
ABSTRACT

Title of dissertation: A Study of Equivalence of SUSY Theories
using Adinkras and Super Virasoro Algebras

Isaac Samuel Chappell II, Doctor of Philosophy, 2012

Dissertation directed by: Professor S. J. Gates
Department of Physics

Supersymmetry (SUSY) theories describe a wide number of quantum field the-

ories with supersymmetric particles interacting. By using two methods, Adinkras

and Super Virasoro algebras (SVAs), more information is gained about SUSY theo-

ries: (a.) when two representation may be considered equivalent, that is, describing

the same physics, and (b.) the derivation of OPE’s that do not rely on Wick rota-

tions. Adinkras [1] are objects that encode important information about the theory

in graphs. These graphs can be translated into matrices through what is now called

a Garden Algebra. In a specific example, (d=4, N=4 SUSY theories,) it is found

that there are six classes of SUSY theories through studying the Adinkras by one

definition. However, using a criterion that is motivated by physical considerations of

four dimensional field theories, this number is reduced to only three. Super Virasoro

Algebras are close relatives of Super Conformal Algebras that contain a Lie alge-

bra. They can be used to find Operator Product Expansions which are related to

two-point correlation functions. By comparison of two different realizations of SVAs



(the Geometrically Realization GR and the one developed by Hasiewicz, Thiele-

mans, Troost [2],) we show that one is contained inside the other which allows some

new OPEs to be calculated.
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Chapter 1

Introduction

1.1 Supersymmetry and Adinkras

This melody of Supersymmetry has an inate beauty that can be expressed in

many ways.

In this thesis two separate issues are discussed and resolutions are given to

their respective questions.

A method for understanding off-shell representations of supersymmetry has

been developed by various collaborations surrounding my advisor, S.J.Gates. This

methodology has included a special class of algebras (given the names GR(d,N) or

‘garden algebras’ [3]), graphical representations (given the names ‘Adinkras’ [1,4],

Figure 1.1) and the use of computer codes [5]. He has sometimes referred to this as

the GAAC methodology (Garden Algebra/Adiinkras/Codes).

This is a purely algebraic approach which strives to develop an understanding

of the realization of off-shell supersymmetry that is comparable to that which has

long been the standard for the use of Lie groups in particle physics where notions

like root and weight space diagrams are well understood tools for constructing repre-

sentations. Some years ago this led to the notion that all of the information required

to describe a four dimensional supersymmetrical theory is holographically stored in

one dimensional supersymmetrical theories. This idea is called ‘SUSY holography.’
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Figure 1.1: An adinkra

Along this line of approach, there has long been a desire to establish an in-

trinsic definition relying solely on algebraic structures intrinsic to the methodology

and logically divorced from input of the four dimensional theory. Following this

desire, such structure needed to be unambiguously identified. This thesis made a

major breakthrough here. In the following it will be shown that the purely alge-

braic structures of the GAAC methodology contains a notion of class structure that

follows from analyzing an involution operator acting on both the Garden Algebras

representations and the Adinkra representations that appears to be the one dimen-

sional remnant of the Hodge operator map acting in four dimensional field theories.

The intrinsic definition takes advantage of Coxeter Algebras and a partitioning of

the permutation group in a way that to our knowledge has never previously been

observed in either the mathematical or physics literature.
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The second question resolved within this thesis is one involving the develop-

ment of the standard Operator Product Expansion (OPE). Throughout many works

on superstring theory, there can be prominent use of OPE expansions as this is by

now a standard tool. However, the standard derivation of this approach relies on

the Wick rotation to the complex plane as an intermediary step. This is just fine as

long as the rotation leads to hermitian Lagrangian after its implementation.

However, there are one class of theories for which this fails. Any Lagrangian

that begins with chiral bosons described in the Siegel approach will fail to be her-

mitian after the Wick rotation. There was thus a desire to establish arguments that

do not rely on the Wick rotation and yet permit the development of the the OPE

type approach to investigate these theories.

For this purpose, Gates et. al. have developed tools called ‘geometrical repre-

sentations’ [6,7] and ‘short distance expansions’ [8] which achieve the goal described

above. In a second portion of this thesis these tools are applied to a particular class

of supersymmetrical system and it is demonstrated that the goal of deriving the

usual OPE methods in systems that utilize the Siegel description of chiral bosons

can be implemented.

1.2 Superspace and Geometrically Realized Super Virasoro Algebra

(GR SVA)

One of the major tools used in SUSY theories is the concept of superspace.

Just as supersymmetry uses specific relationships to place fermionic and bosonic

3



fields on the same footing, the concept of susperspace creates a “fermionic” math-

ematical space that is on the same footing with regular ( or “bosonic”) space. The

mathematics uses special numbers called “Grassmann variables” with the property

of anticommutivity, the same as fermion fields. The Grassmann variables allow

fermion and boson fields to be calculated with respect to superspace variables and

give a deeper understanding to the physics.

SUSY theories use the inherent symmetries in superspace. The most common

space used for SUSY theory is based on the common Minkowski space of 3 spatial

and 1 temporal dimensions. The natural symmetries of Minkowski space can also

be expressed as algebra of transformations (spatial translations, spatial rotations,

and boosts). This set of transformations makes a Poincaré algebra. But there

are additional useful symmetries of superspace that can be included. By adding

two elements that represent dilations and the special conformal transformation, the

algebra becomes the Conformal algebra. A Super Conformal Algebra (SCA) is

formed when two specific supersymmetry elements are put with the other members

of the algebra. These elements of the SCA can be recast in a form that highlights a

Super Virasoro Algebra (SVA) in the set of elements. The Virasoro algebra is more

familiar in conformal field theory and string theory. The algebra can be represented

in a number of ways. One can use operators, vectors, and matrices. In a number

of papers ( [6], [7]), a particular representation was used called the Geometrically

Realized representation. This is because it is based on mathematical properties of

the algebra with no assumptions about the theory described.

4



1.3 Equivalence Classes of Adinkras

Ideally, one would want any difference between equivalence classes to describe

a different supersymmetric theory. There are some natural equivalence classes based

on combinatorics and signs of the fields and links. It will be shown here that the

combinatorial factors are fixed with respect to the solutions of the Garden Algebra

equations. There are 6 combinatorial groups of matrices that form solution groups.

There are fixed sets of sign factors that are related to those solutions. The underlying

cycle representations are the basis of natural equivalence classes of the solutions

under the operation of taking the transpose matrix.

1.4 Calculation of Short Distance Operator Expansions by Co-adjoint

Method

Conformal Field Theory (CFT) is a field theory based on the operators

from the conformal algebra mentioned above. The key point about a CFT is that

it is a field theory based on an algebra of transformations that keep the metric of

Minkowski space the same up to a scale factor. A familiar technique from CFT is

the Operator Product Expansion (OPE) as it is closely related to the calculation

of two-point correlation functions which themselves are related to the propagation

and interaction of fields represented in SUSY theories.

The method used for calculating these OPEs is the Coadjoint action method

discussed by [7]. It uses ideas about coadjoints from A. A. Kirillov [9] and is built

upon the elements of Lie algebras and their realizations. The method involves going

5



from the closed algebra of operators and symmetries of the space to elements of a

vector space. This vector space is then expanded with the dual space and a bilinear

metric between the two. These objects are then used to find the coadjoint orbits

which can be related to how the fields act under symmetry transformations. It is

through these transformations, given by the adjoint action on coadjoint elements,

that OPEs can be calculated from purely algebraic principles without the presence

of an action from a physical theory.

1.5 Relationship between Adinkra and SVAs

How are adinkras and SVAs related? Both are tools for looking at SUSY

theories and determining if they are alike. Adinkras use the language of graph

theory and matrices to talk about equivalence of theories. Different representations

of the SVA, which can describe different SUSY theories, must have the same elements

and commutators underneath. The two concepts compliment each other: adinkras

describe static structure of a theory and SVA OPEs describe dynamical formulas

between SUSY fields. There exists a lot of opportunity gain from understanding

both. This dissertation aims to highlight some findings in both.

1.6 Outline of Dissertation

The outline of the paper is as follows. Chapter 2 will introduce supersymmetry

and Adinkras. Chapter 3 will focus on the most recent work on finding equivalence

classes for Adinkras. In Chapter 4, the focus will be on the GR SVA, the Coadjoint

6



method, and its application to calculate various short distance Operator Product

Expansions for the algebra. In Chapter 5, a different representation of a SVA devel-

oped by [2] will be described and related to the GR SVA through the use of Clifford

algebras and a discussion of some of the implications of the results of the research.

7



Chapter 2

Adinkras

2.1 Basic Supersymmetry

2.1.1 Basic Concepts of Supersymmetry

A supersymmetric theory is supersymmetric quantum field theory. In quantum

field theory (QFT), particles correspond to various representations of the Lorentz

group. By extending the Lorentz transformations with a supersymmetric transfor-

mation, new equivalence classes are created. Particles related by a supersymmetry

transformation are called superpartners. If there are more than two particles, the

set is called a supermultiplet.

Another important concept of QFT and SUSY theories, has to do with the

equations of motion of the particles. If the physical particles obey the equations of

motion given by the theory through the Lagrangian, then the particles are considered

on-shell. If they do not obey the equations of motion, then they are off-shell. On-

shell particles are mainly associated with real physical particles. An example of an

off-shell particle is a virtual particle created in an interaction.

A SUSY theory associated with this research is the N -extended SUSY theory.

The N relates to the count of the smallest spinors in the theory. In most of the

theories discussed here, there will be N = 1 spinor which will be related to the

8



N = 4 supercharges. This other N that represents the number of supersymmetric

dimensions, and thus supercharges, in the theory. Basic SUSY theory only has

N = 1 supercharge. If it has multiple supercharges, it is considered a N -extended

SUSY theory.

2.2 Defintion of Adinkras

An adinkra is a graphical representation of a supermultiplet. An adinkra has

nodes, colored black for fermions and white for bosons. Nodes of the two distinct

color types must never appear at the same heights in a diagram. All heights are

integrally spaced vertically. An adinkra has links between nodes and the links are

colored with respect to the degree of N -extended supersymmetry they represent.

The links are also solid for a positive value and dashed for a negative value. The

adinkras also satisfy a closed loop rule such that any closed loop of 4 links must

have an odd number of negative signs (dashed lines).

The value in adinkras come from translating between the graphs into super-

symmetric relationships between fields and thus supersymmetric theories. Each

node represents a supersymmetric field, fermionic or bosonic in nature. The links

represent the supersymmetry relations between the fields. The relation can be de-

scribed using a super-charge operator Q
I

or a covariant superspace derivative DI

acting the fields. The subscript I represents which of the number of super-charges

is being specified and takes on values from 1 to N in the theory.

To remove the extra issue of having to deal with many different engineering

9



dimensions, one can write an adinkra where all the fermions are on one level and all

the bosons are on a different level. This is called a valise adinkra. It allows one to

focus on the supersymmetric connections between the fields but can make it hard

to discriminate between different adinkras.

2.2.1 N = 1 Adinkras

The simplest case of supersymmetry is described by the N = 1 adinkras.

There is only one supersymmetric operator, D, which turns fermions into bosons

and bosons into fermions. There are two separate cases. In one, a scalar boson φ is

transformed in to a chiral fermion ψ. The equation describing the relationship is

Dφ = ψ (2.1a)

Dψ = i
d

dt
φ. (2.1b)

The other case, a fermion χ is turned into a boson B. The supersymmetric

relation is given by

Dχ = B (2.2a)

DB = i
d

dt
χ. (2.2b)

Figure 2.1: N=1 Adinkras
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The adinkras for these two case are given in Figure 2.1. The two adinkras look

similar. The key is to describe that similarity using mathematics in such a way as

to be able to apply it to higher dimensional SUSY theories.

2.2.2 N = 2 Adinkras

The next case is N = 2 with two supersymmetric pairs of partners. A couple

of additional rules are apparent in this case:

1. Every node has exactly N = 2 links corresponding to the number of different

supersymmetric operators that can act on that field.

2. Every closed loop in the Adinkra must have an odd number of minus links in

its path. A link can be positive or negative.

3. Every node can only have one unique link to a supersymmetric partner field,

you can not have multiple links between the same two fields.

These rules only allow two basic types of Adinkras at N = 2, which may be

called the bowtie and the diamond, respectively, in Figure 2.2.

The first adinkra has two pairs, a bosonic pair (φ1, φ2) and a fermionic pair

(ψ1, ψ2). The boson fields have the same engineering dimension bdφ1ce = bdφ2ce. The

fermion field have the same engineering dimension bdψ1ce = bdψ2ce but [ψk̂] = [φi]+
1
2 ,

for i = 1, 2 and k̂ = 1, 2. The fields are related supersymmetrically by Equations

11



Figure 2.2: Two N = 2 adinkras, depicting two supermultiplets

2.3.

D1φ1 = ψ1 (2.3a)

D2φ1 = −ψ2 (2.3b)

D1φ2 = ψ2. (2.3c)

D2φ2 = ψ1. (2.3d)

The second consists of a scalar field (A), two spin-1/2 fermions fields (ψ1, ψ2),

and a second scalar field F that possesses a different engineering dimension from

the other boson (i.e. φ) in the multiplet. The engineering dimensions now satisfy

[F ]−1
2 = [ψ1] = [ψ2] = [A]+1

2 . The supersymmetry relations are in Eqns. 2.4.

D1A = ψ1 (2.4a)

D2A = ψ2 (2.4b)

D1ψ1 = F. (2.4c)

D2ψ2 = −F. (2.4d)

12



There are no other inequivalent Adinkras that can be formed that satisfy the

rules. It may be better said that any other N = 2 Adinkra is equivalent to one of

these up to certain symmetry operations. The known list of automorphisms acting

on these graphs include

• Renaming the supercharges (red ↔ green)

• ‘Flipping’ solid links for dashed ones and vice-versa, while preserving an odd

number of dashed links

• Renaming the node variables at the same fixed height (φ1 ↔ φ2, ψ1 ↔ ψ2)

• Changing the signs of all fields (+φ↔ −φ)

Later on, these transformations will be discussed in mathematical terms.

Adinkras use Graph Theory to describe SUSY theories. Graph Theory has ties

to groups and algebras through the mathematical description of the transforma-

tions of graphs. Therefore, adinkras also allow SUSY theories to be explored with

transformations of graphs. In particular, the adinkras and the SUSY theories are

related to an algebra of matrices that will be described in the next section.

2.2.3 N = 3 Adinkras

For completeness, a d=4, N=3 adinkra is presented. From the diagram, one

can easily see that the associated multiplet has a scalar field A, a fermion φ, a vector

field F, and another fermion field K. The engineering dimensions are different at each

13



height of the adinkra with A being the lowest engineering dimension, [A] = [φi]−1
2 =

[Fi]−1 = [K]−3
2 . It is important to note that the adinkra follows the same rules as

in the previous section for N=2 Adinkras.

Figure 2.3: A N = 3 adinkra

2.2.4 N = 4 Adinkras and Three Supersymmetric Multiplets

There are many ways to make N = 4 adinkras. In [10], six adinkras were

introduced. There were three supermultiplets each having an on-shell and off-shell

representation. The off-shell cases will be presented for future reference. There

remains a question if there are any other supermultiplets which describe the same

theory.

14



2.2.4.1 Chiral Multiplet

The d=4, N=4 chiral multiplet (Figure 2.4) consists of 5 fields:

• a scalar field, A,

• a pseudoscalar field, B,

• a Majorana fermion field, φa,

• a scalar auxiliary field, F, and

• a psuedoscalar auxiliary field, G.

The adinkra indicates the relationship between the fields. The superspace

derivative Da acting on each of the fields yields Eqns. 2.5e.

DaA = φa (2.5a)

DaB = i(γ5)baφb (2.5b)

Daφb = i(γµ)ab∂µA− i(γ5γµ)ab∂µB − iCabF + (γ5)abG (2.5c)

DaF = (γµ)ba∂µφb (2.5d)

DaG = i(γ5γµ)ba∂µφb (2.5e)

2.2.4.2 Tensor Multiplet

The d=4, N=4 Tensor multiplet (Figure 2.5) has only 3 fields:

• a scalar field, ϕ,

• a Majorana fermion, χa, and

15



Figure 2.4: The N = 4 Chiral Supermultiplet adinkra

• a second-rank skew-symmetric tensor. Bµν

They are related by Eqn. 2.6c.

Daϕ = χa (2.6a)

Daχb = i(γµ)ab∂µϕ− (γ5γµ)abε
ρστ
mu ∂ρBστ (2.6b)

DaBµν = −1
4 (bdγµ, γνce)ba χb (2.6c)

2.2.4.3 Vector Multiplet

The d=4, N=4 Vector multiplet also has 3 field but of different types:

• an auxiliary pseudoscalar field, d,

• a Majorana fermion, λb, and
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Figure 2.5: The N = 4 Tensor Supermultiplet adinkra

• a vector field, Aµ.

The superspace variations are given by Eqn. 2.7c

Dad = i (γ5γµ)ab ∂µλb (2.7a)

Daλb = −i 1
4 (bdγµ, γνce)ab ∂bdµAνce + (γ5)ab d (2.7b)

DaAµ = (γµ)ba λb (2.7c)

All of the multiplets are “off-shell” and some contain auxiliary fields.

2.3 Introduction of the Garden Algebra (GR(d,N))

In [10], a review of six supersymetric multiplets (off-shell versus on-shell were

counted as inequivalent for the purposes of the study) was given in terms of the fields

17



Figure 2.6: The N = 4 Vector Supermultiplet adinkra

and the superspace covariant derivative. The resulting equations for the supersym-

metric relations between fermionic and bosonic fields were condensed into matrix

equations. For example, the 1D, N = 4 chiral multiplet consists of the bosonic

fields A,B, F,G and the fermionic fields ψi(i = 1...4) with the superspace covariant

derivatives DI and time derivative ∂t. By defining new fields Φi and Ψi in terms

of the ordinal bosonic and fermionic fields, the supersymmetric system of equations

can be written as

D
I
Φi = i (L

I
) i k̂ Ψk̂ . (2.8)
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and

D
I
Ψk̂ = (R

I
) k̂ i

d

dt
Φi . (2.9)

The (L
I
) and (R

I
) are matrices which contain the relationship information

about the fields. The matrices are related by the equation

(R
I
) ≡ [(L

I
)]T (2.10)

so that each R-matrix is fully specified in terms of the corresponding L-matrix,

which in turn satisfy

(LI)
T = (LI)

−1 (2.11)

For the chiral multiplet, the L-matrices are given by

(L1) i k̂ =



1 0 0 0

0 0 0 −1

0 1 0 0

0 0 −1 0


, (L2) i k̂ =



0 1 0 0

0 0 1 0

−1 0 0 0

0 0 0 −1


,

(L3) i k̂ =



0 0 1 0

0 −1 0 0

0 0 0 −1

1 0 0 0


, (L4) i k̂ =



0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


.

(2.12)

These matrices, along with their R-matrices counterparts, satisfy the equations

(L
I
)i
ĵ (R

J
)ĵ
k + (L

J
)i
ĵ (R

I
)ĵ
k = 2 δ

I J
δi
k ,

(R
I
)î
j (L

J
)j
k̂ + (R

J
)î
j (L

I
)ĵ
k = 2 δ

I J
δî
k̂ , (2.13)

(R
I
)ĵ
kδik = (L

I
)i
k̂δĵk̂ ,
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which define the “GR(d, N)” or “(d, N) Garden Algebra.” The “d” is for the

dimension (d × d) of the matrices. This is also related to the number of fermionic

(df ) and bosonic (db) fields. The numbers df and db do not have to be equal but

are (df = db = d) in this analysis. The “N” refers to the number of supersymmetric

partners in the theory. For the majority of calculations used in this research, N = 4.

There will be N L-matrices and N R-matrices in the algebra.

2.3.1 Shorthand Notation for L matrices

By inspection of the rules for making an Adinkra, it follows that for every (d

× d) L
I

matrix we can write for every fixed I

(LI)i
k̂ = (S (I))i

ˆ̀
(P(I))ˆ̀

k̂ for each fixed I = 1, 2, . . . N and i, ˆ̀, k̂ = 1 . . . d (2.14)

where S(I) is a diagonal matrix whose non-zero elements are ±1 and P
I

is some

matrix representation of the permutation group of d objects. The observations above

allows us to easily count the number of possible Adinkrizable matrices that satisfy

the Garden Algebra with the result

# (L
I
) = 2d d! (2.15)

However, looking at the requirements in 2.14 for these matrices, clearly given one

set of matrices that solve all the conditions, multiplying this set by minus one will

produce another solution. So we must divide by a factor of two to obtain the number

of linearly independent solutions thus we arrive at

span[(L
I
)] = 2d−1 d! (2.16)
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To clarify the meaning of the term “span,” let us consider the permutation

group of four elements.

This permutation group has 4! = twenty-four elements. A natural represen-

tation of any one of these elements is given by a four by four matrix acting on a

vector space whose bases are the elements to be permuted. The number of linearly

independent four by four matrices is obviously sixteen. But there are twenty-four

elements in the permutation group. So we use the word span above, we refer to

a collection of matrices whose number is determined by the counting rules for in-

dependent permutations. We will use the shorthand notation to describe the 2 L

matrices in the case of d = 2, N = 2 adinkras. From 2.8, the shorthand notation has

a permutation part P(I) and binary part, S(I). We start with the permutation part

and will use a subscript p to denote the elements in permutation notation. There

are only 2 possible matrices for P(I): (12)p and (21)p.

There are only two possible S(I) matrices up to an overall minus sign:

(
S(1)

)
i k̂ =

 1 0

0 1

, (S(2)
)
i k̂ =

 1 0

0 −1

 (2.17)

We can represent these matrices in another way:

(
S(1)

)
i k̂ =

 (−1)0 0

0 (−1)0

, (S(2)
)
i k̂ =

 (−1)0 0

0 (−1)1

 (2.18)

However, there is an even more efficient way to store this data. Each of these

matrices can be written in the form

(
S(I)

)
i k̂ =

(−1)pI1 0

0 (−1)pI2

 . (2.19)
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for a string composed from the bits according to (pI1pI2). We will use the subscript

b to denote the binary notation. We note that there is a unique natural number RI

associated with this word via the map

(RI)b = pI1 20 + pI2 21 . (2.20)

Writing the matrices in this fashion will be refered to as the Binary/Permutation

method. This method highlights the different parts of the mathematical structures

in the matrices. There is another method that will be used called the Overbar-

Bracket notation. We replace the binary word with a overbar(¯) over the permuta-

tion positions that are negative. For example, (10b)(4231p) is 〈42̄31̄〉. The benefit

of this notation is its conciseness in listing large numbers of matrices. The nota-

tions are equivalent on the permutation part, (1234)p ≡ 〈1234〉 and will be used

interchangible on such.

We can quickly analyze the N = 2 case by hand. Using the notation (2.8)–

(2.9) and restricting ourselves to the left-hand side adinkra in Figure 2.2, we read

off the 2 (= N) L-matrices:

D1

φ1

φ2

 = i

1 0

0 1


ψ1

ψ2

 , (L1)i
k̂ =

1 0

0 1

 ←→〈12〉 ; (2.21)

D2

φ1

φ2

 = i

 0 1

−1 0


ψ1

ψ2

 , (L2)i
k̂ =

 0 1

−1 0

←→〈21̄〉 ; (2.22)

The corresponding words are L1 = (0)b 〈12〉 = 〈12〉 and L2 = (2)b 〈21〉 = 〈21̄〉.

The total number of L-matrices is then 22 2! = 8. Removing the overall minus sign
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redundancy, we have 4 matrices

〈12〉 =

1 0

0 1

 , 〈12̄〉 =

1 0

0 −1

 , 〈21〉 =

0 1

1 0

 , 〈21̄〉 =

 0 1

−1 0

 . (2.23)

All other L-matrices can be generated by an overall minus sign. It will prove useful

to note that these matrices can be written in terms of Pauli matrices. Chapter 5

has more detail. Specifically, for the adinkras shown above we find S (I) = {1l2,σ3}

and P(I) = {1l2,σ1}, for I = 1, 2.
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Chapter 3

Discussion on the Equivalence Classes of Adinkras

3.1 Finding the Solutions to the (4,4) Garden Algebra

3.1.1 Using MathematicaTM to Find Solutions

This investigation used MathematicaTM to investigate the space of L-matrices

as solutions that provide realizations of the Garden Algebra equations 2.14. It was

used to find all the solutions to the Garden Algebra equation provided by 4× 4 ma-

trices. In order to begin we concentrate on a special class of representations of the

L-matrices. In many of our previous studies we have concentrated on ‘adinkrizable’

representations. In such a representation a single field via a supersymmetry trans-

formation is mapped into solely one other field. Thus the form of the L
I

contain one

non-vanishing element in each row and one non-vanishing element in each column.

Every non-zero element in the matrix is a ±1 to represent edge parity.

This allows us to count the number of such matrices as a starting point from

which to construct solutions.
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3.1.2 Generation of Adinkrizable Solutions in the Space of d = 4,

N = 4 Adinkras

The matrices are generated algorithmically in two steps. The first step is

to create the individual unsigned 4 × 4 matrices. Because of assumptions made

above, the matrices can be generated from a permutation of 4 objects giving 4! or

24 matrices that represent the elements of the permutation group S4. The next step

is to introduce all possible combinations of minus signs to generate all the matrices.

This is done by creating a set of 4 × 4 diagonal matrices that have every possible

combination of ±1 as elements. There are 24 = 16 of these. By taking a product of

these two sets of matrices, all the possible 4! × 24, or 384, matrices are generated.

But only 192 are linearly independent because of the overall minus sign.

We used a shorthand notation early on to describe these matrices. From (6),

the shorthand notation has a permutation part (P)I and binary, S(I). We start

with the permutation part. A natural mapping exists between the matrix and the

elements of S4 used to generate it. We use cycle notation for S4 for a shorthand and

a subscript p to denote these elements are in permutation notation. For example

the matrices listed above 2.12 for the chiral multiplet are (1423)p, (2314)p, (3241)p,

and (4132)p.

For the S(I) matrix, a mapping to binary numbers with +1 going to 0 and −1

going to 1 will work. We can calculate S(I) for each of the matrices in 2.12 by using
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2.14 with the results

(
S(1)

)
i k̂ =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


,

(
S(2)

)
i k̂ =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



(
S(3)

)
i k̂ =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


,

(
S(4)

)
i k̂ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(3.1)

A clearly equivalent way to represent these is

(
S(1)

)
i k̂ =



(−1)0 0 0 0

0 (−1)1 0 0

0 0 (−1)0 0

0 0 0 (−1)1


.

(
S(2)

)
i k̂ =



(−1)0 0 0 0

0 (−1)0 0 0

0 0 (−1)1 0

0 0 0 (−1)1


.

(
S(3)

)
i k̂ =



(−1)0 0 0 0

0 (−1)1 0 0

0 0 (−1)1 0

0 0 0 (−1)0


.
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(
S(4)

)
i k̂ =



(−1)0 0 0 0

0 (−1)0 0 0

0 0 (−1)0 0

0 0 0 (−1)0


. (3.2)

Then these matrices can be rewritten in the simple form

(
S(I)

)
i k̂ =



(−1)pI1 0 0 0

0 (−1)pI2 0 0

0 0 (−1)pI3 0

0 0 0 (−1)pI4


. (3.3)

for a string composed from the bits according to (pI1pI2pI3pI4). The unique natural

number RI associated with this word via the map

(RI)b = pI1 20 + pI2 21 + pI3 22 + pI4 23 . (3.4)

For example, the L-matrices for the chiral multiplet as given in Ref. [10] may

be decomposed as:

(LI)i
k̂ = (C(I))i

ˆ̀ × (P(I))ˆ̀
k̂ = (RI)b(p1p2p3p4)p
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(L1)i
k̂ =



1 0 0 0

0 0 0 −1

0 1 0 0

0 0 −1 0


=



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1





1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


= (10)b(1423)p = 〈14̄23̄〉 ;

(3.5a)

(L2)i
k̂ =



0 1 0 0

0 0 1 0

−1 0 0 0

0 0 0 −1


=



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


= (12)b(2314)p = 〈231̄4̄〉 ;

(3.5b)

(L3)i
k̂ =



0 0 1 0

0 −1 0 0

0 0 0 −1

1 0 0 0


=



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1





0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0


= (6)b(3241)p = 〈32̄4̄1〉 ;

(3.5c)

(L4)i
k̂ =



0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


= (0)b(4132)p = 〈4132〉 .

(3.5d)

So the sign-numbers of the L-matrices shown here are (10)b, (12)b, (6)b, and (0)b;
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they pertain to the 1D dimensional reduction of the chiral supermultiplet.

Each matrix is then checked with all the other matrices to see if they satisfy

2.14. It was found that for every matrix, there were 12 other matrices that were

solutions. The list of solutions was stored and iterately checked to find a complete

set of 4 matrices that solved 2.14 for all pairings of matrices. In the end, there were

16 sets of 4 matrices for every single matrix that solved 2.14. When only the unique

tetrads of solutions were counted, there were 1536 solution tetrads to Eq. 2.14. This

will be the starting point for looking at equivalence classes.

In terms of the Binary/Permutation Element decomposition, the three off-shell

multiplets of [2] can be seen in the following table.

L1 L2 L3 L4

CM (10)b(1423)p (12)b(2314)p (6)b(3241)p (0)b(4132)p

VM (10)b(2413)p (12)b(1324)p (0)b(4231)p (6)b(3142)p

TM (14)b(1342)p (4)b(2431)p (8)b(3124)p (2)b(4213)p

Table 3.1: Binary/Permutation Element Decomposition of L-matrices

3.2 Analysis of Adinkrizable Solutions in the d = 4, N = 4 Adinkras

Looking at the set of groups of solution matrices, we found an interesting

pattern. The solution sets broke into smaller partitions of the permutation group

of S4. More specifically, we had 6 sets composed of 4 matrices each that generate

solutions to the Garden Algebra once the proper signs are included. These are given
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by:

• (1423)p, (2314)p, (3241)p, (4132)p

• (2413)p, (1324)p, (4231)p, (3142)p

• (1342)p, (2431)p, (3124)p, (4213)p

• (4123)p, (1432)p, (2341)p, (3214)p

• (3421)p, (4312)p, (2134)p, (1243)p

• (3412)p, (4321)p, (1234)p, (2143)p

As we will make use of this partitioning later, it is useful to introduce some

notation for the partitioned sets of quartets of elements of the permutation group

as

L1 L2 L3 L4

{CM} ≡ { 〈1423〉 , 〈2314〉 , 〈3241〉 , 〈4132〉 } , (3.6a)

{VM} ≡ { 〈2413〉 , 〈1324〉 , 〈4231〉 , 〈3142〉 } , (3.6b)

{TM} ≡ { 〈1342〉 , 〈2431〉 , 〈3124〉 , 〈4213〉 } , (3.6c)

{VM1} ≡ { 〈4123〉 , 〈1432〉 , 〈2341〉 , 〈3214〉 } , (3.6d)

{VM2} ≡ { 〈3421〉 , 〈4312〉 , 〈2134〉 , 〈1243〉 } , (3.6e)

{VM3} ≡ { 〈3412〉 , 〈4321〉 , 〈1234〉 , 〈2143〉 } , (3.6f)

and it is interesting to note that if we use a matrix representation for each of

element of the permutations indicated above, the following condition is satisfied by
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all six sets,
4∑

I=1

Tr (S
I
) = 4 . (3.7)

The solution that describes the chiral multiplet is in the first set. The second

contains the vector multiplet solution, and the third has the tensor multiplet solu-

tion. We can put all the L-matrices tetrad solutions in to valise adinkra graphs.

These can be seen in Appendix C.3. We now have a definition of equivalence class

with respect to removing the signs from the L-matrices.

We can now change the question and ask what are the equivalence classes with

respect to these permutation elements. We start with the first set which corresponds

to the chiral multiplet. Because the elements are fixed inside this group, we can just

focus on a single element in this group, (2314)p. For this element, there are 256

unique solution groups that solve 2.14. We can look at two methods of creating

equivalence classes from the binary part.

In the first method, we focus on fixing a single permutation element to reduce

the number of solutions. We can factor out 16 sets of groups as being the same initial

matrix (2314)p multiplied by all possible ±1 matrices (i)b, {i ∈ 0 . . . 15}. Keeping

with the solution from the chiral multiplet, we are left with 16 groups of 4 matrices

that all contain (12)b(2314)p.

Looking at the sign codes of the other matrices in the solution groups, we find

that there are only 6 sign codes. For (2314)p(12)b, they are (0)b, (5)b, (6)b, (9)b,

(10)b, and (15)b. Upon closer inspection, we find that 3 are the exact opposite sign

of the other three: (0)b = −(15)b, (5)b = −(10)b, and (6)b = −(9)b. So finally,
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there are 3 sets of sign representations with a matrix and its opposite sign or flipped

matrix. If we look at the solution groups for the opposite sign of (12)b, which is (3)b,

we find the exact same solution group. This accounts for all the possible differences

between solution groups.

The second method focuses on solutions without overall sign flips since that

changes the “sign parity” of the matrices but not the underlying structure of the

permutation part. Starting once again with the 256 and taking only solutions tetrads

with only even parity binary matrices (e.g. (0)b, (2)b, (4)b, etc.),this reduced the

number of tetrads to 16 binary solution sets. With 16 binary solution sets for each

of the 6 permutation tetrads, there exist 96 unique, even parity binary/parmutation

solution tetrads. The complete list can be found in App. A.

3.3 Adinkra Equivalence Classes Determined by Transformations

As mentioned in Section 2.2.2, there are a number of different transformations

that can be done on Adinkras to get other Adinkras:

Edge-Color Swap: Renaming the supercharges, i.e., swapping red ↔ green

Dashing Flip: ‘Flipping’ solid links for dashed ones and vice-versa, while preserving

an odd number of dashed links

Node Swap: Renaming the nodes variable at the same fixed height (φ1 ↔ φ2, ψ1 ↔

ψ2)

Node Sign Flip: Changing the signs of some fields/nodes (+φ↔ −φ)

32



Klein Flip: swapping the color of all nodes white↔ black, i.e., swapping bosons↔

fermions

The first two of these correspond to outer automorphisms acting on the supercharges.

The next two correspond to inner automorphisms acting on the fields of the rep-

resentation. The final one corresponds to a Klein transformation that exchanges

bosons for fermions and vice versa throughout the supermultiplet.

Now that we have all the solutions (and a simple way to talk about them), we

can clearly denote the transformation and its effect on the solution matrices. The

benefit of the binary/permutation representation is the to simplicity of dealing with

some of the combinatorics associated with adinkra transformations. For example,

switching the labels of the 1st and 2nd nodes in an adinkra correspond to a trans-

position of the 1st and 2nd elements in the state, i.e. (abcd) → (bacd). If we let

(abcd) represent a vector of the 4 bosons in a theory and (κλµν) represent a vector

of the 4 superpartner fermions and ask how does the supersymmetric variation map

the bosons into the fermions. For a theory with a L-matrix of L2 = (12)b (2314)p,

we can apply (2.8) to see the following:

D2(a, b, c, d)t = i(L2)i
k̂ (κ, λ, µ, ν)t (3.8)

= i



0 1 0 0

0 0 1 0

−1 0 0 0

0 0 0 −1





κ

λ

µ

ν


= i



λ

µ

−κ

−ν


. (3.9)
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What this means is for drawing the adinkra for this case, the boson a is linked

to fermion λ, b to µ, c to −κ, and d to −ν. Eqn.(2.9) calls for the use of the

corresponding (R2) = (L2)t matrix, acting on the vector of bosons and giving the

supersymmetry transformation of the fermion vector. We now discuss each trans-

formation.

3.3.1 Edge-Color Swap

The first transformation is simply a relabeling of the Adinkra. It is effectively

relabeling the colors of the Adinkra. In terms of the L-matrices, it is shifting the

indices so L1 → L2 , et cetera. This does not change the solution group that the

original matrices were in.

3.3.2 Dashing Flip

The second transformation is equivalent to multiplying all the L
I

matrices by

−1. Here again, the sign representations of the L
I

would change. However, because

the original solution group contains both the orginal and −1 flipped versions of the

sign representations, the solution group is effectively the same.

3.3.3 Node Swap

The third transformation is a relabelling of the fields at a certain height. This

corresponds to changing the order of the elements in one of the states, (a1a2...ai...aj...)→

(a1a2...aj...ai...). The transformation is a permutation, P , that can be applied to the
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L
I

matrix or the other state vector, (µ1...). Applying it the L
I

and more specifically

the cycle part of the representation, definitely changes the matrices and therefore

the solution. By applying P to the other field state, it doesn’t change the L
I

and

the solution group doesn’t change.

3.3.4 Node Sign Flip

The fourth transformation involves changing the sign of one or more fields.

This would involve a transformation of the sign representation of the L-matrices.

This would not change the cycle part of the solution group but would change the

sign part. As shown above, all the possible sign combinations are already a part of

the solution group. Thus this would not effectively change the solution group.

3.3.5 Klein Flip

The fifth listed transformation switches the bosons for fermions and fermions

for bosons. Mathematically, this exchanges the vectors Φi and Ψk̂ in equations

(2.8) and (2.9). To relate to the original formulation, we would have to switch the

L
I
’s for the R

I
’s in the definitions. This is effectively mapping the matrix L

I
to its

transpose matrix [(L
I
)]T . One would think that this does not change the solution

group. However upon inspection of all the permutation solution groups, we find

something interesting.

The 1st solution group (which contains (1432)p ) is mapped to the 3rd solu-

tion group (which contains (1342)p, the transpose of (1432)p in S4). This gives a
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relationship between the chiral multiplet and the tensor multiplet. All of the other

solution groups, including the solution group for the Vector multiplet, map back to

themselves under the operation of taking the transpose of the L- matrices.

Out of all these transformations, the third and fifth transformations are the

only transformations that may change the cycle representation of the solution group.

The fifth transformation only changes two of the solution groups into each other.

The third transformation is the only one that changes the solution group completely.

All the other transformations at most change the signs inside the solution group.

3.4 Discussion of Equivalence of the d=4, N=4 Adinkras

3.4.1 A New Permutation Group Based Definition of Adinkra Equiv-

alence Classes and Implications

We can take things a step further by analyzing only the node swap and the

Klein flip, and their effects in changing between permutation solution sets. The node

swap can clearly change one of the 6 solution sets into another depending on the

reassignment of fields. We cannot define an equivalence class around this because

the transformation makes no distinction between the solution sets: we can map any

solution set into any other solution set with no loss of generality. We return to these

transformations at the end of this section.

The Klein flip however breaks the solution sets into three definite classes:

1. the two solution sets, {CM} and {TM}, which are exchanged by the Klein

flip;
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2. the three solution sets, {VM}, {VM1} and {VM2}, which the Klein flip maps

to themselves, albeit up to some edge-color swapping;

3. the one solution set, {VM3}, which the Klein flip leaves fully unchanged.

Let us consider this situation further. The action of transposition can also be con-

sidered directly on the permutation factors, P(I). If one begins with one element of

the permutation group A, then the transposed element ∗A is simply the inverse,

∗A = A−1, owing to Eq. (2.11). Under the action of this transposition operator, we

find the sets satisfy

∗{CM}= {TM (c)} ,

∗{TM}= {CM (c)} ;

∗{VM}= {VM (c)} ,

∗{VM1}= {VM (c)

1 } ,

∗{VM2}= {VM (c)

2 } ,

∗{VM3} = {VM3} . (3.10)

The “(c)”superscript denoted that the L-matrices within the set have been permuted.

For the purposes of visualization, the space of 384 (192, up to an overall

−1 sign) matrices (representing the elements of the Coxeter group BC4) can be

illustrated in terms of a pie chart where the sets {CM}, {TM}, {VM}, {VM1},

{VM2}, and {VM3} each occupy one-sixth of the area.

The Klein flip operation acting on the adinkras is in 1–1 correspondence with

the ∗-operation acting on the elements of the both the signed and the unsigned

permutation groups, BC4 and S4. Therefore, the partitioning (3.10) described also

in the above enumeration as well as depicted in the pie-chart in figure 3.1 are all

perfectly intrinsic to both BC4 and S4, and so also to the complete solution set for

the GR(4, 4) matrix algebra.
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Figure 3.1: Space of GR(4, 4) matrices.

In fact, this partitioning (3.10) induced by the action of the ∗-map also follows

from the elementary properties of the elements of the group of unsigned permuta-

tions, S4. Considering just the permutation factors of the {CM}, {TM} and {VM}

sets in table 3.1 and the {VM1}, {VM2}, and {VM3} sets in Appendix A.3, we find:

1. The {CM} and {TM} permutation factors are all order-3, i.e., their 3rd power

equals 1l4. Moreover, each {CM} permutation factor is the square of some

{TM} permutation factor, and also the other way around. This property

pairs them, perfectly in line with the ∗-map pairing (3.10) also depicted in

figure 3.1.

2. The {VM}, {VM1} and {VM2} sets each have two permutation factors of

order-2 and two of order-4, i.e., their 2nd and 4th power equals 1l4, respectively.

3. Only the {VM3} set has the identity 1l4 as one of the permutation factors, and

the remaining three are of order-2, i.e., they square to 1l4.

Considering next only the sign-matrices, represented by their sign-numbers,

we find:
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1. The {CM}, {TM} and {VM3} sets only use the odd permutations of the sign-

number tetrads {(0)b, (6)b, (10)b, (12)b} and {(2)b, (4)b, (8)b, (14)b}, a total of

24 sign-tetrads.

2. Furthermore, each of these 24 sign-tetrads appears in two of the {CM}, {TM}

and {VM3} sets, none in all three. Stated differently, eight of the 24 sign-

tetrads appear in {CM} and {TM}, eight in {CM} and {VM3}, and the last

eight in {TM} and {VM3}.

On the other hand,

3. The {VM}, {VM1} and {VM2} sets only use the even permutations of the

sign-number tetrads {(0)b, (6)b, (10)b, (12)b} and {(2)b, (4)b, (8)b, (14)b}, a total

of 24 sign-tetrads.

4. Furthermore, each of these 24 sign-tetrads appears in two of the {VM},

{VM1} and {VM2} sets, none in all three. Stated differently, eight of the

24 sign-tetrads appear in {VM} and {VM1}, eight in {VM} and {VM2},

and the last eight in {VM1} and {VM2}.

This partitioning of the 48 sign-tetrads (all the permutations of {(0)b, (6)b, (10)b, (12)b}

and of {(2)b, (4)b, (8)b, (14)b}, taken up to overall sign) is consistent with the par-

titioning (3.10) of the (unsigned) permutations. Therefore, that the partition-

ing (3.10), as depicted in figure 3.1 extends from the (unsigned) permutation group

S4 to the full signed permutation group, BC4, and thus also to the space of matrix

representations of GR(4, 4) and the corresponding adinkras. Finally, since adinkras

faithfully depict 1D supermultiplets of N -extended supersymmetry which admit a

39



basis of component fields wherein each supercharge transforms each component fields

into another component field or its derivative, the same partitioning also extends to

these supermultiplets.

It is then highly suggestive to expect various different equivalence classes of

GR(4, 4) representations—such as those depicted in figure 3.1—to in fact correspond

to different supermultiplets. It has been shown in this paper that combinatorial

factors are fixed with respect to the solutions of the Garden Algebra equations.

There are 6 combinatorial sets of 4 matrices that form solution sets. There are fixed

sets of sign factors that are related to those solutions. The underlying permutation

representations are the basis of natural equivalence classes of the solutions under

the ∗-map operation, of taking the transpose matrix.

Going back to [10], we ask what are the implications of this definition of

equivalence class based on the transpose matrix operation. The vector multiplet as

defined there turns up in the class (3.6b) which is inert under the action of matrix

transposition. Similarly, the chiral multiplet and tensor multiplet (as identified in

Ref. [10]) turn up in the distinct pair of classes (3.6a) and (3.6c), which are mapped

into each other by the ∗-map, implemented as the matrix transposition operation

on the L-matrices.

3.4.2 Application of the Hodge Duality and the ∗-map to the Fields

The Hodge Duality is related to the mapping of fields to each other based on

their dimensionality with respect to the overall dimensionality of the space they are
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in. A specific example will be instructive.

For a 4-dimensional space, we can start with a scalar field φ, a vector field Aµ,

and a second rank antisymmetric tensor bµν (i.e. Bνµ = −Bµν). These fields can be

used as potentials for other fields:

fµ = ∂µφ, (3.11)

Fµν = ∂µAν − ∂νAµ, and (3.12)

hµ =
1

3!
εκλµν∂λBµν . (3.13)

We can use mathematical identities to construct simple algebraic equations

for all of these new fields:

∂µfν − ∂νfµ = 0 (symmetry of the double derivative) (3.14)

εκλµν∂λFµν = 0 (Bianchi identity) (3.15)

∂µhν = 0 (symmetrization of antisymmetric tensorε) (3.16)

From a physics perspective, an action can be constructed for each of the new

fields also.

S0 = −1

2

∫
d4xfµfµ (3.17)

S1 = −1

4

∫
d4xF µνFµν (3.18)

S2 =
1

2

∫
d4xhµhµ (3.19)

(3.20)

We can vary each one of these actions with respect to the respective fields

to get equations of motion. We find that the equations of motion are exactly the
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algebraic identities found above in Equation 3.16 with the following mappings:

δS0

δφ
= 0 −→ ∂µfµ = 0 =⇒ fµ ↔ hµ (3.21)

δS1

δAµ
= 0 −→ ∂µFµν = 0 =⇒ Fµν ↔ εκλµνFµν (3.22)

δS2

δBµν

= 0 −→ ∂µhν − ∂νhµ = 0 =⇒ hµ ↔ fµ (3.23)

It is obvious that the roles of the equations of motion and algebraic identities

become “switched” as we go from the scalar field theory to the rank two tensor

one. The field fµ which was associated with a scalar field φ is now mapped to hµ,

associated with the tensor Bµν and vice-versa. The field Fµν with vector field Aµ

is mapped to εκλµνFµν which implies a Ã. All this is only possible in d=4 with the

antisymmetric Levi-Civita tensor with 4 indices. It is this kind of mapping based

on the dimensionality of the space that is called the Hodge duality. The fact that in

the presence of the equations of motion (i.e. on-shell) these two systems are exactly

the same implies that they both φ and Bµν describe a spin-0 degree of freedom.

So the bottom line is that a Hodge duality transformation switches the fields

according to:

φ ↔ Bµν , Aµ ↔ Ãµ (3.24)

and when one works out the consequences for the electromagnetic case, the effect is

the exchange of the electric with the magnetic field and vice-versa.

This observation comes together beautifully with the structure seen in (3.10)

if we identify the dual map defined on the elements of the permutation group with a

Hodge star-like map acting on the space of fields in the four dimensional field theory.

Under this duality, a chiral supermultiplet is replaced by a tensor supermultiplet and
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vice-versa. We may consider a mapping between the fields in the two multiplets and

we find that A ↔ ϕ and ψa ↔ χa by inspection. This would further imply that

all the fields B, F , and G of the chiral multiplet are mapped to the components 1

Bi j of the skew-symmetric tensor Bµν . Furthermore under this duality, a vector

supermultiplet maps into another vector supermultiplet. All of these observations

are consistent with the equations seen in (3.10).

So what we have shown is that equivalence classes defined by the Klein flip

and degree flip on the LI’s for the d = 4, N = 4 supermultiplets are the same as the

action of the Hodge ∗-map on the sets of fields of the supermultiplets. Thus, just as

the Klein flip turns the valise adinkra and matrix solutions of the Chiral supermul-

tiplet into the valise adinkra and matrix solutions of the Tensor supermultiplet, the

Hodge ∗-map maps the supersymmetric fields of the Chiral multiplet directly into

the supersymmetric fields of the Tensor multiplet. The Klein flip on 3 of the Vector

supermultiplets rearranges the matrices inside the solution tetrad but doesn’t fun-

damentally change the number or types of fields, exactly like how the ∗-map takes

vector fields to vector fields. The remaining Vector supermultiplet is left invariant

by the Klein flip and the ∗-map.

1 Recall that in the construction of any adinkra for a component gauge field, only the
field components in the Coulomb gauge occur in an adinkra
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3.4.3 Comparison of the Klein Flip and Matrix Transposition Argu-

ments for Equivalence

To see how the matrix transposition argument and the Klein flip argument

are really one and the same, one starts with the differential matrix equations which

define the Garden Algebra (2.8) and (2.9)

DI Φi = i (LI)i
k̂ Ψk̂ , (3.25)

DI Ψk̂ = (RI)k̂
i d

dt Φi . (3.26)

and now after applying a Klein flip (where Φ always denotes a boson and Ψ always

denotes a fermion) operator, this becomes

DI Ψi = (LI)i
k̂ Φk̂ , (3.27)

DI Φk̂ = i (RI)k̂
i d

dt Ψi . (3.28)

However, in order to have the bosons at the lowest level of the adinkra, one must

make a redefinition using a degree flip

Φk̂ →
d
dt Φk̂ , (3.29)

and now after applying a Klein flip and the degree flip, the equations in (3.25) and

(3.26) become

DI Φk̂ = i (RI)k̂
i Ψi , (3.30)

DI Ψi = (LI)i
k̂ d

dt Φk̂ . (3.31)

So that the net is that one accomplishes the interchange

(LI)i
k̂ ↔ (RI)k̂

i (3.32)
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of transposing the L-matrices where the final valise has bosons at the bottom level

and fermions at the top level as did the starting one. In this final result, the ‘hatted

latin indices’ are associated with the bosons and the ‘unhatted latin indices’ are

associated with the fermions.

3.4.4 Combination with Previously Defined Equivalence Classes

In [14], a different set of equivalence classes was found. These are the cis- and

trans-Adinkras based on calculations of traces of the LI matrices. Specfically,

TrbdLI(LJ)T ce = 4 (nc + nt) δIJ (3.33)

TrbdLI(LJ)TLK(LL)T ce = 4 (nc + nt) (δIJδKL − δIKδJL + δILδJK) (3.34)

+ 4 (nc − nt) εIJKL (3.35)

The cis-Adinkra has nc = 1 and nt = 0 while the trans-Adinkra has nt = 1 and

nc = 0. The “physical” interpretation is that the cis-Adinkra is a mirror reflection

of the trans-Adinkra about a particular color axis. The numbers nc and nt are

called SUSY enantiomer number, a reference to the enantiomer values in chemistry.

The Chiral Supermultiplet is in the cis-Adinkras class, and the Vector and Tensor

Adinkras are in the trans-Adinkra class. These classes are the key building blocks

to building larger supermultiplets.

Now, combined with the equivalence classes just described in the previous

section, we can break the 3 supermultiplets into individual classes. The Chiral mul-

tiplet has nc = 1 and turns into the Tensor multiplet under transposition of the

LI matrices. The Tensor multiplet turns into the Chiral multiplet under transpo-
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sition but has nt = 1. The Vector multiplet has nt = 1 but maps into itself under

transposition.

Thus, for a given Adinkra, one can write the LI matrices that solve the Garden

Algebra equations. From these matrices, one can calculate the SUSY enantiomer

values and take their transposes and know what kind of basic Adinkra one has. This

will also help with classifying larger SUSY multiplets in the future.
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Chapter 4

The GR SVA, Coadjoint Method, and OPEs

4.1 Introduction

In this Chapter, the Geometrically Realized Super Virasoro Algebra and the

Coadjoint method, will be introduced and used to generate dynamical statements

about SUSY theories through the Operator Product Expansion. The work was

pioneered in [6,7,8]. The research done here aimed at understanding their work and

expanding it in the next Chapter.

4.2 Getting to the Geometrical Realization (GR) of the 1D, N = 4

Extended Super Virasoro Algebra

4.2.1 The Super Conformal Algebra (SCA)

The Geometrical Realization of the Extended Super Virasoro Algebra is

really a different representation of the Super Conformal Algebra (SCA). One can get

to the SCA by starting with a Kac-Moody Lie algebra1 using TIJ as generators. For

this work, the Kac-Moody Lie algebra used is SO(N). Adding translations generated

by momentum generators P , the dilations, ∆, special conformal transformations,

1 A Kac-Moody Lie algebra is a Lie Algebra, usually infinite dimensional, with elements
related by a Cartan matrix. See Appendix A.
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K, the supersymmetry generators QI and SI, finally make up the algebra. It has

some peculiar properties found in research. For N ≤ 4, it is known how to close

this algebra without additional generators [6] but for N > 4 closure requires the

presence of additional operators.

The operators can be represented by derivations of the one dimensional time

variable and its derivative, τ and ∂τ , and the N = 4 superspace variables and

their derivatives, ζI and ∂I. The time variable and its derivative are real and com-

mute with everything. The superspace coordinates are real Grassmann variables.

[See Appendix A for more on Grassmann variables.] The algebra is defined by its

commutation relations. There are 36 possible combinations but only thirteen are

nonzero:

bd ∆ , P} = −iP , bd ∆ , QI} = −i12 QI , bd ∆ , K} = iK , (4.1)

bd ∆ , SI} = i 1
2 SI , bd P , SI} = iQI , bd K , QI} = −iSI , (4.2)

bd QI , QJ} = 4δI J P , bd SI , SJ} = 4δI JK , bd P , K} = −i2∆ ,(4.3)

bd QI , SJ} = 4 δI J ∆ + 2TI J , (4.4)

bd TI J , QK} = −iδI KQJ + iδJ K QI , (4.5)

bd TI J , SK} = −iδI K SJ + iδJ K SI , (4.6)

bd TI J , TK L} = iδJ K TI L − iδJ L TI K + iδI L TJ K + iδI K TJ L (4.7)

The generators and their corresponding symmetries are listed in Table I.

This algebra can be deformed in N = 4 with the addition of a Levi-Civita

tensor, εIJKL, and a parameter, `, that measures the deformation. It only affects
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Generators Symmetry Derivation No. of generators

P Translations i ∂τ 1

∆ Dilations i(τ∂τ + 1
2ζ

I∂I) 1

K Special Conformal i(τ 2∂τ + τζI∂I) 1

QI Supersymmetry i( ∂I − i 2 ζI∂τ ) 4 = N

SI S-supersymmetry iτ∂I + 2τζI∂τ + ζIζ
J∂J 4 = N

TI J SO(N) i(ζI ∂J − ζJ ∂I) 6 = [N(N − 1)/2]

Table 4.1: SCA Generators and Their Associated Symmetries and Derivations

three of the six operators:

SI(`) ≡ iτ∂τ + 2τζI∂τ + 2ζIζ
J∂J + `εIJKL(ζJζK∂L − 1

3!ζ
JζKζL∂τ ) (4.8)

K(`) ≡ i(τ 2∂τ + τζI∂I − i 2 `εIJKL[1
4ζIζJζK∂L + ζIζJζKζL ∂τ ]) (4.9)

TI J(`) ≡ iζ[I∂J] − i`εIJKLζK∂L (4.10)

This changes the last three of the commutation relations

bd TI J , QK} = −iδI KQJ + iδJ K QI + i ` εIJKLQL (4.11)

bd TI J , SK} = −iδI K SJ + iδJ K SI + i ` εIJKLSL , (4.12)

bd TI J , TK L} = 1
2

(
`2 + 3

)
bdiδJ K TI L − iδJ L TI K + iδI L TJ K + iδI K TJ Lce

+ 1
2

(
`2 − 1

)
bdiδJ K YI L − iδJ L YI K + iδI L YJ K + iδI K YJ Lce (4.13)

with YI J ≡ iζ[I∂J] + i ` εIJKLζK∂L. For ` ± = 1, there are no YI J terms in the last
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commutation relation.

4.2.2 Redefinition of Operators for GR SVA

The next step is to recast the previous generators in terms of a Virasoro algebra

with the supersymmetric generators and Lie algebra. This is done by choosing the

forms

Lm ≡ −[τm+1∂τ + 1
2(m+ 1)τmζ∂ζ ] , Hr ≡ −[τ r+1∂τ + 1

2(r + 1)τ rζ∂ζ ] (4.14)

Fm ≡ iτm+
1
2 [∂ζ − i 2ζ∂τ ] , Gr ≡ iτ r+

1
2 [∂ζ − i 2ζ∂τ ] (4.15)

where m ∈ Z and r ∈ Z+ 1
2 . The L and H are the same except L takes integers and

H takes half integers. The F and G forms follow the same pattern. H is fermionic

and L is bosonic because L exists in the N = 0 case.

These new generator pairs can be combined using a different notation with

simple commutation relations:

 LA ≡ (Lm, Hr)

GA ≡ (Fm, Gr)

→

bdLA , LB} = (A− B)LA+B

bdGA , GB} = −i 4LA+B

bdLA , GB} = (1
2A− B)GA+B

 (4.16)

with A,B taking values in Z and Z+ 1
2 . For N = 1, this pair of generators is closed

under graded commutation. In the N = 4 exceptional Super Virasoro algebra, an

index I for the supersymmetric levels has to be added and the `-deformed terms

must be put in properly, including a `-deformed supersymmetric TI J(`) generator.

For the 1D , N=4 exceptional Super Virasoro algebra, the set of generators (LA(`),
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GI
A(`), T I J

A (`)) closes under graded commutation. These generators are

LA ≡ −[τA+1∂τ + 1
2(A+ 1)τAζI∂I]

+ i`A(A+ 1)τA−1[ζ(3)I∂I + i4ζ(4)∂τ ] (4.17)

GI
A ≡ τA+

1
2 [∂I − i2ζI∂τ ] + 2(A+ 1

2)τA−
1
2 ζIζK∂K

+ `(A+ 1
2)τA−

1
2 [εIJKLζJζK∂L

− i4ζ(3)I∂τ ] + i4`(A2 − 1
4)τA−

3
2 ζ(4)∂I (4.18)

T I J
A ≡ τA[ζ [I∂J] − `εIJKLζK∂L]− i2`AτA−1[ζ(3)[I∂J] − `εIJKLζ

(3)
K ∂L] (4.19)

Their supercommutation relations are

bdLA , LBce = (A− B)LA+B + 1
8 c (A3 −A)δA+B,0 (4.20)

bdLA , GI
Bce = (A2 − B)GI

A+B (4.21)

bdLA , T I J
B ce = −BT I J

A+B (4.22)

{GI
A , G

J
B} = −i4δI J LA+B − i 2 (A− B)T I J

A+B − i c (A2 − 1
4)δA+B,0δ

I J(4.23)

bdT I J
A , GK

Bce = 2 (δJ K GI
A+B − δI K GJ

A+B) (4.24)

bdT I J
A , TK L

B ce = T I K
A+B δ

J L − T I L
A+B δ

J K + T J L
A+B δ

I K − T J K
A+B δ

I L

−2c(A− B) (δI[K|δJ|L]) (4.25)
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4.3 Explanation of the Coadjoint Orbit Method of Deriving the Op-

erator Product Expansion

4.3.1 Description of the Use of Coadjoint Orbits

The coadjoint orbit method uses ideas developed by A. A. Kirillov [9]. Kir-

illov’s original work relates the irreducible representations of a Lie algebra to the

coadjoint orbits. His work also showed these coadjoint orbits allow a sympletic in-

variant structure. It is the combination of these two points that form the first part

of the method.

First, the adjoint and coadjoint representations have to be defined. A Lie

algebra can act on itself through the Lie Bracket. A function can be defined for a

fixed element of the Lie algebra that acts on other Lie algebra elements.

x, y ∈ G, fx(y) ≡ bdx, yce = xy− yx. (4.26)

This function is the adjoint function Adx (y). When the elements of the Lie Algebra

are expressed as matrices, this forms the adjoint representation of the algebra.

A Lie Algebra can also be considered as a space of vector fields on a manifold.

As a vector space, there exists a dual vector space that represents linear functionals

on these vector fields. For the Lie Algebra G, and its dual G∗, an inner product is

defined between the two spaces in terms of basis elements of the vector space and

its dual:

ei ∈ G, ωj ∈ G∗ : 〈ωj, ei〉 = δij (4.27)

This inner product extends to the adjoint and coadjoint representation. Specifically,
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if FI is an adjoint vector and BJ is a coadjoint vector, there exists 〈FI | BJ〉. This

inner product only equals a Kronecker delta function when the coadjoint element is

the dual of the adjoint element, i.e.

L∗i is dual to Lj → 〈L∗i | Lj〉 = δij (4.28)

We now look at the algebraic action of general adjoint element on coadjoint

element. What we get is new coadjoint element in terms of our old adjoint and old

coadjoint elements. The coadjoint orbit is the set of coadjoint vectors that can be

reached with this adjoint transformation. This is similar to how a latitudinal great

circle is the orbit of a coadjoint vector acted on by a latitudinal transformation.

Since the coadjoint action tells us how the fields change under a transformation,

we can say that it is equal to the difference between the old field and the new field:

δFB.

The question may be asked at this point “why care about the coadjoint or-

bit?” Since the algebra represents transformations on a space2 , the dual of those

transformations represents linear functions on that space, or fields. The coadjoint

action tells us how the fields change from an algebraic standpoint with respect to

the adjoint action, or transformations.

As an aside, one of the uses of coadjoint orbits is relate the classification of the

orbits to the classification of another related mathematical structure. For example,

if G is the set of all linear n × n real invertible matrices, then the classification of

coadjoint orbits is equivalent to the classification of matrices up to similarity. The

2 Usually this is all done on a circle , S1, which allows a central extension ( a 2-cocycle
which tells us how close the action is to closing under multiplication). We will ignore
it for now but remember that it exists and is a value in the reals.
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analysis of the coadjoint orbits allows one to classify two dimensional conformal field

theories (2D-CFT’s).

We go back to the inner product of adjoint and coadjoint elements to define

the coadjoint action. The inner product was shown to be equal to a delta function

which is a constant. The variation of a constant is zero. However, the variation

of the inner product, specifically the action of the adjoint action, acts on the inner

product like the two-input function it is and gives two terms. One term is the

adjoint action of the adjoint element and the other term is the coadjoint action on

the coadjoint element. We can rearrange this equation to define the coadjoint action

in terms of the adjoint action which we can definitely calculate:

〈L∗I | LJ〉 = δIJ (4.29)

AdL (L∗I) = L ∗ L∗I (4.30)

δL (〈L∗I | LJ〉) = δL (δIJ) (4.31)

〈L ∗ L∗I | LJ〉+ 〈L∗I | L ∗ LJ〉 = 0 (4.32)

〈L ∗ L∗I | LJ〉 = −〈L∗I | L ∗ LJ〉 (4.33)

The right hand side of the equation exists because Kirillov showed it exists as

a sympletic invariant in his work [9]. Now we can read off the coadjoint orbit from

the equation above.

4.3.2 Relationship to OPE

The Operation Product Expansion (OPE) is an expression of the product

of two operators as a sum of singular functions of other operators. This is useful
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when calculating the product of field operators at the same point. Wilson and

Zimmerman [13] have a discussion of the use of OPEs in Quantum Field Theory.

In this case, the operators are tensor fields. The general form of an OPE is

A(y)B(x) ∼
∑
i

Ci(x)(y − x)−i + (non singular terms) (4.34)

where Ci is a member of a complete set of operators. The non-singular terms are

not important because the singular terms determine the properties of the product of

operators. These products are further related to useful field theory quantities such

as propagators and mass terms.

The goal is to express the product of fields that represent the underlying

algebra in terms of functions of other fields which represent other elements in the

algebra. In this case, it is the new coadjoint field that will be expressed in terms of

the old adjoint and coadjoint fields.

In the previous subsection, the action of the adjoint transformation on the

coadjoint field was found. That action also represented the change or variation

of the coadjoint field with respect to the adjoint field. We will use that and the

definition of the inner product to calculate the OPE.

Starting with Eqn. 4.33, we can interpret the inner product as an integral

over some space following the analogy of Eqn. 4.27. However, we have to use the

associated fields with the adjoint and coadjoint representation for this to make sense.

Thus, for an adjoint field A(x) associated with F and a coadjoint field Λ associated

with B

〈BΛ | FA〉 =

∫
dx Λ(x) A(x). (4.35)
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Applying this to both sides of 4.33 with A and Λ as the respective adjoint and

coadjoint fields, we find

∫
dy (A(x) ∗ ΛI(x))AJ(y) = −

∫
dyΛI(y) (A(x) ∗ AJ(x)) (4.36)

where the integration is over a dummy variable y and adjoint action is taken over

the same spatial location x.

This is tied to the OPE in the following way. The element in parentheses on

the LHS of Eqn. 4.36 is the new coadjoint element calculated from the coadjoint

action. The element in parentheses on the RHS is the corresponding adjoint pair

of fields we are interested in for the OPE. We take the dual of the RHS to get the

right form for the coadjoint fields we want for the OPE. We now can pull out a delta

function of the correct dimensionality to fix the dummy variable in the fields and

we can now simply read off the OPE.

4.3.3 Pulling it all together

The actual use of the method flows from the following steps:

1. Choose an coadjoint field and an adjoint action on it. This gives the variation

of the physical field with respect to some transformation.

2. Compare to the integral form of the inner product of the new coadjoint field.

The OPE will be the equivalent expression of the previous step once it has

been put in the associated integral form. This will involve the use of delta

functions on the space (a line in the 1D case) and its derivatives.
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Typically, one needs an action to determine the useful field theory quanti-

ties such as correlation functions. However, these quantities are dependent on the

symmetries found in the theory and not necessarily obvious in the action. The Coad-

joint Orbit method allows for these quantities to be calculated without an action

and totally based on the underlying symmetries of the theory being studied.

4.4 Application of the Coadjoint Orbit Method to the GR SVA

4.4.1 Preliminaries

The methods used are found in [6,7,8,12]. Applying this process to the algebra

of interest, the adjoint vector of the 1D N = 4 GR SVA is L = (LA, G
I
B, T

J K
C ). The

adjoint acting on this gives

ad((LM, G
K
N , T

LM
P ))(LA, G

I
B, T

J K
CP ) = (LM, G

K
N , T

LM
P ) ∗ (LA, G

I
B, T

I J
P )

= (LQ,new, G
H
R,new, T

FG
S,new)

(4.37)

The coadjoint element is L̃ = (L̃A, G̃
I
B, T̃

J K
P ) and correspondingly gives

ad((LM , GK
N , T

LM
P )) (L̃A, G̃

I
B, T̃

J K
P ) = (LM, G

K
N , T

LM
P ) ∗ (L̃A, G̃

I
B, T̃

J K
P )

= (L̃Q,new, G̃
H
R,new, T̃

FG
S,new)

(4.38)

and the inner product is

〈(L̃M , G̃K
N , T̃

LM
P )|(LA, GI

B, T
JK
C )〉 = δM,A + δN,Bδ

I
K + δP,Cδ

JK
LM (4.39)

To calculate the OPEs, one needs the expression of δLL̃ = L ∗ L̃ where L is an

adjoint vector and L̃ is a coadjoint vector. Using the fact that 〈L̃|L〉 is an invariant

and L ∗ L̃ can be calculated from 〈L′ ∗ L̃|L〉 , one can use the Leibnitz rule on the
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invariant form and get

〈L ∗ L̃|L〉 = −〈L̃|L ∗ L〉 (4.40)

Since L and L̃ are made up of components (L, G, T), it is easier to calculate

pairs of adjoint elements acting on coadjoint elements. This reduces the number of

calculations greatly. The list of adjoint/coadjoint pairs are

δL̃ = L ∗ L̃+G ∗ G̃+ T ∗ T̃

δG̃ = L ∗ G̃+G ∗ L̃+G ∗ T̃ + T ∗ G̃

δT̃ = L ∗ T̃ +G ∗ G̃+ T ∗ T̃

This checks against the calculations from [7]. Note that there is no T̃ ∗ L term in

the list of changes to the coadjoint vector.

Using a realization of the algebra as tensor fields, the adjoint representation

elements are F = (η, χI , tRS) , which are general elements of the Virasoro, Kac-

Moody, and so(4) algebras respectively. The coadjoint fields are B = (D,ψI , ARS) ,

a rank two pseudo tensor, a set of 4 spin-3/2 fields, and the 6 so(4) gauge fields.

The coadjoint action can be seen as generating the changes in the fields. It

acts as

F ∗ B̃ = δF B̃ = (η, χJ, tK L) ∗ (D,ψI, AJ K) = (δD, δψI, δAJ K). (4.41)

4.4.2 Example: L ∗ L̃

Choosing L ∗ L̃ as an example, the physical field representation is used :

L ∗ L̃↔ δηD (4.42)
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Lη ∗ L̃D → L̃D̃ =⇒ D̃ = −D′η − 2Dη′ (4.43)

δηD = D̃ = η ∗D (4.44)∫
dy [η(x)D(y)]η(y) = −

∫
dy D(y)(η(x)η(y)) (4.45)∫

dy[D̃(x, y)]η(y) =

∫
dy(−D′(x)η(y)− 2D(x)η′(y))η(y). (4.46)∫

dy D(y)(η(x)η(y))↔
∫
dy η(y)(D(y)D(x)) (4.47)

Using the 1D formula for the delta function,

δ(y − x) =
1

2πi(y − x)
(4.48)

and integration by parts to separate out η(x) terms,

∫
dy[D(y)D(x)]η(x) =

∫
dy

(
∂xD(x)

−1

2πi(y − x)
+D(x)

−1

πi(y − x)2

)
η(x) (4.49)

4.4.3 Calculation of GR SVA OPE’s

By taking pairs of individual adjoint elements acting on individual coadjoint

elements, the OPE’s can found.

1. D(y)O(x)

Lη ∗ L̃D = L̃D̃ → D̃ = −D′η − 2Dη′ (4.50)

Lη ∗ G̃Q̄

ψQ̄ = G̃Q̄

ψ̃Q̄ → ψ̃Q̄ = −(
3

2
η′ψQ̄ − η(ψQ̄

′
)) (4.51)

Lη ∗ T̃ R̄S̄AĪJ̄ = T̃ R̄S̄
ÃĪJ̄ → ÃĪJ̄ = −(ARS)′η − η′ARS (4.52)
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These expressions yield the following OPEs:

D(y)D(x) =
−1

πi(y − x)2
D(x)− 1

2π(y − x)
∂xD(x) (4.53)

D(y)ψQ(x) =
−3

4πi(y − x)2
ψQ(x)− 1

2πi(y − x)
∂xψ

Q(x) (4.54)

D(y)ARS(x) =
−1

2πi(y − x)2
ARS(x)− 1

2πi(y − x)
∂xA

RS(x) (4.55)

2. ψ(y)O(x)

GI
χI ∗ L̃D = 4iG̃I

χ̃I → χ̃I = −χID (4.56)

GI
χI ∗ G̃Q̄

ψQ̄ =
δIQ̄

2
L̃D̃ + T̃ IQ̃

ÃIQ̃
→ D̃ =

[
(ψQ̄)′ψI − 3(ψI)′ψQ

]
ÃIQ̃ = 2(χIψQ̃ − χQ̃ψI) (4.57)

GI
χI ∗ T̃ R̄S̄τ R̄S̄ = δ[RS][IQ]G̃Q

ψ̃Q → ψQ̄ = 2(χI)′tRS + χI(tRS)′ (4.58)

The OPEs are

ψI(y)D(x) =
−3

4πi(y − x)2
ψI(x)− i

4π(y − x)
∂xψ

I(x) (4.59)

ψI(y)ψQ(x) =
−4i

(y − x)
δIQD(x) (4.60)

ψA(y)ARS(x) =
π

i(y − x)
(δARδLS − δASδLR)ψL(x) (4.61)

3. A(y)O(x)

T IJtIJ ∗ G̃
Q̄

ψQ̄ = 2δQIGJ
φ̃J
− 2δQJGI

φ̃I
→ ψQ̄ = tIJψQ (4.62)

T IJtIJ ∗ T̃
R̄S̄
τ R̄S̄ = −δ[R̄S̄](δJKRS + δKJRS )T̃ R̄S̄

(tJK)′τ R̄S̄ − L̃D̃δ
[R̄S̄][JK]

→ D = (tJK)′τ R̄S̄ (4.63)

Note that there is no T ∗L̃ term. However the AJK(y)D(x) and AJK(y)ARS(x)
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terms are generated from the T ∗ T̃ action. The OPE that follow are

AJK(y)D(x) =
1

4πi(y − x)2
(δRSδJK − δRKδLS)ARS(x) (4.64)

AAB(y)ψC(X) =
−1

πi(y − x)
(δACψB(x)− δABψC(x)) (4.65)

AJK(y)ARS(x) =
1

4πi(y − x)
δJKRSAB AAB(x) (4.66)

4.4.4 Observations

A number of interesting points can be found here. In previous papers [6] [7],

the non-deformed (` = 0) 1D,N = 4 GR Super Virasoro algebra is used to gener-

ate OPEs. This algebra is the “large” N = 4 algebra which has a 16-dimensional

representation. It does not close unless two more sets of generators (U’s and R’s,

which are related to the T’s,) are added. The ` = ±1 cases of the `-extended algebra

map the generators to a 8-dimensional representation which does not need the other

generators to close. This can be easily seen when instead of using derivations to

represent the generators, an appropriately sized Clifford algebra is used [2]. The use

of a Clifford algebra will allow more insight into the difference. This and the differ-

ence between using the “small” and the “large” N = 4 algebras will be discussed in

Section 5.1.

Another point is whether the central extension should be dropped in the equa-

tions. From [8], the closure of the algebra is found to be related to the existence

of a central extension, specifically if the central extension is eliminated for N > 2.

Because N = 4, it is a valid question to ask if a central extension may exist too.

The Jacobi Identity on (GI
A, U

I J
B , G

K
P ) was used before in [6] to answer this question.
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Because the supercommutators have the same form as the N > 2, it would seem that

the answer would be true. But there are no longer U I J
A generators in the algebra.

The Jacobi identity for the other generators must be analyzed to check if a central

extension is allowed. Although this could be addressed now, this question will be

revisited later when the Clifford representation of the generators is presented . For

now, c will be set to zero.

In the non-extended version of the algebra [6,7,8,12], there are extra generators

that must be added to close the algebra. When the Coadjoint Orbit method is

applied, these extra generators correspond to fields and have their own OPEs. The

fields ω and ρ, which correspond to the U and R operators respectively, have 44 and

11 independent components. The spin of the fields are varied, either being 0 or 1
2

depending on the structure of the individual operator. This also true for the general

extended 6̀=±1 case. However, the ` = ±1 case does not have these fields or their

OPEs. Thus there is no difference between the regular (`=0) and extended ( 6̀=0)

cases except when ` = ±1. These cases reduce the number of operators and fields

necessary to fully describe the theory.

4.4.5 Relationship between DI and GI
A

At first glance, there seems not to be any relationship between the operator

DI found in describing Adinkras and operator GI
A found in the description of the

SVAs. However, by looking at each of these in a particular representation something

becomes clear. Choosing 1D, N = 4 representation of a general SUSY theory, it is
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seen that

DI = ∂τ + iζ∂ζ (4.67)

and

GI

−1
2
≡ [∂I − i2ζI∂τ ] (4.68)

It is clear that they have very similar forms. Da deals with the superspace vari-

ation of the different fields. GI
A contains QI which is the supersymmetry operator

that changes particles into their superpartners. This is very reminiscent of the par-

allel between the two formulations of quantum mechanics. There is the Schrödinger

picture, where the states have a time component, which corresponds to acting with

DI . There is also the Heisenberg picture where the operators have time components

like G. In a way, this correspondence is to be expected since adinkras are projections

of quantum field theory down to one dimension, time. One dimensional quantum

field theory is just quantum mechanics.
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Chapter 5

The Hasiewicz, Thielemans, and Troost (HTT) SVA, the Clifford

Algebra, and Operator Product Expansions (OPE)

5.1 The HTT formulation of SVA

Hasiewicz, Thielemans, and Troost (HTT) [2] developed another way to

realize a Super Virasoro Algebra. They start with a Kac-Moody Algebra and Lie

group with a central extension. A description of their method of generating the SVA

will not be given here but their representation of the generators of the SVA will be

used. What was interesting is that the elements of the algebra can be related to

a Clifford algebra. Applying the Coadjoint method from last chapter relies heavily

on being able to write down the generators and their commutation relations. The

HTT representation of the SVA will be used to generate OPEs for comparison with

the results from last chapter.

Starting with the set of generators (LA, GI
A, T I J

A ) from the previous chapter,
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the following are the supercommutation relations:

bdLA , LBce = (A− B)LA+B + 1
8 c (A3 −A)δA+B,0 (5.1)

bdLA , GI
Bce = (A2 − B)GI

A+B (5.2)

bdLA , T I J
B ce = −BT I J

A+B (5.3)

{GI
A , G

J
B} = −i4δI J LA+B − i 2 (A− B)T I J

A+B − i c (A2 − 1
4)δA+B,0δ

I J (5.4)

bdT I J
A , GK

Bce = 2 (δJ K GI
A+B − δI K GJ

A+B) (5.5)

bdT I J
A , TK L

B ce = T I K
A+B δ

J L − T I L
A+B δ

J K + T J L
A+B δ

I K − T J K
A+B δ

I L

−2c(A− B) (δI[K|δJ|L]) (5.6)

The form of these supercommutators come from their Geometrical Realizations as

polynomials and derivatives of complex and Grassmann numbers.

Now we will compare this to the HTT realization of the same algebra. Their

method starts with a break down of the Lie superalgebra into smaller, relevant

subspaces: a Kac-Moody Lie algebra KM(L) with a Lie algebra L, a Virasoro

algebra V ir, and subspaces Q and G with underlying vector spaces respectively, V

and W . The underlying vectors spaces of these subspaces ( L for KM(L), R for

V ir, V for Q, W for G) are important along with a number of mappings that define

the properties of each space. For w,w′ ∈ W ; v, v′ ∈ V ; Σ,Σ′ ∈ L; there are the
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following mappings:

bdLm, Lnce = (m− n)Lm+n + (m3 −m)δ(m+ n)c/4 (5.7)

bdLm, Qn(v)ce = −(m/2 + n)Qm+n(v) (5.8)

bdLm, Gn(w)ce = +(m/2− n)Gm+n(w) (5.9)

bdLm, Tn(Σ)ce = −nTm+n(Σ) (5.10)

{Qm(v), Qn(v′)} = −b(v, v′)δ(m+ n)c (5.11)

{Gm(w), Gn(w′)} = 2B(w,w′)Lm+n +B(w,w′)(m2 − 1/4)δ(m+ n)c

−(m− n)Tm+n(ϕ(w,w′)) (5.12)

{Gm(w), Qn(v)} = Tm+n(ϕ(w, v)) (5.13)

bdTm(Σ), Qn(v)ce = Qm+n(R(Σ)v) (5.14)

bdTm(Σ), Gn(w)ce = Gm+n(Λ(Σ)w) +mQm+n(d(Σ, w)) (5.15)

bdTm(Σ), Tn(Σ′)ce = Tm+n([Σ,Σ′])− cmK(Σ,Σ′)δ(m+ n) (5.16)

with B, b, R, ϕ,Λ, and d all being mappings and bilinear forms necessary to describe

the superconformal Lie superalgebras.

There are special mappings in [2] used to associate with the underlying vector

spaces:

ϕw(w′) : w′ ∈ W → ϕ(w,w′) ∈ L (5.17)

dw(Σ) : Σ ∈ L→ d(Σ, w) ∈ V (5.18)

iw(a) : a ∈ R→ aw ∈ W. (5.19)
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This set gives the exact series

R iw−→ W
ϕw−→ L

dw−→ V → 0. (5.20)

While this set of mappings and forms

ψw : v ∈ V → ψ(w, v) ∈ L (5.21)

Λw : Σ ∈ L → Λ(Σ)w ∈ W (5.22)

Bw : w′ ∈ W → B(w,w′) ∈ R (5.23)

gives the exact series

0→ V
ψw−→ L

Λw−→ W
Bw−→ R. (5.24)

Note that all the mappings resemble adjoint actions, being based on a fixed

element w.

The biggest different between the two representations is the addition of a sec-

ond supersymmetric space Q with underlying vector space V and conformal dimen-

sion 1
2 to the original supersymmetric space G with vector space W and conformal

dimension 3
2 . The two interesting new supercommutators involving Q are the {G,Q}

equation, which generates a T , and the bdT,Gce equation, which now generates an

additional Q.

One of their most important results is the relationship between the dimensions

of the vector spaces:

|W |+ |V | = |L|+ 1 (5.25)

With this relationship, one can categorize the type of algebra possible since there

are |W | symmetries that exist (dim(W ) = N), and |L| is the dimension of the
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underlying Lie algebra. We will use it as a check on dimensions of the different

spaces.

5.2 The Clifford Algebra Correspondence

The spaces mentioned above define a larger space S = W⊕V ⊕L⊕R of all the

elements and an endomorphism Γ that represents a Clifford algebra (see Appendix

A) with the mapping B above as a definition:

Γw(w′ + v + Σ + a) = (aw + Λ(Σ)w) + d(Σ, w)

+ (ϕ(w,w′) + ψ(w, v)) + B(w,w′) (5.26)

ΓwΓ′w + Γ′wΓw = 2B(w,w′). (5.27)

S is also given a metric by θ:

θ(w + v + Σ + a, w′ + v′ + Σ′ + a′) = B(w,w′) + b(v, v′)−K(Σ,Σ′)− aa′ (5.28)

What we see here are the functions of all the different mappings (B, b, and

K) all define inner products for their respective spaces of W , V , and T . This

allows an inner product to be defined for the individual spaces. The mappings

ϕ(w,w′),ψ(w, v), d(Σ, w), and Λ(Σ)w describe mappings from one space to another.

Note that all the mappings resemble adjoint actions, being based on a fixed element

w. Combined with the inner product functions, these mappings allow an overall

inner product to be defined. It is this new inner product that is used in the Coadjoint

method to get OPE’s. At this point, a number of similarities to the Coadjoint

method shown earlier should be apparent. The elements of S have this particular
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form because the elements of all the different spaces are now on an equal footing

with each other under the Clifford algebra. The metric has the same form (up to

some signs) as the action of the dual element on the vectors describe in Subsection

4.4.1.

The superconformal Lie algebra is built from a vector representing the unit

element in the space R . This element is multiplied by the basis elements of the Clif-

ford algebra to get the other spaces W , V , and L. The previous mappings between

spaces allows them to be separated to get the mathematical structure needed.

The N = 4 case is presented in their paper [2] for a Clifford algebra signature of

(0, 4) explicitly and all other signatures by inference. The choice of ` = 1 corresponds

to a 16-dimensional representation of S and the Clifford space. The dimensions of

the spaces W , V , and L are 4, 4, and 7 respectively as given by eq. 5.25. The basis

vectors for W are

wi = Γi (5.29)

and for V,

vi = Γi(Γ
5 − `) (5.30)

where Γ5 = Γ1Γ2Γ3Γ4, (Γ2) = 1, and ` real, much like defined in the derivation

method. The elements of Lie algebra are given by the φ mapping with the addition

of one more element:

ϕij = ϕ(wi, wj) = ΓiΓj(i 6= j) (5.31)

σ = (Γ5 − `). (5.32)
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Original Notation Condensed Form from HTT

P , ∆ , K L θ(B, b,K) ∈ V ir

Q , S G wi ∈ W, vi ∈ V

T T ϕ, σ ∈ L

Table 5.1: Correspondence between GR Super Virasoro Algebra Generators

The mappings and bilinear forms from above now take the form

Λ(ϕij)wk = δjkwi − δikwj + `εijklwl (5.33)

d(ϕij, wk) = εijklvl (5.34)

ψ(wi, vj) = ΓiΓj(Γ
5 − `) = −`ψij − 1

2εijklϕkl − δijσ (5.35)

d(σ,wk) = vl (5.36)

R(ϕij)vk = δjkvl − δikvj + `εijklvl (5.37)

Now the correspondence between derivation representation and Clifford alge-

bra representation should be clear:

The effects of the extended algebra, which is a function of `, can be seen in

the mapping b, the metric term for the vector space V, and the mapping Λ on the

six linear combinations ϕij ± 1
2εijklϕkl :

b(vi, vj) = −δij(1− `2) (5.38)

Λ(ϕij ± εijklϕkl)wm = (1∓ `)(δjmwi − δimwj ∓ `εijmnwn) (5.39)

If b2 = 1, then b is identically equal to 0. The vector space V disappears.
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The parameter ` can be used to categorize all types of 1D N = 4 super

Virasoro algebras. When ` 6= ±1, the algebra is the “large” N = 4 algebra with

so(4) = so(3) ⊗ so(3). At ` = ±1, it collapses to the “small” 8-dimensional N = 4

algebra. It is called small because at ` = ±1, part of the space is mapped into zero

into W. The dimension 1
2 fields generated by V disappear and the corresponding

representation now only has 4 dimension-1/2 fields from W and four dimension-1

fields from the combination of L and V ir.

It is clear that the addition of the `-terms, which also involved the Levi-Civita

tensor, has its basis in the Q vector space describing the supersymmetric operators

and requires the necessary adjustments to the other operators to close the algebra.

The original [T,Q}, [T, S},and [T, T} supercommutators reflect this relationship and

the close ties between the supersymmetric operators and the Lie algebra underneath.

With the algebra elements written as elements of a Clifford algebra, all of the

previous work can be double checked and reanalyzed in a different context. The

benefit of going to a Clifford algebra representation is that the Clifford algebras are

well-known and well-understood. In [2], there is some discussion about what this

would entail and will be investigated for future research.

5.3 Calculation of HTT SVA OPEs

Following the method outlined in Chapter 4, the first thing to note is that ad-

joint and coadjoint vectors now include theQ operator: L = (Lm, Qn(v), Gp(w), Tr(Σ))
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and L̃ = (L̃m, Q̃n(v′), G̃p(w
′), T̃r(Σ

′)). The inner product is now defined by

〈(L̃M , G̃S
N , Q̃

T
P , T̃

UV
R )|(LA, GI

B, Q
J
C , T

KL
D )〉 = δM,A+δN,Bδ

I
S+δP,Cδ

J
T+δR,Dδ

JK
LM . (5.40)

The Leibnitz rule part is still the same:

〈L ∗ L̃|L〉 = −〈L̃|L ∗ L〉. (5.41)

The list of changes to the coadjoint operators is of course longer:

δL̃ = L ∗ L̃+Q ∗ Q̃+G ∗ G̃+ T ∗ T̃

δG̃ = L ∗ G̃+G ∗ L̃+Q ∗ T̃ +G ∗ T̃ + T ∗ G̃+ T ∗ Q̃

δQ̃ = L ∗ Q̃+G ∗ T̃ + T ∗ Q̃

δT̃ = L ∗ T̃ +G ∗ G̃+G ∗ Q̃+Q ∗ Q̃+ T ∗ T̃

The associated fields are now:

L→ ξ ; L̃→ D (5.42)

G→ g ; G̃→ χ (5.43)

Q→ f ; Q̃→ φ (5.44)

T → t ; T̃ → A (5.45)

By taking pairs of individual adjoint elements acting on individual coadjoint

elements, the OPE’s can found.
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1. D(y)O(x)

Lξ ∗ L̃D = L̃D̃

→ D̃ = −2Dξ′ −D′ξ + C
4 (ξ′′′ − ξ′) (5.46)

Lξ ∗ G̃(w)χ = G̃χ̃(w′)

→ χ̃ = −B(w,w′)1
2(3ξ′χ− ξχ′) (5.47)

Lξ ∗ Q̃φ(v) = Q̃φ̃(v′)

→ φ̃ = −b(v, v′)1
2(2ξ′φ− ξφ′) (5.48)

Lξ ∗ T̃A(Σ) = T̃Ã(Σ′)

→ Ã = −K(Σ,Σ′)(ξ′A+ A′ξ) (5.49)

These expressions yield the following OPEs:

D(y)D(x) =
−1

πi(y − x)2
D(x)− 1

2πi(y − x)
∂xD(x)

− C(
−1

2πi(y − x)2
+

−6

2πi(y − x)4
) (5.50)

D(y)χ(x) = B(w,w′)(
−3

4πi(y − x)2
χ(x)− 1

2πi(y − x)
∂xχ(x)) (5.51)

D(y)φ(x) =
1

2
b(v, v′)(

−1

2πi(y − x)2
φ(x)− 2

2πi(y − x)
∂xφ(x)) (5.52)

D(y)A(x) = K(Σ,Σ′)(
−1

2πi(y − x)2
A(x)− 1

2πi(y − x)
∂xA(x)) (5.53)
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2. χ(y)O(x)

Gg(w) ∗ L̃D = G̃g̃(w
′)

→ g̃ = 2B(w,w′)bd−gD − C(g′′ − 1

4
g)ce (5.54)

Gg(w) ∗ G̃χ(w′) = L̃D̃ + T̃Ã(Σ)

→ D̃ = B(w,w′)(g′χ− 3χ′g)

→ Ã = B(w′,Λ(Σ)w)(gχ) (5.55)

Gg(w) ∗ Q̃φ(v) = Q̃φ̃(v′)

→ φ̃ = b(v′, d(Σ, w))(φ′g − g′φ) (5.56)

Gg(w) ∗ T̃A(Σ) = Q̃φ(v) + G̃χ(w′)

→ φ = −K(Σ, φ(w, v))(gA)

→ χ = K(Σ, ϕ(w,w′))bd(2g′A− A′g) + C(g′′ − 1

4
g)ce (5.57)

The OPEs are

χ(y)D(x) = 2B(w,w′)bd 1

2πi(y − x)
D(x)− C(

−2

2πi(y − x)3
− 1

4

1

2πi(y − x)
)ce(5.58)

χ(y)χ(x) = B(w,w′)
1

2
bd 3

2πi(y − x)2
χ(x) +

1

2πi(y − x)
∂xχ(x)ce

+B(w′,Λ(Σ)w)
3

2πi(y − x)2
χ(x) (5.59)

χ(y)φ(x) = b(v′, d(Σ, w))bd 1

2πi(y − x)2
φ(x) +

1

2πi(y − x)
∂xφ(x)ce (5.60)

χ(y)A(x) = bd 2

2πi(y − x)2
A(x)− 1

2πi(y − x)
∂xA(x)

−CK(Σ, ϕ(w,w′))(
−2

2πi(y − x)3
− 1

4

1

2πi(y − x)
)ce

+K(Σ, φ(w, v))
1

2πi(y − x)
A(x) (5.61)
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3. φ(y)O(x)

Qf (v) ∗ L̃D = 0 (5.62)

Qf (v) ∗ G̃χ(w) = 0 (5.63)

Qf (v) ∗ Q̃φ(v′) = L̃D + T̃A(Σ)

→ D = b(v, v′)× 1

2
(φ′f − φf ′)

→ A = −b(v′, R(Σ)v)(fφ) (5.64)

Qf (v) ∗ T̃A(Σ) = G̃χ(w)

→ χ(w) = K(Σ, ϕ(w, v))(fA) (5.65)

The OPEs are

φ(y)φ(x) = b(v, v′)×−1

2
bd 1

2πi(y − x)2
φ(x) +

1

2πi(y − x)
∂xφ(x)ce

+b(v′, R(Σ)v)
1

2πi(y − x)
φ(x) (5.66)

φ(y)A(x) = K(Σ, ϕ(w, v))
1

2πi(y − x)
A(x) (5.67)
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4. A(y)O(x)

TA(Σ) ∗ L̃D = 0 (5.68)

TA(Σ) ∗ G̃χ(w′) = G̃χ̃(w)

→ χ̃ = B(w′,Λ(Σ)w)(Aχ) (5.69)

TA(Σ) ∗ Q̃φ(v) = G̃χ̃(w) + Q̃φ̃(v′)

→ χ̃ = b(d(Σ, w), v)A′φ

→ φ̃ = b(v′, R(Σ)v)Aφ (5.70)

TA(Σ) ∗ T̃Ã(Σ′) = T̃Ā([Σ,Σ′])

→ Ā(Σ,Σ′) = K(Σ,Σ′)(A′A− CA) (5.71)

The OPE that follow are

A(y)χ(x) = B(w′,Λ(Σ)w)bd 1

2πi(y − x)
χ(x)ce (5.72)

A(y)φ(x) = b(d(Σ, w), v)bd −1

2πi(y − x)2
φ(x)ce

+ b(v′, R(Σ)v)bd 1

2πi(y − x)
φ(x)ce (5.73)

A(y)A(x) = K(Σ,Σ′)bd C

2πi(y − x)2
+

1

2πi(y − x)
A(x)ce (5.74)

Two things should be noted here. The first is the inclusion of the central

extension terms in the OPE. The central charge terms are the product of the central

charge of the Virasoro algebra, now represented by C, multiplied by field related

to the adjoint action. These terms are singular in powers of derivatives of the

field. When translated into OPEs, these powers of derivatives of the field turn into

1D delta functions and their derivatives. Typically, one leaves these terms out to
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simplify the OPE by reducing the number of terms and fields. The only way these

terms can contribute to field theory calculations is through integration over the all

space.

The second thing to note is that the metric functions b,B, and K from the

commutators are carried over from the operators into the OPEs and the fields. The

metric functions are all dependent on the underlying vector spaces (L,W ,V ). The

metrics use elements of the adjoint and coadjoint fields and appear to enforce the

inner product of the underlying vector space structure of the different subalgebras of

the SVA. The subspaces (W , V , and T ) their metric functions (b,B, and K) and the

dimension equation 5.25 define all the other structure in the theory beyond SVA.

5.4 Comparison of GR and HTT SVA OPEs

To show the equivalence of the two realizations, first we will show that the

HTT realization using a Clifford algebra simplifies to the GR realization by a proper

definition of parameters and underlying vector spaces. Next, we will show the OPEs

are related using the HTT definitions.

From Chapter 4, N = 4 so dim(W )=4. There are no Q operators so

dim(V )=0. By equation 5.25, this makes dim(L)=3. This implies that the rep-

resentation of the supersymmetry part only has three elements besides the unit

element. The Lie Algebra is 3 dimensional which limits it to be so(3). The key is

to find a representation of both algebras using the Clifford algebra. Such a basis

exists and is a subset of the Clifford algebra Cl(3) of dimension 23 = 8 and elements
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γ1, γ2, γ3. The reason for this is in the next section. The elements of the vector

spaces are

wi = (γ0 ≡ 1, γ1, γ2, γ3) (5.75)

ΣI =
(
Σ1 ≡ i

2γ2γ3,Σ
2 ≡ i

2γ1γ3,Σ
3 ≡ i

2γ1γ2

)
(5.76)

The factor of i
2 in the Σ’s is necessary for consistency. The metrics are given by the

Clifford algebra commutation relations, as given in equations 5.27 and 5.28:

B(wi, wj) = bdwi, wjce = bdγi, γjce = −2δij (5.77)

K(ΣI ,ΣJ) = bdΣI ,ΣJce = iεIJKΣK (5.78)

With these definitions, it is straightforward to show that equations (5.7 - 5.16)

collapse into equations (5.1 - 5.6).

Now these definitions can be applied to the OPEs, with the metric functions

represented by only the constants, the delta and structure functions already ac-

counted for in the inner products.
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D(y)D(x) =
−1

πi(y − x)2
D(x)− 1

2πi(y − x)
∂xD(x)

− C(
−1

2πi(y − x)2
+

−6

2πi(y − x)4
) (5.79)

D(y)χ(x) = −(
−3

4πi(y − x)2
χ(x)− 1

2πi(y − x)
∂xχ(x)) (5.80)

D(y)A(x) = (
−1

2πi(y − x)2
A(x)− 1

2πi(y − x)
∂xA(x)) (5.81)

χ(y)D(x) = −4bd 1

2πi(y − x)
D(x)− C(

−2

2πi(y − x)3
− 1

4

1

2πi(y − x)
)ce (5.82)

χ(y)χ(x) = −1

2
bd 3

2πi(y − x)2
χ(x) +

1

2πi(y − x)
∂xχ(x)ce

+
3

2πi(y − x)2
χ(x) (5.83)

χ(y)A(x) = bd 2

2πi(y − x)2
A(x)− 1

2πi(y − x)
∂xA(x)

−CK(Σ, ϕ(w,w′))(
−2

2πi(y − x)3
− 1

4

1

2πi(y − x)
)ce (5.84)

φ(y)φ(x) = b(v, v′)×−1

2
bd 1

2πi(y − x)2
φ(x) +

1

2πi(y − x)
∂xφ(x)ce

+b(v′, R(Σ)v)
1

2πi(y − x)
φ(x) (5.85)

φ(y)A(x) = K(Σ, ϕ(w, v))
1

2πi(y − x)
A(x) (5.86)

A(y)χ(x) = bd 1

2πi(y − x)
χ(x)ce (5.87)

A(y)A(x) = bd C

2πi(y − x)2
+

1

2πi(y − x)
A(x)ce (5.88)

The OPEs are the same in previous chapter, with the terms associated with the

central charge left in and the supersymmetric indices left out. The metric functions

B and K are strictly from the inner products an enforce the level of supersymmetry

inherent in the underlying vector spaces.
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5.5 Expansion of GR SVA OPEs by HTT realization

In the original HTT paper [2], the N = 4 case is presented for a Clifford

algebra signature of (0, 4) using a 16-dimensional representation of S and the Clifford

space. The dimensions of the spaces W , V , and L are 4, 4, and 7 respectively as

given by eq. 5.25. ` is set equal to 0 for right now. The basis vectors for W are

wi = Γi (5.89)

and for V,

vi = Γi(Γ
5) (5.90)

where Γ5 = Γ1Γ2Γ3Γ4, (Γ2) = 1. The elements of Lie algebra are given by the φ

mapping with the addition of one more element:

ϕij = ϕ(wi, wj) = ΓiΓj(i 6= j) (5.91)

σ = (Γ5). (5.92)

The mappings and bilinear forms from above now take the form

Λ(ϕij)wk = δjkwi − δikwj (5.93)

d(ϕij, wk) = εijklvl (5.94)

ψ(wi, vj) = ΓiΓj(Γ
5) = −1

2εijklϕkl − δijσ (5.95)

d(σ,wk) = vk (5.96)

R(ϕij)vk = δjkvl − δikvj (5.97)

It is clear that these mappings represent the relationships between the super-

symmetric elements through the antisymmetric properties of the Clifford algbera.
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D(y)D(x) =
−1

πi(y − x)2
D(x)− 1

2πi(y − x)
∂xD(x)

− C(
−1

2πi(y − x)2
+

−6

2πi(y − x)4
) (5.98)

D(y)χ(x) = B(w,w′)(
−3

4πi(y − x)2
χ(x)− 1

2πi(y − x)
∂xχ(x)) (5.99)

D(y)φ(x) =
1

2
b(v, v′)(

−1

2πi(y − x)2
φ(x)− 2

2πi(y − x)
∂xφ(x)) (5.100)

D(y)A(x) = K(Σ,Σ′)(
−1

2πi(y − x)2
A(x)− 1

2πi(y − x)
∂xA(x)) (5.101)

χ(y)D(x) = 2B(w,w′)bd 1

2πi(y − x)
D(x)− C(

−2

2πi(y − x)3
− 1

4

1

2πi(y − x)
)ce(5.102)

χ(y)χ(x) = B(w,w′)
1

2
bd 3

2πi(y − x)2
χ(x) +

1

2πi(y − x)
∂xχ(x)ce

+B(w′,Λ(Σ)w)
3

2πi(y − x)2
χ(x) (5.103)

χ(y)φ(x) = b(v′, d(Σ, w))bd 1

2πi(y − x)2
φ(x) +

1

2πi(y − x)
∂xφ(x)ce (5.104)

χ(y)A(x) = bd 2

2πi(y − x)2
A(x)− 1

2πi(y − x)
∂xA(x)

−CK(Σ, ϕ(w,w′))(
−2

2πi(y − x)3
− 1

4

1

2πi(y − x)
)ce

+K(Σ, ϕ(w, v))
1

2πi(y − x)
A(x) (5.105)

φ(y)φ(x) = b(v, v′)×−1

2
bd 1

2πi(y − x)2
φ(x) +

1

2πi(y − x)
∂xφ(x)ce

+b(v′, R(Σ)v)
1

2πi(y − x)
φ(x) (5.106)

φ(y)A(x) = K(Σ, ϕ(w, v))
1

2πi(y − x)
A(x) (5.107)

A(y)χ(x) = B(w′,Λ(Σ)w)bd 1

2πi(y − x)
χ(x)ce (5.108)

A(y)φ(x) = b(d(Σ, w), v)bd −1

2πi(y − x)2
φ(x)ce

+ b(v′, R(Σ)v)bd 1

2πi(y − x)
φ(x)ce (5.109)

A(y)A(x) = K(Σ,Σ′)bd C

2πi(y − x)2
+

1

2πi(y − x)
A(x)ce (5.110)
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The effects of the extended algebra, which is a function of `, can be seen in

the changes to the metric functions and mappings between vector spaces, especially

b, the metric term for the vector space V, and the mapping Λ using the six linear

combinations ϕij ± 1
2εijklϕkl :

b(vi, vj) = −δij(1− `2) (5.111)

Λ(ϕij)wk = δjkwi − δikwj + `εijklwl (5.112)

Λ(ϕij ± εijklϕkl)wm = (1∓ `)(δjmwi − δimwj ∓ εijmnwn) (5.113)

d(ϕij, wk) = εijklvl (5.114)

d(σ,wk) = vk (5.115)

ψ(wi, vj) = ΓiΓj(Γ
5 − `) = −`ϕij − 1

2εijklϕkl − δijσ (5.116)

R(ϕij)vk = δjkvl − δikvj + `εijklvl (5.117)

As mentioned earlier, the parameter ` can be used to categorize whether the

1D N = 4 Super Virasoro Algebras contains the “small” so(3) or “large” N = 4

algebra with so(4) = so(3)⊗ so(3). This is reinforced by looking at the OPEs. The

only OPEs from 5.98 - 5.110 that are affected are those involving b,ψ,R, and Λ. At

both ` = ±1, b = 0 and a number of OPEs disappear: D(y)φ(x), χ(y)φ(x), A(y)φ(x),

and φ(y)φ(x). Two of the four remaining affected OPEs,χ(y)χ(x) and A(y)χ(x),

contain Λ which disappears at either value ` = ±1. The last two OPEs, χ(y)A(x)

and φ(y)A(x), are dependent on the elements of the Lie algebra in the Clifford

algebra through the compounded metric function K(Σ, ϕ(w, v)). It is interesting to

note that the φ function doesn’t necessarily disappear by this argument although it
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is not used as coadjoint field.

So by using the SVA defined by HTT in [2], we have shown that

• the GR SVA used in [6], [7], [8], and [3] can be written as subset of the HTT

SVA,

• the vector space underneath the HTT SVA, which can also be realized as a

Clifford Algebra, can be used to explain the structure of the GR SVA.

5.6 SU(2), SO(3), and Clifford Algebra Correspondence

In Chapter 2, it was clearly shown that in the d=4, N=4 case there existed a

su(2) ⊗ su(2) algebra in the Garden Algebra that described the 3 supermultiplets.

In Chapter 5, it was shown that the HTT SVA contain the “large” so(4) and “small”

so(3) groups depending on the value of ` in its construction. Basic groups highlights

a very interesting connection. so(4) is equivalent to so(3)⊗so(3). so(3) is equivalent

to su(2). Therefore, the construction of the N = 4 HTT SVA can be related to the

N=4 supermultiplets.

It also apparent when looking at the LI matrices for the different dimension

adinkras (d = 2, 3, 4). For each of these dimensions, we were able to find a represen-

tation of the LI matrices in terms of Pauli matrices.For d = 2, C(I) = {I2,σ
3},SI =

{I2,−iσ2}.
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From [1], we have for d = 3:

L1 = iσ1 ⊗ σ2 (5.118)

L2 = iσ2 ⊗ I2 (5.119)

L3 = −iσ3 ⊗ σ2 (5.120)

In [10], 4 × 4 matrices denoted by αI and βI were used. These also possess

decompositions a bit string times an element of the permutation group according

to:

α1 = σ2 ⊗ σ1 = − i (12)b(4321)p ,

α2 = I⊗ σ2 = − i (10)b(2143)p ,

α3 = σ2 ⊗ σ3 = − i (6)b(3412)p ,

β1 = σ1 ⊗ σ2 = − i (10)b(4321)p ,

β2 = σ2 ⊗ I = − i (12)b(3412)p ,

β3 = σ3 ⊗ σ2 = − i (6)b(2143)p , (5.121)

and of course the 4 × 4 identity matrix correspond to

I4 = (0)b(1234)p . (5.122)

The significance of these observations is that both the sets define by

{A} = { I4, iαI } , {B} = { I4, iβI } , (5.123)

also satisfy the conditions of (5). The set of matrices {C}, where

{C} = { I4, iαI , iβI ,αIβJ } , (5.124)
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forms a basis for the expansion of all 4 × 4 real matrices. It is thus of interest to

analyze these completely as representations of S4. Our results are summarized in

the table below.

α1β1 = (6)b(1234)p α1β2 = (0)b(2143)p α1β3 = (5)b(3412)p

α2β1 = (0)b(3412)p α2β2 = (9)b(4321)p α2β3 = (12)b(1234)p

α3β1 = (3)b(2143)p α3β2 = (10)b(1234)p α3β3 = (0)b(4321)p

Table 5.2: Binary/Permutation Element Decomposition

When looking closer as the use of Clifford Algebra for each object, we see the

following. For adinkras, the Clifford algebra can be found as a combination of the

L and R matrices. Specifically,

ΓI =

 0 LI

RI 0

 (5.125)

In this form, the Clifford algebra in connected to how the fields transform through

the covariant superspace derivative, D. In the HTT SVA, the Clifford algebra

also are used to represent how the fields are used but through the supsersymmetry

operator, G. As mentioned above, these two are related but it is not clear at this

time how this be made explicit. There exists a path between the two that could be

exploited to give the OPEs for the supermultiplets without having a Lagrangian or

Action to describe the SUSY theory.
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Chapter 6

Conclusions

In the dissertation, the plan was to explore the relationship between represen-

tations of SUSY theories. Two methods were used: Adinkras representations of the

Garden Algebras and Clifford Algebra Representations of the Super Virasoro Alge-

bra. Using a specific representation of the Garden Algebra, GR(4,4), Mathematica

found all the 4 × 4 matrices that could be solutions and all the tetrad of solutions

that solved GR(4,4). By analysis of the Adinkras, the tetrad solutions were associ-

ated with 3 SUSY multiplets that formed different SUSY theories. Their multiplets

were related in a way that allowed unique equivalence classes to be found.

Starting with a geometric representation of the Super Virasoro Algebra, the

method of using Coadjoint orbits was used to find Operator Product Expansions

of the fields from the SVA. By comparison with another representation of the SVA,

that of Hasiewicz, Thielemans, and Troost [2] which uses Clifford Algebras, the Op-

erator Product Expansions were calculated and shown to be equivalent to the ones

calculated in the earlier chapter using the Geometrical Realization. This equivalence

allowed a quicker calculation of the OPEs for the exteneded GR SVA by analysis. It

also gave insight to the nature of the relationship between underlying vector spaces

and supersymmetric properties of the theory.

The key lessons learned were
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• d=4, N=4 Adinkras break into 6 six sets found in S4

• GR SVA ⊂ HTT SVA

• Adinkras and Garden Algebras are related to the SVAs by the Clifford Algebra

One of the goals of the research was not only to discover equivalence relations

about Adinkras ( and thus relations between SUSY theories) but also to develop an

easier way to talk about the dynamics of Adinkras by using GR SVA and OPEs. This

idea was explored but there is still more work to do make the explicit connection

to the dynamics of SUSY theories. When this is accomplished, calculations can

be done computing the masses and interaction constants of SUSY particles using

these methods. These contributions will push the boundaries of theoretical and

experimental physics ahead to the next great advance.
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Appendix A

Mathematical Concepts

A.1 Grassman Variables

Grassmann numbers were discovered by the German mathematician Hermann

Grassmann (1809 - 1877). A Grassman variable is a variable that anticommutes

with other Grassmann variables. That is, for Grassmann variables ζi, ζj

{ζi, ζj} = ζiζj + ζjζi = 0 (A.1)

By application of the above formula for ζi in both positions, we see that

{ζi, ζi} = 2ζiζi = 0→ (ζi)
2 = 0. (A.2)

It is these properties that allow fermionic fields to be represented correctly

mathematically.

A.2 Clifford Algebras

Clifford Algebras were developed by the English mathematician William King-

don Clifford (1845 - 1879). A Clifford Algebra is an algebra generated by elements

denoted γi that obey the following rule:

{γi, γj} = γiγj + γjγi = 2gij (A.3)
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where gij is a metric. Typically, gij is equal to δij however gij can have any signature.

In [2], 3 particular signatures of a Clifford Algebra are mentioned: (0,4),(1,3),and

(2,2).

The number of generators in the Clifford Algebra depends on the dimensional-

ity of the algebra. Cliff(2ν) has 2ν generators. Cliff(2ν+1) has the same generators

as Cliff(2ν) but includes a new one, Γ2ν+1 that equals the product of the other

generators.

Γ2ν+1 =
∏2ν

i=1
Γi (A.4)

A.3 Cartan Matrix

A Cartan matrix is a matrix with the following properties:

• It is square.

• All elements are integers.

• All diagonal elements are equal to 2.

• All off-diagonal elements are non-positive

• An off-diagonal element is zero if and only if the transpose element is also

zero.
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Appendix B

List of L-Matrices Solutions of the (d = 4, N = 4) Garden Algebra

There are 384 matrices that form the solution space of the GR(4,4) Algebra.

Out of that, 1536 unique tetrads of solutions exist. It has been shown that they

break into six sets that describe different supermultiplets. Of the 256 elements, one

can focus on the even-bitstring solutions since the odd-bit strings can be obtained

with a sign flip. This leaves six sets of 16 tetrad solutions, which are listed here.

However, instead of the bit-string/permutation notation used earlier, a more

concise notation is used. This notation, called the Bracket-Overbar notation simply

replaces the bit-string word with an overbar(¯) over the permutation position that

is negative. Thus (10b)(4231p) is now 〈42̄31̄〉.

{CM}

〈1423〉 〈231̄4̄〉 〈32̄41̄〉 〈41̄3̄2〉

〈1423〉 〈23̄1̄4〉 〈324̄1̄〉 〈41̄32̄〉

〈14̄23〉 〈231̄4〉 〈32̄4̄1̄〉 〈4132̄〉

〈14̄23〉 〈23̄1̄4̄〉 〈3241̄〉 〈413̄2〉

〈1423̄〉 〈231̄4〉 〈32̄41〉 〈41̄3̄2̄〉

〈1423̄〉 〈23̄1̄4̄〉 〈324̄1〉 〈41̄32〉

〈14̄23̄〉 〈231̄4̄〉 〈32̄4̄1〉 〈4132〉

〈14̄23̄〉 〈23̄1̄4〉 〈3241〉 〈413̄2̄〉

〈142̄3〉 〈2314̄〉 〈32̄4̄1̄〉 〈41̄32〉

〈142̄3〉 〈23̄14〉 〈3241̄〉 〈41̄3̄2̄〉

〈14̄2̄3〉 〈2314〉 〈32̄41̄〉 〈413̄2̄〉

〈14̄2̄3〉 〈23̄14̄〉 〈324̄1̄〉 〈4132〉

〈142̄3̄〉 〈2314〉 〈32̄4̄1〉 〈41̄32̄〉

〈142̄3̄〉 〈23̄14̄〉 〈3241〉 〈41̄3̄2〉

〈14̄2̄3̄〉 〈2314̄〉 〈32̄41〉 〈413̄2〉

〈14̄2̄3̄〉 〈23̄14〉 〈324̄1〉 〈4132̄〉
(B.1)
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{VM}

〈1324〉 〈24̄1̄3〉 〈31̄42̄〉 〈423̄1̄〉

〈1324〉 〈241̄3̄〉 〈31̄4̄2〉 〈42̄31̄〉

〈1324̄〉 〈241̄3〉 〈31̄4̄2̄〉 〈42̄31〉

〈1324̄〉 〈24̄1̄3̄〉 〈31̄42〉 〈423̄1〉

〈13̄24〉 〈241̄3〉 〈3142̄〉 〈42̄3̄1̄〉

〈13̄24〉 〈24̄1̄3̄〉 〈314̄2〉 〈4231̄〉

〈13̄24̄〉 〈24̄1̄3〉 〈314̄2̄〉 〈4231〉

〈13̄24̄〉 〈241̄3̄〉 〈3142〉 〈42̄3̄1〉

〈132̄4〉 〈24̄13〉 〈31̄4̄2̄〉 〈4231̄〉

〈132̄4〉 〈2413̄〉 〈31̄42〉 〈42̄3̄1̄〉

〈132̄4̄〉 〈2413〉 〈31̄42̄〉 〈42̄3̄1〉

〈132̄4̄〉 〈24̄13̄〉 〈31̄4̄2〉 〈4231〉

〈13̄2̄4〉 〈2413〉 〈314̄2̄〉 〈42̄31̄〉

〈13̄2̄4〉 〈24̄13̄〉 〈3142〉 〈423̄1̄〉

〈13̄2̄4̄〉 〈24̄13〉 〈3142̄〉 〈423̄1〉

〈13̄2̄4̄〉 〈2413̄〉 〈314̄2〉 〈42̄31〉
(B.2)

{TM}

〈1342〉 〈24̄31̄〉 〈31̄2̄4〉 〈421̄3̄〉

〈1342〉 〈243̄1̄〉 〈31̄24̄〉 〈42̄1̄3〉

〈134̄2〉 〈2431̄〉 〈31̄2̄4̄〉 〈42̄13〉

〈134̄2〉 〈24̄3̄1̄〉 〈31̄24〉 〈4213̄〉

〈13̄42〉 〈2431̄〉 〈312̄4〉 〈42̄1̄3̄〉

〈13̄42〉 〈24̄3̄1̄〉 〈3124̄〉 〈421̄3〉

〈13̄4̄2〉 〈24̄31̄〉 〈312̄4̄〉 〈4213〉

〈13̄4̄2〉 〈243̄1̄〉 〈3124〉 〈42̄13̄〉

〈1342̄〉 〈24̄31〉 〈31̄2̄4̄〉 〈421̄3〉

〈1342̄〉 〈243̄1〉 〈31̄24〉 〈42̄1̄3̄〉

〈134̄2̄〉 〈2431〉 〈31̄2̄4〉 〈42̄13̄〉

〈134̄2̄〉 〈24̄3̄1〉 〈31̄24̄〉 〈4213〉

〈13̄42̄〉 〈2431〉 〈312̄4̄〉 〈42̄1̄3〉

〈13̄42̄〉 〈24̄3̄1〉 〈3124〉 〈421̄3̄〉

〈13̄4̄2̄〉 〈24̄31〉 〈312̄4〉 〈4213̄〉

〈13̄4̄2̄〉 〈243̄1〉 〈3124̄〉 〈42̄13〉
(B.3)
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{VM1}

〈1432〉 〈234̄1̄〉 〈32̄1̄4〉 〈41̄23̄〉

〈1432〉 〈23̄41̄〉 〈321̄4̄〉 〈41̄2̄3〉

〈14̄32〉 〈2341̄〉 〈32̄1̄4̄〉 〈412̄3〉

〈14̄32〉 〈23̄4̄1̄〉 〈321̄4〉 〈4123̄〉

〈143̄2〉 〈2341̄〉 〈32̄14〉 〈41̄2̄3̄〉

〈143̄2〉 〈23̄4̄1̄〉 〈3214̄〉 〈41̄23〉

〈14̄3̄2〉 〈234̄1̄〉 〈32̄14̄〉 〈4123〉

〈14̄3̄2〉 〈23̄41̄〉 〈3214〉 〈412̄3̄〉

〈1432̄〉 〈234̄1〉 〈32̄1̄4̄〉 〈41̄23〉

〈1432̄〉 〈23̄41〉 〈321̄4〉 〈41̄2̄3̄〉

〈14̄32̄〉 〈2341〉 〈32̄1̄4〉 〈412̄3̄〉

〈14̄32̄〉 〈23̄4̄1〉 〈321̄4̄〉 〈4123〉

〈143̄2̄〉 〈2341〉 〈32̄14̄〉 〈41̄2̄3〉

〈143̄2̄〉 〈23̄4̄1〉 〈3214〉 〈41̄23̄〉

〈14̄3̄2̄〉 〈234̄1〉 〈32̄14〉 〈4123̄〉

〈14̄3̄2̄〉 〈23̄41〉 〈3214̄〉 〈412̄3〉
(B.4)

{VM2}

〈1243〉 〈21̄34̄〉 〈342̄1̄〉 〈43̄1̄2〉

〈1243〉 〈21̄3̄4〉 〈34̄21̄〉 〈431̄2̄〉

〈124̄3〉 〈21̄34〉 〈34̄2̄1̄〉 〈4312̄〉

〈124̄3〉 〈21̄3̄4̄〉 〈3421̄〉 〈43̄12〉

〈1243̄〉 〈21̄34〉 〈342̄1〉 〈43̄1̄2̄〉

〈1243̄〉 〈21̄3̄4̄〉 〈34̄21〉 〈431̄2〉

〈124̄3̄〉 〈21̄34̄〉 〈34̄2̄1〉 〈4312〉

〈124̄3̄〉 〈21̄3̄4〉 〈3421〉 〈43̄12̄〉

〈12̄43〉 〈2134̄〉 〈34̄2̄1̄〉 〈431̄2〉

〈12̄43〉 〈213̄4〉 〈3421̄〉 〈43̄1̄2̄〉

〈12̄4̄3〉 〈2134〉 〈342̄1̄〉 〈43̄12̄〉

〈12̄4̄3〉 〈213̄4̄〉 〈34̄21̄〉 〈4312〉

〈12̄43̄〉 〈2134〉 〈34̄2̄1〉 〈431̄2̄〉

〈12̄43̄〉 〈213̄4̄〉 〈3421〉 〈43̄1̄2〉

〈12̄4̄3̄〉 〈2134̄〉 〈342̄1〉 〈43̄12〉

〈12̄4̄3̄〉 〈213̄4〉 〈34̄21〉 〈4312̄〉
(B.5)
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{VM3}

〈1234〉 〈21̄4̄3〉 〈341̄2̄〉 〈43̄21̄〉

〈1234〉 〈21̄43̄〉 〈34̄1̄2〉 〈432̄1̄〉

〈1234̄〉 〈21̄43〉 〈34̄1̄2̄〉 〈432̄1〉

〈1234̄〉 〈21̄4̄3̄〉 〈341̄2〉 〈43̄21〉

〈123̄4〉 〈21̄43〉 〈3412̄〉 〈43̄2̄1̄〉

〈123̄4〉 〈21̄4̄3̄〉 〈34̄12〉 〈4321̄〉

〈123̄4̄〉 〈21̄4̄3〉 〈34̄12̄〉 〈4321〉

〈123̄4̄〉 〈21̄43̄〉 〈3412〉 〈43̄2̄1〉

〈12̄34〉 〈214̄3〉 〈34̄1̄2̄〉 〈4321̄〉

〈12̄34〉 〈2143̄〉 〈341̄2〉 〈43̄2̄1̄〉

〈12̄34̄〉 〈2143〉 〈341̄2̄〉 〈43̄2̄1〉

〈12̄34̄〉 〈214̄3̄〉 〈34̄1̄2〉 〈4321〉

〈12̄3̄4〉 〈2143〉 〈34̄12̄〉 〈432̄1̄〉

〈12̄3̄4〉 〈214̄3̄〉 〈3412〉 〈43̄21̄〉

〈12̄3̄4̄〉 〈214̄3〉 〈3412̄〉 〈43̄21〉

〈12̄3̄4̄〉 〈2143̄〉 〈34̄12〉 〈432̄1〉
(B.6)
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Appendix C

Other Group Theory Concepts Related to the Equivalence Classes of

Adinkras

C.1 The O(4) Group

In discussion with a colleague about the equivalence classes, the orthogonal

group was discussed as a key to understanding the classes. An element O of the

orthogonal group satisfies the equation O OT = 1 where 1 is the identity matrix of

the proper dimension. An orthogonal matrix can transform a L
I

matrix into another

matrix by OL
I
OT = L̃

I
.

The L
I

that are solutions to the Garden algebra are elements of the orthogonal

group O(4). The O(4) group has 4 generators which can be mapped directly to the

4 solution matrices, L
I
. Since we are free to apply any O(4) transformation, we

choose a transformation that takes L1 and maps it into the identity matrix I4. The

solution matrices that make up L2 , L3 , and L4 under the same transformation are

now matrices that are orthogonal to the identity matrix and each other. This is the

same as a reduction from the O(4) group down to the O(3) subgroup.
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C.2 The Group D2

Another interesting group is the crystal group D2. D2 describes the sym-

metries of 2 dimensional rectangle with labelled vertices. The symmetric operations

in D2 are rotations around the center of the rectangle and flips along different axes

of the rectangle. It is clear that one could apply this group action on the N = 2

adinkra and define equivalence classes. It is not clear if this approach can be taken

to higher dimensional adinkras. A similar method as used here could be developed

for higher dimensions, focusing on cycle-sign representation of the L-matrices and

field state vectors (a1...aN ) and then writing the elements of the group D2 in these

terms.

By studying both of these groups, it may be possible to easily find analytical

solutions to higher dimensional Garden Algebra and define the necessary equivalence

classes and thus groups of related supersymmetric theories.

C.3 Graph Theory Ideas

Another method discussed [15] relates to graph theory. Graph theory is the

study of planar objects consisting of node and links. Obviously an adinkra is a type

of graph that follows certain rules. There may be some ideas from graph theory

that we can take advantage of to help define equivalence classes.

For every graph, there exists an adjacency matrix which represents the con-

nections between nodes. The row and columns represent the nodes in the graph.

The value of each element, γij in the matrix is 0 if there is no direct link between
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the ith and jth nodes, and non-zero if there is a direct link. The non-zero value can

be anything, with the value 1 commonly used for undirected graphs, and ±1 used

for directed graphs.

Adjacency matrices were discussed in [15]. Using the definition from [15]

and [10], the following matrix

γI =

 0 LI

RI 0

 (C.1)

can be taken as an adjacency matrix.

An adjancency matrix can be made for every adinkra. If a fixed method is

used to label nodes and links, the adjancency matrix can be used to group similar

graphs together. However, there are graphs that may have different looking adja-

cency matrices but still represent the same underlying supersymmetric theory. Vice

versa, there are adinkras which look similiar, have similar adjacency matrices but

do represent different theories. we would like to separate the later case.

Another method of distinguishing matrices is by using the characteristic poly-

nomial. The characteristic polynomial is a polynomial function generated from a

square matrix that contains important information about the matrix. For every

graph, there is a characteristic polynomial associated with the adjacency matrix for

the the graph.

The characteristical polynomial would seem to be a good choice for determin-

ing equivalence classes. We can apply the idea to the adjacency matrix representa-

tion of adinkras. For every L
I
, we multiply it by a constant t and build an adjacency

matrix from all the L
I

solutions. The adjacency matrix is now populated with ±t’s.
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The characteristic polynomial made from this matrix is a polynomial of rank 2N

and only contains even powers. However, this method using the adjancency matrix

does not separate the adinkras. All the solutions found for the 4× 4 case have the

same characteristic polynomial: 256− 256t2 + 96t4 − 16t6 + t8.

97



Appendix D

Valise Adinkras of L-Matrices Solutions of the (d = 4, N = 4)

Garden Algebra

In Chapter 3, we found the solutions of the GR(4, 4) divided into 6 sets that

split the group S4. Three of these sets corresponded to the three supermultiplets

previously discussed (Chiral, Tensor, Vector). The other sets were referred to as

VM1, VM2, and VM3.

The L-matrices can be used to draw adinkras representing the supermultiplets.

This can be done using valise adinkras. A valise adinkra is an adinkra with 2 levels,

one for fermionic fields and one for bosonic fields on the lowest level.

To move a node from one level to another requires a change of engineering

dimension of the requisite field. Since fermionic and bosonic levels differ by half-

integer engineering dimension, the move of a field to the next lowest level of the

same field is an integer engineering dimension change. This engineering change is

accomplished by the use of integrals and derivatives of the fields. Valise adinkras

must still obey the Garden Algebra equations so the derivative and integral changes

are mapped through the definitions of Φi and Ψi.

Below are the valise adinkras that correspond to the 6 sets of tetrad solutions

shown in Table 3.6f.

For the Chiral Supermultiplet Valise adinkra to have the correct engineering

98



dimensions and satisfy the Garden Algebra equations, we have the mapping

φ1 → iΨ1, φ2 → iΨ2, φ3 → iΨ3, φ4 → iΨ4, (D.1)

and

Φ1 = A, Φ2 = B, ∂0Φ3 = F, ∂0Φ4 = G. (D.2)

The Tensor Supermultiplet adinkra is a natural Valise adinkra.

For the Vector Supermultiplet valise adinkra to have the correct engineering

dimensions and satisfy the Garden Algebra equations, we have the mapping

λ1 → iΨ1, λ2 → iΨ2, λ3 → iΨ3, λ4 → iΨ4, (D.3)

and

Φ1 = A1, Φ2 = A2, Φ3 = A3, ∂0Φ4 = d. (D.4)

The mapping above is applied to the VM1, VM2, and VM3 Valise adinkras also.

Figure D.1: The N = 4 Chiral Supermultiplet Valise Adinkra
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Figure D.2: The N = 4 Tensor Supermultiplet Valise Adinkra

Figure D.3: The N = 4 Vector Supermultiplet Valise Adinkra
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Figure D.4: The N = 4 VM1 Valise Adinkra

Figure D.5: The N = 4 VM2 Valise Adinkra
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Figure D.6: The N = 4 VM3 Valise Adinkra
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