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Abstract

In this paper, we consider the problem of construtcing reduced complexity controllers for

output feedback nonlinear H1 control. We give su�cient conditions, under which the con-

trollers so obtained, guarantee asymptotic stability of the closed-loop system when there are

no exogenous inputs. The controllers obtained are non-optimal in general. However, in case

optimality holds, we show that these controllers are in fact the certainty equivalence controllers.

1 Introduction

Since, Whittle [5] �rst postulated the minimum stress estimate for the solution of a risk-sensitive
stochastic optimal control problem, it has evolved into the certainty equivalence principle. The latter
states that under appropriate conditions, an optimal output feedback controller can be obtained by
inserting an estimate of the state into the corresponding state feedback law. In general, however the
controller so obtained is non-optimal. The certainty equivalence property is known to hold for linear
systems with a quadratic cost [1]. The recent interest in nonlinear H1 control has led researchers
to examine whether, certainty equivalence could be carried over to nonlinear systems. If certainty
equivalence were to hold, it would result in a tremendous reduction in the complexity of the problem.
In a recent paper [4], su�cient conditions were given for certainty equivalence to hold in terms of
a saddle point condition. Also, in [2], a simple example is given to demonstrate the non-optimal
nature of the certainty equivalence controller.

In this preliminary paper, we will be considering the in�nite time case, and will present su�ciency
conditions for a reduced complexity controller to exist. These conditions apply for both optimal
and non-optimal policies. In general, obtaining an optimal solution to the output feedback problem,
involves solving an in�nite dimensional dynamic programming equation [3]. Hence, one may be
satis�ed with a reduced complexity non-optimal policy, which guarantees asymptotic stability of the
nominal closed-loop system. In the special case, we show that the policies so obtained are certainty
equivalence policies. Furthermore, in doing so, we will be able to give an equivalent su�ciency
condition for certainty equivalence which may be more tractable than the one given in [4]. We will be
interested in establishing dissipativity results, since these guarantee under detectability assumptions,
asymptotic stability of the closed-loop system when exogenous inputs are zero.

�This work was supported by the National Science Foundation Engineering Research Centers Program: NSFD

CDR 8803012
yMartin Marietta Chair in Systems Engineering
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2 Problem Statement

We consider the following the system:

�

8<
:

xk+1 = f(xk; uk; wk) ; x0 2 R
n

yk+1 = g(xk; uk; wk)
zk+1 = l(xk; uk; wk) ; k = 0; 1; 2; : : :

where, xk 2 R
n are the states, yk 2 R

t are the measurements, uk 2 U � Rm are the controls,
zk 2 R

q are the regulated outputs, and wk 2 R
r are the exogenous inputs. Furthermore, we assume

that 0 is an equilibrium point of �, and U is compact. We denote the set of feasible policies as O,
i.e. if u 2 O, then uk = u(y1;k; u0;k�1). We also assume that f , g, and l are continuous. The output
feedback problem is, given  > 0, �nd a control policy u� 2 O, so as to ensure that there exists a
�nite �u

�

(x) � 0, �u
�

(0) = 0, such that

sup
w2l2([0;1);R

r
)

sup
x02R

n

fp0(x0) +
1X
i=0

j zi+1 j
2 �2 j wi j

2g � sup
x2R

n

fp0(x) + �u
�

(x)g:

where, p0 2 E , with E de�ned as

E
4
= fp 2 C(Rn) j p(x) � R for some �nite R � 0g

We also assume that for such u 2 O, �u is z-detectable. Furthermore, de�ne the following sup
pairing

(p; q)
4
= sup

x2R
n

fp(x) + q(x)g

An information state based solution was recently obtained in [3]. The information state is de�ned
by the following recursion

pk+1 = H(pk; uk; yk+1); k = 0; 1; : : :
p0 2 E

where

H(pk; uk; yk+1)(x)
4
=

sup
�2R

n

fpk(�) + sup
w2R

r

(j l(�; uk; w) j
2 �2 j w j2j x = f(�; uk; w); yk+1 = g(�; uk; w))g:

We introduce the function �x 2 E , �x : R
n ! R

�

�x(�)
4
=

�
0 if � = x

�1 else

The problem is solved via dynamic programming, where the upper value function satis�es

M(p) = inf
u2U

sup
y2R

t

fM(H(p; u; y))g (1)

for all p 2 E , with M(p) � (p; 0), and M(�0) = 0. In particular, M(p) is the least possible worst
case cost to go, given p0 = p. We call M , the upper value function of the output feedback game.
Then, we have the following result.
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Theorem 1 ([3]) Let u� 2 O, be such that u�k = �u(pk), where �u(pk) achieves the minimum in (1)
for p = pk. Then u� 2 O is an optimal policy for the output feedback problem.

Now, assuming u(p), is a non-optimal policy, then there exists a functionW : E ! R, W (p) � (p; 0),
and W (�x) = 0, and W satis�es for all p 2 E

W (p) � sup
y2R

t

W (H(p; u(p); y))

We call such a W , a storage function for the output feedback policy u.

In the well known, state feedback case, we denote by V the upper value function of the state feedback
game. Furthermore, V � 0, V (0) = 0, and V satis�es

V (x) = inf
u2U

sup
w2R

n

fj l(x; u; w) j2 �2 j w j2 +V (f(x; u; w))g:

for all x 2 Rn. The policy uF , such that uF (x) = u�, where u� 2 U achieves the in�mum in the
above equation is an optimal state feedback policy. For non-optimal state feedback policies u, there
exists a U : Rn ! R, with U � 0, U(0) = 0, and satis�es

U(x) � sup
w2R

n

fj l(x; u(x); w) j2 �2 j w j2 +U(f(x; u(x); w))g:

for all x 2 Rn. We call such a U a storage function for the state feedback policy u.

>From now on, we de�ne I � O, to be the set of output feedback policies which have the separated
structure, i.e. depend only on the information state pk. We call such policies, information state
feedback policies.

3 Reduced Complexity Controllers

The dynamic programming equation (1), is in�nite dimensional in general. Hence, this motivates
us to search for reduced complexity control policies, which preserve the stability properties of the
closed-loop system.

For a given x,� 2 Rn, and u 2 U , we de�ne


(x; u; �)
4
= fw 2 Rr j x = f(�; u; w)g:

Then, we have the following result.

Lemma 1 For any � 2 Rn, u 2 U , and a given function h : Rn �Rr �Rn ! R, we have

sup
x2R

n

sup
w2
(x;u;�)

h(x;w; �) � sup
w2R

r

h(f(�; u; w); w; �)

Proof:
For any � > 0, there exists x� 2 Rn, and w� 2 
(x�; u; �) (i.e. with x� = f(�; u; w�)) such that

sup
x2R

n

sup
w2
(x;u;�)

h(x;w; �) < h(x�; w�; �) + �

= h(f(�; u; w�); w�; �) + �

� sup
w2R

r

h(f(�; u; w); w; �) + �
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Since, � > 0 is arbitrary, the result follows.

2

De�ne, JpU : Rn �U ! R as

J
p
U (x; u)

4
= fp(x) + sup

w2R
r

fj l(x; u; w) j2 �2 j w j2 +U(f(x; u; w))g

We now state a basic result, which will be used repeatedly.

Lemma 2 For any u 2 U , and U : Rn ! R, and pk 2 E,

sup
x2R

n

J
pk
U (x; u) � sup

y2R
t

(H(pk; u; y); U):

Proof:

sup
y2R

t

(pk+1; U) = sup
y2R

t

sup
x2R

n

sup
�2R

n

fpk(�) + sup
w2R

r

(j l(�; u; w) j2 �2 j w j2j x = f(�; u; w);

y = g(�; u; w)) + U(x)g

� sup
x2R

n

sup
�2R

n

fpk(�) + sup
w2R

r

(j l(�; u; w) j2 �2 j w j2j x = f(�; u; w)) + U(x)g

= sup
�2R

n

sup
x2R

n

sup
w2
(�;u;x)

fpk(�)+ j l(�; u; w) j2 �2 j w j2 +U(x)g

� sup
�2R

n

sup
w2R

r

fpk(�)+ j l(�; u; w) j2 �2 j w j2 +U(f(�; u; w))g

= sup
�2R

n

JpU (�; u)

2

We now state the main theorem, which gives a su�cient condition for the existence of dissipative
reduced complexity policies.

Theorem 2 Given U : Rn ! R, U � 0, and U(0) = 0. If for all pk 2 E

(pk; U) � inf
u2U

sup
x2R

n

J
pk
U (x; u)

then û(pk) 2 argmin
u2U sup

x2R
n J

pk
U (x; u), solves the output feedback problem, and the associated

storage function is W (pk) = (pk; U).

Proof:

(pk; U) � inf
u2U

sup
x2R

n

J
pk
U (x; u)

4



= sup
x2R

n

J
pk
U (x; û(pk))

� sup
y2R

t

(H(pk; û(pk); y); U)

Furthermore, (pk; U) � (pk; 0), and (�0; U) = 0. Hence, (pk; U) is a storage function, and û is a
(non-optimal) solution to the output feedback problem.

2

Remark: We could have considered any ûk such that

sup
x2R

n

J
pk
U (x; u(x)) � sup

x2R
n

J
pk
U (x; ûk):

Corollary 1 (Certainty Equivalence) Given U � V , the upper value function of the state feed-
back game, and the optimal state feedback policy uF . If for all pk 2 E

(pk; V ) = inf
u2U

sup
x2R

n

J
pk
V (x; u) (2)

then u(pk) = uF (x̂), where x̂ 2 argmax
x2R

nfpk(x) + V (x)g, is an optimal control policy for the
output feedback problem.

Proof:
Clearly (2) implies that

sup
x2R

n

J
pk
V (x; uF (x)) = sup

x2R
n

inf
u2U

J
pk
V (x; u) = inf

u2U
sup

x2R
n

J
pk
V (x; u)

Hence, a saddle point exists, and so for any x̂ 2 argmax
x2R

n(pk(x) + V (x)), and û = uF (x̂),

(pk; V ) = J
pk
V (x̂; û) = sup

x2R
n

J
pk
V (x; û) � sup

y2R
t

(H(pk; û; y); V )

Hence, W (pk) = (pk; V ) is a storage function, and W (�x) = V (x), the optimal cost of the state
feedback game. Hence, the policy is optimal for the output feedback game.

2

Remark: It is su�cient that the conditions in Theorem 2 and Corollary 1 hold only for all pk,
k = 0; 1; : : : . If this is the case, then U need not be a storage function for the state feedback
problem. It is only when we need the conditions to hold for pk 2 f�x j x 2 R

ng that U is forced to
be a storage function.

In general, conditions for the optimal policy maybe di�cult to establish. However, there may
exist non-optimal state feedback policies such that their storage functions satisfy the conditions
of Theorem 2. In that case, using such non-optimal policies will guarantee that the system is
asymptotically stable whenever the exogenous inputs are zero.
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We now characterize certainty equivalence in terms of the upper value function of the output feedback
game. In [4],[2] it is shown that certainty equivalence holds if, for all k � 0

M(pk) = (pk; V ) (3)

Lemma 3 Let �u 2 I, with W its storage function. Then

W (pk) � inf
u2U

sup
x2R

n

J
pk
U (x; u); k = 0; 1; : : :

where, U(x)
4
=W (�x).

Proof:

W (pk) � sup
x2R

n

fpk(x) + sup
w2l2([0;1);R

r
)

1X
i=k

j zi+1 j
2 �2 j wi j

2j xk = xg

= sup
x2R

n

fpk(x) + sup
wk2R

r

(j l(x; �u(pk); wk) j
2 �2 j wk j

2 +

1X
i=k+1

j zi+1 j
2 �2 j wi j

2j xk+1 = f(x; �u(pk); wk))g

= sup
x2R

n

fpk(x) + sup
wk2R

r

(j l(x; �u(pk); wk) j
2 �2 j wk j

2 + sup
�2R

n

f�x(�) +

1X
i=k+1

j zi+1 j
2 �2 j wi j

2j xk+1 = f(�;�(pk); wk))g

� inf
u2U

sup
x2R

n

fpk(x) + sup
w2R

r

(j l(x; �u(pk); w) j
2 �2 j w j2 +U(f(x; �u(pk); w)))g

= inf
u2U

sup
x2R

n

J
pk
U (x; u)

2

Theorem 3 (Unicity) Let M be the upper value function of the output feedback game. If there
exists a function U : Rn ! R, such that M(pk) = (pk; U), for all pk 2 E, then U � V , the upper
value function of the state feedback game.

Proof:
We have

(pk; U) =M(pk) � inf
u2U

sup
x2R

n

J
pk
U (x; u):

Let û(pk) 2 argmin
u2U sup

x2R
n J

pk
U (x; u). Then

(pk; U) � sup
x2R

n

J
pk
U (x; û(pk))

� sup
y2R

t

(H(pk; û(pk); y); U)

= sup
y2R

t

M(H(pk; û(pk); y))
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Hence, û is an optimal policy since (p0; U) =M(p0);8 po 2 E . Thus,

M(pk) = sup
y2R

t

M(H(pk; û(pk); y))

which implies that
(pk; U) = inf

u2U
sup

x2R
n

J
pk
U (x; u):

Setting, pk = �x, we obtain

U(x) = inf
u2U

sup
w2R

r

fj l(x; u; w) j2 �2 j w j2 +U(f(x; u; w))g:

Hence, U � V .

2

Corollary 2 If there exists a pk such that M(pk) 6= (pk; V ), then there exists no function Y : Rn !
R, such that M(p) = (p; Y ) for all p 2 E.

Corollary 3 Let W be a storage function for an (non-optimal) information state feedback policy
�u 2 I, and let W (pk) = (pk; U), k � 0. Then û(pk) 2 argmin

u2U sup
x2R

n J
pk
U (x; u) solves the

output feedback problem with the storage function W (p). Furthermore, is we insist that W (�x) =
(�x; U), 8 x 2 Rn, then U is a storage function for a (non-optimal) state feedback policy. Also, if
W � M , the upper value function of the output feedback game, then the controller is a certainty
equivalence controller.

Remark: It is clear from the proof of Theorem 3, that if (3) holds, then so does (2). However, (2)
is a more tractable condition, since it does not involve the upper value function M , which is what
we are trying to avoid having to compute in the �rst place.

4 Conclusion

In this preliminary paper, we have identi�ed a strategy for generating reduced complexity output
feedback policies. Su�ciency conditions have been stated, which guarantee asymptotic stability of
the closed-loop system, in the absence of any exogenous inputs (w � 0). In the optimal case, it
is observed that the controller generated by such strategies reduces to the certainty equivalence
controller.

References

[1] T. Basar and P. Bernhard. H1-optimal control and related minimax design problems: A dynamic
game approach. Birkhauser, Boston, 1991.

[2] M.R. James. On the certainty equivalence principle for partially observed dynamic games. IEEE
Transactions on Automatic Control, 39(11):2321{2324, 1994.

7



[3] M.R. James and J.S. Baras. Robust H1 output feedback control of nonlinear systems. IEEE
Transactions on Automatic Control, 40(6):1007{1017, 1995.

[4] M.R. James, J.S. Baras, and R.J. Elliott. Risk-sensitive control and dynamic games for partially
observed discrete-time nonlinear systems. IEEE Transactions on Automatic Control, 39(4):780{
792, 1994.

[5] P. Whittle. Risk-sensitive linear/quadratic/gaussian control. Adv. Appl. Prob., 13:764{777, 1981.

8


