
ABSTRACT

Title of dissertation: RUNTIME ADAPTATION IN EMBEDDED
COMPUTING SYSTEMS USING
MARKOV DECISION PROCESSES

Adrian E. Sapio, Doctor of Philosophy, 2019

Dissertation directed by: Professor Shuvra S. Bhattacharyya
Department of Electrical and
Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland, College Park

During the design and implementation of embedded computing systems (ECSs),

engineers must make assumptions on how the system will be used after being built

and deployed. Traditionally, these important decisions were made at design time

for a fleet of ECSs prior to deployment. In contrast to this approach, this research

explores and develops techniques to enable adaptation of ECSs at runtime to the

environments and applications in which they operate. Adaptation is enabled such

that the usage assumptions and performance optimization decisions can be made

autonomously at runtime in the deployed system.

This thesis utilizes Markov Decision Processes (MDPs), a powerful and well

established mathematical framework used for decision making under uncertainty, to

control computing systems at runtime. The resulting control is performed in ways

that are more dynamic, robust and adaptable than alternatives in many scenarios.

The techniques developed in this thesis are first applied to a reconfigurable

embedded digital signal processing system. In this effort, several challenges are

encountered and resolved using novel approaches. Through extensive simulations

and a prototype implementation, the robustness of the adaptation is demonstrated

in comparison with the prior state-of-the-art.

The thesis continues by developing an efficient algorithm for conversion of

MDP models to actionable control policies — a required step known as solving the

MDP. The solver algorithm is developed in the context of ECSs that contain general

purpose embedded GPUs (graphics processing units). The novel solver algorithm,

Sparse Parallel Value Iteration (SPVI), makes use of the parallel processing capa-

bilities provided by such GPUs, and also exploits the sparsity that typically exists

in MDPs when used to model and control ECSs.

To extend the applicability of the runtime adaptation techniques to smaller

and more strictly resource constrained ECSs, another solver — Sparse Value Iter-

ation (SVI) is developed for use on microcontrollers. The method is explored in a

detailed case study involving a cellular (LTE-M) connected sensor that adapts to

varying communications profiles. The case study reveals that the proposed adapta-

tion framework outperforms a competing approach based on Reinforcement Learning

(RL) in terms of robustness and adaptation, while consuming comparable resource

requirements.

Finally, the thesis concludes by analyzing the various logistical challenges that

exist when deploying MDPs on ECSs. In response to these challenges, the thesis

contributes an open source software package to the engineering community. The

package contains libraries of MDP solvers, parsers, datasets and reference solutions,

which provide a comprehensive infrastructure for exploring the trade-offs among

existing embedded MDP techniques, and experimenting with novel approaches.

RUNTIME ADAPTATION IN EMBEDDED COMPUTING
SYSTEMS USING MARKOV DECISION PROCESSES

by

Adrian E. Sapio

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Shuvra Bhattacharyya, Chair/Advisor
Professor Marilyn Wolf
Professor Rajeev Barua
Professor Richard La
Professor Balakumar Balachandran

Table of Contents

1 Introduction 1

2 Reconfigurable Digital Channelizer Design Using Factored Markov Decision
Processes 9
2.1 Introduction . 10
2.2 Background and Related Work . 14
2.3 Reconfigurable Channelizer Design 18

2.3.1 Polyphase DFT Filter Bank 19
2.3.2 Tunable Polyphase Decimation Filter 20
2.3.3 Summary of Processing States and Their Properties 23

2.4 MDP-Based Channelizer Control . 26
2.4.1 Multiobjective Rewards . 29
2.4.2 MDP Solver and Policy . 31
2.4.3 Transition States . 32
2.4.4 Factorization . 35
2.4.5 Stability . 40

2.5 Results . 43
2.5.1 Comparison with Manually Generated Policies 43
2.5.2 Comparison with mHARP . 47
2.5.3 Trade-offs in Modeling Transition States 48

2.6 Conclusions and Future Work . 54

3 Efficient Solving of Markov Decision Processes on GPUs using Parallelized
Sparse Matrices 56
3.1 Introduction . 57
3.2 Background and Related Work . 60

3.2.1 MDP Solvers . 61
3.2.1.1 POMDPs and Approximate Solvers 64

3.2.2 Sparsity . 66
3.3 Method . 67

3.3.1 Parallelization . 67
3.3.2 Sparsity . 69
3.3.3 SPVI Algorithm . 71

3.3.3.1 State Transition . 71
3.3.3.2 Action Selection . 74
3.3.3.3 Stopping Criteria . 74

3.4 Applications . 75
3.4.1 Survey . 75
3.4.2 Multivariate State Spaces . 76
3.4.3 Sequential Decision Problems 78
3.4.4 Case Study: Solar Powered Computing 79

3.4.4.1 State Space and Action Space 80

ii

3.4.4.2 State Transition Matrix 81
3.4.5 Case Study: MDP-Based Reconfigurable Channelizer System

(MRCS) . 84
3.5 Results . 87

3.5.1 Experimental Setup . 87
3.5.2 Algorithm Comparison . 88

3.5.2.1 Thrust-VI . 89
3.5.3 Measurements . 90

3.6 Conclusion . 91

4 Runtime Adaptation in Wireless Sensor Nodes Using Structured Learning 92
4.1 Introduction . 93
4.2 Background and Related Work . 97

4.2.1 Reinforcement Learning . 97
4.2.1.1 Stability . 100

4.3 Survey of Compact MDP Models . 101
4.4 Method . 103

4.4.1 Structured Learning . 103
4.4.2 Temporal Difference Equations 105
4.4.3 Sparse Value Iteration (SVI) 106

4.4.3.1 State Transition . 108
4.4.3.2 Action Selection . 108
4.4.3.3 Stopping Criteria . 109

4.5 Application . 110
4.5.1 LTE-M . 112

4.6 MDP-Based Control . 118
4.6.1 State and Action Spaces . 121
4.6.2 Rewards . 125
4.6.3 Structured Learning Controller 127

4.6.3.1 Sensing Application 128
4.6.3.2 Packet Queue . 128
4.6.3.3 LTE-M Modem . 129

4.6.4 Q-Learning Controller . 130
4.7 Simulation . 132
4.8 Implementation . 136

4.8.1 Experimental Setup . 136
4.8.2 Matrix Format . 139
4.8.3 Measurements . 139

4.8.3.1 Memory Usage . 139
4.8.3.2 Computation . 141

4.8.4 Adaptation Overhead . 145
4.9 Conclusion . 148

iii

5 GEMBench: A Platform for Collaborative Development of GPU Accelerated
Embedded Markov Decision Systems 150
5.1 Introduction . 151
5.2 Survey . 155

5.2.1 Solver Implementations . 155
5.2.2 Datasets . 156
5.2.3 Benchmarking Platforms . 160
5.2.4 Dimensionality of Rewards . 161

5.3 GEMBench . 165
5.3.1 Selection Criteria . 165
5.3.2 Hardware and Operating System 166
5.3.3 Solvers . 167
5.3.4 Datasets . 168
5.3.5 Measurements . 170

5.4 Experiments . 171
5.5 Conclusion . 174

6 Conclusions and Future Work 175

Bibliography 184

iv

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible. First,

I would like to thank my advisor Professor Shuvra Bhattacharyya, for giving me

the opportunity to work on challenging and interesting projects over the past years.

I would also like to thank Professor Marilyn Wolf, whose insight and guidance on

various matters proved very helpful along the way.

The deepest thanks of all go to my wife Mayrola, for without her support and

sacrifice over a countless number of nights and weekends this work would never have

been completed. Finally I would like to thank my parents, for sending me off in the

right direction and providing unconditional support.

This research was supported in part by the Computer and Network Systems

Program of the U.S. National Science Foundation under Grant No. CNS1514425

and CNS151304.

v

Chapter 1

Introduction

1

This thesis presents techniques developed to achieve runtime adaptation in

resource constrained embedded computing systems (ECSs). Adaptation is defined

herein as strategic decision-making in the control of one or more of the following:

algorithm selection (among a set of available algorithms), parameter selection from

a set, and partial or complete reconfiguration of programmable digital logic from a

set of available logic configurations.

This work seeks to leverage the computational and reconfiguration capabilities

of modern embedded computing platforms to develop systems that can better adapt

to the environment in which they are operating. Adapting to the environment using

an effective system-level reconfiguration framework (SLRF) can help these systems

operate more effectively — e.g., with improved trade-offs among achievable data

rate, latency, and energy efficiency.

During the design of embedded computing systems, engineers must make as-

sumptions on how the system will be used after being built and deployed. These

assumptions are typically used to balance multiple conflicting performance objec-

tives, and they have a significant effect on how well the system ultimately performs.

This research seeks to explore and develop techniques to help advanced systems

better adapt at runtime to the environments and applications in which they oper-

ate. The goal is to embed novel algorithm implementations that can be deployed

alongside the application functionality, with the purpose of enabling the system to

continually reconsider and update its own operational trade-offs autonomously.

The framework includes multiobjective optimization at its core, embracing

the multifaceted nature of embedded computing design, where making strategic

2

trade-offs among conflicting goals is critical. Additionally the framework allows for

accumulated knowledge and beliefs to be represented probabilistically, which is a

crucial requirement since the real-world environments in which embedded computing

systems operate are typically not deterministic.

The alternative to runtime adaptation is systems in which the runtime behavior

is fully specified at design time, prior to deployment. The disadvantage to this

approach is that it forces engineers to make assumptions about the environments

that their systems will be deployed in, which is often not feasible, or not practical

for widely deployed systems that encounter a wide range of environments — e.g., a

cellular connected device that might have one unit deployed in a location with very

strong cellular coverage and another with weak cellular coverage.

In this scenario, if the system performance could be optimized by a cellu-

lar communications modem configuration, an engineer might be forced to select

one configuration for both installations that would be either better suited for one

over the other, or a compromise between both that would be sub-optimal in either

case. As thousands or even millions of embedded computing systems are deployed

in ubiquitous ways throughout all areas of society, a manual optimization of each

individual unit of this form becomes infeasible. If on the other hand, a runtime

adaptation framework is used, the systems can be programmed to self-optimize to-

wards high-level goals such as maximizing battery life and maintaining a reliable

communication link. In this way, they can autonomously make effective trade-off

decisions for each individual installation, after being deployed and even in response

to changing conditions over time. Environmental properties such as the quality of

3

cellular coverage could have a short term, time-dependent variation such as con-

gestion during peak hours of the day. Environmental properties could also have a

long term, time-dependent variation such as improvement due to new cellular towers

being installed, or congestion as a community grows and more users populate the

coverage area.

The design of algorithms to control resource constrained computing systems

effectively at runtime has been a topic of active research for at least 20 years. A

good survey for early work in this area can be found in [1]. This survey reviews

a wide range of techniques, including fixed threshold-based approaches, dynamic

approaches including stochastic controllers using dynamic programming, as well as

some guidance on how MDPs can be used in this context.

Since the time period when that survey was written, a variety of approaches to

this research problem have flourished over the years. Some researchers have sought

to formulate the design challenge as a constrained optimization problem [2]. Other

researchers focused on modeling the dynamics of the system’s energy consumption,

and simplifying the control decisions to be simple threshold-based comparisons with

respect to the energy budget (e.g., see [3, 4]). Another popular approach has been

to model the system as linear in the context of feedback control systems and then

use Model Predictive Control (MPC) theory to modulate a processing duty cycle

(e.g., [5, 6]).

All of these approaches were shown to be successful in their respective case

studies, but share some common limitations when considered for use in other cases.

For example, several of these approaches assume deterministic behavior from the

4

system being controlled. These approaches model the behavior of the system in

response to some actuation, and assume the system will always behave the same

way. However, many ECSs have some stochastic behavior, either due to complex

unmodeled dynamics or due to being affected by an external factors that are difficult

to predict. A second common limitation is the assumption that the system being

controlled can be modeled as a linear system. Computing systems often do not

behave in linear ways, and attempts at formulating linear approximations to non-

linear behavior is limited to only the simplest non-linearities, which significantly

constrains the overall applicability and generality of this approach. A third common

limitation is that the dynamics of the system being controlled often need to be well

understood at design time. For many computing systems whose behaviors depend

heavily on external factors, this can be an unrealistic assumption.

As efforts in this area progressed, the paradigms shifted from classical control

systems theory to various forms of adaptive algorithms, and then to more general-

ized approaches that researchers have termed as self-configuration, self-optimization

and most recently, self-awareness [7]. A wide ranging survey of these works and or-

ganization of them into these various self-X categories can be found in [8]. In that

work, researchers define self-awareness as “attributes in a system that enable it to

monitor its own state and behavior, as well as the external environment, so as to

adapt intelligently”. Another definition can be found in [9] : “self-aware computing

describes a novel paradigm for systems and applications that proactively maintain

knowledge about their internal state and its environment and then use this knowl-

edge to reason about behaviours”.

5

Among the most promising directions for creating these self-awareness at-

tributes in ECSs is through the use of Markov Decision Processes (MDPs), a pow-

erful and well established mathematical framework used for decision making under

uncertainty. The SLRF proposed in this thesis makes use of MDPs, as they have

shown success in this area because they are inherently capable of modeling stochas-

tic behavior and non-linear responses, and they are also well equipped to deal with

incomplete models and uncertainty. This allows decisions to be encapsulated into

a policy-based framework, where the decision options and the criteria for making

those decisions are defined and the adaptation problem is shifted to an optimal

policy design problem.

Following this approach, the design effort can be decomposed into at least the

following sub-problems, which must be addressed in the design of the proposed form

of embedded decision agent.

• Modeling the available system capabilities in terms of how they help to ac-

complish the high-level goals.

• Determining trade-offs associated with these capabilities.

• Modeling the effects that the exogenous environment has on these goals.

• Predicting the future behavior of the environment based on past statistics,

and anticipating the effectiveness of alternative available functionalities in the

future environment.

In this thesis, a methodology is presented that addresses these sub-problems,

6

analyzes the effectiveness of the resulting adaptive systems, compares the perfor-

mance to competing approaches, and explores numerous issues that arise in the

process.

In Chapter 2, the methodology is applied to the control of digital filtering and

decimation operations commonly found in the physical layer Digital Signal Process-

ing (DSP) of wireless communication systems. In this work, several challenges were

encountered and resolved using novel approaches. These include the use of tran-

sition states to accurately model a wide range of the processing system dynamics,

a scalarization approach to employ the MDP within a multiobjective optimization

framework, and the factorization of system states into internal and external group-

ings for efficient representation and embedded computation. Additionally, the con-

cept of factorization is applied to reduce the storage size of the MDP model and

execution time of the policy generation algorithms.

The limitation of the work in Chapter 2 is that the policy that is analyzed is an

immutable policy that is generated once, offline. There is no runtime adaptation in

this approach, however the work serves to establish the feasibility of the framework

as a viable tool for runtime adaptation of the stated task. Continuing in this spirit,

the work presented in Chapter 3 begins addressing the challenges of deploying time-

varying control policies under the MDP-based framework. The work shows that

sparsity — a characteristic of MDPs that arises when they are used in this context

— is an important concept to exploit for efficient and practical policy generation

within embedded computing systems at runtime. Then, the processing parallelism

capabilities of modern embedded graphics processing units (GPUs) — such as those

7

used in smartphones, robotics and automobiles — are leveraged to generate control

policies in faster and more efficient ways than the prior state-of-the-art.

Chapter 4 extends the applicability of the runtime adaptation methodology to

a wider class of embedded computing systems. This extension is achieved by devel-

oping a variation on the approach that is suitable for smaller microcontroller-based

systems (without GPUs), and then presenting a detailed design and implementa-

tion of an adaptive controller in such a system. The controller is compared to

Reinforcement Learning (RL) based techniques on a range of performance criteria.

The comparison of the proposed method with RL-based techniques is generalized,

exploring when one approach is better suited over the other, and also exploring the

system aspects that affect this choice.

Following these developments, Chapter 5 contains detailed surveys and a re-

flection on the state of affairs encountered in the endeavors of Chapters 2-4. Limi-

tations and hindrances that were found are identified, such as the lack of available

benchmarking data, and widespread incompatibility between MDP file formats. In

an attempt to remedy some of these issues for future research efforts, a common

embedded MDP development platform is proposed by authoring an open-source

software package and pairing it with a family of popular off-the-shelf development

hardware boards. The software package has recently been released to the academic

community, and feedback has been solicited from communities of interest.

Finally, Chapter 6 contains conclusions from this research and also discussion

on areas for future work.

8

Chapter 2

Reconfigurable Digital Channelizer Design Using Factored Markov

Decision Processes

9

2.1 Introduction

Digital channelizers are critical subsystems in wireless communication sys-

tems that are employed when a multiplexed signal contains information in different

frequency subbands, and the application requires separating one input signal (con-

taining multiple subbands) into one or more output signals (each containing a subset

of the input subbands) [10]. This function is commonly required in cognitive radio

systems [11, 12]. In this chapter, the reconfiguration capabilities of modern embed-

ded platforms are leveraged to develop digital channelizers that can better adapt

to the environment in which they are operating. The material in this chapter was

published in preliminary form in [13, 14].

Adapting to the environment using an effective system-level reconfiguration

framework (SLRF) can help these systems operate more effectively — e.g., with im-

proved trade-offs among achievable data rate, latency, and energy efficiency. For this

purpose, MDPs are applied in novel ways to make dynamic decisions on maintain-

ing or adapting signal processing configurations during channelizer operation. An

MDP-based SLRF is proposed to develop dynamic reconfiguration policies for use

in stochastic environments in which adaptation of hardware/software configurations

for digital channelizer processing is strategic.

While the SLRF techniques are developed in this chapter with a specialized

focus on digital channelizer implementation, the results suggest that the underlying

MDP techniques are applicable across many other types of embedded signal process-

ing systems (ESIPs). Exploring the generalization of the SLRF for broader classes

10

of ESIPs is therefore a useful direction for future work.

The MDP-based approach for digital channelizer design optimization results in

increased robustness when used to periodically re-optimize the system policy specif-

ically for the external environment it is being used in. This periodic re-optimization

can be done completely autonomously by an embedded signal processor, without

any need for human-in-the-loop intervention. The information that these design

optimization methods require is completely observable by the system at runtime.

The results in this chapter show that MDPs are useful tools for controlling

resources in computing systems. Additionally, two innovations are introduced that

significantly enhance the effectiveness of MDPs for channelizer design optimization.

First, a mechanism is added to address hardware/software codesign scenarios that

involve multidimensional design objectives and constraints, which are commonly

encountered in transceiver system design. This is done through a multidimensional

framework for the definition of the MDP rewards function.

Second, a concept called transition states is introduced to represent interme-

diate states (between distinct channelizer configurations) in the target system. The

transition states are applied in scenarios where commanding a state change can re-

sult in one or more time steps (frames) where the system is in a non-productive

transition mode. Since being in transition from one state to another can result in

missing real-time deadlines for processing requests, the control policy must choose

carefully when to command a transition, and only seek to do so when the end result

will be a net positive for the system in the long run, in spite of any short-term

negative effects due to the transition frames. Such incorporation of transition states

11

within the SLRF extends its utility to a broader class of applications, including chan-

nelizers, where transitions between productive states must be taken into account for

accurate assessment and optimization of dynamic reconfiguration control.

The work in this chapter continues by applying a methodology developed

in [15] to transform an MDP into a factored MDP. This concept addresses a problem

that frequently occurs with MDPs — the number of possible states of the model

can be extremely large. As detailed in [16], a major motivation behind factored

representations is that some parts of this large state space generally do not depend

on each other and that this independence can be exploited to derive a more compact

representation of the global state. In this thesis, factorization serves to reduce the

storage size of the MDP model and execution time of the policy generation algo-

rithms. Such advancements are critical enablers for the direction of this work —

deploying the modeling framework and policy generation algorithms on embedded

systems.

When the framework and algorithms are integrated with the application on

an embedded platform, they can be used to perform periodic re-optimization of the

reconfiguration policies in addition to applying the policies to manage system config-

urations. To be practical in resource constrained and power constrained embedded

environments, the deployed implementations of the modeling framework and policy

generation algorithms must be carefully optimized so that they consume minimal

amounts of storage and impose minimal computational burden. The application of

factored MDP techniques in this chapter is an important step towards these objec-

tives.

12

Next, the findings of an expanded performance analysis of the proposed method-

ology are detailed. Specifically, a suite of competing control policies are described

and compared objectively with the MDP based techniques. The results show that

the MDP based techniques outperform the alternative schemes in nearly all cases.

Finally, a trade-off analysis of the costs and benefits of including transition

states in the framework is presented. This exploration details and quantifies the

design time modeling costs of transition states in both storage size and execution

time. These costs are then contrasted with the benefits in the form of the run-time

performance when transition states are included versus when they are not.

The remainder of the chapter is organized as follows. A cursory review of the

history of channelizers and MDPs, and their development is presented in Section 2.2.

In Section 2.3, the signal processing application and the algorithms involved are

detailed. In Section 2.4, the MDP-based approach is introduced, along with an

illustration of how it is applied to the signal processing application. That is followed

by Section 2.5 with a summary of the simulations performed and the resulting data

and observations that were made. The chapter concludes in Section 2.6 with a

discussion of future work on the use of MDPs in channelizers.

13

2.2 Background and Related Work

A digital channelizer can be generalized as having the inputs and outputs

shown in Figure 2.1. Without loss of generality, the inputs and outputs are rep-

resented as frame-based vector quantities, with time decomposed into fixed-width

slots referred to as frames. The frame arrival rate is constant and the stream of

incoming frames is never ending. A channelizer is often a subsystem of a larger

signal processing system. For each frame of data, the channelizer is commanded by

higher-level elements of the larger signal processing system on a per-frame basis.

These higher level elements determine which subchannels need to be produced and

which do not.

An example of such a channelizer framework can be found in the cognitive

radio of [17]. In that application, a channelizer is used to isolate sub-bands within

some wireless spectrum dynamically. This dynamic behavior involves consuming a

wideband signal, and applying digital filters and rate-changing operations to produce

an output that contains some subset of the input signal frequencies.

In Figure 2.1, for each frame n of data, x(n) is a length N complex vector of the

wideband input signal. This data is presented to the channelizer alongside CR(n),

a length NC binary vector that provides the channelization request for that frame.

The channelizer outputs NC parallel output data vectors,

yα
(n), α = {1, 2, . . . , NC}. (2.1)

Each of these vectors contains a channelized subset of the input.

14

�� ∈ 0,1 �
�

� ∈ 		�

� ∈ 		�/�
�

� ∈ 		�/�
�

�
�

∈ 		�/�
�

Channelization

Request

Wideband Input

Channelized Outputs

�

�

�

Figure 2.1: Channelizer inputs and outputs.

Good surveys of popular digital channelizer architectures to date are found

in [10, 18, 19]. The most common architectures are based on the Cosine Modu-

lated Filter Bank (CMFB), Discrete Fourier Transform Filter Bank (DFTFB) and

Per-Channel Filter Bank (PCFB). Aside from these well-established architectures,

several other interesting designs for application-specific channelizers can be found

in [20, 21, 22, 23].

As illustrated in [11, 24], the channelizer is often one of the most computation-

ally intensive and power consuming blocks of cognitive radio transceivers, mainly due

to its need to run at the highest data rates. For this reason, several researchers have

sought to create channelizer designs where the key parameters that control the pro-

cessing (e.g., filter coefficients, data rates, and subchannel masks) are configurable

at run-time [25, 26, 27]. This class of DSP systems is referred to as “reconfigurable

channelizers”, and the active body of DSP research is evidence of the importance of

optimizing channelizer processing for exactly what is required, and nothing more.

The goal is generally to improve efficiency by increasing processing productivity,

15

while simultaneously decreasing energy consumption.

The body of prior work referenced above provides a number of efficient chan-

nelizer designs that can be flexibly configured for different trade-offs. However,

this body of work does not address how or when the configurable parameters are

changed, nor provide policies for changing them at run-time. In this chapter, MDP-

based methods are developed to bridge this gap.

Other researchers have sought to use MDPs with similar goals. Wei et al.

have demonstrated the effective use of an MDP to control the processing rate of

a network router [28]. This work created a Markov model of only the external

environment, not the system under control. In contrast, the SLRF proposed in

this chapter incorporates Markov models of both the controlled system and the

external environment, which provides a more comprehensive foundation for dynamic

adaptation.

Hsieh et al. [3] devise a scheduling policy that selects among alternative imple-

mentations of common functions, such as FFTs. The alternative options accomplish

functionally the same operation, but with different execution times, power demands,

and hardware requirements. As in the SLRF proposed here, Hsieh’s approach uses

an algorithm to make reconfiguration decisions based on what requests are placed on

the system at runtime. However, in Hsieh’s approach, these requests are converted

to a time series signal, smoothed using a moving average filter, and then compared

to thresholds in order to derive reconfiguration decisions. The designer must com-

mit to a smoothing factor on the incoming requests, and effectively assume a priori

some of the resulting dynamics of the system.

16

Compared to Hsieh’s methods, the SLRF proposed here takes a very different

approach by transforming both the system and operating environment into stochas-

tic models, which can then be reasoned upon within the framework of MDPs. In

contrast to the approach of Hsieh, there are no a priori trade-offs on the smooth-

ing of incoming requests. Furthermore, instead of condensing the observable data

into one-dimensional signals, larger conditional probability tables are maintained.

Thus, the algorithms in the SLRF can incorporate more knowledge into the decision

framework. By incorporating historical transition probabilities, the MDP is able to

infer in real-time whether a new request is likely to be the start of an event that

should be acted upon, or is more likely a spurious request that is better ignored.

This inference can be performed immediately and without the delay associated with

the step response through a smoothing filter.

17

2.3 Reconfigurable Channelizer Design

In this section, a reconfigurable digital channelizer design is presented, that

forms the foundation for an MDP-based, adaptive channelization system. The sys-

tem is detailed in Section 2.4, and demonstrated experimentally in Section 2.5.

The channelizer system is implemented on the Silicon Labs EFM32GG, a

small and low power ARM Cortex M3-based microcontroller. The processor is

running on the EFM32 STK3700 development kit, which houses the CPU as well as

sophisticated energy monitoring circuitry. For this hardware, a channelizer width of

NC = 8 subchannels is used in an illustrative experiment.

This particular channelizer system is developed with applicability to wireless

sensor networks, which impose challenging constraints on energy consumption and

resource utilization. However, with its foundation in MDP techniques, the design

methodology is not specific to any particular domain of channelization applications.

For example, the methodology can be adapted to large scale, high performance

channelization scenarios that involve dozens or hundreds of subchannels that require

the use of FPGAs or GPUs to run in real-time. Developing such adaptations for

these additional classes of processing platforms is an interesting area for future

investigation.

To examine the ability of the system to adapt to its environment, two separate

use cases are considered, which are referred to as A and B. Additionally, multiple

scenarios are created within those use cases, by varying parameters of the application

that are understood to be time-varying. Two separate channelizers are designed,

18

one ideally suited for each use case, as detailed in Section 2.3.1 and Section 2.3.2. A

reconfiguration policy is then derived using the SLRF with the decision-making au-

thority to select which channelizer algorithm to use at any given time. Additionally,

the algorithms contain configuration parameters, and the SLRF is given control of

these parameters. This results in a unified controller for reconfiguration, dynamic

power management, and runtime parameter optimization.

2.3.1 Polyphase DFT Filter Bank

Use Case A is the application in [17]. In that system, the requests are modeled

as i.i.d. (independent and identically distributed) Bernoulli across both the time

and subchannel dimensions. These statistics for the requests mean that there is no

opportunity to anticipate the request vector. For such an environment, a sensible

option is a filter bank that outputs all subchannels at all times, in the most efficient

way possible. For this, a Polyphase implementation of the canonical Discrete Fourier

Transform Filter Bank (DFTFB) described in [10] is used.

To implement this DSP block, a low pass filter is designed to be used as

the “prototype” filter in the filter bank. The filter has a passband width of one

eighth of the full spectrum, since there are eight equally spaced channels. The filter

coefficients are chosen using the Equiripple FIR design method detailed in [29].

The prototype filter is then shifted in frequency, decomposed into its polyphase

components Em(z), and implemented into the DFTFB, as described in [10]. A block

diagram of the derived DFTFB is shown in Figure 2.2. The resulting magnitude

19

z-1

z-1

M E0(z)

M E1(z)

M EM-1(z)

Inverse

DFT.

.

.

.

.

.

.

.

.

Figure 2.2: DFTFB block diagram, M = NC .

response for each of the 8 outputs is shown in Figure 2.3.

As can be seen from the magnitude responses of the 8 channelized outputs,

this filter bank can simultaneously channelize all of the subchannels, and thus, no

tunable parameters are required for this algorithm. In order to optimize for bursts

of communication activity as well as idle time, the controller has the ability to

put the DFTFB in and out of a sleep mode. The DFTFB remains resident in the

current configuration, and can be gated on and off very quickly. The gating off of

the DFTFB corresponds to its sleep mode.

2.3.2 Tunable Polyphase Decimation Filter

Use Case B is the Sequential Sensing application in [30], where a channelizer

with the same inputs and outputs as Use Case A is required. However, the request

statistics imposed on this channelizer are quite different from those in Use Case A.

20

-3 -2 -1 0 1 2 3

w [Rad/sample]

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e
 [
d
B

]

Figure 2.3: DFTFB magnitude responses.

In Use Case B, the channelizer is requested to produce only one output subchannel

at a time. One or more frames (usually multiple frames) elapse between requests

for different subchannels.

Since only one channel is requested at any given time, only a tunable decima-

tion of the input data is needed — i.e., to filter out the unwanted subchannels. For

this, a polyphase implementation of an 8-to-1 decimation (DCM) filter and mixer

as described in [31] are employed, shown in Figure 2.4.

The operation shown suppresses all but one subchannel out of the incoming

signal, and then uses a complex mixer to shift the extracted channel down to be

centered at DC. Once centered at DC, a simple decimation of samples gives the

resulting output stream. The same filter coefficients used for the prototype low pass

filer of the DFTFB can be used in the DCM. Such a DCM design produces the

same frequency response per subchannel. Prior to implementation, the polyphase

21

Figure 2.4: DCM block diagram, M = NC .

technique detailed in [31] is utilized to reduce the runtime processing requirements

further without changing the resulting filtering operation. The resulting subsystem

is referred to as a polyphase decimation filter.

Unlike the DFTFB, this configuration does have tunable parameters: the filter

coefficients and mixing frequency. Using 8 parameter sets, this algorithm can be

modified to select any of the 8 subchannels, effectively being an efficient low-pass,

band-pass or high-pass decimation filter. Both the filter coefficients and the amount

of frequency shifting are tunable, as shown in the block diagram (Figure 2.4). The

signal is first passed through a digital filter Hm(z), whose coefficients are specific

to each channel m. Then, the filter output is shifted in frequency by multiplying

it with a complex sinusoidal signal, whose frequency is also specific to each channel

m. The formula to generate the sinusoidal frequency is the exponential shown in

the block diagram. This configuration is also designed to be kept in a sleep mode

during periods of idle user activity.

22

An important implication of using digital filtering algorithms based on Finite

Impulse Response (FIR) filters and not Infinite Impulse Response (IIR) filters in the

DFTFB and DCM processing configurations is that the resulting signal processing

algorithms are numerically stable, unconditionally. IIR-based designs by necessity

require careful positioning of the transfer function’s poles, as well as attention to

how those pole positions are affected by the numerical implementation of the filter

in terms of quantization effects, fixed point field widths and the dynamic range

of intermediate calculations. A thorough analysis of these concepts can be found

in [29].

2.3.3 Summary of Processing States and Their Properties

The MDP framework requires an enumeration of the states that the processing

system can be in at any time. The experimental embedded system has 13 states,

which fall in the categories listed in Table 2.1.

The first row of the table covers the states when the system is in a sleep mode,

with either the DCM or DFTFB ready to run. The distinction is made between

these as two separate states to allow the model to capture any difference in time

that it may take to re-enable the resident and already initialized algorithm out of

sleep mode compared to switching to the other algorithm. Further discussion on

these delays will be presented in Section 2.4.3.

The last two states, whose labels are prefixed with “Trans.”, are states of be-

ing in transition to the DFTFB or DCM, respectively. The time required by the

23

processing system to transition between states is an important detail in this frame-

work. The incorporation of transition states into the MDP is a novel contribution

in this work that is intended to take such transition times into account (detailed in

Section 2.4.3). This concept of transition states allows an SLRF to compute decision

paths involving transitions that can take multiple time frames to complete.

The third column of the table shows the number of channels provided by the

system while in each state. Note that while in transition, the system is consuming

power but not producing any channelized data.

The fourth column of the table shows the CPU power consumed by the system

in each state. These measurements were performed at design time by putting the

processor into test modes created for this purpose. Each test mode loaded a single

configuration and executed it at the experimental application’s frame rate. With the

processor operating in such a test mode, the Silicon Labs EFM32GG development

tools allowed the power consumption of the associated state at the associated frame

rate to be measured.

It is clear from Table 2.1 that the DFTFB is the most productive configuration

(producing all 8 subchannels), while being the most power hungry in its ON state.

It is also clear from the table that the DCM algorithm represents a less productive

configuration (producing only 1 subchannel) compared to the DFTFB, but with

the benefit of reduced power consumption. If only one channel is requested for an

extended period of time, then a rational controller should select the DCM configu-

ration over the DFTFB during that time in order to conserve power. This means

the controller must balance the short term penalty of a non-productive transition

24

State Number of Number of Average

Category States Channels Produced Power

SLEEP 2 0 5.36 µW

DCM 8 1 7.61 mW

DFTFB 1 8 17.92 mW

Trans. DFTFB 1 0 10.25 mW

Trans. DCM 1 0 10.25 mW

Table 2.1: Categories of processing states and their properties.

with the long term benefit of the presumably more favorable new state.

It can be seen from Table 2.1 that the number of channels affects the number of

states, and thus, the size of the MDP state space. This has significant implications

on the resources required to host an MDP-based control policy on the target system,

and ultimately, on the scalability of this approach to channelizers with more than 8

channels. This concept will be explored in detail in Section 2.4.4.

25

2.4 MDP-Based Channelizer Control

In this section, an SLRF for modeling reconfigurable channelizers is developed

with the goal of generating run-time control policies that can be steered in terms of

multidimensional operational objectives, including latency, throughput, and energy

efficiency. The procedure is to first create a Markovian model of the system, and then

use an MDP solver to generate a control policy from the developed system model. It

is important to note that the system and the environments that it operates in need

not be Markovian or even stochastic in nature, and the Markovian assumptions are

made as approximations expressly for the purpose of arriving at the control policy.

These assumptions are validated by evaluating the resulting control policy on the

real system (not the model) in its intended use case.

The resulting MDP-based dynamically reconfigurable channelizer is illustrated

by the block diagram shown in Figure 2.5. The key feature of this system is that

the channelization requests do not have direct control over the processing system.

Rather, the channelization requests go only to the MDP-generated run-time control

policy, which decides when and how to act on each specific request. The policy

determines the best action to take, with the objective of maximizing the long-term

average performance rather than solely based on an immediate reward. To make

this determination, the policy uses models of the application and processing system

characteristics. The policy may decide to reconfigure the processing system imme-

diately if that is assessed as the best decision, or counter intuitively, it may decide

to ignore a request that it predicts is a spurious request and would not justify a

26

CR

x

���������	

���
��

y1

Control
Actions

Processing
System State

Runtime
Control
Policy

y2

yNc

⋮

Figure 2.5: Dynamically reconfigurable channelizer.

reconfiguration event.

The key components of the MDP underlying the reconfigurable channelizer

system are the 4-tuple (S, A, STM s, R), where the components of this 4-tuple

are respectively referred to as the system state space, action space, state transition

matrices (STM s), and reward function. In some contexts a scalar discount factor

and a probability distribution for the starting state are also included in this list,

sometimes making it a 5-tuple or 6-tuple. However, in this discussion the 4-tuple

definition is sufficient.

The state space S is defined by enumerating all possible states of the external

requests imposed on the processing system (channelization requests), as well as a

list of modes that the processing system can be in at any time (reconfiguration

states), which were detailed in Section 2.3. The combination (product) of these two

subspaces (external requests and processing modes) yields the state space of the

channelizer system.

27

For the action space A, the MDP policy is given control over the reconfigura-

tion decision, as well as selected parameter values within particular configurations.

As a result, the action space consists of all the possible configurations and parameter

values that can be commanded.

The STM s are a set of stochastic matrices that define the probability of the

next state given the existing state, conditioned on a given action. There is one STM

defined for each action. These matrices are obtained by multiplying together the

independent statistics of the external channelization requests with the conditional

statistics of the processing system’s state transitions. The statistics of the channel-

ization requests used to generate the STM s are given by the following equations.

P (CRj|i) =


P0(CRj), i = i0

P1(CRj), i 6= i0

, (2.2)

P0(CRj) = (pstart)PD(CRj) + (1− pstart)1{j=i0} (2.3)

P1(CRj) = (pstop)1{j=i0} + (1− pstop)PD(CRj) (2.4)

PD(CRj) = βσ(j)(1− β)NC−σ(j) (2.5)

where i0 is the state where no processing requests are incoming (representing periods

of inactivity), σ(j) represents the number of requested subchannels in the CR state

j, β is a parameter used to simulate various levels of communication activity, and

28

pstart , pstop are used to simulate the system entering and exiting periods of inactivity.

The statistics of the processing system used to generate the STM s are detailed in

Section 2.4.3.

2.4.1 Multiobjective Rewards

For the reward function R, the following methodology for incorporating mul-

tidimensional design objectives into an MDP-based channelizer design framework is

used. Given a set X = {x1, x2, . . . , xNR
} of NR evaluation functions for key per-

formance metrics, a reward function R : (S × A) → R is defined in terms of these

metrics for each action in each state. Here, R denotes the set of real numbers.

Each evaluation function xi : (S ×A)→ R is used to estimate system perfor-

mance in terms of a specific implementation concern, such as average energy con-

sumption, latency, or throughput. These estimation functions can be formulated

at design time by using knowledge of the system and its available configurations,

or measured at runtime by supporting instrumentation. The result of each evalu-

ation function xi is transformed by a mapping gi : R → [0, 1], which is defined at

design time for each metric. These transformations are introduced to normalize the

performance metrics in order to allow them to be combined into the single scalar

output of R. This kind of transformation and combination follows the scalarization

approach to multiobjective optimization, as described in [32].

The combination of the transformed results of the evaluation functions is per-

formed through a set of weights ρ = {r1, r2, . . . , rNR
}, one corresponding to each

29

metric, such that

(ri ∈ [0, 1] for each i) and (1 =

NR∑
i=1

ri). (2.6)

Determining these weights ρ is a design time aspect of the SLRF. The weights are

determined once and then continually used to steer any executions of the solver to

seek policies that achieve the desired prioritization of metrics in consideration with

the observed external environment statistics.

Once the evaluation functionsX, transformations {gi}, and combination weights

ρ are determined, the reward function can be evaluated using Equation 2.7 for any

given s ∈ S and a ∈ A.

R(s, a) =

NR∑
i=1

ri gi(xi(s, a)) (2.7)

In the experiments, the rewards are defined as follows. First, g1 is defined

as the normalized rate of successful channelization requests. This can be expressed

as (ηr − ηd)/NC , where ηr represents the total number of channelization requests

input to the system during a given time interval τ , and ηd represents the number

of dropped requests (i.e., requests where there is a failure to produce the desired

channel) during τ .

g2 is defined based on a formulation in [28] for the normalized power savings

of an electronic system. Specifically, in order to normalize power consumption and

treat it as a form of savings, power consumption (x2) is measured in each state

and the minimum and maximum possible values are recorded. Then the power

30

measurement are transformed relative to the maximum and minimum power that the

system consumes in all of the possible states (g2). The result is shown in Equation 2.8

and Equation 2.9.

g2(x2(s, a)) =
x2,MAX − x2(s, a)

x2,MAX − x2,MIN

, (2.8)

where

x2(s, a) ≡ Power Consumed(s, a)

x2,MAX = max
s′,a′
{x2(s′, a′)}

x2,MIN = min
s′,a′
{x2(s′, a′)}.

(2.9)

Note that this definition is consistent with the convention previously defined:

the most power hungry state has g2 = 0 (and thus is the least rewarded), while the

least power hungry state has g2 = 1 (and thus is the most rewarded).

The combination of rewards functions g1 and g2 effectively steer the MDP to

find policies that are most productive at channelizing the incoming signal as per the

channelization requests, while consuming as little power as possible on average.

2.4.2 MDP Solver and Policy

With the definitions and rewards described above, an off-the-shelf MDP solver

can be employed to generate a policy that simultaneously seeks to maximize the

rate of successful channelization requests while consuming the least energy possible,

taking into account both the physical characteristics of the processing system as

31

well as the independent statistics of the operating environment at the current time.

In these experiments, the open source MATLAB solver MDPSOLVE [33] is used.

The resulting control policy has the form f : S → A — i.e., a mapping from

states into actions. This mapping can be implemented as a function or simple

lookup table that is invoked or accessed once per frame, respectively. To execute

the controller, the incoming request is combined with the current processing system

state. The result is then used as an index to lookup the operations involved in the

next optimal control action.

In this example application, the total number of states is 3328 and the total

number of actions is 13. For these quantities, the action can be encoded into 4 bits

and thus 2 encoded actions can be packed into 1 byte of storage. The result is a

policy that can be packed into 1.6kB. For the prototype hardware implementation,

it was feasible to simply store the policy as a lookup table in RAM and index it to

look up the next action.

2.4.3 Transition States

In this design context, the processing system is typically a deterministic, con-

trollable machine, such as a general purpose processor (GPP), programmable digital

signal processor (PDSP), field programmable gate array (FPGA) or graphics pro-

cessing unit (GPU). The proposed framework assumes that this type of processing

system can be modified or reconfigured through the action decision of the MDP. By

definition, in MDP frameworks the system is assumed to transition probabilistically

32

from one state to another as a result of an action decision. This abstract probabilis-

tic transition viewpoint is not immediately amenable to modeling the transitions of

a deterministic processing machine. Rather, the resulting state changes in the pro-

cessing system are better described as a change that is guaranteed to occur but can

take some fixed or variable amount of time to complete. Additionally, the change

may take longer than a single frame to complete. Some examples of the types of

operations typically encountered in this context that must be accounted for are:

(1) computation of the schedule for a dataflow graph before being able to execute

it, (2) allocation of memory from an operating system heap when initializing algo-

rithms, (3) the block copy of code or data from a slower, larger long-term storage

to a smaller, faster location (e.g., page fault), (4) the block copy of code from non-

executable regions to executable regions (e.g., overlays), and (5) dynamic full or

partial reconfiguration (DPR) of FPGA regions, to name a few.

To assign the required state transition probabilities in this context, suppose

that the processing system receives action w in frame n while in state sp(n) = u, and

that this state/action pair is known to deterministically transition the processing

system to a new state v in an amount of time denoted as Tu,v|w, which need not be

an exact multiple of the frame period TF .

If Tu,v|w < TF , then the conditional State Transition Matrix for the processing

system (SP STM) is trivially computed by

33

SP STM i,j|w =


1, j = v

0, otherwise

(2.10)

This represents a guaranteed (i.e., with probability 1) transition of the processing

system to state v, that completes before the start of the next frame.

If, on the other hand, this transition takes longer than TF , a new processing

system state m is needed, which is defined as the state of being in transition from

sp = u to sp = v. In this case, the conditional SP STM matrix is calculated by

SP STM i,j|w =



1, i = j = v

1, i = u, j = m

1− c, i = j = m

c, i = m, j = v

0 otherwise

, (2.11)

where

c =

[
floor

(
Tu,v|w
TF

)]−1
. (2.12)

For example, if the processing system transition takes 4.67 frames to complete

and the action is held constant until the completion of the transition, then the

system will begin transitioning immediately following the triggering action, and will

remain in transition for 4.67 frames before arriving at the destination state. In this

case, the conditional transition matrix states that with probability 1, the processing

34

system will transition from the starting state to the transition state in the first

frame, and then for each subsequent frame will remain in the transition state with

probability 3/4, and will jump to the destination state with probability 1/4. This

is exactly how the transition would appear to an agent who naively observes the

processing state as a stochastic process during just the transition sequence. This

agent would observe 3 non-transitions and 1 transition out of 4 trials.

The observations during the transition can be modeled as a Bernoulli random

variable, as was done in [34] through the use of Bernoulli trials. Here, the two

random outcomes are interpreted as those of remaining in transition and completing

the transition. Then the Maximum Likelihood Estimator (MLE) of the Bernoulli

parameter can be shown to be exactly as given by Equation 2.12. For this reason,

the Bernoulli probability mass function is given by the corresponding row of the

conditional transition matrix, as expressed in Equation 2.11. With knowledge (or

an estimate) of the transition time from each state/action pair in the model, the

entire set of SP STM matrices can be populated in this manner.

2.4.4 Factorization

In this chapter, the MDP model and solver components are implemented and

invoked at design time, in order to generate a control policy that is used at run-

time. However, in order to implement runtime adaptation it is ultimately necessary

to transfer the MDP model and solver to the target system such that the solver

can be invoked periodically at run time. The solver can then be used to dynami-

35

cally re-optimize the control policy in response to a changing external environment.

Working towards this goal, in this section an analysis is performed of the required

target platform resources necessary for embedded deployment of the MDP model

and solver. The main aspects of resource utilization that are investigated here are

(1) the size of the four MDP constructs (S, A, STM s, R) that need to be held in

memory, and (2) the execution time of the MDP solver required to generate the

control policy.

In this context, there are significant advantages to adopting the Factored

MDP approach developed in [15]. In that work, knowledge of the stochastic inter-

dependencies between the state space variables are exploited to reduce both the

memory requirements and solver execution time.

In MDP problems, the state s ∈ S is constructed to model the problem the

MDP is being applied to. Often this results in the state being an instantiation of

a discrete multivariate random variable Z = (Z1, Z2, . . . , ZNZ
), with each variable

Zi taking on values in DOM (Zi), where DOM (X) represents the set of admissible

values of the random variable X. A state is a set of instantiations of the NZ random

variables, and can be written as a vector z ∈ DOM (Z). The size of the state

space is defined by the cardinality of this set, which is denoted as |DOM (Z)|. As

a result, each row of each transition matrix for an MDP has width |DOM (Z)|, and

describes the probability of reaching all possible combinations of the set of variables

(Z1, Z2, . . . , ZNZ
).

MDPs with this kind of formulation are said to have a multivariate state

space. When an MDP’s STM s are stored in a structured way that uses knowledge

36

of the causal relationships between these state variables to reduce storage size, the

MDP is said to be factored. From the empirical observations of this application, it

can be seen that this method can effectively reduce STM storage size considerably.

However, it requires a specific conditional probability structure to be present in an

MDP, and the data structures must be created by hand with specific knowledge of

the exact structure.

This can require a subject matter expert in the loop anytime a transition

probability changes, which can complicate runtime autonomous solving of an MDP

that changes over time in unknown ways. In general, this requirement can be prob-

lematic if the underlying structure is not fully understood. The effectiveness of the

technique is acknowledged here, but also the fact that it cannot always be used (for

these reasons) is important as well.

Using the factorization approach, the state space of the channelizer can be

represented as:

s = (CR1,CR2, . . . ,CRNC
,CF 1,CF 2). (2.13)

Here, CRi is the channelization request for channel i, CF1 is the top-level pro-

cessing configuration, and CF2 is the processing subconfiguration. The benefit of

using this scheme is that it enables the explicit specification of the stochastic inter-

dependencies of the variables within the state space. With this in mind, factored

MDPs make use of Dynamic Bayesian Network (DBN) diagrams [35] to explicitly

define and illustrate these dependencies.

37

Channelization

Requests

Processing

Configuration

Processing

Sub-Configuration

Frame

n
Frame

n+1

CR CR

CF1 CF1

CF2 CF2

Figure 2.6: Dynamic Bayesian network representation of the channelizer state space.

A DBN diagram of the channelizer’s STM s when conditioned on an MDP

action is shown in Figure 2.6. Note that the (CR1,CR2, . . . ,CRNC
) requests are

grouped together into a single vector CR for conciseness. A stochastic dependency

between two variables in the state space (from one time frame to the next) is de-

noted via the presence of an arrow between the dependent variables. The absence

of an arrow denotes independence. Thus, the diagram shows that the joint proba-

bility distribution of the channelization requests is dependent only on the requests

in the previous frame, and is independent of the processing configuration. The

processing configuration is dependent only on the previous processing configuration

(since reconfigurations are not instantaneous). However, this dependency is only on

the top-level processing configuration (e.g., DCM, DFTFB, etc.) and not on the

subconfiguration (e.g., the filter coefficients).

Knowledge of this underlying stochastic structure within the state space al-

lows for considerable reduction of the size of the data structures required to store

the MDP model. The effect on the largest of these components (the STM s) is high-

38

lighted. Only the conditional probabilities with respect to the dependent variables

need to be stored, rather than with respect to all variables — as would be necessary

in an equally sized state space where the underlying stochastic structure is unknown.

The factorization made possible by the knowledge is represented in Equation 2.14,

where the superscript n is used to denote the time index. The rearrangements are

made possible through (1) independence between the channelization request and

processing configuration, and (2) independence between the channelization request

and the MDP action.

p(s(n+1)|s(n), a(n)) = p(cr (n+1), cf 1
(n+1), cf 2

(n+1) | cr(n), cf (n)
1 , cf2

(n), a(n))

= p(cr (n+1) | cr (n)) p(cf 1
(n+1), cf 2

(n+1) | cf 1
(n), a(n))

(2.14)

The resulting reduction in the number of elements in the STM s is shown in

Equation 2.15. This reduction represents a significant savings. Note that the quan-

tity shown in Equation 2.15 is the cardinality of the sets, which is a count of the

number of elements regardless of what underlying data type is used for representa-

tion in the MDP model and solver algorithms. For example, if the data type used is

a 16-bit or 32-bit representation, the total storage size would be 2 bytes or 4 bytes

per element, respectively.

|S|2 |A| � |DOM(CR)|2 +

|DOM(CF1, CF2)| |DOM(CF1)| |A|

121.8x106 � 66.3x103

(2.15)

39

2.4.5 Stability

Once an MDP-generated policy is used to control the processing system, the

stability of the resulting dynamics can be analyzed. There are two aspects of stability

that arise in the context of this SLRF.

First, it is important to design the model of the processing system such that

for a given action, the model is guaranteed to eventually transition to the desired

processing state (after any transition delays and transient dynamics have settled)

and to remain in that state indefinitely for as long as that action is held constant.

For example, the action that configures the channelizer to be in the DFTFB state

should eventually result in it reaching that state, and it should remain in that state

indefinitely until another action is selected. This characteristic of the model aids

stability and can be defined formally in the context of Markov chains, which allows

it to be verified systematically at design time before attempting to generate the

optimal policy for the MDP. Such a step of systematic model checking can aid in

larger modeling efforts where the criteria may not be immediately obvious, as in the

case of complicated transition dynamics including multiple transition states.

The product of terms format of Equation 2.14 that results from factorization

allows for the transition probabilities of the processing system to be specified sep-

arately from those of the external environment. This subset of the full STM s can

be viewed as a smaller set of state transition matrices MCF for the processing sys-

tem only, not the external environment. For a given action, the processing system

is modeled to transition according to this state transition matrix and thus forms

40

a Markov chain with state vector CF . The stability criterion described above is

equivalent to requiring that each transition matrix in MCF qualify as an absorbing

Markov chain as defined in [36], and additionally that only one absorbing state exists

per action. Such a Markov chain is one where each state can reach the absorbing

state, and once the absorbing state is entered it cannot be exited. In this SLRF, the

way to leave the absorbing state is to change the action, which effectively changes

the processing system transition probabilities and creates a new Markov chain that

allows for transition out of the state. This absorbing characteristic can be inspected

numerically in the model, by verifying that all of the MCF matrices conform to

these numerical restrictions.

The second aspect of stability that arises is that of the dynamics of the full

MDP, which includes both the processing system and the external environment. The

dynamics of the external environment are exogenous and uncontrollable, and thus

not a concern from a stability viewpoint. However, the environment affects what

the MDP-generated policy will contain, and by extension the resulting sequences of

actuations that the MDP-generated policy exposes the processing system to. Given

that the processing configurations are a finite set, instability could materialize as an

excessive reconfiguration back and forth between processing states that negatively

affects the overall closed loop performance with regard to the defined performance

metrics. The presence of such instabilities can be detected using the simulations

introduced in Section 2.5.

In the case of this form of instability, the designer can correct the dynamics

by adjusting the reward weights ρ introduced in Section 2.4.1. A thorough analysis

41

of why some reward functions lead to this form of behavior can be found in [37].

42

2.5 Results

To evaluate the effectiveness of the MDP-based Reconfigurable Channelizer

System (MRCS), a simulation was developed with external requests that follow the

statistics of the two use cases — here termed IID for the i.i.d. requests of Use

Case A (introduced in Section 2.3.1), and SEQ for the sequential sensing of Use

Case B (introduced in Section 2.3.2). In the following sections three evaluations

are performed. First, the results are compared against those of manually generated

policies, that are considered representative of a typical approach used in industry at

the time of this writing. Second, the results are compared against another method

published by researchers. Third, the effectiveness and trade-offs associated with

modeling transition states are explored.

2.5.1 Comparison with Manually Generated Policies

In order to evaluate the effectiveness of the MDP generated control policy,

several alternative control policies are created to compare it against. These are

referred to as the “manually generated” policies, and contrasted with the set of

“MDP generated” control policies. The manually generated policies were generated

through intuitive heuristics, by first defining common sense rules for controlling

the system in question, and then translating those rules into code. This represents

the traditional method that an embedded software developer would use to create

a reconfiguration policy. For the manually generated alternatives, the rules and

resulting policies are as follows:

43

1. DFTFB — This policy keeps the DFTFB algorithm on the chip at all times,

and invokes it in all frames regardless of the external requests. This policy

was used purely as a starting baseline, as this policy represents the absence

of reconfiguration options, using the most productive and processor intensive

channelizer available in the system at all times to meet all requests.

2. DFTFB+Sleep — This policy also keeps the DFTFB algorithm on the chip

at all times. However, if the number of requested channels is 0, the DFTFB

is put into sleep mode. Otherwise, the DFTFB is kept on.

3. DCM+Sleep — This policy keeps the DCM algorithm on the chip at all times.

If the number of requested channels is 0, the DCM is put into sleep mode.

Otherwise, the DCM is kept on and applied to produce one of the requested

channels.

4. DFTFB+DCM+Sleep — This is a set of policies that use both the DFTFB

and DCM algorithms. The reconfiguration decision occurs based on how many

channels are requested in the upcoming frame. If less than DFT THRESH

channels are requested, the DCM algorithm is used. If more than this threshold

are requested, the DFTFB algorithm is used. Additionally, if the number of

requested channels is 0, the algorithm that is currently is loaded is put into

sleep mode. If a reconfiguration is in progress, it is allowed to finish regardless

of incoming requests. The DFT THRESH parameter is varied from 2 to 6,

resulting in 5 different control policies.

In order to compare the policies objectively, the following experimental setup

44

was created on the EFM32GG development board. Both channelizer algorithms

were implemented in C, compiled and stored on the system’s non-volatile storage.

A MATLAB simulation was created that produced a time series of channelization

requests having the statistics described in the two use cases A and B. The time series

output of the simulation was translated to a C array and stored on the EFM32GG.

A test harness was written on the EFM32GG, which was driven by a periodic timer

interrupt. At the interrupt rate, the next channelization request was pulled from

the stored array and that channelization request was then used as an input to the

dynamically reconfigurable channelizer system.

This system was implemented in C and executed on the EFM32GG. In order to

facilitate an objective comparison of control policies, all of the manually generated

policies were stored as Lookup Tables (LUTs) in addition to the MDP generated

policies. This allowed both the manually- and MDP-generated policies to be invoked

by suitably swapping out the contents of the LUT.

As part of the test harness, a small amount of diagnostic code was incorporated

to compute performance objective 1 (channelization productivity) in real-time. This

computation was performed by comparing the produced channelizer outputs with

the requests. A channelization request that was successfully carried out was labeled

a success. Conversely, a request that was not carried out was labeled a failure

(e.g., if the processing system was in a reconfiguration state during a frame with

channelization requests in it, or if a configuration was in place that could not produce

enough output channels, etc.). The ratio of the successful outcomes to the number

of requests was used to compute a success rate, which was used as a measure of

45

system productivity. The measured productivity results were periodically streamed

to a laptop computer using the ARM on-chip Real-Time Trace (RTT) functionality,

and EFM32GG Single Wire Output (SWO) port. The streamed output for each

case was tabulated and used for comparison.

Metric 2 (CPU power consumption) was measured by using the EFM32GG

board’s energy monitoring tools. These development tools allowed a very accurate

current measurement to be taken, showing the exact current drawn by the CPU

over time for each control policy. The total current drawn over the total simulation

time was used to create a single metric for average power consumption. Thus, a

highly repeatable experimental setup was applied, where all experimental settings

were kept the same from case to case with the only difference being the control

policy being used.

Results of these experiments are summarized in Figure 2.7. Here, each point

in the figure represents the average performance of one policy over the entire simu-

lation. The MDP policies generated by different values of r1 are connected together,

illustrating a Pareto front generated by the suite of MDP policies. The manually

generated policies are plotted without any connecting lines. If the distance from

the origin is used as a scalar metric of performance, the MDP generated policies all

outperform or perform equally to the best manually generated policies.

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Rate of Succesful Requests (g
1
)

N
o
rm

a
liz

e
d
 P

o
w

e
r

S
a
v
in

g
s
 (

g 2
)

MDP

Manual

Figure 2.7: Policy comparison results.

2.5.2 Comparison with mHARP

Next, the MRCS is compared to a competing published method, the Highly

Adaptive Reconfiguration Platform (HARP), introduced in [3]. One modification

was needed, as the published HARP made decisions purely to optimize energy ef-

ficiency. This was inadequate for the channelizer case study, as the most energy-

efficient result is one where the system never leaves its sleep state. To remedy this,

the single metric in HARP was replaced with the multidimensional reward formu-

lation in Section 2.4.1, to construct a useful HARP policy and also to provide a fair

comparison between the two methods. This modified method is referred to here as

multiobjective HARP (mHARP).

47

For each of the two competing techniques, 10 scenarios were created by vary-

ing the Bernoulli parameter in use case A, and another 10 by varying the channel

dwell time in use case B. The result is 20 simulations where the proposed method

and the baseline method (described below) were allowed to implement and run the

optimal control policy for the given use case and external environment. The sys-

tem characteristics and measurements described in the previous section were used

to define the processing system under control. The results from these experiments

are summarized in Figures 2.8 and 2.9, for use cases A and B, respectively. As

previously mentioned, HARP requires a priori tuning for a given desired system

dynamic. In this simulation, mHARP was optimized for power savings. The results

show that when tuned in this way, mHARP does well in this metric for all scenar-

ios (producing slightly better performance than the MRCS approach), but greatly

sacrifices performance in the success rate for half of the scenarios. Conversely, when

mHARP was optimized for the success rate, large shortcomings in the power savings

were observed. In contrast, the MRCS involves no a priori tuning, and optimizes

all decision making for each scenario individually without compromises. These re-

sults show the MRCS to have greater robustness to a wide range of parameters in

different applications, all without any human-in-the-loop intervention.

2.5.3 Trade-offs in Modeling Transition States

An analysis was performed into the effectiveness of modeling processing state

transitions, as described in Section 2.4.3. Although the prototype system did not

48

1 2 3 4 5 6 7 8 9 10

Scenario

0

0.2

0.4

0.6

0.8

1

C
h
a
n
n
e
liz

a
ti
o
n

S
u
c
c
e
s
s
 R

a
te

MRCS

mHARP

1 2 3 4 5 6 7 8 9 10

Scenario

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

P
o
w

e
r

S
a
v
in

g
s

MRCS

mHARP

Figure 2.8: Experimental comparison between MRCS and mHARP, for IID use case.

49

1 2 3 4 5 6 7 8 9 10

Scenario

0

0.2

0.4

0.6

0.8

1

C
h
a
n
n
e
liz

a
ti
o
n

S
u
c
c
e
s
s
 R

a
te

MRCS

mHARP

1 2 3 4 5 6 7 8 9 10

Scenario

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d

P
o
w

e
r

S
a
v
in

g
s

MRCS

mHARP

Figure 2.9: Experimental comparison between MRCS and mHARP, for SEQ use

case.

50

incur large reconfiguration delays, larger delays are anticipated in future work as it

scales up to larger channelizer applications. Adding transition states to the MDP

model has the undesirable effect of increasing the size of the state space, which is

known to increase the size of the model’s data structures as well as the execution

time of the policy generation algorithms. In order to make informed modeling

decisions, it is crucial to understand what is gained at the expense of these costs.

With these goals in mind, one of the scenarios of the IID application was selected

for exploration, and modified in two ways.

First, the dynamics of the processing system were modified by changing the

amount of time that transitions of the top-level reconfigurations would take to com-

plete. This delay was varied between 1 and 5 frames, representative of a range of a

small reconfiguration delay to a large delay. Second, two alternative MDP modeling

approaches were used and compared: one with the transition states modeled and

one without.

Delays STM Size Solver Execution

Modeled [Elements] Time [Seconds]

No 66020 17.2

Yes 66394 24.0

Table 2.2: Modeling costs with and without transition delay modeling.

The cost of the additional modeling is shown in Table 2.2. The increase in the

size of the STM s is practically negligible, however the increase the solver’s execution

time is not. The benefits of this more expensive modeling come at run-time, and

51

1 1.5 2 2.5 3 3.5 4 4.5 5

Reconfiguration Delay [Frames]

0.6

0.7

0.8

0.9

1

C
h
a
n
n
e
liz

a
ti
o
n

S
u
c
c
e
s
s
 R

a
te

Delays Modeled

Delays Not Modeled

1 1.5 2 2.5 3 3.5 4 4.5 5

Reconfiguration Delay [Frames]

13.6

13.8

14

14.2

14.4

A
v
e
ra

g
e
 P

o
w

e
r

[m
W

]

Delays Modeled

Delays Not Modeled

Figure 2.10: Run-time performance with and without transition delay modeling.

are shown in Figure 2.10. This figure shows the resulting assessment in terms of the

performance metrics defined in the previous section.

From this assessment, it can be seen that when transitions are not modeled, the

performance of the system (with respect to both metrics) degrades proportionally

with the length of the reconfiguration delays. This degradation is attributed to the

system spending more time in a non-productive reconfiguration state. In compari-

son, the MDP that has the transitions modeled does not exhibit this performance

degradation. These results are attributed to the fact that the MDP with transition

states is able to consider the reconfiguration penalties in its decision criteria, and as

52

a result is more “reluctant” to trigger costly reconfigurations.

53

2.6 Conclusions and Future Work

In this chapter, a methodology was presented for design and implementation

of adaptive digital channelizer systems, and a novel channelizer design was demon-

strated, called the MDP-based reconfigurable channelizer system (MRCS), that is

derived using the new methodology. This methodology and the MRCS employ com-

pact, system-level models based on MDPs to generate control policies that optimize

the required embedded signal processing tasks in terms of relevant, multidimensional

design optimization metrics.

The MRCS was designed using a System-Level Reconfiguration Framework

(SLRF), which provides a systematic methodology for dynamic adaptation of em-

bedded signal processing configurations. The framework includes multiobjective

optimization at its core, embracing the multifaceted nature of embedded systems

design, where making strategic trade-offs among conflicting goals is critical. As a

result of this emphasis, the framework can jointly optimize power consumption and

real-time throughput, and can readily be adapted to address other combinations of

metrics that are important for a given application.

The effectiveness of the method was shown in simulation, using empirical mea-

surements for the properties of an experimental signal processing system. Through

extensive simulations, it was shown that the MRCS outperforms the prior state-of-

the-art in terms of robustness to changing applications and scenarios.

Useful directions for future work include adapting the MDP-based, reconfig-

urable channelizer design methodology to derive dynamically reconfigurable forms

54

of other types or other combinations of channelizer architectures, and continuing to

generalize the proposed design methodology to address broader classes of embedded

signal processing applications.

One requirement of the proposed SLRF is that the statistics of the external

environment and reconfiguration dynamics must be known at design time. In cer-

tain applications, this may not be feasible, or they may be time-varying to such a

point that a policy generated offline at design time may experience a reduction in

effectiveness as these properties change.

An important complement to this framework is in learning strategies to es-

timate these statistics at runtime for systems where they are not constant or not

known up front. These running estimates can then be used to periodically re-

optimize the control policy and keep it performing optimally across time-varying

use cases and a time-varying environment. These concepts are explored in the chap-

ters that follow.

55

Chapter 3

Efficient Solving of Markov Decision Processes on GPUs using

Parallelized Sparse Matrices

56

3.1 Introduction

This chapter presents a novel algorithm that enables fast and efficient use

of MDPs in real-time on resource constrained signal processing systems that are

equipped with graphics processing units (GPUs). Material in this chapter was pub-

lished in preliminary form in [38].

For many years, researchers have been applying MDPs in limited ways to

control computing systems at runtime [34]. Typical application domains that have

applied MDPs in this way are artificial intelligence [35], multirate digital signal

processing [13], and wireless sensor networks [39], among many others.

MDPs are often regarded as useful tools in theory. However, they have often

been deemed too computationally demanding to be fully leveraged in resource con-

strained computing systems due to the processing time and RAM required to do

so [16]. This suggests that their full potential and utility in this class of systems has

not yet been reached.

In this chapter, recent advancements in parallel processing made possible by

embedded GPUs are applied to help bridge this gap. The benefits of GPUs in

accelerating many important types of computations is now well accepted in the

embedded systems community [40, 41]. The application of GPUs to accelerate MDP

algorithms has been reported on in recent published work (e.g., see [42]). However,

this previous work focuses on one MDP use case, and does not include analysis

on how acceleration can be optimized for different kinds of MDPs. One important

contribution of this chapter is to provide a general analysis of GPU-based MDP

57

acceleration. In particular, an analysis is presented detailing how much parallelism

exists and where it can be found, as well as a parameterized blueprint for how many

parallel threads and GPU kernel executions can be invoked as a function of the

MDP dimensions and parameters.

Additionally, acceleration results are produced that are significantly beyond

other MDP techniques that have used GPUs. These improvements are established

by incorporating recent advancements in sparse linear algebra on GPUs [43]. By

integrating GPU acceleration and sparse linear algebra techniques to MDP solver

design, a novel algorithm is developed, called Sparse Parallel Value Iteration (SPVI).

SPVI enables fast, memory-efficient implementation of MDP solvers on resource

constrained GPU platforms, such as mobile and embedded GPU SoCs.

With these capabilities, SPVI enables the use of MDPs in new and more

useful ways than was previously possible. Also, SPVI relaxes constraints and limi-

tations that other MDP techniques have imposed, which can further facilitate more

widespread use of MDPs in signal processing systems. The source code to SPVI is

included in the software package described in Chapter 5.

The remaining sections of this chapter are organized as follows. Section 3.2

contains a survey of the literature, and provides history and background for the

chapter. In Section 3.3, SPVI is defined in detail and in Section 3.4, applications

are explored to illustrate how the concepts that SPVI uses materialize in real-world

use across typical use cases. In Section 3.5, the SPVI algorithm is compared experi-

mentally against the prior state-of-the-art in MDP solver algorithms, and shown to

have considerable advantages with respect to performance and feasibility of imple-

58

mentation on modern embedded computing hardware.

59

3.2 Background and Related Work

The different ways in which an MDP can be applied to control a computing

system are vast and varied. MDPs provide a generic decision making framework that

uses abstract concepts including states, actions, transition probabilities and rewards.

Once these concepts are defined they are then passed to an MDP solver, which is

an algorithm that produces an optimal policy with respect to those definitions. The

policy is a mapping from states to actions, such that an agent using the policy looks

up what action to take for any given state.

However, there is no consensus in the literature regarding exactly how to

map elements of computing systems to components in the MDP framework. This

mapping is in general left to the designer who is applying the MDP to solve a specific

computing problem. For example, a processing system can be commanded to run a

particular algorithm (and this can be modeled as a state), or that same command

can be modeled as an action instead, or it could be modeled as both (an action that

leads to a state). Also, the choice of granularity for these definitions is important —

e.g., are two invocations of the same algorithm with a slightly different parameter

value considered two different actions, or the same action?

There are several approaches in the literature to map elements of computing

systems to MDP states and actions, and these different approaches lead to different

results, with implications in both the final policy performance as well as how hard

it is to model and solve the MDP. One of the earliest known applications of using

an MDP to control resources in computing systems at runtime is [34]. Notable ex-

60

amples of differing approaches include the reconfigurable digital filter presented in

Chapter 2, a reconfigurable router [28], a power management module for a micropro-

cessor [44], a smartphone scheduling program that synchronizes email efficiently [45],

and a collision avoidance algorithm for commercial aircraft [46].

3.2.1 MDP Solvers

One of the first challenges associated with using MDPs is choosing what con-

stitutes a state, an action and a reward. After that is decided, the associated MDP

data structures must be stored on a computer and used as the inputs to the MDP

solver to produce a policy. With this policy, the runtime decision framework consists

of observing what state the system is in, and using that as input to the policy to

determine what action to take.

The classical methods to solve MDPs are algorithms known as Value Iteration,

Policy Iteration and Modified Policy Iteration [35]. All of these algorithms produce

an optimal solution to the MDP problem, with different approaches leading to dif-

ferent implications in the execution time, power requirements and memory use of

the solver routines.

These classical MDP solver algorithms suffer from the same issue as most

systems that try to reason using computations of probability distributions: the

framework’s data structures grow exponentially with the size of the state space. A

large state space is desirable in order to have sufficient model expressiveness to tackle

difficult decision problems, but this desire is at odds with the resource requirements

61

needed to solve an MDP that has a large state space. The upper limits on memory

consumption that are available on typical embedded computing systems can often

easily be reached, before many important system details have been modeled.

More specifically, the total size of (number of elements in) an MDP’s State

Transition Matrices (STM s) are N2
SNA, where NS and NA are the number of ele-

ments in the state space and action space, respectively. The STM s are the largest

data structures in the MDP, and usually the most difficult structures to store and

process, due to their large size. The STM s are large matrices even for modest

choices of NS and NA, and if one were to add a state variable with L states to the

state space, this addition would increase the size of the STM s by L2. Besides the

storage space and memory requirements to store large data structures, increasing

the state space also causes the solver’s execution time and power consumption to

grow exponentially as well.

Thus, for computing systems that operate under strict resource constraints,

it is not enough to frame an MDP in a way that produces a well performing so-

lution. There is also the practical issue of whether the solver can be successfully

implemented on the targeted platform, and whether it can complete in an amount

of time reasonable for the application.

This so-called curse of dimensionality [16] usually results in limiting the use

of MDPs to a mode of deployment that greatly hampers their usefulness: the solver

is invoked only once offline, and then the generated MDP policy only (not the entire

framework required to solve the MDP) is used on the target system. This scenario is

suboptimal and limiting if the problem inputs are unpredictable, constantly chang-

62

ing, or dependent on the environment. To overcome these limitations, one approach

is to design efficient and compact MDP solvers, which enable the full MDP to be

stored and solved on-demand on the target system. Such embedded MDP deploy-

ment leads to a more intelligent and adaptive class of embedded systems, which can

learn, adapt and autonomously re-optimize themselves for changing conditions and

use cases.

The design of compact solvers has been the goal of various researchers in

recent years. For example, Boutilier et al. propose factored MDPs as a method for

compact representation of large, structured MDPs [15]. This method can work quite

well in principle. However, it requires a specific conditional probability structure

to be present in an MDP, and the data structures must be created by hand with

specific knowledge of the exact structure. The state transition matrices must be

manually converted into tree-shaped conditional probability structures. This can

be difficult, time-consuming and typically requires a subject matter expert in the

loop anytime a transition probability changes, which effectively prevents or at least

greatly complicates runtime autonomous solving of an MDP that changes over time.

Additionally, this requirement can be problematic if the underlying structure is not

fully understood. In contrast, the SPVI algorithm has no such limitation. SPVI

does not require having any knowledge of the structure of the probabilities in the

STM s, nor does it require hand-crafting of the data structures into tree-shaped

objects.

Hoey et al. detail an algorithm similar to Value Iteration using Algebraic

Decision Diagrams [47]. This approach shows good results in taming the curse of

63

dimensionality, but imposes the same restrictions as [15] and thus has the same

limitations.

In another example, Jonsson and Barto present an algorithm that performs

hierarchical decomposition of factored MDPs into smaller subtasks to help alleviate

the growth in complexity [48]. This approach can be effective, but also requires

a priori knowledge of the causal structure within the MDP. This knowledge can

be very difficult or impossible to know for many MDPs, a shortcoming identified

by the authors themselves. Also, this method requires that the MDP have this

decomposability property, which is not always the case.

In a similar spirit, Lin and Dean [49] present a method to solve a large MDP

by first decomposing the state space into regions, determining actions to take within

those regions, and then using novel approaches to combine the resulting sub-policies

into an overarching policy that solves the original, large MDP. The authors note in

this work that the decomposition must be done a priori by a domain expert. This

decomposition is not guaranteed to be feasible, and when it is feasible, it can be

very difficult to perform.

In contrast to all of this prior work, the proposed SPVI approach requires no

special knowledge of the structure within an MDP in order to be used.

3.2.1.1 POMDPs and Approximate Solvers

Another critical issue in deploying MDPs into embedded systems is that the

runtime system may not have any way to know exactly what state it is in. In

64

this case, the problem statement changes to that of a Partially Observable MDP

(POMDP). Observability here refers to the ability of the system to observe its place

in the state space.

In POMDPs, the policy is no longer a mapping from discrete states to discrete

actions, but instead a mapping from a continuous space known as the belief vector,

to a discrete action [35]. The belief vector represents a probabilistic interpretation

of the system’s best guess for what state it is likely in. Since the discrete state

space is a subset of the continuous belief vector, POMDPs carry with them even

more computational burdens for two reasons: 1) the solver is tasked with solving a

harder problem, and 2) the system invoking the policy must maintain an evolving

time series of the current belief vector, in order to use it as the input to the policy.

The Artificial Intelligence community has spent considerable effort developing

computationally efficient solvers for POMDPs. A good survey for work in this area

can be found in [50]. Many of these solvers are approximate solvers (not exact

solvers), in that they seek to reduce computation by settling for finding sub-optimal

solutions that may be very close to the exact solution.

POMDP solvers can be used to solve (fully observable) MDPs, but not vice-

versa. Although this chapter focuses on solving MDPs and not POMDPs, it is worth-

while to investigate whether recent advances in approximate solutions to POMDPs

can help in solving MDPs efficiently. In Section 3.5, findings of this survey are

utilized to obtain and benchmark some contenders, and use these as candidates in

comparisons for completeness.

65

3.2.2 Sparsity

A novel feature of the SPVI algorithm is the exploitation of sparsity in in the

MDP data structures. In this context, sparsity is defined as the percentage of zero-

valued elements in the MDP STM s. Wijs et al. [51] present a promising method

to decompose MDPs into subgraphs, exploiting sparsity on GPUs. However, the

method is presented in the context of model checking for formal methods in software

engineering. More research is required to incorporate this method into an MDP

solver.

A caveat must be added to this approach, in that high sparsity is not guaran-

teed to exist in an MDP. In other words, one can easily synthesize an artificial MDP

with its contents populated with random numbers that meet the definition of a valid

MDP. Such a synthetic MDP can be generated in a way that does not exhibit high

sparsity. However, when MDPs are constructed to solve real-world problems, the

resulting data structures are often highly sparse. The proposed SPVI approach can

be applied to any MDP (sparse or not). However, the largest performance increases

will result only if the MDP is sparse.

Section 3.4 elaborates the claim that sparsity is commonly found in MDPs,

and provides both conceptual and empirical evidence to support it. The aim is to

show that the assumption of sparse STM s is not a major limiting factor for practical

MDPs.

66

3.3 Method

As mentioned in section 3.2.1, there are three well known algorithms for solving

MDPs. This chapter focuses strictly on Value Iteration and leaves exploration of

the other two algorithms as an interesting direction for future research. First, the

characteristics of the Value Iteration algorithm that make it suitable for acceleration

via parallel processing are detailed. Then, the focus turns to the important concept

of sparsity in MDPs. Finally, SPVI is presented in detail. SPVI can be viewed as

a version of Value Iteration that uses both parallel processing and sparse matrix

representations.

3.3.1 Parallelization

Value Iteration is an algorithm that is used to generate an optimal policy for an

MDP. In Value Iteration, a real number (or value) V (s) is associated with each state

s. This mapping is known as the Value Function. The value V (s) represents the

expected reward that can be obtained from state s. The Value Function V is derived

by using the iterative procedure shown in Equation 3.1, which starts out assigning

a value of zero for each state and then incrementally converges from that to the

optimal Value Function. Once sufficient iterations are performed, the optimal Value

Function is known and the optimal MDP policy can be obtained trivially from it.

This process of deriving the Value Function is a form of dynamic programming [52].

67

V 0(si) = 0

V n(si) = max
a∈A
{R(si, a) + β

∑
sj∈S

[P (sj|si, a)V n−1(sj)]}
(3.1)

In Equation 3.1, V n(si) is the approximation to the Value Function in state

si at loop iteration n, S is the discrete state space, A is the discrete action space,

R(si, a) is the reward function for each state-action pair (si, a), β is a scalar discount

factor, and P (sj|si, a) is the probability of transitioning from state si to state sj after

taking action a. Arranging the conditional probabilities in a matrix with si as rows

and sj as columns gives the State Transition Matrix (STM) for action a.

A good discussion of strategies for computing the stopping criteria used to

terminate the iteration in Equation 3.1 can be found in [15]. Under this optimal

solution, the MDP policy contains the optimal action to take in a given state to

maximize the expected reward. It is worthwhile to note that although the iteration

is initialized here using the zero vector, it is shown in [53] that the iteration converges

for any initialization vector.

In SPVI, the capability of modern embedded GPUs to compute using mas-

sive parallelization is utilized. The case studies in Section 3.4 and performance

benchmarks in Section 3.5 use a device in the NVIDIA Jetson family of embedded

GPUs. These processors are small, power-optimized General Purpose GPUs (GPG-

PUs) that can be used in embedded systems to enable hundreds or thousands of

parallel threads of execution in highly Size, Weight and Power (SWaP) constrained

systems. To describe the acceleration of Value Iteration through parallel processing,

68

the following section contains an analysis of how much parallelism can be exploited

in Equation 3.1.

There are three components of Equation 3.1 that can be accelerated with par-

allel execution of threads, as long as two copies of the Value Function are maintained

in memory (one for V n and one for V n−1). First, the elements inside the max{}

operation can be computed independently for each action a ∈ A. Second, each

iteration for the entire second line of Equation 3.1 can be computed independently

for each state si ∈ S. Third, the stopping criteria typically used is the comparison

of ‖V n − V n−1‖∞ to a scalar threshold, and this norm operation can be computed

using a parallelized dimensionality reduction kernel.

With these characteristics, the Value Iteration algorithm is inherently well

suited to significant acceleration through the high levels of parallelization achievable

with embedded GPUs.

3.3.2 Sparsity

The previous section described the Value Iteration algorithm as it would be

implemented on a single-threaded CPU. If sufficient parallel processing resources

are available, it is possible to achieve acceleration through computation of indepen-

dent operations simultaneously. With this goal in mind, Equation 3.1 is rewritten

into Equation 3.2, using matrix and vector representations to move away from the

sequential-looping approach:

69

V n = max
a∈A
{R + β ·M · V n−1}. (3.2)

Here, R represents the reward function for each state and action flattened into a

length NSNA column vector, where NS and NA are the number of elements in the

state space and action space, respectively; β remains a scalar; and M represents

the vertical concatenation of all NA of the NS × NS transition matrices into an

(NSNA)×NS matrix.

Through execution profiling, it was consistently observed that a large portion

of the total computation time in Value Iteration is spent multiplying the V n−1 values

by the transition probabilities. In other words, a large portion of the computation

time in Equation 3.1 is spent performing the summation loop over sj ∈ S, which

needs to be repeated (NSNA) times for each iteration. Equivalently, in Equation 3.2,

the majority of the time is spent performing the large matrix-vector multiplication

M ·V n−1. This trend was observed consistently on single threaded CPU implemen-

tations using profiling timestamps, as well as on parallelized GPU implementations

using the NVIDIA Profiler nvprof.

Under the assumption that the matrix M is sparse, it follows that that the

majority of the computation time in Value Iteration solvers is spent multiplying a

large sparse matrix by a vector. In other words, this time is spent multiplying ele-

ments by zero and then summing those zeros to other zeros. SPVI exploits the same

principle as all sparse linear algebra software libraries — that an operation that is

guaranteed to produce a known result (zero), can be skipped altogether resulting in

70

a performance improvement in time, memory use, and power consumption. By par-

allelizing computations using a GPU, and replacing linear algebra operations with

GPU operations that are specifically optimized for sparse matrix-vector algebra, it

is shown that a significant improvement in performance gain beyond the current

state-of-the-art is achieved.

3.3.3 SPVI Algorithm

A pseudocode description of the SPVI algorithm is shown in Algorithm 1. The

key features of SPVI that enable its high performance are: (1) a parallel deployment

scheme that takes full advantage of as many GPU cores, blocks and threads as are

available, (2) the consolidation of (NSNA) independent operations into one large

parallelized operation, and (3) the use of a single compressed sparse matrix in place

of the NA large STM s that are typically required.

3.3.3.1 State Transition

The computation of the product M ·V n−1 in Equation 3.2 is efficiently imple-

mented in SPVI using a sparse Matrix-Vector multiplication. The sparsity in the

transition matrices is exploited by the conversion of the large and sparse M to a

much smaller, densely packed Ms on lines 1 through 5. The sparse matrix Ms is

created in the Compressed Sparse Row Matrix format. This conversion only needs

to be performed once at initialization. Details on this sparse matrix format, as well

as a thorough analysis of the history and performance advantages of performing

71

ALGORITHM 1: Sparse Parallel Value Iteration (SPVI).

Input: S, A, R(si, a), P (sj |si, a), β, τ

Output: π

1 Compute NNZ , the number of non-zero elements in M

2 Allocate memory for Ms, a sparse matrix sized for NNZ

3 for each element in M do

4 if element is non-zero, add it to Ms

5 end

6 V 0 ← 0

7 n← 0

8 repeat

9 n← n+ 1

10 T ← K SPARSE MULT (Ms, V
n−1)

11 Q← K SAXPY (β, T ,R)

12 V n, πn ← K MAX REDUCE (Q)

13 N ← K INF NORM (V n, V n−1)

14 ∆ = MAX(N)

15 until ∆ < τ

16 π ← πn

72

sparse Matrix-Vector multiplications in GPUs can be found in [43].

A sparse matrix format is a format for a data structure that represents a

matrix. However, instead of the standard approach for matrix storage (a serialization

of each element in the matrix regardless of its value), a sparse matrix structure

contains an array of just the non-zero elements, along with two other arrays that

indicate where those elements are located in the matrix. The format implicitly

assumes that elements not specified are zero by default. In this form, a matrix can

be represented with no loss of information and if the sparsity of a matrix is high

then the sparse representation can be much smaller than the matrix stored in a

standard (fully serialized) format. Correspondingly, multiplying a sparse matrix by

a vector can be much faster and memory-efficient if the sparsity is high.

In SPVI, the multiplication of a sparse matrix by a vector is performed using

a CUDA kernel and is denoted by K SPARSE MULT in Line 10. This kernel is

a standard sparse matrix-vector multiplication as provided by the GPU libraries

CUSP (2016) and NVIDIA’s cuSPARSE (2015).

Next, the discount factor and rewards need to be applied. After computing

the product Ms · V n−1, the remaining steps can be implemented by scaling the

product by a scalar β and then adding it to the vector R. This algebraic operation

is commonly referred to as a Single-Precision A X plus Y (SAXPY), and is very

efficiently implemented on most linear algebra packages. Several CUDA linear alge-

bra packages (e.g., CUBLAS) provide a highly optimized parallel execution version

of SAXPY, which is used in SPVI and referred to here as K SAXPY in Line 11.

73

3.3.3.2 Action Selection

The NS elements of the Value Function V n and policy πn are computed from

(NSNA) elements of the Q vector, which constitutes the selection of the optimal

action for a given state. This computation is implemented with NS parallel de-

ployments of an NA to 1 dimensionality reduction kernel invoked in Line 12 of

Algorithm 1. The execution configuration for the kernel is set up to launch one

kernel per MDP state. The kernel computes the maximum value (and the action as-

sociated with it) from a subset of Q, striding across the vector only on the elements

associated with the state assigned to the given kernel deployment.

3.3.3.3 Stopping Criteria

In order to evaluate the stopping criteria for SPVI, the infinity norm of the

incremental approximations to the Value Function must be computed. This opera-

tion is represented by lines 13 and 14 of Algorithm 1. Line 13 is an execution of NS

parallel deployments of a reduction kernel. The kernel is deployed with an execution

configuration of NB CUDA blocks, where NB is as large as possible for the specific

CUDA hardware that is available.

As a result of this execution configuration, the reduction kernel of Line 13

provides a reduction from two length NS vectors to one length NB vector. Line 14

is a maximization loop run on the CPU. This use of a loop on the CPU does not

have much impact on the execution time because the length of the vector N is NB,

which is typically much smaller than NS.

74

3.4 Applications

The previous section detailed the methodology used by SPVI to exploit spar-

sity in MDPs. This section begins with a listing of the sparsity found in several

MDPs encountered during this research, followed by discussion and justifications on

why this is a typical finding for real-world MDPs.

3.4.1 Survey

This section contains a survey of several embedded systems challenges that

are solved with MDPs. For these MDP solutions, the sparsity of the STM s were

computed or estimated. The results are shown in Table 3.1. As is evident from the

table, there is a high level of sparsity in each of these MDPs.

Problem Domain Sparsity

Coffee Robot AI/Robotics 96.9%

Russell/Norvig Maze Navigation/Planning 99.7%

ACAS Avionics 99.1%

SPC Sensor Networks 99.8%

MRCS Cognitive Radio 90.9–93.3%

Table 3.1: Sparsity in surveyed MDPs.

In the Coffee Robot problem [15], researchers detailed a classic problem used

in Artificial Intelligence and Robotics. The problem contains a decision framework

used by a notional agent (the “robot”) that leaves an office building to buy coffee

75

for its owner. In the Russel/Norvig Maze [35], researchers create a grid representing

a floor plan, and show how MDPs can be used to solve indoor navigation problems.

Since the original problem was an illustrative grid of size 3x4, the analysis here

includes an extension of the grid to be much bigger in order to make the problem

more realistic. In the Airborne Collision Avoidance System (ACAS) [46], MIT

researchers developed an MDP for collision avoidance on commercial airliners.

The Solar Powered Computer (SPC) [2] problem is a challenging dynamic

power management problem. The MDP-based Reconfigurable Channelizer System

(MRCS) presented in Chapter 2 is a signal processing system that uses an MDP to

dynamically reconfigure itself for a given environment and use case.

The examples listed above show anecdotally that sparsity can appear promi-

nently in real-world MDPs. It is reasonable to conclude that this is a typical finding,

not just a handful of outliers, in the context of MDP problems for embedded systems.

Reasons supporting this conclusion are explored in Section 3.4.2 and Section 3.4.3,

where common forms of sparsity that arise are described.

3.4.2 Multivariate State Spaces

In Section 2.4.4, the concept of a multivariate state space was defined. From

MDP surveys in the literature it was observed not only that this type of state space

is very common, but also that MDPs with this type of state space exhibit a high

degree of sparsity. One reason that sparsity results from this is that an action rarely

affects all of the state variables simultaneously. Rather, it may have an effect on

76

one or only a few of the state variables, and thus the probability of a transition

from a given state to all possible combinations of all of the other state variables is

very unlikely or impossible. Rather, only a small subset of the combinations can

be reached and this gives rise to sparsity in the STM for that action. This type of

sparsity occurs very clearly in the Coffee Robot and MRCS problems.

For example, in the Coffee Robot problem, the state space consists of the

combination of several Boolean variables of the form listed below. Each of these is

either true or false at any point in the state space.

• O: The robot is located in the office.

• W: The robot is wet.

• U: The robot has an umbrella.

• R: It is raining.

• HCR: The robot has a coffee in its possession.

• HCO: The owner has a coffee in its possession.

The MDP actions for this problem consist of simple, direct actions. For exam-

ple, one action is to pick up the umbrella if it is in the office. This action only affects

the state variable U (umbrella); it does not change the robot’s location, whether it

is wet or not, etc. When the STM is constructed for this action, any states that

correspond to a change in these other state variables is an unreachable state. This

results in a large percentage of the STM being populated with zeros — representing

that the probability of reaching those states is zero.

77

3.4.3 Sequential Decision Problems

Another reason to expect sparsity to be found in many real-world MDPs is

that MDPs are often used to solve sequential decision problems. By definition,

this implies having to make many small decisions to reach a desired long-term goal

or state. For example, navigation problems usually involve a sequence of decision

points where the agent must decide to turn left, turn right or go straight. These

decisions move the agent from one location to another (nearby) location. The set of

possible locations that can be reached by one decision makes up a tiny fraction of

all of the possible locations in the entire state space. If there was an action available

to simply jump to the destination state in one hop, then the navigation problem

would not be very difficult to solve algorithmically (and thus an MDP would not be

required).

However, this is usually not the case, and often a desirable long-term goal or

state can only be reached through a sequence of decisions that create a trajectory

through many small and incrementally overlapping subsets of immediately reachable

states. When the STM is constructed for each action, only the tiny subset of states

that are immediately reachable are populated with non-zero transition probabilities.

The rest of the large matrix is filled with zeros. For this reason, it is reasonable to

conclude that sparsity is an inherent property of MDPs when used to solve these

types of problems. This type of sparsity occurs very clearly in the Russell/Norvig

Maze, ACAS and SPC problems.

The following subsections contain discussions of specific case studies to show

78

how MDPs can be used to enable runtime adaptation in complex scenarios, and

give more detailed illustrations of STM sparsity. These case studies were imple-

mented in the MDP testbed and used to generate performance benchmarks that are

summarized in Section 3.5.

3.4.4 Case Study: Solar Powered Computing

In recent years, there has been strong interest and optimism in the design of

systems that can run purely off of a photovoltaic energy harvesting source (e.g.,

see [5, 54]). These energy sources are commonly combined with an energy buffer

such as a supercapacitor or a rechargeable battery. A primary design goal for this

class of systems is to design them in such a way that they can run indefinitely on the

energy provided by the harvesting source alone, a property known as being energy

neutral [55].

This goal is challenging because solar energy is time-varying and uncontrol-

lable. Furthermore, there is no solar energy at night. In order to keep a system

powered at times other than those of high incoming solar energy, it is necessary

to use a suitable power management scheme that is well matched to the power

requirements of the processing system, and also to the performance goals of the

application. Additionally, an intelligent power management scheme might employ

strategic conservation of energy stores to be used at a later time of the day.

An MDP was created to dynamically control the power of an embedded com-

puting system closely mimicking the setup in [2]. The performance of this MDP-

79

based controller was compared to the competing technique proposed in that work,

which solves a constrained optimization problem using Linear Programming. The

performance of the MDP was nearly identical to that of the Linear Programming

approach. It is important to note that the authors in [2] cited the Linear Program-

ming solver as too computationally intensive to run in their resource constrained

embedded system, reinforcing the theme that often there are not enough computing

resources to house intelligent decision frameworks in systems that can benefit from

them.

3.4.4.1 State Space and Action Space

The state space for this problem is defined using the multivariate approach

described above in Section 3.4.2. The state space for the system is represented as:

s = (TD , SC),

DOM (TD) = {1, 2, . . . , NTD}

DOM (SC) = {k/NSC | k ∈ {1, 2, . . . , NSC}}

, (3.3)

where TD represents the discretized Time of Day (in hours), SC represents the dis-

cretized State of Charge (SC) of the energy buffer, and NTD and NSC are positive

integers. The SC is the equivalent of a fuel gauge for the energy buffer, with the

units being percentage points (0%=empty, 100%=full). Both TD and SC are inher-

ently continuous valued quantities (time and energy) that are mapped into discrete

sets through a coarse-grained quantization so that they can be incorporated into a

discrete state MDP.

80

In order to manage power, the MDP action regulates the amount of application-

specific processing that the system performs. This is assumed to be in the form of a

duty-cycle. In other words, a percentage of time can be spent in a productive state

versus a sleep or low-power state. The action a ∈ A is the choice of the duty cycle,

which is discretized as shown in Equation 3.4:

A = {k/NA} | k ∈ {1, 2, . . . , NA}. (3.4)

3.4.4.2 State Transition Matrix

The STM s are defined as shown in Equation 3.5. This STM formulation

utilizes the fact that the TD variable is independent of both the SC variable and the

action. This allows for factorization (as described in Section 2.4.4) to be employed

in the state space, a concept that plays a crucial role in the compact modeling and

efficient solving of MDPs.

P (sj|si, a) = P (TD j, SC j|TD i, SC i, a)

= P (TD j|TD i)P (SC j|TD i, SC i, a)

. (3.5)

The entries for the transition probabilities of the TD variable are then com-

puted as in Equation 3.6. Here, a simplification is made due to the discretization

width of the TD variable being equal to the control frame interval. Thus, for each

iteration of the control frame, the time of day is guaranteed (with probability 1) to

increment by 1 hour.

81

p(TD j|TD i) =


1, TD j = mod(TD i, NTD) + 1

0 otherwise

(3.6)

To compute the entries for the probabilistic transition of the SC variable,

knowledge of how the SC will be affected by each control action is required. For

this, the historical platform power consumption data is used, as well as the predicted

incoming solar energy, as shown in Figure 3.1. The Platform Power Model block in

this figure refers to a running estimate of how much average power will be consumed

by each processing configuration (i.e., each MDP action), as predicted from the

logged data. The mathematical details of the SC transitions are omitted here for

conciseness.

An illustration of the underlying state transition structure that results in this

MDP formulation is shown in Figure 3.2. Each circle represents a state in the state

space, with the shaded circles denoting one possible trajectory. The arrows represent

the reachable states (i.e., the transitions that have non-zero probability of occur-

rence). It can be seen from this formulation how sparsity is a central characteristic

of the STM .

A non-sparse STM would be a scenario where most or all of the circles in the

figure can be reached from any given circle. Such a scenario is not possible for two

reasons. First, for any circle (starting state) only the subset of circles consisting of

the next time frame (the column immediately to the right) are reachable. Thus,

from the TD component of the state space alone, the sparsity of the STM will be

at least 1− (1/NTD). Second, only a few rows of the next column are reachable, not

82

Application

Specific

Processing

P latform C ontro l
Policy Lookup T able

M D P

Solver

P latform D ata

Logging

T im e of D ay

Stored Energy %

Processing

C ontro l

Solar Energy

M odel

P latform

Power M odel C ontro l

Policy

Iterate O nce

Per D ay

Iterate O nce

Per H our

C ontinuous

O peration

Figure 3.1: Block diagram of MDP-based dynamic controller for a solar-powered

computing system.

Time

Stored

Energy

Figure 3.2: Time-Energy state grid and transitions.

83

the entire column. This further increases the sparsity.

In these experiments, it was found that sufficient granularity in the discretiza-

tion of the state space (in order to attain good decision making performance) could

be reached with NTD = 24, and NSC ≥ 50. With the state spaces sized in this way,

the total STM sparsity is at least 99.8%, as is listed in Table 3.1.

3.4.5 Case Study: MDP-Based Reconfigurable Channelizer System

(MRCS)

Chapter 2 detailed significant advantages to using an MDP to derive dy-

namic reconfiguration policies for use on channelizers in stochastic environments.

The MDP-based approach for digital channelizer design optimization resulted in

increased robustness when used to periodically re-optimize the system policy specif-

ically for the external environment it is being used in. However, in that chapter the

proposed method utilized a single MDP-based policy that was generated by invoking

an MDP solver once offline (in MATLAB) and not in the target system. In order to

predict the effectiveness of SPVI to address this limitation, the MRCS is revisited

here to analyze its sparsity.

The state space for this problem was defined using the multivariate approach

described in Section 3.4.2. The state variables consist of the channelization re-

quests, combined with the available processing configurations for a given processing

platform. The state space for the system is defined in Equation 2.13.

In this system, the state space contains all possible combinations of channeliza-

84

tion requests with all possible platform configurations. The action space is defined

by all combinations of the processing configuration variables, such that the MDP

can select which processing configuration to use at any given time. Thus, the MDP

actions are the set of selectable configurations and NA = |DOM (CF)|.

The channelization requests are exogenous and not under the control of the

MDP. However, the processing configuration is fully under the control of the MDP.

This scenario allows the STM to be defined as was shown in Equation 2.14. In

this formulation, the CR state variables form their own independent uncontrollable

Markov chain embedded within the larger MDP state space and transition matrices.

A notional diagram of the state transition diagram for an arbitrarily selected

action is shown in Figure 3.3, for a scenario where NA is 3. This diagram shows

that when Action 3 is selected by the MDP policy, the system transitions with a

probability of 1 to the region of the state space corresponding to platform configu-

ration CF 3. Anytime Action 3 is selected by the policy, the system can transition

within different values of the CR variables as prescribed by the factored transition

probabilities P (CR j |CR i), however it cannot transition to any region of the state

space corresponding to a different platform configuration.

As a result, the transition probabilities to all other states that do not corre-

spond to configuration CF 3 are zero, and for this reason sparsity is an inherent

part of this MDP formulation. Since only one selected configuration is reachable

for a given action, an STM sparsity of at least 1 − (1/NA) results. The system in

Chapter 2 uses NA values ranging from 11 to 15, and thus a sparsity ranging from

90.9% to 93.3% results.

85

C F 1

C R M a r k o v C h a i n C R M a r k o v C h a i n

C R M a r k o v C h a i n

C F 2 C F 3

Figure 3.3: Channelizer state transition diagram for Action 3.

86

3.5 Results

3.5.1 Experimental Setup

In order to objectively measure the performance of SPVI compared to alterna-

tive methods, a testbench was created using the NVIDIA Jetson TK1 development

board. This board consists of an NVIDIA Tegra K1 SoC, which is a size, weight and

power optimized processor used in many embedded and mobile applications. The

SoC contains a Quad-Core ARM Cortex A15 CPU running an embedded Linux

distribution. The setup allows CPU-only programs to be run, which is an im-

portant part of the comparative benchmarking, which compares CPU-only with

GPU-accelerated approaches. The GPU acceleration is made possible on-demand

by enabling the K1 SoC’s on-chip Kepler GPU, which contains 192 CUDA cores

and can be programmed and controlled directly from a user space application on

the embedded Linux distribution.

The testbench contains implementations of three of the MDPs introduced in

Section 3.4. The MDPs are used as the input to multiple MDP solver implementa-

tions. In general, it was found that the competing solver algorithms all produced

roughly the same policy output, and thus the comparisons are purely in terms of

the computational resources expended in finding the policies.

Through the use of this testbench, it was possible to keep all test details con-

sistent and change only the solver algorithm. This allows for a fair comparison of

solvers using consistent and objective experiments. The solvers selected for compar-

ison are described in Section 3.5.2.

87

3.5.2 Algorithm Comparison

Three algorithms were used for benchmarking, which are referred to here as

VI, Thrust-VI and SPVI. The first algorithm is a CPU-only implementation of

Value Iteration, which is referred to below as VI. This was created directly from

Equation 3.1. This implementation represents a straightforward single-threaded

implementation of the classical Value Iteration algorithm and was used purely as a

baseline for comparison with the other algorithms.

Next, a survey of the literature was performed to find the current state-of-the-

art in high performance MDP solvers. Several algorithms and open source packages

were analyzed. The search was restricted to open source candidates that were avail-

able in C or C++ source code, and avoided those in Java, MATLAB or Python.

This decision was made so that the results could be applied with no caveats to

resource constrained embedded systems that are not able to support the runtime

requirements of higher level languages.

The solvers that were obtained or implemented are: SPUDD [47], AAPL [56],

pomdp-solve [57], and Thrust-VI [42]. In the case of SPUDD, AAPL, and pomdp-

solve, open source software was available to download and use in the experiments.

For Thrust-VI, no software was available but the algorithm description in the litera-

ture was detailed enough that direct implementation from pseudocode was possible

without any ambiguity. After some experiments and analysis, it was determined

that Thrust-VI had the best performance among candidates. Thus, Thrust-VI was

identified as the current state-of-the-art and chosen for comparison against the SPVI

88

algorithm.

Many details and logistical matters involved in searching for open source MDP

solvers were identified as important issues during this work. Discussion of these is-

sues, the criteria used to determine the state-of-the-art, and a more in-depth analysis

of the solver survey is presented in Chapter 5.

3.5.2.1 Thrust-VI

Thrust-VI is a GPU accelerated version of Value Iteration. The algorithm uses

the open-source NVIDIA Thrust library. Thrust is a C++ parallel algorithms library

that allows programmers to write portable C++ code, and then execute that code on

CUDA GPUs, OpenMP systems, and other parallel execution platforms. Thrust-VI

is an implementation of the classic Value Iteration algorithm, using Thrust’s parallel

functions. The finding that this algorithm outperforms other more algorithmically

complex alternatives is an interesting outcome. It suggests that decades of novel and

clever algorithmic advances in this field were surpassed by simply exploiting data

parallelism with GPUs — a completely different approach with fewer restrictions.

Both SPVI and Thrust-VI leverage GPUs for execution time acceleration.

The most significant difference between these two is that SPVI uses sparse matrix

representations and sparse matrix-vector operations and Thrust-VI does not.

89

3.5.3 Measurements

In the experiments, the solver execution time was measured using Linux’s

native timing support. The results are listed in Table 3.2. Both GPU-accelerated

solvers (Thrust-VI and SPVI) were considerably faster than the CPU-only Value

Iteration solver.

MDP VI Thrust-VI SPVI

Solar Powered Computer 28.48 6.62 1.60

Russell/Norvig Maze (30x100) 31.71 7.33 1.62

MRCS Channelizer 44.66 9.14 3.19

Table 3.2: Solver execution time (seconds).

SPVI significantly outperformed Thrust-VI in all of the MDPs that were

tested. The execution time reduction from Thrust-VI to SPVI was 76% for the

Solar Powered Computer, 78% for the Russell/Norvig maze (with a grid size of 30

rows by 100 columns), and 65% for the MRCS Channelizer. Although Thrust-VI

did utilize the 192 CUDA cores effectively in all of the MDPs, it spent a lot of time

multiplying elements by zero for the reasons detailed in Section 3.4. SPVI directly

addresses this inefficiency via the use of sparse linear algebra optimizations and as

a result is able to reduce execution time considerably.

90

3.6 Conclusion

In this chapter, the utility of sparse data structures were demonstrated for

solving a large class of MDPs that are relevant to embedded computing systems.

Reasoning was presented conceptually on why sparse matrices arise in MDP for-

mulations, and significant performance gains were presented from exploiting this

sparsity in solver implementations on a mobile Graphics Processing Unit (GPU).

The ability to solve MDPs efficiently on resource- and power-limited mobile GPUs

enables novel applications in which MDP solvers are embedded in the applications

rather than being restricted to offline use.

Additionally, the proposed methods reduce restrictions and a priori assump-

tions that are required by compact MDP solvers that have been developed previ-

ously by researchers. This advancement can lead to a wider consideration of MDPs

in embedded computing systems where they previously may not have been feasible

or practical.

Useful directions for future work include further acceleration by decomposing

MDP transition matrices up into groups of smaller matrices that can be multiplied

utilizing faster GPU block shared memory (instead of slower global memory). An-

other direction is to investigate sparsity-driven acceleration of the other two classical

solver algorithms: Policy Iteration and Modified Policy Iteration.

91

Chapter 4

Runtime Adaptation in Wireless Sensor Nodes Using Structured

Learning

92

4.1 Introduction

This chapter presents a novel algorithm and a detailed application of tech-

niques that enable the fast and efficient use of MDPs in real-time on resource con-

strained Cyber Physical Systems (CPSs). In this context, a resource constrained

CPS is defined as a distributed system containing components that have embed-

ded computers whose physical resources are constrained to be significantly below

what is available in a typical, consumer-grade desktop or laptop computing sys-

tem. These limits are typically imposed in order to reduce the size, weight and

power, as well as cost (SWAP-C) of each unit. While this is a relative definition

of a resource constrained CPS, in terms of present technology it can be defined as

an embedded system that would typically have less than 1MB of RAM, less than

10MB of non-volatile storage, and a single-core microcontroller with a clock speed

under 100MHz.

In previous chapters, MDPs have been explored as a means to control com-

puting systems at runtime in ways that are more dynamic, robust and adaptable

than alternatives. Using MDPs, engineers can create systems that effectively learn

and reason using models of their own system dynamics, observations of their own

inherent limitations and effectiveness of their actions towards reaching application-

level goals. In this context, these systems exhibit a level of self-awareness in their

behavior, with the ultimate design goals being continual autonomous optimization

that leads to higher levels of runtime resiliency, robustness and efficiency.

When seeking to develop self-aware systems, researchers have recently turned

93

to Reinforcement Learning (RL) [58], a field of Machine Learning that uses MDPs

in restricted ways. However, this chapter explores an important class of CPSs that

are not well served by current RL techniques. Specifically, this class of systems is

one where some components of the system’s dynamics are known at design time,

and the rest are unknown at design time or expected to be time-varying at runtime.

In general, RL frameworks do not try to learn the effect that control outputs

have on the system’s state. Instead, they seek to use runtime observations to find

a relationship between control outputs and rewards. In general, however, a critical

part of this relationship is how the control output affects the state of the system being

modeled. In RL frameworks, this causality is implicit in the modeling abstraction

and not defined nor learned explicitly. This method works well in many cases, for

example in large systems where the state dynamics are too large and complex to be

considered or modeled explicitly. However, this chapter shows that departing from

this conventional method can be useful for resource constrained CPSs that have

more manageable state spaces. In particular, if engineers possess a priori knowledge

about how some of the control outputs might affect the system state, it can be

advantageous to codify that knowledge into the learning algorithms at design time.

The approach proposed in this work provides models and algorithms that enable

designers to exploit a priori knowledge in this way.

Motivated by this deficiency, an alternative class of MDP-based system model-

ing techniques are defined, which are referred to as Compact MDP Models (CMMs),

and CMM-based approaches are developed as an alternative to RL for design and

implementation of adaptive CPSs. In general, it is envisioned that certain CPSs are

94

better suited for RL, while others are better suited for CMM. Through this work,

the causes of why one of these two approaches might be better over another for a

given application are explored, with the goal of improving understanding to allow

designers to pick the better option.

Building on the work in the previous chapters, this chapter contributes the

following additional content:

• A detailed survey of techniques from the literature that enable the compact use

of MDPs on resource constrained systems. This survey leads to the definition

of a class of CMM methods which encapsulates several different approaches

that are useful in streamlining the application of MDPs to CPS systems.

• The introduction of the Sparse Value Iteration (SVI) algorithm — a variation

of the SPVI algorithm presented in Chapter 3. While SPVI is a parallel pro-

cessing algorithm developed for GPUs, in this chapter a scaled down variation

is presented that runs effectively on small, single-threaded Microcontrollers

(MCUs).

• A detailed example of how to apply MDP-based techniques to design a wireless

sensor CPS.

• The results of a performance simulation, illustrating the differences between a

CMM-based design approach compared to Q-Learning, a popular alternative

technique from the Reinforcement Learning (RL) literature.

• An empirical study of an MDP solver running on a resource constrained MCU,

95

including measurements of data storage requirements, execution time and

power consumption.

• A power consumption model for an LTE-M wireless modem, derived from

experimental lab measurements taken on a live wireless Internet Protocol (IP)

data network.

The remainder of the chapter is organized as follows. A cursory review of the

history of techniques for controlling CPSs is presented in Section 4.2. Section 4.3

contains a survey of recent advancements in CMMs. Section 4.4 presents Structured

Learning with Sparse Value Iteration, a novel method for CMM-based design. In

Section 4.5, a case study of a wireless sensor CPS is detailed, to explore the challenges

and trade-offs inherent in creating an efficient control policy. Section 4.6 contains

an illustration of how CMMs can be used to solve the design problem introduced

in Section 4.5 along with a comparison of that approach to a competing RL-based

approach. Finally, Section 4.7 contains simulations of the runtime performance

and Section 4.8 contains the results of an embedded system implementation of the

competing techniques. Section 4.9 concludes the chapter with a discussion of the

results and directions for future work.

96

4.2 Background and Related Work

Chapter 1 and Section 3.2.1 contained a discussion of the challenges involved

in applying MDPs to control computing systems at runtime. To overcome the limi-

tations of MDPs with these goals in mind, two main approaches have been pursued:

RL and CMMs. RL essentially tries to arrive at the policy without explicitly model-

ing all of the MDP components or invoking a solver. On the other hand, CMMs are

approaches that do define all of the MDP components and invoke a solver, but do so

via algorithmic optimizations that significantly reduce computational requirements.

These two alternatives are sometimes referred to as model-free and model-based RL,

respectively. Henceforth in this chapter, the abbreviation “RL” refers to model-free

RL unless otherwise stated.

These two categories — RL and CMM — of techniques are described in Sec-

tion 4.2.1 and Section 4.3, respectively.

4.2.1 Reinforcement Learning

Reinforcement Learning (RL) [58] is an area of machine learning that enables

systems to formulate optimal decision policies using observations of rewards that

are received for previous decisions at runtime. These techniques use MDPs as the

framework for formulating the decision problem, but seek to learn the optimal policy

directly using observations of rewards in response to decisions, rather than through

the explicit definition of all of the MDP components followed by invocation of an

MDP solver.

97

Agent

Environment

Reward

rt+1

State

st+1

Action

atrt

st

Figure 4.1: Block diagram of reinforcement learning paradigm.

More specifically, an RL framework typically contains the top level block di-

agram shown in Figure 4.1. The learning takes place by some agent, which is

responsible for selecting an action out of a set of actions, given a system state. This

selection is typically done in a discrete-time setting and iterated at a fixed rate. Each

selected action (in a given state) leads to some consequence in the environment, and

that causes it to transition into a new state in the state space. The selected action

and transition to that new state are associated with a scalar reward, which is fed

back to the agent (positively or negatively). The agent in turn considers the reward

it has been given along with the new state that resulted, and again selects the next

action, repeating indefinitely.

As mentioned above, these techniques are sometimes referred to as model-

free learning. Model-free learning techniques possess the advantage of completely

bypassing the need to maintain large STM s, and run computationally intensive

98

MDP solvers.

However, this advantage comes at a cost, as the consequences of all actions

taken in all states have to be learned and periodically updated, even those that are

constant and known a priori at design time. This learning comes at the cost of

occasionally having to make random decisions at runtime to explore the effect of

alternative decisions [59]. This cost is a central drawback of model-free techniques,

and is associated with a complex trade-off called the exploration versus exploitation

trade-off [58].

One popular RL technique that has shown promising results is Q-Learning [44,

60, 61, 62]. In Q-Learning, a scalar value “Q” is assigned to each action in each

state, and referred to as the Q function. This function represents the average fu-

ture rewards that can be expected by taking a given action in a given state. The

Q-Learning method continually learns and updates this Q function using a simple

technique called the method of Temporal Differences (TD) [63], and uses it to formu-

late an optimal control policy that is based entirely on the system and environment

involved. As the environment and the system’s dynamics change at runtime, the

policy changes with it.

In one example [44], an Adaptive Power Management (APM) hardware module

using Q-Learning was used to put a microcontroller in and out of low power states,

and resulted in a learning controller that managed power transitions better than

an expert user. In another example [60], Q-Learning was used to optimize the

throughput of an energy harvesting wireless sensor node while meeting challenging

constraints.

99

4.2.1.1 Stability

Under the control scheme proposed in this chapter, an MDP-based control

policy that varies at runtime is used to control a computing system. This scenario

requires a more involved analysis of stability compared to the scenario discussed in

Section 2.4.5, where the MDP-based control policy was fixed at runtime. Both the

proposed method, and the competing Q-Learning method are subject to the same

questions of whether the resulting time varying MDP-based control has the potential

for exhibiting any runtime instability. These questions fall under the category of

stability analysis of time varying MDP-based control, which is an active area of

ongoing research in the RL community. The earliest known work on this topic

is [64], where the concept of Lyapunov functions are applied to guarantee stability

in time varying MDP-based control. Lyapunov functions are a fundamental tool

used in control systems theory to analyze the stability of systems evolving through

time. These concepts are outside the scope of this thesis, and present an interesting

area for future work. The reader is directed to [65] and references therein for the

latest research in this area.

In the next section, an overview of CMM methods is presented, which can be

viewed as model-based methods that are designed with an emphasis on streamlining

computational efficiency. Recent advancements in this area are surveyed that result

in performance on par with Q-Learning.

100

4.3 Survey of Compact MDP Models

As mentioned previously, the deployment of MDPs in resource constrained

systems has typically been limited to usage modes where the MDP modeling and

solving are done offline, and only the resulting policy is stored in the runtime system.

The goal of moving the MDP model and solver into the runtime system by mitigat-

ing the longstanding barriers has been a common goal among many researchers over

the years, resulting recently in very creative and effective techniques. In this chap-

ter, this category of approaches is referred to as compact MDP models (CMMs),

given that they provide a smaller or computationally optimized representation of

the system in question than compared to a direct implementation of the MDP’s

data structures. The effectiveness of these recent developments, especially when

applied in combination with one another, leads to questioning the conventional ap-

proach of limiting consideration to model-free RL approaches in the implementation

of resource constrained, MDP-based systems.

Some of these CMM techniques seek to reduce the storage size of the MDP’s

data structures by exploiting some structural component embedded within the MDP

(e.g., see [15, 38, 47, 48, 49]). Other techniques involve modeling approaches that

reduce the MDP state space via generalization and abstraction of system dynamics

(e.g., the approach in Chapter 2). Another approach has been to keep algorithms

and data structures as is, and take advantage of recent advancements in parallel

processing using embedded GPUs, for example [42] and the algorithm presented in

Chapter 3.

101

In this chapter’s case study, three CMM techniques are utilized. Each of these

has been introduced in a previous section: transition states (Section 2.4.3), factor-

ization (Section 2.4.4), and exploitation of sparsity (Section 3.2.2). The significant

advantages each of these provides becomes evident when compared to both a direct

classical MDP implementation and a competing model-free method.

102

4.4 Method

4.4.1 Structured Learning

Creating an MDP model on a computing system consists of defining the states

and actions, the STM s, and the reward function for the given decision problem and

its environment. The STM s are NA stochastic matrices, each of size NS by NS (one

matrix for each action). Each STM defines the probability of transitioning from the

current state to any one of the possible other states, given an action. This is generally

written as a discrete conditional probability distribution as in Equation 4.1:

p(s(n+1)|s(n), a(n)),∀s ∈ S, a ∈ A, (4.1)

which gives the probability of the system transitioning to state s(n+1) at time index

n + 1 given that it was in state s(n) and action a(n) was selected at time index

n. The process of instantiating the STM s is the allocation of storage for N2
SNA

numerical quantities and assigning them values from 0 to 1. Given this viewpoint,

the methods in the literature can be grouped into two categories: the model-based

approach where all N2
SNA terms are defined a priori and treated as constants, and

the model-free approach, where none of the N2
SNA are defined and in fact storage

for them is never even allocated.

In this chapter, these two are viewed as extremes of a continuum that has

many other options. A blend between the two is proposed, where some of the STM

terms are assumed to be known a priori, and others are not. More specifically:

103

p(s(n+1)|s(n), a(n)) ∈ {Γ ∪ Θ̂},

∀s ∈ S, a ∈ A,
(4.2)

where the implication is made that all of the probability values in the STM s come

from one of two parameter subsets Γ and Θ. The set Γ is the set of STM entries

that are fully known a priori and can be set to a fixed value at design time. The set

Θ̂ contains the remaining matrix elements; they are either not known a priori or are

expected to be time-varying at runtime. θ̂ ∈ Θ̂ is used to denote the latest value of

a running of estimate of the true value, for each parameter θ ∈ Θ.

Rather than taking each entire STM as either constant, or completely un-

known, a flexible middle ground is adopted and it is assumed to be partially known

and partially unknown. In this way, the system model has some parts of it that are

fixed, and other parts that are assumed to change over time. Then, the runtime

adaptation process consists of learning only the set of parameters Θ̂, rather than

the entire STM s. In this way, the model contains a mix of some predetermined

structure from Γ) and some runtime learning (from Θ̂). This approach is referred

to as Structured Learning in this chapter.

Structured Learning allows the designer to restrict how much effort is spent

trying to learn unknown parameters, and results in higher overall awareness and

adaptation performance for a certain class of CPS devices, as will be demonstrated in

the case study. The advantage comes from being able to direct the system’s learning

efforts to be focused on the relevant parts of the problem, and prevent redundant

attempts to constantly question and update assumptions about the system that a

104

system designer knows will never change.

4.4.2 Temporal Difference Equations

The Structured Learning method defined above relies on a continual runtime

learning of parameters. For this, a very simple technique is used, which is prevalent

in RL: the use of weighted averaging through Temporal Difference (TD) equations,

with the central concept shown in Equation 4.3:

θ̂(n+1) = θ̂(n) · (1− α) + θ(n) · α, (4.3)

where θ(n) is an observed value of one of the parameters θ ∈ Θ at timestep n,

θ̂(n) is the value of the running estimate of θ at timestep n, and α is a learning

rate parameter which controls how sensitive the running estimates are to individual

observations. The method essentially consists of performing a low-pass filtering or

smoothing operation on observed values, and thus maintaining a running estimate

that tracks the latest observed values for a given parameter.

As the observations change over time, the running estimates track the changes

while also reducing the effect of statistical outliers. Using TD, the Structured Learn-

ing method can ingest the latest observations of each of the parameters θ ∈ Θ,

compute the running set of estimates for each θ̂ ∈ Θ̂, and combine them with the

constant set Γ to assemble the fully populated, partially time-varying STM s at any

timestep.

105

4.4.3 Sparse Value Iteration (SVI)

In Structured Learning, the full set of STM s are instantiated. In order to

obtain a control policy from this, an MDP solver must be invoked. Although Struc-

tured Learning is fully compatible with the SPVI algorithm that was presented in

Section 3.3, it is not used in this chapter. This is because SPVI is a GPU algorithm,

and the case study in this chapter is on a resource constrained system where it is

assumed that a GPU is not available.

For this reason, a modified version of SPVI is introduced here. SPVI achieves

runtime acceleration not only from the parallel processing performed on a GPU,

but also from the use of sparse matrix representations and sparse linear algebra

operations. Through experimental benchmarking, it was found that the sparse linear

algebra techniques alone add performance benefits on single-threaded CPUs without

the use of parallel processing on GPUs. The experimental results in the following

sections show this to be true even on a resource constrained single threaded MCU,

not just on the much more powerful processing environments of larger CPUs.

The acceleration is not as significant as when a GPU is available, however it

is considerable enough to be a valuable technique for use on a wide range of CPU-

only systems. The result of these findings is a new algorithm presented here, called

Sparse Value Iteration (SVI). This algorithm is similar to SPVI, with the difference

that SVI is suitable to run on single-threaded CPUs that are not equipped with

GPUs.

The performance benefits of SVI over VI materialize as decreases in runtime,

106

processing energy consumption, and memory footprint. The specific decreases in

the experimental setup are detailed in Section 4.8. A pseudocode description of the

SVI algorithm is shown in Algorithm 2.

ALGORITHM 2: Sparse Value Iteration (SVI).

Input: S, A, R(si, a), P (sj |si, a), β, τ

Output: π

1 Compute KNZ , the number of non-zero elements in M

2 Allocate memory for Ms, a sparse matrix sized for KNZ

3 for each element z in M do

4 if z 6= 0 add it to Ms

5 end

6 V 0 ← 0

7 n← 0

8 repeat

9 n← n+ 1

10 T ← SPARSE MULT (Ms, V
n−1)

11 Q← SAXPY (β, T ,R)

12 V n, πn ← MAX REDUCE (Q)

13 ∆← INF NORM (V n, V n−1)

14 until ∆ < τ

15 π ← πn

107

4.4.3.1 State Transition

The computation of the product M · V n−1 in Equation 3.2 is efficiently im-

plemented in SVI using a sparse Matrix-Vector multiplication. The sparsity in

the transition matrices is exploited by the conversion of the large and sparse M

to a much smaller, densely packed Ms on lines 1 through 5. Then, a multiplica-

tion of the sparse matrix by a vector is performed using a subroutine denoted by

SPARSE MULT in Line 10. This subroutine is a standard sparse matrix-vector

multiplication.

The sparse matrix Ms is created in the Compressed Sparse Row Matrix for-

mat, as was the case in SPVI. This conversion only needs to be performed once at

initialization.

Next, the discount factor and rewards need to be applied. After computing the

product Ms ·V n−1, the remaining steps can be implemented by scaling the product

by a scalar β and then adding it to the vector R. This is the same SAXPY operation

that was described in SPVI, and is also very efficiently implemented in CPU-based

linear algebra packages. This subroutine is denoted here as SAXPY in Line 11 of

Algorithm 2.

4.4.3.2 Action Selection

The NS elements of the Value Function V n and policy πn are computed from

(NSNA) elements of the Q vector, which constitutes the selection of an optimal

action for a given state. This computation is invoked in Line 12 of Algorithm 2.

108

The subroutine computes the maximum value (and the action associated with it)

from a subset of Q, striding across the vector only on the elements associated with

each state.

4.4.3.3 Stopping Criteria

In order to evaluate the stopping criteria for SVI, the infinity norm of the in-

cremental approximations to the Value Function must be computed. This operation

is represented by Lines 13 and 14 of Algorithm 2.

109

4.5 Application

In this section, a specific type of CPS is detailed, which forms the basis for

the case study in the remainder of the chapter. The CPS is an embedded system

with constraints on its size, weight and power (SWaP), containing the physical

components shown in the following list.

• A sensor and/or actuator to interact with the physical environment.

• A wireless modem used to provide Internet access to the system.

• A low-power Microcontroller Unit (MCU) executing a program that controls

the sensor and/or actuator as well as the wireless modem.

• An energy source that is used to power the system. The source can be a

battery that needs to be replaced periodically, or an energy harvesting source

(such as a solar panel paired with a rechargeable battery).

This type of CPS is expected to exist as one instance of a plurality of identical

nodes in an installed base, and the nodes are connected to an application server via

an Internet connection. The design aims to empower each node with the ability to

optimize its performance for its own specific environmental conditions, rather than

centralizing all of this optimization responsibility in the cloud. This approach is

advantageous in terms of scalability, reliability and robustness.

The MCU runs an application-specific program that utilizes the sensor and/or

actuator to interact with its physical environment. The application is typically

110

multi-modal, in the sense that it does not always do exactly the same application-

level operations at all times. The application may, for example, have two modes

such as 1) the normal sensor and actuator operating mode, and 2) a firmware update

mode where security patches and product updates are routinely downloaded to the

CPS node. It is expected that the application could have more than two modes.

The CPS node’s power source is typically very limited in its capacity. In

the case of a solar panel, this may be due to a desire to keep the solar panel cost

low and the size small. In the case of a battery, this may be due to a desire to

maximize battery life in order to reduce how often the battery needs to be recharged

or replaced. Regardless of the power source, the CPS node’s application is generally

tasked with carrying out its functions in the most energy efficient manner possible

due to limitations in its energy source.

In order to maximize battery life, a low-power MCU is used, rather than

a general purpose computing system. As a result of this, the CPS node will be

limited in its CPU frequency, RAM size, and non-volatile storage capacity. This fact

becomes important when considering the use of computationally intensive control

algorithms. A more involved program requires more computing resources, which

in turn requires the use of a more capable computing system that consumes more

power (even while idle). Thus, a thorough consideration of control algorithms must

analyze not just the control performance, but also the computational requirements

that are needed to deploy it on a self-contained and resource-limited MCU.

The MCU is also tasked with controlling the wireless modem to enable com-

munication typically with another Internet-connected device such as another CPS

111

node or a cloud-based application server. In this case study, the focus is on one

specific form of wireless network that is very common at the time of this writing:

LTE-M (LTE for Machines), also known as LTE Cat-M1 [66]. This wireless protocol

is a subset of the full LTE protocol, the wireless network that makes up the majority

of cellular Internet connections at the time of this writing. LTE-M is a reduced form

of the full protocol, and is designed specifically for resource constrained devices. In

the following section, the power profile of an LTE-M modem is described in detail in

order to illustrate the power management considerations an MCU controller must

balance.

4.5.1 LTE-M

The LTE-M modem is usually the largest consumer of power in the processing

and communication subsystems. When actively communicating with a cell tower,

an LTE-M modem’s average power consumption can be as much as 650 milliWatts.

This quantity is very high relative to the consumption of other components in the

CPS node. As a result, leaving the LTE-M modem powered on and connected to

a cell tower continuously is usually not a feasible option for CPS nodes, from the

point of view of maximizing the lifetime of a limited energy supply. As a result, the

MCU must turn the LTE-M modem on and off strategically in order to stay within

a limited energy budget.

In order to fully understand this power management challenge, a Sequans

Monarch VZM20Q LTE-M modem was obtained and a cellular data plan for the

112

Figure 4.2: Block diagram of wireless sensor CPS.

Verizon Wireless LTE-M network in the United States was purchased. This is a

live Internet Protocol (IP) network with nearly nationwide coverage, and effectively

provides a mobile Internet connection that can be accessed from almost any location

by an MCU. In this work, the focus is on the upstream flow of information. That

is, the collection of data through a sensor and the transmission of that sensor data

up to a cloud-based server. The resulting information flow within the CPS node is

outlined in Figure 4.2, where the arrows interconnecting the blocks represent the

flow of information from one component to another.

Due to the LTE-M power profile, a feasible use case for a system like this

would be to keep the modem powered off by default, periodically turn it on to

exchange data with the Internet and then power it back down to conserve energy.

To model this use case, the Sequans Monarch LTE-M modem was controlled from a

test application on a laptop computer that powered the modem on, connected to the

nearest Verizon Wireless cell tower, transmitted some information (representing a

sensor reading) from the test application to a cloud-based server, then disconnected

113

0 2 4 6 8 10 12 14 16

Time [Seconds]

0

20

40

60

80

100

120

140

160

C
u

rr
e

n
t

[m
ill

iA
m

p
s
]

@
 4

.0
V

Figure 4.3: Current consumption of LTE-M modem during data transfer.

the cell tower connection, and finally powered down the modem. During multiple

runs of this test, the power consumption of the LTE-M modem was measured. A

typical current versus time trace of the energy required by the modem to perform

this procedure is shown in Figure 4.3. The trace is a time-series of current draw

in milliAmperes at a fixed voltage of 4.0 Volts, and thus instantaneous power and

total energy for the transaction can both be computed from the data.

Additionally, the quantity of data that is transmitted to the server on each test

run was varied. Specifically, a packet size of 256 Bytes per packet was used and the

choice of how many of these fixed-sized packets were transmitted was also varied.

114

These measurements helped to quantify the approximate energy consumption of the

LTE-M modem as a function of the amount of data transmitted. This allowed for an

approximate model of the modem power consumption to be created, as a function

of the quantity of packets transmitted. The derived model is given by Equation 4.4:

ETX(NT) = c1 + c2(NT − 1) [Joules]

NT ≥ 1, c1 = 6.62, c2 = 1.55,

(4.4)

where ETX is the energy consumption in Joules and NT is the number of packets.

This equation illustrates a defining characteristic of this type of wireless connection:

the energy overhead of powering the modem on and connecting to a cell tower can be

significantly higher than the incremental cost of transmitting a packet once the con-

nection is active. Thus, if optimizing strictly for energy efficiency it is advantageous

to queue up multiple packets before powering on the modem, and then transmit the

queued packets together. This approach, however, is the opposite of what should

be done if optimizing for transmission latency. This is a fundamental trade-off of

controlling the LTE-M modem in this CPS node.

The power control challenge for a system like this consists of implementing an

algorithm that strategically determines when to allow new sensor data to accumulate

in the sensor, versus when to invoke a communication event (which would produce a

power consumption profile similar to the one shown in Figure 4.3) that transfers all

packets in the queue up to the cloud-based server. This decision problem involves a

trade-off of energy efficiency versus communication latency.

A trivially simple policy is one where any time a new packet arrives in the

115

queue, it is immediately transmitted up to the cloud. In fact, this could be con-

sidered a default case where no control policy analysis had occurred, and the MCU

program was designed simply to transmit whenever a new packet exists. However,

this is still a control policy and is considered as such. This policy will have a low

energy efficiency (which is undesirable) and low communication latency (which is

desirable).

In another example, a controller could wait until a fixed number of packets

accumulate in the queue before doing a batch transfer of all accumulated packets

up to the cloud. This policy would have higher energy efficiency but also higher

communications latency, as some packets might sit in the queue for some time

before being sent to the server. Ultimately, the CPS node’s application will dictate

what type of latency is desirable for the system, and it should be made as efficient

as possible while meeting the specified latency goals.

The policies described above are both examples of very simple “fixed thresh-

old” policies. These are easy to implement and analyze for the dynamics described

thus far. An engineer could likely devise other clever policies similar to these, based

on heuristics and system simulations. However, in a real-world CPS deployment,

the system control dynamics are likely to be more complicated and time-varying

than has been described so far. Additional complexity arises from the following

phenomena:

• The application is likely to be multi-modal and thus the rate of packet gener-

ation within the CPS node is in general time-varying.

116

• The number of different modes that the application may contain could be

much more than two.

• The modem connection time and power consumption are also time-varying

due to the physical mobility of the CPS node relative to the fixed location of

the cell tower as well as the presence of network congestion from other LTE-M

users within the same cell during periods of heavy usage.

When these real-world factors are modeled, it becomes advantageous to con-

sider more involved control policies that can monitor and adapt to the time-varying

conditions which may not be precisely modeled or understood prior to a system

deployment. For this reason, two approaches are considered that contain runtime

learning capabilities specifically to self-optimize continuously at runtime, adapting

to the time-varying nature of the CPS node’s environment. This feature avoids hav-

ing to understand and anticipate all of the runtime conditions ahead of time, which

for practical purposes is an infeasible requirement for real-world deployments that

have very high numbers of nodes.

In Sections 4.6 through 4.8, the multiple options for controlling the CPS node

in the case study are described, and then the performance of these policies are

compared with regard to the efficiency versus latency trade-off in simulation. After-

wards, the competing options are implemented on a resource constrained MCU and

the resulting computational requirements and deployment feasibility are discussed.

117

4.6 MDP-Based Control

In this section, two approaches to create control policies for the CPS node in-

troduced in Section 4.5 are detailed, and then their performance is compared using

simulation. Both approaches use discrete-time MDPs to generate a control policy,

which determines when to power the LTE-M modem on and off. The controllers

are both designed with the assumption that several of the system’s characteristics

and dynamics are time-varying and uncontrollable. Thus, both controllers employ

some form of learning, in that the policy that each controller employs is continu-

ally updated to reflect the time-varying changes in both the system it is controlling

and the environment that the system interacts with at any given time. The two

controllers can be viewed as being two different realizations of the agent compo-

nent in the framework of Figure 4.1. These two methods are referred to as: 1) the

Structured Learning controller and 2) the Q-Learning controller. The Structured

Learning controller is a novel approach described for the first time in this chap-

ter, and the Q-Learning controller is a well known technique in the RL literature

(e.g. [58]).

A summary of the differences between the controllers is shown in Table 4.1.

The MDP components that are common between the two controllers are: the dis-

crete state space S, the discrete action space A, and the reward function R(s, a).

The other components of the controllers are different, namely the STM and policy

generation method. The Structured Learning controller contains a parameterized

state transition matrix and employs an MDP solver at runtime to generate a con-

118

Structured Learning Q-Learning

State Space Common: S

Action Space Common: A

Rewards Common: R(s, a)

STM
Explicitly defined,

parameterized

Not needed

Policy

Generation

Solver invoked at

runtime

Temporal difference

equation used to

estimate Q function

Table 4.1: Comparison of two MDP-based controllers.

trol policy. In contrast, the Q-Learning controller does not contain an explicit state

transition matrix, and instead contains a running estimate of the MDP’s Q function.

This allows the Q-Learning controller to completely bypass having to store an STM

and run an MDP solver.

One fundamental difference between the two techniques is that the Structured

Learning controller has an STM with a pre-populated structure, and only param-

eters within the structure need to be learned at runtime. There are some aspects

of the STM that are fixed at design time, and in this way, some structure does not

need to be learned. In contrast, the Q-Learning controller has no a priori structural

assumptions, and must learn the entire Q function at runtime. Depending on how

much of the STM is known at design time in a given application, the Q-Learning

controller may have to learn more parameters at runtime compared to the Structured

119

Learning controller.

Structured

Learning Q-Learning

0 ≤ |Θ| ≤ (NS − 1)NSNA NSNA

Table 4.2: Number of parameters to learn at runtime for each controller.

This contrast is shown in Table 4.2, where Θ is the number of unknown or time-

varying parameters in the STM , as was defined in Equation 4.2. This motivates

a general design guideline to be considered: to determine what type of learning

approach to use, an engineer should first analyze the percentage of the STM that

is known versus the percentage that is unknown or expected to be time-varying. In

other words, the designer should seek to minimize the number of parameters that

need to be learned at runtime, which is |Θ| in Structured Learning, and NSNA in

Q-Learning (recall that |Σ| denotes the cardinality of a set Σ). If many parameters

out of the STM need to be learned at runtime, it is possible that |Θ| ≥ NSNA, in

which case the Q-Learning approach would have less parameters to learn at runtime

and likely provide better adaptation performance.

The two different controller designs investigated in this section were formulated

to concretely explore trade-offs between model-based (Structured Learning) and

model-free (Q-Learning) in a tangible, real-world example. In the remainder of this

section, the common components of the two techniques are presented first, followed

by their differences.

120

4.6.1 State and Action Spaces

Both controllers utilize a multivariate state space, a concept introduced in

Section 2.4.4. The MDP state space is essentially the combination of each of the

states of the sensor application, packet queue and LTE-M modem. This is defined

as shown in Equation 4.5:

s = (sa, sq, sm) ∈ S

sa ∈ {0, 1, . . . , NSA − 1},

sq ∈ {0, 1, . . . , NSQ − 1},

sm ∈ {0, 1, . . . , NSM − 1},

(4.5)

where s ∈ S is the state variable, which is composed of three separate variables

sa, sq, sm: the sensor application state, queue state and modem state, respectively.

In general, the interest here is in applications that can run in one of a set of

alternative modes (see Section 4.5). Thus sa is defined as the application mode, a

state variable taking a value out of a discrete set of NSA modes. The packet queue

has a specific number of packets in it at any given time. In order to allow the

controllers to make decisions based on the current state of the queue, sq is defined

as the number of packets in the queue and made part of the MDP state space.

The queue is assumed to be a fixed size NSQ − 1, due to the goal of housing

it in a resource constrained MCU. The queue can only hold up to NSQ − 1 packets,

and any attempts to queue additional packets beyond this limit will result in the

newest packet being discarded. The discarding of a packet represents a loss of data

121

and is a very undesirable event, that the controllers must seek to avoid through the

decisions in their respective control policies.

It should be noted that in some applications, some amount of data loss may be

tolerable. Such applications can be accommodated readily in both controller designs

by making suitable adaptations. The details of those adaptations are omitted in this

chapter for brevity.

The LTE-M modem is a complex mixed-signal System-On-Chip (SoC), con-

taining the LTE-M protocol implementation and runtime signal processing. There

is an enormous state space that could be defined for the inner workings of the mo-

dem. However, for these controllers the majority of that information is not relevant

and thus the modem state is collapsed into a small set of states that is detailed

enough for the controller to implement a high performing control policy, without

being overly burdened with the computational and storage implications of a large

state space. In this spirit, the concept of transition states introduced in Section 2.4.3

is utilized.

In this design context, the system being controlled contains many discrete

states. Depending on the level of modeling and decision making that is desired, as

much as tens of thousands of states or more could be considered relevant. In general,

the modeling process involves making design-time decisions as to what level of detail

is modeled in the MDP, for each of the system characteristics and dynamics. More

fine-grained detail allows for a more precise model, but this leads to a large state

space and the computational challenges associated with that.

The concept of transition states allows for significant reduction of the state

122

space to occur when the system passes through a large set of states for a limited

time, and the only relevant detail is when the system enters and exits the set as a

whole. In some way, these trajectories need to be modeled in the MDP. By utilizing

the proposed concept of transition states, a large group of fine-grained states can be

abstracted into a single coarse-grained state. A coarse-grained state derived in this

way is what is referred to here as a transition state.

While the system is actually in one of the fine-grained states abstracted by

a transition state τ , the system is modeled using τ as being in transition between

the predecessor and successor states of τ . The transition state encapsulates a set

of discrete states that are present but not relevant to the decision process being

designed. The only transition probability needed is derived from an estimate of the

expected time until the system leaves the set of states abstracted by τ . Inaccuracies

resulting from the associated estimation process represent a potential design trade-

off: the creation of transition states out of larger sets of fine-grained states may result

in lower accuracy in the overall MDP model. Designers have significant flexibility

to control the number and granularity of transition states to help optimize this

trade-off.

In this spirit, the large number of fine-grained LTE-M modem states are

collapsed into three coarse-grained states: M OFF , M CONNECTING, and

M CONNECTED. The M CONNECTING state is a transition state, and the

other two are not.

M OFF refers to the modem being fully powered off, and the modem can

remain in this state indefinitely until commanded otherwise. M CONNECTING

123

is the state that begins immediately after the modem has been powered on and ends

when a successful Internet connection has been established. The modem cannot

remain indefinitely in this state. By definition, it is guaranteed to transition out

of this state after a specified amount of time steps. M CONNECTED is the

state when a working Internet connection has been established and continues to

be maintained. Transmission of packets is only possible in the M CONNECTED

state. This modeling approach requires the selection of a scalar constant for the

modem’s power consumption in each of the three states.

As can be observed from Figure 4.3, the power is roughly constant in the

M OFF and M CONNECTED states. However, this is not the case in the

M CONNECTING state. This is addressed by representing power consumption

during the entire transition as a fixed value: the average power consumption during

the duration of the transition. This simplification is a way of providing the MDP

the information that it needs to implement a high performing policy, in as compact

a representation as possible. This modeling approach is a design choice, and it is

noted that an interesting area for future study is in the trade-offs for varying levels

of modeling expressiveness in this area.

In this system, the controllers are being tasked with turning the LTE-M modem

on and off. This binary control implies an “on” action that powers on the LTE-M

modem and commands it via the modem’s interface to attach to the cell tower and

establish an Internet connection. Conversely the “off” action implies tearing down

any existing Internet connections, and shutting off the LTE-M modem gracefully

via the modem’s shutdown procedures. The resulting action space is shown in

124

Equation 4.6. The two actions off and on in Equation 4.6 are abstractions of multi-

step LTE-M modem command sequences.

a ∈ A = {off , on} (4.6)

4.6.2 Rewards

In order to “motivate” the controllers to find an effective balance to the latency

versus energy efficiency trade-off described in Section 4.5, the reward function is

defined as shown in Equation 4.7. The reward function maps each state-action pair

(s, a) to a scalar reward.

R(s, a) = r1I(s, a) + r2NT (s, a) + r3ND(s, a),

r1 = −10,

r2 ∈ {3, 4, . . . , 10, 100, 1000},

r3 = −100,

(4.7)

where I(s, a) is the average electrical current consumed by the modem, NT (s, a)

is the number of packets known to be transmitted, and ND(s, a) is the number of

packets dropped by the modem due to an overflowing queue in the previous timestep.

For each of these quantities the function arguments (s, a) are used to denote the

respective value of each of the terms known, expected, or averaged when action a is

taken in state s. Instead of power consumption, electrical current is used in its place

due to it being equally suitable (given a constant voltage) and more straightforward

125

to measure with an MCU in an embedded system.

With this formulation, the scalar reward is thus a linear combination of observ-

able time-varying signals and quantities. This formulation steers both controllers to

the desired goals, by rewarding them (with a positive reward value) when a packet is

transmitted successfully and penalizing them (with a negative reward value) when

electrical current is consumed or the packet queue overflows. The reward constants

r1, r3 were selected via experimentation and r2 was left as a free parameter in order

to be able to generate a set of instances for each controller. Each instance in the

set places different amounts of importance on the latency requirement relative to

the energy efficiency requirement. This approach allows for simulation of a suite

of controllers for each method, and plotting the resulting performance for a more

robust comparison. The resulting policies are ones where the respective controllers

turn the modem on and off at each discrete time step, in the way they determine

is the optimal approach for obtaining the maximal rewards. In other words, they

attempt to transmit the packets generated by the sensor application without incur-

ring undesired delay or consuming more electrical power than is needed, through

dynamic and changing conditions.

In Section 4.6.3 through Section 4.6.4, the differences between the two con-

trollers that being evaluated in this case study are detailed.

126

4.6.3 Structured Learning Controller

The Structured Learning controller consists of the common components de-

scribed above, plus the addition of the STM s and an MDP solver. The STM s are

described in this section, and the solver is described in Section 4.8.

The stored STM s at any given time are a combination of constants and time-

varying parameter estimates. The constants are programmed in at design time, and

the estimates are maintained by observing samples of the relevant quantities, and

using the Temporal Difference (Equations 4.3) method to update the estimates. The

estimates are plugged into the STM data structures, which serve to maintain fully

populated STM s at each time step.

The STM s are constructed using a factored formulation, which greatly re-

duces the storage requirements of the MDP. The factorization procedure is shown

in Equation 4.8 through Equation 4.12. The factorization serves to convert one large

multivariate conditional probability distribution into a product of functions, each

having the form of a lower dimensional conditional probability distribution. The

terms correspond to the subsystems of the sensor application, packet queue and

LTE-M modem, respectively. This re-arrangement enables a significant reduction

of the MDP storage requirements.

p(s(n+1)|s(n), a(n)) = p(s(n+1)
a , s(n+1)

q , s(n+1)
m |s(n), a(n)) (4.8)

= p(s(n+1)
a |s(n+1)

q , s(n+1)
m , s(n), a(n)) · p(s(n+1)

q , s(n+1)
m |s(n), a(n)) (4.9)

127

= p(s(n+1)
a |s(n)a) · p(s(n+1)

q , s(n+1)
m |s(n), a(n)) (4.10)

= p(s(n+1)
a |s(n)a) · p(s(n+1)

q |s(n+1)
m , s(n), a(n)) · p(s(n+1)

m |s(n), a(n)) (4.11)

= p(s(n+1)
a |s(n)a) · p(s(n+1)

q |s(n), a(n)) · p(s(n+1)
m |s(n)m , a(n)) (4.12)

4.6.3.1 Sensing Application

Given the observability of the sensing application’s mode, the controller can

maintain parameters that statistically characterize how often the application is in

a given mode, and how likely the CPS is to transition from any mode to any other

given mode. These characterization parameters are listed in Equation 4.13. Using

the latest values of these parameters, the sa term of the factored STM can be fully

instantiated.

σ̂i,j = p(s(n+1)
a = j|s(n)a = i)∀(i, j) ∈ {0, 1, . . . , NSA − 1}2 (4.13)

4.6.3.2 Packet Queue

Since it is part of the state space, the dynamics of the queue must also be

modeled as a transition matrix. This results in having to model a fully deterministic

process into stochastic structures in order to fit into the MDP framework, and thus

most of the probabilities are either 1 or 0. The transition probabilities are almost

128

all known at design time, since the dynamics of the queue do not change. The

only uncertainty comes from the rate of packets entering the queue from the sensing

application, and the rate leaving the queue from the LTE-M modem connection.

The packet queue’s state is defined as the number of packets in it at a spe-

cific timestep. The transition probabilities amount to the likelihood of transition to

another state, in other words the change in the number of packets. The transition

to a state where more packets are inserted corresponds directly to the sensing ap-

plication’s packet generation rate. These events are combined with the probability

of packets being removed from the queue by being transmitted to the cloud server.

If the modem state and action are such that the modem is not yet connected, then

no packets can leave the queue and thus transitions to states where the number of

packets is reduced are not possible. If the modem is connected, then packets can

leave the queue.

4.6.3.3 LTE-M Modem

In the model, the dynamics of the LTE-M modem are a direct application of

the transition state concept. In order to instantiate this component of the STM s,

the controller needs to maintain a running estimate of how long the LTE-M modem

takes to connect to the network. This time-varying quantity is referred to as TC and

its most recent estimate as T̂C . With this estimate, the resulting transition proba-

bilities are shown in Figure 4.4. Following the transition states theory introduced

in Section 2.4.3), the value of the parameter ρ is defined in Equation 4.14, where

129

Figure 4.4: State transition matrices for LTE-M Modem.

TF is the duration of one control frame.

As can be observed from the Figure 4.4 and Equation 4.14, this component

of the STM s is parameterized by the running estimate T̂C (through ρ) in two of

the matrix elements, and combined with known constants for the remaining matrix

elements.

ρ̂ =

[
floor

(
T̂C
TF

)]−1
(4.14)

4.6.4 Q-Learning Controller

The Q-Learning controller was implemented directly from the description of

the technique in [58]. In this method, a function Q is created as a mapping Q(s, a) :

(S × A) → R, where R denotes the set of real numbers. Each mapping in the

function represents an estimate of the total amount of reward an agent can expect

to accumulate over the future, starting from a given state s and taking a given

action a. The Q function is updated on each iteration of the controller using the

130

temporal difference equation. Using the latest estimated version of Q(s, a), the

action is selected by comparing all actions for the given state s and selecting the

action with the largest value. The remaining details of the Q-Learning method can

be found in [58].

131

110 120 130 140 150 160 170 180 190 200

mJ/pkt

10
1

10
2

A
v
g

.
L

a
te

n
c
y
 [

s
]

on-off

mdp

ql

Figure 4.5: Simulation Results: Energy efficiency versus communication latency.

4.7 Simulation

In order to objectively compare the runtime performance of the Structured

Learning and Q-Learning controllers presented in Section 4.6, a MATLAB simula-

tion was created containing models of all the subsystems described in the case study.

In the simulation testbed, a sensor application generates packets at rates consistent

with a given mode, and also simulates the transition between modes at specified

transition rates. A packet queue object models a generic fixed length queue, which

acts as a First In First Out (FIFO) data structure, and overflows if the maximum

number of elements is exceeded. A dynamic model of the LTE-M modem was cre-

ated using the collected time-series data and electrical power measurements (see

Section 4.5.1).

132

The simulation was run with three separate controllers: the two MDP-based

controllers described in the previous section, as well as a third manually-generated

policy. The manually-generated policy simply checks the queue, and turns on the

modem any time a specified number Nq of packets are in the queue, where Nq is

a parameter of the policy. Once the modem is turned on, it remains on until the

queue is empty.

The simulation was run multiple times for each controller, and each simulation

run is represented by a single point in the graph of Figure 4.5. The fixed threshold

(manually generated), Structured Learning, and Q-Learning approaches are denoted

by the “on—off”, “mdp”, and “ql” traces, respectively. The best performance cor-

responds to points that have the lowest average communication latency (the vertical

axis) and simultaneously the lowest average energy efficiency (the horizontal axis).

For the fixed threshold technique, multiple policies were generated by vary-

ing the Nq threshold at which the modem was powered on. For the MDP-based

controllers, the r2 constant in the reward function from Equation 4.7 was varied.

This approach produced a set of control policies for each controller, allowing a full

exploration of the performance limits of each technique.

The first conclusion that can be made from the data in Figure 4.5 is that both

MDP-based controllers outperform the fixed threshold approach, for all possible

values of the Nq threshold. This is likely a result of the MDP-based policies being

richer and more expressive; while the fixed threshold policies are a function of the

packet queue state only (ignoring the application and modem characteristics), the

MDP-based policies materialized as a non-trivial function of the entire state space.

133

In this case study, since the MDP is able to reason using algorithmic methods

on data structures and computations on conditional probabilities, it can consider

more effects and consequences systematically and produce highly optimized policies

that are more expressive relative to the simple, manually-derived, fixed threshold

heuristic.

The second conclusion that can be made from the data is that the Structured

Learning controller outperforms the Q-Learning controller. As an example, if the

rewards are tuned such that both learning controllers achieve an average packet

transmission latency of 20 seconds, the Structured Learning controller is able to

accomplish this with an average energy efficiency of 135 mJ per packet, compared

to 163 mJ per packet on the Q-Learning controller. This amounts to a 17% savings

in the transmission energy for sending the exact same packets at the same average

latency. This can be an important difference since transmission energy is often the

largest source of energy consumption on an LTE-M connected sensor.

This improvement is a direct consequence of the Structured Learning algo-

rithm focusing the learning on only the time-varying aspects of the system (e.g.

modem power, cell tower connection time, etc.). and accepting as unquestionable

truth the other dynamics and attributes (e.g. that the packet queue contains one

less packet after a packet is removed from it, etc.). In contrast, the Q-Learning

controller is forced to learn (and continue to update indefinitely) all aspects of the

system transition probabilities in response to selected actions. It must continually

experiment with exploratory actions and accumulate data to learn all of the system

dynamics (including well understood behavior, such as the packet queue’s dynam-

134

ics). These results are consistent with the claim that expending learning effort on

such immutable aspects is both unnecessary and detrimental to the overall system

performance.

135

4.8 Implementation

This section details the results of implementation experiments performed to

assess the viability of the competing MDP-based control strategies in the context of a

state-of-the-art processing platform for resource constrained CPSs. The alternatives

are implemented on a typical MCU that would be used to realize the CPS case study,

and are compared in terms of their execution time, memory usage and processing

power consumption.

4.8.1 Experimental Setup

The competing controllers were implemented on the Silicon Labs EFM32GG, a

small and low power ARM Cortex M3-based MCU. The processor was running on the

EFM32 STK3700 development kit, which houses the CPU as well as sophisticated

energy monitoring circuitry. The EFM32GG contains 128 kB of RAM and 1MB of

FLASH, which make it a typical example of a resource constrained platform for the

CPS in the case study at the time of this writing.

In order to compare the controllers objectively, the following experimental

setup was created on the EFM32GG development board. All controllers were im-

plemented in C and stored in the MCU’s program memory one at a time. Memory

usage was computed by statically allocating all data structures and examining the

map file that the MCU’s compiler generates. A common test harness was written

for the EFM32GG, which was driven by a periodic timer interrupt. The interrupt

rate was configured to be 100ms, which was used as the fixed-period discrete-time

136

iteration rate for the controllers.

The C program initially puts the CPU into its low power sleep mode. It

remains in that mode until the periodic interrupt fires. Once the interrupt fires,

the MCU is woken from sleep and it then executes the computations needed for one

iteration of the controller under test. Once the iteration has completed, the MCU

returns back to sleep mode where it waits for the next firing of the periodic interrupt.

Since the sleep current is extremely low compared to the run current (microAmperes

compared to milliAmperes), this approach enabled precise measurement of both the

execution time and computational energy required to execute each controller on

the MCU by observing the current versus time profile of each controller. Real-time

MCU current consumption was measured by using the EFM32GG board’s energy

monitoring tools, which allow very accurate current versus time data to be observed

in the form of a high resolution time-series waveform capture.

Using this simple fixed rate scheduling scheme combined with the Cortex-M3

sleep modes and the development board’s current monitoring tools, it was possible

to observe the execution time and processing current consumed by the CPU for

each control policy. This testbench provided a highly repeatable experimental setup

where all settings were kept the same from case to case with the only difference

being the control policy being used.

137

10 15 20 25 30 35 40 45 50

Queue Size [Packets]

100

101

102

103

S
T

M
 S

to
ra

g
e

 S
iz

e
 [

k
B

]

Direct

Factored

Sparse

Figure 4.6: Transition matrix storage sizes.

138

4.8.2 Matrix Format

In the case study’s MDP, the number of states NS is 66, and the number

of actions NA is 2. The number of non-zero elements KNZ in the STM s is 444.

This represents a sparsity of 94.9%. Aside from the direct implementation of the

full STM s, two CMM techniques were evaluated: a factored implementation and a

sparse implementation. Figure 4.6 shows the resulting STM storage sizes for these

techniques on the case study, over a range of packet queue sizes.

As can be observed from the data, both the factored and sparse implemen-

tations reduce storage size considerably. However, the sparse method is the most

effective in this regard and for this reason it was selected as the approach for the

implementation. The implementation used a single byte to store each element of

the policy lookup table, and four bytes to store the floating point elements of the

STM s and reward functions.

4.8.3 Measurements

4.8.3.1 Memory Usage

First, the techniques are compared in terms of how much data storage each

required on the MCU. The results are shown in Table 4.3, where the column la-

beled Sparse Structured Learning represents the Structured Learning method im-

plemented with sparse matrices, as described in Section 4.4.3.

The results in Table 4.3 show that the Q-Learning approach is the most favor-

able in this metric, and furthermore show that it requires significantly less data stor-

139

Structured Sparse Structured

Learning (VI) Learning (SVI) Q-Learning

STM 34.0 kB 2.60 kB -

Rewards 0.51 kB 0.51 kB 0.51 kB

Q function - - 528 B

Total 34.5 kB 3.11 kB 1.03 kB

Table 4.3: Data storage size in kiloBytes.

age than the Structured Learning (VI) approach. However, when the SVI method

is applied to Structured Learning (SVI), there is a significant reduction in the re-

quired data storage. The data shows that in this case study, the CMM techniques

reduce the storage requirements of Structured Learning to be much closer to that

of Q-Learning, while not beating it in this regard.

Generalizing these results beyond the case study, it can be seen from Table 4.3

that all of the methods being compared require the same amount of storage for the

reward function. Thus, the difference in memory usage is attributed to the storage

of the STM s in the VI and SVI controllers, compared to only the Q function in

the Q-Learning controller. This difference can be calculated in the general case as

follows. Assuming STM entries are 4 byte single precision floating point values, the

Q function can be stored in 4NSNA bytes, as it consists of a table of NSNA floating

point values. The storage size of the STM s in the Structured Learning (VI) method

is 4NS
2NA bytes, as it consists of NA stochastic matrices, each of size (NS ×NS).

The STM s in the Sparse Structured Learning (SVI) method were implemented

140

with sparse matrices stored in coordinate format [43]. This format stores only

the non-zero elements of a matrix, along with two indices representing the column

and row index of the element, respectively. Assuming that dlog2(N)/8e bytes are

required to store an integer index that can take on one of N values, the storage size

required for the STM s in coordinate format is shown in Equation 4.15, where KNZ

is the number of non-zero elements in the STM s.

KNZ (dlog2(NsNa)/8e+ dlog2(Ns)/8e+ 4) (4.15)

Evaluating the formula above (Equation 4.15) using the constants from the

case study (NS = 66, NA = 2, KNZ = 444) results in the storage sizes shown in

Table 4.3. The formula can be used to predict the required storage sizes for other

case studies by appropriately changing the values of (NS, NA, KNZ).

4.8.3.2 Computation

Structured Sparse Structured

Learning (VI) Learning (SVI) Q-Learning

Per Control Iteration: 3.5 µs / 117 nJ 3.5 µs / 117 nJ 211 µs / 7.06 µJ

Per Solver Iteration: 50.1 s / 1.67 J 5.61 s / 187 mJ -

Average Power: 483 µW 69.8 µW 78.8 µW

Table 4.4: Execution time (in seconds), computation energy (in Joules) and average

power (in Watts).

141

Next, the execution time and power consumption of the MCU were measured,

when executing each of the competing techniques. The results are shown in Ta-

ble 4.4. These results show that Q-Learning requires the same computation on

every control period. The control operation consists of updating the Q function

based on the observed state transition and reward, and computing the best action

for a given state using the latest values in the Q function. The Q-Learning method

performs these operations on every control period.

In contrast, the Structured Learning techniques (VI and SVI) run a solver,

which was invoked once per hour. These techniques compute a new control policy

every hour, and the time and energy required to do this is shown in the second row

of Table 4.4. After computing a new policy every hour, the Structured Learning

techniques simply look up which action to use from a stored table for the remainder

of that hour.

The data in Table 4.4 shows that the Structured Learning techniques involve

much less computation time and energy consumption during a typical control period

relative to Q-Learning. Note that the first row of data for Structured Learning in

Table 4.4 excludes the computation associated with solver execution, while the third

row of data (labeled Average Power) includes the effects of solver computation.

It is important to note that the Structured Learning implementation would

likely require a priority-based preemptive scheduling scheme such that the control

iteration execution would take higher execution priority over the solver, such that

any real-time deadlines associated with the controller are not missed due to running

the solver.

142

The data in Table 4.4 shows that although Q-Learning does consume less

average power than Structured Learning (VI), when the SVI method is applied

to Structured Learning the average power is reduced lower than Q-Learning. SVI

reduces computation time by replacing standard matrix operations by sparse matrix

operations. This results in a significant reduction in computation time, given that

the STM s are extremely sparse.

Generalizing these results beyond the case study, it is possible to identify

the factors that affect which of the methods is favorable in terms of computation

costs — e.g., processing time and energy consumption. In the Structured Learning

techniques, the size of the MDP and complexity of the STM s determine how long

it takes to execute a solver to produce a control policy. If the MDP is very large

and complex, the solver will take longer to execute. In contrast, the Q-Learning

technique is not affected at all by this attribute. In this aspect, it can be concluded

that Q-Learning is better suited to deal with large MDPs than Structured Learning

in terms of computation expense.

Another factor that is relevant is how often the Structured Learning techniques

are required to compute an updated policy. In general, a suitable update rate is

determined by the application’s adaptation requirements, and how quickly the time-

varying environment is changing. In the case study presented here, the policy is

updated once per hour, but a system that adapts to more slowly changing dynamics

may only need to update the control policy once per day or even less frequently. On

the other hand, a system adapting to fast changing dynamics may need to update the

policy much more often, such as once per second. A faster update rate will generally

143

102 103 104

Policy Update Period [s]

10-1

100

101

A
v
e

ra
g

e
 P

o
w

e
r

[m
W

]

VI

SVI

Q-Learning

Period = 1 Hour

Figure 4.7: Average power consumed by the MCU on competing control algorithms

as a function of the policy update period.

increase the computational cost of the Structured Learning techniques, whereas Q-

Learning is not affected by this consideration at all. In this regard, Structured

Learning is better suited to applications were the adaptation is on dynamics that

are varying relatively slowly in time.

In this case study, the data point of a 1 hour update period leads to Sparse

Structured Learning having lower computational cost than Q-Learning. The crossover

point where Q-Learning consumes less computational power is shown in Figure 4.7

to be approximately at 45 minutes. It is important to note that this crossover point

is specific to the MDP size and complexity (affecting solver execution time) and the

choice of MCU (affecting run current, sleep current, and solver execution time).

144

4.8.4 Adaptation Overhead

The improvement in energy efficiency shown in Figure 4.5 is the result of

the runtime adaptation making dynamic modem actuation decisions that result in

improved performance trade-offs. However, these improvements are obtained at the

cost of expending processing energy running the adaptation algorithm, as shown in

Table 4.4. An objective analysis of the overall benefits of the runtime adaptation

can only be made if the positive benefits of the adaptation are combined with its

negative effects.

Fixed Threshold VI SVI Q-Learning

Energy Efficiency [mJ/packet] 151 125 125 139

Average Modem Power [mW] 1.49 1.24 1.24 1.38

Adaptation Overhead [µW] - 483 69.8 78.8

Total Power [mW] 1.49 1.72 1.31 1.45

Overall Improvement - -15.4 % 12.1 % 2.7 %

Table 4.5: Overall improvement from runtime adaptation.

The numerical result of such an analysis is shown in Table 4.5. The first row is

the energy efficiency achieved by each competing method, obtained by selecting an

operating point for each method from Figure 4.5. In order for the selections to be a

fair comparison, the operating points are chosen to have roughly equal performance

in the other performance metric defined for the application — transmission latency.

All three selections have an average latency of approximately 35 seconds. The second

145

row is obtained by multiplying the energy efficiency (in milliJoules per packet) times

the average packet generation rate in the simulation (in packets per second), which

was 0.0099. Thus, the second row represents the average power consumed by the

LTE-M modem, when under the control of each competing adaptation method under

identical packet generation statistics.

The third row gives the energy expended by running the adaptation algorithm,

and is taken directly from Table 4.4. This represents the cost at which the modem

energy efficiency improvements are obtained. The fourth row is the sum of the

second and third rows, and represents the total power that is consumed by the sensor

node. The last row quantifies the percent improvement over the Fixed Threshold

case, which represents a baseline in which no online adaptation method is used.

The numbers in the table show that the best overall option is Structured

Learning using the SVI algorithm, with a 12.1% improvement in power consumption

over the baseline, when the other metric — transmission latency — is held roughly

constant across the alternatives. Additionally, it can be seen that although Q-

Learning runs at a slightly lower computational cost, the adaptation performance

in terms of energy efficiency is not as good, leading to a worse overall performance.

A final observation that can be made from this data is that Structured Learning

provides superior modem efficiency gains with both the VI and SVI algorithms,

however under the VI algorithm those gains are effectively lost due to the relatively

large processing power required to run the VI algorithm. The overall improvement

of this configuration is -15.4%, meaning it actually makes the performance worse

than not having any adaptation at all. It is only through the use of the much

146

more power-efficient SVI algorithm that Structured Learning becomes an attractive

choice, and in fact even outperforms Q-Learning in this regard.

147

4.9 Conclusion

In this chapter, a survey of recent developments in Compact MDP Models

(CMMs) was provided, and by integrating several complementary CMM techniques,

a novel CMM-based approach to CPS design was developed. Comparisons between

CMM-based methods and Q-Learning in the context of CPS were made. The dif-

ferences between the two approaches were explored conceptually, as well as through

a detailed case study involving both simulation and a prototype implementation.

From the results of this chapter, it can be concluded that Q-Learning can be

considered a more robust technique when either very little is known about the system

a priori, or a large percentage of the dynamics are expected to continually change

at runtime. In contrast, when a significant portion of the system’s environment or

its dynamics are fixed, the CMM option can provide a more efficient and robust

approach.

An LTE-M connected sensor was detailed as a CPS case study to compare a

CMM-based learning controller to an alternative controller that used Q-Learning.

For a specified average packet transmission latency, the CMM-based controller re-

sulted in a 17% reduction in LTE-M transmission energy, which is often the largest

source of energy consumption on an LTE-M connected sensor. The energy sav-

ings are accomplished through strategic management of the LTE-M modem and

connection status, using learned dynamics of the system and its environment.

Since the learning controller must be implemented in the deployed system,

and its processing can be considered an overhead to the LTE-M connected sensor’s

148

main purpose, the implementation costs of the two learning controllers were also

analyzed. The implementation was on a small microcontroller that is typical of

what would be used for such a CPS system. In this experiment, it was found that

the CMM-based controller used 69.8 µW compared to 78.8 µW for the Q-Learning

controller, an 11.4% savings. However, the CMM-based controller required more

RAM to store its data structures — 3.11kB compared to 1.03kB.

Finally, the overall benefits of using runtime adaptation were analyzed by com-

paring the improvement of the LTE-M transmission energy alongside the processing

overhead of running the adaptation algorithm. In this analysis, Structured Learn-

ing was found to outperform Q-Learning only in the case when a power efficient

implementation of the algorithm is used. This result concretely demonstrates the

need for runtime adaptation techniques to be very lightweight in the overhead they

add to the system in terms of memory and processing power consumption. If the

adaptation techniques are too resource intensive, they can cancel out the energy

efficiency gains made by the runtime adaptation, and even lead to worse overall

performance than executing the system without any adaptation.

Useful directions for future work include explorations into other challenging

CPS case studies with larger state spaces, and continued development of compact

techniques that provide self-awareness and runtime adaptation capabilities at all

levels of embedded implementation.

149

Chapter 5

GEMBench: A Platform for Collaborative Development of GPU

Accelerated Embedded Markov Decision Systems

150

5.1 Introduction

The previous chapters have shown the use of MDPs as increasingly relevant

tools in the design of Embedded Computing Systems (ECSs). However, progress

in this area currently suffers from a lack of common benchmarking methodologies.

The work presented in this chapter helps to bridge this gap. Material in this chapter

was published in preliminary form in [67].

More specifically, this chapter presents a summary of challenges associated

with MDP-based design for ECSs, a survey of the state-of-the-art in MDP solvers

and datasets that are relevant to embedded systems, and a novel open source soft-

ware package for facilitating experimental research in the implementation and ap-

plication of embedded MDPs.

In recent years, a new class of MDP solver implementations has emerged that

uses GPUs for acceleration. Examples of solvers in this class include those pre-

sented by Noer [68], Ruiz and Hernandez [42], and the SPVI algorithm introduced

in Chapter 3. The results in these works show performance improvements of roughly

an order of magnitude beyond what is possible with CPU-only solvers. Additionally,

in Chapter 3 a variable dependency analysis has been presented to provide insight

into why MDP solvers can benefit significantly from the parallelism available in

GPUs.

Motivated by the increasing interest in deploying MDPs within resource con-

strained embedded systems, and the promising role of GPUs to support such de-

ployments, this chapter presents a novel open source platform for testing and bench-

151

marking GPU-accelerated ECSs that employ MDPs. This platform is referred to as

GEMBench, which stands for the Gpu accelerated Embedded Mdp testBench.

GEMBench is designed to help researchers address significant logistical chal-

lenges in incorporating MDPs and their solvers into novel embedded system designs.

An important decision point in this context is whether to develop a new MDP solver

or to use an existing implementation. This decision point leads naturally to the fol-

lowing questions: Which existing open source MDP solver alternative is the best

to use or compare against for a given set of system design constraints? How much

processing time, memory and power does a given solver consume in order to solve a

given MDP? Can an MDP solver’s performance be improved through optimizations

or algorithmic innovations?

GEMBench is targeted to a specific embedded GPU platform, the NVIDIA

Jetson platform, and is designed for future retargetability to other platforms. The

orientation to a specific platform is important for the objectives of GEMBench,

which include promoting quantitative comparison among alternative MDP solvers

and implementations.

Additionally, an open source software package [69] is contributed, called the

GEMBench Package. The GEMBench Package can be downloaded onto the tar-

geted platform to create a development testbench. The testbench contains imple-

mentations of published solvers, datasets to run the solvers on, reference solutions

to the datasets, documentation on how to measure relevant performance metrics,

and guidance on how to contribute future developments to the framework in a

consistent manner. The testbench, which encompasses the GEMBench-compatible

152

R eference

Solu tions
Solvers

Parsers

D atasets
Execution

Scripts

Figure 5.1: Block diagram of the GEMBench Package.

platform (NVIDIA Jetson) and the GEMBench Package, is what is referred to here

as GEMBench.

A block diagram of the GEMBench Package, illustrating the major compo-

nents is shown in Figure 5.1. The arrows denote the flow of information, where, in

a given experiment, a selected solver utilizes a selected MDP format-specification

parser to solve a selected MDP. The solver, parser, and MDP are selected from

three extensible libraries, respectively. The package is intended to allow new solvers

to be written by researchers, who would immediately have datasets to run them

on and reference solutions to compare them with in order to validate correctness.

Additionally, performance measurements, such as execution time and power con-

sumption, can be obtained and compared to other reference solvers provided by the

package. Furthermore, all of this can be automated to efficiently create extensive

benchmarking data through the use of execution scripts, which are also included

with the package.

The remainder of this chapter is organized as follows. In Section 5.2, a sum-

153

mary is presented of the current landscape in MDP solvers, common datasets and

platforms. In Section 5.3, GEMBench and its associated software package are de-

scribed in detail. In Section 5.4, the results for representative experiments using

GEMBench are provided. Finally, Section 5.5 concludes with interesting directions

for future work.

154

5.2 Survey

This section presents the results of a survey of existing MDP solvers, reference

platforms and benchmarking efforts to date. The survey focuses on aspects of MDP

solvers that are important to understand from the viewpoint of experimenting with

and deploying them on embedded systems.

This survey is a subset of a much larger body of work. There are dozens of

papers in the literature documenting MDP solver algorithms or techniques. Out

of those efforts, only a subset contain an attached or referenced software imple-

mentation of the technique. It is on those works with a corresponding software

implementation that are the primary focus here.

5.2.1 Solver Implementations

Table 5.1 and Table 5.2 summarize the CPU-based and GPU-based MDP

solver implementations that were found to date, respectively. From this survey,

one can conclude first that MDP solvers have been an active area of research and

development for the last 25 years. Second, researchers have commonly contributed

their own solver implementations to the growing body of work.

Based on these survey results, attempts to determine which of these implemen-

tations could be labeled as the current state-of-the-art in solvers were unsuccessful.

Several types of complications arose. In some cases, algorithms did not compile on

the available computing system. Version incompatibilities with dependencies were

suspected in some cases, and poor documentation of multi-step build sequences in

155

Solver Name Development Period Language

pomdp-solve [70] 1994-2007 C/C++

Symbolic HSVI [71] 1998-Today Java, Perl

MDP Toolbox for MATLAB [72] 1999-2002 MATLAB

ZMDP [73] 2004-2016 C/C++

SPUDD [47] 2007-2011 C/C++

Symbolic Perseus [74] 2007-2009 MATLAB, Java

APPL [56] 2009-2017 C/C++

C++ MDP Solver [75] 2010-2018 C/C++

MDPSOLVE [33] 2011-2015 MATLAB

libpomdp [76] 2011-2014 MATLAB, Java

AI-Toolbox [77] 2015-Today C/C++

Table 5.1: CPU-based MDP solver implementations.

other cases. In other cases, solvers compiled and ran successfully, but were not com-

patible with the same MDP files as other solvers. This is a critical shortcoming that

effectively prevented objective comparison (without laborious conversion between

different file formats).

5.2.2 Datasets

Benchmarking a solver requires not only a working solver implementation, but

also an MDP for the solver to solve. A survey of MDPs used in solver implementa-

tions was performed, and the results are summarized in Table 5.3.

156

Solver Name Development Period Language

Noer13 [68] 2013 C++/CUDA

Thrust-VI [42] 2015 C++/CUDA

SPVI [38] 2015-2018 C++/CUDA

Table 5.2: GPU-based MDP solver implementations.

In some cases, researchers simply created an MDP by instantiating the MDP

data structures as constants in source code. This approach is perhaps the easiest

route to solve a single MDP, but does not scale well to solve many different MDPs. In

other cases, researchers stored an MDP’s data structures in a file, and then created

a means to read in and parse the file in order to provide the MDP to the solver

algorithm. Some researchers defined new file formats for representing MDPs, while

others adopted formats introduced by previous researchers. Clearly, the use of file-

based specification of MDP data structures is more flexible than coding constants

into source code, as it allows for one solver to solve many MDPs simply by changing

the MDP file. Additionally, this method facilitates sharing of specific MDPs across

research groups.

The first standard MDP file format that gained a foothold in this area was the

.pomdp format [70], sometimes referred to as the Cassandra format (after the last

name of the author). This is a human readable text file that describes the MDP

components using a custom syntax that seems to have been created precisely for this

purpose. The format is well documented, and many example MDPs can be found

in this format throughout the literature. In [68], researchers contribute a MATLAB

157

parser for the .pomdp format, which ingests .pomdp files and instantiates an MDP

in the MATLAB workspace.

The strength of the .pomdp format is that it is easy to read and straightforward

to inspect visually. The downside is that it is inefficient in terms of file size. In one

case [73], an 180MB file was required to specify an MDP. In another case, in an

experiment in the work of Section 2.4 an MDP went above 750MB when stored in

.pomdp format. In practical use, hundreds of MBs is likely too large of a storage

size requirement in general for ECSs, at the time of this writing.

To circumvent the logistical issues of transporting files of this size from one

system to another, occasionally researchers have resorted to writing scripts that

generate a .pomdp file immediately prior to solving it, rather than copying a large

.pomdp file from one benchmarking setup to another.

In general, it was found that although MDP data structures can be very large,

their information content is relatively low compared to their size. As a result, their

associated information is highly compressible. See Section 3.4.1 for elaboration on

these findings. The findings support the claim that the .pomdp format can introduce

needlessly high files storage requirements.

The second format that has been used across research groups is the .spudd

format, first created for use by the SPUDD solver [47]. This format is also a human-

readable text file, but the MDP format is in the form of tree-shaped data structures

known as Algebraic Decision Diagrams (ADDs). ADDs are used in .spudd files

because the SPUDD solver operates Factored MDPs, as described in Section 2.4.4.

Factored MDPs can often be stored very compactly using tree-shaped struc-

158

tures, and SPUDD even operates on the MDP using tree-shaped structures for the

intermediate solver calculations. Other solvers inspired by or derived from SPUDD

also use ADDs and .spudd files. The downside to this format is that an unfactored

MDP must be factored before being stored in this format, and this factorization

process can be very difficult or even impossible if the MDP does not contain a spe-

cific underlying conditional dependence property. Another downside to this format

is that it is difficult to parse (compared to the .pomdp format), due to its use of

tree-shaped structures and Lisp syntax.

A third effort at defining MDP file formats arose from a series of MDP solv-

ing competitions held as part of the International Conference on AI Planning and

Scheduling (AIPS), which later merged with the International Conference on Auto-

mated Planning and Scheduling (ICAPS). In these conferences, MDP solver com-

petitions were held on 10 occasions from 1998 through 2018. These competitions

defined their own file formats, documented them for use by competitors, and pro-

vided the MDP files in those formats.

The file formats steadily evolved over the years, including the Planning Domain

Definition Language (PDDL) [78] version 1.0, PDDL version 2.1, the Probabilistic

Planning Domain Definition Language (PPDDL) [79] version 1.0, and the Relational

Dynamic Influence Diagram Language (RDDL) [80]. These formats are by far the

most complex (compared with .spudd and .pomdp), but also the most powerful

and expressive. These file formats are designed to specify many different classes of

planning and decision problems, beyond just MDPs and POMDPs.

159

5.2.3 Benchmarking Platforms

In the documents associated with each of the solver implementations that were

found, there were no common hardware platforms used to conduct performance or

benchmarking experiments. One exception to this is in the ICAPS conferences,

where the competition organizers ran the candidate solvers on a common computer

in order to compare performance objectively.

Aside from the ICAPS competitions, it was found that some researchers did not

take any runtime performance measurements at all, and of the researchers who did

perform such measurements, usually the workstation that was available to that group

was used. Commonly, researchers detailed the specifications of their computing

systems. This approach seems to be the standard approach to date: each research

group runs its algorithm on its own computing system, whatever it may happen to

be.

With this approach, it becomes virtually impossible (without large amounts

of reimplementation effort) to compare the runtime performance of alternative ap-

proaches introduced in two papers describing algorithms that are evaluated on dif-

ferent computing systems. There were no instances found where two research groups

had the same computing hardware (in terms of processor type, CPU speed, RAM,

etc.), even by coincidence.

160

5.2.4 Dimensionality of Rewards

An issue that further complicates the landscape is that of the dimensionality

of the reward function. In Equation 3.1, R(si, a) is the reward for selecting action

a from state si. This is an example of a two-dimensional reward function, since the

function is a mapping from S×A to a scalar reward value. However, as noted in [37]

some works use a three-dimensional reward function R(si, a, sj), (a mapping from

S×A×S) and some use a one-dimensional reward function R(si), (a mapping from

S only). The versions of Equation 3.1 that use three and one dimensional reward

functions are shown in Equation 5.1 and Equation 5.2, respectively. These different

representations can present logistical challenges when attempting to piece together

various works.

V n(si) = max
a∈A
{
∑
sj∈S

P (sj|si, a)[R(si, a, sj) + βV n−1(sj)]} (5.1)

V n(si) = R(si) + max
a∈A
{β
∑
sj∈S

[P (sj|si, a)V n−1(sj)]} (5.2)

For example, if an MDP in .pomdp format from [70] is imported into MATLAB

using the .pomdp parser from [74], the reward function will exist in the MATLAB

workspace as a three-dimensional rewards object. That representation is then in-

compatible with the MATLAB solver MDPSOLVE [33], which only accepts at most

a two-dimensional reward function.

Conversion strategies to mitigate this are as follows. Increasing the dimen-

sionality of the rewards is trivial, as the extra function input can simply be ignored.

161

Decreasing the dimensionality (as is required for the .pomdp/MDPSOLVE exam-

ple above) requires some care. To reduce from a three-dimensional reward to a

two-dimensional reward, Equation 5.1 is rewritten as Equation 5.3, and then the

first summation is evaluated to arrive at the equivalent expression using a two-

dimensional reward function in Equation 5.4. The resulting conversion formula is

then shown in Equation 5.5.

V n(si) = max
a∈A
{
∑
sj∈S

P (sj|si, a)R(si, a, sj)+

β
∑
sj∈S

P (sj|si, a)V n−1(sj)}
(5.3)

V n(si) = max
a∈A
{R(si, a) + β

∑
sj∈S

P (sj|si, a)V n−1(sj)} (5.4)

R(si, a) =
∑
sj∈S

P (sj|si, a)R(si, a, sj) (5.5)

This reduction can always be done without loss of information, and thus the

constraint of at most a two-dimensional reward function is not a limitation for any

solver. In spite of this, some solvers and parsers use three-dimensional rewards

anyway.

There is no such formula to reduce from two-dimensional to one-dimensional

rewards without loss of information. This can only be done in the special case where

the content of the two-dimensional reward function is such that it is only a function

of one of the arguments to begin with. In such a special case, the dimension can

simply be collapsed along the dimension of the unused argument to convert to a

162

one-dimensional reward function, typically R(s).

163

Source Number of MDPs Format

SPUDD [47] 70 .spudd

pomdp-solve [70] 55 .pomdp

MDPSOLVE [33] 32 Constants in source code

Symbolic Perseus [74] 21 .spudd

ICAPS-04 20 PPDDL 1.0

ICAPS-16 15 RDDL

libpomdp [76] 15 .spudd and .pomdp

ZMDP [73] 9 .pomdp

AAPL [56] 8 .pomdp and .pomdpx

AIPS-02 8 PDDL 2.1

ICAPS-18 8 RDDL

AIPS-98 6 PDDL 1.0

AIPS-00 5 PDDL 1.0

ICAPS-06 10 PPDDL 1.0

ICAPS-11 11 RDDL

Noer13 [68] 2 .pomdp

AI-Toolbox [77] 4 Constants in source code

MDP Toolbox for MATLAB [72] 2 Constants in source code

C++ MDP Solver [75] 1 Constants in source code

Table 5.3: MDP datasets.

164

5.3 GEMBench

As motivated in Section 5.1, this section proposes the use of a common bench-

marking platform called GEMBench. This section details the components of GEM-

Bench, and justification for the decisions made in its design.

5.3.1 Selection Criteria

The selection of the hardware and operating system to target in the first version

of GEMBench was made with the following considerations:

• Availability: the platform should be easily accessible to researchers, imposing

minimal cost and logistical barriers.

• Repeatability: researchers should be able to reproduce published results from

other researchers on their own platform instance, with their own experiments.

• Observability: researchers should be able to easily measure performance met-

rics that are relevant to ECS design, such as execution time, memory require-

ments, and power consumption.

• Ease of Use: A file system and robust networking stack is required to move

MDP datasets and source code onto the platform with minimal effort.

• Development flexibility: the platform should be compatible with and contain

rich support for toolchains of many different programming languages used in

technical and scientific programming (e.g., C/C++, Python, Java, MATLAB,

Go, Rust, Julia).

165

• GPU Support: It is reasonable to expect that GPUs will play a big role in

the future advancements in MDP solvers, and thus the platform must have a

programmable GPU.

• Documentation: The platform must be well documented in order to minimize

the amount of initial time researchers need to spend to become productive.

• Long Term Support: The platform must have planned support for many years

to come.

5.3.2 Hardware and Operating System

The common reference hardware of GEMBench, referred to as the GEMBench-

compatible platform, is selected as the NVIDIA Tegra TX-1 Development Board.

This platform is selected as one that satisfies the requirements summarized in Sec-

tion 5.3.1. This is a Linux-based platform that contains a Quad ARM A57 CPU

and an NVIDIA Maxwell GPU with 256 CUDA cores. The board contains 4GB of

RAM and a 16GB eMMC storage. The board runs a Linux distribution known as

Linux4Tegra (L4T), which is based on Ubuntu Linux. The software development

kit provided with the board provides a well documented ecosystem.

The use of a self-contained single-board computer allows for computing hard-

ware replication across research labs with minimal effort compared to setting up

larger general purpose computing systems such as desktop computers. Additionally,

the NVIDIA Jetson module is a small (50mm x 75mm) embedded computing mod-

ule that can be designed into a small form factor ECS, outside of the development

166

board. The Jetson module is well supported by a rich ecosystem of compatible

peripherals including cameras, robotic platforms and drones.

The Linux-based OS provides a full-featured set of capabilities for software

development and benchmarking, such as TCP/IP networking, USB, Wi-Fi, and

HDMI video, to name a few. Linux is favored in this context over smaller embedded

operating systems, such as Real-Time Operating Systems (RTOSs), due to its ease

of use. Linux enables efficient use of common toolchains, and its file system and

networking stack allow datasets to be copied onto the board easily. These two

operations can be much more complicated on RTOS-based or smaller embedded OS

systems. The lighter-weight OSs generally trade-off productivity in exchange for

higher levels of optimization. In the design of GEMBench, ease of use is favored

over optimization in this context. This is to provide a lower barrier to researchers

getting up and running with the testbench.

5.3.3 Solvers

Part of the GEMBench Package [69] contains an open source release of an

implementation of one of the GPU-accelerated solvers listed in Table 5.2: SPVI.

This software package is intended to allow researchers who purchase the development

board to easily reproduce the performance benchmarks of that solver. Additionally,

the package contains guidance for how to contribute additional solvers that can be

run on the platform. Specifically, the dependencies (and their versions) should be

documented, along with compile and run instructions.

167

Ideally, researchers will be able to easily run any existing solvers, and then

develop and implement new solvers on the platform, and easily produce benchmark-

ing measurements that objectively compare multiple solvers on a robust collection

of MDP datasets. The new performance claims can then be easily replicated across

other research groups.

5.3.4 Datasets

A survey of datasets and their file formats used in MDP research was presented

in Section 5.2. Due to the existing adoption of the .pomdp format across multiple re-

search efforts, along with the large number of MDPs already available in that format,

its continued use is encouraged here and it is selected for the primary benchmarking

dataset. Also included is a curated set of .pomdp files as a packaged benchmarking

dataset. Along with this set, the corresponding solutions to each of the MDPs is

provided, which is something not previously found anywhere to date. The reference

solutions were obtained using the pomdp-solve [70] and MDPSOLVE [33] solvers,

due to their maturity over newer solver packages.

Also included in the GEMBench Package is an open source C/C++ example of

how to ingest and parse MDP files in the .pomdp format. This example is intended

to save researchers time in incorporating this file format into their solvers.

A secondary candidate for a benchmarking file format is the .spudd format,

due to the large collection of MDP datasets available. As previously noted, this

format is extremely difficult to work with due to its tree-shaped data structures and

168

Lisp syntax. There is interest in using the SPUDD MDPs for a secondary dataset,

and this is left as a future research effort. There were two .spudd parsers found

to date: one embedded in the SPUDD solver itself, and another provided by the

Symbolic Perseus solver package [74] that can ingest .spudd files into MATLAB.

The current plan is to use these parsers to convert .spudd files into .pomdp

files, although it is understood that some files will be very large in size after this

conversion. Thus, only a subset will be converted. The benefit of this conversion is

that any solver that can consume .pomdp files will also be able to solve the MDP

datasets currently only available in .spudd format.

An open task is the parsing of .spudd files directly within a solver - any inter-

ested researcher is highly encouraged to contribute a utility that can ingest .spudd

files and output them into more general-purpose format that does not depend so

heavily on the concept of ADDs and Factorization that is central to the SPUDD

solver.

Additionally, the survey in Section 3.4 and analyses in Section 4.8 strongly

suggest that using sparse matrix representations would likely have a significant effect

on MDP storage size and solver computation. Researchers are encouraged to propose

a standard file format for sparse MDP representations and either convert existing

.pomdp or .spudd MDPs into sparse formats, or contribute entirely new sparse

MDPs to the collective datasets.

169

5.3.5 Measurements

Execution time can be measured on the board using one of two methods. One

method is the use of software-based timestamps. Using these involves making calls

to the Linux time API from user space, and finding the difference between successive

calls to compute elapsed time.

Another method to measure time is the use of GPIO combined with an external

oscilloscope. A GPIO line can be set from Linux user space at the start of a solver

routine, and then cleared at the end. By measuring the resulting square wave voltage

on this GPIO pin with an oscilloscope, a very precise timing measurement can be

made.

Both CPU and GPU memory use can be measured using the NVIDIA CUDA

API. The cudaMemGetInfo() function is well-documented and allows for objective

measurement of memory consumption.

The power consumption of the entire board can be measured directly from

Linux user space. The board contains a Texas Instruments INA3221 Current and

Voltage monitor, and instantaneous values can be read directly from the device using

a device driver provided by the NVIDIA board support package.

170

5.4 Experiments

To demonstrate the use of GEMBench, two MDP solvers were implemented on

the NVIDIA Jetson TX-1 development board. The first implementation is a CPU-

only implementation of Value Iteration, which is referred to here as VI. This was

created directly from the equations detailed in [53]. This implementation represents

a straightforward single-threaded implementation of the classical Value Iteration

algorithm and was used purely as a baseline for comparison with the other imple-

mentation.

The second implementation choice was Sparse Parallel Value Iteration (SPVI),

which was described in detail in Chapter 3. SPVI leverages the GPU for execution

time acceleration. A key feature of SPVI is that it uses sparse representations and

sparse matrix-vector arithmetic operations in the GPU.

In the experiments, the solver execution time was measured on the entire

Cassandra dataset using Linux’s native timing support. The results for the full

dataset are shown in Figure 5.2. The curated Cassandra dataset has 55 MDPs on

the testbench, and the results of solving all of these MDPs is shown in the figure.

Each data point represents one invocation of the solver on a specific MDP.

The MDPs in Figure 5.2 are sorted by a scalar size metric N2
SNA, where NS

and NA are the number of states and actions in each MDP, respectively. N2
SNA is

used to denote the size of the MDP because the largest data structures in an MDP

are the state transition matrices, which contain a total of N2
SNA entries.

One can draw several conclusions from Figure 5.2. First, the GPU-based

171

102 104 106 108

MDP Size (N
s

2
N

a
)

10-4

10-3

10-2

10-1

100

101

S
o

lv
e

r
E

x
e

c
u

ti
o

n
 T

im
e

 [
S

e
c
o

n
d

s
]

VI

SPVI

Figure 5.2: Solver execution time for Cassandra dataset.

172

implementation (SPVI) takes at least one second to solve any MDP, regardless of

how small it is. This is due to the amount of time it takes to setup the GPU and

initialize the CUDA cuSparse library used by SPVI. There does not appear to be

any such setup time effect in the CPU-based VI algorithm.

Second, there is a crossover point around N2
SNA ≈ 2e6 beyond which the GPU-

based solver is faster. To focus in on this aspect, the execution times for solving

the four largest MDPs are listed in Table 5.4. For “baseball.pomdp” (the largest

MDP in the dataset), SPVI (the GPU-based solver) is 48.5% faster than VI (the

CPU-based solver), a considerable difference.

MDP Name N2
SNA VI SPVI

cit.pomdp 3.22e5 0.043 0.964

sunysb.pomdp 3.60e5 0.058 0.980

fourth.pomdp 4.42e6 1.390 1.061

baseball.pomdp 3.53e8 37.653 19.373

Table 5.4: Solver execution time (seconds).

Third, one can conclude that the Cassandra dataset is rich in small MDPs

and lacking in large MDPs. Considerably more data is needed to explore GPU-

based solver performance on larger MDPs. The GEMBench project aims to spur

collaborative research in directions such as this, which support more insightful and

comprehensive evaluation of alternative MDP implementation approaches.

173

5.5 Conclusion

This chapter has introduced GEMBench, a benchmarking tool for evaluating

implementations of solvers for MDPs. The utility of common benchmarking envi-

ronments has been demonstrated in many application areas. With the increasing

relevance of MDPs in embedded systems, and the complex trade-offs involved in

MDP solver deployment, GEMBench helps to bridge an important gap in design

and implementation of MDP-equipped applications.

Along with the presentation of GEMBench, surveys of the landscape of MDP

solvers, reference platforms and benchmarking were presented, with an emphasis on

details that are relevant for experimenting with embedded implementations. GEM-

Bench is designed for extensibility with additional file formats, datasets, and solvers,

as well as retargetability to other processing platforms. Useful extensions for future

work include continuing to add support for additional MDP file types and datasets,

implementing more solvers from the literature, and exploring the trade-offs between

using an MDP versus a POMDP model for a given ECS.

Additionally, the amount of system knowledge put into the MDP before de-

ployment is an important consideration. An interesting area for future work relating

to this is the exploration of making system assumptions offline versus learning those

aspects of the system at runtime. The implementation aspects of these concepts

with GPUs is likely to be an important research area in coming years.

174

Chapter 6

Conclusions and Future Work

175

In this thesis, a methodology for the design and implementation of runtime

adaptation in embedded computing systems was presented. The methodology em-

ploys compact, system-level models based on Markov Decision Processes (MDPs) to

generate control policies that optimize the required embedded computing tasks in

terms of relevant, multidimensional design optimization metrics. Through simula-

tions and implementations of case studies, the methodology was explored in several

applications areas.

In Chapter 2, the methodology was applied to reconfigure a digital channelizer,

and the results were shown to outperform the state-of-the-art in various metrics.

One major aspect of the work in this chapter is that the channelization requests

were treated as being generated externally, and the reconfigurable channelizer was

only a subsystem tasked with responding to those requests. An interesting area

for future research is in the incorporation of the runtime adaptation methodology

to the upper layers as well, effectively creating an adaptive cognitive radio system.

In that case, the channelization requests would be generated by the runtime adap-

tation framework in response to higher level application goals such as maintaining

communications throughput in response to changing interference, as one example.

Surely, various new challenges would arise in that effort and those would be

interesting areas for future research. Specifically, it can be anticipated that although

the state representation used to encode the channelization requests (a bit vector,

with one bit for each channel) worked well for the 8 channel case, the representation

would likely be problematic for systems with larger numbers of channels. With 8

channels, the number of states required to represent the channelization request is

176

256, which is manageable in our design. However, for 16 or 24 channel systems, the

size of the state space becomes a much more complex issue. It should be noted that

this challenge is not remedied by the factorization techniques presented in Chapter 2,

which were effective at keeping the state space small due to growth from other types

of complexity. It is possible that a different encoding method can be used if some

application-level context is incorporated. Progress in this direction may be possible

with further analysis of a specific cognitive radio case study.

Additionally, the penalty costs of reconfiguration were modeled as being due

to time spent reconfiguring the processing hardware, or channelization requests that

were missed. If a full cognitive radio application were considered, there would likely

be application level goals that could be used in the rewards, such as an end-to-end

communications Quality of Service (QoS) objective, instead of or in addition to

energy efficiency. In this form of multi-layered runtime adaptation, it is anticipated

that some form of control and reconfiguration hierarchy would be beneficial.

In Chapter 3, an MDP solver was developed that solves certain MDPs faster

than the state-of-the-art on embedded processors containing GPUs. The solver made

use of the sparsity typically found in an MDP’s transition matrices, and utilized effi-

cient sparse linear algebra operations to achieve the fast runtime. This advancement

was possible in part because of the relatively recent availability of general purpose

programmable GPUs on embedded SoCs, compared with the multiple decades of

MDP solver research on CPUs (without GPUs). Additionally, it was found that the

Value Iteration (VI) algorithm is very well suited for acceleration with the parallel

processing capabilities that GPUs can provide.

177

There are several directions for future work in this area. For example, an

immediate question that arises is how well the acceleration scales for much larger

MDPs. Certainly various optimization opportunities will arise when solving MDPs

whose state spaces are much larger than the number of parallel threads that can be

spawned on a GPU.

Aside from the intricacies that GPUs bring, there is much work left to do

on periodic solving of time-varying MDPs. Specifically, in all cases in this thesis

whenever an MDP was solved, it was solved without any prior knowledge of the

solution. In other words, an MDP was solved to produce a policy; then the MDP was

modified slightly (due to tracking of time-varying system or environmental factors);

and then that second MDP was solved to produce a second policy, without any

knowledge of anything produced by the first MDP solver invocation.

In the experimental observations, there was typically a high similarity or cor-

relation between the solver’s inputs from run to run. Correspondingly, it was also

typical to see a level of similarity or correlation between the outputs. Given these

trends, it is reasonable to hypothesize that some amount of the solver computations

on subsequent runs are redundant in some way, and that there may be efficiency

improvements in the solver algorithm that can be achieved if this redundancy could

be understood and exploited — for example, if some artifact or intermediate calcu-

lations of the previous invocation are carried forward to the subsequent invocation.

The VI algorithm involves starting from a random choice of the Value Function

and iterating towards a final solution. Typically, the starting point used was all

zeros for consistency and to aid in debugging. However, it has been shown that

178

the algorithm converges for any starting point. One approach that was tried was

starting from the previous solution rather than from all zeros or a random point. In

some preliminary experiments on this, the result was a faster solver time in some

cases, and a slower solver time in other cases, and it was not clear why. Perhaps a

starting point can be chosen more intelligently based on how the MDP has changed

and some other aspects of the previous run’s artifacts.

Another possible area for future work related to Chapter 3 is in the exploration

of other solver algorithms altogether. This thesis has focused entirely on the VI

algorithm, however there are other algorithms that have proved popular in the past,

most notably Policy Iteration (PI) and Modified Policy Iteration (MPI). It remains

to be seen whether these other algorithms can also benefit from being implemented

in GPUs in the way that VI does.

Another aspect to consider is that these three algorithms (VI, PI, MPI) are

known as exact solvers of MDPs. When viewed from an analytical standpoint, they

converge on a provably optimal solution to an MDP. However, there also exists a

class of MDP solvers known as approximate solvers, typically found in POMDP

contexts. It remains to be seen whether the computational advantages of produc-

ing an approximate solution outweighs the disadvantages of producing a possibly

suboptimal control solution in the context of embedded, runtime adaptation frame-

works. The exploration of this trade-off on different applications and case studies

could provide examples of important overall system improvements.

In Chapter 4, a runtime adaptation framework named Structured Learning was

proposed and analyzed in the context of an LTE-M connected system. Simulations

179

of control performance were compared to Q-Learning, a competing technique that

has very recently been popularized in the research community. Additionally, the

competing frameworks were implemented on a resource-constrained MCU and their

memory and computational requirements were compared objectively.

There are various aspects of the work in Chapter 4 that generated new direc-

tions for future research. In the case study that was analyzed, the MCU contained

a very simple application that generated packets in an idealized way. It would be

interesting to dissect a relevant consumer product available today, and observe its

traffic pattern. Then, attention could be paid as to how well the runtime adapta-

tion framework could perform on that specific traffic pattern. If shortcomings are

identified, then exploration of how to modify the runtime framework for that traf-

fic pattern would be important. In addition to improving the performance of the

given consumer application, this kind of study could provide useful insight into how

methods proposed in this thesis can be further streamlined in application-specific

ways.

Additionally, the work in Chapter 4 focused on adaptation of the LTE-M

connection when the event of establishing the cellular modem’s connection was time-

varying. However, there are other parameters that would likely also be time-varying

— for example, the transmit power, transmission latency and overall data rate.

Modeling these additional parameters and re-defining the adaptation rewards in

order to take them into account would be an interesting effort that is likely to yield

new advances.

Another direction for future work stems from the fact that this thesis only

180

compared Structured Learning to a basic form of Q-Learning. However, Q-Learning

is a technique that exists in the larger area of Reinforcement Learning (RL), and

that is a rapidly evolving area of research at this moment. It is anticipated that

comparisons between Structured Learning and emerging advancements in RL in the

context of embedded systems would prove insightful. As a relevant example, RL has

found recent success [81] in beating the world champion of the board game Go by

approximating the MDP Value Function using a deep neural network (DNN). While

these techniques have traditionally been implemented on large computing systems

with vast computing resources, recent advancements [82] have made it possible to

implement DNNs on smaller and smaller computing systems, including extremely

resource constrained MCUs. As a result, an interesting area for future research

is in the design of runtime adaptation frameworks using DNN-based RL for highly

resource constrained embedded computing systems, and how these techniques would

compare to the Structured Learning techniques proposed in this thesis.

In Chapter 5, the GEMBench platform was created to aid in the development

and exploration of techniques on embedded computing systems that use MDPs. The

platform consists of software written throughout the work performed for this thesis

research, targeted at a popular family of off-the-shelf NVIDIA embedded computing

development boards.

The software has been released to the academic community in an open source

format with a permissive license that allows it to be generally used by any researchers

working in this area. The aim is to accelerate future developments by lowering the

amount of time required to build critical software infrastructure, namely generat-

181

ing example MDPs, writing parsers to convert from one format to another, and

implementing alternative solvers to compare policy outputs and computational re-

quirements.

Several directions for future work remain in this area. Specifically, it would

be good to add support for at least one more format for MDP files (.spudd). This

file format is commonly found in other research efforts, and an interesting set of

example MDPs could be immediately be added to the GEMBench platform.

Additionally, since the MDP state transition matrices are already located on

the platform, it is possible to create a simulator that creates a model of a system

and performs Monte Carlo analyses of the discrete time trajectories resulting from

those state transition matrices. This would allow different policies to be evaluated in

terms of the resulting closed loop dynamics. This capability currently does not exist

on GEMBench. Instead, experiments requiring such capability were performed in

MATLAB throughout the research involved in this thesis. The advantage of having

this capability on GEMBench is that it would be easy to share the Markovian

simulator with other researchers. It should be noted that this type of simulator

could be used for exploring RL-based techniques, such as Q-Learning, as well.

MDPs are not always the most adequate modeling framework for every possible

use of runtime adaptation. There are cases where they are highly effective, and cases

where they are not. Various factors affecting the suitability of MDPs to specific

applications were detailed in Section 3.4. For applications where the use of MDPs is

advantageous, collaborative partnerships between researchers on common platforms

like GEMBench can help to accelerate progress. As research and technology advance,

182

applications will continue to arise that require solving bigger and more complicated

runtime adaptation challenges. This will be aided partly by technology trends that

result in faster and more efficient computing hardware. However, there is also

an equally important category of continual advancement that must be made in

algorithms and modeling techniques.

183

Bibliography

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for
system-level dynamic power management,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, June 2000.

[2] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management in en-
ergy harvesting sensor networks,” ACM Transactions on Embedded Computing
Systems, vol. 6, no. 4, 2007.

[3] C. Hsieh, F. Samie, M. S. Srouji, M. Wang, Z. Wang, and J. Henkel, “Hard-
ware/software co-design for a wireless sensor network platform,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), International
Conference on, New Delhi, India, Oct 2014, pp. 1–10.

[4] Q. Liu et al., “Power-adaptive computing system design for solar-energy-
powered embedded systems,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 23, no. 8, pp. 1402–1414, 2015.

[5] C. Moser, L. Thiele, D. Brunelli, and L. Benini, “Adaptive power management
in energy harvesting systems,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, 2007, pp. 1–6.

[6] C. Moser, L. Thiele, D. Brunelli and L. Benini, “Adaptive power management
for environmentally powered systems,” IEEE Transactions on Computers, vol.
59, no. 4, pp. 478–491, April 2010.

[7] L. Esterle and B. Rinner, “An architecture for self -aware IoT applications,”
in 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), April 2018, pp. 6588–6592.

[8] Nikil Dutt, Axel Jantsch, and Santanu Sarma, “Toward smart embedded sys-
tems: A self-aware system-on-chip perspective,” ACM Trans. Embed. Comput.
Syst., vol. 15, no. 2, pp. 22:1–22:27, Feb. 2016.

[9] P. R. Lewis, M. Platzner, B. Rinner, J. Torresen, and X. Yao, Self-aware
Computing Systems: An Engineering Approach, Springer, 2016.

[10] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Dorling Kindersley,
first edition, 1993.

[11] S. J. Darak, A. P. Vinod, R. Mahesh, and E. M-K. Lai, “A reconfigurable filter
bank for uniform and non-uniform channelization in multi-standard wireless
communication receivers,” in Proceedings of the International Conference on
Telecommunications, 2010, pp. 951–956.

184

[12] C. Xu, W. Liang, and H. Yu, “Green-energy-powered cognitive radio networks:
Joint time and power allocation,” ACM Trans. Embed. Comput. Syst., vol. 17,
no. 1, pp. 13:1–13:18, Aug. 2017.

[13] A. Sapio, M. Wolf, and S. S. Bhattacharyya, “Compact modeling and manage-
ment of reconfiguration in digital channelizer implementation,” in Proceedings
of the IEEE Global Conference on Signal and Information Processing, Wash-
ington, D.C., December 2016, pp. 595–599.

[14] A. Sapio, L. Li, J. Wu, M. Wolf, and S. S. Bhattacharyya, “Reconfigurable
digital channelizer design using factored Markov decision processes,” Journal
of Signal Processing Systems, December 2017.

[15] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting structure in policy
construction,” in Proceedings of the International Joint Conference on Artificial
Intelligence, 1995, pp. 1104–1111.

[16] O. Sigaud and O. Buffet, Eds., Markov Decision Processes in Artificial Intelli-
gence, Wiley, 2010.

[17] C. Lee, W. Chen, S. S. Bhattacharyya, and T. Lee, “Dynamic, data-driven
spectrum management in cognitive small cell networks,” in 8th International
Conference on Signal Processing and Communication Systems (ICSPCS), Gold
Coast, Australia, Dec 2014, pp. 15–17.

[18] J. Hu, Z. Zuo, Z. Huang, and Z. Dong, “Dynamic digital channelizer based on
spectrum sensing,” PLOS One, August 2015.

[19] D. Zhou, “A review of polyphase filter banks and their application,” Tech. Rep.
AFRL-IF-RS-TR-2006-277, Air Force Research Laboratory, Rome, NY USA,
September 2006.

[20] F. Harris, C. Dick, X. Chen, and E. Venosa, “Wideband 160-channel polyphase
filter bank cable TV channeliser,” IET Signal Processing, vol. 5, no. 4, pp. 325–
332, 2011.

[21] F. Harris, E. Venosa, X. Chen, C. Dick, and B. Adams, “A novel and efficient
multi-resolution channelizer for software defined radio,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, 2013,
pp. 2649–2653.

[22] S. Dhabu, Smitha K. G., and A. P. Vinod, “A low complexity reconfigurable
channel filter based on decimation, interpolation and frequency response mask-
ing,” in IEEE International Conference on Acoustics Speech and Signal Pro-
cessing (ICASSP), Vancouver, BC, Canada, May 2013, pp. 5583–5587.

[23] A. Edison and T. G. James, “Reconfigurable perfect reconstruction filter bank
channelizer for software defined radio,” in IEEE India Conference (INDICON),
Kochi, India, Dec 2012, pp. 1138–1141.

185

[24] W. A. Abu-Al-Saud and G. L. Stuber, “Efficient wideband channelizer for
software radio systems using modulated PR filterbanks,” IEEE Transactions
on Signal Processing, vol. 52, no. 10, pp. 2807–2820, 2004.

[25] Z. Chang, A. P. Vinod, and P. K. Meher, “Reconfigurable architectures for low
complexity software radio channelizers using hybrid filter banks,” in Proceedings
of the IEEE Singapore International Conference on Communication Systems,
2006, pp. 1–5.

[26] S. J. Darak, S. K. P. Gopi, V. A. Prasad, and E. Lai, “Low-complexity reconfig-
urable fast filter bank for multi-standard wireless receivers,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 5, pp. 1202–1206,
2014.

[27] P. K. Devi and R. S Bhuvaneswaran, “Flexible reconfigurable architecture for
SDR receiver,” in IEEE Malaysia International Conference on Communications
(MICC), Kuala Lumpur, Nov 2013, pp. 265–270.

[28] Y. Wei, X. Wang, F. Guo, G. Hogan, and M. Collier, “Energy saving local con-
trol policy for green reconfigurable routers,” in IEEE International Conference
on Communications, 2015, pp. 221–225.

[29] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Pro-
cessing, Prentice Hall, second edition, 1999.

[30] M. Xu, H. Li, and X. Gan, “Energy efficient sequential sensing for wideband
multi-channel cognitive network,” in IEEE International Conference on Com-
munications, 2011, pp. 1–5.

[31] B. Farzad, “Variable bandwidth polyphase filter banks,” M.S. thesis, San Diego
State University, 2014.

[32] B. E. Bjornson, E. A. Jorswieck, M. Debbah, and B. Ottersten, “Multiobjective
signal processing optimization: The way to balance conflicting metrics in 5G
systems,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 14–23, 2014.

[33] P. L. Fackler, “MDPSOLVE a MATLAB toolbox for solving Markov deci-
sion problems with dynamic programming — user’s guide,” Tech. Rep., North
Carolina State University, January 2011.

[34] L. Benini, A. Bogliolo, A. Paleologo, and G. De Micheli, “Policy optimiza-
tion for dynamic power management,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 813–833, June
1999.

[35] S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, Pearson,
third edition, 2009.

186

[36] C. M. Grinstead and J. L. Snell, Introduction to Probability, American Math-
ematical Society, second edition, 1991.

[37] Andrew Y. Ng, Shaping and Policy Search in Reinforcement Learning, Ph.D.
thesis, University of California, Berkeley, 2003.

[38] A. Sapio, S. Bhattacharyya, and M. Wolf, “Efficient solving of Markov deci-
sion processes on GPUs using parallelized sparse matrices,” in Proceedings of
the Conference on Design and Architectures for Signal and Image Processing
(DASIP), Oct 2018.

[39] A. Munir and A. Gordon-Ross, “An MDP-based application oriented opti-
mal policy for wireless sensor networks,” in Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis, 2009, pp.
183–192.

[40] A. Singh, A. Prakash, K. Basireddy, G. Merrett, and B. Al-Hashimi, “Energy-
efficient run-time mapping and thread partitioning of concurrent OpenCL ap-
plications on cpu-gpu mpsocs,” ACM Trans. Embed. Comput. Syst., vol. 16,
no. 5s, pp. 147:1–147:22, Sept. 2017.

[41] S. Wang, G. Zhong, and T. Mitra, “CGPredict: Embedded GPU performance
estimation from single-threaded applications,” ACM Trans. Embed. Comput.
Syst., vol. 16, no. 5s, pp. 146:1–146:22, Sept. 2017.

[42] S. Ruiz and B. Hernandez, “A parallel solver for Markov decision process
in crows simulations,” in Artificial Intelligence (MICAI), Fourteenth Mexican
International Conference on, Mexico, Octoober 2015, pp. 107–116.

[43] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, “Sparse matrix-
vector multiplication on GPGPUs,” ACM Trans. Math. Softw., vol. 43, no. 4,
pp. 30:1–30:49, Jan. 2017.

[44] Y. Debizet, G. Lallement, F. Abouzeid, P. Roche, and J. Autran, “Q-learning-
based adaptive power management for IoT system-on-chips with embedded
power states,” in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), May 2018, pp. 1–5.

[45] E. Jung, F. Maker, T. L. Cheung, X. Liu, and V. Akella, “Markov decision
process (MDP) framework for software power optimization using call profiles
on mobile phones,” Journal of Design Automation for Embedded Systems, vol.
14, no. 2, pp. 131–159, 2010.

[46] Z. N. Sunberg, M. J. Kochenderfer, and M. Pavone, “Optimized and trusted
collision avoidance for unmanned aerial vehicles using approximate dynamic
programming,” in 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2016, pp. 1455–1461.

187

[47] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “SPUDD: stochastic planning
using decision diagrams,” in Proceedings of the Conference on Uncertainty in
Artificial Intelligence, 1999, pp. 279–288.

[48] A. Jonsson and A. Barto, “Causal graph based decomposition of factored
MDPs,” Journal of Machine Learning Research, vol. 7, pp. 2259–2301, 2006.

[49] T. Dean and S. Lin, “Decomposition techniques for planning in stochastic do-
mains,” in Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, 1995, IJCAI’95, pp. 1121–1127.

[50] A. Somani, N. Ye, D. Hsu, and W. Sun Lee, “DESPOT: online POMDP plan-
ning with regularization,” Advances in Neural Information Processing Systems,
vol. 58, 01 2013.

[51] Anton Wijs, Joost-Pieter Katoen, and Dragan Bošnački, “Efficient GPU algo-
rithms for parallel decomposition of graphs into strongly connected and max-
imal end components,” Formal Methods in System Design, vol. 48, no. 3, pp.
274–300, Jun 2016.

[52] R. Bellman and E. Lee, “History and development of dynamic programming,”
IEEE Control Systems Magazine, vol. 4, no. 4, pp. 24–28, November 1984.

[53] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, John Wiley and Sons, Inc., first edition, 2005.

[54] S. Shresthamali, M. Kondo, and H. Nakamura, “Adaptive power management
in solar energy harvesting sensor node using reinforcement learning,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 181:1–181:21, Sept. 2017.

[55] P. Wägemann, T. Distler, H. Janker, P. Raffeck, V. Sieh, and W. SchröDer-
Preikschat, “Operating energy-neutral real-time systems,” ACM Trans. Embed.
Comput. Syst., vol. 17, no. 1, pp. 11:1–11:25, Aug. 2017.

[56] O. Brock, J. Trinkle, and F. Ramos, SARSOP: Efficient Point-Based POMDP
Planning by Approximating Optimally Reachable Belief Spaces, MIT Press,
2009.

[57] T. Smith and R. Simmons, “Point-based POMDP algorithms: Improved analy-
sis and implementation,” in Proc. of the Conference on Uncertainty in Artificial
Intelligence, July 2005.

[58] R. Sutton and A. Barto, Reinforcement Learning: an Introduction, MIT Press,
first edition, 1998.

[59] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing exploration
strategies for Q-Learning in random stochastic mazes,” in Proceedings of the
IEEE Symposium Series on Computational Intelligence (SSCI), Dec 2016, pp.
1–8.

188

[60] R. C. Hsu, C. T. Liu, and H. L. Wang, “A reinforcement learning-based ToD
provisioning dynamic power management for sustainable operation of energy
harvesting wireless sensor node,” IEEE Transactions on Emerging Topics in
Computing, vol. 2, no. 2, pp. 181–191, June 2014.

[61] W. Liu, Y. Tan, and Q. Qiu, “Enhanced q-learning algorithm for dynamic
power management with performance constraint,” in Proceedings of the Design,
Automation Test in Europe Conference Exhibition (DATE), March 2010, pp.
602–605.

[62] S. Yue, D. Zhu, Y. Wang, and M. Pedram, “Reinforcement learning based
dynamic power management with a hybrid power supply,” in Proceedings of
the IEEE international Conference on Computer Design (ICCD), Sept 2012,
pp. 81–86.

[63] J. Modayil, A. White, P. M. Pilarski, and R. S. Sutton, “Acquiring a broad
range of empirical knowledge in real time by temporal-difference learning,”
in Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Oct 2012, pp. 1903–1910.

[64] Theodore J. Perkins and Andrew G. Barto, “Lyapunov design for safe rein-
forcement learning,” J. Mach. Learn. Res., vol. 3, pp. 803–832, Mar. 2003.

[65] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh, “A Lyapunov-based approach to safe reinforcement learning,”
in Proceedings of the 32nd International Conference on Neural Information
Processing Systems, USA, 2018, NIPS’18, pp. 8103–8112, Curran Associates
Inc.

[66] S. Dawaliby, A. Bradai, and Y. Pousset, “In depth performance evaluation
of LTE-M for M2M communications,” in Proceedings of the IEEE 12th In-
ternational Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Oct 2016, pp. 1–8.

[67] A. Sapio, R. Tatiefo, S. Bhattacharyya, and M. Wolf, “GEMBench: a platform
for collaborative development of GPU accelerated embedded Markov decision
systems,” in Proceedings of the International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation (SAMOS), Jul 2019.

[68] D. Noer, “Parallelization of the value-iteration algorithm for partially observ-
able markov decision processes,” M.S. thesis, Technical University of Denmark,
2013.

[69] “GEMBench Package,” 2019, https://ece.umd.edu/DSPCAD/projects/csm/
packages/gembench.tar.gz, Visited on March 14, 2019.

[70] A. R. Cassandra, Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes, Ph.D. thesis, Brown University, 1998.

189

[71] Hyeong Seop Sim, Kee-Eung Kim, Jin Hyung Kim, Du-Seong Chang, and
Myoung-Wan Koo, “Symbolic heuristic search value iteration for factored
POMDPs,” in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2008.

[72] Kevin Murphy, “Markov decision process toolbox for MATLAB,” https://

www.cs.ubc.ca/~murphyk/Software/MDP/mdp.html, Accessed: 2019-01-05.

[73] T. Smith, Probabilistic Planning for Robotic Exploration, Ph.D. thesis, Carnegie
Mellon University, 2007.

[74] P. Poupart, Exploiting Structure to Efficiently Solve Large Scale Partially Ob-
servable Markov Decision Processes, Ph.D. thesis, University of Toronto, 2005.

[75] P. Elod, “Vision-based quadcopter navigation for following indoor corridors
and outdoor railways,” M.S. thesis, Tech. Univ. of Cluj-Napoca, 2014.

[76] Diego Maniloff, “libpomdp,” https://www.cs.uic.edu/~dmanilof/code.

html, Accessed: 2019-01-05.

[77] E. Svalorzen, “AI-Toolbox,” https://github.com/Svalorzen/AI-Toolbox,
Accessed: 2019-01-05.

[78] Drew McDermott, PDDL — The Planning Domain Definition Language, Yale
University, 1998.

[79] Hakan L. S. Younes and Michael L. Littman, “PPDDL1.0: the language for
the probabilistic part of ipc-4,” Tech. Rep.

[80] Scott Sanner, “Relational dynamic influence diagram language (RDDL): Lan-
guage description,” 2010.

[81] D. Silver et al., “Mastering the game of Go without human knowledge,” Nature,
vol. 550, pp. 354, Oct 2017.

[82] Liangzhen Lai and Naveen Suda, “Enabling deep learning at the IoT edge,” in
Proceedings of the International Conference on Computer-Aided Design, 2018,
ICCAD ’18.

190

