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Electromagnetic Interference (EMI) can have an adverse effect on commercial 

electronics. As feature sizes of integrated circuits become smaller, their susceptibility to 

EMI increases. In light of this, integrated circuits will face substantial problems in the 

future either from electromagnetic disturbances or intentionally generated EMI from a 

malicious source. 

The Embedded Reliable Processing System (TERPS) is a fault tolerant system 

architecture which can significantly reduce the threat of EMI in computer systems. TERPS 

employs a checkpoint and rollback recovery mechanism tied with a multi-phase commit 

protocol and 3D IC technology. This enables it to recover from substantial EMI without 

having to shutdown or reboot. In the face of such EMI, only a loss in performance dictated 

by the strength and duration of the interference and the frequency of checkpointing will be 

seen. 

Various conditions in which chips can fail under the influence of EMI are described. 

The checkpoint and rollback recovery mechanism and the resulting TERPS architecture is 



 

stipulated. A thorough evaluation of the design correctness is provided. The technique is 

implemented in Verilog HDL using a 16-bit, 5-stage pipelined processor to show proof of 

concept. The performance overhead is calculated for different checkpointing intervals and 

is shown to be very reasonable (5-6% for checkpointing every 128 CPU cycles).
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Chapter 1

Introduction

Electromagnetic Interference (EMI) broadly refers to any type of interference that can 

potentially disrupt, degrade or otherwise interfere with the functioning of electronic 

systems. Current high performance ICs like microprocessors are fabricated with very small 

feature size, are clocked at frequencies well into the GHz range, and operate at reduced 

voltage levels. Though these characteristics have improved the capabilities and 

performance of chips, they have increased the susceptibility of high-performance chips to 

EMI. Hence, there is a growing concern over the electromagnetic compatibility of ICs in 

hostile EMI environments, especially those created by intentionally generated EMI from a 

malicious source. The Embedded Reliable Processing System (TERPS) is a system 

architecture-based approach which uses a checkpoint rollback recovery protocol to 

improve the reliability of microprocessor systems under such extreme operating 

conditions. 

1.1Effect of EMI on Integrated Circuits

Typical sources of EMI or radio frequency interference (RFI) are overhead high 

voltage lines, lightning events, radar devices, powerful radio transmitters, wireless network 

devices, and GSM (Global Systems for Mobile communication) bursts. Until recently, 

intentionally generated EMI was a lesser concern: In August 1999, the International Union 
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of Radio Science addressed the subject of criminal EMI and EM terrorism which is 

defined as “the intentional malicious generation of electromagnetic energy to induce noise 

or high-level disturbances into electrical or electronic systems with the intention to disrupt, 

confuse, or damage these systems for criminal or terrorist reasons” [1]. In general, 

electronic systems are designed more for reduced emissions than for RFI tolerance and 

hence they can easily fall prey to intentional EMI. Reports of medical equipment inside 

ambulances shutting down at field strengths of 20 V/m due to unintentional interference 

are known [1], thus the threat of intentional interference with field strengths of 100 to 

200V/m, which can be produced by off-the-shelf equipment from Radio Shack [1], is quite 

severe. Moreover, experts claim a suitcase-sized threat is widely available over the internet 

[1]. This is introduces serious risks for military equipment, safety-related automotive 

systems, and medical equipment because they are greatly reliant on embedded systems, 

which are easily susceptible to EMI. As a result, the industry and the research community 

are both paying attention to designing systems which not only have low emission 

characteristics but also low susceptibility to EMI. Such electromagnetic pollution imposes 

new challenges in the design of integrated circuits. 

The feature size of ICs has been reducing rapidly over the years (fig. 1.1) in accordance 

with Moore’s Law. The electrical charge involved in transistor switching decreases with 

the decrease in IC feature size. Correspondingly the energy required to disturb the 

switching process reduces, making it easier to disturb the circuit with increasingly lower 

EMI signal levels. As the switching speeds of microprocessors increase and supply 

voltages scale down resulting in smaller noise margins, the margin of error caused due to 

disturbances such as those induced by EMI, drastically reduces putting stress on better 
2



 

signal integrity. Moreover, parasitic effects inside integrated circuits have dramatically 

increased making signal integrity a prominent issue [2].

Electronic systems can couple EMI through cables, PCB traces, bonding 

interconnects, and even internal metal chip signals like power, ground, and data lines that 

behave as receiving antennas [3]. EMI that is coupled by the system can induce currents 

(mA) which cause various disturbances. Signal rectification due to interference is caused 

by the inherent nonlinear behavior of electronic devices. This is said to be the primary 

upset mechanism for integrated circuits under RFI [4]. In addition to signal rectification, 

inter-modulation, cross-modulation and other disturbances are immediate effects of 

interference [2]. When interpreted as a system signal or superimposed on one, these 

disturbances, if powerful enough, can cause malfunctioning or spurious state changes on 

logic devices. 
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Figure 1.1: Reduction in feature size over the years. There has been a rapid reduction 
in IC feature size over the last few decades in accordance with Moore’s Law. As the 
feature size reduces, the susceptibility of ICs to EMI increases.
Source: INTEL and ITRS
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The power levels and frequency range for which circuits are more susceptible to 

intentional EMI have been studied recently. Previous studies observed changes on the I-V 

characteristics of diodes, BJTs, and MOSFETs under RFI [5]. Susceptibility levels of a 

microcontroller and a DSP chip have been measured for RF interference up to 400 MHz, 

and data corruption was observed on the communication path between the microcontroller 

and RAM memory [6]. The same study showed that 20dBm RF interference at 350 MHz is 

enough to trigger the reset pin of a voltage regulator. Another study investigated the effects 

of RF interference on the input ports of a 0.7µm CMOS with frequencies in the 20MHz-

1GHz range with power levels up to 15 dBm [3]. They observed dynamic failures in the 

form of variations in input pad propagation delay and static failures when pad output 

signals were misinterpreted as they strayed out of the high or low voltage levels. Thus, 

even less powerful RFI can cause propagation and crosstalk-induced delays on wires and 

can deteriorate signal integrity. 

Though electronic equipment can be protected to a certain degree by using shielding, 

filters on PCBs, and filtered connectors, an uncompromising necessity to design robust ICs 

exists as these measures are often expensive due to post production costs and infeasible for 

volume applications [5] as the equipment has to be designed specifically for different 

working environments. 

1.2TERPS Architecture

This thesis introduces a fault tolerant system architecture, called TERPS, that can 

significantly reduce the threat of intentional EMI. In contrast to chip level approaches (e.g. 

radiation hardening) or circuit level approaches (e.g. self-checking logic), we investigate a 

system-level approach where multi-phase commit protocols are used in conjunction with a 
4



 

safe storage chip, which holds backups of system state and is more EMI resistant than the 

CPU and memory controller chips. The resulting system significantly reduces the 

susceptibility of its processing components to EMI induced transient faults. 

The protection offered to a system’s processing components by the TERPS mechanism 

is discussed. Fig. 1.2 outlines the major components of a computer system along with a 

safe storage memory, a part of the TERPS mechanism. The CPU is connected directly to 

the safe storage via an ECC-protected dedicated bus, which handles the checkpoint 

rollback traffic. The memory controller arbitrates the communication between the CPU 

and the DRAM system. The CPU, memory controller and safe storage constitute the 

Figure 1.2: Order of concern for our system-level approach. The protection scheme 
we propose in this study will primary cover the processing components of a general 
computing system. The CPU and memory system are more susceptible to EMI effects 
as compared to I/O. Therefore our main concern in this study is protecting the 
processing elements as shown in the figure. Future work will be directed towards I/O 
transactions. 
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sphere of protection and, with the DRAMs themselves, represent the area of highest risk 

for EMI effects. To increase the reliability of the memory system, the DRAM may be ECC 

protected.The processing system is also connected to the I/O system, which represents an 

area of slightly reduced risk for EMI effects. A transient fault is more likely to disturb an 

in-process computation or memory request than an in-process I/O request because I/O 

requests are far less frequent than computations and memory transactions. In addition, the 

processor and memory controller operate at much higher speeds and with tighter timing 

margins than the I/O system. Hence, we will consider the effects of EMI on processors and 

memory systems to be of the first order while those on I/O of the second order. Future 

work will be directed towards incorporating the I/O system into the sphere of protection as 

well. 

Resistance to intentional EMI within TERPS stems from a hardware-based checkpoint 

and rollback recovery mechanism that works in conjunction with RF detection methods 

[7][8]. This mechanism allows the CPU to rollback to a previously known valid state and 

thus protects against a virtually unlimited number of faults anywhere in the area under 

consideration. Many embedded systems can tolerate only a limited number of 

simultaneous faults and either fail silently or require reboot if more faults occur. This can 

have devastating effects if such faults occur during critical conditions, for example if the 

guidance system fails while directing a missile or if a pace-maker is affected by a wireless 

device. The TERPS architecture allows recovery from such faults without having to reboot 

or shutdown and without any human assistance. 

To rollback to a safe state, TERPS maintains snapshots, or checkpoints, of the required 

system state at predetermined intervals. The processor state is saved into the safe storage 
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memory chip, which is designed to be more resistant to EMI than the CPU and memory 

controller by employing circuit, device, and process-level techniques that trade off circuit 

performance for noise tolerance. Memory instructions are handled by a series of write 

buffers that provide a multi-phase commit protocol to the DRAM system. On EMI 

detection, the system is rolled back to a correct state using the safe storage. 

As even the minimum required state to rollback is large, it would take many cycles to 

do a checkpoint or recovery due to constraints of chip-to-chip bandwidth. To significantly 

reduce the impact of checkpointing on performance, high bandwidth solutions like 3D IC 

packaging [9], optical interconnect [10], or RAMBUS Yellowstone [11] technologies can 

be used. For our physical prototype, we will be implementing 3D IC technology. 

Through the application of TERPS, the processing system has improved from one with 

many points of failure in the presence of unintentional/intentional EMI to one in which 

only the safe storage itself and the CPU-resident control logic that handles the checkpoint 

and rollback mechanisms may pose problems.

In this thesis a detailed description of the TERPS mechanism is provided, a proof of its 

correctness, implementation considerations are specified, a minimal performance overhead 

due to checkpointing is shown, and our physical prototype system, built on 0.5 µm and 

0.25 µm processes via MOSIS, is described.
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Chapter 2

Related Work

Reliability has always been an important component in the design of high performance 

processors. A characteristic of a highly reliable system is a low failure rate. A failure 

occurs when the behavior of a system deviates from that which is specified for it [12]. 

Hardware component failures, communication faults, timing problems, human error, etc. 

are just a few of the types of faults that occur in systems [12]. Smaller feature sizes, 

reduced voltage levels, higher processing speed, and increasingly complex designs have 

enhanced the functionality of digital systems but have also made them prone to hardware 

related faults during execution. A study by Randell et al. [12] provides an insight to 

reliability issues including types of faults, fault tolerance techniques, and examples of fault 

tolerant systems. They classify hardware component failures by duration (fault is 

permanent or transient), extent (effect is localized or distributed), and value (creates fixed 

or varying erroroneous results). 

Peercy and Banerjee discuss fault detection in detail [13]. Fault detection requires 

redundancy in either space, time, information, or algorithm. Space redundancy is usually 

some form of n-modular redundancy (nMR) or complementary logic. As chip area is 

expensive, an alternative is time redundancy where the same circuit is used for the same 

functionality at two different times. The major drawbacks are that permanent faults cannot 
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be detected and the throughput is lowered. Watchdog timers are also used to guarantee that 

a processor is making forward progress. Information redundancy is in the form of 

concurrent error detecting codes like parity check codes, Berger code, and M-out-of-N 

code. Algorithm-based fault tolerance introduces some information or time redundancy 

into an aspect of the function being performed by the VLSI circuitry. Manoj Franklin’s 

study [14] investigates ways to implement redundancy techniques for superscalar 

processors. Under utilized resources available on the system are used to incorporate 

hardware, information, or time redundancy to detect errors in the functional units. REESE 

[15], which is a method of soft error detection in microprocessors, detects transient faults 

using time redundancy and adds a small number of extra functional units to keep the 

execution overhead low. A special form of space and time redundancy is observed in the 

DIVA architecture [16][17]. The core processor is appended by a small and simple checker 

processor which is functionally the same only less powerful. If any results from the core 

processor are incorrect due to a fault of some kind, the checker will be able to detect and 

fix the errant result. It then flushes the core processor state and restarts it after the errant 

instruction. This is an elegant solution for solving a whole range of faults while also 

reducing burden of verification. However, it cannot be applied for EMI induced faults as 

these may persist everywhere in the chip i.e. the checker processor, the RF and the clock 

network may go bad leaving no valid state to restart from. 

In general, a system can be designed to be fault tolerant by some form of redundancy 

and error recovery algorithms. Once an error is detected, fault tolerant techniques use some 

form of forward or backward error recovery [12]. Forward error recovery is dependant on 
9



 

having identified the fault, or at least all its consequences. Such schemes attempt to make 

use of the erroneous system state to make further progress (e.g. Error Correcting Codes). 

Backward error recovery techniques require establishing recovery points during which 

the state is saved (checkpointing) in a safe location and can be later reinstated (rollback-

recovery). Checkpointing and rollback-recovery has always been a commonly applied 

fault tolerance approach in the development of highly reliable processing systems. 

Depending on how much time is allowable for recovery procedures and how much loss of 

work is acceptable, checkpointing and rollback-recovery is implemented in software or 

hardware. 

One of the most significant and earliest systems which adopted checkpointing and 

rollback recovery were intended for space applications in which a high degree of fault 

tolerance was essential. The Jet Propulsion Laboratory Self Testing and Repairing (JPL-

STAR) computer [18] was a general purpose fault tolerant computer developed for a 

spacecraft guidance, control and data acquisition system which would be used on long 

unmanned space missions. Upon error detection by redundant units, error recovery is 

initiated by backward error recovery in software. The programs established recovery 

points and decided on the state that needs to checkpointed. File systems, database systems, 

and distributed systems also rely on checkpointing and rollback to establish fault tolerance. 

Koo and Toueg [19] disclose a distributed algorithm to create consistent checkpoints, as 

well as a rollback-recovery algorithm for distributed systems. They identify the “domino 

effect” and “livelocks” problems related with checkpoint creation and rollback-recovery in 

distributed systems and then show how their algorithm solves these problems by tolerating 

failures during their execution and forcing a minimal number of processes to rollback after 
10



 

a failure. Chandy and Ramamoorthy [20] discuss optimum checkpointing strategies in 

order to have shorter recovery times but still not affect performance significantly. The 

rollback points are tailor-made for a particular program according to their algorithm. 

Upadhyaya and Saluja [21] later modified Chandy and Ramamoorthy’s algorithm to insert 

rollback points in programs with multiple retries and also added a watchdog processor for 

error detection. The watchdog processor is implemented in place of a software error 

detection solution to ensure low error latency. K. Shin et al. [22] developed models to 

evaluate the behavior of checkpointing of real-time tasks. Using these models they 

determined optimal intercheckpoint intervals and an optimal number of checkpoints for a 

task by minimizing the mean task completion subject to a specified confidence in 

execution results. For their realistic model, which includes imperfect coverages of both the 

on-line detection mechanism and the acceceptance test, they observed that if a task 

requires a high probability of correct execution results, checkpointing must be done more 

frequently towards the end of the task, since the task has to pass all the acceptance tests 

near the end of the task. 

In this research, we focus on environments where error rates are high and real-time 

constraints prohibit significant delays for recovery. These constraints motivated us to use a 

hardware-assisted backward error recovery scheme - instruction retry - for TERPS. 

Instruction retry is used for rapid recovery from transient faults and is seen in many 

systems including the IBM 4341 processor [23], C.fast [24], the IBM ES/9000 Model 900 

[25], and in the UCLA Mirror Processor [26]. In single instruction retry, the state of the 

processor is checkpointed at each instruction boundary, and upon error detection, the state 

is rolled back to the previous instruction state. However this requires immediate error 
11



     
detection. In the IBM 4341 processor [23], an instruction is retried by restoring state 

information that is continuously saved and removed by hardware. If the instruction is to be 

aborted, the “machine check interrupt process” is provided with a damage report. Tsao et 

al. introduce C.fast, a VLSI fault tolerant processor [24] in which shadow registers that 

contain state of the previous instruction are attached to every state register on the chip. 

When an error is detected during the execution of an instruction, the processor is able to 

retry the same instruction immediately. 

However, concurrent error detection required for single instruction retry, demands 

checkers and isolation circuits in communication paths between different modules of the 

system. These systems can incur significant performance penalties due to the delays in 

checking. To erase this performance loss, error checking can be done in parallel. The side 

effect is that the error signal is delayed and recovery becomes more complicated. Multiple 

instruction retry - rolling back multiple instructions - is called for in response to a delayed 

error signal. Multiple instruction retry schemes can either employ full checkpointing or 

incremental checkpointing [27]. In full checkpointing, which is employed by TERPS, 

snapshots of the system state are established at regular or predetermined intervals, and the 

system can roll back to this saved state on error detection. In contrast, incremental 

checkpointing preserves system state alterations in a sliding window like manner; error 

detection initiates recovery by undoing the system state changes one instruction at a time, 

back to an instruction previous to the one in which the error occurred. The Model 900 [25] 

uses a form of incremental checkpointing by postponing the remapping of physical register 

until the error detection latency has been exceeded for the data contained in the physical 

register. Checkpoints of the system state are made at variable intervals. Though the 
12



 

processor has an out-of-order model, in-order completion is maintained by storing the 

results of instruction that finished out-of-order in temporary registers. If one of the 

processors fails due to some fault, its processing state is rolled back to a consistent error 

free state by purging the pipeline and temporary registers. Micro rollback is another 

interesting incremental checkpointing based multiple instruction retry concept which was 

introduced by Tamir et. al. [28][29]. Micro rollback is the process of backing up a system 

several cycles in response to a delayed error signal. In micro rollback each module must 

save the state required to properly recover. In the UCLA Mirror Processor (MP) [26] 

system two mirror processor chips operate in lock-step, comparing external signals and a 

signature of internal signals every clock cycle. On error detection, both processors either 

recover using micro rollback or, in certain cases, erroneous state is corrected by copying a 

value from the fault-free processor to the faulty processor. The MP was designed to 

recover from single transient faults (with support for some multiple faults also) which are 

detected by having 2 processors, i.e. 2-modular redundancy. The MP works to recover as 

soon as an error is detected to prevent the spread of erroneous information throughout the 

system, i.e. error confinement. TERPS does a system-level recovery and prevents errors 

from spreading throughout the system as the state is never completely committed until it is 

safe to do so. Unlike the MP, TERPS does not take checkpoints at every clock cycle and 

does not recover to exactly the clock cycle before the error. But TERPS is similar to the 

MP in that it also uses write buffers to support the rollback mechanism when encountering 

store instructions. 

The aforementioned hardware-based instruction retry schemes employ some form of 

data redundancy to eliminate rollback data hazards leading to hardware overhead. 
13



     
Compiler-based multiple instruction retry techniques [30] have been developed to reduce 

hardware costs by alleviating anti-dependencies by data flow transformations that result 

from multiple instruction rollback. However, compiler-assisted instruction retry [27][31], 

which utilizes a read buffer to eliminate one kind of rollback data hazard and compiler 

techniques to eliminate the remaining hazards, shows better performance as compared to 

the compiler-only instruction rollback scheme by exploiting the unique characteristics of 

different hazard types. 

Instruction retry has the disadvantage that changes have to made in the processor 

design. Bowen and Pradhan introduced a scheme that supports checkpointing and rollback 

recovery at a higher level; checkpoint and rollback was embedded directly into the 

translational lookaside buffer (TLB) [32]. In this scheme, a backup copy of a memory page 

is made just before it is modified. This requires large checkpointing intervals to minimize 

the overhead due to page manipulations and modification of the TLB. Cache-Aided 

Rollback Error Recovery (CARER)[33] is a cache-based checkpointing proposal wherein 

the replacement policy of the regular cache is modified such that it prevents the 

replacement of dirty data thereby keeping a checkpoint state in memory. When either the 

deletion of some of the dirty blocks becomes unavoidable, an external interrupt occurs, or 

an I/O instruction is executed, a checkpoint is established by saving the processor state in 

internal back up registers and marking all the dirty blocks as unchangeable. When an error 

is detected, the processor recovers by restoring its saved state and all cache blocks, while 

the unchangeable ones are marked invalid. TERPS also employes a similar approach 

where the write buffers act as cache and hold the store instruction data to prevent them 

from being committed to memory. However TERPS does not use the modified 
14



 

replacement policy used by CARER to save state as it stores the checkpointed state in an 

external safe storage memory. An excellent performance study on cache-based recovery 

schemes is presented by Janssens and Fuchs [34]. They stipulate that though the average 

overhead of cache-based recovery schemes is quite minimal, the performance is not 

predicable as compared to a system without recovery capability due to the lack of control 

and variability of the checkpoint frequency of different programs and caches; checkpoint 

frequency will vary according to the I/O behavior and program’s interaction with the 

memory. TERPS has a constant checkpoint frequency and it is shown that the performance 

impact is predicable across different programs. This is crucial for real-time systems where 

a predictable recovery behavior would assist a scheduler to schedule programs to meet 

their deadlines even in the presence of a fault.

Support for checkpointing and rollback recovery in shared memory multiprocessor 

environments have also been proposed [35][36][37]. Wu et al. [35] present a cache-based 

checkpointing and recovery algorithm to maintain a consistent checkpoint state. The use of 

checkpoint identifiers and recovery stacks along with private caches was shown to reduce 

performance degradation due to increased write-backs. In the ReVive scheme [36], 

complex checkpoint and rollback functions are performed in software, while hardware 

operations are limited to the directory controllers of the machine to reduce costs. During a 

global checkpoint, the caches are flushed to memory and a two-phase commit protocol is 

performed. Therefore the main memory contains the checkpoint state. Changes to the 

checkpoint state in the memory are logged by the home directory controller and are used to 

restore the memory state upon error detection. ReVive performs recovery from a wide 

range of failures without any hardware modification to the processors or caches. SafetyNet 
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[37] is a fault tolerant solution which maintains multiple, globally consistent checkpoints 

of a shared memory multiprocessor and minimizes performance overhead by pipelining 

checkpoint validation with subsequent parallel execution. The current uni-processor 

TERPS form can be extended to a multi-processor environment utilizing architectures 

similar to SafetyNet [37] as it also can sustain long latency error detection mechanisms.

Checkpointing and rollback was proposed by Hwu and Patt for branch mis-prediction 

and exception handling in out-of-order processors [38]. They proposed cost-effective 

algorithms for performing checkpoint repair which incur very little overhead in time. 

Smith and Pleszkun introduced novel structures for implementing precise exceptions in 

pipelined processors [39]. When an exception occurs, the process state must be saved such 

that it reflects the sequential architectural model. Primarily, the saved state must reflect the 

following conditions: (i) All instructions preceding the instruction indicated by the saved 

program counter have been executed and have modified the process state. (ii) All 

instructions following the instruction indicated by the saved program counter are 

unexecuted and have not modified process state. (iii) The saved program counter points to 

the interrupted instruction. One can recognize that the concepts of precise exception 

handling in pipelined processors can be used to ensure that during checkpointing, a precise 

state is saved. 

TERPS has been developed borrowing the checkpointing and rollback concepts 

applied in the software and hardware of many fault tolerant systems and the conditions for 

precise exceptions in pipelined machines for providing a precise rollback state. Fault 

tolerant architectures that have been proposed previously have mainly concentrated on 

protecting systems from single error transient faults while TERPS has been designed 
16



 

keeping in mind that EMI induced faults may occur everywhere in the system. This 

disparity is the main reason behind the differences in contemporary fault tolerant designs 

and TERPS. 
17



       
Chapter 3

TERPS Architecture 

As stated earlier, there is a growing concern over the electromagnetic compatibility of 

ICs in hostile EMI environments, especially those created by intentionally generated EMI 

from a malicious source. EMI can couple through various parts of a system and, if 

powerful enough, can cause misinterpretation of data, clock edges and even the power and 

ground references. This can result in failures in many sections of the chip at the same time. 

Related works have aimed at solving single error or a limited number of faults and hence 

are not directly applicable as a solution to this problem. TERPS is a system architecture-

based fault tolerance approach that addresses the issues related with EMI induced faults 

with little performance overhead. It allows recovery from such faults without having to 

reboot or shutdown and without any human or even software assistance. A description of 

how the architecture efficiently implements the hardware-based checkpoint rollback 

recovery mechanism is provided in detail in this chapter. 

3.1Checkpointing

The minimal process state required to return to any point of execution varies from 

processor to processor, but in general it comprises of the program counter, the register file, 

and a window of memory transactions. For precise checkpointing the saved process state 
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must be consistent with the sequential architectural model. The issues dealt with here are 

similar to those by Smith and Pleszkun [39].

First a system overview of the various elements of the TERPS architecture are 

highlighted in fig 3.1. In addition to the CPU chip and memory system, a special safe 

storage chip is augmented to the basic system architecture. The CPU is connected directly 

to the safe storage via a dedicated bus to handle the checkpoint rollback traffic. This bus 

may be ECC-protected to protect against single error transient faults. The memory 

controller arbitrates the communication between the CPU and the DRAM system. The 

CPU, memory controller and safe storage constitute the sphere of protection offered by 

TERPS currently and, with the DRAMs themselves, represent the area of highest risk for 

EMI effects. To implement the mechanism, the processing system has a checkpoint latch 

Figure 3.1: TERPS Architecture. 
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and a series of write buffers. This processing system is also connected to the I/O system 

(fig. 1.2), which as explained earlier represents an area of slightly reduced risk for EMI 

effects. Future work will be directed towards incorporating the I/O system into the sphere 

of protection as well. 

In order for the safe storage to be less susceptible to EMI, it applies circuit, device, and 

process-level techniques that trade off circuit performance for noise tolerance and hence 

operates at a frequency much lower than the CPU. The safe storage clock (ss_clk) is 

stepped down from the CPU clock (CPU_clk) and is given a duty cycle designed to 

maximize setup and hold times available to the safe storage. For the purposes of the 

discussion let us take the time period of the ss_clk as N times longer than the CPU_clk, i.e. 

Tss_clk = N * TCPU_clk. Due to this speed mismatch and differences in process technology, 

the process of checkpointing is not a straightforward one. The safe storage must latch a 

value from the CPU at a clock speed dictated by its technology’s characteristics, else its 

setup and hold times might be violated if, for example, the data is held valid on the bus for 

a time equal to the period of CPU_clk and that time is less than the setup and hold times 

required by a safe storage. Hence when a precise checkpoint is taken at the CPU side, the 

process state is first stored in a checkpoint latch. If no fault is detected, the safe storage will 

read the state from the checkpoint latch at every positive edge of the ss_clk. It is important 

to note that EMI detection will not be concurrent and will probably take a few CPU clock 

cycles. This leads to problems when a fault happens just before the safe storage reads the 

state from the checkpoint latch, and the fault is detected only after this action. The saved 

state in the safe storage may be polluted and the system would not be able to recover from 

that state. This problem is depicted in fig 3.2. 
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Therefore, when recovery is necessary, we have to rollback to an older valid 

checkpoint. To satisfy this condition, the safe storage has two banks and will store the 

checkpointed state in either safe storage A or safe storage B in an alternate fashion 

allowing it to maintain the last two checkpoints. This modified checkpoint rollback 

mechanism can be visualized in Fig. 3.3. This design is compatible with an EMI detection 

circuit which can report the fault within at most N CPU clock cycles. Hence checkpointing 

is done every N CPU cycles. 

Store instructions must be prevented from writing their data to permanent storage 

before it is known whether the store data is error-free or not. By delaying the stores from 

committing, load instructions that are re-executed after a recovery will not read the wrong 

data. A multi-phase commit protocol has been employed to delay the store data by 

Figure 3.2: Long latency EMI detection can cause failure of TERPS checkpoint 
rollback mechanism.  The TERPS checkpoint rollback recovery mechanism can be 
explained using the safe storage clock (ss_clk) as a reference. At point R the state is 
checkpointed at the CPU and written to the safe storage at point Q as shown. Then at 
point S a new checkpoint is made by the CPU and this state is stored in the safe storage 
at point T overwriting the last checkpointed state R. If a fault actually occurs just before 
point T and was detected only afterwards due to the long latency EMI detection, the state 
saved in the safe storage may be corrupt which is indicated by S*. When the system 
initiates recovery at point C, it will reinstate the bad state S* into the system and 
recovery will correspondingly fail. To operate correctly, the system should be able to 
rollback to state R.
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directing it through a series of three write buffers and the memory controller before they 

are actually written to memory. As we are rolling back to the older checkpoint, we need 3 

write buffers to ensure that no write instruction is committed to permanent state until it is 

safe to do so. Justification for using three write buffers is provided in the following chapter 

where correctness of the design is addressed. The interaction of the checkpoint latch, write 

buffers, and safe storage is shown in fig 3.4. During every checkpoint interval on the CPU 

side, stores write to the first write buffer, WB0. On average about 30% of all instructions 

are memory transactions and about one-third of those are stores [40]. Therefore the size of 

the write buffer can be roughly decided by the frequency of checkpointing, e.g. if a 

checkpoint is made every 128 CPU cycles, then the write buffer size can be set around 12-

entries. In the worst case, if the write buffer becomes full, the pipeline is stalled until the 

next checkpoint. During a checkpoint the contents of WB0, i.e. the store instructions that 

were executed in this last checkpoint interval, are written to the checkpoint latch. Also the 

Figure 3.3: Checkpoint rollback mechanism with two safe storage banks. At point R 
the state is checkpointed at the CPU and written to the safe storage A (SS A) at point Q. 
Then at point S a new checkpoint is made by the CPU and this state is stored in the safe 
storage B (SS B) at point T. The CPU initiates another checkpoint at point U. Note that 
since a fault is detected sometime before point C, the checkpoint made at U is not latched 
in the SS A. At this point the safe storage contains checkpoints made at points R and S in 
SS A and SS B respectively. As the fault detected before point C may have occurred in 
the interval Q and T due to delays in the detection circuit, the system recovers to point R 
and not S. 
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data in WB2 is sent to the memory controller atomically, which may take a few cycles 

depending on the checkpointing frequency and width of the frontside bus. On completing 

Figure 3.4: Checkpointing and rollback recovery using the checkpoint latch, write 
buffers and safe storage. For explanation purposes, the state of the 3 write buffers at 
different checkpoint intervals is indicated by I, J, K, etc. At point R, the processor is 
stalled, and a checkpoint is taken over a time interval ∆∆∆∆tc during which the PC, RF and 
WB0 (K) are written to the checkpoint latch, WB2 (I) is sent to the memory controller, 
and then the write buffers are prepared for the next checkpoint interval as shown. At this 
point checkpointing is done and normal execution resumes. At the next positive edge of 
the ss_clk, i.e. at point Q, the safe storage reads the state checkpointed at R from the 
checkpoint latch. By this point the memory controller has finished updating the DRAM 
too. This checkpointing operation is repeated until a fault is detected. In the figure a fault 
is detected between times T and C. On detection, the system goes into recovery mode. 
Rollback is accomplished by loading the state from the safe storage back to the CPU. 
Now the system goes back to normal mode of operation.
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this transaction, WB2 will be overwritten by WB1 and WB1 by WB0. WB0 is ready for 

the store data that will follow. The memory controller begins writing stores to the DRAM 

and normal execution resumes. 

Note that in the TERPS architecture an instruction is declared committed when its 

result is out of the safe storage and hence into permanent state. An instruction, whose 

results are reflected in the older checkpoint saved, is ready for committal only after it is 

sure that the newer checkpoint that was saved is ensured to be valid and the system will be 

able to rollback to it in case of a fault. This defines a rollback window, which is the 

minimum lifetime of an instruction, i.e. any instruction checkpointed at a given rollback 

point can not be committed before it is out of the rollback window. For example, in fig.3.4, 

instructions checkpointed at rollback point R can be committed to permanent state only 

after commit point C if there is no fault detected. 

3.2Rollback Recovery

When the EMI detection circuit indicates a fault, the pipeline is stalled until the rising 

edge of safe storage clock to prevent the system from executing instructions that may be 

faulty. At this point the system goes into recovery mode and the pipeline is immediately 

flushed to remove the corrupted state. The safe storage is prevented from reading the 

checkpoint latch, as it would during normal operation, so it does not save the state that 

could have been polluted. Instead, after sufficient bus turn-around-time, the safe storage 

output buffers are enabled to provide the valid state to the CPU. As the safe storage is 

running at a much slower clock, the CPU will wait until the safe storage is able to drive its 

output buffers. Once ready, the CPU latches the data from the safe storage and normal 

operation is resumed. A detailed timing diagram of the rollback recovery procedure is 
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shown in fig. 3.5. It can be seen that the rollback penalty is four checkpoint intervals. Note 

that no matter where within a certain detection window a fault is detected, the system will 

always recover to the same rollback point corresponding to that detection window. 

Figure 3.5: Rollback recovery details. A timing diagram of the recovery procedure is 
highlighted with the aid of the Recovery mode signal, safe storage select signal, and 
checkpoint rollback bus. When a fault is detected, the system goes into Recovery mode at 
the next rising edge of the ss_clk. After bus turn around time, the safe storage puts the 
rollback state onto the checkpoint bus and it is read by the checkpoint latch. Again the 
bus is turned around and normal operation is resumed utilizing the saved state. At the 
beginning of every checkpoint interval the safe storage select (ss_sel) line, which selects 
which bank of the safe storage to write/read from is toggled. But when the system is in 
Recovery mode, it is not toggled as it is already pointing to the bank with the older state 
from which the processor will read instead of write during recovery. After recovery, 
ss_sel is toggled as usual hence causing the system to overwrite the newer saved state 
(S). This is convenient as newer state (S) may be corrupted due to he issues discussed 
previously with regard to delay in detection.
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Chapter 4

Correctness of Design

The principles of rolling back are similar to those of handling a branch misprediction 

or an exception in an out-of-order pipelined processor where some instructions have to be 

removed and execution is restarted from another point. In the case of checkpoint and 

rollback recovery, when a fault is detected, some instructions are removed and execution 

restarts from a point the system had passed through in the past. In both cases, the system 

should give the appearance that there was no break in the flow of execution i.e. rolling back 

should be transparent. Thus, the basic objective is to add some form of support to recover 

to a precisely correct system state while creating the impression that nothing went wrong. 

Also, for any checkpoint rollback mechanism, care should be taken to ensure that re-

executing instructions, and hence writing and reading results twice, does not affect the 

correctness of computation. 

Therefore, for any checkpoint rollback recovery mechanism to function properly, it is 

necessary and sufficient to satisfy the following conditions: 

1. The system resumes execution to a consistent valid state after rollback recovery. 

2. Re-execution of instructions does not affect correctness of computation. 
26



   
These conditions are sufficient because they ensure that the system will continue 

execution in a transparent manner. This chapter is dedicated to describe how TERPS 

attempts to satisfy them providing various examples and counter examples 

4.1Resuming to a Consistent State

4.1.1System State and Rollback

In order to resume execution to a consistent and valid state, a consistent and valid state 

must be saved during a checkpoint in the first place.

The entire state of a processing system is so large that it is difficult to quantify. It 

consists of the pipeline registers, control data, memory, etc. But there is a subset of this 

state which is sufficient to restart execution from, and it is important to identify this state to 

do efficient and valid checkpointing. Though this state will vary from architecture to 

architecture, for the purposes of discussion, a general idea of necessary state is given. The 

basic operation of a processing system is to fetch an instruction and execute it based on 

what kind of an instruction it is. Therefore it is absolutely necessary to save the address of 

the instruction you may want to restart from so it can be fetched again. This is stored in the 

program counter or PC. Instructions are generally of 3 types: ALU, memory and I/O. As I/

O semantics are complicated, I/O instruction issues are not discussed at this point. ALU 

instructions read operands or write results to the register file (RF). Memory instructions 

read from or write to the memory/RF. Thus, in general, the state required to be saved 

during a checkpoint, in order to restart from an intermediate point, should consist of the 

PC, RF, and memory. This state is also called the rollback state.

The memory is usually quite large and it would be difficult to checkpoint the entire 

memory. But store instructions are not that frequent, and the state changes made by stores 
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within a checkpoint interval can be saved. This assumes that the memory is relatively fault 

tolerant. In TERPS, support for saving changes to the memory system within a checkpoint 

interval is provided in the form of a write buffer (WB0) as explained previously. 

4.1.2Precise Checkpointing

After identifying the information that needs to be saved during a checkpoint, the 

checkpointing mechanism must save the information such that it forms a consistent state. 

In a sequential (un-pipelined) machine, instructions are processed one-by-one, one 

finishing before the next starts. For any architecture, the rollback state must be precise, i.e., 

the rollback state should reflect the sequential architectural model. This is similar to 

establishing precise interrupts in pipelined processors [39]. If the rollback state is 

imprecise, it may leave the system in an irrecoverable state.

For precise checkpointing the following conditions should be satisfied:

1. The state changes by all instructions preceding the instruction indicated by the 

checkpointed PC are reflected in the rollback state. 

2. The state changes by all instructions following and including the instruction indicated 

by the checkpointed PC are not reflected in the rollback state.

It is trivial to satisfy these requirements for a sequential architecture. Fulfilling these 

conditions for an in-order pipelined processor is also quite straight forward. The 

checkpoint mechanism should stall the pipeline and then checkpoint by saving the PC of 

the next-to-complete instruction, the Register File (RF), and the writes to the memory 

system in that checkpoint interval (WB0). Checkpointing the PC of the next-to-complete 

instruction ensures that the instructions preceding it would have already completed and 
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their results would be reflected in the rollback state. Store instructions may write to the 

memory system before they reach the next-to-complete stage in the pipe depending on the 

design. This would lead to an inconsistent rollback state. Stalling the pipeline prevents 

these memory writes from changing the state before establishing a checkpoint and hence 

satisfying condition 2. For an out-of-order pipelined processor, the techniques 

implemented by Sohi and Vajapeyam [41] to establish a precise interrupt can be used to 

determine a precise checkpoint. 

4.1.3Multi-phase Commit

Even though the rollback state is precise, it can not be guaranteed that the system will 

rollback to a valid state. In TERPS, checkpointing is a 2-step process. First the rollback 

state is saved in the checkpoint latch at the CPU and then it is read into the safe storage. As 

explained in the previous chapter, the rollback state may be corrupted due to delays in EMI 

detection. To prevent rolling back to a corrupted state, TERPS maintains the older rollback 

state in the safe storage too, which is known to be error free. This state is used to rollback 

to a valid state. The instructions in this older state should not be committed to permanent 

unrecoverable state until it is known that the newer rollback state saved is error free. If this 

condition is not supported then the system is vulnerable to recovering to an invalid state. 

TERPS is outfitted with a dual-bank safe storage to preserve the last two rollback states. 

When EMI is not incident, the recent checkpointed state overwrites the bank containing 

the older checkpoint when it is read into the safe storage. It is safe to overwrite the older 

rollback state as the other rollback state is known to be good at this point if a fault did not 

occur. 
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Instructions that read from the RF after a recovery see a valid RF state because during 

a checkpoint the entire RF is saved. On recovery, the entire RF is overwritten by the 

rollback state undoing all the writes of instructions that wrote to it after the checkpoint. 

Thus, the state of the RF after recovery is precise. This is shown in fig. 4.1. 

However, a dual-banked safe storage is not sufficient for memory instructions because 

unlike the RF, the entire memory is not saved in the rollback state during a checkpoint as 

explained previously. Only the store data for the checkpoint interval before the rollback 

point is recovered from the safe storage. Hence, load instructions that are re-executed after 

a recovery may not see a consistent state of the memory if store instructions executing after 

the rollback point are committed to permanent state. An example is illustrated in fig. 4.2 

where, in an instruction sequence between two checkpoints, a load instruction reads from 

Figure 4.1: RF writes do not change permanent state. In the instruction stream on the 
left, instructions above are fetched before the instructions below. The RF in different 
checkpoint intervals is represented by W,X,Y, and Z. The arrow indicates that the result 
of instruction j is written to RF X. Instruction j writes to register R3 after instruction i 
reads from R3. But after recovery, the entire register file is loaded from safe storage bank 
A and does not reflect the change made by instruction j stored in safe storage bank B.
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an address location that a store instruction succeeding it writes to. If the stores are 

committed to permanent state too early, the load instruction may read the wrong data. 

Architectural support to delay such stores from writing to permanent unrecoverable state 

before it is safe to do so is called for. 

In response to these requirements, TERPS employs a multi-phase commit protocol, 

supported by three write buffers and the dual-bank safe storage, to ensure that no 

instruction is permitted to commit to permanent unrecoverable state (i.e. the DRAM 

system) until it is safe to do so. From fig. 4.2, it is clear that store data must be delayed to 

memory so that on recovery, the state will be precise. To delay stores from writing their 

data to permanent state, some temporary write buffers should be inserted between the CPU 

and the memory system. Following the same example given in fig. 4.2, fig. 4.3 (a) 

describes the TERPS mechanism equipped with two write buffers instead of one. For the 

Figure 4.2: Store instructions that commit early may change permanent state.  The 
figure illustrates a scenario with one write buffer where writes are committed to the 
memory system just after they are checkpointed. The load instructions i and j will 
incorrectly read the store data from instructions k and l after recovery as they were 
written to memory. 
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interval highlighted, the stores k and l write to addresses A and B after the loads i and j 

have read from the same addresses. These stores write to WB0, named Q. After the third 

checkpoint, a fault is detected and recovery is initiated. But at this point the instructions k 

and l in Q have already been committed to the DRAM system. Hence when the loads i and 

j are re-executed after recovery, they will incorrectly read the store data of the instructions 

k and l. Thus, two write buffers do not delay the commitment of the store data adequately. 

Figure 4.3: Multi-phase commit.  This figure demonstrates how multi-phase commit is 
implemented to ensure all instructions following the checkpoint have not modified the 
process state before the commit point of their current checkpoint interval. In the 
instruction stream on the left, instructions above are fetched before the instructions 
below. (a) shows that two write buffers are insufficient whereas three write buffers, as 
shown in (b), are adequate. 
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In fig. 4.3(b), three write buffers have been implemented. The additional third write buffer 

postpones the commitment of Q to the DRAM by one checkpoint interval, preventing 

instructions k and l from overwriting the values that i and j should read in case of a 

recovery. Thus, three write buffers are adequate to accomplish correct multi-phase commit. 

Consider a situation where the write buffer WB0, which contains the store data for a 

particular checkpoint interval, is not saved into the rollback state. This case is shown in fig. 

4.4. The stores in P have already been written to the DRAM by the time recovery is 

initiated. After recovery, a load, shown to read data written by a store in P, may receive its 

Figure 4.4: Importance of saving store data in the safe storage.  Multi-phase commit 
implemented without saving the store data in the safe storage is shown. Loads k and l 
read data written by stores i and j. By the time the fault is detected, this store data (P) is 
written to the DRAM. But EMI might have corrupted it. After recovery, the loads k and l 
will again execute. They will correctly not read the store data due to stores m and n, but 
will read the corrupted data from the DRAM. Hence, on recovery it is necessary that a 
backup of the store data be brought back in to the system.
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data from the DRAM. It would seem these stores, which represent a significant overhead 

during checkpointing, do not need to be saved as they are present in the DRAM after a 

recovery. However, it is important to note that during the interval highlighted in the fig. 4.4, 

store data is being sent from the memory controller to the DRAM. Concurrently, a fault is 

also detected. EMI effects may corrupt the buffer in the memory controller or the data on 

the bus in transit to the DRAM rendering this data in the DRAM to be polluted. Saving the 

WB0 contents is necessary for backup reasons and eventually the multi-phase commit 

protocol will overwrite the DRAM with valid data using this backup after recovery. 

If a fault is detected during recovery an invalid rollback state may be delivered to the 

CPU and the system will recover to an invalid state. TERPS handles this issue by just 

initiating recovery again using the same rollback state from the safe storage. 

4.2Re-execution of instructions

Clearly, precise checkpointing and the multi-phase commit protocol work to resume 

execution to a consistent and valid state. But, when instructions are re-executed, they write 

their results to the system registers and memory again. This may trigger an event to reoccur 

and this may change the correctness of computation. 

One principle that the memory portion relies on is the fact that the memory system can 

be read from or written to multiple times without side effects; reading from a given 

memory location multiple times is the same as reading from that location once; writing to 

a given memory location multiple times with the same value is the same as writing to that 

location once. The RF also follows the same behavior. Hence, re-executing ALU and 

memory instructions, provided we maintain in-order semantics for writes as discussed 

above, does not affect the correctness of computation.
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However, the I/O system does not behave like the memory system in this regard: I/O 

reads and writes have side effects, and the last value written to an I/O location is not 

necessarily the value read back from that location. For instance, a processor may be 

outputting information to a increase an external counter which displays the number votes 

for an electoral candidate. On re-execution of an I/O instruction after a recovery, if an 

increment signal is re-sent, the counter would increment twice and show the incorrect 

number of votes! 

We are currently developing support for I/O semantics in TERPS. One crude yet 

effective method is to checkpoint after every I/O request is executed. The CARER 

mechanism [33] implements a similar protocol. But in TERPS the frequency of 

checkpointing is dependant on the safe storage. The safe storage is slower because it is 

made from an older process technology for better fault tolerance. The checkpoint interval 

has to be long enough to meet the setup and hold times of the safe storage. Hence the 

system may have to stall after every I/O request until a checkpoint can be established. This 

would prove to be highly inefficient and its impact on performance would be significant if 

I/O requests occurred frequently. For a more efficient implementation we are developing a 

mechanism to support I/O semantics that incorporates the following characteristics:

1. Read and write buffers that are maintained by the I/O controller on a per-device basis 

and that are enabled or disabled by the operating system.

2. Read and write transactions that are identified by a monotonically increasing unique 

identifier.

3. A sliding window protocol between the CPU and the I/O controller to manage the 

buffer contents so that any transaction is in one or more of the following states: (i) 
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buffered on the CPU, (ii) stored on the safe storage chip, (iii) buffered in the I/O 

controller, or (iv) committed to the I/O system and out of the window of vulnerability. 

We are currently modeling this mechanism in Verilog Hardware Description Language 

and expect to integrate it into our TERPS system in the future. 
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Chapter 5

Implementation 

5.1Basic Processor Architecture

The TERPS mechanism is general in nature and can be tied with any instruction-set 

architecture. A microarchitecture’s existing logic for exception handling can be used to 

generate a precise checkpoint and by augmenting it with the write buffers and checkpoint 

rollback control logic, support for checkpoint and rollback recovery can be provided. 

For implementation purposes, we chose the RiSC-16, 5-stage pipelined architecture as 

the basic processor architecture. This architecture was selected because, 

1. The author was familiar with the processor from the onset of development and the 

architecture is well documented.

2. The design is not dependent on any particular instruction set; hence it was preferable to 

use an existing instruction set.

3. A convincing “proof of concept” could be provided by this architecture, which, though 

simple in design, is general enough to solve complex problems. 

4. In order to have a successful physical prototype in an academic environment, the basic 

processor architecture had to be simple.
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The 16-bit Ridiculously Simple Computer (RiSC-16), is a teaching ISA that is based 

on the Little Computer (LC-896) developed by Peter Chen at the University of Michigan. 

The RiSC-16 has an 8-entry register file, where, like the MIPS instruction-set architecture, 

by hardware convention, register 0 always contains the value 0. There are three machine-

code instruction formats and a total of 8 instructions. The instruction-set is given in table 

5.1. It has 5-stages: namely the fetch, decode, execute, memory, and writeback stages. It is 

similar to the 5-stage DLX/MIPS pipeline that is described in Hennessy and Patterson 

Table 5.1: Instruction Set Architecture

Assembly-Code Format Meaning

add regA, regB, regC R[regA] <- R[regB] + R[regC]

addi regA, regB, immed R[regA] <- R[regB] + immed

nand regA, regB, regC R[regA] <- ~(R[regB] & R[regC])

lui regA, immed R[regA] <- immed & 0xffc0

sw regA, regB, immed R[regA] -> Mem[ R[regB] + immed ]

lw regA, regB, immed R[regA] <- Mem[ R[regB] + immed ]

beq regA, regB, immed if ( R[regA] == R[regB] ) {
PC <- PC + 1 + immed
(if label, PC <- label)
}

jalr regA, regB PC <- R[regB], R[regA] <- PC + 1

PSEUDO-INSTRUCTIONS:

nop do nothing

halt stop machine & print state

lli regA, immed R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed R[regA] <- immed

.fill immed initialized data with value immed

.space immed zero-filled data array of size immed
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[40], and it fixes a few minor oversights, such as lack of forwarding to store data, lack of 

forwarding to comparison logic in decode, implementing the 1-instruction delay slot, etc. 

This pipeline adds in forwarding for store data and eliminates branch delay slots. As in the 

DLX/MIPS, branches are predicted not taken, though implementations of more 

sophisticated branch prediction are certainly possible. 

5.2Implementation

The TERPS architecture is modeled in Verilog Hardware Description Language 

(HDL), in which the modules are described by their logical behavior suitable for synthesis. 

To guarantee the correctness of our mechanism at the behavioral level, a test bench is 

written as a stimulus to simulate the behavior of the entire system. All simulations were 

run in NC-Verilog which is a Logic Verification tool from the Cadence suite. 

To support checkpoint and rollback recovery, three write buffers and a checkpoint latch 

are added to the pipeline and a separate safe storage module was also developed to 

interface with the processor core module. A detailed block diagram of the TERPS 

architecture is given in fig.5.1. The fault detection signal is generated by a comparator 

circuit on the CPU chip for the ease of development and testing.

Some of the important control mechanisms added to the existing control logic and 

structure of the original pipeline for checkpointing and rollback were:

• checkpoint counter: This counter is responsible for the synchronization of the 

checkpoint rollback mechanism. It is important for controlling many other signals and 

their timing. 
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• chkpt: This signal indicates that a checkpoint is underway. The processor is stalled 

during this time. It takes 7 CPU cycles to do a checkpoint in our implementation: 6- 

cycles for transferring the WB2 to the memory controller over a 64-bit front-side bus 

and 1-cycle for shifting the write buffer contents. 

Figure 5.1: Detailed block diagram of the TERPS Processor Architecture. The 
RiSC-16, 5-stage pipeline modified to support checkpoint and rollback. The shaded 
boxes represent clocked registers; solid lines represent data paths and buses; and dotted 
lines represent control paths. A pipeline register is labelled with the two stages that it 
divides; for example, the pipeline register that divides the instruction fetch (IF) and 
instruction decode (ID) stages is called the IF/ID register. The prominent features added 
are the 3 write buffers (WB 0-2), the 512-bit checkpoint latch, the memory controller, 
checkpoint counter, detector latch, and checkpoint rollback control logic. 
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• detector_R: This signal goes high when a fault was registered. It is held high until 

recovery is finished. It is used for timing and control purposes. 

• RMODE: This signal, which makes the system go into recovery mode of operation, 

goes high just before the safe storage is supposed to latch the data from the CPU. The 

processor is stalled during RMODE. 

• RMODE_stomp: When, the system goes into recovery mode, RMODE_stomp will 

flush the pipeline, removing all “faulty” state. 

• M_stall: This stalls the pipeline until the next checkpoint when there is a write request 

but the write buffer,WB0, is full. The write buffers have 12-entries each. 

• ss_sel: Used for selecting which bank of the safe storage the checkpointed rollback 

state will be written to or read from. 

• ss_out_en: This enables the output buffers of the safe storage so that it can output 

rollback state information onto the checkpoint rollback bus. 

The checkpoint latch contains the entire rollback state: 7 registers from the RF (RF0 is 

always 0), the precise checkpoint PC, and the write buffer WB0. This 512-bit latch is 

connected to a bi-directional checkpoint rollback bus which communicates with the safe 

storage. To prevent the array of output buffers from pulling a large amount of current at the 

same time, the bus is logically divided into 16, 32-bit sections to enable the bus in a 

staggered manner. 

The precise checkpoint PC is the PC of the next-to-commit instruction. In the 5-stage 

RiSC-16 processor, the next-to-commit instruction is in the memory stage. If that 

instruction is a nop, then the next valid instruction in the pipe is selected. 
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During a recovery, the checkpoint rollback bus has to be allowed a turn around time 

before the safe storage sends data on it. This turn around time has been safely set to 20 

CPU cycles. 

To execute the multi-phase commit protocol correctly, the memory hierarchy has been 

modified. Instead of directly accessing the main memory, a load instruction concurrently 

checks in the write buffers WB0, WB1, WB2, the memory controller buffer, and the main 

memory for data. If there are multiple matches for the same address, it gives priority in the 

following order: WB0, WB1, WB2, memory controller buffer, and lastly main memory. 

For simplicity, a 1-cycle memory access latency was assumed. 

The safe storage module contains 2 banks A and B to store the newer and older 

rollback states. Its slower clock (ss_clk) is generated by the CPU using the chkpt_counter. 

The ss_sel signal from the CPU selects which bank the incoming rollback state should be 

gated to during a checkpoint or from which bank should the CPU read data from during a 

recovery. 

Two working versions have been developed. One, which is fully synthesizable, yielded 

a physical prototype which was fabricated through MOSIS in 0.25µm technology. It is a 

functionally limited version (the write buffer is not saved in the safe storage during a 

checkpoint) because it had to meet the constraints imposed on pin count by MOSIS. It 

checkpoints every 128 cycles and can operate at 100MHz. It will be integrated with 2 safe 

storage chips using 3D-IC technology at the Laboratory of Physical Sciences (LPS). This 

prototype was developed for “proof of concept” and to test our capabilities in actually 

fabricating a chip which we have done in a successful manner. The other version is a fully 

functional one and its checkpoint frequency can be varied from 64 to 512 cycles per 
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checkpoint. We plan on fabricating it in the future utilizing the full capabilities of 3D-IC 

technology. The performance analysis is based on this fully functional version. 

5.2.1Logical Verification

This section is dedicated to enumerating the steps taken in verifying the logic 

embedded in the design developed. NC Verilog is used to compile and run the verilog 

code. A screen shot of the of the NC Verilog tool is shown in fig. 5.2. 

Figure 5.2: Cadence NC Verilog. In this screen shot, you can observe the interface of 
the NC Verilog tool. The RF, PC, pipeline registers, and certain control signals are 
displayed by the simulation that is running. 
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After running the simulation, signals of particular interest can be selected using the 

Design Browser and viewed in a timing diagram using the SimVision tool, which is 

bundled with NC Verilog. A screen shot of the Design Browser is shown in fig. 5.3. Various 

signals throughout the hierarchical modular structure of the Verilog code can be selected. 

After selecting the various registers and wires in the Design Browser, the timing 

diagram can be viewed in the SimVision waveform view. This is shown in fig. 5.4. 

Figure 5.3: The Design Browser. This screen shot shows the interface of the Design 
Browser. On the left the various modules can be viewed in their hierarchical tree 
structure. On the right the various registers and wires are available for selection to be 
viewed in the timing diagram. 
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The checkpoint interval has been illustrated in the timing diagram. The RMODE signal 

is high when the system is in recovery mode. It can be observed from the timing diagram 

that a checkpoint is taken at the beginning of every checkpoint interval except for when the 

system is in recovery mode. This is indicated by the ‘chkpt’ control signal. The recovery 

penalty is shown to be 4 checkpoint intervals as explained previously. When a fault is 

detected, the system goes into recovery mode and the pipeline is flushed using the 

Figure 5.4: The Waveform view. This screen shot, shows the timing diagram of the 
simulation being run for selected signals. The signal names are displayed on the left hand 
side of the screen and from top to bottom are clk, ss_clk, chkpt, detector_out (the fault 
detection signal), detector_R, RMODE, RMODE_stomp, ss_out_en, ss_sel, data_bus_en, 
and the Checkpoint Rollback bus. The waveforms are displayed on the right side. The tool 
allows the user to zoom in and out, view the waveforms in motion, and place markers for 
debugging among many other features. 

checkpoint interval rollback penalty

CPU to SS SS to CPU
TAT

B A B A
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‘RMODE_stomp’ control signal. The ‘ss_sel’ line indicates which bank of the safe storage 

will be written to or read from. The bank, A or B, that is selected by the ‘ss_sel’ line is 

marked in the diagram. When in recovery mode, the safe storage does not latch the 

checkpointed state from the CPU into the safe storage (bank B in this case) as it may be 

corrupted. The safe storage, after a bus turn around time (TAT), outputs the old rollback 

state in bank B to the CPU. This is also marked in the figure. The system resumes normal 

execution after recovery. 

This timing diagram verifies that the logic design implemented in Verilog conforms to 

the TERPS specifications. 

5.3Safe Storage Implementation 

This section discusses how the safe storage should be implemented to achieve low 

susceptibility to fault tolerance. For our prototype, we fabricated the safe storage with a 

0.5µm feature size, which is an older technology. It operates at a much lower frequency 

(781.25 KHz) as compared to the CPU chip (100MHz). This frequency is set by the 

checkpoint interval which is fixed to 128 CPU cycles for the prototype. 

The safe storage is a memory that is specially designed to have significantly more EMI 

tolerance than the processor. Most of the design techniques that can be used trade off speed 

and/or die area to achieve better EMI tolerance. As high performance CPUs require both 

speed and die area, the tradeoffs make it difficult for these techniques to be applied to a 

processor and maintain its high performance.

Better EMI tolerance can be achieved using a variety of circuit, device, and process-

level techniques. Most of these are orthogonal to each other and may be used or left out 
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depending on the level of tolerance required by the system and the willingness of the 

designer to accept the necessary tradeoffs.

The safe storage is implemented as a static RAM that uses cross-coupled inverters as 

memory cells as opposed to a DRAM using a capacitor as the storage element. The 

presence of the regenerative feedback on the inverter circuit makes it perform better as a 

bistable circuit as compared to capacitor-based DRAMs. 

The SRAM topologies shown in Fig. 5.5 can be compared based on their cell size, 

static power consumption and (more importantly for this article) the static noise margin 

(SNM). The SNM of a memory cell gives the required value of voltage change at the 

inverter inputs to cause the cell to change state. Table 5.2 summarizes the features of each 

configuration. It is a good measure of the amount of spurious signal needed at the memory 

cell inputs to corrupt its state. 

The SNM of different memory cell configurations has been extensively studied (a very 

good example is Seevinck [42]). These studies show that the 6T configuration almost 

always has higher SNM. The 4T configuration can approach or even equal the 6T SNM but 
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Figure 5.5: 3 possible SRAM memory cell implementations. Fig. (a) shows the 
conventional six-transistor (6T) cell, fig. (b) shows the four- transistor (4T) cell, and fig. 
(c) shows a four-transistor loadless (4TLL) memory cell configuration.
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at the expense of both its size and DC power consumption. This makes the 6T memory cell 

the best choice if higher EMI tolerance is needed.

The soft-error rate (SER) of SRAMs in the presence of alpha particles has also been 

widely studied [43][44]. It has been shown that maximizing the stored charge in the 

memory cell (output nodes of the inverters in Fig. 5.5) makes it harder for alpha-particles 

to erroneously cause state changes in the memory cell, resulting in better SER. The most 

common way to increase this stored charge is to increase the parasitic capacitance of the 

cell output nodes so that more charge is stored for a given supply voltage. This capacitance 

is increased using device-level techniques enlarging the cell area to increase the parasitic 

diffusion capacitances. Hence, higher capacitance is achieved at the expense of a larger 

cell area. Process-level techniques can also be used where grounded polysilicon layers are 

added to increase overlap capacitance or to completely fabricate the PMOS loads in 

polysilicon. In this case, higher capacitance is achieved in exchange for process 

complexity.

Techniques to improve SER also improve EMI tolerance. Achieving better SER by 

increasing the charge stored in the memory cell results in better EMI tolerance because 

Table 5.2: Features of different SRAM topologies

Topology Size
DC Power 

Consumption
SNM 

6T Big Very Minimal High

4T Medium Potentially 
Significant

Low-high

4TLL Small Very Minimal Low-medium
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larger EMI signal powers are required to induce a voltage in the system that is large 

enough to exceed the cell's SNM to corrupt the cell's state.

The same principle can be applied to the entire safe-storage system and not just the 

storage cells. Using transistors with larger areas and powered by a higher supply voltage 

will result in increased charge stored within the system. This increased charge require 

larger amounts of EMI to push around.   Since the safe-storage area needs larger transistors 

and higher supply voltages to increase the stored charge, it is fabricated using a larger 

feature size process that is about two or more process generations older than the one used 

for the CPU. This exemplifies the tradeoffs between speed and EMI tolerance needed to 

implement the system.

Using the previous techniques, the circuitry within the safe-storage can be made to 

tolerate higher-levels of EMI. Care has to be taken to ensure that a specific subset of the 

communication between the CPU and the safe-storage be reliable. One way this could be 

done is to use differential signaling between the safe-storage and the CPU. Common node 

noise caused by the EMI will be cancelled and with proper care, induced differential mode 

noise will be minimal. EMI coupling must be minimized to accomplish this goal.   

Interconnect lengths must be minimized, along with current loop areas (that function as 

antennas) formed by the interconnect. This can be accomplished by using differential 

signal interconnects placed very close to each other.

Achieving all of this is facilitated by the 3D integration technology used by the system. 

This relaxes the pin limitations imposed by packaging constraints in conventional systems. 

This makes additional input/output pads available to the designer, with the added benefit 

that inter-die interconnects are going to be considerably shorter because of the chip-
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stacking. This makes possible the use of short, very wide, differential buses needed for 

EMI-tolerant communication. An additional benefit of 3D chip integration is the 

possibility of using die-level shielding mechanisms to protect the safe-storage core from 

EMI. Our group’s efforts in 3D integration are described in a recent article [45].

As a summary of this section, the safe-storage will use six-transistor memory cells to 

maximize storage stability. A better EMI tolerance can be achieved by increasing the 

amount of stored charge within the system. This can be done by using additional grounded 

polysilicon layers to increase signal overlap capacitances, by increasing transistor sizes to 

increase diffusion capacitances, and increasing the supply voltage. The safe storage can be 

fabricated using a process technology that is approximately two generations older than the 

CPU. Lastly, 3D chip integration is used to interconnect the safe-storage and the CPU 

together. This technology removes pin limitations imposed by package constraints and 

makes possible the use of a short, very-wide differential bus. 3D integration also makes 

possible the use of various chip-level shielding schemes to further protect the safe-storage 

from EMI.
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Chapter 6

Results

6.1Performance Analysis

This section presents the checkpoint rollback recovery mechanism and the multi-phase 

commit protocol’s effect on the overall performance of a processor. During the normal 

execution of instructions, the interaction with the checkpointing mechanism is limited to 

the write buffers and hence its impact on performance is low. The overhead is primarily 

due to the time taken to establish a checkpoint and how frequently a checkpoint is taken. 

As checkpointing is done in a periodic fashion, performance is similar for different 

benchmarks when TERPS is operating at a particular checkpointing time interval. 

However, memory intensive benchmarks may slow down forward progress significantly if 

they regularly fill up the write buffer quickly and therefore stall the machine. Hence it is 

important to select the proper write buffer size. In general, 30% of instructions are memory 

instructions and 10% of these are stores [40]. We have chosen 4 different checkpointing 

time intervals (64, 128, 256, 512) to show the impact of checkpointing on performance and 

the corresponding write buffer size is shown in table 6.1. 
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The benchmarks used were:

1. Laplace: Uses numerical methods to approximate Laplace's equation by averaging.

2. Vector Addition: Adds 2 vectors of size 10,000. Memory intensive. 

3. Sample: Implements various basic functions which are seen in many programs like 

summation, factorial, etc. 

4. Horner: Implements Horner's method for evaluating a polynomial and compares it 

with another less efficient method.

The C compiler for RiSC-16 microprocessor (ver. 1.50) developed by Afshin Sepehri 

and Bruce Jacob [46] was used to compile Sample and Horner. 

The performance impact due to these benchmarks is shown in fig.6.1. All results are 

with a 64-bit frontside bus. The performance impact of various benchmarks for a particular 

checkpointing time interval is relatively the same. This is seen because the write buffers 

did not fill up often even in the case of the memory intensive Vector Addition benchmark 

and hence checkpointing, in this scenario, does nothing to worsen the computational speed 

of the pipeline. These results support the criteria for selecting the size of the write buffers. 

The checkpointing mechanism stalls the pipeline during a checkpoint and takes a 

checkpoint independent of the state of the system. So the performance overhead is mainly 

Table 6.1: Write buffer size 

CPU cycles per 
checkpoint

Write 
buffer size

64 8

128 12

256 24

512 48
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due to the stalling of the pipeline during a checkpoint and how frequent a checkpoint is 

made. 

During a checkpoint, the rollback state is saved into the checkpoint latch, the store data 

in the last write buffer WB2 is transferred over the 64-bit frontside bus to the memory 

controller, and then the write buffer WB2 will be overwritten by WB1 and WB1 by WB0. 

The overhead of stalling the pipeline and performing a checkpoint is prominent when 

checkpointing is done more frequently as can be observed from the chart. It would seem 

that as the checkpointing interval is increased the performance would improve drastically. 

However, when checkpointing is done less frequently the size of the write buffers has to 

increase to accommodate more store data. Correspondingly, the time required to establish 

a checkpoint will increase as it takes more cycles to write the store data in the write buffer 

Figure 6.1: Performance Overhead due to checkpointing. Four benchmarks were run 
on the TERPS system at four different checkpointing time intervals. 
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WB2 to the memory controller over the frontside bus. This effect is reflected in the 

performance overhead. It can be seen that for the cases where a checkpoint is taken every 

128, 256, and 512 CPU cycles, the overhead remains at around 5-6%. Checkpointing 

around every 128 CPU cycles, for the current configuration, seems to be pareto-optimal. 

6.1.1Performance with the Memory Controller on-chip

From this analysis it is quite clear that the frontside bus checks the improvement in 

performance which should be observed while increasing the checkpointing interval. To 

achieve better performance with larger checkpointing intervals, the width of the frontside 

bus should be increased. However, this increases the cost drastically as the number of pins 

increases correspondingly. To overcome the constraints on pin count and still have a large 

frontside bus, the memory controller should be integrated onto the CPU chip [47][48]. The 

width of the frontside bus can be very large in this case as the bus is on-chip. The effect of 

checkpointing is quite minimal with this configuration for all frequencies of 

checkpointing, as seen in fig. 6.2, and almost insignificant for the case where 

checkpointing is done every 512 CPU cycles. 

The cost of moving the memory controller on chip may be high as die area would 

increase. System level redesign may also be costly and time consuming. Hence, such a 

step should be avoided when the extra performance overhead incurred with the memory 

controller off-chip, which is quite low to begin with, is acceptable. In the case of critical 

real-time systems, where performance may be an important issue, such a cost may be 

deemed appropriate.
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Figure 6.2: Performance overhead due to checkpointing with the memory 
controller on-chip. 
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Chapter 7

Conclusions and Future Work

In this thesis, the threat of intentional EMI to electronic systems was addressed by 

introducing a fault tolerant architecture, TERPS (The Embedded Reliable Processing 

System). It can significantly lower the susceptibility of a processing system against EMI-

induced transient faults by restricting the area of vulnerability to a small section of a CPU 

and a safe storage device that uses technology which is relatively much more EMI-

tolerant. The system provides this increased resistance to EMI by transparently performing 

checkpoint rollback recovery operations between the CPU and safe storage, and by 

instituting a multi-phase commit protocol between the CPU and memory controller. 

TERPS can recover from a system wide failure scenario (i.e.one in which nearly every 

transistor on a CPU is affected), while most checkpoint rollback recovery techniques 

recover from single error event faults. 

The TERPS mechanism occupies a region of the design space between schemes that 

rely primarily on redundant hardware (e.g. n-modular redundancy) and schemes that rely 

primarily on redundant computation (e.g. redundant execution-in-place). TERPS 

represents a trade-off of a moderate hardware overhead (the extra safe storage chip and 

write buffers) and a minimal performance overhead. 
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The TERPS mechanism has reduced the scope of vulnerability to only the safe storage 

and the control logic to execute the checkpoint mechanism itself from a situation where 

everything could go wrong. A comprehensive discussion on safe storage fault tolerance 

was provided. The control logic used to control the checkpoint mechanism can be made 

more fault tolerant by employing differential signaling based techniques. 

A correctness of design was provided by stating the necessary and sufficient conditions 

for the checkpoint rollback recovery mechanism to work and then showing how TERPS 

supported them. Furthermore, our implementation, developed in Verilog, was functionally 

verified by industry standard logic verification tools. We have also built a physical 

prototype system on 0.5 µm and 0.25 µm processes through MOSIS. The 

photomicrographs of the chips we fabricated are shown in fig. 7.1.

The performance impact of checkpointing (i.e. the cost of stalling during checkpoints 

and buffer overflows) has been kept minimal (~6% for checkpointing every 128 CPU 

Figure 7.1: Photomicrographs of chips fabricated via MOSIS. (a) Processor core 
fabricated via MOSIS at TSMC in a 0.25 µm feature size with a die area of 10.89 mm2, a 
pad count of 100, and in a MQFP package. (b) Safe Storage chip fabricated via MOSIS 
at AMI in a 0.5 µm feature size with a die area of 5.29 mm2, a pad count of 84, and in a 
PLCC package. 

(a) Processor Core (b) Safe Storage
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cycles) with the aid of high-bandwidth, low latency enabling technologies like 3D 

integration. Two memory controller configurations were described; one with the memory 

controller off-chip and another with the memory controller on-chip. The latter shows better 

performance (~2% for checkpointing every 128 CPU cycles) as compared to the former 

but with added cost.

The fabrication of a 3-D integrated chip is important in proving the feasibility of the 

system and this will be completed soon. In the near future, we plan to expand the sphere of 

protection offered by TERPS by encompassing more system elements (e.g. I/O) into the 

TERPS mechanism. 

If the RF detection latency can be accurately determined, the rollback penalty can be 

reduced in certain instances by recovering to the newer rollback state in the safe storage. 

Methods of enabling a checkpointing mechanism in which the checkpointing interval can 

be varied dynamically to improve performance should be explored. This may be useful 

when moving from one place to another where the EMI levels may change. In an 

environment with low EMI levels, the checkpoint interval can be large to improve 

performance while in a harsh EMI environment, the rate of checkpointing can be increased 

to reduce the rollback penalty. Another dynamic checkpointing mechanism may initiate a 

checkpoint every time the write buffer is full hence removing performance penalties due to 

write buffer related stalls. 
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