronization, and image processing must be solved

in a way that allows for easy construction, use, and maintenance. This paper addresses

these issues and provides new solutions for use by the vision community.

The IEEE-1394 (firewire) bus is fast becoming the standard for tranferring data from a

camera to the computer because it can transfer up to 400 Mb/s, and also suuply power

over the same cable. We describe here a system engineered to capture data from many

synchronized firewire cameras directly to hard drives, which fully utilizes the bus band-

width, while using virtually no CPU, due to the bus mastering capabilities of the firewire

and SCSI boards. The code runs under Linux with the standard libraries video1394 and

dc, the camera control library.

B.2 Project Requirements

The theory behind the Argus eye, which is an omnidirectional camera, and the motivation

for building such a camera system for accurate egomotion estimation can be found in our
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recently published work [BOFA03]. The camera system for this purpose was required to

facilitate the synchronized capture of different parts of the visual sphere using multiple

cameras. It was also required to function outdoors to capture natural scenes, and therefore

could not use multiple computers or other cumbersome hardware. Since we intended to

capture sequences of durations of the order of 1 minute, we could not design a system

which captured data to RAM, and then store it on the disk after capture; the data had to

be written directly to disk.

Additionally, we would need to have at least nine cameras pointing in different direc-

tions, with fields of view not necessarily overlapping. We needed a camera which could

achieve at least 25 fps so that we could avoid temporal aliasing when taking motion video.

More cameras were desirable, if the hardware platform could support it. We desired to be

able to carry the network of cameras on a human being, to facilitate the capture of data in

an unconstrained manner. For that reason the cameras had to be light and relatively free

of cables.

For the computation of egomotion, the cameras needed to have a reliable syncrhoniza-

tion system so that we could control the capture of the data. We also desired a flexible (in

the figurative sense) and rigid (in the mechanical sense) mounting system so that different

configurations could be tested without much camera movement.

B.3 Hardware Configuration

B.3.1 Cameras

We chose the Sony XCD-X700 camera, which is a 1024X768 8-bit black and white camera

with digital output and control through the firewire port. The camera has an external sync

BNC connector to provide an external synchronization signal. The camera unfortunately

is only rated for 15 fps at the maximum resolution. However, the camera has a partial scan

function which allows an increase over the nominal 15 fps maximum in inverse proportion

to the fraction of scan lines captured, and could yield a maximum framerate of upto 60 fps.

This camera therefore was a good compromise among portability, cost, resolution, and

framerate.

There is one detail about the camera which was not apparent from a cursory overview

of its features. The external trigger reduces the framerate of the camera depending on
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the exposure setting. When the external trigger is activated, the camera does not send

data during its exposure, so that when using long exposure settings, the 15 fps rate is

not achievable. So for a 10 ms exposure, only 13 fps will be achievable. One can bring

up the gain in order to compensate for low light, but in that case noise will be increased.

However, under natural illumination conditions available outdoors, the exposure can be

set to a fairly small value.

When using the partial scan function, the external trigger is required, so you cannot

achieve 60 fps. There are additional timing requirements for partial scan which reduce the

framerate even more, so that the fastest we could get the cameras to run was 48 fps when

scanning only the top quarter of the image. Another notable factor is that the partial scan

function also only increases the framerate according to the number of scan lines which are

output, without regard to the image width.

B.3.2 Computer configuration

The bandwidth requirements for this computer are substantial, and dominated our de-

sign decisions. A quick calculation of the bandwidth required for each camera running

at 1024x768 and 15 fps results in a figure of 11.25 MB/s, which means that nine cameras

would require 101.25 MB/s of bandwidth from the cameras to the disks. Because of the

external trigger limitations, the likely framerate would be closer to 14 fps, so that our band-

width requirements will be 94.5 MB/s.

A 32-bit PCI bus running at 33 Mhz has a maximum bandwidth of 133 MB/s, so that

was barely sufficient for transferring the data from the cameras to memory. In order to

get the data from memory to disk, we needed another PCI bus to host the disk controllers.

The processor speed is not an essential parameter, because we used DMA (Direct Memory

Access) for all data transfers and are doing no real-time image processing.

The Dell Precision 620 is an 866 Mhz Pentium III system with two PCI buses, one 32-bit

running at 33 Mhz/5V and one 64-bit, running at 66 Mhz/3.3V. This system has sufficient

bandwidth to move the data from the cameras to the disks. We chose four Seagate SCSI

15000 RPM disks in order to write the data. We have benchmarked these disks to have a

maximum write throughput of about 33 MB/s, so that four disks were sufficient to write

the data. As an engineering note, if one writes to the disks efficiently, by making sure there

is no extraneous disk head movement and the writes are all consecutive and cached, the
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seek speed of the disks should not make a difference, and a less expensive SCSI disk with

the same write throughput should be sufficient.

Although the Precision 620 has an onboard Ultra 160 SCSI controller, with a stated

burst throughput of 160 MB/s, it is attached to the 32-bit PCI bus. This means that we are

limited to the 133 MB/s of the PCI bus, and we only managed to get 80 MB/s sustained

throughput. Even if we could use this controller, this would mean that we could only

mount firewire cards in the two 64-bit PCI slots. And since each firewire card has only

three free DMA channels, this means that we would only be able to use DMA with six

cameras, which would not meet our system requirement.

We chose two Ultra-2 SCSI controllers running on the 64-bit bus in order to control our

disks. Though these controllers have a stated burst capacity of 80 MB/s, we could get only

a maximum of 45 MB/s from them, when writing to two or more of the Seagate disks. The

IDE disk which hosted the operating system provided some extra disk bandwidth which

we have utilized in the finished system when capturing with all nine cameras.

B.3.3 Sync Network

The BNC network to synchronize the cameras is attached to the parallel port of the com-

puter with an amplifier to make sure the cameras do not draw too much current. It was

desireable for some of our experiements to be able to run different cameras at different

frame rates, so that we used multiple pins of the parallel port. The camera trigger con-

trol is discussed more extensively in the software configuration section of the code. The

BNC cabling is always somewhat problematic, because the connections between cables are

inconsistent, but we found no other triggering solution which is easier and economical.

B.4 Why Linux?

Generally, other synchronized camera systems utilize a trigger generator which is external

to the PC, and hence the triggering process in not harmonious with the camera capture

process of the PC. If we try to extract the best performance from such a system, it results in

intermittent dropped frames for some of the cameras. We were previously experimenting

with such a system, which utilized an external trigger generator, and where the grabbing

process was performed using the GraphEdit tool in the DirectX SDK from Microsoft. We
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tested the SCSI disks in two write modes: as a single striped volume, and as raw devices

(which performed better). We were able to grab a maximum of eight cameras with this

system, at full resolution at about 7-8 fps. Thus, we were nowhere near the performance

level which we knew this system was capable of producing. This system also performed

very poorly with regards to synchronization and resulted in dropped frames for some of

the cameras. The DirectX architecture did not offer us sufficient flexibility to incorporate

the trigger signals into our code directly, and was overall very restrictive in allowing us

to control our hardware at a low level. The final limitation was that the DirectX system

was unable to use the XCD-X700 cameras in partial mode, and we were always restricted

to grabbing at full resolution. Partial mode capture was essential for application to ego-

motion problems due to the higher framerates (30fps, 45fps) which were achievable in this

mode. After experiencing all these limitations in a Windows based approach, it was de-

cided to turn to Linux, which offered a significant increase in the level of control over the

hardware. Moreover, the open source nature of the system allowed us to make critical

changes (fix some bugs) to the dc1394 libraries, and adapt the sg scsi writing code to suit

our particular purposes.

B.5 Capture Software design

B.5.1 Hardware detection and initialisation

At the outset, all the firewire cards attached to the system are detected, and the number

of cameras on each card and their capabilities are assessed. Each camera has a unique ID

stored in it which can be associated with a user-assigned label to be used to identify and

sort the cameras for the convenience of the user. The user supplies an initialisation (INI) file

to the software, which specifies camera configurations, capture modes, trigger frequencies,

and many other critical paramters which will be discussed in a subsequent section. Camera

parameters, such as the shutter, gain, capture mode (full/partial), and optional partial

mode parameters (left, top, height, width) are set for each camera by using the values in the

INI file. The trigger mode (internal/external) is also set during initialisation. Finally, the

cameras are assigned DMA channels and buffers for transmitting their data, and are then

put into isochronous transmission mode. The cameras are now ready to start capturing

the data.
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The capture process itself consists of three basic modules:

1. Trigger: send trigger signals to the cameras

2. Grabber: Transfer captured images to memory

3. Writer: Transfer images from memory to the disks

To obtain the maximum efficiency, the Writer module functions in parallel with the first

two modules. Thus, when the Grabber is transferring new frames from the cameras to

memory, the Writer is simultaneously writing the previously captured frames to the disks,

which makes it possible to transfer data at about 100 MB/s from the cameras to the disks.

All the modules have been implemented as C++ classes.

B.5.2 Trigger

Triggers were to be sent to the parallel port of the PC, which provides eight independent

pins. Each pin can be sent a separate trigger signal. In order to design a system with the

maximum flexibility, it was essential that each camera be allowed to function in any one of

the three partial capture modes: full height, 1/2 height, and 1/4 height. In such a scenario,

the 1/4 height cameras would need triggers at 4 times the frequency of the triggers being

sent to the full height cameras. If we just choose to send a single high frequency trigger to

all the cameras, it would result in synchronization errors for the low frequency, full height

cameras. Therefore, we had to make provisions to allow separate triggers to be sent to

each of the three potential groups of cameras: full, 1/2 and 1/4 height. Moreover, the

triggers must be synchronized, eg. every fourth trigger for the 1/4 height cameras must

coincide with a trigger sent to the full height cameras. In order to achieve this, we allowed

the user to select the trigger frequency to be sent to each pin of the parallel port. The user

also specifies which pin of the parallel port is connected to which camera, and the system

is then able to verify whether the correct pins have been paired with the correct camera

modes. Before sending the trigger signal, the Grabber initiates a separate processing thread

for each camera which listens for interrupts from that camera. After sending the trigger

signal, the cameras begin to send interrupts, which are captured by the listening threads

previously created by the Grabber.
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B.5.3 Grabber

The Grabber module utilizes the dc1394 library to perform the camera capture process. The

library had to be slightly modified in order to correctly perform partial mode capture. The

Grabber itself is designed as a multithreaded module, which creates separate threads for

capturing from each camera. Such a multithreaded capture process is much more efficient

than the native single-threaded multi-camera capture function implemented in the dc1394

library. The multithreaded method permits simultaneous DMA transfers from many cam-

eras, and is able to fully utilize the available bandwidth on the bus without consuming

any CPU resources. Although we have allowed each camera to function in one of three

partial modes: full, 1/2 and 1/4 height, all the cameras are on the average sending data

at the same rate, because if full frame cameras run at X triggers/second, then 1/2 and 1/4

height cameras run at 2X and 4X respectively.

B.5.4 Writer

The Writer module is designed to write the output of two cameras to each SCSI disk, and

the output of one camera to an IDE disk, giving a net throughput of about 108 MB/s,

which is close to the maximum possible efficiency for this system. Since we were using two

Ultra80 SCSI cards which actually yield a throughput of 45 MB/s each, it was necessary to

use the IDE disk to scavenge the additional bandwidth. If Ultra160 cards were used, the

IDE disk would not be required. We have used small portions of code from the sg driver

in linux, and adapted them to write raw data to the SCSI disks using DMA. The Writer

module is also multithreaded, and uses a separate thread for writing to each disk, which

ensures that we obtain the maximum write performance without using any CPU resources.

Since the data is captured directly to disk, our system can capture about 15 minutes of data

from 9 cameras running at 1024x768, 15 fps.

Let us now discuss how the writes are scheduled, if different cameras are capturing at

different rates and different image heights. If a camera capturing full height frames sends

X bytes of data every T seconds, then

1. cameras capturing at 1/2 height send (X/2 bytes of data, 2 times, in T seconds) = (X

bytes of data in T seconds)
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2. cameras capturing at 1/4 height send (X/4 bytes of data, 4 times, in T seconds) = (X

bytes of data in T seconds)

Thus, irrespective of the capture height, each camera sends X bytes of data in T seconds.

This uniformity makes it possible to write data to the disks in an orderly fashion: every T

seconds, 2X bytes of data (from 2 cameras) is written to one scsi disk. Thus, if a camera

was running at 1/4 height, then 4 frames from that camera are written as one block to the

scsi disk. In this manner, the write scheduling process is greatly simplified.

B.5.5 User input

The user can specify the details of the entire capture process by providing an initialisation

(INI) file. We will only mention some of the important parameters which are to be specified

in this file. The CaptureTime, which specifies the grabbing time in seconds, and Trigger,

which sets the trigger mode to external or internal, are the important common parameters

specified in the Common section. In the Trigger section, the frequencies to be sent to each

pin of the parallel port are specified as multiples of the base frequency (which is taken to

be 1). These two sections are followed by sections for each camera, which specify the Gain,

Shutter, and partial mode parameters (top, height) for each camera. An example INI file

for a stereo pair of cameras is shown in Figure B.1.

The INI file is also used by the capture software to record the results of the capture

process in a section known as Results. This section contains information regarding how

the data was saved to the raw disks and the number of frames with their sizes captured

by each camera. This information is used by the accompanying utilities, such as scsi2pgm,

which converts the raw captured frames to PGM files.

B.5.6 Utilities for focusing, calibration, viewing and frame extraction

The software contains a very useful tool called focuscams, which displays the real-time

video streams from all the cameras (upto nine cameras) in a tiled format on the screen. The

user can also choose to view the video from any one of the cameras in full screen mode,

in order to focus the cameras one by one. The tiled display is useful to examine the fields

of view being seen by the cameras, and to equalise parameters such as the exposure of all

the cameras. This utility can also be used for calibration purposes to grab single frames
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; Sample camera capture file

[Common]
SequenceName=test
CaptureTime=120 ; this is the capture time in seconds
NumCards=4 ; number of firewire cards to scan (0-10)
Trigger=External ;
DisablePartialMode=0; to force full mode for all cams
ExtraDelay=0;
BeepOnTrigger=0;
AutoOffset=1 ; whether to use AutoOffsetFile
AutoOffsetFile=offsets.dir
Debug=0 ; to cross check input parameters
PinCheck=1 ; to check if pin frequencies are compatible with cameras

[Trigger]
Pin0=1
Pin1=1
Pin2=1
Pin3=1
Pin4=1
Pin5=1
Pin6=1
Pin7=1

[Camera 0]
Enabled=1
Gain=800
Shutter=A80
UsePartialMode=1
partialTop=0
partialHeight=4
PinConnect=0

[Camera 1]
Enabled=1
Gain=800
Shutter=A80
UsePartialMode=1
partialTop=0
partialHeight=4
PinConnect=0

Figure B.1: Sample INI file for 2 cameras
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from the cameras by pressing a key. Another tool, known as viewscsi, allows the user to

view the raw results of a capture directly from the SCSI disks, without first converting the

data to PGM files. This is useful in order to immediately examine if a captured sequence

is satisfactory, and if not, it can be immediately deleted, so that more space is freed up for

capture. Finally, scsi2pgm is another utility which converts the captured data into a set of

PGM/PPM files, which can then be offloaded for further processing.

B.6 Applications and extensions

This system has been used by Patrick Baker and myself to acquire indoor and outdoor data

for egomotion estimation using an omnidirectional camera (see Figure B.2). Although the

system was designed for the Argus problem, it was also used to gather other types of data

by graduate students from our lab. It has been used by me for obtaining sequences for

testing correspondence and motion segmentation algorithms, and by Jan Neumann (jneu-

mann@cfar.umd.edu) to simulate a plenoptic camera in a hexagonal configuration. It is cur-

rently being used by Gutemberg Bezerra (guerra@cs.umd.edu) for human motion capture

from multiple views, and by Justin Domke (domke@cs.umd.edu) for collecting Argus data.

This system is currently designed to run on a single computer, but can be easily extended

to multiple computers by communicating the trigger over the parallel port from a master

computer to other machines. This is, however, in the domain of future work.
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Figure B.2: Argus eye system being used outdoors to collect data. The cameras are
mounted on the octahedral frame, and carried around by a person who stands in the mid-
dle holding the frame.
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