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Electromagnetic Interference (EMI) can have an adverse effect on commercial
electronics. Asfeature sizes of integrated circuits become smaller, their susceptibility to
EMI increases. In light of this, integrated circuits will face substantial problemsin the
future either from electromagnetic disturbances or intentionally generated EMI from a
malicious source.

The Embedded Reliable Processing System (TERPS) is afault tolerant system
architecture which can significantly reduce the threat of EMI in computer systems. TERPS
employs a checkpoint and rollback recovery mechanism tied with a multi-phase commit
protocol and 3D IC technology. This enablesit to recover from substantial EMI without
having to shutdown or reboot. In the face of such EMI, only alossin performance dictated
by the strength and duration of the interference and the frequency of checkpointing will be
seen.

Various conditionsin which chips can fail under the influence of EMI are described.

The checkpoint and rollback recovery mechanism and the resulting TERPS architectureis



stipulated. A thorough evaluation of the design correctnessis provided. Thetechniqueis
implemented in Verilog HDL using a 16-bit, 5-stage pipelined processor to show proof of
concept. The performance overhead is calculated for different checkpointing intervals and

Is shown to be very reasonable (5-6% for checkpointing every 128 CPU cycles).
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Chapter 1

I ntroduction

Electromagnetic Interference (EMI) broadly refersto any type of interference that can
potentialy disrupt, degrade or otherwise interfere with the functioning of electronic
systems. Current high performance | Cs like microprocessors are fabricated with very small
feature size, are clocked at frequencies well into the GHz range, and operate at reduced
voltage levels. Though these characteristics have improved the capabilities and
performance of chips, they have increased the susceptibility of high-performance chipsto
EMI. Hence, there is agrowing concern over the electromagnetic compatibility of ICsin
hostile EMI environments, especially those created by intentionally generated EMI from a
malicious source. The Embedded Reliable Processing System (TERPS) is a system
architecture-based approach which uses a checkpoint rollback recovery protocol to
improve the reliability of microprocessor systems under such extreme operating

conditions.

1.1Effect of EMI on Integrated Circuits

Typical sources of EMI or radio frequency interference (RFI) are overhead high
voltage lines, lightning events, radar devices, powerful radio transmitters, wireless network
devices, and GSM (Globa Systems for Mobile communication) bursts. Until recently,

intentionally generated EMI was alesser concern: In August 1999, the International Union



of Radio Science addressed the subject of crimina EMI and EM terrorismwhich is
defined as “the intentional malicious generation of electromagnetic energy to induce noise
or high-level disturbancesinto electrical or electronic systemswith theintention to disrupt,
confuse, or damage these systemsfor criminal or terrorist reasons’ [1]. In general,
electronic systems are designed more for reduced emissions than for RFI tolerance and
hence they can easily fall prey to intentional EMI. Reports of medical equipment inside
ambulances shutting down at field strengths of 20 V/m due to unintentional interference
are known [1], thus the threat of intentional interference with field strengths of 100 to
200V/m, which can be produced by off-the-shelf equipment from Radio Shack [1], isquite
severe. Moreover, experts claim a suitcase-sized threat iswidely available over the internet
[1]. Thisisintroduces seriousrisks for military equipment, safety-related automotive
systems, and medical equipment because they are greatly reliant on embedded systems,
which are easily susceptible to EMI. Asaresult, the industry and the research community
are both paying attention to designing systems which not only have low emission
characteristics but also low susceptibility to EMI. Such el ectromagnetic pollution imposes
new challengesin the design of integrated circuits.

Thefeature size of 1Cshas been reducing rapidly over theyears (fig. 1.1) in accordance
with Moore's Law. The electrical charge involved in transistor switching decreases with
the decrease in IC feature size. Correspondingly the energy required to disturb the
switching process reduces, making it easier to disturb the circuit with increasingly lower
EMI signal levels. Asthe switching speeds of microprocessors increase and supply
voltages scale down resulting in smaller noise margins, the margin of error caused due to

disturbances such as those induced by EMI, drastically reduces putting stress on better
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Figure 1.1: Reduction in feature size over the years. There hasbeen arapid reduction
in IC feature size over the last few decades in accordance with Moore’'s Law. Asthe
feature size reduces, the susceptibility of ICsto EMI increases.

Source: INTEL and ITRS

signal integrity. Moreover, parasitic effects inside integrated circuits have dramatically
increased making signal integrity a prominent issue[2].

Electronic systems can couple EMI through cables, PCB traces, bonding
interconnects, and even internal metal chip signals like power, ground, and data lines that
behave as receiving antennas [3]. EMI that is coupled by the system can induce currents
(mA) which cause various disturbances. Signal rectification due to interference is caused
by the inherent nonlinear behavior of electronic devices. Thisis said to be the primary
upset mechanism for integrated circuits under RFI [4]. In addition to signal rectification,
inter-modul ation, cross-modulation and other disturbances areimmediate effects of
interference [2]. When interpreted as a system signal or superimposed on one, these

disturbances, if powerful enough, can cause malfunctioning or spurious state changes on

logic devices.



The power levels and frequency range for which circuits are more susceptible to
intentional EMI have been studied recently. Previous studies observed changes on the |-V
characteristics of diodes, BJTs, and MOSFETs under RFI [5]. Susceptibility levels of a
microcontroller and a DSP chip have been measured for RF interference up to 400 MHz,
and data corruption was observed on the communication path between the microcontroller
and RAM memory [6]. The same study showed that 20dBm RF interference at 350 MHz is
enough to trigger the reset pin of avoltage regulator. Another study investigated the effects
of RF interference on the input ports of a0.7um CMOS with frequenciesin the 20MHz-
1GHz range with power levels up to 15 dBm [3]. They observed dynamic failuresin the
form of variationsin input pad propagation delay and static failures when pad output
signals were misinterpreted as they strayed out of the high or low voltage levels. Thus,
even less powerful RFI can cause propagation and crosstalk-induced delays on wires and
can deteriorate signal integrity.

Though el ectronic equipment can be protected to a certain degree by using shielding,
filterson PCBs, and filtered connectors, an uncompromising necessity to design robust ICs
exists as these measures are often expensive due to post production costs and infeasible for
volume applications [5] as the equipment has to be designed specifically for different

working environments.

1.2TERPS Architecture

Thisthesisintroduces a fault tolerant system architecture, called TERPS, that can
significantly reduce the threat of intentional EMI. In contrast to chip level approaches (e.g.
radiation hardening) or circuit level approaches (e.g. self-checking logic), we investigate a

system-level approach where multi-phase commit protocols are used in conjunction with a



safe storage chip, which holds backups of system state and is more EMI resistant than the
CPU and memory controller chips. The resulting system significantly reduces the
susceptibility of its processing components to EMI induced transient faults.

The protection offered to a system’s processing components by the TERPS mechanism
is discussed. Fig. 1.2 outlines the major components of a computer system along with a
safe storage memory, a part of the TERPS mechanism. The CPU is connected directly to
the safe storage via an ECC-protected dedicated bus, which handles the checkpoint
rollback traffic. The memory controller arbitrates the communication between the CPU

and the DRAM system. The CPU, memory controller and safe storage congtitute the
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Figure 1.2: Order of concern for our system-level approach. The protection scheme
we propose in this study will primary cover the processing components of agenera
computing system. The CPU and memory system are more susceptible to EMI effects
as compared to 1/0. Therefore our main concern in this study is protecting the
processing elements as shown in the figure. Future work will be directed towards I/0
transactions.



sphere of protection and, with the DRAMs themselves, represent the area of highest risk
for EMI effects. To increase the reliability of the memory system, the DRAM may be ECC
protected. The processing system is also connected to the I/O system, which represents an
area of dightly reduced risk for EMI effects. A transient fault is more likely to disturb an
in-process computation or memory request than an in-process 1/0 request because |/0
requests are far less frequent than computations and memory transactions. In addition, the
processor and memory controller operate at much higher speeds and with tighter timing
marginsthan the 1/0O system. Hence, we will consider the effects of EMI on processors and
memory systemsto be of the first order while those on 1/0 of the second order. Future
work will be directed towardsincorporating the 1/0O system into the sphere of protection as
well.

Resistanceto intentional EM1 within TERPS stems from a hardware-based checkpoint
and rollback recovery mechanism that worksin conjunction with RF detection methods
[7][8]. This mechanism allows the CPU to rollback to a previously known vaid state and
thus protects against a virtually unlimited number of faults anywhere in the area under
consideration. Many embedded systems can tolerate only alimited number of
simultaneous faults and either fail silently or require reboot if more faults occur. This can
have devastating effects if such faults occur during critical conditions, for exampleif the
guidance system failswhile directing amissile or if a pace-maker is affected by awireless
device. The TERPS architecture allows recovery from such faults without having to reboot
or shutdown and without any human assistance.

To rollback to a safe state, TERPS maintains snapshots, or checkpoints, of the required

system state at predetermined intervals. The processor state is saved into the safe storage



memory chip, which is designed to be more resistant to EMI than the CPU and memory
controller by employing circuit, device, and process-level techniques that trade off circuit
performance for noise tolerance. Memory ingtructions are handled by a series of write
buffers that provide a multi-phase commit protocol to the DRAM system. On EMI
detection, the system isrolled back to a correct state using the safe storage.

As even the minimum required state to rollback is large, it would take many cyclesto
do a checkpoint or recovery due to constraints of chip-to-chip bandwidth. To significantly
reduce the impact of checkpointing on performance, high bandwidth solutionslike 3D IC
packaging [9], optical interconnect [10], or RAMBUS Yelowstone [11] technologies can
be used. For our physical prototype, we will be implementing 3D 1C technology.

Through the application of TERPS, the processing system hasimproved from onewith
many points of failure in the presence of unintentional/intentional EMI to onein which
only the safe storage itself and the CPU-resident control logic that handles the checkpoint
and rollback mechanisms may pose problems.

In thisthesis a detail ed description of the TERPS mechanism is provided, aproof of its
correctness, implementation considerations are specified, aminimal performance overhead
due to checkpointing is shown, and our physical prototype system, built on 0.5 um and

0.25 um processes viaMOSI'S, is described.



Chapter 2

Related Work

Reliability has always been an important component in the design of high performance
processors. A characteristic of ahighly reliable systemisalow failurerate. A failure
occurs when the behavior of a system deviates from that which is specified for it [12].
Hardware component failures, communication faults, timing problems, human error, etc.
are just afew of the types of faultsthat occur in systems[12]. Smaller feature sizes,
reduced voltage levels, higher processing speed, and increasingly complex designs have
enhanced the functionality of digital systems but have also made them prone to hardware
related faults during execution. A study by Randell et al. [12] provides an insight to
reliability issuesincluding types of faults, fault tolerance techniques, and examples of fault
tolerant systems. They classify hardware component failures by duration (fault is
permanent or transient), extent (effect islocalized or distributed), and value (creates fixed
or varying erroroneous results).

Peercy and Banerjee discuss fault detection in detail [13]. Fault detection requires
redundancy in either space, time, information, or agorithm. Space redundancy is usualy
some form of n-modular redundancy (nMR) or complementary logic. As chip areaiis
expensive, an aternative is time redundancy where the same circuit is used for the same

functionality at two different times. The major drawbacks are that permanent faults cannot



be detected and the throughput is lowered. Watchdog timers are al so used to guarantee that
aprocessor is making forward progress. Information redundancy isin the form of
concurrent error detecting codes like parity check codes, Berger code, and M-out-of-N
code. Algorithm-based fault tolerance introduces some information or time redundancy
into an aspect of the function being performed by the VLS circuitry. Manoj Franklin's
study [14] investigates ways to implement redundancy techniques for superscalar
processors. Under utilized resources available on the system are used to incorporate
hardware, information, or time redundancy to detect errorsin the functiona units. REESE
[15], which isamethod of soft error detection in microprocessors, detects transient faults
using time redundancy and adds a small number of extrafunctiona units to keep the
execution overhead low. A specia form of space and time redundancy is observed in the
DIVA architecture[16][17]. The core processor is appended by asmall and simple checker
processor which is functionally the same only less powerful. If any results from the core
processor are incorrect due to afault of some kind, the checker will be able to detect and
fix the errant result. It then flushes the core processor state and restartsiit after the errant
instruction. Thisis an elegant solution for solving awhole range of faults while also
reducing burden of verification. However, it cannot be applied for EMI induced faults as
these may persist everywhere in the chip i.e. the checker processor, the RF and the clock
network may go bad leaving no valid state to restart from.

In general, asystem can be designed to be fault tolerant by some form of redundancy
and error recovery algorithms. Once an error is detected, fault tolerant techniques use some

form of forward or backward error recovery [12]. Forward error recovery is dependant on



having identified the fault, or at least all its consequences. Such schemes attempt to make
use of the erroneous system state to make further progress (e.g. Error Correcting Codes).

Backward error recovery techniques require establishing recovery points during which
the state is saved (checkpointing) in a safe location and can be later reinstated (rollback-
recovery). Checkpointing and rollback-recovery has aways been acommonly applied
fault tolerance approach in the development of highly reliable processing systems.
Depending on how much timeis allowable for recovery procedures and how much loss of
work is acceptable, checkpointing and rollback-recovery isimplemented in software or
hardware.

One of the most significant and earliest systems which adopted checkpointing and
rollback recovery were intended for space applications in which a high degree of fault
tolerance was essential. The Jet Propulsion Laboratory Self Testing and Repairing (JPL-
STAR) computer [18] was a general purpose fault tolerant computer developed for a
spacecraft guidance, control and data acquisition system which would be used on long
unmanned space missions. Upon error detection by redundant units, error recovery is
initiated by backward error recovery in software. The programs established recovery
points and decided on the state that needs to checkpointed. File systems, database systems,
and distributed systems also rely on checkpointing and rollback to establish fault tolerance.
Koo and Toueg [19] disclose a distributed algorithm to create consistent checkpoints, as
well as arollback-recovery algorithm for distributed systems. They identify the “domino
effect” and “livelocks’ problemsrelated with checkpoint creation and rollback-recovery in
distributed systems and then show how their algorithm solves these problems by tolerating

failures during their execution and forcing aminimal number of processesto rollback after

10



afailure. Chandy and Ramamoorthy [20] discuss optimum checkpointing strategiesin
order to have shorter recovery times but still not affect performance significantly. The
rollback points are tailor-made for a particular program according to their algorithm.
Upadhyayaand Saluja[21] later modified Chandy and Ramamoorthy’s agorithm to insert
rollback pointsin programs with multiple retries and a so added a watchdog processor for
error detection. The watchdog processor isimplemented in place of a software error
detection solution to ensure low error latency. K. Shin et al. [22] developed modelsto
evaluate the behavior of checkpointing of real-time tasks. Using these models they
determined optimal intercheckpoint intervals and an optimal number of checkpointsfor a
task by minimizing the mean task completion subject to a specified confidence in
execution results. For their realistic model, which includes imperfect coverages of both the
on-line detection mechanism and the acceceptance test, they observed that if atask
requires a high probability of correct execution results, checkpointing must be done more
frequently towards the end of the task, since the task has to pass al the acceptance tests
near the end of the task.

In this research, we focus on environments where error rates are high and real-time
constraints prohibit significant delays for recovery. These constraints motivated usto use a
hardware-assisted backward error recovery scheme - ingtruction retry - for TERPS.
Instruction retry is used for rapid recovery from transient faults and is seen in many
systemsincluding the IBM 4341 processor [23], C.fast [24], the IBM ES/9000 Model 900
[25], and in the UCLA Mirror Processor [26]. In single instruction retry, the state of the
processor is checkpointed at each instruction boundary, and upon error detection, the state

isrolled back to the previous instruction state. However this requires immediate error

11



detection. In the IBM 4341 processor [23], an instruction is retried by restoring state
information that is continuoudly saved and removed by hardware. If theinstruction isto be
aborted, the “machine check interrupt process’ is provided with a damage report. Tsao et
al. introduce C.fast, aVLSI fault tolerant processor [24] in which shadow registers that
contain state of the previous instruction are attached to every state register on the chip.
When an error is detected during the execution of an instruction, the processor is able to
retry the same instruction immediately.

However, concurrent error detection required for single instruction retry, demands
checkers and isolation circuits in communication paths between different modules of the
system. These systems can incur significant performance penalties due to the delaysin
checking. To erase this performance loss, error checking can be donein paralel. The side
effect isthat the error signal is delayed and recovery becomes more complicated. Multiple
instruction retry - rolling back multiple instructions - is called for in response to a delayed
error signal. Multiple instruction retry schemes can either employ full checkpointing or
incremental checkpointing [27]. In full checkpointing, which is employed by TERPS,
snapshots of the system state are established at regular or predetermined intervals, and the
system can roll back to this saved state on error detection. In contrast, incremental
checkpointing preserves system state alterations in adiding window like manner; error
detection initiates recovery by undoing the system state changes one instruction at atime,
back to an instruction previousto the onein which the error occurred. The Model 900 [25]
usesaform of incremental checkpointing by postponing the remapping of physical register
until the error detection latency has been exceeded for the data contained in the physical

register. Checkpoints of the system state are made at variable intervals. Though the

12



processor has an out-of-order mode!, in-order completion is maintained by storing the
results of instruction that finished out-of-order in temporary registers. If one of the
processors fails due to some fault, its processing state is rolled back to a consistent error
free state by purging the pipeline and temporary registers. Micro rollback is another
interesting incremental checkpointing based multiple instruction retry concept which was
introduced by Tamir et. a. [28][29]. Micro rollback is the process of backing up a system
several cyclesin response to adelayed error signal. In micro rollback each module must
save the state required to properly recover. In the UCLA Mirror Processor (MP) [26]
system two mirror processor chips operate in lock-step, comparing external signalsand a
signature of internal signals every clock cycle. On error detection, both processors either
recover using micro rollback or, in certain cases, erroneous state is corrected by copying a
value from the fault-free processor to the faulty processor. The MP was designed to
recover from single transient faults (with support for some multiple faults al'so) which are
detected by having 2 processors, i.e. 2-modular redundancy. The MP works to recover as
soon as an error is detected to prevent the spread of erroneous information throughout the
system, i.e. error confinement. TERPS does a system-level recovery and prevents errors
from spreading throughout the system asthe state is never completely committed until itis
safe to do so. Unlike the MP, TERPS does not take checkpoints at every clock cycle and
does not recover to exactly the clock cycle before the error. But TERPS is similar to the
MPin that it aso uses write buffersto support the rollback mechanism when encountering
store instructions.

The aforementioned hardware-based instruction retry schemes employ some form of

data redundancy to eliminate rollback data hazards |eading to hardware overhead.
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Compiler-based multiple instruction retry techniques [30] have been developed to reduce
hardware costs by aleviating anti-dependencies by data flow transformations that result
from multiple instruction rollback. However, compiler-assisted instruction retry [27][31],
which utilizes aread buffer to eliminate one kind of rollback data hazard and compiler
techniques to eliminate the remaining hazards, shows better performance as compared to
the compiler-only instruction rollback scheme by exploiting the unique characteristics of
different hazard types.

Instruction retry has the disadvantage that changes have to made in the processor
design. Bowen and Pradhan introduced a scheme that supports checkpointing and rollback
recovery at ahigher level; checkpoint and rollback was embedded directly into the
trandational lookaside buffer (TLB) [32]. In this scheme, a backup copy of amemory page
ismade just before it is modified. This requires large checkpointing intervals to minimize
the overhead due to page manipulations and modification of the TLB. Cache-Aided
Rollback Error Recovery (CARER)[33] is acache-based checkpointing proposal wherein
the replacement policy of the regular cache is modified such that it prevents the
replacement of dirty data thereby keeping a checkpoint state in memory. When either the
deletion of some of the dirty blocks becomes unavoidable, an external interrupt occurs, or
an I/O ingtruction is executed, a checkpoint is established by saving the processor state in
internal back up registers and marking all the dirty blocks as unchangeable. When an error
is detected, the processor recovers by restoring its saved state and al cache blocks, while
the unchangeable ones are marked invalid. TERPS a so employes asimilar approach
where the write buffers act as cache and hold the store instruction data to prevent them

from being committed to memory. However TERPS does not use the modified
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replacement policy used by CARER to save state as it stores the checkpointed state in an
external safe storage memory. An excellent performance study on cache-based recovery
schemesis presented by Janssens and Fuchs [34]. They stipulate that though the average
overhead of cache-based recovery schemesis quite minimal, the performance is not
predicable as compared to a system without recovery capability due to the lack of control
and variability of the checkpoint frequency of different programs and caches; checkpoint
frequency will vary according to the 1/O behavior and program’s interaction with the
memory. TERPS has a constant checkpoint frequency and it is shown that the performance
impact is predicable across different programs. Thisis crucial for rea-time systems where
a predictable recovery behavior would assist a scheduler to schedule programs to meet
their deadlines even in the presence of afault.

Support for checkpointing and rollback recovery in shared memory multiprocessor
environments have aso been proposed [35][36][37]. Wu et al. [35] present a cache-based
checkpointing and recovery algorithm to maintain a consistent checkpoint state. The use of
checkpoint identifiers and recovery stacks along with private caches was shown to reduce
performance degradation due to increased write-backs. In the ReVive scheme [36],
complex checkpoint and rollback functions are performed in software, while hardware
operations are limited to the directory controllers of the machine to reduce costs. During a
global checkpoint, the caches are flushed to memory and a two-phase commit protocol is
performed. Therefore the main memory contains the checkpoint state. Changes to the
checkpoint state in the memory are logged by the home directory controller and are used to
restore the memory state upon error detection. ReVive performs recovery from awide

range of failures without any hardware modification to the processors or caches. SafetyNet
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[37] isafault tolerant solution which maintains multiple, globally consistent checkpoints
of ashared memory multiprocessor and minimizes performance overhead by pipelining
checkpoint validation with subsequent parallel execution. The current uni-processor
TERPS form can be extended to a multi-processor environment utilizing architectures
similar to SafetyNet [37] asit aso can sustain long latency error detection mechanisms.

Checkpointing and rollback was proposed by Hwu and Patt for branch mis-prediction
and exception handling in out-of-order processors [38]. They proposed cost-effective
algorithms for performing checkpoint repair which incur very little overhead in time.
Smith and Pleszkun introduced novel structures for implementing precise exceptionsin
pipelined processors [39]. When an exception occurs, the process state must be saved such
that it reflects the sequentia architectural model. Primarily, the saved state must reflect the
following conditions: (i) All instructions preceding the instruction indicated by the saved
program counter have been executed and have modified the process state. (ii) All
instructions following the instruction indicated by the saved program counter are
unexecuted and have not modified process state. (iii) The saved program counter points to
the interrupted instruction. One can recognize that the concepts of precise exception
handling in pipelined processors can be used to ensure that during checkpointing, aprecise
state is saved.

TERPS has been devel oped borrowing the checkpointing and rollback concepts
applied in the software and hardware of many fault tolerant systems and the conditions for
precise exceptionsin pipelined machines for providing a precise rollback state. Fault
tolerant architectures that have been proposed previoudly have mainly concentrated on

protecting systems from single error transient faults while TERPS has been designed
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keeping in mind that EMI induced faults may occur everywhere in the system. This
disparity isthe main reason behind the differences in contemporary fault tolerant designs

and TERPS.
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Chapter 3

TERPS Architecture

As stated earlier, there isagrowing concern over the electromagnetic compatibility of
ICsin hostile EMI environments, especially those created by intentionally generated EMI
from amalicious source. EMI can couple through various parts of a system and, if
powerful enough, can cause misinterpretation of data, clock edges and even the power and
ground references. This can result in failuresin many sections of the chip at the sametime.
Related works have aimed at solving single error or alimited number of faults and hence
are not directly applicable as a solution to this problem. TERPS is a system architecture-
based fault tolerance approach that addresses the issues related with EMI induced faults
with little performance overhead. It allows recovery from such faults without having to
reboot or shutdown and without any human or even software assistance. A description of
how the architecture efficiently implements the hardware-based checkpoint rollback

recovery mechanism is provided in detail in this chapter.

3.1Checkpointing

The minimal process state required to return to any point of execution variesfrom
processor to processor, but in general it comprises of the program counter, the register file,

and awindow of memory transactions. For precise checkpointing the saved process state
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must be consistent with the sequentia architectural model. The issues dealt with here are
similar to those by Smith and Pleszkun [39].

First asystem overview of the various el ements of the TERPS architecture are
highlighted in fig 3.1. In addition to the CPU chip and memory system, a special safe
storage chip is augmented to the basic system architecture. The CPU is connected directly
to the safe storage via a dedicated bus to handle the checkpoint rollback traffic. This bus
may be ECC-protected to protect against single error transient faults. The memory
controller arbitrates the communication between the CPU and the DRAM system. The
CPU, memory controller and safe storage constitute the sphere of protection offered by
TERPS currently and, with the DRAMs themselves, represent the area of highest risk for

EMI effects. To implement the mechanism, the processing system has a checkpoint latch

I I
| | chkpt_rollback SSA
bus
| Processor
I Core
I SSB
N
I ;
Safe Storage Chip
I Write
| Buffer
| WBO-2 CPU chip
L - - — __— _= -
Memory
Controller,
Buffer

cpu_clk JIMALUIANLILUIUIITTTTUUUIIUUUARARA AR

ss clk )
state latched state latched

on CPU side on SSside

Figure3.1: TERPSATrchitecture.
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and a series of write buffers. This processing system is also connected to the I/O system
(fig. 1.2), which as explained earlier represents an area of dightly reduced risk for EMI
effects. Future work will be directed towards incorporating the I/0O system into the sphere
of protection aswell.

In order for the safe storage to be less susceptible to EMI, it applies circuit, device, and
process-level techniques that trade off circuit performance for noise tolerance and hence
operates at afrequency much lower than the CPU. The safe storage clock (ss_clk) is
stepped down from the CPU clock (CPU_clk) and is given a duty cycle designed to
maximize setup and hold times avail able to the safe storage. For the purposes of the
discussion let ustake thetime period of thess clk asN timeslonger than the CPU_clk, i.e.
Tss dk =N * Tcpy_qk- Dueto this speed mismatch and differencesin process technology,
the process of checkpointing is not a straightforward one. The safe storage must latch a
value from the CPU at a clock speed dictated by itstechnology’s characteristics, elseits
setup and hold times might be violated if, for example, the datais held valid on the bus for
atime equa to the period of CPU_clk and that timeis less than the setup and hold times
required by a safe storage. Hence when a precise checkpoint is taken at the CPU side, the
process stateisfirst stored in acheckpoint latch. If no fault is detected, the safe storage will
read the state from the checkpoint latch at every positive edge of the ss_clk. It isimportant
to note that EMI detection will not be concurrent and will probably take afew CPU clock
cycles. Thisleads to problems when afault happensjust before the safe storage reads the
state from the checkpoint latch, and the fault is detected only after this action. The saved
state in the safe storage may be polluted and the system would not be able to recover from

that state. This problem isdepicted in fig 3.2.
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Safe X R s s

Storage

Figure 3.2: Long latency EMI detection can cause failure of TERPS checkpoint
rollback mechanism. The TERPS checkpoint rollback recovery mechanism can be
explained using the safe storage clock (ss_clk) as areference. At point R the stateis
checkpointed at the CPU and written to the safe storage at point Q as shown. Then at
point S anew checkpoint is made by the CPU and this state is stored in the safe storage
at point T overwriting the last checkpointed state R. If afault actually occurs just before
point T and was detected only afterwards due to thelong latency EMI detection, the state
saved in the safe storage may be corrupt which isindicated by S*. When the system
initiates recovery at point C, it will reinstate the bad state S* into the system and
recovery will correspondingly fail. To operate correctly, the system should be able to
rollback to state R.

Therefore, when recovery is necessary, we have to rollback to an older valid
checkpoint. To satisfy this condition, the safe storage has two banks and will store the
checkpointed state in either safe storage A or safe storage B in an alternate fashion
allowing it to maintain the last two checkpoints. This modified checkpoint rollback
mechanism can be visualized in Fig. 3.3. Thisdesign is compatible with an EMI detection
circuit which can report the fault within at most N CPU clock cycles. Hence checkpointing
isdone every N CPU cycles.

Store instructions must be prevented from writing their data to permanent storage
beforeit is known whether the store data is error-free or not. By delaying the stores from
committing, load instructions that are re-executed after arecovery will not read the wrong

data. A multi-phase commit protocol has been employed to delay the store data by
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SSA X R R R
SSB X X S S

Figure 3.3: Checkpaint rollback mechanism with two safe storage banks. AtpointR
the state is checkpointed at the CPU and written to the safe storage A (SSA) at point Q.
Then at point S anew checkpoint is made by the CPU and this state is stored in the safe
storage B (SSB) at point T. The CPU initiates another checkpoint at point U. Note that
since afault is detected sometime before point C, the checkpoint made at U isnot latched
inthe SSA. At this point the safe storage contains checkpoints made at points R and Sin
SSA and SS B respectively. As the fault detected before point C may have occurred in
theinterval Q and T dueto delaysin the detection circuit, the system recoversto point R
and not S.

directing it through a series of three write buffers and the memory controller before they
are actualy written to memory. Aswe are rolling back to the older checkpoint, we need 3
write buffers to ensure that no write instruction is committed to permanent state until it is
safeto do so. Justification for using three write buffersis provided in the following chapter
where correctness of the design is addressed. The interaction of the checkpoint latch, write
buffers, and safe storage is shown in fig 3.4. During every checkpoint interval on the CPU
Side, stores write to the first write buffer, WBO0. On average about 30% of all instructions
are memory transactions and about one-third of those are stores[40]. Therefore the size of
the write buffer can be roughly decided by the frequency of checkpointing, e.g. if a
checkpoint is made every 128 CPU cycles, then the write buffer size can be set around 12-
entries. In the worst casg, if the write buffer becomes full, the pipelineis stalled until the
next checkpoint. During a checkpoint the contents of WBO, i.e. the store instructions that

were executed in thislast checkpoint interval, are written to the checkpoint latch. Also the
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R: Processor stalled and checkpoint is initiated

At.: {PC,REK} @ checkpoint latch; I @ MC; WB2<=WBI1, WB1<=WB0

t/Q: {PC.REK} @ SSA; 1 @ DRAM

S: {PC,RF,L} @ checkpoint latch; ] @ MC

T: {PC,RF,.L} @ SSB; ] @ DRAM

U: {PC,REM} @ checkpoint latch; K @ MC

C: {PC,RF,M} not latched; K @ DRAM;

On Rollback: {PC,RF,K} @ SSA to {PC,RF,WB0} @ CPU; WB1,WB2 flushed

Figure 3.4: Checkpointing and rollback recovery using the checkpoint latch, write
buffers and safe storage. For explanation purposes, the state of the 3 write buffers at
different checkpoint intervalsisindicated by I, J, K, etc. At point R, the processor is
stalled, and a checkpoint is taken over atimeinterval At. during which the PC, RF and
WBO (K) are written to the checkpoint latch, WB2 (1) is sent to the memory controller,
and then the write buffers are prepared for the next checkpoint interval as shown. At this
point checkpointing is done and normal execution resumes. At the next positive edge of
thess clk, i.e. at point Q, the safe storage reads the state checkpointed at R from the
checkpoint latch. By this point the memory controller has finished updating the DRAM
too. This checkpointing operation is repeated until afault is detected. In thefigure afault
is detected between times T and C. On detection, the system goes into recovery mode.
Rollback is accomplished by loading the state from the safe storage back to the CPU.
Now the system goes back to normal mode of operation.

datain WB2 is sent to the memory controller atomically, which may take afew cycles

depending on the checkpointing frequency and width of the frontside bus. On completing
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this transaction, WB2 will be overwritten by WB1 and WB1 by WBO. WBO is ready for
the store data that will follow. The memory controller begins writing storesto the DRAM
and normal execution resumes.

Note that in the TERPS architecture an instruction is declared committed when its
result is out of the safe storage and hence into permanent state. An instruction, whose
results are reflected in the older checkpoint saved, is ready for committal only after itis
sure that the newer checkpoint that was saved is ensured to be valid and the system will be
ableto rollback to it in case of afault. This defines arollback window, which isthe
minimum lifetime of an instruction, i.e. any instruction checkpointed at a given rollback
point can not be committed beforeit is out of the rollback window. For example, infig.3.4,
instructions checkpointed at rollback point R can be committed to permanent state only

after commit point C if thereis no fault detected.

3.2Rollback Recovery

When the EMI detection circuit indicates afault, the pipeline is stalled until therising
edge of safe storage clock to prevent the system from executing instructions that may be
faulty. At this point the system goes into recovery mode and the pipelineisimmediately
flushed to remove the corrupted state. The safe storage is prevented from reading the
checkpoint latch, asit would during normal operation, so it does not save the state that
could have been polluted. Instead, after sufficient bus turn-around-time, the safe storage
output buffers are enabled to provide the valid state to the CPU. Asthe safe storageis
running at amuch slower clock, the CPU will wait until the safe storage is able to drive its
output buffers. Once ready, the CPU latches the data from the safe storage and normal

operation isresumed. A detailed timing diagram of the rollback recovery procedure is
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shown infig. 3.5. It can be seen that the rollback penalty isfour checkpoint intervals. Note
that no matter where within a certain detection window afault is detected, the system will

always recover to the same rollback point corresponding to that detection window.

X :Fault Detected Detection window
TAT: TurnAround Time
Rollback Penalty
< >
R S U C R P Q

ssdk__ M M se I1 ] M mi
; j Lo T AT '

Recovery : : . |—|

mode . o

chkptbﬁ:lchk__'___R___):( _______ X >_< _____ HRXPX

SSA X R R R R P

SSB X X S S R R

Figure 3.5: Rollback recovery details. A timing diagram of the recovery procedureis
highlighted with the aid of the Recovery mode signal, safe storage select signal, and
checkpoint rollback bus. When afault is detected, the system goesinto Recovery mode at
the next rising edge of the ss_clk. After bus turn around time, the safe storage puts the
rollback state onto the checkpoint bus and it is read by the checkpoint latch. Again the
busis turned around and normal operation is resumed utilizing the saved state. At the
beginning of every checkpoint interval the safe storage select (ss_sdl) line, which selects
which bank of the safe storage to write/read from istoggled. But when the systemisin
Recovery mode, it isnot toggled asit is aready pointing to the bank with the older state
from which the processor will read instead of write during recovery. After recovery,

ss sdl istoggled as usua hence causing the system to overwrite the newer saved state
(S). Thisis convenient as newer state (S) may be corrupted due to he issues discussed
previoudly with regard to delay in detection.
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Chapter 4

Correctness of Design

The principles of rolling back are similar to those of handling a branch misprediction
or an exception in an out-of-order pipelined processor where some instructions have to be
removed and execution is restarted from another point. In the case of checkpoint and
rollback recovery, when afault is detected, some instructions are removed and execution
restarts from a point the system had passed through in the past. In both cases, the system
should give the appearance that there was no break in the flow of executioni.e. rolling back
should be transparent. Thus, the basic objective isto add some form of support to recover
to aprecisely correct system state while creating the impression that nothing went wrong.
Also, for any checkpoint rollback mechanism, care should be taken to ensure that re-
executing instructions, and hence writing and reading results twice, does not affect the
correctness of computation.

Therefore, for any checkpoint rollback recovery mechanism to function properly, itis

necessary and sufficient to satisfy the following conditions:
1. The system resumes execution to a consistent valid state after rollback recovery.

2. Re-execution of instructions does not affect correctness of computation.
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These conditions are sufficient because they ensure that the system will continue
execution in atransparent manner. This chapter is dedicated to describe how TERPS

attempts to satisfy them providing various examples and counter examples

4.1Resuming to a Consistent State
4.1.1System State and Rollback

In order to resume execution to a consistent and valid state, a consistent and valid state
must be saved during a checkpoint in the first place.

The entire state of a processing system is so large that it is difficult to quantify. It
consists of the pipeline registers, control data, memory, etc. But thereis a subset of this
state which is sufficient to restart execution from, and it isimportant to identify this state to
do efficient and valid checkpointing. Though this state will vary from architecture to
architecture, for the purposes of discussion, agenera idea of necessary stateisgiven. The
basic operation of aprocessing system isto fetch an instruction and execute it based on
what kind of aninstructionit is. Thereforeit is absolutely necessary to save the address of
the instruction you may want to restart from so it can be fetched again. Thisisstored in the
program counter or PC. Instructions are generally of 3 types: ALU, memory and 1/0. As |/
O semantics are complicated, 1/O instruction issues are not discussed at this point. ALU
instructions read operands or write results to the register file (RF). Memory instructions
read from or write to the memory/RF. Thus, in general, the state required to be saved
during a checkpoint, in order to restart from an intermediate point, should consist of the
PC, RF, and memory. This state is also called the rollback state.

The memory is usualy quite large and it would be difficult to checkpoint the entire

memory. But store instructions are not that frequent, and the state changes made by stores
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within a checkpoint interval can be saved. This assumes that the memory isrelatively fault
tolerant. In TERPS, support for saving changes to the memory system within a checkpoint

interval is provided in the form of awrite buffer (WBO) as explained previoudly.

4.1.2Precise Checkpointing

After identifying the information that needs to be saved during a checkpoint, the
checkpointing mechanism must save the information such that it forms a consistent state.
In asequentia (un-pipelined) machine, instructions are processed one-by-one, one
finishing before the next starts. For any architecture, therollback state must be precise, i.e.,
the rollback state should reflect the sequential architectural model. Thisissimilar to
establishing precise interrupts in pipelined processors [39)]. If therollback stateis
imprecise, it may leave the system in an irrecoverable state.

For precise checkpointing the following conditions should be satisfied:

1. The state changes by al instructions preceding the instruction indicated by the

checkpointed PC are reflected in the rollback state.

2. The state changes by all instructions following and including the instruction indicated

by the checkpointed PC are not reflected in the rollback state.

Itistrivia to satisfy these requirements for a sequential architecture. Fulfilling these
conditions for an in-order pipelined processor is aso quite straight forward. The
checkpoint mechanism should stall the pipeline and then checkpoint by saving the PC of
the next-to-complete instruction, the Register File (RF), and the writes to the memory
system in that checkpoint interval (WBO). Checkpointing the PC of the next-to-complete

instruction ensures that the instructions preceding it would have already completed and
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their results would be reflected in the rollback state. Store instructions may write to the
memory system before they reach the next-to-complete stage in the pipe depending on the
design. Thiswould lead to an inconsistent rollback state. Stalling the pipeline prevents
these memory writes from changing the state before establishing a checkpoint and hence
satisfying condition 2. For an out-of-order pipelined processor, the techniques
implemented by Sohi and Vajapeyam [41] to establish a precise interrupt can be used to

determine a precise checkpoint.

4.1.3Multi-phase Commit

Even though the rollback state is precise, it can not be guaranteed that the system will
rollback to avalid state. In TERPS, checkpointing is a 2-step process. First the rollback
stateis saved in the checkpoint latch at the CPU and then it isread into the safe storage. As
explained in the previous chapter, the rollback state may be corrupted dueto delaysin EMI
detection. To prevent rolling back to a corrupted state, TERPS maintains the older rollback
state in the safe storage too, which is known to be error free. This state is used to rollback
to avalid state. The instructions in this older state should not be committed to permanent
unrecoverable state until it isknown that the newer rollback state saved iserror free. If this
condition is not supported then the system is vulnerable to recovering to an invalid state.
TERPS s outfitted with a dual-bank safe storage to preserve the last two rollback states.
When EMI is not incident, the recent checkpointed state overwrites the bank containing
the older checkpoint when it isread into the safe storage. It is safe to overwrite the ol der
rollback state as the other rollback state is known to be good at this point if afault did not

Ooccur.
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Instructions that read from the RF after arecovery see avalid RF state because during
acheckpoint the entire RF is saved. On recovery, the entire RF is overwritten by the
rollback state undoing all the writes of instructions that wrote to it after the checkpoint.

Thus, the state of the RF after recovery is precise. Thisisshown in fig. 4.1.

(rollback pt.) Rollback )(:Fault Detected
1st chkpt 2nd chkpt 3rd chkpt
ss clk m% % M
-_— - /' ' /: ' : : : :
1st checkpoint . — — L
V X Y Z
(i) sw addrA, r3
s . . ! checkpoint .
2nd checkpoaint - - Vo . ¢ interval
3rd checkpoint
v v v v
Fault Detected V@SB W@SSA X@SSB Y NOT LATCHED
Initiate Recovery SSA reloaded

Figure4.1: RF writesdo not change per manent state. Intheinstruction stream on the
left, instructions above are fetched before the instructions below. The RF in different
checkpoint intervalsis represented by W, XY, and Z. The arrow indicates that the result
of instruction j iswritten to RF X. Instruction j writes to register R3 after instruction i
reads from R3. But after recovery, the entire register file isloaded from safe storage bank
A and does not reflect the change made by instruction j stored in safe storage bank B.

However, adual-banked safe storage is not sufficient for memory instructions because
unlike the RF, the entire memory is not saved in the rollback state during a checkpoint as
explained previoudly. Only the store data for the checkpoint interval before the rollback
point isrecovered from the safe storage. Hence, load instructions that are re-executed after
arecovery may not see a consi stent state of the memory if store instructions executing after

therollback point are committed to permanent state. An exampleisillustrated in fig. 4.2

where, in an instruction sequence between two checkpoints, aload instruction reads from
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Figure4.2: Storeinstructionsthat commit early may change permanent state. The
figureillustrates a scenario with one write buffer where writes are committed to the
memory system just after they are checkpointed. The load instructionsi and j will
incorrectly read the store data from instructions k and | after recovery asthey were
written to memory.

an address location that a store instruction succeeding it writesto. If the stores are
committed to permanent state too early, the load instruction may read the wrong data.
Architectural support to delay such stores from writing to permanent unrecoverable state
beforeit is safe to do soiscalled for.

In response to these requirements, TERPS employs a multi-phase commit protocol,
supported by three write buffers and the dual-bank safe storage, to ensure that no
instruction is permitted to commit to permanent unrecoverable state (i.e. the DRAM
system) until it issafeto do so. Fromfig. 4.2, it is clear that store data must be delayed to
memory so that on recovery, the state will be precise. To delay stores from writing their
datato permanent state, some temporary write buffers should be inserted between the CPU
and the memory system. Following the same example giveninfig. 4.2, fig. 4.3 (a)

describes the TERPS mechanism equipped with two write buffers instead of one. For the
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Figure 4.3: Multi-phase commit. Thisfigure demonstrates how multi-phase commitis
implemented to ensure al instructions following the checkpoint have not modified the
process state before the commit point of their current checkpoint interval. In the
Instruction stream on the left, instructions above are fetched before the instructions
below. (a) showsthat two write buffers are insufficient whereas three write buffers, as
shown in (b), are adequate.

interval highlighted, the stores k and | write to addresses A and B after theloadsi and |
have read from the same addresses. These stores write to WBO, named Q. After the third
checkpoint, afault is detected and recovery isinitiated. But at this point the instructions k
and | in Q have already been committed to the DRAM system. Hence when the loadsi and
j arere-executed after recovery, they will incorrectly read the store data of the instructions

k and |. Thus, two write buffers do not delay the commitment of the store data adequately.
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Infig. 4.3(b), three write buffers have been implemented. The additional third write buffer
postpones the commitment of Q to the DRAM by one checkpoint interval, preventing
instructions k and | from overwriting the values that i and j should read in case of a
recovery. Thus, three write buffers are adequate to accomplish correct multi-phase commit.

Consider a situation where the write buffer WBO, which contains the store data for a
particular checkpoint interval, is not saved into the rollback state. This caseisshowninfig.
4.4. The stores in P have already been written to the DRAM by the time recovery is

initiated. After recovery, aload, shown to read datawritten by astore in P, may receiveits
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(m) sw addrA, r6 . . -
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Fault Detected : : e R
Initiate Recovery ! ! P@MC " MC=>DRAM
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M @DRAM N @DRAM O@DRAM P* @ DRAM

Figure4.4: Importance of saving store data in the safe storage. Multi-phase commit
implemented without saving the store data in the safe storageis shown. Loads k and |
read data written by storesi and j. By the time the fault is detected, this store data (P) is
written to the DRAM. But EMI might have corrupted it. After recovery, theloadsk and |
will again execute. They will correctly not read the store data due to stores m and n, but
will read the corrupted datafrom the DRAM. Hence, on recovery it is necessary that a
backup of the store data be brought back in to the system.
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data from the DRAM. It would seem these stores, which represent a significant overhead
during checkpointing, do not need to be saved asthey are present in the DRAM after a
recovery. However, it isimportant to note that during the interval highlighted in thefig. 4.4,
store data is being sent from the memory controller to the DRAM. Concurrently, afault is
also detected. EMI effects may corrupt the buffer in the memory controller or the data on
the busintransit to the DRAM rendering this datain the DRAM to be polluted. Saving the
WABO contentsis necessary for backup reasons and eventually the multi-phase commit
protocol will overwrite the DRAM with valid data using this backup after recovery.

If afault is detected during recovery an invalid rollback state may be delivered to the
CPU and the system will recover to an invalid state. TERPS handles thisissue by just

Initiating recovery again using the same rollback state from the safe storage.

4.2 Re-execution of instructions

Clearly, precise checkpointing and the multi-phase commit protocol work to resume
execution to aconsistent and valid state. But, when instructions are re-executed, they write
their resultsto the system registers and memory again. Thismay trigger an event to reoccur
and this may change the correctness of computation.

One principle that the memory portion relies on isthe fact that the memory system can
be read from or written to multiple times without side effects; reading from a given
memory location multiple timesis the same as reading from that |ocation once; writing to
agiven memory location multiple times with the same value is the same as writing to that
location once. The RF aso follows the same behavior. Hence, re-executing ALU and
memory instructions, provided we maintain in-order semantics for writes as discussed

above, does not affect the correctness of computation.
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However, the I/O system does not behave like the memory system in thisregard: I/0
reads and writes have side effects, and the last value written to an I/O location is not
necessarily the value read back from that location. For instance, a processor may be
outputting information to aincrease an external counter which displays the number votes
for an electoral candidate. On re-execution of an I/O instruction after arecovery, if an
increment signal is re-sent, the counter would increment twice and show the incorrect
number of votes!

We are currently developing support for 1/0 semantics in TERPS. One crude yet
effective method is to checkpoint after every 1/0 request is executed. The CARER
mechanism [33] implements asimilar protocol. But in TERPS the frequency of
checkpointing is dependant on the safe storage. The safe storage is slower becauseitis
made from an older process technology for better fault tolerance. The checkpoint interval
has to be long enough to meet the setup and hold times of the safe storage. Hence the
system may haveto stall after every /O request until a checkpoint can be established. This
would prove to be highly inefficient and itsimpact on performance would be significant if
I/O requests occurred frequently. For amore efficient implementation we are developing a

mechanism to support I/O semantics that incorporates the following characteristics:

1. Read and write buffersthat are maintained by the I/O controller on a per-device basis

and that are enabled or disabled by the operating system.

2. Read and write transactions that are identified by a monotonically increasing unique
identifier.

3. A diding window protocol between the CPU and the 1/0O controller to manage the
buffer contents so that any transaction isin one or more of the following states: (i)
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buffered on the CPU, (ii) stored on the safe storage chip, (iii) buffered in the 1/O

controller, or (iv) committed to the 1/O system and out of the window of vulnerability.

We are currently modeling this mechanism in Verilog Hardware Description Language

and expect to integrate it into our TERPS system in the future.
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Chapter 5

| mplementation

5.1Basic Processor Architecture

The TERPS mechanism is general in nature and can be tied with any instruction-set
architecture. A microarchitecture’s existing logic for exception handling can be used to
generate a precise checkpoint and by augmenting it with the write buffers and checkpoint
rollback control logic, support for checkpoint and rollback recovery can be provided.

For implementation purposes, we chose the RiSC-16, 5-stage pipelined architecture as

the basic processor architecture. This architecture was sel ected because,

1. Theauthor was familiar with the processor from the onset of development and the

architecture iswell documented.

2. Thedesignisnot dependent on any particular instruction set; henceit was preferableto

use an existing instruction set.

3. A convincing “proof of concept” could be provided by thisarchitecture, which, though

simplein design, is general enough to solve complex problems.

4. Inorder to have asuccessful physical prototype in an academic environment, the basic

processor architecture had to be simple.
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The 16-bit Ridiculously Simple Computer (RiSC-16), isateaching |SA that is based

on the Little Computer (L C-896) developed by Peter Chen at the University of Michigan.

The RiSC-16 has an 8-entry register file, where, like the MIPS instruction-set architecture,

by hardware convention, register O always contains the value 0. There are three machine-

code instruction formats and atotal of 8 instructions. The instruction-set is given in table

5.1. It has 5-stages. namely the fetch, decode, execute, memory, and writeback stages. It is

similar to the 5-stage DLX/MIPS pipeline that is described in Hennessy and Patterson

Table5.1: Instruction Set Architecture

Assembly-Code Format

Meaning

add regA, regB, regC

R{regA] <- R[regB] + R[regC]

addi regA, regB, immed

R[regA] <- R[regB] + immed

nand regA, regB, regC

RregA] <- ~(R[regB] & R[regC])

lui regA, immed

R[regA] <- immed & OxffcO

sw regA, regB, immed

R[regA] -> Mem[ R[regB] + immed ]

Iw regA, regB, immed

R[regA] <- Mem[ R[regB] + immed ]

beq regA, regB, immed

if (R[regA] == R[regB] ) {
PC<-PC+1+immed
(if 1abel, PC <- labdl)

}

jarregA, regB PC <- R[regB], R[regA] <- PC+ 1
PSEUDO-INSTRUCTIONS:

nop do nothing

halt stop machine & print state

[li regA, immed R[regA] <- R[regA] + (immed & 0x3f)
movi regA, immed R[regA] <- immed

fill immed initialized data with value immed
.Space immed zero-filled data array of sizeimmed
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[40], and it fixesafew minor oversights, such aslack of forwarding to store data, lack of
forwarding to comparison logic in decode, implementing the 1-instruction delay dot, etc.
This pipeline adds in forwarding for store data and eliminates branch delay dots. Asin the
DLX/MIPS, branches are predicted not taken, though implementations of more

sophisticated branch prediction are certainly possible.

5.2Implementation

The TERPS architecture is modeled in Verilog Hardware Description Language
(HDL), inwhich the modules are described by their logical behavior suitable for synthesis.
To guarantee the correctness of our mechanism at the behavioral level, atest benchis
written as a stimulus to simulate the behavior of the entire system. All simulations were
run in NC-Verilog which isaLogic Verification tool from the Cadence suite.

To support checkpoint and rollback recovery, three write buffers and a checkpoint latch
are added to the pipeline and a separate safe storage module was also devel oped to
interface with the processor core module. A detailed block diagram of the TERPS
architectureis givenin fig.5.1. The fault detection signal is generated by a comparator
circuit on the CPU chip for the ease of development and testing.

Some of the important control mechanisms added to the existing control logic and

structure of the origina pipeline for checkpointing and rollback were:

» checkpoint counter: This counter is responsible for the synchronization of the
checkpoint rollback mechanism. It isimportant for controlling many other signals and

thelir timing.
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Figure5.1: Detailed block diagram of the TERPS Processor Architecture. The
RiSC-16, 5-stage pipeline modified to support checkpoint and rollback. The shaded
boxes represent clocked registers; solid lines represent data paths and buses; and dotted
lines represent control paths. A pipeline register is labelled with the two stages that it
divides; for example, the pipeline register that divides the instruction fetch (IF) and
instruction decode (ID) stagesis called the IF/ID register. The prominent features added
are the 3 write buffers (WB 0-2), the 512-bit checkpoint latch, the memory controller,
checkpoint counter, detector latch, and checkpoint rollback control logic.

» chkpt: Thissignal indicates that a checkpoint is underway. The processor is stalled
during thistime. It takes 7 CPU cyclesto do a checkpoint in our implementation: 6-
cyclesfor transferring the WB2 to the memory controller over a 64-bit front-side bus

and 1-cycle for shifting the write buffer contents.
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detector_R: Thissignal goes high when afault was registered. It is held high until

recovery isfinished. It isused for timing and control purposes.

RMODE: This signal, which makes the system go into recovery mode of operation,
goes high just before the safe storage is supposed to latch the data from the CPU. The

processor is stalled during RMODE.

RMODE_stomp: When, the system goes into recovery mode, RMODE_stomp will

flush the pipeline, removing al “faulty” state.

M_stall: This stalls the pipeline until the next checkpoint when there is awrite request

but the write buffer, WBO, is full. The write buffers have 12-entries each.

ss sal: Used for selecting which bank of the safe storage the checkpointed rollback

state will be written to or read from.

ss_out_en: This enables the output buffers of the safe storage so that it can output

rollback state information onto the checkpoint rollback bus.

The checkpoint latch contains the entire rollback state: 7 registers from the RF (RFO is

always 0), the precise checkpoint PC, and the write buffer WBO. This 512-hit latch is

connected to a bi-directional checkpoint rollback bus which communicates with the safe

storage. To prevent the array of output buffers from pulling alarge amount of current at the

sametime, the busislogicaly divided into 16, 32-bit sectionsto enable the busina

staggered manner.

The precise checkpoint PC isthe PC of the next-to-commit instruction. In the 5-stage

RiSC-16 processor, the next-to-commit instruction isin the memory stage. If that

instruction is anop, then the next valid instruction in the pipe is selected.
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During arecovery, the checkpoint rollback bus hasto be alowed aturn around time
before the safe storage sends data on it. This turn around time has been safely set to 20
CPU cycles.

To execute the multi-phase commit protocol correctly, the memory hierarchy has been
modified. Instead of directly accessing the main memory, aload instruction concurrently
checksin the write buffers WBO0, WB1, WB2, the memory controller buffer, and the main
memory for data. If there are multiple matches for the same address, it gives priority in the
following order: WBO, WB1, WB2, memory controller buffer, and lastly main memory.
For smplicity, a 1-cycle memory access latency was assumed.

The safe storage module contains 2 banks A and B to store the newer and older
rollback states. Its ower clock (ss_clk) is generated by the CPU using the chkpt_counter.
The ss_sdl signal from the CPU selects which bank the incoming rollback state should be
gated to during a checkpoint or from which bank should the CPU read data from during a
recovery.

Two working versions have been developed. One, whichisfully synthesizable, yielded
aphysica prototype which was fabricated through MOSIS in 0.25um technology. It isa
functionally limited version (the write buffer is not saved in the safe storage during a
checkpoint) because it had to meet the constraints imposed on pin count by MOSIS. It
checkpoints every 128 cycles and can operate at 100MHz. It will be integrated with 2 safe
storage chips using 3D-1C technology at the Laboratory of Physical Sciences (LPS). This
prototype was developed for “proof of concept” and to test our capabilitiesin actually
fabricating a chip which we have done in a successful manner. The other version isafully

functional one and its checkpoint frequency can be varied from 64 to 512 cycles per
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checkpoint. We plan on fabricating it in the future utilizing the full capabilities of 3D-IC

technology. The performance analysisis based on thisfully functional version.

5.2.1L ogical Verification
This section is dedicated to enumerating the steps taken in verifying the logic
embedded in the design developed. NC Verilog is used to compile and run the verilog

code. A screen shot of the of the NC Verilog tool is showninfig. 5.2.
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Figure5.2: Cadence NC Verilog. In this screen shot, you can observe the interface of
the NC Verilog tool. The RF, PC, pipdline registers, and certain control signasare
displayed by the ssimulation that is running.
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After running the smulation, signals of particular interest can be selected using the

Design Browser and viewed in atiming diagram using the SimVision tool, which is

bundled with NC Verilog. A screen shot of the Design Browser isshown in fig. 5.3. Various

signals throughout the hierarchical modular structure of the Verilog code can be selected.

Simvision: Design Browser 1

File Edit X¥iew Select Windows

Help

@.

:-i‘

Jud [

Scope Tree: g Signals/Yariables of scope: itestZ::tup.cpu
=0 teste X [ chipt 5 data_bus__in[31:0] @b Eqg
Gzt top 5§ chkpt_pc[15:0] M data_bus_|_out[31:0] Gy EXMEM
i @y Chkpt_Rallback_Bus[31:0] % data_bus_J_in[31.0] @k EXMEM
= =9 clk G data_bus_J_out[31:0] %@k EXMEM
Eocpu R cir]a:0] B data_bus K_in[E1:0] 9B EXMEM
-3 E Chkpt SR ctr_w(B:0] [ data_bus_K_out[31:0] %Gy EXMEM
: DStage B data_hus_&_en 4% data_bus_L_in[31:0] Zh EXMEM
& data_bus_g&_in[31:0] [ data_bus_L_out[31:0] d@h EXMEM
e G data_bus_a_out[31.0] & data_bus_M_in[31:0] @G front_sid
Fatage B data_bus_B_en Mg data_bus_M_out]31:.0) 95 IDEX_ar
MemBuf S data_bus_B_in[31:0] % data_bus_M_in[31:0] 5 IDEX _ar
MEMStage M data_bus_B_out[31:0] M data_bus_M_out[31:0] 95p IDEX_ar
EBr data_bus_C_en 45 data_bus_O_in[31:0] 95 IDE¥_of
Ram B data_bus_C_in[31:0] G data_bus_O_out[3i:0] 4Gy IDEX_pe
RegFile M data_bus_C_out[31:0] B data_bus_P_in[31:0) g IDEX_IT
WEBStage B> data_bus O _en [ data_bus_P_out[31:0] 4Gy IDEX_s1
LE Fibo S5 data_bus_D_in[31:0] &b deassert RMODE g IDEX_s2
= M data_bus_D_out]F1:0] @ detector_latch i IDEX_v_
42 551 By data_bus_E_in[31:0] =3 detector_out %y IFID_ins
- 5 BEZ M data_bus_E_out[31:0] i detector_out_G1 5y IFID_op.
T sed 4% data_bus_F_in[31:0] o} detector_out_©2 g IFID_pc.
1% s34 [ data_bus_F_out[31:0] b detector_out_Q3 g IFID_ra_
= 4% data_bus_G_in[31:0] B> detector R g IFID_tB_
E e B data_bus_G_out3:0] W dmem_addr_w(15:0] & IFID_rC.
= GSE J data_bus_H_in[31:0] SEp dmem_data_out[15:0) @ IFID_ v+
=57 || M data_bus_H_out[31:0] i dmem_data_w(15:0] g instr_out
et G I P
Filter: | - [-E [ B [B [ [®F Rt +
i@l |1 object selected

Figure5.3: The Design Browser. This screen shot shows the interface of the Design
Browser. On the |eft the various modules can be viewed in their hierarchical tree
structure. On the right the various registers and wires are available for selection to be

viewed in the timing diagram.

After selecting the various registers and wires in the Design Browser, the timing

diagram can be viewed in the SimVision waveform view. Thisisshowninfig. 5.4.
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Figure 5.4: The Waveform view. This screen shot, shows the timing diagram of the
simulation being run for selected signals. The signal names are displayed on the left hand
side of the screen and from top to bottom are clk, ss_clk, chkpt, detector_out (the fault
detection signal), detector R, RMODE, RMODE_stomp, ss out_en, ss sdl, data bus en,
and the Checkpoint Rollback bus. The waveforms are displayed on theright side. Thetool
alowsthe user to zoom in and out, view the waveforms in motion, and place markers for
debugging among many other features.

The checkpoint interval has beenillustrated in the timing diagram. The RMODE signal
is high when the system isin recovery mode. It can be observed from the timing diagram
that acheckpoint istaken at the beginning of every checkpoint interval except for when the
systemisin recovery mode. Thisisindicated by the ‘chkpt’ control signal. The recovery
penalty is shown to be 4 checkpoint intervals as explained previously. When afault is

detected, the system goesinto recovery mode and the pipeline is flushed using the



‘RMODE_stomp’ control signal. The‘ss_sal’ lineindicates which bank of the safe storage
will be written to or read from. The bank, A or B, that is selected by the‘ss sdl’ lineis
marked in the diagram. When in recovery mode, the safe storage does not latch the
checkpointed state from the CPU into the safe storage (bank B in this case) asit may be
corrupted. The safe storage, after abus turn around time (TAT), outputs the old rollback
state in bank B to the CPU. Thisis also marked in the figure. The system resumes normal
execution after recovery.

Thistiming diagram verifies that the logic design implemented in Verilog conforms to

the TERPS specifications.

5.3Safe Storage |mplementation

This section discusses how the safe storage should be implemented to achieve low
susceptibility to fault tolerance. For our prototype, we fabricated the safe storage with a
0.5um feature size, which is an older technology. It operates at a much lower frequency
(781.25 KHz) as compared to the CPU chip (100MHz). Thisfrequency is set by the
checkpoint interval which isfixed to 128 CPU cyclesfor the prototype.

The safe storageisamemory that is specially designed to have significantly more EMI
tolerance than the processor. Most of the design techniques that can be used trade off speed
and/or die areato achieve better EMI tolerance. As high performance CPUs require both
speed and die area, the tradeoffs make it difficult for these techniques to be applied to a
processor and maintain its high performance.

Better EMI tolerance can be achieved using avariety of circuit, device, and process-

level techniques. Most of these are orthogonal to each other and may be used or left out
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Figureb5.5: 3 possible SRAM memory cel implementations. Fig. (a) showsthe
conventional six-transistor (6T) cell, fig. (b) shows the four- transistor (4T) cell, and fig.
(c) shows afour-transistor loadless (4TLL) memory cell configuration.

depending on the level of tolerance required by the system and the willingness of the
designer to accept the necessary tradeoffs.

The safe storage isimplemented as a static RAM that uses cross-coupled inverters as
memory cells as opposed to a DRAM using a capacitor as the storage element. The
presence of the regenerative feedback on the inverter circuit makes it perform better asa
bistable circuit as compared to capacitor-based DRAMS.

The SRAM topologies shown in Fig. 5.5 can be compared based on their cell size,
static power consumption and (more importantly for this article) the static noise margin
(SNM). The SNM of amemory cell gives the required value of voltage change at the
inverter inputs to cause the cell to change state. Table 5.2 summarizes the features of each
configuration. It isagood measure of the amount of spurious signal needed at the memory
cell inputsto corrupt its state.

The SNM of different memory cell configurations has been extensively studied (avery
good exampleis Seevinck [42]). These studies show that the 6T configuration almost

always has higher SNM. The 4T configuration can approach or even equal the 6T SNM but
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at the expense of both its size and DC power consumption. Thismakesthe 6T memory cell

the best choiceif higher EMI tolerance is needed.
Table 5.2: Features of different SRAM topologies

Topology Size C(?r?wpr:ggr on SNM
6T Big Very Minimal High
4T Medium Potentially Low-high
Significant
4TLL Small Very Minimal Low-medium

The soft-error rate (SER) of SRAMsin the presence of apha particles has aso been
widely studied [43][44]. It has been shown that maximizing the stored charge in the
memory cell (output nodes of the invertersin Fig. 5.5) makesit harder for alpha-particles
to erroneoudly cause state changesin the memory cell, resulting in better SER. The most
common way to increase this stored charge isto increase the parasitic capacitance of the
cell output nodes so that more chargeis stored for agiven supply voltage. This capacitance
isincreased using device-level techniques enlarging the cell areato increase the parasitic
diffusion capacitances. Hence, higher capacitance is achieved at the expense of alarger
cell area. Process-level technigques can aso be used where grounded polysilicon layers are
added to increase overlap capacitance or to completely fabricate the PMOS loadsin
polysilicon. In this case, higher capacitance is achieved in exchange for process
complexity.

Techniques to improve SER aso improve EMI tolerance. Achieving better SER by

increasing the charge stored in the memory cell resultsin better EMI tolerance because



larger EMI signal powers are required to induce a voltage in the system that is large
enough to exceed the cell's SNM to corrupt the cell's state.

The same principle can be applied to the entire safe-storage system and not just the
storage cells. Using transistors with larger areas and powered by a higher supply voltage
will result in increased charge stored within the system. Thisincreased charge require
larger amounts of EMI to push around. Sincethe safe-storage area needs larger transistors
and higher supply voltagesto increase the stored charge, it is fabricated using alarger
feature size process that is about two or more process generations older than the one used
for the CPU. This exemplifies the tradeoffs between speed and EMI tolerance needed to
implement the system.

Using the previous techniques, the circuitry within the safe-storage can be made to
tolerate higher-levels of EMI. Care has to be taken to ensure that a specific subset of the
communication between the CPU and the safe-storage be reliable. One way this could be
doneisto use differentia signaling between the safe-storage and the CPU. Common node
noise caused by the EMI will be cancelled and with proper care, induced differential mode
noise will be minimal. EMI coupling must be minimized to accomplish this goal.
Interconnect lengths must be minimized, aong with current loop areas (that function as
antennas) formed by the interconnect. This can be accomplished by using differentia
signal interconnects placed very close to each other.

Achieving all of thisisfacilitated by the 3D integration technology used by the system.
Thisrelaxesthe pin limitationsimposed by packaging constraintsin conventional systems.
This makes additional input/output pads available to the designer, with the added benefit

that inter-die interconnects are going to be considerably shorter because of the chip-
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stacking. This makes possible the use of short, very wide, differential buses needed for
EMI-tolerant communication. An additional benefit of 3D chip integration isthe
possibility of using die-level shielding mechanisms to protect the safe-storage core from
EMI. Our group’s effortsin 3D integration are described in arecent article [45].
Asasummary of this section, the safe-storage will use six-transistor memory cellsto
maximize storage stability. A better EMI tolerance can be achieved by increasing the
amount of stored charge within the system. This can be done by using additional grounded
polysilicon layers to increase signal overlap capacitances, by increasing transistor sizesto
increase diffusion capacitances, and increasing the supply voltage. The safe storage can be
fabricated using a process technology that is approximately two generations older than the
CPU. Lastly, 3D chip integration is used to interconnect the safe-storage and the CPU
together. This technology removes pin limitations imposed by package constraints and
makes possible the use of a short, very-wide differential bus. 3D integration also makes
possible the use of various chip-level shielding schemesto further protect the safe-storage

from EMI.
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Chapter 6

Resaults

6.1Performance Analysis

This section presents the checkpoint rollback recovery mechanism and the multi-phase
commit protocol’s effect on the overall performance of a processor. During the normal
execution of instructions, the interaction with the checkpointing mechanism is limited to
the write buffers and hence its impact on performance islow. The overhead is primarily
due to the time taken to establish a checkpoint and how fregquently a checkpoint is taken.

As checkpointing is done in a periodic fashion, performanceis similar for different
benchmarks when TERPS is operating at a particular checkpointing timeinterval.
However, memory intensive benchmarks may slow down forward progress significantly if
they regularly fill up the write buffer quickly and therefore stall the machine. Henceit is
important to select the proper write buffer size. In general, 30% of instructions are memory
instructions and 10% of these are stores [40]. We have chosen 4 different checkpointing
timeintervals (64, 128, 256, 512) to show theimpact of checkpointing on performance and

the corresponding write buffer sizeis shown in table 6.1.
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Table6.1: Write buffer size

CPU cycles per Write
checkpoint buffer size
64 8
128 12
256 24
512 48
The benchmarks used were:

1. Laplace: Uses numerical methods to approximate Laplace's equation by averaging.
2. Vector Addition: Adds 2 vectors of size 10,000. Memory intensive.

3. Sample: Implements various basic functions which are seen in many programs like

summeation, factorial, etc.

4. Horner: Implements Horner's method for evaluating a polynomial and comparesit

with another less efficient method.

The C compiler for RiSC-16 microprocessor (ver. 1.50) developed by Afshin Sepehri
and Bruce Jacob [46] was used to compile Sample and Horner.

The performance impact due to these benchmarksis shown in fig.6.1. All results are
with a64-bit frontside bus. The performance impact of various benchmarksfor a particular
checkpointing timeinterval isrelatively the same. Thisis seen because the write buffers
did not fill up often even in the case of the memory intensive Vector Addition benchmark
and hence checkpointing, in this scenario, does nothing to worsen the computational speed
of the pipeline. These results support the criteriafor selecting the size of the write buffers.
The checkpointing mechanism stalls the pipeline during a checkpoint and takes a

checkpoint independent of the state of the system. So the performance overhead is mainly
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Figure 6.1: Performance Over head due to checkpointing. Four benchmarkswererun
on the TERPS system at four different checkpointing timeintervals.
due to the stalling of the pipeline during a checkpoint and how frequent a checkpoint is
made.

During a checkpoint, the rollback state is saved into the checkpoint latch, the store data
in the last write buffer WB2 istransferred over the 64-bit frontside bus to the memory
controller, and then the write buffer WB2 will be overwritten by WB1 and WB1 by WBO.
The overhead of stalling the pipeline and performing a checkpoint is prominent when
checkpointing is done more frequently as can be observed from the chart. It would seem
that as the checkpointing interval isincreased the performance would improve drastically.
However, when checkpointing is done less frequently the size of the write buffers hasto
increase to accommodate more store data. Correspondingly, the time required to establish

acheckpoint will increase asit takes more cycles to write the store data in the write buffer
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WAB2 to the memory controller over the frontside bus. This effect is reflected in the
performance overhead. It can be seen that for the cases where a checkpoint is taken every
128, 256, and 512 CPU cycles, the overhead remains at around 5-6%. Checkpointing

around every 128 CPU cycles, for the current configuration, seems to be pareto-optimal.

6.1.1Performance with the Memory Controller on-chip

From thisanalysisit is quite clear that the frontside bus checks the improvement in
performance which should be observed while increasing the checkpointing interval. To
achieve better performance with larger checkpointing intervals, the width of the frontside
bus should be increased. However, thisincreases the cost drastically as the number of pins
increases correspondingly. To overcome the constraints on pin count and still have alarge
frontside bus, the memory controller should be integrated onto the CPU chip [47][48]. The
width of the frontside bus can be very large in this case as the bus is on-chip. The effect of
checkpointing is quite minimal with this configuration for all frequencies of
checkpointing, as seen infig. 6.2, and amost insignificant for the case where
checkpointing is done every 512 CPU cycles.

The cost of moving the memory controller on chip may be high as die areawould
increase. System level redesign may also be costly and time consuming. Hence, such a
step should be avoided when the extra performance overhead incurred with the memory
controller off-chip, which is quite low to begin with, is acceptable. In the case of critical
real-time systems, where performance may be an important issue, such a cost may be

deemed appropriate.
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Figure 6.2 Performance over head due to checkpointing with the memory
controller on-chip.
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Chapter 7

Conclusonsand FutureWork

In thisthesis, the threat of intentional EMI to electronic systems was addressed by
introducing afault tolerant architecture, TERPS (The Embedded Reliable Processing
System). It can significantly lower the susceptibility of a processing system against EMI-
induced transient faults by restricting the area of vulnerability to asmall section of a CPU
and a safe storage device that uses technology which isrelatively much more EMI-
tolerant. The system providesthisincreased resistance to EMI by transparently performing
checkpoint rollback recovery operations between the CPU and safe storage, and by
Instituting a multi-phase commit protocol between the CPU and memory controller.
TERPS can recover from a system wide failure scenario (i.e.onein which nearly every
transistor on a CPU is affected), while most checkpoint rollback recovery techniques
recover from single error event faults.

The TERPS mechanism occupies aregion of the design space between schemes that
rely primarily on redundant hardware (e.g. n-modular redundancy) and schemes that rely
primarily on redundant computation (e.g. redundant execution-in-place). TERPS
represents a trade-off of a moderate hardware overhead (the extra safe storage chip and

write buffers) and aminimal performance overhead.
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The TERPS mechanism has reduced the scope of vulnerahility to only the safe storage
and the control logic to execute the checkpoint mechanism itself from a situation where
everything could go wrong. A comprehensive discussion on safe storage fault tolerance
was provided. The control logic used to control the checkpoint mechanism can be made
more fault tolerant by employing differential signaling based techniques.

A correctness of design was provided by stating the necessary and sufficient conditions
for the checkpoint rollback recovery mechanism to work and then showing how TERPS
supported them. Furthermore, our implementation, developed in Verilog, was functionally
verified by industry standard logic verification tools. We have also built a physical
prototype system on 0.5 um and 0.25 um processes through MOSIS. The
photomicrographs of the chips we fabricated are shown in fig. 7.1.

The performance impact of checkpointing (i.e. the cost of stalling during checkpoints

and buffer overflows) has been kept minimal (~6% for checkpointing every 128 CPU
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‘ ESENESEENE
(a) Processor Core (b) Safe Storage
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Figure 7.1: Photomicrographs of chipsfabricated viaMOSI S. (a) Processor core
fabricated viaMOSISat TSMC in a0.25 um feature size with adie area of 10.89 mm?, a
pad count of 100, and in a MQFP package. (b) Safe Storage chip fabricated V|aMOSIS
at AMI in a0.5 um feature size with adie area of 5.29 mm?, apad count of 84, andin a
PLCC package.
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cycles) with the aid of high-bandwidth, low latency enabling technologies like 3D
integration. Two memory controller configurations were described; one with the memory
controller off-chip and another with the memory controller on-chip. The latter shows better
performance (~2% for checkpointing every 128 CPU cycles) as compared to the former
but with added cost.

The fabrication of a 3-D integrated chip isimportant in proving the feasibility of the
system and thiswill be completed soon. In the near future, we plan to expand the sphere of
protection offered by TERPS by encompassing more system elements (e.g. 1/0) into the
TERPS mechanism.

If the RF detection latency can be accurately determined, the rollback penalty can be
reduced in certain instances by recovering to the newer rollback state in the safe storage.
Methods of enabling a checkpointing mechanism in which the checkpointing interval can
be varied dynamically to improve performance should be explored. This may be useful
when moving from one place to another where the EMI levels may change. In an
environment with low EMI levels, the checkpoint interval can be large to improve
performance whilein aharsh EMI environment, the rate of checkpointing can be increased
to reduce the rollback penalty. Another dynamic checkpointing mechanism may initiate a
checkpoint every time the write buffer isfull hence removing performance penalties dueto

write buffer related stalls.
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