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This dissertation represents a three-pronged approach for evaluating ecosystem-

level changes in the Chukchi Sea: 1) evaluation of uncertainties in field 

measurements of absorption 2) direct measurements of phytoplankton taxonomy and 

the community’s interaction with the environment and 3) apply existing and new 

remote sensing tools to measure ecosystem-level changes over large spatio-temporal 

scales. The first and final chapters provide context for the dissertation and 

conclusions. The second chapter quantifies the magnitude of uncertainty within 

multiple methods for measuring particle absorption. The light field exiting the surface 

ocean is measured by satellite instruments as ocean color and is impacted by water 

column absorption. Biogeochemically-relevant products, such as phytoplankton and 

particle absorption are derived from the light field using algorithms. Therefore, 

accurate measurements of absorption are critical to algorithm development and 

validation. I employed a multi-method approach to estimate the precision of 

measuring optical density of particles on a filter pad using two common 

spectrophotometric methods, and assessed the uncertainty of the computational 

techniques for estimating ap. The uncertainty ranged from 7.48%-119%. Values of ap 

at 555 nm and 670 nm exhibited the highest values of uncertainty. Poor performance 

of modeled ap compared to measured ap suggests the uncertainties are propagated into 

bio-optical algorithms. 

The third chapter investigates the consequences of earlier seasonal sea ice retreat 

and a longer sea-ice-free season on phytoplankton community composition. The 

timing of sea ice retreat, light availability and sea surface stratification largely control 

the phytoplankton community composition in the Chukchi Sea. This region is 



  

experiencing a significant warming trend, decrease in sea ice cover, and a 

documented decline in annual sea ice persistence and thickness over the past several 

decades. I applied multivariate statistical techniques to elucidate the mechanisms that 

relate environmental variables to phytoplankton community composition in the 

Chukchi Sea using data collected during a single field campaign in the summer of 

2011. Three phytoplankton groups emerged that were correlated with sea ice, sea 

surface temperature, nutrients, salinity and light.  

The fourth chapter evaluates a new remote sensing tool for its utility to trace 

trends in ocean color over the summer months, 2003-2018, in the Chukchi Sea. The 

apparent visible wavelength reduces an ocean color spectrum to one number that 

represents the apparent color of the water. Median trend analysis of apparent visible 

wavelength and Chlorophyll a indicated that an ecosystem-level change in 

phytoplankton and nonalgal particles has occurred, correlated with the loss of sea ice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

AN EVALUATION OF METHODS FOR MEASURING PHYTOPLANKTON 

AND THE ECOSYSTEM STATUS IN THE CHUKCHI SEA 

 

 

 

by 

 

 

Aimee Renee Neeley 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2020 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Dr. Lora A. Harris, Chair 

Dr. Raleigh Hood 

Dr. Michael Wilberg 

Dr. Jacqueline Grebmeier 

Dr. Karen Frey 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Aimee Renee Neeley 

2020 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

Preface 

The following dissertation represents my passion for the Arctic. I first visited 

the Arctic on the Sir Wilfred Laurier, traveling from Dutch Harbor Alaska to Barrow, 

Alaska in 2002. I had never been on a ship before and let’s just say I was quite 

spoiled. However, I was seasick for the first day or so on the calmest water you can 

imagine, which, in looking back, is slightly embarrassing. But this trip really inspired 

my passion for field work and the Arctic. In my years during and after my master’s 

program, I have visited the Arctic one other time and the Antarctic three times, some 

of the most beautiful places I have ever seen. As such, I dedicated my PhD to 

studying the Arctic. 

In this dissertation I evaluate the utility of remote sensing and statistical tools 

to measure phytoplankton community structure and ecosystem status in the Chukchi 

Sea. With the continued warming and loss of sea ice in the Arctic we expect to 

observe, and are observing, shifts in ecosystem dynamics. Animals are moving from 

one part of the Chukchi Sea or Bearing Sea to another to find more favorable 

conditions or to find another source of food. Phytoplankton blooms are occurring 

earlier in the season and the observation of a secondary fall bloom all indicate that the 

‘status quo’ of the Arctic seasonal pattern may no longer exist. Therefore, we must 

utilize all available tools, especially remote sensing, to understand the changes and 

their future repercussions, which we demonstrate in this dissertation. 
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Foreword 
 

Contained within this dissertation are three research chapters. Chapter 1 

provides introductory material to set the stage for Chapters 2-4. I have published 

Chapters 2 and 3 in peer-reviewed journals as first author with one or two of my 

committee members as co-authors. Chapter 4 represents a collaboration with a 

committee member and a colleague that will be submitted for publication after 

completion and defense of this dissertation. Chapter 5 represents concluding 

comments on the entirety of this dissertation. Citations for the two published papers 

are listed below. 

Neeley, A. R., Freeman, S. A., & Harris, L. A. (2015). Multi-method approach to 

quantify uncertainties in the measurements of light absorption by particles. Optics 

Express, 23(24), 31043-31058. 

 

Neeley, A. R., Harris, L. A., & Frey, K. E. (2018). Unraveling Phytoplankton 

Community Dynamics in the Northern Chukchi Sea Under Sea‐Ice‐Covered and 

Sea‐Ice‐Free Conditions. Geophysical Research Letters, 45(15), 7663-7671. 
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Chapter 1: Summary of the Chukchi Sea ecosystem and 

proposed measurements for monitoring climate change and 

ecosystem response 

1.1 An introduction to the Chukchi Sea region 

The Chukchi Sea is a shallow (~50 m) and dynamic sea that lies between the 

Pacific and Arctic Oceans (Figure 1.1). This region experiences extreme air 

temperature variations year-round, with sea ice cover and darkness dominating during 

the cold winter months (October - May). During the summer months (June -

September), temperatures are warmer and sea ice retreats northward, exposing the 

surface waters to the atmosphere and warming by the sun. Since ~1980, sea surface 

temperatures and surface air temperatures have been steadily increasing within the 

Pacific Arctic Region (Richter-Menge et al. 2017, Overland et al. 2018). Amidst these 

extreme changes, it is vital to develop a better understanding of implications on the 

physical, chemical and biological properties of this ecosystem. 

The Chukchi Sea region is represented by short food chains and strong 

pelagic-benthic coupling, where sinking carbon from spring and summer 

phytoplankton blooms provides a major food source to the underlying benthic fauna, 

such as bivalves, sea stars and amphipods. Between May and June, the sea ice begins 

its retreat in the Chukchi Sea; nutrient entrainment from winter mixing and increased 

light support high phytoplankton productivity, with average annual productivity 

reaching 184 - 208 g C m-2 (Hill et al. 2018). Some marine mammals, such as 

walruses, gray whales and sea ducks, rely on the benthic organisms as a food source 

as pictured in the conceptual diagram in Figure 1.2 (Grebmeier et al. 2006b, Darnis et 

al. 2012).  
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The Chukchi Sea, like the rest of the Arctic region, is facing an uncertain 

future, exhibiting a significant warming trend and an overall decline in sea ice cover. 

Summertime temperature anomalies have been measured at +2.5 °C across the Pacific 

Arctic Region (Frey et al. 2014). Moreover, the Chukchi Sea is experiencing a decline 

in annual sea ice persistence, or the number of days in a year with sea ice presence, 

(>30 days/decade; Figure 1.3) and sea ice thickness (~51.2 cm/decade). Earlier ice 

break-up (~10 days/decade) in the spring and later sea ice formation (~20 

days/decade) in the winter are perpetuating the sea ice decline in this region (Frey et 

al. 2014). Longer periods of open water allow more heat to be absorbed during the 

summer months, creating a positive feedback loop of warmer water and postponing 

ice formation in the autumn months (Frey et al. 2014), causing various regions of the 

Arctic Ocean to become characterized by more seasonal sea ice rather than persistent 

multiyear sea ice (Steele et al. 2008, Maslanik et al. 2011, Frey et al. 2015). The 

increase of freshwater resulting from additional sea ice melt enhances stratification 

and limits mixing, thereby reducing the injection of nutrients into the euphotic zone 

from subsurface waters (Mathis et al. 2014).   

The physical and nutrient conditions in the seasonal ice zone of the Chukchi 

Sea are influenced by three water masses, the Alaska Coastal Water (ACW), Anadyr 

Water (AW) and Bering Shelf Water (BSW), that are formed in the spring as Pacific 

Ocean water passes through the Bering and Chukchi Sea on their way to the Arctic 

Basin, seen in Figure 1.4 (Coachman and Aagaard 1988, Brugler et al. 2014). The 

AW (-1.0 to 1.5 °C) has a higher nutrient content (e.g. >25 µM NO3; Walsh et al. 

(1989)) and salinity (>32.5 psu) than the other currents (Grebmeier and McRoy 
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1989). The ACW is warmer (>4 °C), less saline (<31.8 psu) and contains the lowest 

concentration of nutrients (e.g. 5 µM NO3; Walsh et al. 1989) compared to the other 

two water masses (Grebmeier and McRoy 1989). The AW and BSW mix after 

flowing north through the Bering Strait to form Bering Shelf-Anadyr Water (BSAW; 

Grebmeier et al. (2006a)), then diverges north of the Bering Strait, flowing into both 

the Central Channel and along the coast of Alaska into Herald Canyon (Pisareva et al. 

2015). 

1.2. Phytoplankton ecology  

Phytoplankton community ecology and phenology during the spring and 

summer in the Chukchi Sea are influenced by several factors, such as the timing of 

seasonal ice retreat, nutrient concentrations, temperature and water column 

stratification. Sea ice breakup in the Chukchi Sea begins in the south around April-

May and currently progresses to the northern Chukchi Sea as early as mid-July (Frey 

et al. 2019). Phytoplankton blooms are initiated by the increase of light penetration to 

the surface ocean under the ice as snow cover melts and melt ponds form. Under ice 

and ice edge blooms are dominated primarily by large diatoms (> 20 μm) (Gradinger 

2009, Cai et al. 2010, Arrigo et al. 2014). The diatom-dominated communities are 

driven by an increase in light and nutrients regenerated during the winter (Werner et 

al. 2007, Fripiat et al. 2014) that sink out to become a food source to the very rich and 

productive benthic communities (Grebmeier et al. 2006a).  

On the western side of the Chukchi Sea, the larger diatom blooms persist 

through the summer because they are supported by the nutrient rich BSAW. As spring 

moves into summer in the eastern Chukchi Sea, the open waters are warmed by 
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exposure to the sun and become stratified. The surface water becomes depleted of 

nutrients as the algal blooms occur, and stratification prevents water column mixing, 

thus limiting the ability of large diatoms to grow. This region, dominated by larger 

diatoms during the spring, transitions to a community of smaller phytoplankton with 

lower nutrient requirements, such as prasinophytes, haptophytes, and small diatoms 

(Hill et al. 2005, Lee et al. 2007). However, it was recently determined that some 

areas of the Chukchi Sea can sustain diatom blooms for a longer period, such as 

around Barrow Canyon (Lowry et al. 2015). Lowry et al. (2015) suggested that a 

nutrient rich water mass called Winter Water (WW), which is produced through brine 

rejection during sea ice formation in the winter within the Bering and Chukchi Seas 

may play an important role in supporting subsurface phytoplankton blooms in the 

summer after sea ice retreat, particularly on the Chukchi Shelf (Woodgate et al. 

2005a). Moreover, vertical mixing events can also replenish nutrients within the 

upper ocean, supporting diatom blooms (Ardyna et al. 2011). 

Clearly, phytoplankton bloom phenology, magnitude (biomass) and 

community (taxonomic) structure in the Chukchi Sea are driven strongly by such 

environmental factors as photosynthetically active radiation (PAR), the location of 

the sea ice edge, and nutrients. The predictable seasonality of phytoplankton growth 

and bloom formation are important to the food web dynamics and overall ecosystem 

health of the Chukchi Sea. Gaining an enhanced understanding of the environmental 

mechanisms that drive these relationships and the phytoplankton traits that influence 

when and where specific species bloom and persist, are important to understand the 

implications of the predicted changes in the Arctic such as a longer open water 
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season, earlier phytoplankton blooms and increased stratification on biological 

community structure. 

1.3 Remote sensing and the Chukchi Sea 

Ocean color satellite instruments measure spectral radiance from the top of the 

atmosphere. Remote sensing reflectances (Rrs(λ)) are estimated, after the atmosphere 

is removed, from the spectral radiance by specific algorithms. The general 

relationship between Rrs(λ) and water column inherent optical properties (IOPs) is 

approximated by the following equation: 

                     
b

rs

b

b
R

a b
=

+      

where bb is backscatter and a is total absorption (Sathyendranath and Platt 1997, 

Maritorena et al. 2002). Total absorption, a, can be further broken down into its 

individual components: the absorption by pure water (aw), by particles (ap), by 

phytoplankton (aph) and dissolved compounds (ag). Backscatter, bb, can be broken 

down to its individual parts of backscatter by water (bbw) and by particles (bbp).  

From Rrs(λ) an algorithm is used to derive Chlorophyll a (Chla), a proxy for 

phytoplankton biomass (O'Reilly et al. 1998). Using the relationship of Rrs(λ) and 

IOPs, we can implement bio-optical algorithms and models, such as the Quasi-

Analytical Algorithm or QAA  (Lee et al. 2002) and the Generalized IOP model or 

GIOP (Werdell et al. 2013) to derive individual constituents. 

Ocean color and satellite-derived Chla were recently recognized as essential 

climate variables (ECVs) by the Global Climate Observing System (GCOS), an 

internationally recognized organization that oversees the continuity and improvement 
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of global climate observations and measurements (Sathyendranath et al. 2019). An 

ECV is defined as a “physical, chemical or biological variable or a group of linked 

variables that critically contributes to the characterization of Earth’s climate”1. 

Measurements of phytoplankton taxonomy, diversity and distribution are considered 

Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) 

(Lindstrom et al. 2012, Pereira et al. 2013, Muller-Karger et al. 2018). Phytoplankton 

diversity and abundance are indicators of ecosystem status and can be considered one 

of the canaries in the coal mine with regards to climate variability. Time series data 

that include ECVs, EOVs and EBVs are critical to understanding large scale 

environmental and ecosystem variability over longer time scales (Boss et al. 2020). 

Some large-scale changes in phytoplankton communities, or domain shifts, have 

already been observed within select systems. For example, within the past 16 years 

(1998-2013) the surface warming in the subtropical gyres caused a decline in Chla of 

up to 16% and 23% reduction in phytoplankton carbon production (Signorini et al. 

2015). For the Southern Ocean, analysis of a 21-year record of satellite derived Chla 

indicates that phytoplankton biomass has increased, indicating a longer growing 

season, particularly in the winter season (Del Castillo et al. 2019). Such an increase in 

phytoplankton biomass will likely affect the biological pump in the Southern Ocean.  

For the North Atlantic, a multi-decadal analysis of Continuous Plankton Recorder 

data suggested that coccolithophore occurrence has increased an order of magnitude 

from 1965-2010 (Rivero-Calle et al. 2015). In coastal waters off the northeast US, a 

13-year study at the Martha’s Vineyard Coastal Observatory showed a change in the 

                                                 
1 https://gcos.wmo.int/en/essential-climate-variables 
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phenology of spring blooms of Synechococcus associated with temperature trends 

(Hunter-Cevera et al. 2016). Current long-term observing systems, e.g., the 

Distributed Biological Observatory (Grebmeier et al. 2019), and planned long-term 

observing systems e.g., Saildrones2 (De Robertis et al. 2019, Gentemann et al. 2020), 

and ARGO floats (Smith et al. 2019), that collect ECVs will be invaluable. 

Retrieval of satellite ocean color images in the polar regions is not without its 

challenges. A solar zenith angle of > 70° is observed at high latitudes at most times of 

the year, which is thought to nullify the application of atmospheric correction 

algorithms that were developed for lower angles. For the rest of the year, ice cover, 

clouds and fog prevent passive ocean color retrieval much of the year. The presence 

of colored dissolved organic matter (CDOM) also complicates the retrieval of Chla 

because CDOM absorbs at the same wavelengths as Chla, as seen in Figure 1.5 

(Bélanger et al. 2008). Despite these challenges, accurate remote sensing retrievals of 

bio-optical properties, including Chla, are possible in the Chukchi Sea (Chaves et al. 

2015, Kahru et al. 2016). The partitioning of total absorption into its individual 

constituents using satellite algorithms such as GIOP and QAA in a region of interest 

can be used to derive optical water types of marine assemblages and used to monitor 

changes in particle loads, phytoplankton biomass and assemblages, and carbon export 

(Neukermans et al. 2014, 2016).  

1.4 Rrs and the accuracy of absorption measurements 

In situ measurements of ap are important for validation and development of 

inverse models where Rrs is used to derive IOPs a and bb. Data collection and 

                                                 
2 https://www.saildrone.com/news/2018-chukchi-sea-carbon-fisheries 
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analytical methods change and improve over time as technology advances. Recent 

developments of sampling and measurement protocols by the international 

oceanographic community, such as the International Ocean Colour Coordinating 

Group Absorption Coefficient protocol (Neeley and Mannino 2018), reinforce the 

need for standardization of field measurements and data processing. Not only are 

accurate field measurements important for algorithm validation and uncertainty 

estimates, many of the properties derived from ocean color, like aph are used to derive 

phytoplankton size classes (Ciotti and Bricaud 2006, Devred et al. 2011) and as input 

for global ecosystem models that help us understand the possible long-term effects of 

climate change (Dutkiewicz et al. 2015). Moreover, characterization of the in-water 

light field through the in situ and satellite measurement of absorption and scattering is 

important for understanding phytoplankton community/primary production and 

growth, as well as biogeochemical cycles (e.g., the fate of carbon). Therefore, the 

importance of uncertainty quantification is three-fold: 1) for assessing in situ and 

satellite instrument performance, 2) for selecting the appropriate scaling of validation 

efforts for satellite-derived products, and 3) development and validation of global 

models. Uncertainties in the measurement and computation of in situ properties, 

including ap, are important to understand and quantify as they propagate to algorithm 

and model parameterization and validation.  

1.5 Ocean color and ecosystem trends 

Margalef’s concept of phytoplankton succession describes mechanisms by 

which nutrients and turbulence drive phytoplankton dynamics (Margalef 1978). 

Within this framework, smaller phytoplankton cells dominate in calm, low nutrient 
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environments while larger cells succeed in areas with greater turbulence and nutrient 

concentrations (Figure 1.6). Although there may not be a ‘one size fits all’ 

categorization for phytoplankton species, when we understand the underlying 

mechanisms that influence the ecological niches of Arctic phytoplankton, we may be 

able to predict responses of phytoplankton dynamics and phenology to changes in the 

Arctic environment. Ocean color is essential for understanding these long-term trends 

in phytoplankton phenology and ecosystem status. 

Ocean color data and associated derived products are used to study global 

ocean phytoplankton dynamics and carbon cycling and are, therefore, essential to 

studying the marine ecosystem feedbacks related to climate variability. Time-series 

ocean color observations are important for understanding phytoplankton bloom 

dynamics, as well as domain shifts in phytoplankton communities in response to the 

changing environment. High temporal and spatial resolution observations, whether in 

the Arctic or anywhere else in the global ocean are just not feasible as we are limited 

by time and resources. Therefore, we must make use of additional tools to fill in the 

gap for global and regional oceanographic observations. Satellite ocean color 

observations provide global ocean coverage, reaching time and space beyond our 

capabilities with research vessels and, therefore, may fill in the data gap where 

observations are limiting.  

The optically active constituents, meaning any particulate or dissolved matter 

that absorbs and scatters light, influence the spectral shape and magnitude of Rrs(λ) 

thereby creating its apparent color ‘fingerprint’. (Figure 1.7). For example, the Forel-

Ule scale, first described in 1892 (Ule 1892, Novoa et al. 2014) has been used for 



 

 10 

 

years to qualitatively describe twenty-one different optical water types from blue to 

green to brown, based on the apparent color or “dominant’ of the water and track 

changes in phytoplankton abundance (Wernand et al. 2013, Garaba et al. 2015). A 

most recently developed tool, Apparent Visible Wavelength, reduces the Rrs(λ) 

spectrum to one number that represents the apparent color of the water (Figure 1.7). 

This number simplifies the evaluation of trends in AVW, which is representative not 

only of phytoplankton biomass and type, but other optically active constituents 

(Vandermeulen et al. in Review).  

Because the size, shape and pigment composition of phytoplankton 

contributes to Rrs(λ), it acts as a signal for large scale trends at the ecosystem level, 

used to track changes in the biology (e.g., phytoplankton abundance, phenology) and 

chemistry of the ecosystem without the natural variability or uncertainties of derived 

products (e.g., Chla). Knowing that the physical environment of the Chukchi Sea is 

being altered by earlier sea ice breakup, later sea ice formation, and longer open water 

duration, spatio-temporal trends of biological and chemical features of the Chukchi 

sea will likely manifest within the Rrs(λ) spectrum. By connecting the dots between, 

absorption (phytoplankton, non-algal particles and CDOM) and coincident 

biogeochemistry, we can track long-term trends in an ecosystem and concomitant 

trends in ocean color. To this end, future satellite ocean color instruments, such as 

PACE (Cetinic et al. 2018), will provide the advanced capability of collecting 

hyperspectral Rrs(λ), inevitably increasing the amount of spectral information that we 

will use to relate the apparent color of the surface ocean to optical properties and the 

biogeophysical characteristics of the surface ocean. 
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1.6 Project objectives 

The purpose of my dissertation is to investigate the underlying mechanisms 

that may influence phytoplankton community structure in the Chukchi Sea and to 

evaluate existing tools, such as satellite ocean color data, to monitor ecosystem 

dynamics in the changing Arctic environment. The objectives of this study are 

individually addressed as chapters of the dissertation and are as follows:  

1. Quantify the accuracy and precision of field measurements that may impact 

model and algorithm development and validation. 

2. Understand the intricate interactions of phytoplankton with their chemical and 

physical environment in the Chukchi Sea through a multivariate statistical analysis of 

community structure.  

3. Apply time series satellite data to evaluate the spatial distribution of remote 

sensing reflectance spectral shapes in the Chukchi Sea and relate these ‘optical 

fingerprints’ to the trends in Chla, sea ice concentrations and sea surface temperature. 

  



 

 12 

 

Figures Chapter 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Map of the Chukchi Sea [From Grebmeier and Maslowski 

(2014)]. 

Figure 1.2. Arctic food web dynamics. [Figure from Darnis et al. (2011)]. 
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Figure 1.3 Declining annual sea ice persistence is observed in the Chukchi Sea, 2013-

2018. Sea ice concentrations were determined from SSM/I and SSMIS imagery. 

[Figure from Grebmeier et al. (2019)] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Major water masses in the Bering and Chukchi Seas. [Figure 

from Brugler et al. (2014)] 
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Figure 1.5. Example absorption spectra for Chla-specific absorption by 

phytoplankton, CDOM and water.  

Figure 1.6. Margalef's phytoplankton succession framework later revised 

by Cullen et al. 2002. 
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Figure 1.7. A schematic that shows how the scattering and absorption of light 

Influences the spectral shape of Rrs(λ). The red boxes that surround portions of 

the ocean color figure are identified by the light spectra on the right side of the 

figure. 
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Chapter 2: A multi-method approach to quantify 

uncertainties in the measurements of light absorption by 

particles 

2.1 Introduction 

The variability in the global ocean has been monitored for > 20 years by 

satellite-borne ocean color sensors. A number of critical uses for ocean color are of 

particular importance in today’s society. Remote estimates of algal biomass are 

essential in computations of ocean productivity and ultimately impact our 

characterization of the global carbon cycle (Behrenfeld et al. 2005). Satellite imagery 

has been used to monitor inter-annual variation in the timing and extent of 

phytoplankton blooms, which are connected to the survival of larval fish (Wilson et 

al. 2008). Moreover, satellite derived sea surface temperature (SST) and wave height 

information can help aquaculture developers plan where to establish new fish farms. 

Additionally, satellite imagery can be used to detect and monitor blooms of harmful 

algae and can inform monitoring efforts for delicate ecosystems, particularly in global 

coastal environments.   

The spectrally-dependent backscattering (bb) and total absorption (a) 

coefficients (in units of m-1) of light by the dissolved and particulate constituents in 

water (the inherent optical properties, IOPs) ultimately control the color of the ocean 

(Preisendorfer 1976, Morel and Prieur 1977). The properties of this light are used to 

derive information about the biogeochemical components of the water column, such 

as the amount of carbon or the abundance of phytoplankton. Remote sensing 

reflectances (Rrs), the light that emerges from the ocean, are used to derive a with bio-

optical algorithms and models, such as the Quasi-Analytical Algorithm (Lee et al. 
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2002). Garver-Siegel-Maritorena algorithm (Maritorena et al. 2002) and the 

Generalized IOP model (Werdell et al. 2013) to name a few. The general relationship 

between Rrs and IOPs includes the effects of backscattering and can be approximated 

by Eq. (1) (Sathyendranath and Platt 1997, Maritorena et al. 2002). 

                                            
b

rs

b

b
R

a b
=

+                                                 (1) 

  

The total absorption, a, can be separated into a set of components using Eq. (2), 

where aw is spectral absorption by pure water, ap is spectrally-dependent absorption by 

particles and ag is spectrally-dependent absorption by dissolved constituents.                       

                                              w p ga a a a= + +                            (2) 

 

The ap component can be further broken down to the absorption due to phytoplankton 

(pigmented particles; aφ) and non-algal particles (NAP; ad) by Eq. (3).  The 

parameters ap and aφ can be derived analytically using additional bio-optical models 

(Bricaud et al. 1998, Devred et al. 2011). 

 

        p da a aϕ= +                                                 (3)         

    

Collection of in situ ap data can be accomplished in the field and in the 

laboratory in multiple ways (Mitchell et al. 2003, Mueller 2003). One common 

method, the quantitative filter technique (QFT), was first developed by Yentsch 

(1962) and later modified by Mitchell (1990) where particles are concentrated onto a 

filter pad. Absorbance, or optical density of particles on a filter (ODf; typically 

defined on the base of the decadic logarithm), is measured with a spectrophotometer 

and is converted to ap using Eq. 4, where 2.303 is the natural log of 10, Afp is the 
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clearance area of the filter pad, Vf is the filtration volume, Vf/Afp is the theoretical 

geometric path length and β is the pathlength amplification correction (Eq. 4). The 

scattering of light by the filter pad and particles amplifies the photon pathlength and 

falsely increases the value of absorption (Butler 1962). Therefore, β is included in the 

computation of ap to scale the absorption measured on the filter pad to a predicted 

value of absorption in suspension. Additionally, the absorbance of algal and non-algal 

particles can be de-convolved by measuring the samples before and after extraction of 

algal pigments and their corresponding coefficients can be calculated using Eq. 4 

(Kishino et al. 1985, Hoepffner and Sathyendranath 1992). Direct measurements of ap 

in suspension can be made with a spectral absorption and attenuation meter or AC-

meter (e.g., AC-S; WetLABS Inc.), or a Point Source Integrating-Cavity Absorption 

Meter (PSICAM) (Bricaud and Stramski 1990, Röttgers et al. 2007).  

 

, 2.303
fp f

p d

f

A OD
a

V β
=                                                   (4)   

 

Three methods commonly applied to determine ap using particles collected on a filter 

pad include: the transmittance method (T) (Bricaud and Stramski 1990, Mitchell 

1990, Roesler 1998), the transmittance-reflectance method (T-R) (Tassan and G.M. 

Ferrari 1995,2002) and the inside sphere method (IS) (Maske and Haardt 1987, 

Röttgers and Gehnke 2012, Stramski et al. 2015). Each method requires a different 

geometric configuration and is susceptible to different levels of scattering error 

(Table 2.1). Theoretically, the configurations of the T-R and IS methods reduce 

scattering error (loss of photons scattered from the filter pad and particles) producing 
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a more precise measurement (Kishino et al. 1985, Tassan and Ferrari 1995, Röttgers 

and Gehnke 2012, Stramski et al. 2015). 

Many βs have been determined empirically (Bricaud and Stramski 1990, 

Mitchell 1990), and two βs have been derived analytically (Roesler 1998, Lohrenz 

2000). Historically, β is the ratio of ODf to the optical density of particles in a dilute 

suspension (ODs), a true measurement of absorption. The source of these suspensions 

and filter pad samples were commonly from cultures (Roesler 1998). A power law or 

quadratic function and associated coefficients were calculated from a least square’s 

regression of ODs and ODf, which can then be applied to field samples to derive a 

relationship. These βs do not necessarily encompass all particle sizes and types 

encountered in the ocean and can be subject to bias. Consequently, the β is a major 

source of uncertainty for determining particle absorption coefficients by the filter pad 

methods.  Although not definitely proven, there are some indications that suggest β is 

influenced by particle size and scattering properties (Maske and Haardt 1987, Bricaud 

and Stramski 1990, Babin et al. 2002, Naik and D’Sa 2012, Röttgers and Gehnke 

2012).  Other sources of analytical uncertainty have also been discussed (McKee et 

al. 2014). 

In contrast, AC-meter uncertainties are in absolute terms, not percentage. The 

field calibration term is ~0.01 m-1, and the instrument precision is about half of the 

calibration term. Temperature effects can create uncertainties near the peak of pure-

water absorption of 0.02 m-1. Lee et al. (2015) claims a ~0.005 m-1 difference in the 

blue part of the spectrum (350-415 nm) in pure water. By far the largest source of 
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uncertainty is that of the scattering correction (Slade et al. 2010, Röttgers et al. 2013, 

Lee et al. 2015).  

The satellite ocean color community uses field and laboratory measurements 

of absorption coefficients to develop, evaluate, and validate their remote-sensing bio-

optical algorithms. To maximize the spatial and temporal extent of data included in 

such analyses, agencies such as NASA typically invest in a broad range of 

investigations and require that the data collected subsequently be permanently 

archived in a central database. NASA has invested in the development of rigorous 

quality and assurance metrics and measurement protocols to enable high quality data 

collection and to minimize investigator-to-investigator and instrument-to-instrument 

differences in the archived data. The NASA Ocean Optics Protocols for Satellite 

Ocean Color Validation (Mitchell et al. 2003) is a standard set of protocols for 

radiometric and biogeochemical measurement, the purpose of which is to provide 

measurement consistency across ocean color missions and research groups with 

tenable error assessments. Moreover, strict adherence to the protocols increases the 

probability that biogeochemical and radiometric measurements provide sufficiently 

accurate measurements for satellite derived product validation. In spite of the rigorous 

protocols developed for the measurement and computation of ap, relative 

measurement uncertainties are inherent in the choices of sample analysis and ap 

computation within each of these protocols. 

Biogeochemical algorithms and models require high quality observational 

ground-truth data for both development and validation. The SeaWiFS Bio-optical 

Archive and Storage System (SeaBASS) is a publicly available, community-driven 
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archive of in situ bio-optical data maintained by the NASA Ocean Biology Processing 

Group (OBPG) at NASA Goddard (Werdell et al. 2003, Werdell and Bailey 2005). 

Approximately 20,000 a and ap products derived from various field measurements 

can be found in SeaBASS and have been acquired multiple ways by any number of 

researchers. Despite the existence of community-vetted protocols and quality 

assurance metrics, a number of questions remain: What is the uncertainty of many 

researchers using different analytical methods and computational techniques for 

deriving ap? To what degree are they different? Our goal here was to quantify 

precision of these measurements so that these uncertainties may be accounted for 

during model development and validation.   

In this paper we address measurement agreement, or precision among multiple 

methods for determination of the same parameter. Three different sample sets were 

used to characterize uncertainties in a dynamic range of absorption from a high 

particle concentration with higher Chlorophyll a (Ca) concentration to lower particle 

concentration and lower Ca concentration. The ultimate goal was to quantify the 

uncertainty associated with the diverse analytical methods and computational 

techniques to derive ap, and to show a test case of how these uncertainties could affect 

model-measurement closure. Here we are identifying the lack of precision of derived 

ap as uncertainty. We cannot address the accuracy of ap measurements here because 

there is no existing suspended particle absorption standard, nor did we measure 

suspended particle samples in parallel with the filter pad samples. Instead, we offer 

alternative approaches with which we endeavored to address uncertainty associated 

with: 
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1) Two analytical methods for collecting absorbance data (measurement 

precision) 

2) Six computational techniques for deriving ap (determination precision, 

hereafter referred to as uncertainty) 

3) Comparison of the QFT-derived ap to ap measured with an AC-S 

4) Comparison of measured against modeled ap 

Although similar method evaluations have been approached in previous studies 

(Röttgers and Gehnke 2012, Stramski et al. 2015) in this paper we conduct a valuable 

performance and statistical analysis that is independent from the original method 

papers using real world samples. 

2.2 Methods 

2.2.1 Sample collection 

Three sources of filter pad samples and AC-S measurements of ap were used 

in the comparison: one set collected off the coast of Hawaii (“Blue Water”) shown in 

Fig. 2.1(a), another set collected off the coast of the eastern United States (“Coastal 

Water”;) shown in Fig. 2.1(b) and the third set from laboratory cultures. Table 2.2 

shows station numbers and depths at which AC-S and filter pad samples were 

collected concurrently in the field. Filter pad samples were collected in duplicate by 

vacuum filtration (~127 mmHg) onto pre-combusted 25 mm Whatman GF/F filters. 

Samples were placed in HistoPrep tissue capsules, flash frozen in liquid nitrogen and 

stored at -80° C until analysis. Samples for Ca determination were collected similarly 

and stored in foil.  Phytoplankton pigments were determined using high performance 

liquid chromatography (HPLC) following the procedures of Van Heukelem and 
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Thomas (2001) and further described in Hooker et al. (2005). Filter pad and AC-S 

measurements were collected in the laboratory from dilutions of three phytoplankton 

species: Thalassiosira weissflogii (CCMP 1387), Emiliania huxleyi (CCMP 371), and 

Nannochloropsis sp. (15 duplicate filters). The cultures were diluted with filtered and 

sterilized seawater to attain the following dilution series 100%, 42%, 20%, 10% and 

5%. Only the three lowest dilutions (20%, 10% and 5%) of each culture were 

measured with the AC-S (a total of nine measurements). For each sample source, one 

replicate filter was analyzed using the T method and the other with the IS method. For 

the culture experiment, fresh filter pad samples were used for the measurements.   

2.2.2 Instrument configurations and analysis techniques 

Measurements of ODf with the T method were conducted using a Perkin 

Elmer Lambda 35 UV-Visible, dual beam spectrophotometer following the protocol 

of Roesler (1998). Briefly, the sample and reference beams were balanced by placing 

a neutral density filter (ESCO optics; Density=1.0) at the reference port. The sample 

filter was placed in the path of the sample beam. Measurements of ODf with the IS 

method were conducted using a Cary 100 UV-Visible dual beam scanning 

spectrophotometer equipped with a 15 cm integrating sphere (Labsphere DRA-CA-

30) and using the protocol of Stramski et al. (2015) and applied in Neukermans et al. 

(2014). The filters were placed in the center of the integrating sphere using a 

Plexiglas slide. For both methods, scans were performed between 290-800 nm with a 

2 nm Slit Band Width (SBW), and 240 nm per minute scan speed.  For both filter pad 

analysis methods, blank filters were moistened with 0.2 μm-filtered artificial seawater 

(ASW). Blank filter and air scans (for the IS method) were measured throughout the 
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day to monitor instrument drift.  For both configurations, blank filter scans were 

subtracted from the raw ODf spectra prior to ap computation.  

A fraction of scattered light is not detected using the T method due to its 

geometric configuration. To reduce this scattering error, a null point correction is 

applied that assumes there is no absorption by particles in the near infrared part of the 

spectrum (Roesler 1998, Mitchell et al. 2003). Data from the T measurements were 

null-point corrected by subtracting the average absorbance between 750 nm and 800 

nm from the entire spectrum.  

2.2.3 ap computation 

Three different βs were chosen for the T method and two βs were chosen for 

the IS method to compute ap, (Eq. 4) and are listed in Table 2.3, although others exist 

in the literature.   The technique for which ap is derived from each β will hereafter be 

referred to as a ‘computational technique’. We are not endorsing one β over another, 

as it is currently not possible to prove the accuracy of a given approach. To reiterate, 

our goal is to make a general statement about uncertainties of existing data and the 

most commonly used analytical methods and computational techniques. 

2.2.4 AC-S measurements 

Spectral particle and dissolved absorption (apg) were measured between 400-

750 nm using a WETLabs AC-S instrument. In the field, the AC-S was calibrated 

with ultrapure water and a mean of three days’ calibrations was used to subtract the 

pure water offset. AC-S profiles were made at each station. For the Coastal Water 

measurements, the AC-S was mounted horizontally to the CTD rosette on an 
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auxiliary ring. The mean spectra during the period of bottle firing, approximately 90 

seconds, were calculated. For the Blue Water samples, the mean spectra at each depth 

+/- 1 m were used.  

Post processing involved merging the CTD with the AC-S by time stamp, 

adjusting for the time required for water to move from the intake to the center of the 

flow tube. For all AC-S measurements, corrections for salinity, temperature, and 

instrument drift were made, using the methods of Sullivan et al. (2006). For the Blue 

Water and Coastal Water apg measurements the proportional scattering correction 

(Eq. 4) of Röttgers et al. (2014) was applied using an empirical ratio of absorption at 

715 nm and correcting for attenuation as well as absorption. For the culture apg 

measurements, three dilutions of each culture (20%, 10%, and 5%) were passed 

through the AC-S flow tubes, and the subsequent absorption values were corrected 

for scattering using proportional correction (Zaneveld et al. 1994). 

Conventionally, ap is calculated by subtracting the absorption of 0.2 μm 

filtered seawater (ag) from apg, as was done for the laboratory culture experiment and 

the Blue Water data in this study. For the blue water, two AC-S meters were used: 

one with a 0.2 μm pre-filter and one without. In the laboratory, the same meter was 

used for both measurements, allowing for calibration-independent measurement of ap 

(Slade et al. 2010). During the coastal cruise, a filter was not used, thus concurrent ag 

measurements were not performed. Instead, discrete ag samples were later measured 

using a bench top spectrophotometer and subtracted from apg to retrieve ap.  The 

value of ap at 555 nm for Station 8 was removed from the analysis because it was 

negative, possibly an artifact of subtracting the laboratory-measured ag.   
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2.2.5 Modeling ap 

In ocean optics, identification of uncertainty is important to assess instrument 

performance and is essential for the appropriate scaling of validation efforts for 

satellite-derived products. Model output is dependent on empirical data. Therefore, a 

lack of precision between measurements and models could mean either the 

instruments, models, or both are faulty. 

Our aim was to investigate if differences in ap computational techniques 

influenced model development and measurement-model closure using a case study 

approach with one candidate model. We chose a power law, Eq. (5), that estimates ap 

from the following relationship with chlorophyll (Eq. (1) in Bricaud et al. (1998)). 

  

B

p aa AC=                                                                (5) 
 

where A and B are derived coefficients from (Bricaud 2013). Bricaud et al. (1998) 

recommended that this model only be applied to Case 1 waters where the optical 

properties are determined mainly by phytoplankton and dissolved organic matter and 

when Ca concentration is maximally 10 mg/m3. The Coastal Water samples are not 

considered Case 1; however, we still applied the model as our chlorophyll 

concentrations fell well within this chlorophyll range, although the concentration of 

suspended sediments is usually greater in the coastal waters.  

Performance of the model against the measured ap was determined using a 

model skill score (SS) metric (Ralston et al. 2010). The skill score is calculated using 

Eq. (6). 
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where modX  and obsX  are the modeled and observed values, respectively, and  obsX  is the 

mean of the observations. A value of +1 indicates that the model agrees with the 

observations. A value of 0 indicates that the model and the mean of the observations 

exhibit equal predictive power and negative values indicate that the model is less 

predictive than the mean of the observations. An SS > 0.65 was considered very 

good, 0.2-0.5 as good and <0.2 as poor (Ralston et al. 2010). Additionally, Root 

Mean Square Error (RMSE) was calculated as a measure of the error between the 

measured data and the model predictions using Eq. (7) where yi is an observation and 

Yi is the predicted value. 
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2.3 Results and Discussion 

The measurement precision of ODf and uncertainty of ap were evaluated using 

three different particle concentrations and types: low particle concentration natural 

samples (Blue Water) shown in Fig. 2.2(a), high particle concentration natural 

samples (Coastal Water) shown in Fig. 2.2(b), and phytoplankton-derived samples 

(10% dilution Emiliania huxleyi) shown in Fig. 2.2(c). A smoothing technique was 

not applied to these data. Note the differences in absorption magnitude (y axis) 

between the samples. Spectra measured with the T method were noisier than the 

spectra measured with the IS method because the geometric configuration of the T 
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method allows for a greater loss of photons scattered from the filter pad and particles 

thereby reducing the signal-to-noise ratio.  The geometric configuration of the IS 

method favors the collection of most of the scattered photons, increasing the signal-

to-noise ratio (Stramski et al. 2015). Therefore, ODf measured with the IS method is 

approximately 50% greater in magnitude and less noisy than of those measured with 

the T method.  

2.3.1 Analytical uncertainty of ODf 

Measurement precision of ODf measured between the T method (ODf (T)) and 

IS method (ODf (IS)) was evaluated by computation of the median, mean and 

coefficient of variation (CV; standard deviation/mean*100%) of ODf (T) and ODf (S) 

for each data point. Additionally, the mean bias (mean difference of ODf (T) and ODf 

(IS)) and mean ratio of ODf (T)/ODf (S) were also determined. A null correction was 

applied to values of ODf (T). 

2.3.2 Uncertainty of QFT derived ap 

The median, mean, and coefficient of variation for ap were calculated from all 

computational techniques for the QFT methods only, at six OC wavelengths (Table 

2.3). We acknowledge that calculated uncertainties in this analysis include sample 

collection error without measuring this error distinctly (difference between 

replicates). In previous analyses, our range of replicate uncertainty for ap derived 

from the T and IS computational techniques typically ranged from <0.001% to 16% 

and 0.001% to 21%, respectively, although most values fell well below 20%. 
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The range of uncertainty of the QFT-derived values of ap derived from all 

computational techniques was 7.07%-62.55% for all six wavelengths (Table 2.5). The 

values of ap at 555nm showed the largest uncertainty overall with a maximum value 

of ~63%. As shown in Table 2.6, the %CV depended on absorption range and 

wavelength.  The largest spread of ap between all computational techniques occurred 

at 555 nm between 0.015 and 0.05 nm-1. 

2.3.3 Uncertainty of QFT and AC-S derived ap 

The median, mean, and coefficient of variation were calculated for both QFT 

and AC-S derived ap (Table 2.7). Here only coincident filter pad and AC-S field 

measurements of ap (Table 2.1) and dilutions 20%, 10% and 5% of the laboratory 

cultures were included in the analysis. The addition of AC-S measured ap increased 

the uncertainty to 7.48-119% for the six wavelengths (Table 2.7). ap at 555 nm and 

670 nm showed the highest uncertainty amongst the six wavelengths at 119% and 

61.38%, respectively (Table 2.8).  

 

The increase in uncertainty when the AC-S data are included in the analysis 

may be attributed to low signal, particularly for the Blue Water samples, and/or data 

computation technique. We used an average absorption for each sample depth +/- 1 

m. Another analytical technique may be used to improve accuracy and decrease 

uncertainties. A source of bias exists when comparing particle absorption acquired 

from a filter pad and that acquired from using an AC-meter, depending on the water 

type. The QFT uses nominal 0.5-0.7 μm pore size fiberglass filters (Chavez et al. 

1995) while ap is separated from a by measuring the ag from 0.2 μm filtered seawater. 
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In this way, the 0.2-0.7 μm fraction would be measured by the AC-S but not with the 

QFT methods (Roesler 2014). 

2.3.4 QFT and AC-S ap trends 

The individual ap values from each sample were compared with the sample 

median to examine deviations of the method and computational differences from the 

median as indicated by their distance from the 1:1 line, shown in Fig. 2.3. The ap 

values derived from the IS computational techniques exhibited a smaller deviation 

from the median than those values derived from the T computational techniques in 

most cases. Values of ap from Roesler (1998) and Mitchell (1990) computations were 

consistently greater than the median across the absorption dynamic range for all 

wavelengths. Values of ap from the Bricaud and Stramski (1990) computation were 

consistently lower than the median except for 443 nm where they were greater than 

the median at ap values > 1.0 m-1. Values of ap from Röttgers and Gehnke (2012) and 

Stramski et al. (2015) were consistently similar to the median based on their close 

proximity to the 1:1 line. 

The values of AC-S derived ap exhibited low values most noticeably in the 

Blue Water samples at 443 nm, which are in the lowest region of the absorption range 

(<0.10 m-1). Generally, AC-S measured ap compared reasonably well to the median, 

falling below the 1:1 line at values < 0.2 m-1 and on or above the 1:1 line at values > 

0.2 m-1. 
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2.3.5 ap model evaluation 

Model skill score, RMSE and the %CV of measured and modeled ap (Tables 

2.9-2.11) were calculated to evaluate measurement-model agreement for the Blue 

Water and Coastal Water data. One Coastal Water station was not used in this 

analysis because the Ca concentration exceeded the limit of 10 mg m-3 for this ap 

model. At 443 nm, the model performed “very good” to “good” compared to all ap 

computations from the Blue Water samples except for the AC-S where the model 

performed poorly (Table 2.9; SS = -0.4145). For the Coastal Water samples at 443 

nm, the model performed poorly compared to all computed ap but performed good 

compared to AC-S measured ap (SS = 0.4247). At 555 nm, the model compared 

poorly to most of the Blue Water ap values except for Mitchell (1990) and Roesler 

(1998) (SS = 0.2306 and 0.6145, respectively; Table 2.10). The ap values for the 

Coastal Water samples also compared poorly except for BrSB Bricaud and Stramski 

(1990) and the AC-S measured ap (SS = 0.3629 and 0.5715, respectively). At 670 nm, 

the model performed good to very good for both the Blue Water and Coastal Water ap 

values, except for Roesler (1998) (SS = 0.0869; Table 2.11). In both water types the 

model performed the best in most cases when compared to ap using the BrSB 

(Bricaud and Stramski 1990) method, particularly at 443 nm and 670 nm. Generally, 

the model performed best when compared to ap computed from the T method. 

2.4 Conclusions 

Three different sample sets were used to characterize uncertainties in the 

determination of ap for a dynamic range of absorption. The ultimate goal was to 

estimate the measurement precision of the methods for measuring ODf, the 
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uncertainty of ap derived from six computational techniques, and to show how these 

differences could affect model-measurement closure. Therefore, an understanding of 

measurement uncertainties is crucial and should be accounted for during model and 

algorithm development. Ignoring these uncertainties can result in poor model and 

algorithm performance. Moreover, measurement uncertainties can decrease the 

signal-to-noise ratio and a fraction of detected environmental variability may be lost 

to uncertainty. The desired result is to distinguish real variability from measurement 

error. 

Variability in the magnitude of ap in the field may be attributed to natural 

variability and the systematic uncertainties that accumulate with sample collection 

and analysis. Minimization of the noise is key to accurately identifying changes in the 

optical properties of the global ocean. McKee et al. (2014) suggest that incorporating 

measurement uncertainties, both random and systematic into the computation of Ca-

specific absorption of marine phytoplankton may help to discriminate natural 

variability from measurement error. In this paper, we focused on the inherent 

systematic uncertainties that exist amongst the various methods for determining ap. 

These uncertainties are important to understand and quantify as they propagate to 

algorithm and model development and validation. 

Absorption at wavelengths in the blue-to-green region of the visible spectrum 

(443, 490, 510 nm) is mainly influenced by phytoplankton pigments and therefore 

may be used to derive information about phytoplankton community structure. Light 

absorption in the green and red part of the visible spectrum (555 nm and >670 nm; 

Table 2.12) can be attributed to phytoplankton pigments as well as minerals and 
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sediments. The 670 nm band also allows for the evaluation of chlorophyll 

fluorescence, which can be used to characterize primary production and nutrient 

stress of phytoplankton (Del Castillo et al. 2012).  

 

In situ measurements of ap are important for validation and development of 

inverse models where Rrs is used to derive IOPs a and bb. For example, the 

relationship between phytoplankton size and pigment composition results in an 

empirically derived, non-linear function of Ca and ap for use in algorithms (Bricaud et 

al. 1998, Chase et al. 2013). These derived parameters can then be used to develop 

empirical bio-optical and ecosystem models. Additionally, satellite-derived values of 

ap and aφ are important input vectors for modeling phytoplankton size classes 

(Sathyendranath and Platt 1997, Ciotti and Bricaud 2006, Devred et al. 2011). 

Characterizing phytoplankton functional types in the global ocean and understanding 

their role in global carbon cycling is of great interest to many researchers 

(Sathyendranath et al. 2014). 

From the QFT comparisons we saw that the uncertainty of ap derived from the 

IS computational techniques was small and consistent across all sample types 

(deviating least from the median) compared to the those derived from the T 

computation techniques. The values of ap computed from Mitchell (1990) and 

Bricaud and Stramski (1990) computational methods performed consistently higher 

and lower, respectively, than the median absorption values. Values of ap derived from 

the IS analysis method showed lower uncertainty compared to the median. The 

uncertainty in measuring ap was similar across all wavelengths. The maximum 

uncertainty of 119% at 555 nm across all methods could be attributed to the minimum 
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absorption of pigments at that waveband and to the scattering differences between the 

reference and sample filters, which are amplified on applying the β to the absorbance 

spectra of the samples. Minimal absorption by phytoplankton occurs in the green 

region of the spectrum (555 nm). The addition of AC-S measured ap increased the 

uncertainty between the measurements. The large uncertainty in the measured ap 

would be propagated through to model development and model-derived products 

would carry that uncertainty.    

The ODf measured by the IS method was almost 50% greater than the ODf 

measured by the T method. ODf from both methods exhibited high correlation at each 

of the OC wavelengths. The measurement uncertainty for these methods ranged from 

0.061% at 412 nm to 63.55% at 670 nm, comparable range of uncertainty of ap 

derived from these methods. The maximum uncertainty of ap was not increased nor 

decreased by the inclusion of β. This work points to the sensitivity of the 

parameterization of β, suggesting that more work needs to be done in this area. 

Output from the ap model performed best when compared to ap computed 

from the T method, particularly Bricaud and Stramski (1990), the analytical and 

computational technique from which it was developed. However, most of the 

methods compared well with the model in the Coastal Water samples at 670 nm even 

though the model was not optimized for the coastal regime. In general, ap derived 

from both QFT and the AC-S, compared good to poorly with the model output. 

Empirical models such as this are typically only comparable to the water types and 

methods used for model development. Development of a bio-optical model or method 

to model ap in Case 2 waters would be advantageous. 
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Data collection and analysis methods change and improve over time as 

technology advances. Inclusion of raw data in a database, such as SeaBASS (Werdell 

and Bailey 2005), allows for computational analysis flexibility in the future with 

technological advances. We now have a general idea of the estimate of the 

uncertainty of existing ap data. Ultimately the use of traceable standards could be 

advantageous for addressing the accuracy of the measurements. Additionally, the 

assessment of analytical precision may benefit from a round robin-like activity in the 

future. 
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Figures Chapter 2 

 

Figure 2.1. Maps showing the locations where the (a) Blue Water samples and (b) 

Coastal Water samples were collected. The dots represent station locations. 

 

 
 
 

 

Figure 2.2. Example filter pad and AC-S ap(λ) for (a) Blue Water, (b) Coastal 

Water, and (c) a culture (E. huxleyi). Each computational technique is indicated 

in the legend. 
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Figure 2.3. QFT and AC-S ap vs. median ap for (a) 443 nm, (b) 555 nm, and (c) 

670 nm as shown in the legend.  The inset figure shows greater detail at the low 

end of the dynamic range. Text box indicates %CV for the three absorption 

ranges from Table 2.8. 
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Tables Chapter 2 

 

Table 2.1. Three instrument configurations for measuring filter pad ap. Reference to β 

refers to a pathlength amplification correction factor used in the calculation of ap. 

 

Transmittance 

Method 

Transmittance-

Reflectance 

Method 

Inside Sphere 

Method 

Filter 

placement 

In front of 

detector window 
Outside sphere Inside sphere 

 

Scattering 

error 

Highest Low Lowest 

Null correction 

Between 750 & 

800 nm (flat 

spectra) 

None unless 

values are 

negative 

None 

β 

Quadratic or 

Power function, 

12 sets of 

coefficients  

Quadratic 

function, one set 

coefficients  

Quadratic or 

Power function, 2 

sets of 

coefficients  
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Table 2.2. Station number and depth at which AC-S and filter pad samples were 

collected concurrently. 

Water type Station number  Depth (m) QFT AC-S 

Blue Water 1 90 X  

Blue Water 1 3 X  

Blue Water 2 8 X X 

Blue Water 3 91 X X 

Blue Water 4 135 X X 

Blue Water 5 139 X  

Blue Water 6 124 X X 

Blue Water 7 129 X X 

Blue Water 8 3 X X 

Blue Water 8 135 X X 

Blue Water 9 4 X X 

Blue Water 9 119 X X 

Coastal Water 2 18 X X 

Coastal Water 8 63 X X 

Coastal Water 10 15 X X 

Coastal Water 10 41 X  

Coastal Water 11 20 X X 

Coastal Water 23 22 X X 

Coastal Water 40 32 X X 

Coastal Water 44 10 X X 

Coastal Water 54 7 X X 

Coastal Water 62 17 X X 

Coastal Water 65 16 X X 

Coastal Water 67 32 X  

 

 

Table 2.3. Equations used to compute β values in this analysis. 

T Method Equation Abbreviation Reference 

Mitchell (1990) 
1[0.392 0.655 ]fOD −+  Mitchell 15 

 

Roesler (1998) 

 

2 

 

Roesler 22 

 

Bricaud and Stramski (1990) 

 
0.221.630 fOD−

 
 

BrSB 

 

21 

IS method    

Stramski et al. (2015) 
0.08673.096 fOD−

 Stramski 27 

Röttgers and Gehnke (2012) 

 
26.475 6.474 4.765f fOD OD− +  Röttgers 26 
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Table 2.4. Minimum, maximum, mean, median %CV, mean bias and mean ratio of all 

filter pad ODf at each OC wavelength. The Pearson’s Linear Correlation Coefficient 

(r) analysis was applied to assess the relationship of ODf measured by both methods at 

each ocean color (OC) wavelength depending on particle concentration and sample 

type. The corrcoeff function in MATLAB 2014a was used for this analysis [45]. The 

ODf values from both methods showed a significant (p<0.05), positive correlation at 

412 nm (r = 0.8673), 443 nm (r = 0.8510), 490 nm (r = 0.8491), 510 nm (r = 0.9062), 

555 nm (r = 0.9433) and 670 nm (r = 0.9014). 

 

Table 2.5. Minimum, maximum, mean and median %CV of the QFT derived ap at 

each OC wavelength. 

Wavelength 412 nm 443 nm 490 nm 510 nm 555 nm 670 nm 

Min 7.32 7.07 7.72 9.34 14.26 9.00 

Max 38.20 36.57 38.52 45.68 62.55 41.52 

Mean 18.34 17.96 19.87 22.50 30.46 22.95 

Median 17.91 17.24 19.10 21.54 26.49 23.28 

 

Table 2.6. Absorption range, mean absorption and %CV of the QFT derived ap at four 

OC wavelengths. 

Range 

ap 

CV 

412 

nm 

Mean 

 ap 

412 nm 

CV 

443 

nm 

Mean  

ap 

443 nm 

CV 

555 

nm 

Mean  

ap 

555 nm 

CV 

670 

nm 

Mean 

ap  

670 nm 

0-0.015 25.9 0.011±0.002 25.6 0.010±0.001 25.4 0.004±0.004 23.4 0.008±0.004 

0.015-

0.05 
14.1 0.034±0.021 16.6 0.034±0.016 35.6 0.047±0.020 20.2 0.060±0.022 

>0.05 17.8 1.480±2.303 16.9 1.540±2.405 31.6 0.676±0.843 23.8 1.424±2.001 

 

 

 

 

 

 

 

 

 

 

Wavelength 412 nm 443 nm 490 nm 510 nm 555 nm 670 nm 

Min 0.061 0.270 0.384 2.493 0.531 7.477 

Max 52.64 56.71 58.14 45.22 60.52 63.55 

Mean 21.70 22.01 23.39 23.36 24.14 25.66 

Median 21.38 21.72 22.67 23.78 22.43 24.16 

Mean bias 

Mean ratio 

-0.030 

0.804 

-0.030 

0.802 

-0.024 

0.790 

-0.018 

0.782 

-0.009 

0.798 

-0.017 

0.763 
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Table 2.7. Minimum, maximum, mean and median %CV of the QFT and AC-S 

derived ap at each OC wavelength. 
 

Wavelength 412 nm 443 nm 490 nm 510 nm 555 nm 670 nm 

Min 7.48 7.72 7.99 9.09 14.54 10.12 

Max 38.80 30.01 39.60 53.52 119.0 61.38 

Mean 20.94 20.31 23.67 26.82    39.23 26.07 

Median 20.36 19.56 23.62 25.08 34.24 24.07 
 

 

Table 2.8. Absorption range, mean absorption and %CV of the QFT and AC-S 

derived ap at four OC wavelengths. 

Range 

ap 

CV 

412 

nm 

Mean 

ap 

412 nm 

CV 

443 

nm 

Mean 

ap 

443 nm 

CV 

555 

nm 

Mean 

ap 

555 nm 

CV 

670 

nm 

Mean 

ap  

670 nm 

0-0.015 33.2 0.010±0.001 27.2 0.011±0.001 47.8 0.002±0.001    28.5 0.008±0.004 

0.015-0.05 16.6 0.032±0.022 19.9 0.034±0.017 35.6 0.046±0.021    23.0 0.058±0.021 

>0.05 20.8    0.502±0.591    19.2 0.531±0.616 33.1 0.322±0.254    26.1 0.501±0.536 

 

Table 2.9. Skill Score computed for modeled ap at 443 nm. Bold values indicate 

“very good” performance and italicized values indicate “poor” performance. 

 Blue Water                                                        Coastal Water 

Method N    SS    RMSE    CV    N    SS    RMSE    CV    

BrSB 13    0.7684    0.0019    5.8±4.1    11    0.1816    0.0524    30.7±20.7    

Mitchell 13    0.5575    0.0044    12.3±6.5    11    -0.0406    0.0804    45.0±18.8    

Roesler 13    0.6072 0.0031    12.0±8.4    11    -0.1557    0.0822    48.5±18.5    

Röttgers 13    0.3570 0.0052    17.0±13.6    11    0.1824    0.0537    31.3±21.4    

Stramski 13    0.4275    0.0047    13.3±12.2    11    -0.0604    0.1329    34.7±21.2    

AC-S 9    -0.4145    0.0071    66.7±32.0    10    0.4247 0.0289    32.2±33.6    
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Table 2.10. Skill Score computed for modeled ap at 555 nm. Bold values indicate 

“very good” performance and italicized values indicate “poor” performance. 

 Blue Water                                                          Coastal Water 

Method N SS RMSE CV N SS RMSE CV 

BrSB 13 -0.7967 0.0017 43.3±10.7 11 0.3629 0.0102 30.9±27.6 

Mitchell 13 0.2306 0.0009 16.2±6.3 11 -0.0276 0.0199 49.3±26.8 

Roesler 13 0.6145 0.0005 10.3±6.0 11 -0.2264 0.0273 59.0±27.5 

Röttgers 13 -0.4030 0.0014 26.8±16.6 11 0.0089 0.0158 44.6±29.9 

Stramsk

i 

13 -0.3708 0.0012 22.9±16.6 11 -0.0834 0.0191 49.3±29.3 

AC-S 9 -0.1158 0.0032 43.7±27.0 9 0.5715 0.0167 24.7±22.6 

 

Table 2.11. Skill Score computed for modeled ap at 670 nm. Bold values indicate 

“very good” performance and italicized values indicate “poor” performance. 

 Blue Water                                                           Coastal Water 

Method N SS RMSE CV N SS RMSE CV 

BrSB 13 0.7626 0.0009 15.6±12.4 11 0.5826 0.0114 12.3±11.3 

Mitchell 13 0.4927 0.0023 15.2±8.0 11 0.2608 0.0244 32.3±12.8 

Roesler 13 0.3749 0.0029 22.2±6.0 11 0.0869 0.0331 43.2±13.4 

Röttgers 13 0.6313 0.0014 13.3±10.6 11 0.4474 0.0144 23.2±22.0 

Stramski 13 0.5910 0.0015 13.3±8.6 11 0.3382 0.0187 29.0±21.5 

AC-S 9 0.6114    0.0022 30.2±15.5 10 0.4879 0.0102 14.6±14.5 

 

Table 2.12. Summary of ocean color bands and their primary use. 

Wavelength (nm) Derived information 

412 Dissolved organic matter 

443 Chlorophyll absorption 

490 Pigment absorption 

510 Chlorophyll absorption 

555 Pigments, sediments 

670 Atmospheric correction, sediments 
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Chapter 3: Unraveling Phytoplankton Community 

Dynamics in the Northern Chukchi Sea under Sea-Ice-

Covered and Sea-Ice-Free Conditions 

3.1 Introduction 

In the Arctic Ocean, seasonal sea ice cover shapes the ecosystem structure of 

the water column by influencing light, nutrients and density-driven stratification. In 

turn, ecosystem structure shapes pelagic phytoplankton community composition and 

spatial distribution under both sea-ice-cover and sea-ice-free conditions. Sea ice 

extent in the Arctic Ocean is declining rapidly, leading to predictions that the Arctic 

will be sea-ice-free in the summer as early as 2040 (Overland and Wang 2013). 

Enhanced stratification from freshwater input and warming is expected to limit the 

advection of nutrients into the euphotic zone of ice-free regions (Tremblay et al. 

2008, Mathis et al. 2014). The expected consequences of ice-free summers are longer 

open water duration and an extended growth season for pelagic phytoplankton. While 

recent work has focused on our still needed understanding of sea ice algae dynamics 

(Selz et al. 2017), it is also timely to consider how phytoplankton communities will 

respond to longer periods of seasonally open water.  

Under sea-ice-free conditions, water column structure (stratification or 

vertical mixing) across the Chukchi Sea (Figure 1.1) is influenced by a number of 

factors, including inflow of Pacific water to the Arctic Ocean (Mathis et al., 2014), 

vertical mixing through wind events (Nishino et al. 2015) and upwelling (e.g., Barrow 

Canyon (Hill and Cota 2005, Grebmeier et al. 2015), and the presence of nutrient rich 

Winter Water (Woodgate et al. 2005b, Lowry et al. 2015). Vertical mixing events can 

influence the magnitude of primary production in the Arctic by replenishing nutrients 
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to the euphotic zone, thereby creating an environment favorable to larger 

phytoplankton such as chain-forming diatoms (Carmack 2007, Ardyna et al. 2011). In 

contrast, stratification limits mixing, creating nutrient-depleted conditions that favor a 

community of smaller, less productive phytoplankton that exhibit lower nutrient 

requirements, e.g., cyanobacteria and pico-eukaryotes (Lee et al. 2007, Li et al. 2009). 

Recent studies have focused on the fate of net primary production (Arrigo and van 

Dijken 2015, Hill et al. 2017) and spatial distribution of phytoplankton communities 

(Tremblay et al. 2009, Ardyna et al. 2011) in response to longer open water duration 

and nutrient availability. The magnitude of primary production is affected by 

phytoplankton community composition, where diatoms are responsible for new 

primary production fueled by replenished new nutrients, while autotrophic 

picoplankton and nanoflagellate production is supported by regenerated nutrients 

(Ardyna et al. 2011). Considering that the impact of local processes on the spatial 

distribution of phytoplankton communities throughout the Chukchi Sea will likely be 

heterogeneous under scenarios of future climate change, the question of how earlier 

sea ice retreat and longer ice-free conditions will affect phytoplankton production is 

difficult to answer.  

Gaining an enhanced understanding of the mechanisms that drive the 

relationship between the environment and phytoplankton community composition 

under sea-ice-covered and sea-ice-free conditions is important to understand the 

implications of longer open water duration, increased stratification and warmer sea 

surface temperature (SST) that will change the ecological niches that define the 

habitats to which the phytoplankton are adapted. To address the question of how 
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phytoplankton will respond to a ‘new Arctic’ system that describes the potential for 

an ice-free summer (Overpeck et al. 2005), we must first characterize phytoplankton 

communities in their current habitats of sea-ice-covered and sea-ice-free waters.  

Margalef’s mandala is a conceptual model of phytoplankton succession that 

describes mechanisms by which nutrients and turbulence drive phytoplankton 

dynamics (Margalef 1978). Within this framework, smaller phytoplankton dominate 

in calm, low nutrient environments while larger phytoplankton succeed in areas of 

higher turbulence and greater nutrient concentrations. Since its inception, this model 

has been updated so that it may be applied to more complex ecosystems, such as that 

of harmful algal blooms (Glibert 2016). As with Margalef’s mandala, when we 

understand the underlying mechanisms that influence the ecological niches of Arctic 

phytoplankton under sea-ice-covered and sea-ice-free conditions, we may be able to 

predict responses of the phytoplankton communities to changes in the Arctic 

environment thereby creating a new model for that ecosystem.  

A number of synthesis papers have recently emerged using data collected 

during the the NASA-funded Impacts of Climate on EcoSystems and Chemistry of 

the Arctic Pacific Environment (ICECAPE) field campaigns that took place in 2010 

and 2011 (Arrigo 2015). One such study characterized the ecologcial drivers of the 

sea-ice algae community (Selz et al., 2017). Another important study characterized 

phytoplankton community composition of an under-ice bloom during the 2011 field 

campaign but did not provide a detailed discussion of the ecological drivers that 

shape the communities (Laney and Sosik 2014, Selz et al. 2017). Here we present a 

parallel study applying similar approaches to that of Selz et al. (2017) to compare 
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phytoplankton communites present in two different systems: sea-ice-free and sea-ice-

covered. Using data collected in the summer of 2011, our goals in this study were 

two-fold: (1) characterize phytoplankton communities and abundances across the 

northern Chukchi Self and western Beaufort Sea and (2) determine which 

environmental drivers influence phytoplankton assemblages. Studies such as these are 

particularly timely in light of substantial changes in sea ice cover discussed earlier in 

this paper.  

3.2 Materials and methods  

3.2.1 Study Site 

Environmental and phytoplankton taxonomic data were collected as part of 

the NASA funded Impacts of Climate on EcoSystems and Chemistry of the Arctic 

Pacific Environment (ICECAPE) field campaign on the United States Coast Guard 

Cutter Healy. The phytoplankton taxa and environmental parameters used in this 

study with their abbreviations are listed in Tables S1 and S2. Here we focus on a 

subset of the samples (n=380; 81 stations) collected during the summer season 

between July 2nd and July 24th, 2011 in the northern Chukchi and western Beaufort 

Seas (Figure 3.1).   

3.2.2 Sample collection and analysis 

Water column profiles were collected using a rosette equipped with a Sea-bird 

Electronics conductivity-temperature-depth sensor package (SBE 911+, Sea-bird 

Electronics): a SBE9Plus CTD with dual pumps and dual temperature (SBE3plus), 

dual conductivity (SBE4C) sensors. Additional instruments included a Chelsea 
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Technologies fluorometer (AQIII) and a Biospherical Instruments (QSP2300) 

Photosynthetically Active Radiation (PAR) sensor. Samples were collected for 

analysis of nutrients, phytoplankton taxonomy and Chlorophyll a (Chla) at discrete 

depths of just below the surface, 10, 25, 50, 100, 150, and 200 m (depending on total 

water depth) and at the Chla maximum using a rosette of twelve, 30-liter Niskin 

bottles. Nitrate (NO3
-), Nitrite (NO2

-) and Silicate (Si) concentrations were 

determined using a modification of the method of Armstrong et al. (1967). 

Ammonium (NH4
+) concentrations were measured fluorometrically (Kérouel and 

Aminot 1997). Phosphate (P) concentrations were measured following the Bernhardt 

and Wilhelms (1967) method. Chla was determined using high performance liquid 

chromatography (Van Heukelem and Thomas 2001, Hooker et al. 2005). Subsurface 

PAR (Light) was calculated as a fraction of the incoming surface PAR at each 

discrete sampling depth. Simulated-in-situ net primary productivity was measured 

using shipboard, 24-hour 14C-bicarbonate incubations (Arrigo et al. 2014).  

Phytoplankton taxonomy data (Table S1) were collected at each station using 

an Imaging FlowCytobot (IFCB) that collects images of particles greater than ~ 8 µm 

(Olson and Sosik 2007). A Beckman-Coulter Accuri C6 flow cytometer was used to 

enumerate particles between 2–14 μm (Laney and Sosik 2014) Phytoplankton 

biovolume was calculated using the method of Moberg and Sosik (2012). 

Phytoplankton carbon biomass from each taxon was estimated using the method of 

Menden-Deuer and Lessard (2000). It is important to note that the data are classified 

to the rank of genus or size class. 
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Sea ice cover and extent were determined at 6.25-kilometer resolution using 

data collected by the Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E) on the earth-observing satellite platform Aqua (Spreen 

et al. 2008). Timing of sea ice break-up was determined based on a sea ice 

concentration threshold of 15% (Frey et al. 2015). The sea ice index or ‘ICE 

presence’, similar to that of Lowry et al. (2015), was defined as the number of days 

since sea-ice breakup, where positive values represent locations still covered in ice 

and negative values represent locations no longer covered with sea ice.  

3.2.3 Statistics 

To address our goals, we applied three multivariate statistical techniques, 

Cluster Analysis (CA), Principle Component Analysis (PCA), and Canonical 

Correspondence Analysis (CCA) to the phytoplankton taxonomic composition data 

and environmental variables (Supporting information Tables A1.S1 & A1.S2, 

respectively) collected in the northern Chukchi and western Beaufort Seas (Figure 

3.1). CA was applied to the phytoplankton data to group the taxa based on similar 

distribution and abundance patterns. CCA was applied to the taxonomic and 

environmental data to explain possible relationships between phytoplankton 

community composition and the environmental parameters (Ter Braak and 

Verdonschot 1995). PCA was applied to the environmental data to elucidate 

distributional patterns across the study site. We also considered community richness 

in the samples (the count of phytoplankton taxa). From these analyses, we evaluated 

how water column properties under sea-ice-covered and sea-ice-free conditions 

impacted phytoplankton community composition. CA was performed using Primer-E 



 

 49 

 

version 7 software, a Bray-Curtis distance matrix and Group Average Linkage. Prior 

to CA, the phytoplankton data were transformed by dividing the value within each 

variable column (phytoplankton taxon) by the sum of the values. PCA and CCA were 

performed using the statistical software package Canoco Version 5. Because PCA 

gives more weight to variables with higher variances, the environmental variables 

were both centered and standardized so that the mean was equal to zero and the 

standard deviation was equal to one (Z scores). PCA was based on the correlation 

matrix. PCs were not rotated because the results were interpretable. CCA and CA 

were applied to the derived carbon abundances. For CCA, taxonomic carbon data 

were log transformed (log(X+1)) to reduce the bias associated with extreme values, 

the environmental variables were centered and standardized, and rare taxa were 

downweighted within Canoco. Because some of the environmental variables could be 

highly correlated, we also performed an interactive stepwise selection method in 

Canoco, which performs CCA on each variable separately and determines whether 

the fit of the variable is significant to p<0.05 (with Bonferroni correction).  

3.3 Results and discussion 

3.3.1 Phytoplankton community structure by CCA 

In this study, we wanted to characterize the spatial variability and underlying 

patterns of the environmental variables across the study region by applying 

multivariate statistical analyses to the environmental and phytoplankton community 

composition data. We aimed to group the phytoplankton based on presence and 

abundance and define possible relationships between the environmental parameters 

and the phytoplankton community composition. 
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CA separated the taxa into four clusters (Figure 3.2). The first cluster included 

three diatom taxa, Coscinodiscus, Odontella and Thalassionema, which were 

observed in <1.6% of all samples in this study. Because this cluster contributed a 

small percentage to phytoplankton communities in the samples, we consider these 

rare taxa and, for the sake of brevity, will not discuss them in this study. 

The second cluster, Phytoplankton Group A (PGA; ‘ice-bloomers’) was 

comprised of six diatom taxa (Bacteriosira, Fragilariopsis, Detonula, Pleurosigma, 

Nitzschia, and Navicula), a green alga (Pyramimonas), and a colonial haptophyte with 

and without diatoms (Phaeocystis). From the CCA biplot (Figure 3.3a), there is a 

clear distribution of the vectors along the CCA-axis 1, which explains 22.4% if the 

variation (Supporting information Table A1.S3a). Interactive-forward-CCA revealed 

that these taxa exhibited a significant, positive relationship (p<0.05; Supporting 

information Table A1.S3b) with the vectors silica (Si; an essential nutrient for 

diatoms) and ‘ICE presence’ (Fig. 3a; red symbols). The low turbulence and high 

nutrient environment (particularly Si; Supporting information Table A1.S4) created 

by sea ice and meltwater formed eutrophic-like conditions that are favorable for these 

taxa (Ardyna et al., 2011). Based on historical observations, these taxa are commonly 

associated with the sea ice edge and under-ice blooms in the Arctic (Selz et al., 2017; 

von Quillfeldt, 2000; von Quillfeldt et al., 2003). This group also exhibited the 

highest Chla biomass, second highest carbon abundance and highest median 

community richness (11 taxa) in samples where PGA was dominant (Supporting 

information Table A1.S4 and Text A1.S2).  
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The relationship of sea ice and Si is important to note because Si is 

regenerated in pack ice or sea-ice brine channels during the winter and released to the 

ocean surface when sea ice melts (Fripiat et al., 2014; Werner et al., 2007). Using 

measurements of silica isotopic composition in ice cores collected from first year ice 

off of Greenland and a time-dependent geochemical single-box model, Fripiat et al. 

(2014) showed that silica dissolution and regeneration occurs within the brine 

channels of the sea ice. The dissolution to production ratios of 0.4-0.9 by measuring 

initial and final values of the heavier silica isotope ��� relative to an analytical quartz 

standard. The authors suggest that biogenic dissolution of silica is favorable in sea ice 

because of bacterial hydrolyzing activity that breaks down diatom frustules. Dead 

diatoms are broken down by the brine or by high pH environment within the sea ice 

caused by productivity of sea ice algae that may cause silica dissolution. Similar 

dissolution results were also observed in Antarctic sea ice (Fripiat et al. 2007). In 

parallel studies to that presented here, Selz et al. (2017) and Laney and Sosik (2014) 

also found that the under-ice phytoplankton community accumulated in the late 

spring and was dominated by the same community of diatoms described in this study. 

Selz et al. (2017) concluded that water column phytoplankton were taxonomically 

distinct from the ice algae during the under-ice bloom. 

The third cluster, Phytoplankton Group B (PGB; Figure 3.2), included six 

diatom taxa (Eucampia, Unclassified Pennates, Pseudonitzschia, Chaetoceros, 

Thalassiosira, Cylindrotheca), nanophytoplankton, picophytoplankton and 

unclassified dinoflagellates. PGB exhibited the highest carbon abundance and second 

highest Chla biomass and median community richness (10 taxa) in samples where 



 

 52 

 

PGB was dominant. Interactive-forward-CCA revealed that these taxa (Figure 3.3a, 

green symbols), exhibited a significant, positive relationship (p<0.05) with density, 

salinity and depth where DIN and P concentrations were higher (Supporting 

information Table A1.S4). Like PGA, many of these taxa are commonly associated 

with spring blooms (Daugbjerg, 2000; Gradinger, 1996; von Quillfeldt, 2000). Brown 

et al. (2015) observed that during ICESCAPE 2010 and 2011, the SCM formed at 

least one month prior to sea ice retreat and was seeded by some members of the 

under-ice phytoplankton bloom (PGA). Once sea ice had fully retreated, the SCM 

was found at a depth of 15–30 m, deeper than the net primary productivity maximum 

(Brown et al., 2015). Nano- and picophytoplankton were observed in 99% of the 

samples, under both sea-ice-covered and sea-ice-free conditions and may be 

considered cosmopolitan within in this region (Supporting information Text S2). 

The fourth cluster, Phytoplankton Group C (PGC; Figure 3.2) or 

‘oligotrophic-type’ taxa included a chrysophyte (Dinobryon), four diatom taxa 

(Ephemera, Leptocylindrus, Melosira, and Rhizosolenia), a dinoflagellate (Polarella) 

and a silicoflagellate (Dictyocha). Interactive-forward-CCA (Figure 3.3a, orange 

symbols) revealed that these taxa exhibited a significant, positive relationship 

(p<0.05) with the vectors ‘Temp’ and ‘Light’. This group was also characterized with 

the lowest mean Chla biomass, carbon abundance and median community richness 

(3) in samples where PGC was dominant. PGC was observed at sampling sites no 

longer covered with sea ice, with the exception of Rhizosolenia. These taxa represent 

remnants of sea-ice-presence, such as Polarella, found in sea ice and can form cysts 

(Montresor et al., 2003) and taxa that are typically found in fresher, low-nutrient 
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conditions, i.e., Rhizosolenia (e.g., Villareal, 1990), Dinobryon (e.g., Balzano et al., 

2012) and Leptocylindrus (e.g., Davis et al., 1980). An oligotrophic-type ecosystem 

(depleted nitrate) was created when the spring under-ice bloom depleted the nutrients 

in the surface waters supporting lower phytoplankton biomass similar to that 

described in Ardyna et al. (2011) and Tremblay et al. (2009) for the Canadian High 

Arctic.  

From these analyses we separated the phytoplankton assemblages into four 

groups. PGA was found as part of the under-ice blooms, in the presence of sea ice and 

greater Si. PGB dominated the SCM associated with greater DIN and P and was 

partially seeded by the under-ice phytoplankton community. PGC was found 

primarily in warm, nutrient-depleted, sea-ice-free waters. Next, we discuss the 

environmental forcing that shaped the spatial distribution of these groups. 

3.3.2 Water column structure explained by PCA 

Using PCA, the measured environmental variables (Supporting information 

Table A1.S2) in samples collected from CTD profiles were grouped based on similar 

environmental characteristics and, using vectors to represent the environmental 

parameters, produced an ordination diagram or biplot to illustrate the relationship 

between the samples and environmental parameters. The direction and length of the 

vectors determine the direction at which each parameter increased the most and the 

rate of change of each parameter with the samples. At first glance, we see a clear 

distribution of the vectors along the PC-axis 2 of the biplot, explaining 48% of the 

variation (Figure 3.3b), where the magnitude of light and temperature increase in one 

direction and all other parameters, except ‘ICE presence’, increase in the opposite 
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direction. The ‘ICE presence’ vector explained 21% of the variation in the direction 

of PC-axis 1. We went a step further to distinguish each sample based on whether 

they were collected underneath the sea ice (squares) or in open water (circles) and if 

there was a depth-dependence to the distribution of the samples, where red symbols 

represent depths shallower than 25 m and blue symbols represent samples collected 

deeper than 25 m. We found that samples collected at depths shallower than 25 m 

(red symbols) or in a sea-ice-free location (circles) were associated with higher water 

temperatures and greater light. Samples collected at depths greater than 25 m (blue 

symbols) and those collected underneath the ice (squares) were positively associated 

with nutrients, salinity, density, and depth (PC-axis 2). Density and salinity followed 

similar patterns as salinity drives stratification in high latitude seas while subtropical 

seas are stratified by temperature (Carmack, 2007). The parameter ‘ICE presence’ 

explained the variability of the sampling sites across the PC-axis 1, where sites 

collected underneath the ice (squares) are found along the left side of the plot and 

sites no longer covered by sea ice (circles) were distributed along the right side of the 

plot. Our inclusion of an index for sea ice presence in the statistical analyses proved 

to be a necessary explanatory factor to group the samples. 

3.3.3 Environmental forcing and phytoplankton spatial distribution 

CA and CCA revealed three major phytoplankton groups based on the 

distributional patterns of the phytoplankton taxa related to nutrients (particularly Si), 

temperature, light and sea ice. Based on PCA, we concluded that the distributional 

pattern of the environmental variables was related to both sample depth and sea ice 

extent. These patterns were evident both vertically in the water column and 
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horizontally in space. Therefore, the PCA and CCA biplots reflect spatial variations 

related to sea ice extent. CCA-axis 1 is representative of the effect of time, or the 

seasonal transition of sea ice cover (negative CCA-axis 1) to open water (positive 

CCA-axis 1). The CCA-axis 2 dictates the vertical distribution of phytoplankton taxa 

in the water column in response to nutrient availability. Sea ice extent, and its effect 

on nutrient availability, SST and stratification, is clearly a major driver of the 

dynamics of the three phytoplankton groups in this study. 

The presence of PGA appears to be driven by the favorable conditions created 

by sea ice, such as melt water-induced stratification (allows them to stay at the 

surface to access light) and higher Si and DIN concentrations, indicated by the 

median ratios of P:Si and DIN:Si (0.041 and 0.339, respectively at under-ice bloom 

stations 56-101; Laney & Sosik, 2014). Large diatoms, particularly Bacteriosira, 

Fragilariopsis, Detonula, Pleurosigma, and Navicula flourish in the high nutrient, 

low turbulence environment created by the presence of sea ice and melting ice that 

creates a freshwater lens that keeps the diatoms near the surface. Margalef’s original 

schematic placed large diatoms in the top right-hand corner of the diagram associated 

with high nutrients and low turbulence. The re-drawn version of the schematic by 

Balch (2004) includes harmful algal bloom dinoflagellates in the top left-hand corner 

associated with high nutrients and low turbulence. Since no harmful algal bloom 

dinoflagellates were observed in this study3, we can replace this group large diatoms. 

As open water duration lengthens, the surface ocean warms and become depleted of 

                                                 
3 Although HAB species were not detected in this study, recent studies have detected Alexandrium, a 

known toxic species further south of this study in the Chukchi Sea beginning in 2013 (Natsuike et al. 

2017) and could pose a problem in the Chukchi Sea. 
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nutrients and the spring bloom ends. PGC is observed in the warmer, nutrient 

depleted surface ocean as indicated by the median ratios of P:Si and DIN:Si (0.182 

and 0.022, respectively).  Once nutrients have been depleted in the surface water, 

PGB forms an SCM deeper in the water column at the 1% light level and where 

nutrients are more abundant (at top of the nutricline). PGB includes some taxa from 

the under-ice phytoplankton community already acclimated to low light conditions at 

depth. The SCM forms in response to depleted nutrients in the upper water column 

and increased light diffusion to deeper depths.   

By characterizing phytoplankton dynamics relative to the presence or absence 

of sea ice using statistical tools, we have uncovered feedback mechanisms of climate 

change on critical features of the water column in the Chukchi Sea. Moreover, a new 

interpretation of Margalef’s mandala using the results from this study highlights the 

continued importance of Margalef’s conceptual model in understanding 

environmental drivers on phytoplankton communities. 

3.3.4 Feedbacks of climate change 

Using the output of these analyses, we can begin to elicit the implications of 

earlier sea ice retreat, thinning ice, reduction of sea ice extent and their feedbacks of 

warmer SST and enhanced stratification in this system. Through our knowledge of 

ecosystem function and the structure of phytoplankton communities, we can make a 

prediction about how the three phytoplankton groups revealed in this study will 

behave in the future northern Chukchi and western Beaufort Seas and make 

inferences regarding the transfer pathways of phytoplankton carbon. Based on the 

current trajectory of Arctic climatology, we expect to see a lengthening of open water 
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duration where PGC will be favored for a longer period than PGA and PGB. The fate 

of phytoplankton carbon will be determined by the productivity rates and total 

biomass of each phytoplankton group present in the system.  

Within our current framework of understanding, an ecosystem characterized 

by low chlorophyll and carbon biomass and depleted nutrients will subsist on 

regenerated production while an ecosystem dominated by large diatoms and replete 

with nutrients represents new production (Hill et al., 2005). With the new analyses, 

the biomass of PGC will be lower than the diatom-rich groups PGB and PGC. We 

expect to see lower net primary productivity rates of PGC resembling those observed 

in the summer of 2011, where lower simulated-in-situ net primary productivity (e.g., 

0.484 g C m-2 day-1) was measured in a region dominated by PGC compared to the 

region dominated by PGA and PGB (e.g., 6.726 and 1.275 g C m-2 day-1). Recent 

work by Ardyna et al. (2017) characterized shifts from eutrophic to oligotrophic 

conditions in the Canadian Arctic that were also driven by sea ice cover and nutrient 

depletion. We believe this study and others mentioned throughout this paper (Ardyna 

et al., 2011; Hill et al., 2005; Selz et al., 2017) improve our understanding of this 

ecosystem. 

3.4 Conclusions 

The objective of this study was to uncover the underlying mechanisms that 

drive phytoplankton community richness and spatial patterns in the northern Chukchi 

and western Beaufort Seas comparing rare data collected during a single field 

campaign in sea-ice-cover and sea-ice-free conditions. We went beyond Chla to 

consider carbon quantity and phytoplankton phenotypes by including phytoplankton 



 

 58 

 

taxonomic data in the analyses. It is important to emphasize the paucity of high-

resolution phytoplankton community data in this region with coincident 

measurements of hydrochemistry, making this is a unique data set. We confirmed that 

phytoplankton community structure was driven by stratification, nutrients and light. 

We identified three major phytoplankton groups related to environmental variables in 

the Chukchi Sea. This study identifies a group of phytoplankton, PGC, typical of 

open water that adds to previously published identification of communities more 

likely to be found in sea ice PGA and PGB.  

Longer open water duration and lower phytoplankton carbon biomass could 

have implications for the upper trophic level consumers of the food web that rely on 

phytoplankton carbon for food. A shift in food web dynamics related to changes in 

phytoplankton community composition is likely to impact both food quantity and 

quality, comparable to those observed in the northern Bering Sea (Grebmeier et al. 

2006b) and western Antarctic Peninsula where the phytoplankton community has 

shifted from mainly large diatoms to picophytoplankton and nanoflagellates (Moline 

et al. 2004, Montes-Hugo et al. 2009, Smith et al. 2012). Notably, we applied a sea 

ice index that served as a proxy for the seasonality that controls phytoplankton life 

strategies in this region. Our hope is that the results from this study will assist the 

community in generating accurate models of phytoplankton community composition 

in the global ocean in response to climate change. 

  



 

 59 

 

Figures Chapter 3 

Figure 3.1. Map of ICESCAPE 2011 sampling sites. Location of each sampling site 

has been superimposed on the bathymetry (white lines) and timing of sea ice breakup 

(colors). Each pixel represents the day of breakup during the study period in 2011 

determined from the timing of when AMSR-E sea ice concentrations fall below a 

threshold of 15%. 
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Figure 3.2. CA generated four clusters (y-axis dendrogram): Rare taxa, PGA, PGB 

and PGC. Within in the heatmap, warmer colors (red to white) and cooler colors (blue 

to black) represent the relative greater presence or lower presence of a taxon, 

respectively. The x-axis dendrogram represents sample clusters. 
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Figure 3.3. (a) The CCA biplot shows the relationships between observed 

phytoplankton taxa and the environmental variables where black triangles represent 

rare taxa, red triangles represent PGA, green triangles represent PGB and orange 

triangles represent PGC as determined from CA. (b) The PCA biplot shows the 

relationship between samples and the environmental variables where red squares 

represent samples collected at depths shallower than 25 m near the ice edge or 

underneath the ice, blue squares represent samples collected at depths deeper than 25 

m near the ice edge or underneath the sea ice, blue circles represent samples collected 

at depths deeper than 25 m in a location no longer covered by sea ice, and red circles 

represent samples collected at depths shallower than 25 m in a location no longer 

covered by sea ice. Axes were flipped to match the CCA biplot. 
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Chapter 4: The brightest signal of climate change: An 

application of remote sensing reflectance to assess ecosystem 

status in the Chukchi Sea 

4.1 Introduction 

Marine ecosystem status is defined by its dynamics, (e.g., seasonal cycles and 

long-term variability), its living and non-living constituents (both physical and 

chemical) and how all of the constituents interact with one another in conjunction 

with any inherent variability (Constable et al. 2016). The impacts of climate change 

are currently being felt on Earth as a consequence of human activities (IPCC 2018). 

For example, large-scale coral bleaching and die-offs have been caused by rising 

ocean temperatures (Baker et al. 2008). Harmful algal blooms of toxic phytoplankton 

are on the rise correlated with nutrient loads into coastal environments and rising 

temperatures (Wheeling 2019). Given the sensitivity of our ocean ecosystems to these 

changes in global temperature, elucidating ecosystem variability from ecosystem 

change will assist us in evaluating the acute and chronic symptoms of large-scale 

changes in ecosystem status and function, such as changes in habitat, food web 

structure, organism diversity and energy transfer (Constable et al. 2016).  

Significant biological shifts are occurring in the northern Bering Sea and 

Chukchi Sea owing to enhanced warming and a significant decline in sea ice 

thickness and persistence (Grebmeier 2012, Moore et al. 2014, Goethel et al. 2019, 

Grebmeier et al. 2019). Changes in predator-prey interactions are expected with loss 

of sea ice, as sea ice acts as a platform for apex predators including walrus and sea 

birds (Blanchard et al. 2017). The loss of sea ice has affected grey whale distributions 

owing to declines in the amphipod population, a major food source. Foraging 



 

 63 

 

organisms, such as sea ducks and walruses, use the sea ice for resting while foraging 

for food and consequently are being greatly affected by the declines in sea ice 

(Grebmeier et al. 2006b). Some benthic organisms, and even Walleye Pollock and 

Pacific Cod are shifting northward where cooler water temperatures exist (Grebmeier 

et al. 2018, Eisner 2019). Moreover, for the first-time in reported history, cysts of 

Alexandrium, a known toxic species, have been observed in the Chukchi Sea 

(Natsuike et al. 2017), in response to the decline of sea ice coupled with an increase 

in ocean temperatures and sunlight. These are just a few indications that a change in 

ecosystem status is occurring in the Chukchi Sea.  

To monitor many of the aforementioned ecosystem changes, extensive field 

platforms currently exist in the northern Bering and Chukchi Seas, including the 

Distributed Biological Observatory (DBO; See Figure 4.1 in Grebmeier et al. (2019)). 

The purpose of the DBO is to create an internationally coordinated effort of large-

scale, standardized shipboard and mooring-based measurements of biological, 

chemical and physical parameters. Standardized measurements include surveys of 

benthic organisms and fish, as well as water column measurements of hydrography, 

nutrients, phytoplankton and zooplankton taxonomy and biomass (Moore and 

Grebmeier 2018, Moore et al. 2018, Grebmeier et al. 2019). Another tool, ocean color 

remote sensing, can be used in conjunction with field surveys to further evaluate 

long-term trends in ecosystem status and to a certain degree supplement data 

collection when research cruises are not active. Satellite ocean color data has been 

widely used as a water quality indicator, using derived products such as Chlorophyll a 

(Chla), a proxy for biomass, and turbidity (Matthews 2011) and to monitor for 
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changes in ecosystem status and function that may be indicated by changes in 

phytoplankton biomass (Del Castillo et al. 2019). Ocean color remote sensing 

reflectances (Rrs(λ)) and satellite derived Chla are both considered Essential Climate 

Variables (ECV), measures that assist in the characterization of the Earth’s climate 

and contribute to the climate data record. ECVs are critical members of the climate 

data record, which is defined as a set of continuous measurements that are of a 

sufficient length of time that they can be used to evaluate climate variability (Groom 

et al. 2019).  

In a recent study, Dutkiewicz et al. (2019) suggested that, Rrs(λ), defined as 

the light that exits the water column and is measured by satellite-borne instruments, 

will provide the earliest and strongest signal of marine ecosystem change because 

they are not subject to the natural variability and algorithm uncertainties as derived 

products. Moreover, responses in Rrs(λ) not only include the signal of Chla but all of 

the optically active constituents in the water, which include colored dissolved organic 

matter (CDOM), nonalgal particles, and phytoplankton pigment signatures, all of 

which influence the light field of the water column (Dutkiewicz et al. 2019). 

The Arctic region is warming at least twice the global average rate (Trenberth 

et al. 2007, Wassmann 2011). Timing of sea ice break up is crucial to the initiation of 

the spring diatom bloom and subsequent carbon export, a major source of food for the 

benthic community. Sea ice is an important driver of nutrients, light and stratification 

and, therefore, its presence or absence influences the diversity and abundance of both 

sea ice algae and pelagic phytoplankton (Neeley et al. 2018). In response to earlier 

sea ice breakup, the spring bloom is occurring earlier and phytoplankton growth is 
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extended over a longer season (Wassmann 2011). Under normal conditions, ice algae 

and pelagic phytoplankton bloom in early spring with the export of fresh 

phytoplankton carbon following soon after. With the loss of multiyear sea ice and 

decline in sea ice extent, longer open water duration is leading to thermal 

stratification that prevents nutrients from entering the euphotic zone, except during 

storm and wind events (Wassmann 2011, Nishino et al. 2015). Longer open water 

duration will also extend the time for exported production to occur (Wassmann 2011). 

Moreover, the spring bloom is occurring earlier, and the phytoplankton growth season 

has been extended longer over the summer, spreading the usual large pulse of 

phytoplankton carbon export over a longer period of time. It is unknown how this 

new ecosystem status will affect primary producers and the entire food web in the 

Chukchi Sea in the future, although we are already seeing its effects. 

Considering the ecosystem changes observed in the Chukchi Sea, it is 

essential that all tools available for evaluating long term trends in ecosystem status 

are exploited, including ocean color remote sensing. Here, we present the application 

of a new algorithm, the Apparent Visible Wavelength (AVW; (Vandermeulen et al. in 

Review)), to monthly time series satellite Rrs(λ) data collected from the Chukchi Sea. 

The AVW is an algorithm that reduces an integral-normalized Rrs(λ) spectrum to one 

number that represents the apparent color of the water. Because AVW is based on the 

shape of the Rrs(λ) spectrum, it is representative of all types of absorbing and 

scattering constituents in the water column, including phytoplankton. The significant 

trends in AVW and satellite-derived Chla observed in this study will show that 

ecosystem-level changes are occurring in the Chukchi Sea. The potential 
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environmental factors that may be driving this change and a preliminary 

interpretation of the underlying optical-active constituents that are influencing AVW 

will be discussed. 

4.2 Materials and Methods 

4.2.1 Satellite data 

Level 3 monthly Moderate Resolution Imaging Spectroradiometer-Aqua 

(MODISA) Rrs(λ), and Chla data (June-September, 2003-2018, 4-kilometer 

resolution) were downloaded for the entire Chukchi Sea (-180˚W to -140˚W, 65˚N to 

76˚N) from the NASA Ocean Biology Processing Group data webpage4. For the sake 

of continuity, the 2003-2018 time period was chosen because it is inclusive of the 

entire lifespan of the MODISA mission. AVW was computed for each 4-km pixel 

using all visible wavelengths (MODISA λ = 412, 443, 469, 488, 531, 547, 555, 645, 

667, 678 nm). The standard OCx band ratio algorithm was used to derive Chla 

(O'Reilly et al. 1998, O’Reilly et al. 2000).   

The methods outlined here are those proposed by Vandermeulen et al. (in 

Review). AVW represents one number in units of nm-1 and is indicative of the shape 

of Rrs(λ) and represents the apparent color of the water (Vandermeulen et al. In 

review). AVW was computed as the weighted harmonic mean of Level 3 monthly 

MODISA Rrs(λ) using Eq. 8 
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where Rrs(λ i) is the value of satellite or in situ measured Rrs(λ i)  at each given 

wavelength (n=9) of the instrument. The normalized Rrs(λ) spectra were derived by 

dividing each value of Rrs(λ) by the trapezoidal integration of the entire spectrum, 

thereby removing the magnitude and focusing on the spectral shape. Because the 

shape of a normalized Rrs(λ) spectrum is influenced by each of the optically active 

constituents of the water column, underlying ecosystem alterations could manifest in 

changes in the signals of absorption and scattering thereby influencing dominant 

color of the water represented by AVW . Further details regarding this method are 

provided in Appendix 3. 

4.2.2 Spatial statistical analyses 

For this study, the Earth Trends Modeler module in the TerrSet Geospatial 

Monitoring and Modeling software5 was used to compute statistical trends in AVW, 

Chla, sea surface temperature (SST) and sea ice concentrations over the study period 

2003-2018 in the Chukchi Sea. Satellite data scenes were first imported into TerrSet 

and converted into rasters using TerrSet’s GDAL raster conversion utility. To 

compute annual trends of AVW, SST, Chla and sea ice concentration for June-

September, 2003-2018, the median trend (Theil Sen) analysis method was used. 

Median trend is a robust, nonparametric technique that is optimal for computing rates 

of change in noisy data (Hoaglin et al. 1983). To ensure statistical robustness, only 

pixels that contained data at least 71% of the study period (i.e., 12 out of 16 years) 

were included in the analyses. Pixels with data covering less than 71% of the time 

were masked out of the analysis. The Theil Sen method applies a 29% breakdown 

                                                 
5 https://clarklabs.org 
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bound or point that limits the number of extreme values that could affect the results of 

the analysis. This means that extreme data points must occur more than 29% of the 

time to be included within the analysis. A Mann Kendall significance test was also 

applied during the time series analyses to test for statistical significance within the 

trends (Neeti and Eastman 2011). For this study a p value of less than 0.1 (p<0.1) was 

considered significant. 

To examine specific locations of interest more closely, the median of 

normalized AVW, Rrs(λ), and monthly Chla values were computed for a 5x5 pixel 

box around 15 locations across the Chukchi Sea for every month and year of the time 

series. To examine trends within the Rrs(λ), detrended least squares robust regression 

(robustfit function in MATLAB) was applied to the normalized Rrs(λ) values at 412, 

443, 490, 555 and 670 nm (Vandermeulen et al. in Review). 

4.2.3 Ancillary data 

Sea ice concentrations were determined at 25-kilometer resolution using data 

collected by the Special Sensor Microwave Imager (SSM/I) and the special sensor 

Microwave Imager/Sounder (SSMIS) sensors on the Defense Meteorological Satellite 

Program satellites (Cavalieri et al. 2011). Level 3 monthly MODIS-Aqua daytime 

11μ SST data were downloaded for the entire Chukchi Sea (-180˚W to -140˚W, 65˚N 

to 76˚N) from the NASA Ocean Biology Processing Group data webpage. A scale 

factor was applied to convert the SST data to geophysical numbers and additional sea 

ice masking was performed prior to analysis.  

Particulate and dissolved absorption data were collected as part of the NASA 

funded Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific 
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Environment (ICECAPE) field campaigns on the United States Coast Guard Cutter 

Healy that took place in 2010 and 2011 (Arrigo et al. 2014). Discrete water samples 

(n=49) were collected from the surface during the summer season between June 18 

and July 16, 2010 and June 28 and July 24, 2011 in the northern Chukchi and western 

Beaufort Seas. Filter pad samples were collected by vacuum filtration (~127 mmHg) 

onto pre-combusted 25 mm Whatman GF/F filters. Samples were placed in HistoPrep 

tissue capsules, flash frozen in liquid nitrogen and stored at -80° C until analysis. 

Values of total particulate absorption (ap(λ)) and absorption of non-pigmented 

particles (anap(λ)) were derived using the method of Stramski et al. (2015). 

Phytoplankton absorption (aph(λ),) was determined by the subtraction of anap(λ) from 

ap(λ). Absorption coefficients of colored dissolved organic matter (aCDOM) was 

measured at each station using an Ultrapath World Precision liquid waveguide system 

(Matsuoka et al. 2015). Total absorption in each sample is defined as the sum of ag(λ), 

anap(λ), and aph(λ). To determine the fractional contribution of each constituent of 

absorption, ag(λ), anap(λ), and aph(λ) were normalized to the computed total 

absorption.  

 Water column profiles of upwelling radiance (Lu(λ); μW cm-2 nm-1 sr-1) and 

downwelling irradiance (Ed(λ); μW cm-2) were measured with either a Biospherical 

PRR-800 with a spectral range of 313-875 nm or a Biospherical C-OPS profiling 

radiometer with 19 spectral bands between 300 and 900 nm following NASA Ocean 

Optics Protocols (Mueller and Austin 1995). Rrs(λ) were computed using the methods 

of Werdell and Bailey (2005). AVW was computed from Rrs(λ) derived for each 

station using the previously described method. 
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Sea ice cover and extent were determined at 6.25-kilometer resolution using 

data collected by the Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E) on the earth-observing satellite platform Aqua (Spreen 

et al. 2008). Although the AMSR-E sea ice data are collected at a higher spatial 

resolution than the SSMIS data that were used for the trend analysis, Frey et al. 

(2015) showed that both data sets are similar in this region. Timing of sea ice break-

up was determined based on a sea ice concentration threshold of 15% (Frey et al. 

2015). The sea ice index was defined as the number of days since sea-ice breakup, 

where negative values represent locations still covered in ice and positive values 

represent locations no longer covered with sea ice (Neeley et al. 2018).  

Principal Component Analysis (PCA) was applied to the fractionated 

absorption, AVW, bottom depth and a sea ice index. PCA was performed using the 

statistical software package Canoco Version 5. Because PCA gives more weight to 

variables with higher variances, the environmental variables were both centered and 

standardized so that the mean was equal to zero and the standard deviation was equal 

to one (Z scores). PCA was based on the correlation matrix. PCs were not rotated 

because the results were interpretable. When interpreting PCA biplots, the direction 

and length of the vectors determine the direction at which each parameter increased 

the most and the rate of change of each parameter with the samples.  

To further explore which optically-active constituents, CDOM, nonalgal 

particles or phytoplankton, could be driving the observed trends in AVW, principal 

component analysis (PCA) was applied to /the proportion of CDOM (ag), nonalgal 

particles (anap), and phytoplankton (aph) to total nonwater absorption measured at the 
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surface during two field campaigns, ICESCAPE 2010 and 2011. Radiometric profiles 

coincident with absorption measurements were converted to AVW values and acted 

as the samples in PCA. Bottom depth, a sea ice index (ICE presence; number of days 

since sea ice retreated) and Chla were included as additional parameters to further 

explain the relationship of absorption to AVW. Sea ice presence has been used 

successfully in previous studies to elucidate relationships between the environment 

and phytoplankton (Neeley et al., 2018).  

4.3 Results  

4.3.1 Time series trends in AVW  

The AVW algorithm was applied to monthly MODISA Rrs(λ) data collected in 

the Chukchi and western Beaufort Seas for June – August, 2003-2018. An example 

map of AVW and the corresponding integral normalized Rrs(λ) spectra for the 

Chukchi Sea observed for September 2018 can be seen in Figure 4.1a and 4.1b, 

respectively. Note that the colors of each spectrum represent the ‘dominant color’ or 

AVW based on the weighted mean of the integral normalized Rrs(λ).  

Median trend analysis of AVW across the Chukchi and western Beaufort Seas 

for the 2003-2018 period revealed a statistically significant (Mann Kendall 

significance test, p<0.1) positive trend, or red shift, of AVW at a rate of up to 15 

nm/decade over a large region of the Chukchi Sea in June, July and September, as 

indicated by hashed regions in Figures 4.2a, 4.2b and 4.2d. The red shift in AVW is 

observed mainly in the eastern and central Chukchi Sea in June and both eastern and 

western portions of the Chukchi Sea in July and September. There was a significant 

negative trend or blue shift of AVW observed in the southeast the Chukchi Sea and in 
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the Kotzebue Sound in June at a rate of 5-10 nm/decade (indicated by the blue color 

in Figure 4.2a). Although there were small areas of the Chukchi Sea that exhibited 

significant changes of AVW, including a negative trend or blue shift in AVW in the 

northcentral region of the Chukchi and western Beaufort Sea, the month of August 

appeared to remain relatively stable over the 16-year time series (Figure 4.2c). 

4.3.2 Time series trends in Chla 

In the previous sections the significant trends in AVW over much of the 

Chukchi Sea were described. The next step was to investigate if a parallel trend in 

Chla that could be correlated with the trends in AVW. Median trend analysis was 

applied to monthly composite images of MODISA Chla in the Chukchi and western 

Beaufort Seas for June-September, 2003-2018 (Figures 4.3a-4.3d). Overall the same 

regions that exhibited significant positive and negative trends in AVW also exhibited 

significant trends (p<0.1) in Chla (in units of mg/m3). June and September displayed 

significant increase in Chla of ≥ 0.5mg/m3/decade (Figures 4.3a, 4.3d). Interestingly, 

July showed a significant decrease in Chla (Figure 4.3b) in the same region that 

exhibited a significant red shift in AVW (Figure 4.2b) over the study period. The 

southwest region of the Chukchi Sea and Kotzubue Sound that showed the blue shift 

in AVW within the month of June showed a coincident decrease in Chla at a rate of 

>0.5 mg/m3/decade over the study period (Figure 4.3a). Similar to AVW, large-scale 

significant trends in Chla were not observed in August (Figure 4.3c). 



 

 73 

 

4.3.3 Evaluation of spatio-temporal trends of AVW, Rrs(λ) and Chla at specific 

locations 

To further investigate the trends in both AVW and Chla described in sections 

4.3.1 and 4.3.2, fifteen locations (see Figure 4.1a) were chosen quasi-randomly to 

demonstrate the spatial variability and underlying shifts in Rrs(λ) spectral shape, Chla 

concentration and trends in the individual Rrs(λ) channels. At each location the 

median Rrs(λ) spectra (in units of nm), monthly Chla (in units of mg/m3) and least 

squares regression results for five normalized Rrs(λ) channels (412, 443, 488, 555 667 

nm) in units per steradian (Sr-1) per decade were plotted separately for each month of 

the study. Note that five of the locations were chosen because they were at or near 

stations where in water samples and measurements were collected during the 2010 

and 2011 ICESCAPE field campaigns and, therefore, would be relevant to the 

interpretation of the results. Three locations (4, 8 and 12; see Figure 4.1a) that 

exhibited significant trends in AVW, Chla and normalized Rrs(λ) will be the focus of 

the following section. However, the figures for all locations are reported in Appendix 

2. 

Location 4 displayed significant (p<0.1), positive trends (red shift) in AVW 

for June and July 2003-2018 at rates of 7.93 and 8.84 nm/decade, respectively 

(Figures 4.2a, 4.2c; Tables 4.1, 4.2). Although not significant (p0.1), positive trends 

in AVW were also observed in August and September 2003-2018 (Figures 4.2b, 4.2d; 

Tables 4.1c, 4.1d). For June and July, the observed red shift in AVW is clearly 

observed in the normalized Rrs(λ) spectral shapes that exhibit a flattening and peak 

shift from the blue end (shorter wavelengths) to the red end (longer wavelengths) of 
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the visible spectrum between 2003 and 2018 (Figures 4.4a, 4.4b). August and 

September exhibited larger variability in the normalized Rrs(λ) spectra but did not 

show a clear trend.  

Linear regression analysis of the selected five Rrs(λ) channels corroborated 

this red shift in Rrs(λ) spectral shape from June and July 2003-2018, showing 

significant (p<0.1) negative trends in the blue channels of Rrs(412), Rrs(443) and 

Rrs(488) at rates of -5.231*10-4, -6.094*10-4 and -3.597*10-4/Sr/decade with a 

coincident significant increase in the green and red channels, Rrs(555) and Rrs(670) at 

rates of 4.988*10-4 and 1.618*10-4/Sr/decade, respectively (Figure 4.4e; Table 4.5). 

Locations 2 and 3 exhibited similar trends in AVW and Rrs(λ) for the months of June 

and July, with a red shift in AVW and significant, positive trends for Rrs(555) and 

Rrs(670) (Figures A2.2, A2.3; Table 4.5). The shifts in spectral shape and trends in 

the individual Rrs(λ) manifest in the AVW values, with a general increase in AVW for 

all four months over the study period (Figure 4.4f).  

Location 4 showed a significant, increase in monthly Chla of 0.312 and 0.580 

mg/m3/decade for June and September, respectively, contemporaneous with the 

trends in AVW and Rrs(λ) (Figures 4.2a, 4.2d; Tables 4.1, 4.3). Trend analysis also 

revealed a significant decrease in Chla for July over the 2003-2018 study period at a 

rate of -0.305 mg/m3/decade (Table 4.2, Figure 4.2b). Although a slight increase in 

Chla in 2015 and 2018 was observed, Chla remained fairly low and stable during July 

(Figure 4.4g). June and, particularly September, exhibited some larger peaks in Chla, 

particularly 2017 for September (5.5 mg/m3) and 2014 for June (2.5 mg/m3). The 

Chla in September 2017 occurred coincidently with a peak in AVW (Figure 4.4f). 
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Although not statistically significant (p>0.1), August also exhibited a slight increase 

in Chla over the study period (0.197 mg/m3/decade). All four months displayed 

slightly higher Chla concentrations in 2018 compared to 2003 (Tables 4.6-4.9). 

Locations 2 and 3 also exhibited positive and negative trends in June and July, 

respectively, with some Chla peaks in June and August (Figures A2.2, A2.3).  

Location 8 exhibited a significant (p<0.1), red shift in AVW in the months of 

June and August at rates of 8.46 and 8.52 nm/decade, respectively. Although not 

statistically significant (p>0.1), July and September also showed red shifts in AVW at 

rates of 6.43 and 2.85 nm/decade, respectively. The normalized spectral shapes for 

June and August (Figure 4.5a, 4.5c) display a flattening and shift in the spectral peaks 

to the longer wavelengths or red-end spectrum from the early (2003-2006) to later 

years (2015-2018) of the study period.  

Linear regression analysis of the five Rrs(λ) channels corroborated the red shift 

in AVW, exhibiting a significant (p<0.1) decrease in normalized Rrs(443) and 

Rrs(488) at rates of 4.379*10-4 and 3.335*10-4/Sr/decade and significant increases 

(p<0.1) in normalized Rrs(555) and Rrs(670) at rates of 3.828*10-4 and 1.728*10-

4/Sr/decade (Figure 4.5e; Table 4.5). Locations 5 and 6 showed similar positive trends 

in AVW in the month of June at rates of 8.79 and 8.43 nm/decade, respectively 

(Figures A2.4 and A.5; Table 4.1). Location 6 also exhibited significant, positive 

trends in Rrs(555) and Rrs(670) at rates of 1.924*10-4 and 1.089*10-4/Sr/decade, 

respectively (Figure A.5; Table 4.5). Despite large annual variability, particularly in 

August and September, the shifts in spectral shape and trends in the individual Rrs(λ) 
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channels manifested in AVW with a general increase over the months of June, August 

and September over the study period (Figure 4.5f).  

Location 8 exhibited an increase in Chla over the 2003-2018 study period in 

the months of June and August (Figure 4.5g) at rates of 0.358 and 0.599 

mg/m3/decade, respectively (Tables 4.6, 4.8) contemporaneous with the red shift in 

AVW. Although not significant, July exhibited a negative trend in Chla and 

September exhibited a positive trend in Chla (Figure 4.5g; Tables 4.7, 4.9). Large 

peaks in Chla were observed in September, particularly in 2012 and 2017 (~7.5 and 9 

mg/m3, respectively) that occurred coincident with small peaks in AVW (Figure 4.5f). 

A steady increase over the 16-year period can be observed in the months of June and 

August, with a peak in August 2017 (~6.5 mg/m3; Figure 4.5g). Similarly, Location 5 

displayed positive trends for Chla in June and September (p<0.1) with a peak of Chla 

in September 2017 (5.5 mg/m3; Figure A2.4). 

Location 12 exhibited significant (p<0.1),  red shifts in AVW for the months 

of July and September at rates of 5.92 and 5.8 nm/decade, respectively (Figures 4.6 b, 

4.6d; Tables 4.2, 4.4). These rates are similar to that of location 13, which also 

exhibited red shifts in AVW of 4.67 and 4.02 nm/decade, respectively, during the 

months July and September (Tables 4.2, 4.4). Although not significant, Location 12 

exhibited a negative trend (blue shift) in AVW, similar to Location 10 that exhibited a 

significant, negative trend in AVW at a rate of 6.96 nm/decade in the month of June 

(Figure A.8; Table 4.1). The normalized spectral shapes for July and September show 

a peak shift towards the longer wavelengths (red end) with a concomitant peak 

flattening (Figures 4.6b, 4.6d). Although the spectral shapes for September are more 
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variable than in July, the spectra observed in the later years (2015-2017, in red) 

clearly show the peak shifting to the right (Figure 4.6d).  

Linear regression of the of the five Rrs channels corroborated the observed 

shift in spectral shape and AVW, with significant, negative trends in Rrs(412) and 

Rrs(443) at rates of -4.006*10-4 and -3.791*10-4/Sr/decade and significant, positive 

trends in normalized Rrs(555) and Rrs(670) at rates of 2.572*10-4 and 0.802*10-

4/Sr/decade (Figure 4.6e; Table 4.2). These trends are similar to Location 13, which 

also displayed significant, negative trends in Rrs(412) and Rrs(443) at rates of -

4.686*10-4 and -4.689*10-4/Sr-/decade and significant, positive trends in normalized 

Rrs(555) and Rrs(670) at rates of 2.988*10-4 and 1.061*10-4*Sr-1*decade-1 (Figure 

A2.10; Table 4.2). Location 12 exhibited large peaks in AVW, particularly in 

September 2010 and June, August and September 2015 (Figure 4.6f). Overall the 

shifts in spectral shape and trends in the individual Rrs(λ) channels manifested with a 

general increase in AVW over the study period, particularly in the months of June 

and July (Figure 4.6f).  

Location 12 exhibited a significant decrease in Chla during the month of July 

2003-2018 (Figure 4.6g) at a rate of -0.242 mg/m3/decade (Table 4.7) 

contemporaneously with the blue shift in AVW. Although not significant, location 12 

did exhibit small, positive trends in August and September (Tables 4.8, 4.9) and a 

small, negative trend in June at a rate of -0.041 mg/m3/decade (Table 4.6). Despite 

particularly large peak in Chla of ~7 mg/m3 observed in September of 2010 (and not 

observed in any of the other locations), sizable changes in Chla were not observed at 

location 12 during the study period (Figure 4.6g). Chla peaks in 2010 and 2015 
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occurred coincidently with peaks in AVW (Figure 4.6f). Similarly, location 14 also 

exhibited a significant decrease in Chla at a rate of -0.748 mg/m3/decade (Table 4.7). 

Despite this trend, location 14 exhibited peaks in Chla during the month of July in the 

years 2008 (~2.3 mg/m3), 2012 (~2.5 mg/m3), and 2018 (~3 mg/m3; Figure A2.11). 

4.3.4 PCA and absorption 

PCA analysis revealed a clear relationship between the three components of 

non-water absorption and AVW (Figure 4.7). ‘Bluer’ AVW values (467-488 nm) 

were associated with a larger proportion of ag(λ) at all wavelengths and deeper bottom 

depth. Higher values of AVW (>490 nm) were associated with high proportions of 

absorption by either aph(λ) or anap(λ). Because similar AVW values were associated 

with both aph(λ) and anap(λ), the addition of Chla and the sea ice index as 

environmental parameters helped to further explain under what conditions aph(λ) or 

anap(λ) was dominant. Although the length of the ICE presence vector is small, it did 

fall in line with the anap(375) and anap(412) vectors indicating the greater presence of 

anap(λ) after sea ice has retreated. On the other hand, the Chla vector followed the 

same direction as the aph(λ) vectors, indicating that red AVW values were associated 

with higher phytoplankton abundance.  

4.4 Discussion 

4.4.1 A redder Chukchi Sea 

 We applied a new remote sensing tool, the AVW algorithm, to examine trends 

in ocean color within the Chukchi Sea during the summer months (June-September) 

of 2003-2018. We observed significant, positive trends in AVW, i.e., a red shift, over 
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the course of the study in large regions of the Chukchi Sea during the months of June, 

July and September. The southeast region of the Chukchi Sea exhibited a negative 

trend, or blue shift, in AVW during the month of June. August exhibited small 

regions of AVW trends but remained mostly stable over the study period. AVW 

trends were further investigated by examining the integral-normalized Rrs(λ) spectral 

shapes at fifteen locations across the Chukchi Sea to confirm that a coincident red-

shift in the spectral shapes supported the observed trends in AVW. Additionally, 

robust linear regression analysis was performed on five normalized Rrs(λ) channels 

(412, 443, 488, 555, and 670 nm) and coincident negative trends in the blue channels 

(412, 443, and 488 nm) and positive trends in the red and green channels (555 and 

670 nm) were observed coincident with a positive trend in AVW was observed. The 

observed red shift in AVW is supported by the trends in spectral shape and the 

normalized Rrs(λ).  

4.4.2 Trends in phytoplankton biomass 

Next trends in satellite derived Chla were evaluated to determine if coincident 

trends in phytoplankton biomass could explain the red shift in AVW. Significant 

trends in Chla were observed within the same regions as the significant AVW trends. 

June and September showed significant, positive trends in Chla, with Chla increasing 

≥0.5 mg/m3/decade. The southeast region of the Chukchi Sea that displayed a blue 

shift in AVW exhibited a coincident decrease in Chla. Interestingly, despite the 

positive trend in AVW, July exhibited a negative trend or decrease in Chla. Further 

examination of monthly Chla at fifteen locations did confirm these observations in 

the Chla trends despite the annual variability. The positive Chla trends presented in 
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this study for June and September 2003-2018 are consistent with other field 

observations in the Chukchi Sea. Nishino et al. (2015) reported high Chla 

concentrations in May, indicating an early spring bloom, between July 2012 and July 

2013. They also captured high Chla (>1mg/m3) in autumn (August-October) 

indicating a second, fall phytoplankton bloom.  

4.4.3 A disconnect between AVW and Chla 

One interesting result from this study showed that AVW and Chla do not 

always covary. The positive trend in AVW and concomitant negative trend in Chla in 

July 2003-2018 may be explained by the presence of a subsurface Chla maximum 

that is prevalent in the Chukchi Sea and occurs coincidently with depleted surface 

nutrients and a shallow mixed layer depth (Brown et al. 2015, Hill et al. 2018). Note 

that satellite ocean color instruments can only observe optical properties within the 

first optical depth, which is determined by the turbidity of the water column. The 

mixed layer depth has been observed at 12 m or deeper in the Chukchi Sea. Given 

that field observation-based calculations of the first optical depth (1/Kd490) are 

between 10-11 m on the shelf, it is likely that the turbidity of the surface waters 

would inhibit the capture of the subsurface Chla from satellite observations.  

The uncoupling of AVW and Chla in July indicates that a ‘missing link’ exists 

between the red shift in AVW and the negative Chla trend in July. AVW does appear 

to trend with Chla in some years, but not all. The observed redshift coincident with a 

decrease in Chla indicates that phytoplankton biomass is not the only factor 

contributing to AVW trends. It is possible that a higher concentration of nonalgal 

particles may be the underlying cause of the red shift in AVW when Chla in the 
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surface water is low. High concentrations of nonalgal particles have been observed in 

the Chukchi Sea associated with the fall bloom (Nishino et al. 2015). The PCA biplot 

shows that non-water absorption is a significant driver of AVW, where ‘bluer’ values 

of AVW indicate a stronger influence of ag(λ) and ‘redder’ values indicate a stronger 

influence of aph(λ) or anap(λ). aph(λ) is more predominant when phytoplankton biomass 

is high, whereas greater anap(λ) is observed once sea ice has retreated and the 

phytoplankton biomass declines. Rrs(λ) is driven by the absorption and backscattering 

properties of optically active constituents in the water column. Non phytoplankton 

absorbers, CDOM and nonalgal particles, have been established as strong absorbing 

components in the Chukchi Sea (Neukermans et al. 2016, Reynolds and Stramski 

2019). A positive trend in Rrs(555) and Rrs(670) with a coincident negative trend in 

Rrs(412) Rrs(443) and Rrs(488) indicates increased absorption in the blue wavelengths. 

CDOM, Chla and nonalgal particles all absorb most strongly in the blue end of the 

visible spectrum. Therefore, these trends in Rrs(λ) indicate an increase in one or more 

of these optically active constituents.  

Based on field data, locations 6 and 11 are located in areas where anap(λ) 

dominated total non-water absorption and exhibited higher AVW values (490-510 

nm). One previous study indicated that the sources of nonalgal particles on the 

Chukchi Shelf included resuspension from the bottom to the surface ocean, cellular 

material left over from a large bloom or microbial heterotrophs (Neukermans et al. 

2016). Both locations have exhibited positive trends in AVW over the study period. 

Location 4 is located in an area that was dominated by ag(λ) and bluer AVW (485 

nm) but has exhibited a significant increase in AVW over the study period, ending at 
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501 nm in 2018. Location 7, on the other hand, is located in an area that was 

dominated by aph(λ) and showed high values of AVW (>490 nm). This case study 

suggests that the strong contributions of anap(λ), aph(λ) or a mix of the two result in 

higher AVW values. The addition of sea ice and Chla observations can assist in 

determining which constituent is dominating at a specific time. Although this analysis 

is limited in scope, it is proof that additional field data, such as coincident biological, 

bio-optical and radiometric profiles, could strengthen the validity of this theorem. 

4.4.4 A loss of sea ice and indications of a fall bloom 

 Sea ice concentrations in the Chukchi Sea have significantly declined over the 

last decade related to warmer air and SSTs. The loss of multiyear sea ice as well as a 

decline in sea ice extent has been reported extensively in this region (Frey et al. 2014, 

Stroeve et al. 2014, Frey et al. 2015, Frey et al. 2019, Grebmeier et al. 2019). As 

such, trends in sea ice concentration within the Chukchi Sea were computed and 

compared with the trends in AVW and Chla. Median trend analysis on monthly 

SSM/I and SSMS sea ice concentrations (January-December 2003-2018) indicated a 

significant (Mann Kendall, p<0.1) negative trend (indicated by the red color in Figure 

4.8) in sea ice concentrations at a rate of ~-15-25%/decade within the Chukchi Sea 

and north of the Chukchi Sea in all months except April. It is important to note that 

the Chukchi Sea is mostly open water during the summer and autumn months, (July-

September) so the trend the analysis was used to evaluate the pre- and post-

conditioning of the Chukchi Sea or, in other words, the timing of sea ice breakup and 

formation.  
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The large, significant declines of sea ice concentrations both in the spring 

(May-June) and autumn/early winter months (October, November and December) 

observed in this study indicate earlier sea ice break up and later sea ice formation, 

respectively. The timing of sea ice breakup controls the timing of sea ice and pelagic 

phytoplankton bloom formation. Nutrients regenerated over the winter and released 

when the ice has melted initially support the spring diatom-dominated bloom and are 

further supported by the Pacific inflow of nutrients. Once the water becomes warmer, 

stratified and nutrient deficient, surface chlorophyll declines and smaller 

phytoplankton types dominate the water column (Neeley et al., 2018). Earlier sea ice 

breakup and later sea ice formation allows for longer open water duration in the 

Chukchi Sea and allow additional physical and biological processes to take place. For 

example, open water in September allows wind mixing events to occur that resuspend 

nutrients from the bottom, supporting a fall bloom (Nishino et al. 2015). Satellite 

Chla observations indicate a second fall bloom is occurring in the Chukchi Sea, 

which has been observed by previous studies (Ardyna et al. 2014, Frey et al. 2019). A 

region that was once defined by one annual bloom initiated by sea ice break up and 

increased sunlight just over a decade ago is now becoming a region with a secondary 

bloom like that of temperate oceanic regions (Ardyna et al. 2014). These changes 

indicate that the Chukchi Sea is beginning to mimic seasonal patterns observed at 

lower latitudes. 

4.4.5 SST trends coincident with declining sea ice concentrations 

In addition to sea ice concentrations, we also evaluated whether SST trends 

over the 2003-2018 study period could have contributed to the patterns observed in 
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AVW and Chla. Median trend analysis did reveal some patches of positive (warming) 

and negative (cooling) SSTs across the Chukchi Sea during all four months (Figure 

4.9). Although we did not observe the same regionally significant trends as AVW and 

Chla, there were some coincident regions of SST trends. For example, a significant 

(p<0.1) trend in SST is observed in the same region as a negative trend in Chla in 

June (see black circle in Figure 4.9a). Secondly, within the region of the eastern 

Chukchi Sea that exhibited a negative trend in Chla and an increase in SST was 

observed for the month of July (see black circle in Figure 4.9b). In August, a 

significant negative trend in Chla was observed in the Kotzebue Sound coincident 

with a negative trend in SST (see circle in Figure 4.9c). Interestingly, although both 

sides of the southern Chukchi Sea exhibited positive trends in Chla, the western side 

exhibited a negative trend in SST while the eastern side exhibited a positive trend in 

SST (see circles in Figure 4.9d). It appears that some warming and cooling has 

occurred in the Chukchi over the study period; however, a direct relationship among 

the trends in SST, AVW and Chla is not apparent. Although this study did not show 

large significant trends in SST, possibly related to the short time scale of the study, 

other studies have shown that there has been a significant increase in SST anomalies 

in the Chukchi Sea between 1982 and 2019 of 0.08 °C/year (Frey et al. 2019). This 

makes sense as longer open water duration allows for enhanced solar insolation of 

heat in the open waters, creating a positive feedback loop of warmer water and 

delayed sea ice formation (Frey et al. 2014, Neeley et al. 2018). An evident 

relationship exists between trends in AVW and Chla with some increases in SST and 

longer open water duration driven by a decline in sea ice concentrations. 
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4.4.6 Recommendations for remote sensing applications 

 The AVW represents the apparent, dominant color of the subsurface ocean. 

The apparent color is a manifestation of the optical properties of the water column, 

which are driven by all types of optically active constituents, dissolved and 

particulate. Trends therein indicate that one or more of those constituents are 

changing, phytoplankton being only one. Trends in AVW are indicators of change. 

Investigation into the mechanisms prompting the change requires additional data, 

including that of in-water optical properties (particle size distribution, absorption and 

scattering), full radiometric spectra, and indicators of phytoplankton taxonomy. From 

this additional information, any observed trends in AVW may be unraveled and 

explained.  

 The AVW trends described in this study indicate that an underlying change in 

the optical properties of large regions of the Chukchi Sea is reddening, which is 

manifested in the Rrs(λ) spectral shape. PCA analysis presented in this study indicated 

that the ‘redder’ values of AVW are influenced by nonalgal particles, phytoplankton 

community, or both simultaneously. Unfortunately, these field data are limited to 

2010 and 2011. Additional field data that include particle absorption and 

phytoplankton taxonomy, particularly in more recent years (e.g., 2015 and thereafter) 

that exhibited the strongest trends in AVW, are required to further elucidate the cause 

of the red shift in AVW. Data that consist of nonalgal particle absorption and 

phytoplankton taxonomy over the entire study period could use used to explain 

current and future trends in AVW and Rrs(λ) spectral shape.  
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The spectral shape of phytoplankton absorption that contributes to the overall 

apparent color of the water column is determined by taxonomic group-specific 

cellular photosynthetic and photoprotective pigment composition (Ciotti et al. 2002). 

The difference in spectral shape among different taxonomic groups can be exploited 

to derive phytoplankton community composition and size classes from satellite ocean 

color data (Ciotti et al. 2002, Devred et al. 2011). The combination of spectral 

absorption information and measurements of taxonomic diversity in the Chukchi Sea 

would provide a robust mechanism to understand how changes in taxonomic diversity 

may be influencing AVW.  A recent study conducted in collaboration with NASA 

Goddard and Bigelow Laboratory looking at taxon-specific optical properties, 

including both scatter and absorption, using phytoplankton monocultures (NASA 

OBB Grant NNH15ZDA001N) will be valuable for gaining insights into 

phytoplankton diversity and AVW in the Chukchi Sea.  

 Hyperspectral (high spectral resolution) radiometric information is key to 

better understanding the optically active constituents, in particular phytoplankton 

taxonomy, in the global ocean. Current ocean color instruments measure Rrs(λ) at up 

to 12 wavelengths in the ultraviolet-visible spectrum that are required for measuring 

phytoplankton. NASA’s upcoming PACE (Plankton Aerosols Clouds and ocean 

Ecosystem) mission will be the first to provide global ocean, hyperspectral coverage 

at 5nm resolution extended in both the UV and near infrared and short wave infrared 

wavelengths (Cetinic et al. 2018, Werdell et al. 2019). Hyperspectral capability is 

essential for detecting unique spectral patterns that distinguish different 

phytoplankton taxonomic groups that current sensors miss because of the wider 
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spectral bandwidth that miss taxonomic-specific spectral features. For example, in 

Figure 4.11, the spectral features of HAB and non-HAB forming taxa are shown to 

illustrate how hyperspectral information (4.11a) captures spectral features that a 

multispectral OCI would miss (Figure 4.11b). As such, PACE in conjunction with 

remote sensing algorithms, such as AVW and phytoplankton taxonomy algorithms, 

will provide more spectral information, and this provide more information and 

insights into ecosystem-level changes in the Chukchi Sea. 

4.5 Conclusions 

The optical signature of the ocean can be an indicator of water quality and the 

state of the ecosystem. Absorption and backscatter by dissolved matter, as well as 

living and non-living particles fundamentally control the spectral shape of Rrs(λ). 

Therefore, trends in Rrs(λ) and spectral shape can provide information about what in 

the water column within the scope of satellite observations. Previous studies have 

suggested that Rrs(λ) represents a stronger signal of ecosystem change due to lower 

natural variability than Chla. Moreover, Rrs(λ) embodies all optically important 

constituents, not just phytoplankton biomass (Dutkiewicz et al. 2019). In this study 

we explored the utility of a new tool, the AVW algorithm, to evaluate trends in the 

optical signature of the Chukchi Sea. We found that there was a significant red shift 

in AVW over the late spring and summer months from 2003-2018 related to declines 

in sea ice concentration and increases in Chla. There is also a mismatch between 

AVW and Chla, particularly in July, suggesting that patterns in AVW, and thus 

Rrs(λ), can be become decoupled from Chla. The absorption case study suggests that 

an increase in nonalgal particles may also be contributing to the overall red shift in 
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AVW. Regardless of the underlying cause, this study demonstrated that the AVW 

algorithm and subsequent trends in Rrs(λ) have revealed a fundamental ecosystem 

change that is occurring, even over this short time series. AVW scenes for 2019 

(Figure 4.10) indicate that the positive trends in AVW observed in this study are not 

anomalous and are continuing in the Chukchi Sea. Future studies that include 

additional field data such as phytoplankton taxonomy, could allow further 

development of this approach and to fully characterize the ecosystem changes that are 

occurring in the Chukchi Sea. 
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Figures Chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 a) Example AVW scene derived from MODISA AVW in September 2018 

in units of nm. The numbered circles represent locations examined in detail later in 

this chapter. b) A plot showing integral-normalized Rrs(λ) spectra for September 2018 

that correspond with the AVW values. 
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Figure 4.2. Theil Sen median trend plots of AVW for a) June, b) July, c) August and 

d) September in units of nm/decade. Hashed polygons represent regions of significant 

trends (p<0.1) based on the Mann-Kendell significance test. 
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Figure 4.3. Theil Sen median trend plots of monthly 4km resolution MODISA Chla 

for a) June, b) July, c) August and d) September in units of mg/m3/decade. Hashed 

polygons represent regions of significant trends (p<0.1) based on the Mann-Kendell 

significance test. 
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Figure 4.4. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 4 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412), Rrs(443) and Rrs(488) and a significant increase in Rrs(555) and Rrs(667) 

over the study period. f) Location 4 monthly AVW values in units of nm. g) Location 

4 monthly Chla in units of mg/m3 for June-September, 2003-2018. The trend was 

significantly positive in June and negative in July (p<0.1). 

a) b) 

c) d) 

e) f) 

g) 
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Figure 4.5. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 8 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(443) and Rrs(488) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 8 monthly AVW values in units of nm. g) Location 8 

monthly Chla in units of mg/m3 for June-September, 2003-2018. The trends were 

significantly positive in June and August (p<0.1).  

a) b) 

c) d) 

e) 

g) 

f) 
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Figure 4.6. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 12 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 12 monthly AVW values in units of nm. 

g) Location 12 monthly Chla in units of mg/m3 for June-September, 2003-2018. The 

trend was significantly negative in July (p<0.1).  

a) b) 

c) d) 

e) 

g) 

f) 
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Figure 4.7. The PCA biplot shows the relationship between AVW and ag(λ), aph(λ) 

and anap(λ). Vector lengths indicate the strength of the relationship. ICE presence, 

bottom depth and Chla were added to further elucidate the relationship between 

absorption and AVW. 
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Figure 4.8. Theil Sen median trend plots of monthly sea ice concentrations 

(%/decade) for January (a) -December (l) 2003-2018. Red cooler indicates a loss of 

sea ice concentration while blue color indicates increase in sea ice concentration. 

Hashed polygons represent regions of significant trends (p<0.1) based on the Mann-

Kendell significance test. 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.9. Theil Sen median trend plots of MODISA Daytime 11µ SST for a) June, 

b) July, c) August and d) September in units of °C/decade. Hashed polygons represent 

regions of significant trends (p<0.1) based on the Mann-Kendell significance test. 

Circles indicate large regions of warming or cooling. 
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Figure 4.10. MODISA scenes of AVW for a) June, b) July, c) August and d) 

September 2019 in units of nm. 
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Figure 4.11. a) Hyperspectral light absorption as measured at a resolution of 5 nm, 

indicative that which will be measured by PACE. b) Multispectral lights absorption 

measured by current ocean color instruments. Figures take from the NASA PACE 

website6 

                                                 
6 https://pace.oceansciences.org 
 

a)  

b) 
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Tables Chapter 4 

 

Table 4.1 AVW trend statistics for fifteen locations in June 2003-2018. Red 

represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

Location Latitude Longitude 

Trend 

(nm/decade) p value AVW 2003 AVW 2018 

1 71.379 -156.954 NaN NaN 489.96 479.44 

2 70.212 -165.688 5.48 0.32 482.72 496.05 

3 69.240 -168.783 9.99 0.05 483.96 498.93 

4 68.500 -168.500 7.93 0.03 485.93 501.02 

5 67.539 -167.251 8.79 0.01 484.39 500.36 

6 66.938 -164.604 8.53 0.32 485.23 500.64 

7 65.703 -168.766 2.89 0.55 497.53 499.96 

8 65.211 -167.811 8.46 0.02 483.68 499.58 

9 65.303 -169.979 0.12 0.96 507.40 504.94 

10 66.876 -170.083 -6.95 0.04 510.11 499.93 

11 67.680 -168.958 2.13 0.55 498.01 505.24 

12 67.937 -171.748 -0.26 0.96 498.38 498.79 

13 69.006 -173.400 5.55 0.01 481.82 492.89 

14 68.759 -176.810 NaN NaN 501.05 NaN 

15 70.698 -168.923 NaN NaN 500.57 494.85 

 

Table 4.2 AVW trend statistics for fifteen locations in July 2003-2018. Red represents 

positive trends and blue represents negative trends. P values in bold indicate 

statistical significance. 

Location Latitude Longitude 

Trend 

(nm/decade) p value AVW 2003 AVW 2018 

1 71.379 -156.954 2.36 0.68 481.38 484.31 

2 70.212 -165.688 8.54 0.004 478.12 491.56 

3 69.240 -168.783 8.85 0.01 474.93 496.11 

4 68.500 -168.500 6.64 0.01 486.85 497.10 

5 67.539 -167.251 5.37 0.22 488.08 500.39 

6 66.938 -164.604 -0.60 0.82 501.31 500.04 

7 65.703 -168.766 -0.37 0.96 491.90 489.47 

8 65.211 -167.811 6.43 0.39 490.22 495.90 

9 65.303 -169.979 -0.47 0.964 497.92 492.51 

10 66.876 -170.083 3.79 0.3 498.83 499.28 

11 67.680 -168.958 0.04 1 496.07 499.22 

12 67.937 -171.748 5.92 0.003 481.02 492.19 

13 69.006 -173.400 4.67 0.017 476.57 495.17 

14 68.759 -176.810 23 0.01 478.45 518.96 

15 70.698 -168.923 4.37 0.3894 470.59 488.38 
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Table 4.3 AVW median trend statistics for fifteen locations in August 2003-2018 Red 

represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

Location Latitude Longitude 

Trend 

(nm/decade) p value AVW 2003 AVW 2018 

1 71.379 -156.954 -7.91 0.79 488.55 475.05 

2 70.212 -165.688 -4.91 0.37 493.16 477.18 

3 69.240 -168.783 2.49 0.62 485.60 495.83 

4 68.500 -168.500 2.25 0.34 487.02 503.67 

5 67.539 -167.251 1.70 0.75 486.91 496.89 

6 66.938 -164.604 -2.23 0.44 511.78 507.88 

7 65.703 -168.766 4.86 0.28 490.96 488.84 

8 65.211 -167.811 8.52 0.04 490.22 495.90 

9 65.303 -169.979 6.53 0.08 495.22 508.50 

10 66.876 -170.083 -3.33 0.44 495.05 504.13 

11 67.680 -168.958 -0.37 1 494.27 495.58 

12 67.937 -171.748 4.17 0.44 487.83 508.22 

13 69.006 -173.400 1.68 0.82 487.26 492.02 

14 68.759 -176.810 1.70 0.82 487.78 503.09 

15 70.698 -168.923 -3.45 0.32 476.44 NaN 

 

Table 4.4 AVW median trend statistics for fifteen locations in September 2003-2018. 

Red represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

Location Latitude Longitude 

trend 

(nm/decade) p value AVW 2003 AVW 2018 

1 71.379 -156.954 5.56 0.68 482.33 507.31 

2 70.212 -165.688 0.98 0.79 494.78 495.56 

3 69.240 -168.783 0 1 490.94 494.13 

4 68.500 -168.500 6.14 0.13 494.99 500.25 

5 67.539 -167.251 6.47 0.05 491.88 495.90 

6 66.938 -164.604 4.61 0.22 508.39 506.35 

7 65.703 -168.766 1.18 0.69 504.29 504.79 

8 65.211 -167.811 2.84 0.75 496.81 506.83 

9 65.303 -169.979 4.40 0.19 500.03 497.68 

10 66.876 -170.083 6.98 0.05 492.93 499.86 

11 67.680 -168.958 1.80 0.55 489.99 492.35 

12 67.937 -171.748 5.80 0.09 491.09 500.34 

13 69.006 -173.400 4.02 0.26 486.27 496.16 

14 68.759 -176.810 6.18 0.34 491.15 485.57 

15 70.698 -168.923 6.30 0.47 NaN 487.31 
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Table 4.5. Regression statistics for fifteen locations. Trends in Rrs(λ) are in units of 

10-4 Sr-1 decade-1. Values in bold and indicated by an * indicate statistical 

significance (p<0.1). 

 

 

 

 

  

Location Latitude Longitude 412 nm 443 nm 488 nm 555 nm 667 nm 

1 71.379 -156.954 -2.088 -3.101 -2.133 2.036 1.276* 

2 70.212 -165.688 -1.843 -3.425* -1.860* 2.639* 0.6760* 

3 69.240 -168.783 -2.735 -5.046* -3.745* 4.367* 1.271* 

4 68.500 -168.500 -5.231* -6.094* -3.597* 4.988* 1.618* 

5 67.539 -167.251 -4.495* -4.926 -2.616* 3.831 1.610 

6 66.938 -164.604 -2.250 -2.571 -1.160 1.924 1.089 

7 65.703 -168.766 -3.406* -0.282 1.951* -0.333 0.007 

8 65.211 -167.811 -3.063 -4.379* -3.335* 3.828* 1.728* 

9 65.303 -169.979 -2.394 -1.787 -0.997 1.505 1.267 

10 66.876 -170.083 -2.220 -1.195 0.431 0.766 0.388 

11 67.680 -168.958 -0.643 -0.646 0.483 0.159 0.422 

12 67.937 -171.748 -4.006* -3.791* -1.425 2.572* 0.802* 

13 69.006 -173.400 -4.686* -4.689* -1.532* 2.988* 1.061* 

14 68.759 -176.810 -1.971 -4.082* -1.591 2.637* 8.892 

15 70.698 -168.923 -2.000 -3.761* -1.651* 2.642* 8.851* 
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Table 4.6 Chla median trend statistics for fifteen locations in June 2003-2018. Red 

represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

 

 

Table 4.7 Chla median trend statistics for fifteen locations in July 2003-2018. Red 

represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

Location Latitude Longitude 

Trend 

(mg/m3/decade) p value Chla 2003 Chla 2018 

1 71.379 -156.954 -0.081 0.65 0.567843 0.661827 

2 70.212 -165.688 -0.293 0.01 0.351025 0.490868 

3 69.240 -168.783 -0.431 0.01 0.307545 1.058894 

4 68.500 -168.500 -0.305 0.01 0.616698 1.222433 

5 67.539 -167.251 -0.274 0.44 0.970996 1.544643 

6 66.938 -164.604 -0.063 0.82 1.672712 1.591006 

7 65.703 -168.766 0.497 0.26 1.457 0.908 

8 65.211 -167.811 -0.278 0.24 1.519529 1.050687 

9 65.303 -169.979 1.643 0.26 2.965987 1.336809 

10 66.876 -170.083 -0.051 0.82 2.820528 1.614782 

11 67.680 -168.958 0.296 0.62 2.072308 1.620791 

12 67.937 -171.748 -0.241 0.02 0.49904 0.850097 

13 69.006 -173.400 -0.105 0.16 0.363081 0.979158 

14 68.759 -176.810 -0.748 0.004 0.413883 3.269153 

15 70.698 -168.923 -0.297 0.21 0.211446 0.639284 

 

 

Location Latitude Longitude 

Trend 

(mg/m3/decade) p value Chla 2003 Chla 2018 

1 71.379 -156.954 -0.346 0.44 1.143 0.455 

2 70.212 -165.688 0.099 0.79 0.504 0.972 

3 69.240 -168.783 0.414 0.04 0.493 1.126 

4 68.500 -168.500 0.313 0.02 0.544 1.406 

5 67.539 -167.251 0.407 0.003 0.532 1.644 

6 66.938 -164.604 0.519 0.13 0.557 1.309 

7 65.703 -168.766 -0.3 0.39 2.4723 1.585 

8 65.211 -167.811 0.358 0.006 0.502 1.396 

9 65.303 -169.979 -1.4 0.30 4.902 2.330 

10 66.876 -170.083 -1.225 0.16 5.087 1.692 

11 67.680 -168.958 -0.469 0.22 2.134 1.912 

12 67.937 -171.748 -0.041 0.89 1.859 1.170 

13 69.006 -173.400 0.265 0.01 0.448 0.926 

14 68.759 -176.810 NaN NaN 1.708 NaN 

15 70.698 -168.923 NaN NaN 3.329 1.220 
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Table 4.8 Chla median trend statistics for fifteen locations in August 2003-2018. Red 

represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

Location Latitude Longitude 

Trend 

(mg/m^3/decade) p value Chla 2003 Chla 2018 

1 71.379 -156.954 -0.116 0.79 0.687 0.405 

2 70.212 -165.688 -0.152 0.32 0.844 0.450 

3 69.240 -168.783 0.052 0.75 0.617 1.562 

4 68.500 -168.500 0.197 0.34 0.709 2.460 

5 67.539 -167.251 0.195 0.68 0.783 1.416 

6 66.938 -164.604 -0.209 0.50 2.175 2.709 

7 65.703 -168.766 0.667 0.26 1.209 1.097 

8 65.211 -167.811 0.599 0.01 1.051 1.745 

9 65.303 -169.979 1.677 0.16 1.664 3.932 

10 66.876 -170.083 -0.522 0.26 1.129 2.134 

11 67.680 -168.958 -0.128 0.82 0.978 1.486 

12 67.937 -171.748 0.139 0.30 0.656 3.302 

13 69.006 -173.400 -0.024 0.89 0.838 1.000 

14 68.759 -176.810 0.038 0.82 0.608 1.492 

15 70.698 -168.923 -0.094 0.32 0.367 NaN 

 

Table 4.9 Chla median trend statistics for fifteen locations in September 2003-2018. 

Red represents positive trends and blue represents negative trends. P values in bold 

indicate statistical significance. 

Location Latitude Longitude 

Trend 

(mg/m^3/decade) p value Chla 2003 Chla 2018 

1 71.379 -156.954 NaN NaN 0.546 1.954 

2 70.212 -165.688 0.348 0.04 1.062 1.709 

3 69.240 -168.783 0.464 0.32 0.868 1.522 

4 68.500 -168.500 0.580 0.04 1.113 1.726 

5 67.539 -167.251 0.939 0.005 0.916 1.468 

6 66.938 -164.604 0.747 0.12 2.236 3.149 

7 65.703 -168.766 -0.074 0.82 2.662 2.650 

8 65.211 -167.811 0.626 0.44 1.235 2.026 

9 65.303 -169.979 0.958 0.08 1.384 1.384 

10 66.876 -170.083 0.627 0.26 1.2442 2.143 

11 67.680 -168.958 0.389 0.56 0.849 1.356 

12 67.937 -171.748 0.480 0.22 0.926 1.742 

13 69.006 -173.400 0.149 0.19 0.707 1.494 

14 68.759 -176.810 0.327 0.05 0.746 1.003 

15 70.698 -168.923 0.311 0.32 NaN 0.942 
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Chapter 5:  Summary 
 

 The research presented in this dissertation adds to our knowledge of widely 

used methods for measuring and deriving absorption from oceanographic field 

samples and satellite observations, the influences of ecosystem conditions on 

phytoplankton community structure in the Chukchi Sea, and the application of a new 

tool to track trends of ecosystem-level changes in the Chukchi sea related to 

unprecedented warming and a decline in sea ice in this region. Chapter 1 provides a 

general overview of the Chukchi Sea, the environmental changes occurring therein in 

response to warming, and discusses the various tools that we can use to measure and 

track changes in the physical and chemical properties of the Chukchi Sea. Chapter 2 

focuses on uncertainties related to different methods for measuring absorption and the 

importance of establishing uncertainty budgets for algorithms that derive inherent 

optical properties from satellite Rrs(λ). Chapter 3 represents a deep dive into the 

phytoplankton ecology of the Chukchi Sea in relation to the physiochemical 

properties of the water column. Lastly, Chapter 4 details a proof of concept study in 

which the utility of recently developed satellite algorithm to measure ecosystem-level 

trends in the Chukchi is evaluated. A summary of the results from Chapters 2-4 is 

presented below. 

5.1 Method closure for absorption 

 An important part of satellite algorithm development and validation is the 

collection of high quality in-water measurements. For the inherent optical property 

absorption, which is a derived satellite product and input parameter for various 

algorithms, multiple measurement methods currently exist. In Chapter 2, two methods 
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for measuring particle absorption, ap(λ), were compared in a measurement-

measurement closure experiment, meaning that the uncertainties of two methods of 

measuring the same parameter was quantified. In the first method an ac-s measures 

ap(λ) from the water directly. The second method requires that particles are 

concentrated onto a filter, the absorbance of the particles is measured using a 

spectrophotometer, and ap(λ) is derived using an empirical algorithm. Within the 

filter pad measurements, two analytical methods, T and T-IS, each with its own set of 

algorithms to derive ap(λ) were compared. Because no material standard exists for 

measurements of ap(λ) by an ac-s or on a filter pad, the precision between all 

measurements was computed as a representation of uncertainty. An algorithm for 

modeling ap(λ) from Chla was included within the multi-method comparison. To 

enrich this closure experiment, three water types were included, phytoplankton 

monocultures, clear open water and turbid coastal water, to determine if the precision 

of the measurements was influenced by the turbidity of the water samples and types 

of particles within the samples. Inclusion of phytoplankton monocultures allowed for 

comparison of different pigment types. A turbid sample includes more nonalgal 

particles and terrestrial input while particles in an open ocean sample consists mainly 

of phytoplankton.  

 The results of the closure experiment indicated that measurements using the 

T-IS method provided the best measurement precision. The T-IS method is 

considered the current state of the art method and thought to be the standard for filter 

pad measurements of ap(λ). However, the knowledge of the precision, or uncertainty, 

compared to the T method is important as historical data sets only include the T 
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method as the T-IS method was more recently developed. The ap(λ) model performed 

best at low Chla values and should only be applied to open ocean, low Chla data.  

5.2 Arctic phytoplankton ecology 

.. Much attention is currently focused on the warming in the Arctic. Declines in sea ice 

extent, concentration and losses in multiyear ice have been attributed to the fact that 

the Arctic is warming ~2x faster than the rest of the Earth. Chapter 3 focused on the 

cascade effects of sea ice loss on the phytoplankton community. Phytoplankton is the 

base of the food web in most marine environments and, therefore, any changes in 

community composition could have a negative effect on the rest of the food web. 

Phytoplankton taxonomy measurements within the Chukchi Sea are sparse. 

Traditional microscopy techniques for identifying and enumerating phytoplankton 

cells are tedious and require a trained taxonomist. However, recent advances in flow 

cytometry have resulted new technologies, such as the imaging flow cytometer, 

which is an instrument that captures and saves images of each particle in the sample. 

One advantage of this technique is that the images can be saved for future annotation 

using computer software. Imaging flow cytometry facilitates rapid phytoplankton 

taxonomic data collection that results in high resolution phytoplankton taxonomic 

data. Chapter 3 demonstrates the utility of phytoplankton taxonomic data with the 

coincident collection of physiochemical water column data and sea ice extent 

information to explain how the environment influences phytoplankton community 

structure and make some inferences regarding how phytoplankton will respond to a 

warming Arctic system. 

 Using a multivariate statistics approach, the relationship between 

phytoplankton community structure, nutrients and sea ice became apparent. This 

study confirmed that the seasonal transition between different phytoplankton 

communities is largely driven by the ebb and flow of sea ice. Seasonal sea ice retreat 

initiates the spring phytoplankton bloom. The nutrients regenerated during the winter 

months, particularly silica along with increased light and stratification from the sea 

ice fuel the initial diatom-dominated bloom. As the summer progresses and sea ice 

retreats further north the surface waters warm, become thermally stratified and 

nutrients are depleted, leading to a phytoplankton community of smaller 

phytoplankton, like cyanobacteria and nanoeukaryotes, creating a recycling 
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community as opposed to the new production community like that of the spring 

diatom bloom. From these results, it was postulated that increased warming and sea 

ice loss in the Chukchi sea will result in an earlier spring diatom bloom and longer 

duration of the recycling community, which ultimately affects the food web. 

 Although the data used in Chapter 3 represents only one field campaign’s 

worth of data, it proved the utility of having rich phytoplankton taxonomic data in 

addition to Chla, as part of an in-depth analysis of water column ecology. This study 

can be further expanded upon with data collected from additional field campaigns 

over the course of, at least, 5-10 years. The addition of remote sensing tools would 

enhance a future time series study to evaluate trends in phytoplankton biomass and 

taxonomy in the Chukchi Sea as sea ice continues its decline and warming continues. 

5.3 Remote sensing and ecosystem status 

 In Chapter 3, the effects of sea ice loss on the water column and 

phytoplankton community structure were evaluated. From that study, sea ice extent 

was determined to be an important driver of nutrients and physical conditions that 

initiate the spring diatom bloom. Earlier sea ice break-up promotes thermal 

stratification to occur over a longer summer season exacerbating nutrient limitation 

and extending the season for a recycled production-based phytoplankton community. 

In Chapter 4, a recently developed remote sensing tool, AVW, was applied to satellite 

data scenes of the Chukchi Sea during June-September 2003-2018. The advantage of 

the AVW algorithm is that the shape of the entire Rrs(λ) spectrum is reduced to a 

single number that is representative of an apparent color. Because Rrs(λ) is influenced 

by all absorbing and scattering materials in the water column, AVW can be used to 
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evaluate trends in the proportion of CDOM, phytoplankton and nonalgal particle 

absorption, which can be indicative of an ecosystem-level change, including within 

the phytoplankton community, in response to environmental forcings.  

In this study, a red shift or a shift in the Rrs(λ) spectrum peak to the red end of 

the visible spectrum, was observed in much of the Chukchi Sea over the 16-year 

study period. The red shift in AVW was correlated with an increase in satellite 

derived Chla in all months except July when a decrease in Chla was observed. As 

discussed in Chapter 3, an SCM, which is a common occurrence the Arctic Ocean, 

forms at the top of the nutricline and the 1% level of the euphotic zone once nutrients 

have been depleted by the phytoplankton community in the upper water column 

(Steiner et al. 2016). At this depth, the phytoplankton are too deep for the satellite to 

measure, resulting in an apparent decline in Chla.  

Even more interesting, the positive trend in Chla in September indicated a 

secondary fall bloom is now occurring, which has been verified by field data. The 

Polar ocean typically exhibits only a phytoplankton bloom that occurs in the spring 

supported by the availability of nutrients and light (Sverdrup 1953). The spring bloom 

dissipates due to nutrient depletion and by zooplankton grazing. Both light and sea ice 

limit the formation of additional phytoplankton blooms over the rest of the year.  The 

midlatitudes exhibit both a spring and fall bloom, where the spring bloom is 

supported by nutrients carried to the upper water column after winter mixing. The fall 

bloom is driven by the entrainment of nutrients into the upper ocean when the mixed 

layer deepens (Figure 5.1). The midlatitude fall bloom dissipates as light availability 

decreases as the season moves toward winter (Longhurst 1995, Martinez et al. 2011). 
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In the Chukchi Sea, delayed sea ice formation in the fall are likely allowing for the 

entrainment of nutrients into the upper water column, resembling the seasonal fall 

bloom of the midlatitudes. Until now, fall blooms have been unprecedented in the 

polar ocean. Their recent occurrence indicate that a significant ecosystem change is 

occurring due to longer open water duration allowing possible nutrient entrainment to 

occur. 

 Massive declines of sea ice concentrations in the Chukchi Sea were observed 

coincident with the trends in AVW and Chla over the spring and fall months. The 

consequences of the observed declines in sea ice concentration are earlier sea ice 

break up and later sea ice formation. Trends in SST were largely not significant, 

likely due to the short time series of the data, although anomalies of high SSTs have 

been observed during the study period. These results indicate that a large-scale 

ecosystem alteration is occurring, which has been confirmed by field data (Grebmeier 

et al. 2019).  

The next step was to evaluate which optically active absorbing constituent(s), 

i.e., nonalgal particles, phytoplankton or CDOM, are altering the water column light 

field. In Chapter 2, absorption was established as a major component of Rrs(λ) and 

field measurements of absorption are vital to model development and validation. 

Moreover, ocean-truth measurements of absorption are important for the 

interpretation of Rrs(λ). The results of PCA indicate that ‘bluer’ AVWs (~467-488 

nm) were associated with the dominance of CDOM absorption while the ‘redder’ 

AVWs (~490-510 nm) were associated with the dominance of either nonalgal 

particles or phytoplankton absorption. Nonalgal particles are associated with riverine 
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input, resuspension by mixing and post-bloom conditions, when phytoplankton 

material breaks down and heterotrophic microbes consume these materials. An index 

for sea ice and Chla were included in the analysis in anticipation that it would provide 

insight as under what conditions absorption by nonalgal particles or phytoplankton 

was dominant. Preliminary results indicate that absorption by nonalgal particles 

became dominant after sea ice retreated and, as expected, higher Chla concentrations 

were associated with the greater phytoplankton absorption. Although this case study 

was limited by the available data, the analysis could be significantly strengthened by 

additional field data. 

5.4 Conclusions 

 The research in this dissertation established the need to include routine 

measurements of phytoplankton taxonomy in the Chukchi Sea in addition to 

phytoplankton biomass and the utility of remote sensing tools to capture ecosystem-

level trends. One additional study that could build upon this research would include 

phytoplankton taxonomic, environmental and optical data to relate the trends in AVW 

to phytoplankton community structure. For example, The Distributed Biological 

Observatory has collected a plethora of environmental and optical data over many 

years. More recently routine measurements of phytoplankton taxonomy have been 

added to the standard measurements for the DBO. Combined with additional 

information, such as phytoplankton taxonomy, the AVW algorithm could be a 

powerful tool to evaluate spatio-temporal ecosystem trends in Rrs(λ) in the Chukchi 

Sea.  
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Chapter 5 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 A schematic showing the relationships of nutrients and light to latitudinal 

seasonal cycles in primary productivity (Lalli and Parsons 1997).
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Appendix 1 

Supplementary text 

Introduction  

The supporting information includes supplementary text for the methods section the 

provides further detail regarding the identification and quantification of 

phytoplankton using the Imaging FlowCytobot (IFCB) and Accuri C6 flow cytometer 

and text for the results and discussion section the provides further detail regarding 

size class groupings of nanophytoplankton and picophytoplankton 

 

Text A1.S1 

 

A detailed discussion of IFCB data analysis and processing is described in Laney and 

Sosik (2014) and Selz et al. (2017). Briefly, microphytoplankton abundances 

(particles above 8 μm) were estimated using the IFCB. Digital micrographs collected 

by the IFCB were classified manually and by supervised machine learning. 

Picophytoplankton from 2-14 um were analyzed using the Accuri C6 flow cytometer. 

The size range of nanophytoplankton falls between 2-20um, which overlaps with the 

size thresholds of both the Accuri and IFCB. Therefore, the data from both 

instruments were merged so that smaller nanophytoplankton (2-10 μm) were 

estimated using data from the Accuri C6 and larger nanophytoplankton (10-20 μm) 

were estimated using data from the IFCB.  

 

 

 

Text A1.S2. 

 

It is important to note that grouping by size class does have some limitations. Because 

nano- and picophytoplankton combine different taxa into generic size classes, we 

cannot determine what taxonomic differences may have occurred between sea-ice-

cover and sea-ice-free conditions. The size relationship works well between size and 

the same phytoplankton type. However, this relationship falls apart when different 

phytoplankton types are combined in the same size class (e.g., here, picoeukaryotes 

and cyanobacteria are categorized as picophytoplankton), as these taxa have different 

traits, such as nutrient requirements and function within the environment. Size class 

based solely on cell size, tells us little about phytoplankton taxonomy, but they can 

still play an important role in establishing a relationship between phytoplankton size, 

carbon fixation (Huete-Ortega et al., 2012) and sinking velocities (Bach et al., 2012). 

Although nano- and picophytoplankton are present throughout the study site, the 

actual species composition within these classes may be changing. Therefore, we must 

be cautious when interpreting size class data such as these. 
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Tables 

Introduction  

The supporting information includes tables that are referenced within the main 

text. These tables include the abbreviations for the phytoplankton taxonomic and 

environmental parameter data, summary statistics associated with the Canonical 

Correspondence Analysis and summary data for each environmental parameter. 

Table A1.S1. Abbreviations for the phytoplankton taxonomy classifications and 

associated functional type or size class category. 

 

 

 

 

 

  
 

 

 

Abbreviation Taxon 

Functional 

Type or Size 

Class Abbreviation Taxon 

Functional 

Type or Size 

Class 

Bact Bacteriosira Diatom Nav Navicula Diatom 

Chaet Chaetoceros Diatom Odon Odontella Diatom 

Cosc Coscinodiscus Diatom Phaeo Phaeocystis Haptophyte 

Cylin Cylindrotheca Diatom PhaeoD 

Phaeocystis with 

Diatoms 

Diatoms 

attached to 

colonies 

Deto Detonula Diatom Pico 

Autotrophic 

Picoplankton 

Pico-

eukaryotes and 

cyanobacteria 

Dict Dictyocha Silicoflagellate Pleuro Pleurosigma Diatom 

Dinob Dinobryon Golden alga Polar Polarella Dinoflagellate 

Ephe Ephemera Diatom Pseud Pseudonitzschia Diatom 

Euc Eucampia Diatom Pyram Pyramimonas Green alga 

Frag Fragilariopsis Diatom Rhizo Rhizoselenia Diatom 

Lepto 

Leptocylindru

s Diatom Thaln Thalassionema Diatom 

Melo Melosira Diatom Thals Thalassiosira Diatom 

Nano 

Nanophytopla

nkton 

Nano-

eukaryotes Uncdino 

Unclassified 

Dinoflagellates Dinoflagellates 

Nitz 

Nitzschia 

frigida Diatom UncPen 

Unclassified 

Pennates Diatom 
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Table A1.S2. Environmental variables and associated abbreviations included in CCA 

and PCA. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation Description 

Density Sigma-theta, potential density 

Depth Depth 

DIN Total Dissolved Inorganic Nitrogen (NO3 + NO2 + NH4) 

ICE presence Ice index  

Light Photosynthetically available radiation 

P Phosphate 

Salinity Salinity 

Si Silicate 

Temp Temperature 



 

 116 

 

Table A1.S3a. Summary statistics, significance and explained variation, determined 

from CCA. 

 

 

 

Table A1.S3b. Significance and explained variation for the Interactive stepwise CCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Axis    Total Inertia 

 1 2 3 4  

Eigenvalues 0.192 0.045 0.022 0.009  

Species-environmental 

Correlation 

0.793 0.508 0.627 0.472 0.857 

Cumulative % variance of 

species data 

22.4 27.3 29.8 30.6  

Cumulative % variance of 

species-environmental 

relationship 

70.6 86.1 94.2 96.4  

 

 

Sum of all Canonical 

Eigenvalues 

    0.2612 

 

    F=19.1 

P=0.002 

 
     

Environmental 

variable 

% variation 

explained 

Cumulative 

contribution % 

Adjusted P 

value 

Si 15.9 50.1 0.018 

Temp 5.3 16.6 0.018 

Depth 2.4 7.7 0.018 

Salinity 2.5 7.8 0.018 

ICE presence 1.8 5.6 0.018 

Density 1.3 4.1 0.018 
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Table A1.S4. Mean and range of variation for each of the measured environmental 

variables and carbon abundance for all samples as well as those collected in regions at 

which each of the phytoplankton groups: PGA, PGB and PGC, were observed. Mean 

carbon abundances for each phytoplankton group were computed based on the 

clustered sample scores and associated taxon scores across the CCA axes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Mean and 

range of 

variation 

Mean and 

range of 

variation-PGA 

Mean and 

range of 

variation-PGB 

Mean and 

range of 

variation-PGC 

Depths sampled 

(m) 

32.3 (1.4–202.2) 38.5 (1.9–151.6) 33.4 (2.0–108.7) 29.3 (1.4– 

202.2) 

Fraction of 

surface PAR 

0.246 (undet.–

28.820) 

0.101 (undet–

1.39) 

0.094 (undet.–

1.28) 

0.381(undet–

5.918) 

Chl a (mg/m3) 3.336 (0.002–

32.840) 

8.093 (0.037–

32.840) 

7.332 (0.204 –

28.95) 

0.462 (0.002–

7.090) 

DIN (mmol/m3) 6.50 (undet. –

89.08) 

12.00 (undet– 

21.88) 
12.18 (undet.–

63.12) 

3.102 (undet–

72.77) 

PO4 (mmol/m3) 1.09 (0.01–3.86) 1.61 (0.49– 

2.50) 

1.58 (0.54 – 

2.93) 

0.750 (0.01–

2.52) 

SiO3 (mmol/m3) 16.22 (0.43–

59.2) 

36.92 (2.71–

59.2) 

25.45 (0.92 – 

57.81) 
6.30 (0.43–

42.69) 

Temperature (°C)  -0.171 (-1.778 –

7.264) 

-1.620 (-1.778–      

-0.143 

-1.260 (-1.764 – 

3.544) 
0.906 (-1.675–

7.264) 

Salinity (PSU) 31.301 (24.642 

– 34.556) 

32.314 (29.834–

34.442) 

32.276 (29.784 

– 33.378) 

30.532 (24.642 

–34.556) 

SigmaT (kg/m3) 25.098 (19.765-

27.747) 
25.992 (23.997– 

27.663) 

25.948 (23.928 

– 26.860) 

24.410 (19.765 

–27.747) 

Phytoplankton 

Carbon (µµµµg/L) 

35.912 (0.001–

1002.251) 

83.980 (1.210– 

161.780) 

99.544 (4.012 – 

1002.251) 
12.260 (0.002–

46.280) 
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Appendix 2: Figures 

 

 

 

 

 

 

 

 

 

 

Figure A2.1. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 1 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 1 monthly AVW values in units of nm. 

g) Location 1 monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

d) 

e) f) 

c

g) 



 

 119 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.2. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 2 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 2 monthly AVW values in units of nm. 

g) Location 2 monthly Chla in units of mg/m3 for June-September, 2003-2018. 

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.3. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 3 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 3 monthly Chla in units of mg/m3 for June-September, 

2003-2018. g) Location 3 monthly AVW values in units of nm.  

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.4. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 5 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 5 monthly AVW values in units of nm. g) Location 5 

monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.5. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 6 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 6 monthly AVW values in units of nm. 

g) Location 6 monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.6. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 7 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 7 monthly AVW values in units of nm. 

g) Location 7 monthly Chla in units of mg/m3 for June-September, 2003-2018. 

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.7. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 9 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 16-

year study period. f) Location 9 monthly AVW values in units of nm. 

g) Location 9 monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.8. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 10 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 10 monthly AVW values in units of nm. 

g) Location 10 monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.9. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 11 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 11 monthly AVW values in units of nm. 

g) Location 11 monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.10. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 13 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 13 monthly AVW values in units of nm. 

g) Location 13 monthly Chla in units of mg/m3 for June-September, 2003-2018. 

a) b) 

c) d) 

e) f) 

g) 
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Figure A2.11. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 14 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 14 monthly AVW values in units of nm. 

g) Location 14 monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) 

c) 

f) e) 

d) 

b) 

g) 
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Figure A2.12. Integral-normalized Rrs(λ) in plots in units of nm-1 for Location 15 in a) 

June b) July c) August and d) September. Line colors represent year of observation. e) 

Regression analysis plot of select Rrs(λ) channels showing a significant decrease in 

Rrs(412) and Rrs(443) and a significant increase in Rrs(555) and Rrs(667) over the 

study period. f) Location 15 monthly AVW values in units of nm. g) Location 15 

monthly Chla in units of mg/m3 for June-September, 2003-2018.  

a) b) 

c) d) 

e) f) 

g) 
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Appendix 3 
 

 Rrs(λ) measured using ocean color instruments provides a valuable tool for 

monitoring ecological phenomena on a global scale. Rrs(λ) magnitude and spectral 

shape are a direct result of the absorption and scattering constituents in the upper 

water column. Since the inception of ocean color instruments, scientists have 

developed a wide array of algorithms to derive biologically relevant products, such as 

chlorophyll a and phytoplankton functional types. However, uncertainties are inherent 

in these algorithms, as most are empirically derived, and the output of such 

algorithms may be biased by the samples and data from which the algorithm was 

developed. Moreover, algorithms developed using data from chlorophyll-driven 

waters (Case 1) perform poorly when applied to more optically complex (Case 2) 

waters, where absorption and scattering are driven not only by Chla but also non-

living particles and dissolved organic matter. A substantial amount of information 

regarding the optical signature of the ocean can be obtained directly from the Rrs(λ), 

which typically include 5-10 different wavelengths from current satellites, and likely 

~110 different wavelengths from future satellite missions such as PACE. Given these 

insights, how can we as oceanographers practically visualize and interpret large 

amounts of spectral data? 

 Spectral classification techniques are useful for categorizing different water 

types based on the apparent color. The classification techniques assume that similar 

Rrs(λ) spectral shapes exhibit comparable absorption and scattering characteristics, 

thereby providing are more informative solution. The apparent visible wavelength 

(AVW) algorithm is a spectral classification technique that reduces 5-10 wavelengths 
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of ocean color data into one number that represents the optical signature or dominant 

color of the water (Vandermeulen et al. in review). The AVW is defined as the 

weighted harmonic mean of all Rrs(λ) wavelengths, using the equation: 
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Each spectrum is normalized to its trapezoidal integration, which removes the aspect 

of magnitude and focuses the value in spectral shape. The advantage of this method is 

that it is simple to compute, and the method is transparent to the user. The algorithm 

uses the harmonic mean instead of an arithmetic mean because the arithmetic mean 

would assign more weight to the higher wavelengths, i.e. because the number 650 nm 

is greater than 450 nm. Instead, the harmonic mean gives equal weight to all values of 

wavelength and, instead, interprets the intensity of the signal at each wavelength 

(Figure 1).  

 

Figure A3.1 100 random spectra defined by 510 ≤ AVW ≤ 510.99 nm extracted from a 

global MODIS-Aqua 32-day global composite (14 Sep – 15 Oct 2018) are plotted as 

gray lines, while the thicker black line represents the global mean of all spectra within 

the 510 nm AVW cluster. 
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The AVW output provides continuous values in units of nm that represent the 

optical signature of the water column and is representative the type of optically active 

constituents in the water and, this the spectral shape of Rrs(λ). Such an indicator can 

be easily used in trend analyses to visualize optically driven changes that may occur 

in the global ocean. Vandermuelen et al. (in review) have shown that AVW can be 

used to explore trends in Rrs(λ) over space and time. Moreover, using a set of 

polynomial coefficients, the authors found a method to converge AVW values 

derived from multiple ocean color instrument platforms.  

 One question was persistent throughout Chapter 4: is this trend in AVW just a 

manifestation of Chla? My answer would be that yes, there is some influence of Chla 

on the AVW signal. However, I believe this is only part of the story and until we 

gather more field data, we cannot be sure. Chla and AVW can diverge particularly in 

coastal or Case 2 waters that are strongly influenced by other absorbing and scattering 

materials, such as sediments and CDOM (Figure A3.2). The Chukchi Sea falls into 

this category owing to its shallow, turbid nature.  

 

 

 

 

 

 

 

 

 

 

Figure A3.2 Satellite image and corresponding AVW vs. Chla plot for Rio de la 

Plata. Note the divergence of Chla and AVW within a sediment plume (red circle).  
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