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Astrocytes within the neurogenic zones of the adult central nervous system (CNS) support 

the formation and maturation of neurons from progenitor cells throughout life. In contrast, 

astrocytes outside of neurogenic zones dedifferentiate and contribute to scar tissue formation 

after injury, creating a physical barrier to regenerating neurons. Moreover, reactive astrocytes 

can create a chemical barrier and be toxic for neurons after injury. Therefore, understanding 

the signaling pathways that switch astrocytes from neurogenesis-inhibitory to neurogenesis-

supportive is a promising approach to reverse the progression of neurodegenerative diseases 

and traumatic CNS injuries.  

 



 

The mammalian olfactory system shows robust neurogenesis throughout life, with 

neurosensory cells capable of renewal and differentiation. There is growing evidence that a 

distinct type of glia, olfactory ensheathing cells (OECs), regulate the astrocytic stress response 

in the olfactory bulb (OB) and is critical for the neuroregenerative properties of the olfactory 

system. Therefore, OECs can be leveraged as a tool to identify signals pertinent for 

maintaining neurorepair-promoting characteristics in astrocytes. 

Exosomes are extracellular nanovesicles that serve intercellular communication. Our results 

show that an exosome secreted protein, Alpha-crystallin B chain (CryAB), plays an important 

role in astrocyte-OEC crosstalk. CryAB was shown to have protective roles for cells against 

stress conditions. In accordance, our results indicate that OEC-secreted, CryAB positive 

exosomes are taken up by astrocytes and this intercellular vesicle trafficking plays an anti-

inflammatory role in astrocytes by moderating activity of pro-inflammatory factors.  

OECs also support astrocyte differentiation via sustained fibroblast growth factor (FGF) 

signaling. FGFs are crucial factors in CNS development and injury response, and are targets 

for neuroregenerative strategies. Heparan sulfate proteoglycans (HSPGs) are cell-specific 

proteins that can be shed from the membrane and regulate FGF signaling in the donor cell. 

We show OEC-HSPGs differentially activate FGF receptor-1 (FGFR1) signaling in astrocytes 

and suppress reactivity. Moreover, our results suggest a mechanistic role for OEC-HSPGs in 

intracellular FGFR1 trafficking and its association with the transcriptional machinery in 

astrocytes. Together this work shows that OB OECs are integral components of one of the 

few neurogenic zones in the CNS. Mimicking OEC-astrocyte crosstalk in vivo may provide 

new approaches to ameliorating CNS injuries by targeting astrocytes.  
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Chapter 1: Background 

Introduction 

Astrocytes, traditionally identified by intermediate filament protein glial fibrillary acidic 

protein (GFAP) immunostaining, are the most numerous cell type in the CNS and perform 

crucial functions for neuronal development and synapse formation (reviewed in Stevens & 

Muthukumar, 2016). The adult mammalian subventricular zone (SVZ) contains GFAP 

positive neural stem cells (NSCs) which are also are classified as astrocytes. These cells give 

rise to neuroblasts and migrate to the OB where they commit to neuronal (and to a lesser 

degree to glial) lineage (Doetsch et al., 1999; Picard-Riera et al., 2002). Remarkably, local 

astrocytes can also enter neurogenic program after injury (Magnuson et al., 2014, Nato et al., 

2015). Indeed, adult neural stem cells and reactive astrocytes share a number of features 

(Magnusson & Frisén, 2016), yet instead of repairing and remodeling damaged tissue, reactive 

astrocytes typically limit recovery. The main motivation behind this thesis work was to better 

understand the microenvironment maintaining neurorepair promoting astrocytes of the 

olfactory bulb (OB), with the prospect of applying these cues to astrocytes outside of the 

neurogenic zones and prevent their conversion to neurotoxic astrocytes after injury. 

Astrocyte reactivity in response to injury was noted as early as 1970’s shortly after the 

discovery of GFAP, an astrocyte cytoskeleton protein characterized by its upregulation under 

pathological conditions (Bignami & Dahl, 1976). Since then, GFAP had been used as a 

standard marker of astrocyte reactivity which was considered to be detrimental. However, 

recent studies show that astrocyte reactivity is not a uniform response but rather a 

heterogenous mixture of activation states (reviewed in Khakh & Deneen., 2019). This context 
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dependent response is controlled by both intrinsic and environmental signals such as neural 

activity (Horner & Palmer, 2003).  

Significantly higher GFAP expression was observed in the olfactory system, one of the few 

neurogenic zones in the adult mammalian brain, in particular where regenerating olfactory 

sensory neurons (OSNs) enter the OB (Mackay-Sim & Kittel, 1991; Nazareth et al., 2018).  

Notably, this high astrocyte reactivity is correlated with the plastic nature of the OB which is 

influenced by both peripheral (Carmen Martinez Garcia et al., 1991) and CNS input (Göktaş 

et al., 2010; Tanık et al. 2015; Yaldızlı et al., 2016; reviewed in Huart et al., 2019). These 

observations suggest that astrocyte reactivity must be tightly regulated in the OB, where 

neurogenesis continues throughout life.   

Regenerating neurons use aligned glial scaffolds for elongation and migration. Olfactory 

ensheathing cells (OECs) are a specialized type of glia that form continuous open scaffolds 

into the OB, enabling entry of regenerating axons into the brain. OECs perform numerous 

functions important for neuroregeneration and migration, and differentiation (Doucette & 

Words., 1990; Santos-Silva et al., 2007). Moreover, OECs can migrate through scar tissue, 

moderate astrocyte reactivity, and improve regeneration in vivo (reviewed in Roet et al., 2014). 

Therefore, we hypothesized that studying the crosstalk between the OECs and astrocytes 

would reveal mechanisms that control astrocyte reactivity and fate decisions.  

CNS injury & factors limiting recovery 

In the healthy CNS, astrocytes form functional barriers to restrict and regulate the entry of 

immune cells. Once the integrity of the blood brain barrier (BBB) between the endothelial 

cells and astrocytes is compromised in response to an insult, the activity of ion pumps, 
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neuronal membrane potentials and the synthesis of signaling molecules are disrupted 

(Gulbenkian et al., 2001; Girouard & Iadecola, 2006). This initial damage is followed by a 

spectrum of astrocytic stress responses. In severe cases, astrocyte reactivity results in glial scar 

(astrogliosis); characterized by astrocyte misalignment and size increase, in an attempt to 

maintain BBB integrity and limit the spread of neurotoxic inflammation. Reactive astrocytes 

forming the glial scar act as a physical barrier to regenerating axons by expressing intermediate 

filament proteins (Vimentin, GFAP, etc.), and secrete nerve growth-inhibitory chondroitin 

sulfate proteoglycans (neurocan, phosphacan, versican, etc). While reactive astroglia express 

some growth-promoting extracellular matrix (ECM) molecules, the growth-inhibitory 

molecule secretion dominates with increased severity of injury. Thus, astrocytes have the 

potential to carry both anti-inflammatory and pro-inflammatory functions and are targets for 

pharmacologic manipulations to reverse CNS damage (Hamby & Sofroniew, 2010). 

The nervous system must be able to continuously update functional connections between 

neurons, indicating it must remain plastic throughout life (Raisman & Li., 2007). Hence, it has 

been suggested that if severed neurons were guided through the damaged site, they could make 

new functional connections. This idea drew attention to glial cells due to their regenerative 

abilities, such as secreting growth-promoting factors and providing topographic guidance. In 

the peripheral nervous system (PNS), Schwann cells (SCs) support and guide transected 

neurons through damaged tissue and promote nerve regeneration. Several groups transplanted 

SCs into the damaged CNS, in an attempt to repair the glial pathway and promote 

neuroregeneration across the injury site. However, SCs fail to communicate with CNS-specific 

glia (primarily astrocytes) and cannot build a glial pathway through the scar tissue (Grimpe et 

al., 2005). 
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These findings draw attention to OSNs (Figure 1), which are vulnerable to damage and 

microbial infections (Dando et al., 2016) due to their exposed location in the nasal cavity (PNS) 

and have a remarkable capacity for regeneration (Calof et al., 1996, Forni et al., 2013). 

Ensheathing glia of the olfactory system, OECs, wrap and guide olfactory sensory neuron 

axons into the OB in the CNS, where they establish new connections (Figure 1). Moreover, 

Figure 1: Anatomy of the Olfactory System 

Figure 1: Anatomy of the Olfactory System.  (A) OSNs (turquase) send their axons to the OB with the 

support of OECs (red). OE= olfactory epithelium, ONL= nerve layer, RMS= rostral migratory stream. (B) 

OECs (red) mingle with astrocytes (blue) in the OB where astrocytes form a defense barrier glia limitans. In the 

OB, mitral cells (ML), external plexiform layer (EPL) glomerular layer, and internal (iNFL) and outer nerve layer 

(oNFL) are shown (adopted from Nazareth et al., 2018).  
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OECs metabolize toxic macromolecules, undergo structural remodeling (Roet et al., 2014), and 

secrete trophic factors including brain-derived neurotrophic factor, nerve growth factor, glial 

cell line-derived neurotrophic factor, neuregulins, ciliary neurotrophic factor, integrins, cell 

adhesion molecules, cadherins and laminin (Franssen et al., 2008, reviewed in Hale, 2011). 

These observations suggested that OECs are important contributors in directing axons to their 

correct target and also for maintaining regenerating neurons (Doucette, 1990). Different 

groups transplanted OECs into CNS injury sites for neuroregenerative purposes and observed 

therapeutic benefits (Li et al., 1997, Yang et al., 2015), including improved axon sprouting and 

regrowth (Guntinas-Lichius et al., 2001; Deumens et al., 2006), decreased tissue and neuronal 

damage (Ruitenberg et al., 2003), formation of myelin sheaths around axons (Barnett et al., 

2000), angiogenesis (Richter et al., 2003) and enhanced recovery (Lu et al., 2002; Li et al., 2003; 

Johansson et al., 2005; reviewed in Chuah et al., 2011).  

Notably, OECs directly interact with astrocytes at the entry point into the CNS (Figure 1), 

enabling regenerating olfactory axons to make new connections (Raisman & Li., 2007). Both 

transplanted OECs and OECs co-cultured with astrocytes in vitro were reported to intermingle 

with astrocytes and reduce astrocyte activation (Lakatos et al., 2000; Lakatos et al., 2003; Hale 

et al., 2011). These results suggest a moderating effect of OECs on harmful astrocyte reactivity 

and is being investigated by several groups. Yet, crosstalk mechanisms between OECs and the 

surrounding neural-niche cells, including astrocytes, remain to be discovered.  

Astrocytes before & after the injury or during a degenerative disease 

Glial scar formation is a hallmark of severe brain injuries, where the lesion site is enclosed 

by a network of astrocytic processes. Although the type of injury varies, in most cases, reactive 
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astrocytes account for cell death and limited neuroregeneration across the damaged tissue via 

disruption of metabolic supply and creation of an inhibitory environment, respectively. Insight 

from transgenic mouse models shows that tumor necrosis factor-alpha (TNF-α) 

overexpression by astrocytes (Probert et al., 1997) or secretion by microglia (Liddelow et al., 

2017) is sufficient to trigger CNS inflammation and neurotoxic astrocyte reactivity. TNF-α is 

a key pathogenic mediator in inflammatory CNS disorders and induces pro-inflammatory 

transcriptional factor NFB production. NFB is expressed in most mammalian cells, and has 

5 subunits, p65, RelA, RelB, p50 and p52. Under basal conditions, NFB binds to the B 

inhibitor IB in the cytoplasm. After inflammation, IB phosphorylation causes NFB to 

separate from IB and free NFB subunits move to the nucleus. This nuclear translocation 

can directly be detected by immunocytochemistry, providing a readout of this early key event 

in neurotoxic astrocyte reactivity.  

Bacterial endotoxin lipopolysaccharide (LPS) is widely used to mimic pro-inflammatory 

astrocytes and NFB translocation in astrocytes in vitro. However, a recent study reported that 

rodent astrocytes in culture do not respond to LPS if the cultures are completely free from 

microglia (Liddelow et al., 2017). Instead, the study shows astrocytic activation to be induced 

by the microglial cytokines, primarily interleukin 1α (Il-1α), TNF-α, and complement 

component 1, subcomponent q (C1q). The results – although vital to understand the 

progression of CNS inflammation and the role of mitochondria– did not end the use of LPS 

to mimic astrocyte reactivity in vitro, since numerous negative immunopanning steps (selection 

of cells using an antibody immobilized to the culture dish) are required in order to remove 

microglia from astrocyte cultures entirely (Foo et al, 2011). Moreover, this technique is not 

efficient to isolate large number of cells and may end up isolating a single astrocyte 
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subpopulation. An alternative and more cost-effective technique that provides high number 

of non-reactive astrocytes is magnetic sorting, as previously described (Holt et al., 2019). 

Certainly, the astrocyte isolation method should be chosen after careful consideration that is 

most appropriate to distinguish the astrocyte function under investigation. 

Upregulation of GFAP (and some other intermediate filaments) is a pan-marker for 

reactive astrocytes and can also be induced by other CNS injuries such as ischemia. However, 

in contrast to inflammatory astrocytes, ischemic astrocytes are shown to promote neuronal 

survival and CNS repair (Bush et al., 1999; Faulkner et al., 2004; Herrmann et al., 2008). Studies 

strongly suggest that this neurorepair-promoting astrocyte reactivity is mediated by STAT3. 

This pathway can be activated by tyrosine kinase growth factor receptors and regulates various, 

functional outcomes such as proliferation, differentiation, expression of intermediate 

filaments, and multiple other aspects of astrocyte reactivity, via both transcription-dependent 

and independent mechanisms (reviewed in Ceyzériat et al., 2016). Much remains to be done to 

understand how these pathways can be targeted to mediate astrocyte reactivity. 

Neurogenic potential & heterogeneity of astrocytes 

During early stages of development, NSCs go through symmetrical self-renewal divisions, 

followed by the neurogenic phase which slowly turns into the gliogenic phase. While 

gliogenesis is still supported in the adult mammalian brain, neurogenesis is restricted to two 

zones: the SVZ of the lateral ventricle and the dentate gyrus subgranular zone (SGZ) of the 

hippocampus. NSCs from the SVZ in the adult mammalian brain give rise to neuroblasts and 

migrate a long distance anteriorly into the OB, where they commit to a lineage (Doetsch et al., 

1999). This route is called the rostral migratory stream (RMS, Figure 1) and, notably, cells that 



 8 

share structural and molecular characteristics of astrocytes along this route can function as 

stem cells or support the maintenance and differentiation of neuroblasts (Horner & Palmer, 

2003). Studies show the crucial role of microenvironment in stem cell self-renewal and 

progenitor differentiation: while allogenic transplantation of NSCs to SVZ of the host animal 

generates neurons in the OB, transplantation into nonneurogenic CNS regions results in 

limited neurogenesis (Alvarez-Buylla & Lim, 2004). In addition, while astrocytes of the 

neurogenic zones are fundamental players in neurogenesis, astrocytes outside of the 

neurogenic zones inhibit neurogenesis but support gliogenesis (Horner & Palmer, 2003).  

Although the studies described here do not directly focus on the stem cell potential of 

astrocytes, it should be noted that reactive astrocytes and adult NSCs share many 

characteristics (Magnusson & Frisén, 2016). Faiz and colleagues (2015) found that NSCs can 

migrate to injury site, and 4 days after, give rise to neuroblasts which differentiate into neurons, 

astrocytes, and oligodendrocytes in vivo. However, within about 2 months, the majority of these 

cells turn into reactive astrocytes and contribute to glial scar formation. Unexpectedly, other 

studies showed that local astrocytes also enter the neurogenic program after injury (Buffo et 

al., 2008; Magnusson et al., 2014; Nato et al., 2015). Cumulatively, these results indicate that, 

NSCs that migrate to the injury site cannot functionally integrate into the lesion and instead 

turn into reactive astrocytes, due to the inhibitory environment (Addington et al., 2015, 

reviewed in Boccazzi & Ceruti., 2016). Local astrocytic subpopulations also continue to show 

high plasticity in adulthood – particularly under pathological conditions – and their identity is 

regulated by cell-cell and cell-ECM interactions (Alvarez-Buylla & Lim, 2004). Numerous 

studies have focused on using these cells as a pool for new neural cells in the injured brain, yet 
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more work needs to be done to understand the mechanisms regulating astrocyte reactivity and 

fate decisions. 

Astrocytes exhibit morphological, molecular and functional heterogeneity depending on 

the CNS region (Doyle et al., 2008, Bachoo et al., 2004, Perego et al., 2000, McKhann, et al., 

1997, Poopalasundaram et al., 2000, reviewed in Stevens & Muthukumar, 2016). Similarly, 

astrocyte reactivity shows great diversity in a location- or injury-specific manner even within 

the same disorder (Verkhratsky et al., 2012). Exposure to LPS shifts astrocytes towards pro-

inflammatory and neurotoxic profiles (Hamby et al., 2012, John et al., 2005), whereas in 

response to experimental ischaemia, astrocytes upregulate neuroprotective mechanisms 

(Zamanian et al., 2012). Undoubtedly, the classification of reactive astrocytes into these two; 

‘helpful versus harmful’ groups is a generalization, drawn from a single parameter: survival of 

neurons. Considering the complex and crucial roles of astrocytes in CNS, this classification—

although much needed— is perhaps just the first step towards defining the heterogeneity of 

astrocyte reactivity. 

Neurorepair supportive crosstalk between olfactory bulb glia: astrocytes & OECs 

It is well appreciated that astrocytes are key players after injury, that have indispensable 

roles supporting neuroregeneration (Horner & Palmer, 2003). Nevertheless, adult astrocytes 

outside of the neurogenic zones of the mammalian brain, support gliogenesis rather than 

neurogenesis. A striking exception to this general rule of neuroregeneration in the mammalian 

brain is the olfactory system, which exhibits continuous neurogenesis throughout adulthood. 

In this study we focused on the communication between the glial cells of the olfactory system, 

OECs and astrocytes, to identify factors that support this unique microenvironment. In the 
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PNS, OECs create glial pathways for regenerating OSNs to enter and synapse in the olfactory 

bulb. In the CNS, OECs and astrocytes are in close proximity and form the glia limitans, 

contributing to the formation of BBB of the OB. The exact nature of the BBB in the OB, and 

the cellular organization of OECs and astrocytes in this region has been debated. Nazareth 

and colleagues (2018) have suggested that the CNS starts at the inner olfactory nerve layer 

(ONL), and the glia limitans consists of astrocytes alone, in support of earlier work suggesting 

astrocytes are absent in outer layer of the ONL (Au et al., 2002; Doucette, 1990). These 

investigators proposed that the BBB start at the inner ONL of the OB and OECs reside in 

the PNS only. 

Figure 2: Glia limitans of the OB 

Figure 2: Blood brain barrier in the mouse olfactory nerve layer. OECs (red), AC= astrocytes (blue), ONL= 

olfactory nerve layer, G= glomeruli, GL= glomerular layer, L= lumen of capillary. (adopted from Beiersdorfer 

et al., 2019). 
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However, PNS glia do not make direct contact with blood constituents (Kanda, 2013), 

hence in the PNS, this barrier is termed blood nerve barrier (BNB). In contrast, in the olfactory 

system, olfactory axon bundles traversing the cribriform plate are intermingled with arteries 

and OECs. Indeed, a more recent study presents evidence for the association of OECs and 

astrocytes with blood vessels in the ONL (Beiersdorfer et al., 2019).  Via visualization of blood 

vessels by lanthanum and electron microscopy, the study shows that in the outer ONL, mainly 

OECs, while in the inner ONL mainly astrocytes are in contact with blood vessels (Figure 2). 

Moreover, clonal fate analysis of OB astrocytes using lineage-tracing method confirms the 

presence of astrocytes throughout the OB, including the outer ONL (García-Marqués & 

López-Mascaraque, 2017). These results suggest that OECs and astrocytes coexist in the CNS, 

contributing to the formation of BBB. Independent of whether they are primarily PNS glia or 

not, it is clear that OECs share properties of both PNS and CNS glia, providing topographic 

guidance to the regenerating olfactory axons and supporting astrocytes to be neurorepair-

promoting, qualities that are suppressed in other parts of the CNS (Smith et al., 2012).    
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Significance/ Aims 

Neurodegenerative diseases and traumatic CNS injuries affect hundreds of millions of 

people worldwide. Disability-adjusted life-years (DALY) due to these disorders increased 41% 

(from 182 million to 258 million; where one DALY equals to one lost year of ‘healthy’ life in 

the population) between 1990 and 2010 and is expected to grow exponentially. An estimated 

9 million people die annually as a result of neurological disorders, and combined with the 

effects on disability result in an outsized effect of disease burden worldwide (WHO, 2017). 

Furthermore, the medical costs associated with acute traumatic injuries and chronic 

degenerative diseases pose a significant financial burden to patients. This burden is six times 

higher in low- and middle-income countries. Finding a therapeutic strategy for CNS repair 

would improve the quality of life for these patients dramatically and also ease the economic 

burden associated with chronic care. 

Research over the past century has significantly advanced our understanding of the causes 

and the prognosis of common neurological disorders such as epilepsy, multiple sclerosis, 

neuro infections, traumatic brain injuries, Parkinson’s, and Alzheimer’s disease. These 

disorders characteristically show different outcomes but convergence in an aspect of their 

pathology: astrocyte reactivity. Because olfactory ensheathing cells (OECs) regulate the 

astrocytic stress response in the olfactory bulb (OB) and are critical for the neuroregenerative 

properties of the olfactory sensory neurons in the olfactory epithelium, we hypothesize that 

characterizing OEC-astrocyte communication would enable the identification of the 

molecular mechanisms targeting astrocyte pathology, with the potential to be translated into 

many distinct CNS injuries and disorders.  



 13 

Aim 1: Identify OEC-secreted factors which suppress neurotoxic astrocyte reactivity 

OEC-secreted factors have been shown to be sufficient to suppress astrocyte reactivity, 

measured by reduced nuclear translocation of pro-inflammatory factor NFB (Hale et al., 

2011). Our strategy to identify such factors involved assessing the anti-inflammatory capacity 

of six immortalized OEC lines (OEinfmyc790 lines) that were gifted to our lab by Dr. Anne 

Calof (Calof & Jose-Guevara., 1993). Conditioned medium (CM) from only two of these lines 

was successful at mimicking primary OECs, allowing us to select one line as positive control 

and one line as a negative control for our studies. Mass spectrometry analysis revealed that 

CryAB, a molecular chaperone protein, was expressed at similar levels by primary OECs and 

positive control line OEmyc790-C7, and was three times higher compared to the negative 

control line OEmyc790-C4.  This small heat shock protein can bind to misfolded proteins and 

has been shown to carry protective roles for various cells against stress conditions. Hence, we 

asked whether OECs from CryAB null (CryAB−/−) mice can block astrocyte reactivity. CryAB 

has been shown to be released via exosomes in several types of glia, possibly coordinating an 

inter-cellular immune response (Gupta & Pulliam, 2014). Thus, the presence of CryAB was 

quantified in OEC exosomes compared to astrocyte and oligodendrocyte exosomes. In 

addition, we examined whether OEC exosomes were sufficient to reduce astrocyte reactivity, 

measured by nuclear NFκB. Finally, using OEC-CM, CryAB−/−OEC-CM or 

immunoprecipitated CryAB to treat reactive astrocytes, transcripts associated with neurotoxic 

reactivity were analyzed to determine whether CryAB suppressed astrocyte reactivity. This 

work identified a novel mechanism for OEC-astrocyte intercellular communication and is 

presented in Chapter 2.    
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Aim 2: Investigate the role of FGFR1 in OEC-astrocyte crosstalk 

Considering the parallels between developmental and reactive astrocytes, and the 

importance of FGF signaling for astrocytes in both of these states, we asked whether OECs 

regulate the FGF pathway in reactive astrocytes to control their stress-response. Our results 

showed that in the presence of FGFR1 inhibitors, OECs fail to moderate astrocyte stress-

response. Consequently, we investigated downstream targets of the FGF/FGFR1 signaling 

pathway that may play a role in this crosstalk. 

Both FGF ligands and receptors, as well as the co-receptor heparan sulfate proteoglycans 

(HSPGs) can move into the nucleus and carry out signaling functions independent of receptor 

dimerization on the membrane (Leadbeater et al., 2006). Considering the weak expression of 

HSPGs in healthy adult CNS, the upregulation of these ‘non-traditional nuclear proteins’ in 

reactive astrocytes suggests important roles for HSPGs in the regulation injury response. Using 

Ext1 (HSPG-synthesizing enzyme) knockout OECs and immunoblotting against NFB, we 

investigated whether OEC-secreted HSPGs are a key factor in OEC-CM that blocks astrocyte 

reactivity. Notably, a regulatory effect for FGFR1 over several transcriptional factors has been 

reported (Ornitz & Itoh., 2015). Considering that the majority of the nuclear FGFR1 is non-

glycosylated (Dunham- Ems et al., 2006; Stachowiak et al., 2015), we asked whether OEC-

HSPGs are involved in intracellular FGFR1 trafficking and subsequent association with the 

transcriptional machinery in astrocytes. This work identified novel mechanisms for astrocyte 

intracellular changes in the presence of OEC secreted cues and is presented in Chapter 3. 

Experiments detailed in this dissertation shows that OEC-astrocyte crosstalk enables 

astrocytes to be neurorepair-supportive. In vivo studies will be needed to evaluate the overall 

contribution of OECs for the neurogenic microenvironment in the olfactory system. We will 

discuss some of our preliminary results related to these experiments in Chapter 4.
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Chapter 2: A Novel Factor in Olfactory Ensheathing Cell-Astrocyte Crosstalk: Anti-

Inflammatory Protein α-Crystallin B 

2.1 Abstract  

Astrocytes are key players in CNS neuroinflammation and neuroregeneration that may help 

or hinder recovery, depending on the context of the injury. Although pro-inflammatory 

factors that promote astrocyte-mediated neurotoxicity have been shown to be secreted by 

reactive microglia, anti-inflammatory factors that suppress astrocyte activation are not well-

characterized. Olfactory ensheathing cells (OECs), glial cells that wrap axons of olfactory 

sensory neurons, have been shown to moderate astrocyte reactivity, creating an environment 

conducive to regeneration. Similarly, astrocytes cultured in medium conditioned by cultured 

OECs (OEC-CM) show reduced nuclear translocation of Nuclear Factor kappa-B (NFκB), 

a pro-inflammatory protein that induces neurotoxic reactivity in astrocytes. In this study, we 

screened primary and immortalized OEC lines to identify these factors and discovered that 

Alpha B-crystallin (CryAB), an anti-inflammatory protein, is secreted by OECs via exosomes, 

coordinating an intercellular immune response. Our results showed: 1) OEC exosomes block 

nuclear NFκB translocation in astrocytes while exosomes from CryAB-null OECs could not; 

2) OEC exosomes could be taken up by astrocytes and 3) CryAB treatment suppressed 

multiple neurotoxicity-associated astrocyte transcripts. Our results indicate that OEC-

secreted factors are potential agents that can ameliorate, or even reverse, the growth-

inhibitory environment created by neurotoxic reactive astrocytes following CNS injuries.  
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2.2 Introduction  

Damage to the central nervous system (CNS) provokes morphological and molecular 

changes in astrocytes, causing them to become ‘reactive astrocytes’ (Liddelow & Barres, 

2017). These reactive cells play positive roles during CNS injury, such as confining 

inflammation by surrounding the damaged tissue and creating a barrier between it and 

uninjured tissues (Silver, et al., 2015). Reactive astrocytes have been traditionally characterized 

by increased expression of intermediate filament proteins such as GFAP (Glial Fibrillary 

Acidic Protein), vimentin, and nestin (summarized in Liddelow & Barres, 2017).  Excessive 

or sustained astrocyte reactivity is characterized by activation of pro-inflammatory pathways 

such as the NFκB pathway (Liddelow & Barres., 2017; Wheeler 2020). This activity can be 

deleterious to functional recovery, since it can lead to chronic inflammation and neurotoxicity 

(Sofroniew, et al., 2010). A better understanding of the molecular mechanisms that govern 

astrocyte reactivity would therefore be helpful to create environments conducive to 

regeneration following CNS injury. 

The mammalian olfactory system shows robust neurogenesis throughout life. Data suggest 

that both neural niche signals and the surrounding glia, including olfactory ensheathing cells 

(OECs), give the olfactory mucosa this unique capability (Li, et al., 2005; Roet & Verhaagen, 

2014).  Previous investigators have transplanted OECs into CNS injury sites, and observed 

improved axonal regeneration (Li et al., 1997; Imaizumi et al., 2000), functional recovery 

(Johansson et al., 2005), reduced astrocytic scar tissue (Ramer et al., 2004), and an attenuated 

hostile astrocyte response (Lakatos et al., 2003; summarized in Roet & Verhaagen, 2014). 

Moreover, factors secreted by OECs have been shown to moderate astrocyte reactivity, at 

least insofar as their presence results in reduction of GFAP expression and nuclear 

translocation of NFκB (Chuah et al., 2011; O'Toole et al., 2007). Identification of molecules 
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secreted by OECs, which specifically affect astrocyte reactivity, should lead not only to a 

better understanding of the crosstalk between astrocytes and OECs; it may also reveal 

mechanisms that can block the metamorphosis of astrocytes into neurotoxic cells. 

 To identify such molecules, this study used lipopolysaccharide (LPS)-treated astrocytes, a 

model for neurotoxic reactive astrocytes, and assessed conditioned medium (CM) from 

immortalized clonal mouse OEC cell lines (Calof & Guevara, 1993). Nuclear NFκB 

translocation in astrocytes was measured to determine if CM from these cell lines could 

mimic primary OEC-CM, which blocked the LPS pro-inflammatory response in astrocytes. 

Two immortalized cell lines were chosen for further study: one whose CM mimicked the 

effect of primary OECs (positive control); and a second, whose CM did not block the LPS 

response in astrocytes (negative control).  These two cell lines and primary OECs were 

challenged with LPS, and the conditioned media screened by mass spectrometry. Using this 

strategy, the heat-shock protein CryAB (D’Agostino et al., 2013) was identified. Subsequent 

experiments showed that: 1) CryAB is secreted by OECs via exosomes; 2) exogenous CryAB 

suppressed LPS-induced astrocyte reactivity; 3) exosomes containing CryAB are taken up by 

astrocytes; and 4) unlike wildtype (WT) OEC-exosomes, CryAB-null (CryAB−/−) OEC 

exosomes fail to suppress LPS-induced astrocyte reactivity measured by nuclear NFκB 

translocation. Finally, examination of transcripts that are associated with neurotoxic-reactive 

astrocytes (Liddelow et al., 2017) revealed that either exogenous CryAB or OEC-CM can 

suppress expression of several of these transcripts. Taken together, the data indicate that 

CryAB secreted by OECs, via exosomes, is an important factor for OEC-astrocyte crosstalk 

that can block astrocytes from becoming neurotoxic cells. Ultimately, mimicking appropriate 

astrocyte-OEC crosstalk in vivo may contribute to an environment conducive to 

regeneration following a broad range of CNS injuries. 
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2.3 Materials and Methods  

2.3.1 Mice 

All mice were maintained, and all animal handling procedures were performed according to 

protocols approved by the National Institutes of Health NINDS Institutional Animal Care 

and Use Committee. CryAB-null (CryABDel(9Hspb2-Cryab)1Wawr, henceforth referred to as CryAB−/−) 

mice (Brady et al., 2001) were obtained as homozygous sperm, revived by IVF using eggs from 

C57bl6/N mice (Jackson Laboratory), and resulting heterozygotes intercrossed to obtain 

obtain CryAB−/− and CryAB+/+ (wildtype, WT) lines, which were used as the source for OEC 

primary cultures (see below).  Mice were genotyped using a three-primer PCR protocol:  5’-

TAGCTTAATAATCTGGGCCA-3’, 5’-GGAGTTCCACAGGAAGTACC-3’, and 5’-

TGGAAGGATTGGAGCTACGG-3’ primers were used in 4:1:1 molar ratio. Amplification 

was performed for 40 cycles at 940C for 15 sec, 620C for 30 sec and 720C at 1 min. PCR 

produced a 310-bp product for the WT allele and a 600-bp product for the null allele.  

2.3.2 Cell culture and reagents 

Primary cultures of OECs were generated as described previously (Dairaghi et al., 2018). 

Briefly, olfactory bulbs of postnatal (PN) day 0-7 mice were collected and placed in an 

enzyme mix: 30μg/ml hyaluronidase (Sigma, Cat# H3631, St. Louis, MO), 30U/ml dispase 

I (Sigma, Cat# D4818), 1.2 mg/ml collagenase type 4 (Worthington, Cat# 43E14231, 

Lakewood, NJ), 10U/ml DNAse I (Worthington, Cat# 54E7315); for 35 min at 370C with 

constant agitation (Au & Roskams, 2003). Cells were run through a 40µm cell strainer to 

remove non-dissociated tissue pieces and then washed with DMEM-F12 medium. 

Subsequently, cells were purified by the differential cell adhesion method (Nash et al., 2001), 

which consists of three steps: 1) Cells were seeded into uncoated T75 flasks (4x106 viable 
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cells/flask, VWR, Cat# 734-2788, Radnor, PA) for 18 hrs to remove fibroblasts; 2) the 

supernatant of the first step was seeded into another uncoated flask for up to 36 hrs to 

remove astrocytes; and finally 3) the supernatant of the second flask was seeded onto poly-

L-lysine (Sigma, Cat# P4707)-coated flasks to grow primary OECs. Cells were cultured for 

up to 2 weeks and medium was changed every 2–3 days. OECs constituted more than 90% of 

the cells in the culture based on p75 and S100ß  immunostaining consistent with earlier 

reports (Au & Roskams, 2003). For OECs to be co-cultured with primary astrocytes, the 

medium was gradually changed to serum-free medium (Klenke & Taylor-Burds, 2012) 

supplemented with 5ng/ml HB-EGF (PeproTech, Cat# 100-47, Rocky Hill, NJ), and B27 

(Thermo Fisher Scientific, Cat# A3582901) to provide a medium compatible with astrocyte 

culture, since serum has been shown to induce astrocyte reactivity (Foo et al., 2011). 

Primary astrocyte cultures were obtained by magnetic sorting as previously described (Holt 

et al., 2019), with some modifications. Briefly, 10-20 cortices of PN day 2-4 pups were 

dissociated using the MACS Neural Tissue Dissociation Kit-T (Miltenyi Biotec, Cat# 130-

093-231, Auburn, CA) at 370C (5% CO2, 30 min). Non-dissociated tissue was removed using 

a 40μm cell strainer (Fisher Scientific, Cat# 22-363-547), and the remaining cell solution was 

centrifuged (300g, 5 min). Next, a discontinuous density gradient, prepared using 1:1 

albumin-ovomucoid solution (10mg/ml of each) (Worthington, Cat# OI; GeminiBio, Cat# 

700-102P, West Sacramento, CA), was used to remove cell debris and inhibit enzyme activity. 

The cell pellet was resuspended in 80μl Hank’s Balanced Salt Solution (HBSS) (Gibco, Cat# 

14025-092) plus 20μl anti-GLAST (ACSA-1) MicroBeads (Miltenyi Biotec, Cat# 130-095-

825, Auburn, CA) for up to 107 cells, and incubated for 10 min (40C). Cells were washed and 

incubated in 90μl HBSS plus 10μl anti-Biotin MicroBeads for another 15 min (40C) before 
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running through MACS column for positive selection of astrocytes. Cells were cultured for 

one week and then the same procedure was followed with anti-Prominin-1 MicroBeads 

(Miltenyi Biotec, Cat# 130-092-564) for the negative selection of radial glia, followed by 

another positive selection with anti-GLAST antibody the same day, to increase the purity of 

astrocyte cultures. Sorted cells were cultured in T25 flasks coated with poly-L-lysine, in 5ml 

serum-free astrocyte culture medium (ACM, described above). In our hands, astrocytes 

isolated by this method and cultured in ACM were not reactive when stained with NFκB (not 

shown). The same method was adjusted to obtain oligodendrocyte cultures using anti-O4-

MicroBeads (Miltenyi Biotec, Cat# 130-096-670). The immortalized mouse astrocyte line 

C8D30 (ATCC, VA, USA) was cultured in DMEM-F12 (Gibco, Cat# 10313-02, 11765-054, 

Long Island, NY) containing 10% Fetal Bovine Serum (FBS) (Gibco, Cat# 10438-026), plus 

0.5% antibiotic-antimycotic (Gibco, Cat# 15240-062) at 370C in 5%CO2. 

2.3.3 Immortalized OEmyc790 Cell Lines 

Six immortalized OEC lines (OEmyc790-C7s.D, D6s.AB8, C6s.BG9, D10 and D4), derived 

from retrovirus-mediated transformation of primary embryonic mouse olfactory epithelium 

cultures derived from E15 mouse embryos (Calof & Guevara, 1993), were analyzed; two lines, 

OEmyc790-C7s.D (C7) and OEmyc790-C4 (C4), were used for the studies described below. 

Cells were plated on cell culture plates (Fisher Scientific, Cat# 130190, Waltham, MA) and 

cultured in DMEM-F12 as described above. Medium was changed every 3-5 days. When 60% 

confluent, a 1:4 dilution of trypsin was used (Gibco, Cat# 15400054) to split the cells into 

thirds. 
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2.3.4 Primary antibodies and recombinant proteins 

The following antibodies were used: CryAB rabbit polyclonal antibody (Millipore, Cat# 

ABN185, Darmstadt, Germany, 1:1K for WB, 1:4K for immunofluorescence (IF); Histone 

mouse monoclonal antibody (Fisher Scientific, Cat# AHO1432, Waltham, MA, 1:200 for 

WB); NFκB rabbit polyclonal antibody (C-20, Santa Cruz, Cat# sc-372, Santa Cruz, CA, 

1:650 for WB, 1:750 for IF); Sox10 goat polyclonal antibody (N-20, Santa Cruz, Cat# sc-

17342, 1:300 for IF); Alix mouse monoclonal antibody (3A9, Cell Signaling, Cat# 2171T, 

1:1K for WB); GFAP chicken polyclonal antibody (Aves, 1:4K for IF); Flotillin-1 rabbit 

polyclonal antibody (D2V7J, Cell Signaling, Cat# 18634, 1:1K for WB); -actin mouse 

monoclonal antibody (AC-74, Millipore, Cat# A2228, 1:1K for WB); Tomm20 rabbit 

polyclonal antibody (FL-145, Santa Cruz, Cat# sc-11415, 1:1K for WB); CD63 biotinylated 

antibody (Miltenyi Biotec, Cat# 130-108-922, Auburn, CA, 1:15 for IF); BLBP mouse 

monoclonal antibody (Abcam, Cat# ab131137, 1:2K for IF) and p75-NGFR rabbit 

polyclonal antibody (Millipore, Cat# AB1554, 1:5K). Recombinant chicken Anosmin1 

(MyBioSource, Cat# MBS963562-COA, San Diego, CA) was used at 5nM while recombinant 

CryAB protein (MyBioSource, Cat# MBS964495) and recombinant myoglobin 

(MyBioSource, Cat# MBS142891) were used at 50ng/ml unless stated otherwise. 

2.3.5 Mass spectrometry 

Primary OECs, and immortalized C7 and C4 OEC cell lines, were established by seeding them 

in T75 flasks at a concentration of 8x105 cells/flask in regular growth medium. To concentrate 

secreted proteins, the cells in each flask were rinsed and media replaced with 10ml/flask of 

Earle's Balanced Salt Solution (EBSS) with 5.5mM D-Glucose (Gibco, Cat# 14155-063); 
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conditioned medium (CM) was collected after 48 hrs total of incubation. For the last 2 hrs of 

the 48-hr collection period, either 1μl/ml LPS (Sigma, Cat# L6529) or 5nM recombinant 

chicken Anosmin1 was added. CM was then collected, centrifuged to remove debris, and 

frozen at -800C. Frozen samples were freeze-dried using a lyophilizer (Novalyphe-NL150, 

Savant Instruments, Holbrook, NY). The pellets were reconstituted in water and bicinchoninic 

acid (BCA) protein assay was performed. 200μg/60ul protein per group was submitted for 

mass spectrometry analysis (NINDS Protein Facility, NIH). Each sample was digested with 

trypsin. Tandem Mass Tag (TMT) labeled samples were mixed together (TMT 126-131). The 

mixture was separated using hydrophilic interaction liquid chromatography (HILIC) high 

performance liquid chromatography (HPLC) system. Five HILIC fractions were collected 

from the mixed sample. One liquid chromatography-tandem mass spectrometry (LC/MS/MS) 

experiment was performed for each HILIC fraction, using an Orbitrap Fusion Lumos Mass 

Spectrometer (Thermo Fisher Scientific, Waltham, MA) coupled to a 3000 Ultimate high-

pressure liquid chromatography instrument (Thermo Fisher Scientific). Proteome Discoverer 

2.2 software used for database search and TMT quantification, and data were mapped against 

the Sprot mouse database. “Primary OEC+LPS-CM” was used as reference to calculate the 

ratio for LPS treated samples; “Primary OEC+5nMA1-CM” was used as reference to calculate 

the ratio for 5nMAnosmin1-treated samples. No normalization was performed. See 

Supplemental Data 1 and 2 for obtained values. 

2.3.6 Immunoblot analysis  

As a readout of reactivity, quantitative immunoblot analysis was performed on nuclear 

fractions of immortalized C8D30 astrocytes treated with 1μl/ml LPS or vehicle control for 2 

hrs. For co-culture groups, OECs seeded on porous inserts (0.4µm Millicell Cell Culture Insert, 
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Millipore, Cat# PICM0RG50) were placed on top of astrocytes for 24 hrs and were discarded 

at the end of the incubation period, so that only astrocytes were collected for subsequent 

protein analysis. For the CM treated groups, CM from each line was collected (after 24 hr 

incubation) and then added to astrocytes for 22 hrs, followed by a 2-hour LPS treatment. 

Astrocytes were then collected by scraping and the CNMCS Compartmental Protein 

Extraction Kit (BioChain Cat# K3013010 Hayward, CA) with protease/phosphatase 

inhibitors (PI, Cell Signaling, Cat# 5872S, Danvers, MA) was used and the nuclear fractions 

were isolated for each treatment condition. The fractions were run on BioRad Mini-Protean 

TGX Stain-Free Gels (Cat#4568084), transferred to PVDF stain-free blot (Trans-Blot Turbo 

Transfer Pack, Cat#1704156) via the Trans-Blot Turbo transfer system (BioRad),  and blocked 

with 5% dry milk (BioRad, Cat #170-6404 ) prior to staining with NFκB antibody. Membranes 

were exposed to Clarity enhanced chemiluminescence (ECL) reagent (Cat. # 170–5061, Bio-

Rad) for 5 min and the signal was detected using ChemiDoc MP (Cat. # 170–8280, Bio-Rad). 

Quantification of band intensities was calculated using Image Lab 5.0 software (Bio-Rad) and 

normalized by the loading control immunostained for Histone on the same sample and the 

same blot. Three biological replicates were used for statistical analysis. 

2.3.7 Quantitative immunofluorescence  

Fluorescent immunostaining for nuclear NFκB and cytoplasmic NFκB was quantified in 

immortalized C8D30 astrocytes following 2-hr treatment with 1μg/ml LPS or a cocktail of 3 

cytokines: Il-1α (3ng/ml, Sigma, Cat# I3901), TNFα (30ng/ml, Cell Signaling, Cat# 8902SF) 

and C1q (400ng/ml, MyBioSource, Cat# MBS143105, San Diego, CA), as follows: After 

immunofluorescence staining for NFκB, confocal images were taken on a Zeiss LSM 800 

Confocal Microscope (Carl Zeiss, Thornwood, NY). A defined area was measured in both 
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nuclear and cytoplasmic compartments for each astrocyte, and the fluorescence intensity was 

quantified for each area in each cell using Imaris software.  The ratio of nuclear to cytoplasmic 

fluorescence intensity was used as a quantitative readout of astrocyte reactivity.  Median 

values were calculated for each biological replicate (N=3) obtained from multiple images (2-

3/well) containing a total of ~100 cells/treatment (Figure 1C) or ~50 cells/treatment (Figure 

2B). Values greater than one indicate that the NFB value was higher in the nucleus 

compared to cytoplasm, and cells were reactive. Statistics (ANOVA) were performed and the 

average median value ±standard deviation (SD) per treatment plotted. 

2.3.8 Isolation of exosomes and exosome uptake experiments 

For isolation of exosomes, the protocol of Adolf and colleagues (2018) was used with slight 

modifications. Briefly, 24 hr prior to exosome collection, cells were washed and medium 

changed to exosome depleted medium (EDM) containing 10% exosome-depleted FBS 

(Gibco, Cat# A27208-03). CM was collected, (protease inhibitor (PI) was added immediately 

for immunoblotting) and samples kept at 40C until exosome isolation. Exosomes were isolated 

through three centrifugation steps: 1) CM was spun for 10 min at 2,000g to remove debris; 2) 

the resulting supernatant was centrifuged for 30 min at 10,000g to pellet microvesicles; and 3) 

this second supernatant was centrifuged for 4 hrs at 100,000g (Optima MAX-XP 

ultracentrifuge, TLA-100.3 rotor, Beckman Coulter). Following ultracentrifugation, pelleted 

exosomes were re-suspended in buffer (for ELISA and immunoblotting) or cell culture 

medium, as required. For astrocyte uptake experiments, isolated OEC-exosomes were 

resuspended by pipetting and added directly to the culture medium of CryAB−/− astrocytes for 

4 hrs. Cultures were then fixed with 4% paraformaldehyde and stained for markers of interest. 



 25 

Images were taken on a stimulated emission depletion (STED) confocal microscope (Leica, 

Wetzlar, Germany) for the visualization of internalized exosomes in astrocytes. 

2.3.9 CryAB Immunoprecipitation 

CryAB was immunoprecipitated (IP-CryAB) from isolated OEC-exosome fractions that were 

lysed in RIPA buffer. Briefly, 200μl Protein A  Dynabeads (30mg/ml, Invitrogen, Cat# 

10001D, Carlsbad, CA) were washed 3 times in PBS+ 0.1% Tween (PBST) using a magnetic 

stand (Millipore, PureProteome Cat# LSKMAGS08), CryAB antibody (400μl, 1:50 (10 

µg/mL) in PBST) was added to the beads, and the mixture was incubated (30 min, RT) with 

constant agitation. The antibody solution was removed, beads washed (3x), exosome fractions 

resuspended in PBS were added, and the mixture was incubated overnight (40C). Beads were 

then washed (4x) and CryAB protein eluted by addition of 60μl of 0.2M Glycine (pH 2.5); the 

pH of the eluate was neutralized by addition of 5μl of 1M Tris (pH 8.5). Cell culture, 

immunoblotting or ELISA was performed.  

2.3.10 ELISA 

CryAB concentration was measured in exosome fractions using a competitive ELISA kit 

(MyBioSource, Cat# MBS7239470, San Diego, CA) according to manufacturer's instructions. 

Isolated exosomes were sonicated and lysed in Buffer M (containing NP40) plus PI from 

Protein Extraction Kit (BioChain). Equivalent quantities of total exosomal protein or 

supernatant CM protein, determined by BCA protein assay, were brought to equivalent 

volumes in EDM. 100µl of samples were added to each well and measured with a microplate 

reader (FlexStation 3; Molecular Devices, Sunnyvale, CA). Results were analyzed with SoftMax 

Pro Software (Molecular Devices).  
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2.3.11 Quantitative RT-PCR (q-RT-PCR) 

cDNA synthesis was performed using SuperscriptTM III reverse transcriptase (Invitrogen), and 

PCR carried out using the ViiA7 Real-Time PCR System (Applied Biosystems, Waltham, MA) 

in 20μl final volume, containing 10μl of SsoAdvanced Universal SYBR Green Supermix 

(BioRad Cat#1725271), 2μl of a primer mix with a concentration of 1μM of each primer and 

1μl of cDNA and 7μl water. Samples were run in triplicate. The expression levels of genes of 

interest were normalized using the primers (forward; reverse) 

(AGTGCCAGCCTCGTCCCGTA; TGAGCCCTTCCACAATGCCA), for expression of 

GAPDH. All other primer sequences are detailed in (Liddelow et al., 2017; Clarke et al., 2018). 

Data were analyzed by one-way ANOVA followed by Dunnett’s multiple post hoc test. 

2.3.12 Statistical analysis and cell counting 

All statistical analyses were done using GraphPad Prism 8.00 software. The results are shown 

as mean ± SD. Statistical analysis was performed using one-way or two-way ANOVA, unless 

otherwise stated. Probability values of 0.05 (p<0.05) were considered to indicate statistical 

significance. N=biological replicates, n=technical replicates. 
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2.4 Results  

2.4 Results 

2.4.1 OECs secrete anti-inflammatory factor(s) that reduce astrocyte reactivity 

Nuclear translocation of the pro-inflammatory protein NFκB was used as a readout of 

astrocyte reactivity evoked by bacterial endotoxin LPS (Rothhammer et al., 2016), as measured 

by immunoblot analysis of the nuclear fraction of astrocyte lysates (Figure 3A, inset). As 

expected, NFκB increased in the nuclear fraction of immortalized C8D30 astrocytes treated 

with LPS (Figure 3A, gray bars, p<0.05). Co-culture of astrocytes with OECs blocked nuclear 

translocation of NFκB in response to LPS, as previously reported (Hale et al., 2011; Figure 3A, 

purple bars). Adding CM from untreated OEC monocultures, (OEC-CM), also decreased 

NFκB translocation into nuclei of astrocytes exposed to LPS (Figure 3A, red bars,), indicating 

that anti-inflammatory factor(s) are secreted by OECs even in the absence of a stress signal. 

To facilitate identification of OEC factors of interest, the anti-inflammatory capacity of six 

immortalized OEC lines (Calof & Guevara, 1993) were screened. Immortalized astrocytes 

(C8D30) were treated with CM from the different OEC lines, treated with LPS, 

immunostained for NFκB (Figure 3B), and the nuclear/cytoplasmic ratio of NFκB 

immunostaining was determined.  As shown in Figure 1C, CM from two of the immortalized 

OEC lines, C7 and D6, significantly reduced nuclear NFκB translocation in C8D30 astrocytes 

compared to LPS treatment alone (Figure 3C, red bars, p<0.05), while D4 and C4 CM were 

similar to LPS alone. Original characterization of these immortalized OEC lines had been 

based on morphology and immunostainining with markers expressed by primary OECs (Calof 

& Guevara, 1993). Characterization of the re-grown lines was consistent with earlier reports, 
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Figure 3: OEC-CM is sufficient to suppress astrocyte reactivity 

with C7 cells, for example, showing heterogeneous morphologies depending on culture 

conditions and density (Figure 3D):  these included Schwann Cell spindle-like (majority; Figure 

3Da), astrocyte-like type1 (Figure 3Db), and astrocyte-like type2 (Figure 3Dc) morphologies 

(Huang et al., 2008). Cell lines were re-examined by immunofluorescence for expression of 

OEC-specific markers, such as p75, Sox10, and brain lipid-binding protein (BLBP).  Both C7 

and C4 cell lines were positive for these OEC markers (Figure 3E). Since C7-CM significantly 

suppressed nuclear NFκB translocation in astrocytes, whereas C4-CM did not (Figure3B, C), 

and both lines expressed the OEC markers tested, C7-CM was used as a positive control, and 

C4-CM as a negative control in further experiments.  

 

Figure 3 (figure continued on next page) 
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Figure 3: OEC-CM alone is sufficient to suppress LPS-induced astrocyte reactivity, an 
effect mimicked by a subset of immortalized OEC lines. (A) Quantitative 
immunoblotting for NFκB was performed on the nuclear fraction of C8D30 astrocyte lysates 
(inset). All groups were compared using a one-way ANOVA (N=3). Treatment with LPS for 
2 hrs significantly increased NFκB activity (* indicates p<0.05, gray bars).  The presence of 
OECs blocked the effect of LPS (purple bars). OEC conditioned medium (OEC-CM) alone 
also blocked the increase in nuclear NFκB (red bars). (B and C) CM from six immortalized 
OEC lines were investigated for their ability to block the effect of LPS on nuclear NFκB 
translocation in C8D30 astrocytes, as measured by the ratio of fluorescence intensity of nuclear 
to cytoplasmic NFκB. (B) Photomicrograph of images of C8D30 astrocytes cocultured with 
CM of immortalized cell lines. (C) Fluorescent NFκB nuclear and cytoplasmic intensities were 
measured and ratios plotted. Pink dashed line depicts value of astrocytes treated with primary 
OEC-CM +LPS and red dashed line depicts value of astrocytes +LPS. A median value was 
calculated from ~100 cells per field, and then a mean/group was calculated. C7-CM and D6-
CM decreased NFκB nuclear translocation (N = 3; * p ≤ 0.05; one-way ANOVA), while C4-
CM treated groups was not significantly different than astrocytes +LPS alone (N = 3; * 
p<0.05; one-way ANOVA). (D) Photomicrograph from line C7. Multiple morphologies were 
found in all the OEC cell lines: (a) Schwann Cell-like, (b) astrocyte-like type1, and (c) astrocyte-
like type2.  Schwann cell-like spindle cells (a) predominated in C7.  (E) C7 and C4 olfactory 
cell lines share multiple markers with OECs including BLBP (magenta), Sox10 (green) and 
P75 (red). Scale bars represent 25 and 20μm.  
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2.4.2 OEC-secreted CryAB suppresses LPS-induced astrocyte reactivity 

To identify OEC-derived molecules potentially involved in crosstalk between OECs and 

astrocytes, secreted proteins from primary OEC-CM, C7-CM and C4-CM were compared by 

mass spectrometry. Before collection of CM, LPS was added to cultures as a stress signal. 

Secreted proteins from LPS-treated cells were ranked based on 1) their abundance in C7-CM 

compared to C4-CM; 2) their abundance in C7-CM compared to primary OEC-CM; and 3) 

absence from C4-CM (Figure 4A). Proteins that were secreted at similar levels by C7 cells and 

primary OECs (Figure 4A, horizontal dashed line), but are not likely to be present in C4-CM 

(Figure 4A, X axis) were determined. Based on these criteria, we identified two proteins of 

particular interest: the heat shock protein alpha crystallin B chain (CryAB), and the cell surface 

glycoprotein MUC18 (MCAM). To identify OEC secreted molecules in response to an 

endogenous signal from astrocytes, similar experiments were performed after treatment with 

Anosmin1, an extracellular binding protein secreted by mature astrocytes (Gianola et al., 2009) 

and shown to act on OECs (Hu et al., 2019). Even though the ortholog is yet to be identified 

for this protein in mice, we observed a robust migration of primary mouse OECs towards 

recombinant Anosmin-1 (personal observation). Notably, both CryAB and MCAM were 

identified as major secreted proteins in this screen as well (Figure 4B). CryAB was selected for 

further study because of its known role as an anti-inflammatory protein involved in stress 

responses by CNS glia (e.g., Ousman et al., 2007; Kuipers et al., 2017), and because it was the 

most abundant protein fitting our criteria in screens of both LPS (Fig. 4A) and Anosmin-1 

(Fig. 4B) treated samples. Recombinant CryAB protein mimicked the effect of OEC-CM or 

C7-CM on astrocyte reactivity, as measured by suppressed nuclear translocation of NFκB, 

following either LPS- or cytokine-induced inflammation (Figure 4C).  
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Figure 4: An anti-inflammatory protein: CryAB 

Figure 4: OEC-secreted anti-inflammatory protein CryAB and recombinant CryAB is 
sufficient to suppress astrocyte reactivity measured by NFκB. (A, B) Comparison of 
factors secreted from C7 line, C4 line and primary OECs (pOECs), analyzed by mass 
spectrometry.  Proteins detected in CM following LPS treatment (A) or Anosmin1 treatment 
(B) were ranked by their relative abundance indicated by color code (heat map, inset).  Relative 
abundance of detected proteins in C7-CM compared to pOEC-CM is graphed on the Y axes, 
and relative absence of the same proteins from C4-CM (1-P(C4-CM) = probability of not 
being found in C4-CM) is graphed on the X axes. Proteins of similar abundance in CMs from 
C7 cells and pOECs (horizontal red-dashed lines), and not likely to be present in C4-CM (Y 
axes) were identified. Alpha crystallin B chain (CryAB) had the highest C7/C4 expression ratio 
and was equally abundant in CM from C7 cells and pOECs. (C) Recombinant CryAB alone 
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suppressed the inflammatory response, quantified as the ratio of nuclear to cytoplasmic NFκB 
(Y axis) in astrocytes exposed to either LPS or a cocktail of the cytokines Il-1α, TNFα and C1q 
for 2 hrs. Group values were obtained from triplicate wells in which a median value was 
calculated from ~50 cells per field. N = 3; (*p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001;) two-way 
ANOVA.  

 

2.4.3 Exosomes secreted by OECs contain CryAB, which moderates intercellular 

immune response 

Since it has been shown that CryAB secretion can occur via exosomes (Sreekumar et al., 2010; 

Kore et al., 2014; Guo et al., 2019), exosomes were isolated from OECs to determine whether 

they were positive for CryAB and whether the CryAB secreted via OEC-exosomes had the 

ability to attenuate astrocyte reactivity. For these experiments, exosome fractions were isolated 

from culture supernatants of OECs generated from both CryAB−/− mice and WT (CryAB+/+) 

controls. To ensure the quality of fractions used, exosomes and whole cell lysates (CL) from 

WT OECs were analyzed by immunoblotting for the following proteins: the structural protein, 

-actin; a mitochondrial protein, Tomm20; a nuclear protein, histone H3; and the 

extravesicular protein Flotilin-1. The exosome fraction was devoid of -actin, Tomm20 and 

histone H3, but was positive for Flotilin-1 (Figure 5A), consistent with published information 

for exosome fractions (Jeppesen et al., 2019).  
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Figure 5:CryAB, in OEC-exosomes, is important for OEC-astrocyte crosstalk 

 

Figure 5: CryAB, secreted by primary OECs into exosomes, suppresses inflammatory 
response in an astrocyte cell line. (A) Immunoblot of exosome (Exo, left) and whole cell 

lysate (CL, right) fractions from WT primary OECs were screened for -actin, Tomm20, 
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histone H3, and Flotilin-1. The exosome fraction from WT exosomes was devoid of cellular 

-actin, Tomm20 and histone H3, but contained the extravesicular protein Flotilin-1. (B) 
Immunoblots for CryAB and the exosome marker Alix were performed on exosome fractions 
made from CryAB−/− and WT (CryAB+/+) OEC cultures.  CryAB was absent in exosome 
fractions from CryAB−/− OEC culture medium, whereas the exosome marker Alix was present. 
(C) C8D30 astrocytes were treated for 24 hours with exosomes isolated from WT or CryAB−/− 
OECs. Astrocytes were exposed to 1μg/ml LPS for the last 2 hrs of exosome treatment. 
Nuclear fractions of astrocytes were analyzed via quantitative immunoblotting for NFκB and 
Histone H3. Inset shows a representative immunoblot and graph shows mean ± SD of 
NFκB/histone ratio. All conditions were compared to astrocyte alone group (Control, N = 3; 
p ≤ 0.05; one-way ANOVA). Treatment of astrocytes with WT OEC-exosomes (exo) + LPS, 
blocked nuclear NFκB translocation. In contrast, CryAB−/−OEC-exosomes failed to suppress 
nuclear NFκB translocation. Recombinant CryAB (50ng/ml) added to CryAB−/−OEC-
exosomes was sufficient to attenuate NFκB translocation induced by LPS, with levels 
comparable to WT OEC-exo +LPS. (D) C8D30 astrocytes treated with LPS for 2 hrs (top 
right: “+ LPS”) showed stronger immunostaining for NFκB in the nucleus (magenta) 
compared to untreated controls (top left). Astrocytes co-cultured with CryAB−/− OECs (Sox 
10-positive cells with blue nuclei) had increased levels of NFκB immunostaining in the nucleus 
(bottom right: “+CryAB−/−OECs +LPS”) compared to astrocytes co-cultured with WT OECs 
(bottom left: “+OECs +LPS”).  Scale bar represents 40μm. 

 

Competitive ELISA against CryAB confirmed the presence of CryAB in OEC exosomes. 

Exosomes derived from 1x106 OECs contained 9.22 ± 0.2 ng CryAB, whereas CryAB protein 

was undetectable in CM from which exosomes were depleted (Figure 6A). Next, exosomes 

from both genotypes were immunoblotted for CryAB and the endocytosis protein, Alix, which 

is concentrated in exosomes (Figure 5B; Jeppesen et al., 2019). CryAB was present in WT 

OECexo fractions but was absent in CryAB−/−OECexo fractions; while the exosome marker 

Alix was present in exosome fractions from OECs of both genotypes. Finally, to assay whether 

CryAB present in OEC exosomes could suppress astrocyte reactivity, the exosomes were 

added to immortalized C8D30 astrocytes for 24 hrs, and treated with LPS for the last 2 hours 

of this incubation. As shown in Figure 3C, quantitative immunoblotting demonstrated that: a) 

exosomes from WT OECs were able to suppress astrocyte reactivity, as measured by reduced 

nuclear translocation of NFκB; b) astrocytes treated with CryAB−/−OECexo remained reactive; 

and c) the reactivity of astrocytes treated with CryAB−/−OECexo was reduced by the presence 
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Figure 6: CryAB secretion is cell type and context dependent 

of recombinant CryAB protein. Immunostaining OEC-astrocyte co-cultures for NFκB further 

showed strong nuclear NFκB immunostaining exhibited by astrocytes co-cultured with 

CryAB−/−OECs (Figure 5D, lower right). whereas astrocytes co-cultured with WT OECs 

showed little if any nuclear NFκB immunostaining (Figure 5D, lower left). Together, these 

results are consistent with CryAB, secreted by OECs in exosomes being an important protein 

for OEC-astrocyte crosstalk, and functioning as an anti-inflammatory molecule for astrocytes. 

Figure 6: Competitive ELISA against CryAB was used to examine exosomes. (A) 

Exosomes (exo) derived from 1x106 OECs were determined to have 9.22 ± 0.2 ng CryAB. 
CryAB in OEC secreted exosomes was not significantly different than the concentration in 
oligodendrocyte exosomes but %21.1 higher than that of astrocyte exosomes. (B) Exposure 
to LPS increased OEC secreted CryAB concentration by 25.17% (C). Although OECs’ 
exposure to LPS or astrocytic signals were not necessary for the suppressive effect of OECs 
on NFκB translocation in C8D30 astrocytes, whether the CryAB secretion would be facilitated 
by external signals was investigated by stimulating with LPS or Anosmin1. Exposure to 
Anosmin-1 increased CryAB concentration by 77.17%, compared to control protein 
recombinant myoglobin.  
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Figure 7: CryAB in OEC-exosomes is internalized by astrocytes 

2.4.4 Astrocytes internalize CryAB-containing OEC exosomes  

To determine whether astrocytes take up CryAB-containing exosomes secreted by OECs, 

CryAB−/− astrocytes were cultured with exosome fractions from OEC cultures generated from 

WT mice. Uptake was visualized by immunostaining of GFAP-positive astrocytes (Figure 7, 

magenta); colabeled with antibodies to endosome/exosome marker CD63 (red) and CryAB 

(green). CryAB and CD63 colocalized in CryAB−/− astrocytes treated with exosomes for 4 hrs 

(Figure 7, insets).  Neither untreated CryAB−/− astrocytes (Figure 7B) nor WT astrocytes 

(Figure 7C) showed such specific colocalization, consistent with the uptake of CryAB-

containing OEC exosomes by astrocytes. 

Figure 7: CryAB in OEC exosomes is internalized by astrocytes. (A) OEC exosomes 
from WT mice were co-cultured with primary astrocytes from CryAB KO mice. (B) Untreated 
astrocytes from CryAB KO. (C) Untreated astrocytes from WT mice. All groups were stained 
for CD63 (endosomes; red), CryAB (green), GFAP (magenta) and Dapi (blue). Uptake of 
OEC secreted CryAB (green) is detected in CryAB−/− astrocytes and is often associated with 
endosomes (red) (A, arrows, top arrow area shown in inset, arrowhead points to CryAB 
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positive endosome). No CryAB staining (green) is detected in untreated astrocytes from 
CryAB KO (B, inset). CryAB (green) is present in untreated astrocytes from WT mice but 
rarely associated with endosomes (C, inset, arrowhead). Scale bar represents 5μm in low mag 
and 1μm in insets. 

 

2.4.5 OEC secreted factors, including CryAB, reduce astrocytes’ expression of genes 

associated with neurotoxic reactivity  

To evaluate the effects of OEC-secreted CryAB on expression of “neurotoxic” genes, 

astrocytes were exposed to LPS alone; or WT OEC-CM, CryAB−/−OEC-CM, or CryAB 

immunoprecipitated from isolated OEC-exosome fractions (IP-CryAB) together with LPS. 

mRNA from treated astrocytes was then analyzed for 12 transcripts known to be associated 

with neurotoxic astrocyte reactivity (Liddelow et al., 2017).  Q-RT-PCR analysis (Figure 8) 

showed that all tested transcripts were reduced in expression in the presence of WT OEC-

CM, and this effect was significant for 9 of the 12 (Figure 8, second row, white arrows, p<0.05 

A vs B). In contrast, 4 of the transcripts showed increased expression when treated with 

CryAB−/−OEC-CM (Figure 8C, black arrows). The analysis also suggests that suppression of 

expression of Ggta1, Serping1, ligp1, Gbp2 and Amigo2 was CryAB-dependent, for the following 

reasons:  a) suppression of expression failed to occur with CryAB−/−OEC-CM treatment, while 

still taking place with IP-CryAB treatment (Figure 8, C vs D); or b) expression was upregulated 

in the CryAB−/−OEC-CM group (Figure 8, C vs A).  Suppression of expression of 4 genes 

(H2-T23, Srgn, H2D1and C3) appeared to be independent of CryAB, since it still occurred in 

astrocytes treated with CryAB−/−OEC-CM (Figure 8, C vs A). In contrast to either OEC-CM 

treatments (CryAB−/−or WT), a significant increase in Fbln5 was detected in astrocytes treated 

with IP-CryAB (Figure 8, D vs A). These results are consistent with the finding that CryAB, 
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Figure 8: OEC-CM suppresses neurotoxic-astrocyte transcripts 

secreted by OECs, functions as an anti-inflammatory agent for astrocytes. In addition, 

comparison of OEC-CM treatment to IP-CryAB for transcripts Ugt1a1, C3 and Fbln5 suggest 

that there are factors in OEC-CM, in addition to CryAB, that suppress neurotoxic astrocyte 

reactivity.  

 

 

Figure 8: OEC-CM suppresses multiple transcripts associated with neurotoxic 
astrocyte reactivity in LPS-treated astrocytes. Heat map illustrating results of Q-RT-PCR 
to detect neurotoxic astrocyte transcripts in primary astrocytes treated with LPS (A); LPS plus 
WT OEC-CM (B); LPS plus CryAB−/−OEC-CM (C); or IP-CryAB for 24 hrs (D). Compared 
to LPS, OEC-CM (B) significantly suppressed 9 transcripts, whereas CryAB−/−OEC-CM (C) 
significantly suppressed 4.  (D) IP-CryAB suppressed 6 of the 9 transcripts suppressed by 
OEC-CM. In addition, CryAB−/−OEC-CM+LPS caused a significant increase in 4 transcripts, 
while IP-CryAB caused a significant increase in one. Finally, one transcript, C3, was 
significantly suppressed by both OEC-CM treatments (CryAB−/− or WT) but was elevated by 
IP-CryAB treatment. Q-RT-PCR experiments were analyzed by one-way ANOVA followed 
by Dunnett’s multiple post hoc test (n= 3; arrows p ≤ 0.05). 
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2.5 Discussion  

 

2.5.1 OEC-secreted factors that moderate astrocyte reactivity 

Astrocyte reactivity is a pathological response that occurs in a wide range of CNS injuries, 

inflammation and diseases. In vivo studies show that some reactive astrocytes induced by 

ischemia can promote neural recovery and repair (reviewed in Rossi et al., 2007); in contrast, 

reactive astrocytes induced by bacterial endotoxins such as LPS are neurotoxic (Zamanian et 

al., 2012). This harmful, neurotoxic astrocyte reactivity appears to be driven by pro-

inflammatory cytokines secreted by activated microglia (Liddelow et al., 2017). However, anti-

inflammatory factors that suppress neurotoxic astrocyte reactivity are largely unknown. 

Olfactory system is one of the few niches in the mammalian CNS that supports neuronal 

regeneration (Forni et al., 2013). Olfactory sensory neurons are vulnerable to damage due to 

their exposed location in the nasal cavity and have a remarkable capacity for regeneration 

(Calof et al., 1996, Forni et al., 2013), suggesting the presence of robust anti-inflammatory 

factors in the olfactory system. OECs wrap and guide axons of the olfactory sensory neurons 

en route to the OB, where they establish new connections. Moreover, OECs directly interact 

with astrocytes at the entry point into the CNS, enabling regenerating olfactory axons to make 

new connections (Williams et al., 2004; Li et al., 2005; Raisman & Li, 2007). Notably, both 

transplanted OECs (Lakatos et al., 2003; reviewed in Roet & Verhaagen, 2014) and co-cultured 

OECs (Hale et al., 2011) have been shown to intermingle with astrocytes and to moderate 

astrocyte activation.  

The studies in this report investigate anti-inflammatory factors secreted by OECs 

participating in OEC-astrocyte crosstalk. Mass spectrometry was used to analyze proteins in 

CM from primary OECs and compared to the CM of immortalized OEC lines with different 
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anti-inflammatory capacities. Two proteins were identified as potential factors that could 

suppress neurotoxic astrocyte reactivity: MCAM and CryAB.  MCAM (also called CD146 or 

MUC18) is a signaling receptor that can be cleaved from the cell membrane, generating a 

soluble form that is associated with increased cell migration and invasion (Seftalioglu & 

Karakoc, 2000), and primarily has been studied in endothelial cell angiogenesis and cancer 

metastasis (reviewed in Dye et al., 2013). Studies on Multiple Sclerosis (MS) patients showed 

no association between MCAM expression and disease activity (Petersen et al., 2019). In 

contrast, CryAB treatment of MS patients was associated with a therapeutic outcome, 

downregulation of T cell proliferation and pro-inflammatory cytokine production (Quach et 

al., 2013; van Noort et al., 2015). In addition, CryAB has been shown to have neuroprotective 

and regenerative effects in neuroinflammatory animal model systems (Arac et al., 2011; 

Ousman et al., 2007; van Noort et al., 2015).  Moreover, there is a correlation between glial 

activation and increased CryAB levels in Alexander, Alzheimer’s and Parkinson’s diseases, as 

well as traumatic brain injury and stroke (reviewed in Dulle & Fort, 2016). Thus, we 

investigated the role of OEC-secreted CryAB in OEC- astrocyte crosstalk.  

2.5.2 Exosomal release of CryAB 

Our results show that OECs secrete CryAB via exosomes, and that these exosomes 

produce an intercellular anti-inflammatory effect following their uptake by astrocytes. 

Exosomes are small vesicles packaged inside multivesicular endosomes (MVE) and released 

into the extracellular matrix when MVE fuse with the plasma membrane (Jeppesen et al., 2019). 

Subsequent uptake by a neighboring cell initiates intercellular communication. Notably, 

released exosomes are functional components of the extracellular matrix that can be induced 

by stress signals but are associated with cell-cell communication rather than apoptosis 
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(Jeppesen et al., 2019; Gupta & Pulliam, 2014). Consistent with our findings, recent studies 

suggest that CryAB can be secreted by glia in an autocrine manner (Kore et al., 2014; Guo et 

al., 2019) and play a protective role (Ousman et al., 2007). Although the downstream effects 

of CryAB in astrocytes that we demonstrate have yet to be fully explored, one important role 

of CryAB may be its interaction with transcription factors, including NFkB, to suppress 

inflammation by inhibition of their nuclear translocation (Shao et al., 2013; Zhang et al., 2015; 

Qiu et al., 2016). However, exosome-mediated regulation of the astrocytic immune response 

by OECs may also be a unique interaction, as membrane composition and protein content of 

exosomes is cell type (Kalra et al., 2012; Keerthikumar et al., 2015; Kim et al., 2015) and context 

specific (György et al., 2011; Müller et al., 2012).  

The robust anti-inflammatory response induced by OEC-secreted CryAB, shown in the 

present report, may also be a function of concentration, as our results indicate the 

concentration of CryAB in OEC exosomes to be higher than that found in astrocyte 

exosomes. We found that CryAB in OEC secreted exosomes was ~21% higher than that of 

astrocyte exosomes ( Figure 6A) and exposure to LPS increased OEC secreted CryAB 

concentration by ~25% ( 6B), indicating OECs actively respond to stress by either secreting 

more exosomes or increasing CryAB concentration in exosomes, or both. In addition, 

exposure to Anosmin1 increased CryAB concentration by ~77% (Figure 6C), compared to 

control protein recombinant myoglobin, suggesting OECs can actively respond to extracellular 

astrocyte signals by increasing CryAB concentrations. 
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2.5.3 CryAB, as well as other factors secreted by OECs, can suppress neurotoxic 
astrocyte reactivity 

Stress causes denaturation of correctly folded proteins that can result in their aggregation 

and binding to CryAB (Muranova et al., 2018) and subsequent changes in gene expression 

(Singh et al., 2019). Our results show that OEC-secreted CryAB suppressed expression of a 

number of genes associated with neurotoxic astrocyte reactivity and suggest there are 

additional factor(s) in OEC-CM that further suppress this harmful reactivity. In fact, 

complement component-3 (C3) expression in IP-CryAB +LPS-treated astrocytes, although 

not significantly different than that observed in astrocytes treated with LPS alone, was 

significantly greater than expression in astrocytes treated with either OEC-CM groups (Figure 

5). C3 is an important marker for neurotoxic astrocytes, evident by knockout mice showing 

reduced activity in microglia and astrocytes, as well as neuron loss (Shi et al., 2017). Moreover, 

C3 is found colocalized with astrocyte markers in regions of neurodegeneration in human 

post-mortem tissue (Liddelow et al., 2017). Therefore, more experiments are required to 

identify OEC-secreted factor(s) that can suppress C3. In this regard, other proteins identified 

in our mass spectrometric screen, showing smaller changes, may be worthwhile to evaluate. 

Certainly, crosstalk mechanisms between OECs and surrounding niche cells, including 

astrocytes, are highly complicated (Chuah et al., 2011). In addition to unidentified anti-

inflammatory factors, absence or suppression of pro-inflammatory factors might also play a 

role in OEC-CM’s effect on astrocyte reactivity. For example, our mass spectrometry 

screening showed higher concentration of S100A4 and S100A6 proteins in C4-CM compared 

to pOEC-CM or C7-CM (Figure 4, Supplemental Data-1 & 2). S100 proteins are known to 

modulate neuroinflammation (Donato, 2001), and as such are also candidate molecules that 
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may contribute to the observed difference in the inflammatory reactivity of astrocytes treated 

with C4-CM versus pOEC-CM or C7-CM.  

Recent studies have transformed our perception of astrocytes from a passive structural 

support network for neurons, to active effectors in the regulation of synaptic transmission, 

neural excitability, plasticity and recovery. In this paper, we identify OEC secreted CryAB as 

an anti-inflammatory factor that can moderate astrocyte reactivity, suppressing both 

transcription of neurotoxic classified genes and nuclear translocation of pro-inflammatory 

factor NFκB. Improving our understanding of the crosstalk between astrocytes and OECs 

may inform strategies to identify other endogenous repair mechanisms that facilitate CNS 

repair, and consequently impact function, in the injured nervous system. 
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Chapter 3: OEC-HSPGs moderate astrocyte reactivity, proliferation, and 

differentiation via FGFR1 signaling   

3.1 Abstract  

FGFR1 signaling pathway is important in astrocyte fate determination and reactivity. 

However, the contribution of specific downstream signaling components has been difficult to 

identify due to compensation/feedback mechanisms between FGFRs and other pathways. In 

this study, we show that olfactory ensheathing cell (OEC)-secreted factors moderate astrocyte 

reactivity by suppressing pro-inflammatory transcription factor (TF) NFκB. In addition, 

(OEC)-secreted factors induce the expression of differentiation and neuro-repair promoting 

TF STAT3 in astrocytes. FGF signaling is one of the few known pathways that can block 

harmful astrocyte reactivity in vitro. In accordance, when FGFR1 RTK activity was chemically 

inhibited in cocultures, OECs failed to suppress stress-induced nuclear translocation of pro-

inflammatory transcription factors in astrocytes. OEC-secreted heparan sulfate proteoglycans 

(HSPGs) are strong candidates for factors that play a role in this crosstalk, since they are cell-

specific ECM proteins known to support and regulate FGF signaling. Moreover, a regulatory 

role in intracellular FGFR trafficking has also been shown for HSPGs. Our results indicate 

that differential FGF/FGFR1 signaling can directly and rapidly impact the binary choice of 

astrocytes to proliferate or differentiate. These changes are mediated by differential membrane 

activity in the presence of OEC-HSPGs and may also reflect nuclear FGFR-mediated 

regulation of transcription. OEC-HSPGs, or synthetic heparan sulfate oligosaccharides that 

mimic OEC-HSPGs, may guide new therapies for traumatic CNS injury and other 

neurological disorders by targeting astrocytes.     
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3.2 Introduction  

Astrocytes are one of the most abundant and heterogeneous cell types in the central 

nervous system (CNS), yet, in contrast to many other CNS cell types, changes in gene-

expression profiles of astrocytes during development and pathological states remain poorly 

defined. Studies in the developing spinal cord, and in vitro human astrocytes, identify two gene-

expression patterns: an early, developmental phase characterized by cell cycle, cytoskeletal and 

axon guidance genes and a late, differentiated phase characterized by channels, neuronal 

signaling and metabolic genes (Chaboub et al., 2016; Molofsky et al., 2013). Differentiated 

astrocytes exhibit regionally distinct and unique properties that are maintained by local signals 

(Morel et al., 2017). Under pathological conditions, differentiated astrocytes become reactive 

and demonstrate key features of developmental phase astrocytes, such as upregulation of 

structural proteins (glial fibrillary acidic protein (GFAP), Nestin and Vimentin), rounded 

morphologies and in some cases increased proliferation (Sirko et al., 2013; Lepore et al., 2008; 

Anderson et al., 2016, reviewed in Liddelow & Barres, 2017). The return to a less mature 

genotype/phenotype is referred to as ‘‘dedifferentiation’’ (Buffo et al., 2008; Sirko et al., 2013). 

Indeed, astrocytes can re-acquire stem cell properties both in vitro, upon FGF2 stimulation 

(Kleiderman et al., 2016), and in vivo after injury (Faiz et al., 2015). All together, these results 

suggest that under pathological conditions, reactive astrocytes turn on developmentally 

encoded genes and dedifferentiate due to unsuitability, or absence of, extracellular signals in 

the microenvironment. 

Dedifferentiation includes the upregulation of intermediate filaments, which enables 

reactive astrocytes to surround and isolate inflamed tissue, creating the ‘glial scar’. Glial scar 

can prevent the tissue from secondary damage but also limits access for regenerating neural 
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cells to repair the damaged tissue after injury (Faiz et al., 2015). The mechanism(s) responsible 

for dedifferentiation of reactive astrocytes and the contribution of transcriptional regulation 

to the harmfulness of astrocyte reactivity remain enigmatic. Our study focusses on aspects of 

astrocyte differentiation that are regulated by extracellular signals to test the hypothesis that 

activation of these signaling pathways could be used to support astrocytes for a therapeutic 

outcome following CNS injury.  

Astrocytes display plasticity in protein expression, gliotransmitter release, calcium activity, 

changes of morphology or gap junction (Doetsch et al., 1999; Alvarez-Buylla & Lim., 2004; 

Farmer et al., 2016, reviewed in Pirttimaki & Parri, 2013). Astrocyte plasticity can have 

profound effects on neuronal network activity and also can be induced by local activity, in 

parallel with their reactive nature to pathological changes (Pirttimaki & Parri, 2013, Khakh & 

Deneen, 2019). Support for this observation comes from a recent study in the olfactory bulb 

(OB) where layers of morphologically distinct astrocytes are shaped by local interactions rather 

than clonal relationships (García-Marqués & López-Mascaraque, 2017). Astrocytes in the 

outermost layer of the OB, olfactory nerve layer (ONL), commingle with a distinct type of glia 

that is unique to the olfactory system, olfactory ensheathing cells (OECs). Astrocytes and 

OECs form the glia limitans of the OB and protect CNS against inflammation (Beiersdorfer 

et al., 2019). Notably, astrocytes of the ONL show the most differentiated morphology in the 

OB (García-Marqués & López-Mascaraque, 2017). 

The olfactory system is one of the few regions in the adult mammalian CNS that supports 

the differentiation of new neurons and glia throughout life. Both neural niche signals and the 

surrounding glia, including OECs, give the olfactory mucosa this capability (Li et al., 2005, 

Roet, 2014). OECs transplanted into CNS injury sites for neuroregenerative purposes show 
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therapeutic benefits (Lakatos, 2003; reviewed in Roet, 2014). Similarly, astrocytes cultured in 

medium conditioned by cultured OECs (OEC-CM) show reduced nuclear translocation of 

Nuclear Factor kappa-B (NFκB), a pro-inflammatory protein that is a hallmark of harmful 

astrocyte reactivity (Hale et al., 2011, Liddelow & Barres, 2017, see Chapter 2, Figure 5). 

Moreover, our own work shows that OEC-secreted factors suppress multiple neurotoxicity-

associated transcripts in astrocytes (see Chapter 2, Figure 8).  

FGFs are a family of critically important growth factors for CNS development, homeostasis 

and after injury; regulating neurogenesis, gliogenesis and also regeneration. FGF1 and FGF2 

are significantly upregulated following CNS injuries (Woodbury & Ikezu, 2014; Ornitz & Itoh, 

2015). FGF2 enhances neural stem cell proliferation (Newman et al., 2000) and is upregulated 

in astrocytes in neurodegenerative disorders and following traumatic brain injury (Kirby et al., 

2013). While FGF2 signaling via FGFR1 is primarily known for its mitogenic effect and role 

in dedifferentiation, FGF2/FGFR1 has also been shown to be crucial for cell differentiation. 

These conflicting observations regarding the role of FGFR1 in cell-fate control of neural stem 

cells (NSCs) and reactive astrocytes has been contentious (Reuss et al., 1998; Fahmy & Moftah, 

2010). This controversy was settled by a loss- and gain- of function study showing that FGF 

signaling inhibits astrocyte reactivity in both normal and injured CNS (Kang et al., 2014). 

Indeed, in vitro, FGF signaling significantly decreases expression of transcripts associated with 

neurotoxic astrocyte reactivity (Liddelow et al., 2017). Curiously, both the gain, and loss of 

FGFR function decreases scar tissue formation in vivo (Kang et al., 2014). Although 

compensation between FGFR members cannot be excluded (Oh et al., 2003; Pringle et al., 

2003; Kang et al., 2014), these findings suggest developmentally contrasting roles of pathways 

downstream of FGFR activation, as well as positive and negative feedback mechanisms 
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regulating FGFR signaling. However, the downstream effectors of FGF/FGFR signaling that 

enable astrocyte differentiation and their potential role in prevention of astrocyte 

metamorphosis into harmful reactive astrocytes remain to be identified. 

FGFR1 is one of the most crucial signaling pathways that govern nervous system 

development (Stachowiak et al., 2016) and FGF signaling is one of the few known pathways 

that can block harmful astrocyte reactivity in vitro (Liddelow et al., 2017). An interesting partner 

of regulation for differential FGFR1 activity is heparan sulfate proteoglycan (HSPG). HSPGs 

are cell-specific extracellular matrix (ECM) proteins known to support and regulate FGF 

signaling. Barnett and colleagues suggest a role for OEC-secreted HSPGs in suppressing 

astrocyte reactivity, measured by GFAP expression (Santos-Silva et al., 2007) and astrocyte-

OEC mingling (Higginson et al., 2012), with chemical blockage of FGF receptors promoting 

cell mingling. In agreement, Leadbeater and colleagues (2006) suggest that HSPGs regulate 

cell-specific injury responses through FGF2 after CNS injury.  

Here we used OEC-astrocyte cultures to characterize FGFR1 downstream targets that can 

block harmful astrocyte reactivity.  Experimental results showed that OEC-secreted HSPGs 

block astrocyte reactivity and suggest that this effect is mediated via increased FGFR1 

phosphorylation initiated on the astrocyte membrane. On the other hand, FGF2 potentiated 

proliferation in astrocytes was neutralized in the presence of OEC-secreted factors. These 

results are consistent with a role for OEC-HSPGs in intracellular FGFR1 trafficking via 

association with the transcriptional machinery in astrocytes. Novel treatment strategies 

designed to mimic this crosstalk, targeting astrocytes, may enable improved recovery following 

CNS injuries. 
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3.3 Materials and Methods 

3.3.1 Mice 

All mice were maintained, and all animal handling procedures were performed according to 

protocols approved by the National Institutes of Health NINDS Institutional Animal Care 

and Use Committee. Ext1floxed/floxed mice were kindly gifted by Dr. Yu Yamaguchi.  Mice were 

genotyped using primers 5’-GGAGTGTGGATGAGTTGAAG-3’ and 5’-

CAACACTTTCAGCTCCAGTC-3’, using the PCR protocol previously described (Chen et 

al., 2008). Male mice were obtained as heterozygous both for the Ext1floxed allele and also the 

BLBP-Cre allele (Hegedus et al., 2007). Female mice were obtained as homozygous for the 

Ext1floxed allele. All mice were transgenic for the reporter S100ß-DsRed (Windus et al., 2007). 

Ext1-CKO (Ext1BLBPKO S100ß-DsRed) mice had developmental defects including 

diminished or absent olfactory bulbs and severe arrest of limb development, in particular in 

the hindlimbs, and did not survive postnatally. Absence of olfactory bulbs was previously 

reported for Nestin conditioned Ext1-KO mice which also does not survive postnatally, 

however these embryos are reported to grossly look normal (Inatani et al., 2003). Even though 

BLBP expression is restricted in the nervous system in adults, BLBPCre-RosaTom mice showed 

reporter expression in the early limb buds. Thus, the most likely explanation for the severely 

impaired limb development phenotype we observed is due to the transient expression of BLBP 

during limb development. This skeletal defect allowed us to distinguish mutant mice from 

heterozygous or WT littermates without PCR genotyping. Embryos were collected from time 

mated females between E16- 21 for future experiments. 
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3.3.2 Cell culture and reagents 

Olfactory Epithelium (OE) OECs were obtained via fluorescence activated cell sorting 

(FACS). Unless otherwise stated, OB derived OECs were used for the experiments as 

previously described (Dairaghi et al., 2018). Briefly, olfactory bulbs of postnatal (PN) day 0-

7 mice were collected and enzymatically digested at 370C for 35 min using 30μg/ml 

hyaluronidase (Sigma, Cat# H3631, St. Louis, MO), 30U/ml dispase I (Sigma, Cat# D4818), 

1.2 mg/ml collagenase type 4 (Worthington, Cat# 43E14231, Lakewood, NJ), 10U/ml 

DNAse I (Worthington, Cat# 54E7315) (Au & Roskams, 2003; Richter et al., 2008). Enzymes 

were deactivated by adding fresh medium (DMEM:F12) and the cell suspension was 

centrifuged for 7 minutes at 1000rpm. The cell pellet was resuspended in fresh medium and 

the cells were run through a 40-micron cell strainer (Falcon) before the three steps of 

differential cell adhesion method (Nash et al., 2001).  Initially cells were seeded into uncoated 

T75 flasks (4x106 viable cells/flask, VWR, Cat# 734-2788, Radnor, PA) for 18 hrs. This initial 

seeding helps to remove fibroblasts. Unattached cells were collected and seeded into another 

uncoated flask for up to 36 hrs to remove astrocytes, followed by a final step where 

unattached cells were seeded onto poly-L-lysine (Sigma, Cat# P4707)-coated flasks to grow 

primary OECs. The first medium was changed at day 4 and every 2-3 days after the initial 

medium change. Cells were cultured for up to 2 weeks. More than 90% of the cells in the 

culture were OECs based on p75 and S100ß  immunostaining consistent with earlier reports 

(Au & Roskams, 2003). For OECs to be co-cultured with primary astrocytes, the medium 

was gradually changed to serum-free medium (Klenke & Taylor-Burds, 2012) supplemented 

with 5ng/ml HB-EGF (PeproTech, Cat# 100-47, Rocky Hill, NJ), and B27 (Thermo Fisher 

Scientific, Cat# A3582901) to provide a medium compatible with astrocyte cultures, since 

serum has been shown to induce astrocyte reactivity (Foo et al., 2011).  
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Primary astrocytes were obtained by magnetic sorting as previously described (Holt et al., 

2019), with some modifications. Briefly, 10-20 cortices of PN day 2-4 pups were dissociated 

using the MACS Neural Tissue Dissociation Kit-T (Miltenyi Biotec, Cat# 130-093-231, 

Auburn, CA) at 370C (5% CO2, 30 min). Non-dissociated tissue was removed using a 40μm 

cell strainer (Fisher Scientific, Cat# 22-363-547), and the remaining cell solution was 

centrifuged (300g, 5 min). Next, a discontinuous density gradient, prepared using 1:1 

albumin-ovomucoid solution (10mg/ml of each) (Worthington, Cat# OI; GeminiBio, Cat# 

700-102P, West Sacramento, CA), was used to remove cell debris and inhibit enzyme activity. 

The cell pellet was resuspended in 80μl Hank’s Balanced Salt Solution (HBSS) (Gibco, Cat# 

14025-092) plus 20μl anti-GLAST (ACSA-1) MicroBeads (Miltenyi Biotec, Cat# 130-095-

825, Auburn, CA) for up to 107 cells, and incubated for 10 min (40C). Cells were washed and 

incubated in 90μl HBSS plus 10μl anti-Biotin MicroBeads for another 15 min (40C) before 

running through MACS column for positive selection of astrocytes. Cells were cultured for 

one week and then the same procedure was followed with anti-Prominin-1 MicroBeads 

(Miltenyi Biotec, Cat# 130-092-564) for the negative selection of radial glia, followed by 

another positive selection with anti-GLAST antibody the same day, to increase the purity of 

astrocyte cultures. Sorted cells were cultured in T25 flasks coated with poly-L-lysine, in 5ml 

serum-free astrocyte culture medium (ACM, described above). In our hands, astrocytes 

isolated by this method and cultured in ACM were not reactive when stained with NFκB (not 

shown). The immortalized mouse astrocyte line C8D30 (ATCC, VA, USA) was cultured in 

DMEM-F12 (Gibco, Cat# 10313-02, 11765-054, Long Island, NY) containing 10% Fetal 

Bovine Serum (FBS) (Gibco, Cat# 10438-026), plus 0.5% antibiotic-antimycotic (Gibco, 

Cat# 15240-062) at 370C in 5%CO2. FGFR1 inhibitor SU5402 (Tocris, Cat# 3300) was 
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used at 30nM and PD173074 (Tocris, Cat# 3044) was used at 20nM. Inhibitors were added 

1 hr before the 2 hr LPS treatment. 

3.3.3 Collection and heparinase treatment of OEC-CM  

Once primary OECs reached 70% confluency, medium was replaced with fresh medium and 

collected 24 hours after. This OEC-conditioned medium (OEC-CM) was spun down (30 min) 

to remove cell debris and then directly used on astrocyte cultures unless otherwise stated. For 

the heparinase treatment, primary OECs were gradually adapted to serum free medium (ACM) 

prior to medium collection. Heparin containing proteins in OEC-CM were digested as 

previously described (Higginson et al., 2012) with slight modifications. Briefly, the OEC-CM 

received 3 consecutive treatments of a cocktail of Heparinase I and III (Sigma, Cat# H3917) 

and Heparinase II (Biolabs, Cat# SP0736S), containing 3mU/ml of each heparinase enzyme. 

The first treatment was for 10 hrs (37°C). The second treatment was for 24 hrs (37°C) and the 

final treatment was for 5 hrs (37°C). The conditioned medium was then mixed 1:1 with serum 

containing medium (DMEM-F12 + 10% FBS) to inactivate the enzymes and added on to 

immortalized C8D30 astrocytes for 24 hrs. The last 2 hours of this incubation, cells were 

stimulated with LPS as described earlier. Nuclear compartments of astrocytes were isolated, 

and immunoblotting was performed (described below). 

3.3.4 Primary antibodies  

The following antibodies were used: NFκB rabbit polyclonal antibody (C-20, Santa Cruz, 

Cat# sc-372, Santa Cruz, CA, 1:650 for WB, 1:750 for IF); Histone mouse monoclonal 

antibody (Fisher Scientific, Cat# AHO1432, Waltham, MA, 1:200 for WB); Sox10 goat 

polyclonal antibody (N-20, Santa Cruz, Cat# sc-17342, 1:300 for IF); FGFR1 mouse 

monoclonal antibody (Santa Cruz, Cat# sc-57132, 1:1K for IF); FGFR1 rabbit polyclonal 
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antibody (Abcam, Cat# ab10646, 1:400 for WB); FGFR1 (phospho-Tyr653/654) rabbit 

polyclonal antibody (Cell Signaling, Cat# 3471, 1:1K for IF); FGFR1 (phospho-Tyr766) 

rabbit polyclonal, biotinylated antibody (Biorbyt, Cat# orb501512, 1:50 for IF); O4 mouse 

monoclonal antibody conjugated to APC (Miltenyi Biotec, Cat# 130-119-155, 1:50 for 

FACS); F4/80 mouse monoclonal antibody conjugated to PE-Cyanine7 (Invitrogen, Cat# 

25-4801-82, 1:50 for FACS); CD45.2 mouse monoclonal antibody conjugated to FITC 

(BioLegend, Cat# 109805, 1:100 for FACS); pERK mouse monoclonal antibody (Millipore, 

Cat# M8159, Darmstadt, Germany) was used at 1:5K for WB; GFAP chicken polyclonal 

antibody (Aves, 1:4K for IF); p75-NGFR rabbit polyclonal antibody (Millipore, Cat# 

AB1554, 1:5K for IF) and p75-NGFR goat polyclonal antibody (R&D Systems, Cat# 

AF1157, 1:200 for FACS).  

3.3.5 FACS 

Dissociated OE tissue obtained from WT (Ext1floxed/floxed S100ß-DsRed) and Ext1-CKO 

(Ext1BLBPKO S100ß-DsRed) E16- 21 mouse embryos was subjected to FACS for single cell 

sorting of S100ß-DsRed expressing cells. Cells were dissociated using trypsin according to 

manufacturer’s protocol (Miltenyibiotech, Cat#130-093-231) and were filtered through 35mm 

cell strainers (Falcon, Cat#352235) to remove cell clumps before sorting. The single cell 

suspensions were then incubated with 1mg/ml DAPI (1:500, Thermo Scientific, Cat#62248) 

for a few minutes to label dead cells before loading samples to FACS (MoFlo Astrios EQ high 

speed cell sorter; Beckman Coulter). Flow data setting of sorting gates on DsRed-expressing 

cells that are DAPI-negative were carried out using Summit software V6.3.016900 (Beckman 

Coulter). Determination of the optimum time point for sorting after dissociation was 

established using antibodies against OECs (p75-NGFR or O4-APC) and tissue resident 
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macrophages (F480 and CD45.2). For OE cell dissociates that were sorted on the day of 

dissociation (acute sorting), trypsin was preferred instead of papain in order to preserve the 

F4/80 epitope. However, trypsin dropped the cell viability (from ~70% to 40%).  Moreover, 

acute sorting revealed that a considerable percentage of S100ß-DsRed cells were positive for 

tissue resident macrophage markers (also called monocytic cells, Smithson & Kawaja., 2010) 

(Chart 1). However, these cells were eliminated when the cell suspension was plated and 

maintained in serum containing culture medium (Bohlen et al., 2017) for 25-35 days (DIV). In 

addition, these established cells were more resilient against trypsin. As can be seen in Chart 1, 

both cell viability and the percentage of S100ß-DsRed positive OE cells that were OECs 

dramatically increased when the cells were sorted after culturing.  The purity of OECs (S100ß-

DsRed+ cells) obtained by FACS after culturing was similar to our primary OEC cultures 

obtained via differential-attachment method described above. Therefore, for future 

experiments, primary OECs were obtained via FACS from embryonic OE cultures (25-35 

days DIV) by relying solely on the S100ß-DsRed signal. Following this protocol, typically ≥1K 

cells were obtained from 4 mouse embryos. After sorting, cells were grown for ~1 week on 

poly-L-lysine (Sigma, Cat# P4707)-coated flasks before conducting experiments.  

 

Chart 1 

Live cells 

(% of All) 

S100ß + cells 

% of Hist 

S100ß – cells 

% of Hist 

S100ß + cells 

that are 

OECs % of 

Hist 

S100ß + cells 

tissue resident 

macrophages 

% of Hist 

E18 OE  

Acute sorting 

36.39% 8.11% 88.61% 7.79% 65.82% 

E18 OE Sorted 

at 31 DIV 

78.02% 25.28% 75.21% 85.48% 0.1% 
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3.3.6 Immunoblot analysis  

Nuclear fractions of immortalized C8D30 astrocytes were used for quantitative immunoblot 

analysis. To be able to collect astrocytes alone for the analysis, OECs were cultured on porous 

inserts (0.4µm Millicell Cell Culture Insert, Millipore, Cat# PICM0RG50), that were discarded 

at the end of the experiment. For the CM treated groups, OEC-CM was collected (24 hr-old 

medium). Treatment was 24 hours for all groups and the last 2 hours of this incubation, all 

groups were stimulated with 1μl/ml LPS (Sigma, Cat# L6529). Astrocytes were then scraped 

and the CNMCS Compartmental Protein Extraction Kit (BioChain Cat# K3013010 Hayward, 

CA) plus protease/phosphatase inhibitors (PI, Cell Signaling, Cat# 5872S, Danvers, MA) was 

used for the nuclear fractionation of each treatment condition. The fractions were run on 

BioRad Mini-Protean TGX Stain-Free Gels (Cat#4568084), transferred to PVDF stain-free 

blot (Trans-Blot Turbo Transfer Pack, Cat#1704156) via the Trans-Blot Turbo transfer 

system (BioRad),  and blocked with 5% dry milk (BioRad, Cat #170-6404 ) prior to staining 

with NFκB, FGFR1 or pErk1/2 antibodies. Membranes were exposed to Clarity enhanced 

chemiluminescence (ECL) reagent (Cat. # 170–5061, Bio-Rad) for 5 min and the signal was 

detected using ChemiDoc MP (Cat. # 170–8280, Bio-Rad). Quantification of band intensities 

was calculated using Image Lab 5.0 software (Bio-Rad) and normalized by the loading control 

Histone.  

3.3.7 Quantitative immunofluorescence  

Following immunofluorescence staining for antibodies of interest, confocal images were 

taken on Zeiss LSM 800 Confocal Microscope (Carl Zeiss, Thornwood, NY). Imaging was 

done on a single plane and the same parameters (gain, pin size, etc.) were used between the 

groups while imaging. On the images, intensity median for each channel that overlaps with 
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FGFR1 staining (magenta, threshold=30) was calculated using Imaris software. Statistics 

(two-way ANOVA) were performed and the average median value ±standard deviation (SD) 

per treatment plotted. To calculate the covariance of two fluorescent signals independently 

of fluorescence intensity, pixels colocalized or Pearson’s colocalization coefficient was used. 

For quantifications, the thresholds were determined automatically using Imaris 9.1.0; based 

on the maximum threshold of intensity for each channel that shows any statistical correlation 

(Costes et al., 2004). Fiji was used for the quantification of factorial Markov random field 

(FMRF) signal on a single plane and the FGFR1 signal was scaled up x3 to enable selection 

of individual spots of correlation. 

3.3.8 Cell proliferation 

Cell proliferation was analyzed continually every day over a period of up to 3 days using the 

Alamar blue assay (Nikolaychik et al. 1996) and 50ng/ml FGF2 was used to stimulate the 

cells. Briefly, at the day of measurement, the cells were rinsed with PBS and then incubated 

for 2 hr with their respective growth medium supplemented with 5% Alamar blue reagent 

(Thermo Fisher Scientific, Cat# DAL1025). At the end of incubation time, supernatant was 

collected and Alamar blue absorbance was measured (NanoDrop, Thermo Fisher Scientific), 

using the appropriate filter set (570 nm and 600 nm). The data, expressed as means ± SD, 

are presented in arbitrary fluorescence units. 

3.3.9 Quantitative RT-PCR (q-RT-PCR) 

cDNA synthesis was performed using SuperscriptTM III reverse transcriptase (Invitrogen), and 

PCR carried out using the ViiA7 Real-Time PCR System (Applied Biosystems, Waltham, MA) 

in 20μl final volume, containing 10μl of SsoAdvanced Universal SYBR Green Supermix 

(BioRad Cat#1725271), 2μl of primer mix (1μM of each primer) 1μl of cDNA and 7μl water. 
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For samples that were mixed with FGFR1 primers, a different template was used containing 

3μl of cDNA and 5μl water. Samples were run in triplicate. The expression levels of FGFR 

mRNA were determined using primers (forward; reverse) 

TCTGGAAGCCCTGGAAGAGAGA; TCTTAGAGGCAAGATACTCCAT for FGFR1 

(Verheyden et al., 2005), CAAAGGCAACTACACCTGCC; CAGCCATGACTACTT-

GCCCG for FGFR2 (Yu et al., 2003), GCTGTAGGCTTAACACTTCC; 

GCTGACAAACCATGTGCTAGG FGFR3, GGACTAGCTGCAAAACTTATGC; 

CCATGTCTTCTGTCGTTCC for FGFR4 and were normalized using the primers (forward; 

reverse) (AGTGCCAGCCTCGTCCCGTA; TGAGCCCTTCCACAATGCCA), for 

expression of GAPDH. Data were analyzed by a one-way ANOVA followed by Dunnett’s 

multiple post hoc test. 

3.3.10 Statistical analysis 

All statistical analyses were done using GraphPad Prism 8.00 software. The results are shown 

as mean ± SD. Statistical analysis was performed using one-way or two-way ANOVA, unless 

otherwise stated. Probability values of 0.05 (p<0.05) were considered to indicate statistical 

significance. N=biological replicates, n=technical replicates.  
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3.4 Results  

3.4.1 OEC-HSPGs suppress harmful astrocyte reactivity and promote astrocyte 

differentiation. 

Previous studies, as well as our own work (see Chapter 2) shows that OECs secrete anti-

inflammatory factors that reduce neurotoxic-astrocyte reactivity. Expression of neurotoxicity 

associated genes in astrocytes are understood to be mediated by the pro-inflammatory factor 

NFκB (Lian et al., 2015; Liddelow et al., 2017). In contrast, recovery-promoting astrocytes are 

mediated by activation of STAT3, a transcription factor (TF) shown to moderate reactivity 

and support differentiation of astrocytes (Anderson et al., 2016; Hong & Song, 2014). We 

analyzed mRNA expression of immortalized C8D30 astrocytes for NFκB and STAT3 2 hr 

after LPS exposure, with or without OEC-cultured inserts. As expected, NFκB expression was 

blocked by factors secreted from OEC-cultured inserts. Moreover, OEC-secreted factors 

increased STAT3 expression (Figure 1A). These results indicate that OEC-astrocyte crosstalk 

suppresses early transcriptional changes associated with neurotoxic astrocytes and upregulates 

changes associated with neurorepair-promoting astrocytes. Here, this crosstalk was used to 

characterize FGFR1 downstream targets that play a role in astrocyte reactivity. First, mRNA 

expression of different FGFR subtypes at this time point was examined (Figure 1B). Studies 

suggest that FGFR3 and FGFR2 upregulation correlates with glial lineage commitment while 

FGFR1 is crucial for both self-renewal and differentiation (Maric et al., 2007; Zhang et al., 

2015;). Our results show that under LPS-induced stress conditions, astrocytes cultured with 

OECs express significantly higher FGFR expression for FGFR1-3, but not 4. The absence of 

increased FGFR4 expression is not surprising given it is expressed mostly during development 

(Lichtenstein et al., 2012) (Figure 1A, 1B). Notably FGFR1 expression increased over 100-fold 
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in the presence of OECs (Figure 1B). In accordance to the observed increase in STAT3; 

FGFR2 and FGFR3 expression were also significantly upregulated, pointing out increased 

astrocyte differentiation (Hong & Song, 2014; cite FGFRs). 

To assess whether the change in FGFR1 activity plays a role in the suppression of harmful 

TFs in astrocytes, two different inhibitors to block receptor tyrosine kinase (RTK) activity, 

30nM SU5402 or 20nM PD173074, were used. Stimulation with LPS treatment for 2 hrs 

increased nuclear translocation of NFκB in astrocyte monocultures (Figure 9C, left panel). 

Addition of neither FGFR1 inhibitor impacted nuclear NFκB translocation, but significantly 

slowed the proliferation of C8D30 cells measured by a viability test consistent with earlier 

reports (Reilly et al., 2004). Presence of OECs (distinguished by Sox10 staining, Figure 9C 

middle panel) blocked the inflammatory reactivity in C8D30 cells stimulated with LPS 

(arrowheads, middle panel, notice weak nuclear NFκB staining). However, this effect 

disappeared when FGFR1 activity was chemically inhibited using SU5402 (arrowheads, right 

panel) or PD173074 (data not shown). These results are consistent with our hypothesis that 

astrocyte FGFR1 signaling, activated via OEC secreted factors, suppresses harmful astrocyte 

reactivity and support a more differentiated phenotype in astrocytes.  

Candidates for the OEC-secreted factors, enabling observed changes in astrocyte reactivity 

via FGFR1 1) should be secreted into the extracellular space, and 2) act as FGFR co-receptors 

and moderate downstream signaling. Heparan sulfate proteoglycans (HSPGs) are strong 

candidates for such OEC-secreted factors since they are cell-specific ECM proteins known to 

support and regulate FGF signaling; and have been suggested to play a role in suppressing 

astrocyte reactivity (Higginson et al., 2012). To examine the contribution of OEC-HSPGs, we 

enzymatically degraded secreted HSPGs in the OEC conditioned medium with heparinase 
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(OEC-CM). Heparinase-treated (Hase) OEC-CM (see material & methods) failed to block 

nuclear NFκB translocation in astrocytes, as measured by quantitative immunoblotting in 

nuclear fractions of C8D30 cells (Figure 9D). To confirm these results, transgenic animals 

with conditional ablation of the HSPG-synthesizing enzyme Ext1 (Irie et al., 2012; Yamaguchi 

et al., 2010) in OECs (Ext1BLBPKO) were used. Ext1BLBPKO-OECs (± WT OEC-CM) and 

WT-OECs were grown on hanging inserts and moved to multi-well plates containing C8D30 

astrocytes 24 hrs before the experiment. Cells were treated with LPS for the last 2 hours of 

this incubation. Inserts were discarded at the end of experiment and nuclear fractions of 

C8D30 cells were collected for immunoblotting. Factors secreted from WT OECs on inserts 

brought nuclear NFκB levels down, comparable to the control group (Figure 9E). Similar to 

HaseOEC-CM, Ext1BLBPKO-OECs failed to block nuclear NFκB translocation in astrocytes.  

Notably, addition of WT OEC-CM to astrocytes co-cultured with Ext1BLBPKO-OECs also 

showed NFκB levels comparable to the control group, ruling out the role of negative factors 

that may have been upregulated by conditional ablation of HSPG in OECs (Figure 9E). These 

results are consistent with our hypothesis that observed changes in astrocytes are mediated by 

OEC-secreted HSPGs.  
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Figure 9: OEC-HSPGs supress astrocyte reactivity via FGFR1 

Figure 9: Role of HSPGs in OEC-dependent suppression of astrocyte reactivity via 
FGFR1. (A) Representative images show mRNA expression of 6 transcript of interest in 
immortalized C8D30 astrocytes 2 hr after LPS exposure, with or without OECs. Presence of 
OECs blocked expression of pro-inflammatory TF NFκB and increased expression of STAT3. 
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(B) In the presence of OECs, quantitative PCR revealed increased expression for all FGFR 
subtypes, but developmental subtype FGFR4, in cultured C8D30 astrocytes 2 hr after LPS 
exposure (n=3, one-way ANOVA (F (2, 6) = 297732, P<0.0001 for FGFR1; F (2, 6) = 35.86, 
p=0.0005 for FGFR2; F (2, 6) = 16.35, p=0.0037 for FGFR3; F (2, 6) = 6.153, p=0.0352 for 
FGFR4 * p≤ 0.05, *** p≤ 0.001, **** p ≤ 0.0001; followed by Dunnett's multiple comparisons 
test). (C) Immunofluorescence staining of C8D30 astrocytes treated with LPS for 2 hr (left 
bottom) shows nuclear NFκB translocation compared to untreated astrocytes (left top image). 
In contrast, LPS treated OEC-astrocyte co-cultures block NFκB translocation (middle). This 
effect is lost when co-cultures treated with FGFR1 inhibitors (right). Bottom middle and right 
panels images show OEC nuclei stained with neural crest marker Sox10. (D) Heparinase-
treated (Hase) OEC-CM+LPS impaired OEC-astrocyte crosstalk measured by nuclear NFκB; 
relative to control OEC-CM+LPS (N=2). C8D30 astrocytes were treated with OEC-CM for 
24 hr. Cells were exposed to 1μg/ml LPS for the last 2 hours of this treatment. Nuclear 
fractions of astrocytes were analyzed via quantitative immunoblotting for NFκB. (E) Ext1KO-

OECs fail to prevent nuclear accumulation of NFκB (N≤2). Scale bar represents 30μm. 

 

3.4.2 FGFR-1 signaling differentially activates primary astrocytes cultured in OEC-CM 

     FGF/FGFR signaling pathways have been proposed to differentially regulate 

proliferation and differentiation of cells through interactions with downstream targets (Figure 

10A). Our results suggest that OEC-secreted factors support astrocyte differentiation via 

FGFR1 in a HSPG dependent mechanism. To investigate the regulation of FGFR1 

phosphorylation sites as a possible target of astrocyte-fate regulation we isolated primary 

astrocytes and challenged in the presence of OEC-secreted factors.  

Tyrosine autophosphorylation of FGFR1 induced by extracellular cues can occur on seven 

phosphorylation sites: Y463, Y583, Y585, Y653, Y654, Y730, and Y766 (Figure 10A). 

Structural and biochemical studies have shown that, FGFR1 phosphorylation sequence follow 

a precise order independent of the proximity of these tyrosines to each other (Mohamadi et 

al., Bae et al., 2009; Furdui et al., 2006). The identity and the ratio of tyrosines phosphorylated 

along this activation determines which proteins are recruited and pathways are stimulated 

(Furdui et al., 2006).  
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Activation by FGFR-1 leads to the phosphorylation of fibroblast growth factor receptor 

substrate 2 (Frs2a) on several sites that results in activation of extracellular signal regulated 

kinase 1/2 (Erk1/2), which is necessary both for self-renewal (Ma et al., 2009) and for 

differentiation (Lanner & Rossant., 2010). Briefly, FRS2a, Src homology region 2 domain 

containing phosphatase 2 (Shp2; also known as Ptpn11) and growth factor receptor-bound 

protein 2 (GRB2) complex initiates son of sevenless homology (SOS)-RAS activation (Figure 

10A). RAS protein activation regulates multiple downstream pathways of which one is 

included in the schematic model: MEK-Erk1/2 pathway. This pathway can be activated via 

FGFR1 kinase function on the activation loop Y653/Y654. Both phospholipase-C γ (PLCγ) 

and SH2 domain-containing adapter protein-B (Shb) bind to phosphorylated Y766 (serves as 

a docking site) following FGF/FGFR1 signaling and result in the activation of PKC. Shb can 

also regulate FRS2 phosphorylation via Shp-2. Other structural motifs may also activate the 

FRS2/Ras pathway (Cross et al., 2002). These pathways can directly or indirectly regulate 

numerous genes via activation of transcriptional factors. The balance between their 

phosphorylation levels induce the expression of cell proliferation, survival and differentiation 

related genes; in a cell type and stimulus dependent manner (Zarubin & Han., 2005).  

The Erk1/2 is pathway is most well-known for its mitogenicity. In contrast, PLCγ is not 

responsible for cell proliferation (Mohammadi et al., 1992; Peters et al., 1992) but maintains 

differentiation (Ma et al., 2009). Thus, antibodies recognizing specific phosphorylation sites 

for Erk1/2 (Y653/654) and PLCγ (Y766) were used to evaluate differential FGFR1 activation 

in the presence of OEC-secreted factors. GFAP positive primary astrocytes (Figure 10 B-D 

magenta), ±LPS ±OEC-CM, were stained with anti-pY653/654 antibody (red) and anti-

pY766 antibody (green) (Figure 10B-D). In the control group (Figure 10B), pY653/654 signal 
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Figure 10: OEC-CM induced activation of FGFR1 at the astrocyte membrane 

was detected throughout the cell, including the perinuclear area (Figure 10B, red). In contrast 

the signal was less robust and appeared diffuse and distant from the nucleus following LPS 

treatment (Figure 10C, red). The signal appeared more clustered in astrocytes cultured with 

OEC-CM +LPS (Figure 10D, red). Notably, astrocytes cultured with OEC-CM showed 

enhanced phosphorylation on Y766 (Figure 10D, green) compared to control and also LPS-

stimulated astrocytes Figure 10B and C).  

Figure 10: Differential FGFR-1 signaling in GFAP positive primary astrocytes. (A) 
Schema summarizing the functional outcomes of differential FGFR-1 signaling in astrocytes 
demonstrating how the presence of OEC-HSPGs can change astrocyte fate decision (shown 
in green; HSPG-pY766-PLCγ/PKC-differentiation). The schema was adapted from Cross et 
al., 2002; and created using biorender. (B) Differential FGFR1 signaling in GFAP 
positive(magenta) primary astrocytes (B) compared to (C) primary astrocytes+ LPS or (D) 
LPS+OEC-CM visualized with phosphorylated FGFR1 Y653/654 (red) or Y766 (green) 
antibodies. Primary astrocytes cultured with OEC-CM show enhanced phosphorylation at 
Y766 (D, open arrowheads)(N=2). 
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3.4.3 OEC-CM stabilizes FGFR1 signaling at pY766. 

Next, C8D30 astrocytes were used to quantify differential FGFR1 signaling in response to 

LPS ±OEC-secreted factors (Figure 11). Cells were stained with antibodies against 

phosphorylated FGFR1 Y653/654 (red), Y766 (green), FGFR1 (magenta) and DAPI. C8D30 

astrocytes showed a similar pattern to primary astrocytes (Figure 11A). Quantifications for 

each antibody (normalized to control value for each channel) confirmed that 1) Y653/654 

phosphorylation in +LPS +OEC-CM group (Figure 11B, red rhombus) was lower, compared 

to either +LPS (Figure 11B, red triangle), or control groups (Figure 11B, red circles) and 2) 

Y766 was significantly increased in +LPS +OEC-CM group (Figure 11B, green rhombus) 

compared to control (Figure 11B, green circles).      In accordance, quantitative 

immunoblotting performed on the nuclear fraction of C8D30 astrocyte lysates showed that 

pErk1/2 was significantly suppressed by the presence of OECs cocultured on hanging inserts, 

confirming the observed suppression on pY653/654 reflects Erk1/2 phosphorylation (Figure 

11B, inset).   

Erk1/2 phosphorylation is linked to different outcomes of cellular fate. While some studies 

indicate that Erk1/2 signaling suppresses self-renewal, (Li et al., 2006, Chan et al., 2013, 

reviewed in Lanner & Rossant, 2010); other studies show that it is involved in regulating 

proliferation (Ma et al., 2009). Hence, the Alamar blue test was performed on C8D30 astrocytes 

±FGF2 ±OECs (Figure 11C). This widely used viability test is often interpreted as a readout 

of cell proliferation. Higher proliferation rates in astrocyte monocultures that were treated 

with 50ng/ml FGF2 were observed (Figure 11C, grey triangles), consistent with previous 

studies (Gomez- Pinilla et al., 1995). The presence of OECs neutralized this effect (Figure 11C, 

green rhombus).  



 66 

Figure 11: OEC-CM increases pY766 FGFR1 signaling in astrocytes 
 

Figure 11: OEC-CM preferentially stabilizes pY766 FGFR1 signaling. (A) Representative 
images of differential FGFR1 signaling in immortalized astrocyte line C8D30 in response to 
LPS or LPS+OEC-secreted factors, stained with phosphorylated FGFR1 Y653/654 (red), 
Y766 (green), FGFR1 (magenta) and DAPI. (B) Quantification of differential FGFR1 
signaling in C8D30 line shows lower FGFR1 phosphorylation at Y653/654 and significantly 
higher phosphorylation at Y766 compared to control. Notably LPS-induced stress signal 
significantly increased intensity median for nuclear signal colocalized with FGFR1 and 
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presence of OEC-CM suppressed this increase (N=3, * p ≤ 0.05; two-way ANOVA). C8D30 
astrocytes with or without OECs for 24 hours were exposed to 1μg/ml LPS for the last 2 
hours of this treatment. Nuclear fractions of astrocytes were analyzed via immunoblotting for 
NFκB, FGFR1 and pErk1/2. While LPS treatment upregulated NFκB translocation in 
astrocyte monocultures, the presence of OECs blocked this effect. (Figure 9B inset) (C) 
Viability test results on C8D30 line treated with FGF2 showed significantly increased 
proliferation for +FGF2 group (gray line, triangle), while the presence of OECs neutralized 
this effect, consistent with the suppression of FGFR1 pY653/654 signaling (green line, 
rhombus) (N=3, **** p ≤ 0.0001; two-way ANOVA). 

 

3.4.4 Role of OEC-HSPGs for astrocyte intracellular FGFR1 trafficking. 

To further quantify differential FGFR1 signaling in Figure 11B (magenta), intensity median 

for DAPI that overlaps with FGFR1 was calculated (Figure 12A, left). Intensity of the DAPI 

signal (normalized to control group) showed a significant increase following LPS treatment, 

and this increase was suppressed by the presence of OEC-CM. Next, we asked whether the 

same pattern applies when the colocalization is quantified for FGFR1 and DAPI by pixels 

colocalized (Figure 12A, middle) or by the Pearson’s colocalization coefficient (Figure 12A, 

right). These two quantifications showed no significant difference between treatments, 

suggesting that the observed increase in intensity median for DAPI, colocalized with FGFR1, 

may be due to its colocalization on brighter DAPI-stained regions within the astrocyte nuclei. 

Histones block the access of DAPI to DNA, therefore, heterochromatin loci are known to 

show weaker DAPI staining, while in the euchromatin loci, DNA is open and ready for 

transcription, revealing DAPI binding sites in the DNA (De Cecco et al., 2011). Thus, the 

observed difference in the quantifications related to nuclear FGFR1 & DAPI may be a 

consequence of differential association of FGFR1 with DNA under different treatments. A 

second analysis was made by setting the threshold to select euchromatin loci (using DAPI 

signal) which had a similar distribution, where LPS treatment augmented FGFR1 in the 
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euchromatin, although not significant (p= 0.34). We also observed a non-significant increase 

in overall DAPI signal in LPS stimulated cells. Thus, whether the increased DAPI intensity 

(colocalized with FGFR1) in the presence of LPS-induced stress is due to a change in 

chromatin organization or FGFR1 trafficking to the euchromatin loci remains to be 

determined. 

Next, the nuclear fractions of astrocytes were analyzed by quantitative immunoblotting 

against FGFR1.  A significant increase in nuclear FGFR1 in the LPS treated group was 

detected (Figure 12B). In accordance with previous observations (Irschick et al., 2013., 

Stachowiak et al., 2015; Stachowiak et al., 2016), neither stimulation of membrane FGFR 

signaling by FGF2 nor the inhibition by FGFR inhibitor SU5402 cause nuclear accumulation 

of the receptor. Moreover, SU5402 did not prevent the observed nuclear FGFR1 

accumulation in the presence of LPS, consistent with earlier reports  (Reilly et al., 2004), 

providing further evidence that the LPS-induced stress signal itself is the primary cause for the 

nuclear FGFR1 accumulation. LPS-induced increase in nuclear FGFR1 was suppressed in the 

presence of OECs but not Ext1BLBPKO-OECs. Notably addition of WT OEC-CM was 

sufficient to suppress the increase observed in the astrocytes cocultured with Ext1BLBPKO-

OECs (Figure 12B). Glycosylation of proteins causes a size change with varying degrees, 

preventing the total amount to be detected via immunoblotting. In contrast, the total protein 

can still be detected via immunostaining.  Considering that nuclear colocalization of FGFR1 

and DAPI (either by pixels colocalized or by the Pearson’s colocalization coefficient) was 

similar between different treatment groups, we hypothesize that the differences in quantitative 

immunoblots reflect non-glycosylated forms of FGFR1. This may also explain how OEC 
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secreted HSPGs may play a role in intracellular FGFR1 trafficking in astrocytes, and their 

association with the DNA.  

To further assess our hypothesis that injury signal increasing nuclear FGFR1 association 

with DNA in the euchromatin, the colocalization of FGFR1 as a function of DAPI intensity 

was quantified (Figure 12C). In the control group, FGFR1 was predominantly located in 

heterochromatin loci (arrowheads) where DAPI signal is weaker (left image). FGFR1 was 

observed to colocalize with bright euchromatin regions following LPS treatment, indicating 

that regions of DNA that are available for active transcription are associated with FGFR1 

(middle image, arrowheads). In the presence of OEC-CM; FGFR1 showed a similar pattern 

to controls, colocalized with regions of low DAPI signal, indicative of condensed chromatin 

that is not available for transcription (right image, arrowheads). To quantify this, a plane was 

selected based on strongest distribution of the FMRF signal per image (Figure 12C, dashed 

lines). Quantification of the fluorescence intensity for DAPI (blue) and FGFR1 (yellow) on 

these planes showed FGFR1 signaling was correlated with DAPI intensity in LPS treated 

group (overlap of blue/yellow lines in bottom middle panel).  These findings suggest the 

association of FGFR1 with DNA may explain how astrocytes dedifferentiate in the presence 

of LPS-induced stress signal; and are consistent with the role of FGFR1 as a master regulator 

of transcription. Whether such association can be responsible for the harmful astrocyte 

reactivity is an interesting hypothesis for future investigations. 
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Figure 12: OEC-HSPG regulates FGFR1 trafficking in astrocytes 

Figure 12:  OEC-HSPGs limit intracellular FGFR1 trafficking to the euchromatin in 
astrocytes. (A) Intensity of the DAPI signal that overlaps with FGFR1 showed a significant 
increase following LPS treatment, and this increase was suppressed by the presence of OEC-
CM (left panel). In contrast, when the colocalization of FGFR1 and DAPI was quantified by 
pixels colocalized (middle) or Pearson’s colocalization coefficient (right), no difference 
between treatments was observed. Astrocytes were treated with OECs or OEC-CM for 24 
hours. Cells were exposed to 1μg/ml LPS for the last 2 hours of this treatment. Nuclear 
fractions of astrocytes were analyzed via quantitative immunoblotting for FGFR1. (B) 
Astrocytes cocultured with WT OECs, but not Ext1KO-OECs, attenuated nuclear 
accumulation of FGFR1. Addition of WT OEC-CM to HSPG-devoid OECs was sufficient 
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to prevent nFGFR1 accumulation, proposing a role for OEC-HSPGs in intracellular FGFR1 
trafficking in astrocytes (N≤2). (C) Immunofluorescence staining for FGFR1 localized in 
nuclear region of astrocyte was assigned to yellow signal via Imaris. In the control group, 
FGFR1 signal was mostly located in heterochromatin loci (arrowheads) where DAPI signal is 
weaker (left image). Signal was observed to colocalize with bright euchromatin regions 
following LPS treatment, indicating active transcription associated with FGFR1 and self-
renewal (middle image). Whereas in the presence of OEC-CM; signal showed a similar pattern 
to control group where FGFR1 did not correlate with euchromatin loci completely, suggesting 
limited active transcription and a more differentiated state (right image). (D) Quantification of 
the fluorescence intensity for DAPI (blue) and FGFR1 (orange) on the planes shown with 
dashed lines on C, show overlap in FGFR1 signal and DAPI rich euchromatin loci. 

3.5 Discussion  

FGF signaling is important for mediating astrocyte reactivity, but the respective 

contribution of downstream signaling components is unclear due to compensation/feedback 

mechanisms between FGFRs and other signaling pathways. In this study, we used OEC-

astrocyte crosstalk as a reliable in vitro system that can be manipulated to determine FGFR1 

downstream targets that take part in astrocyte reactivity. Our results suggest that OECs-secrete 

factors not only suppress astrocyte reactivity but also induce the expression of differentiation 

and neuro-repair promoting transcripts in astrocytes, both via FGFR1 in a HSPG-dependent 

mechanism.  

FGFRs have cell–specific functions and show diverse distribution patterns in the nervous 

system. FGFR1 and FGFR2 knockout mice don’t survive past embryonic day (E)7.5-9.5, and 

E10-11, respectively (Ornitz & Itoh, 2015), and loss-of-function mutations in either gene lead 

to a reduction in the number of neural progenitors and neurons (Ohkubo et al., 2004). While 

FGFR3 null animals are viable, these animals show an increased GFAP expression in 

astrocytes and deficiencies in oligodendrocyte differentiation (Ornitz & Itoh, 2015). In fact, 

astrocyte specific deletion of FGFR1, FGFR2, and FGFR3 results in embryonic lethality due 

to severe reduction of cortical progenitors (Kang et al., 2009). In contrast, FGFR4 knockout 
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mice are viable (Ornitz & Itoh, 2015) and FGFR4 expression in the brain is detectable only in 

early stages of development (Yazaki et al., 1994, Fuhrmann et al., 1999). 

Upregulation of FGFR2 (Maric et al., 2007), and FGFR3 (Zhang et al., 2015; Cahoy et al., 

2008) correlates with glial and astrocyte lineage commitment, respectively. The role of FGFR3 

is the most characterized FGFR subtype in astrocytes. Astrocytes overexpressing FGFR3 

adopt reactive astrocyte characteristics such as increased size, number of branches, and GFAP 

expression, whereas suppression of FGFR3 activity reverses this phenotype (Kang et al., 2009). 

Notably, FGFR3 null mice also exhibit reactive astrocyte phenotype with high GFAP 

expression, indicating an optimal FGFR3 activity or ratio between FGFR subtypes is required 

for normal development of astrocytes (Oh et al., 2003; Pringle et al., 2003). Hence, astrocyte 

differentiation requires a balanced signaling via different FGFR subunits.  

FGFRs are equipped with different functional domains and binding specificities that can 

be activated by distinct ligands, along with HSPG coreceptors. FGF signaling, via FGFR1, 

displays four distinct transduction pathways: 1. the Janus kinase/signal transducer and 

activator of transcription (JAK/STAT), 2. phospholipase C (PLC)/calcium, 3. 

phosphatidylinositol 3-kinase (PI3K)/AKT, and 4. mitogen-activated protein kinase/  

extracellular signal-regulated kinase (MAPK/ERK) pathways (Dailey et al., 2005). Activation 

of MAP kinases is a common response to all FGFRs, which turns on a number of TF families. 

Expectedly, abnormal MAPK signaling is detected in a wide range of cancers and 

inflammatory diseases. RAS protein activation regulates two downstream pathways: ERK1/2 

and JNK & p38. These pathways can directly or indirectly regulate numerous genes via 

activation of TFs. The balance between MAPK phosphorylation levels induces the gene 

expression for cell proliferation, survival, and differentiation, in a cell type- and stimulus- 
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dependent manner (Zarubin & Han., 2005). In primary astrocyte cultures, the 

proinflammatory activity of transcription factor NFκB, which turns on genes associated with 

neurotoxic reactive astrocytes, is mediated by p38 (Roy Choudhury et al., 2014). However, 

stress-activated signal transduction together with nuclear translocation of NFκB is a 

coordinated event and, in addition to p38, is regulated/balanced by other MAP kinases. In 

most instances, NFκB translocation inhibits cellular differentiation and also apoptosis, 

increasing the number of undifferentiated cells (Joyce et al., 2001). In contrast, STAT3 pathway 

is essential for the maturation of astrocytes during early brain development (He et al., 2005; 

Kanski et al., 2014; Hong et al., 2014). STAT3 pathway possibly mediate the activation of 

neurorepair-promoting reactive astrocytes (Liddelow & Barres, 2017).  

Here we show that astrocytes cocultured with OECs upregulate STAT3 and downregulate 

NFκB expression. Under stress, the presence of OECs upregulated all FGFR subunits in 

astrocytes, except FGFR4, suggesting that OECs secrete factors that not only suppress 

astrocyte reactivity but also induce the expression of differentiation and neuro-repair 

promoting transcripts in astrocytes. Our experiments targeting FGFR1 RTK activity indicate 

membrane signaling to have a role in astrocyte-OEC crosstalk. HSPGs play a regulatory role 

on FGFR pathway and also on cell-cell communication as secreted ECM proteins. Our 

experiments investigating the role of FGFR/HSPG pathway in OEC-astrocyte crosstalk show 

that astrocytes cultured with HSPG-deficient (Ext1BLBPKO) OECs remain reactive, measured 

by nuclear NFκB. Similarly, while OEC-CM was sufficient to block astrocyte reactivity, OEC-

CM treated with heparinase failed to do so. These results suggest that OEC-HSPGs, or 

synthetic heparan sulfate oligosaccharides that mimic OEC-HSPGs, have a therapeutic 

potential after CNS injury by targeting neurotoxic reactive astrocytes. 
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HSPGs can be cleaved from the cell membrane and regulate a wide range of intercellular 

functions by binding to ECM proteins, ligands and also forming complexes with cell surface 

receptors (Coles et al., 2011), impacting the duration and the strength of the RTK activity 

(Ornitz & Itoh, 2015). Astrocytes are highly susceptible to local signals coming from other 

neural niche cells, and accordingly go through morphological, physiological and functional 

changes; a concept referred to as astrocyte plasticity (reviewed in Prittimaki & Parri, 2013; 

Khakh & Deneen, 2019). Currently, the criteria that validate astrocyte differentiation are 

poorly defined and mostly rely on increased complexity in astrocyte morphology (Molofsky et 

al., 2015). Structural analyses of OB astrocytes show an increasingly complex morphology 

towards the ONL layer (Chiu & Greer, 1996; Larriva-Sahd 2014; García-Marqués & López-

Mascaraque., 2017); where astrocytes mingle with OECs (Beiersdorfer et al., 2019). Our 

findings showing differential FGFR1 phosphorylation activated on the astrocyte membrane 

in the presence of OEC-CM demonstrates that, secreted OEC-HSPGs are important 

moderators of astrocyte reactivity. FGFR1 receptor activation, via FGF, induces 

phosphorylation of ERK1/2 kinases, which is required for proliferation and also lineage 

specification in a cell type specific manner (Lanner & Rossant, 2010, Li et al., 2006; see Chan 

et al., 2013 for a summary table of findings). FGFR1 pY766 doesn’t affect proliferation 

(Mohammadi et al., 1992; Peters et al., 1992) but differentiation via activation of PLCγ (Cross 

et al., 2002; Spivak-Kroizman et al., 1994; Furdui et al., 2006). Immunofluorescent staining of 

the activated receptor using antibodies against PLCγ site (pY766-FGFR1) revealed enhanced 

overall signal in both primary and immortalized astrocytes after treatment with OEC-CM. In 

contrast, antibodies against pY653/Y654, (associated with kinase activity and ERK1/2 

phosphorylation) showed decreased overall signal after treatment with OEC-CM in astrocytes, 

in particular around the perinuclear area, yet the astrocyte membrane was still positive for 
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pY653/Y654 signal. Endocytosis in response to ligand binding, as well as subsequent 

trafficking and degradation of FGFR, are mechanisms for regulating receptor tyrosine kinase 

(RTK) signaling (von Zastrow & Sorkin, 2007; Le Roy & Wrana, 2005, Auciello et al., 2013). 

Perinuclear staining of FGFR1 is associated with receptor recycling (Irschick et al., 2013) 

therefore the observed differences in phospho-FGFR1 staining suggest differential activation 

of receptor degradation mechanisms. Indeed, FGFR1 pY766 has been shown to be important 

for the internalization and degradation of the receptor (Sorokin et al. 1994, Auciello et al., 2013; 

Reilly & Maher, 2001).  

Notably, previous studies show ERK1/2 phosphorylation to be persistent following FGF 

stimulation (up to 24 hours), while PLCγ tyrosine phosphorylation is transient (30 minutes) 

(Ma et al., 2009); suggesting that OEC-secreted factors preferentially stabilize pY766. 

Furthermore, PLCγ activation may inhibit ERK phosphorylation (Ma et al., 2009). Indeed, we 

observed a decrease in pY653/Y654 in +LPS +OECs group coincident with significantly 

lower ERK phosphorylation in astrocyte nuclei. Additionally, our results show that OECs 

normalize the mitogenic effect of FGF2 on astrocytes, in accordance with decreased 

pY653/654 and pERK activity.  

Mature astrocytes are quiescent and do not proliferate in the intact brain (Buffo et al., 2008; 

Bush et al., 1999; Horner et al., 2000). FGF1 subfamily (FGF1 and FGF2) are secreted FGFs 

are important regulators of injury response and recovery (Ornitz and Itoh, 2015, Woodbury 

& Ikezu, 2014). FGF2 was observed in the cytoplasm of quiescent astrocytes, and the nucleus 

of proliferating astrocytes (Joy et al., 1997; Planque, 2006). FGF2 upregulation by astrocytes 

after injury (Clarke et al., 2001; Kirby et al., 2013) induce cell cycle reentry (Kleiderman et al., 

2016). These results imply that in astrocyte monocultures, Y653/654 is phosphorylated and 
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able to transduce signals in response to FGF2 (or FGF1) secreted by astrocytes in an autocrine 

manner. In response to LPS-induced stress signal, astrocytes suppress pY653/654 and 

upregulate pY766. However, for a significant increase in Y766 phosphorylation, astrocytes 

need to be stimulated with both OEC-HSPG and FGF2. 

Curiously, a nuclear function has also been reported for FGF2/FGFR1 complexes 

(Stachowiak et al., 1997; Carpenter et al., 2003). Moreover, nuclear accumulation of FGFRs in 

glial cells increases after injury (Leadbeater et al., 2006) and is associated with cell proliferation 

(Stachowiak et al., 1997, Reilly & Maher, 2001). However, we found that neither stimulation 

of membrane FGFR signaling by FGF2 nor the inhibition by FGFR inhibitor SU5402 induce 

nuclear accumulation, in consensus with previous studies (Irschick et al., 2013, Auciello et al., 

2013; reviewed in Stachowiak et al., 2016). Stachowiak and colleagues proposed a 2-pathway 

model in which FGFR1 is synthesized on ER-attached polyribosomes and then follows either 

the ‘membrane pathway’ or ‘nuclear pathway’. While the membrane pathway involves 

extensive glycosylation of the receptor in Golgi for the generation of plasma membrane bound 

receptors, non-glycosylated FGFR1 may exit pre-Golgi vesicles into the cytosol and 

translocate into the nucleus (Stachowiak et al., 2015). The mechanisms for relaying FGFR1 

from the membrane pathway into nucleus have not been clarified in detail yet. It has been 

postulated that the presence of the FGFR-bound HSPGs regulate receptor trafficking to 

subcellular compartments (Stewart & Sanderson, 2014; Leadbeater et al., 2006). Remarkably, 

HSPGs are also upregulated and can be translocated to the nuclear region together with FGF2 

and FGFR1 post-injury (Leadbeater et al., 2006). Studies show that the majority of the nuclear 

FGFR1 is non-glycosylated (Dunham-Ems et al., 2006; reviewed in Tuzon et al., 2019) and this 

form of FGFR1 directly interacts with CREB binding protein (CBP) (Fang et al., 2005; 
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reviewed in Stachowiak et al., 2015). FGFR1 is in a dynamic equilibrium with CBP and pp90 

Ribosomal S6 kinase-I (RSK1) (Stachowiak et al., 2015). Nuclear accumulation of non-

glycosylated FGFR1 disrupts the inactive RSK1-CBP complex, activating CBP transactivation 

of genes as well as protein complexes with histone modifying enzymes (Cheung et al., 2000). 

Notably, PKC can also dissociate RSK1-CBP complex (Peng et al., 2002; reviewed in 

Stachowiak et al., 2015). Thus, the CBP related transcriptional changes may be moderated by 

several mechanisms following FGFR1 membrane activity.  

These results indicate that context dependent, differential FGF/FGFR1 signaling can 

directly and rapidly impact the binary choice of cells to proliferate or differentiate. These 

changes are mediated by membrane activity and may also reflect nuclear FGFR-mediated 

regulation of transcription. Interesting candidates for genes that may be induced by nuclear 

FGFR1 include the recent list of genes turned on by neuroprotective versus neurotoxic 

astrocytes (Liddelow et al., 2017). 

Our studies suggest that non-glycosylated FGFR1 accumulates in astrocyte nuclei upon 

stress and OEC-secreted factors can diminish this accumulation. We investigated whether 

OEC-secreted HSPGs may be responsible for the observed change in FGFR1 trafficking and 

found that Ext1BLBPKO-OECs failed to diminish nuclear FGFR1 accumulation. Our 

examination of the consequences of nuclear FGFR1 trafficking and the function of OEC-

HSPGs in nucleus suggest that stress signal increases the association between euchromatin 

and nuclear FGFR1. In contrast, in the presence of OEC-CM nuclear FGFR1 is found in 

heterochromatin loci, similar to unstimulated control astrocytes. Heparan sulfation is shown 

to have a role in self renewal (Jung et al., 2016). In contrast, OEC HSPGs are known to be less 

sulfated compared to HSPGs secreted by other glia (Higginson et al., 2012). Interestingly, 
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OECs are unusual in that they rarely form tumors (only 11 cases reported to date) (Murtaza et 

al., 2019). Whether these observations on differential HSPG sulfation may be a mechanism 

for OEC-induced astrocyte differentiation is an open question. 
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Chapter 4: Implication of Results & Future Directions for Research 

 

4.1 Discussion of Results  

4.1.1 Novel observations regarding the role of OECs in CNS regeneration 

In the adult mammalian nervous system, neurogenesis levels are the highest in the olfactory 

system (Hellström et al., 2009). OB astrocytes contribute to the neurogenesis by promoting a 

microenvironment in the OB that allows regenerating OSNs to pass through the BBB and 

integrate into the CNS (Li et al., 2005; 2012), a process that is not permitted in other parts of 

the brain (Smith et al., 2012). OB astrocytes stand out from other CNS astrocytes exhibiting 

weaker S100ß and stronger GFAP expression (see Allen Mouse Brain Atlas). This observation 

is of importance since high GFAP-expression is associated with multipotency (Magnusson & 

Frisén, 2016) while S100ß is neuroprotective only when expressed at low levels (Villarreal et 

al., 2014), being up-regulated later in mature astrocytes (Raponi et al., 2007). Moreover, OB 

astrocytes show structural variation in OB cortex layers, with a gradient of increased 

complexity towards the ONL (García-Marqués & López-Mascaraque, 2017), where OECs 

meet astrocytes (Beiersdorfer et al., 2019). These observations suggest that the OB must exhibit 

a delicate balance of factors to maintain these neurorepair-promoting astrocytes and our work 

shows that some of these factors are secreted by OECs. We determined that an anti-

inflammatory protein, CryAB, secreted via OEC-exosomes, moderates astrocyte reactivity. 

This secretion is an active response that can be stimulated by stress signals or potential factors 

secreted by astrocytes. Moreover, we showed that CryAB can suppress activation of multiple 

genes that were previously associated with neurotoxic astrocyte reactivity (Figure 8). Notably, 

our results indicated that there are other OEC-secreted factors, in addition to CryAB, that can 

suppress this harmful reactivity.  
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Previous studies pointed out that both FGF (Fahmy & Moftah, 2010; Goldshmit et al., 

2014), FGFR (Kang et al., 2014) and also the FGF coreceptor HSPGs (Higginson et al., 2012) 

can moderate astrocyte reactivity. HSPGs can be cleaved from the cell membrane of the donor 

cell, initiating an intercellular signaling pathway in the host cell (Steward & Sanderson, 2014). 

FGF signaling pathways take crucial and contrasting roles during neurodevelopment and 

recovery (Lanner & Rossant, 2010), hence it is not surprising that their regulation is highly 

complicated. We used OEC-astrocyte cultures to characterize FGFR1 downstream targets that 

can block neurotoxic astrocyte reactivity. Our findings indicate that OEC-HSPGs may 

account for CryAB independent factors secreted by OECs, that can suppress neurotoxic 

astrocyte reactivity. Moreover, we identified a possible regulatory role for OEC-HSPGs in 

intracellular FGFR1 trafficking and astrocyte differentiation. As a consequence of differential 

FGFR1 trafficking to the astrocyte nuclei, its association with the transcriptional machinery 

may also be regulated. Hence, we suggest that future studies should determine whether OEC 

secreted HSPGs support expression of neurorepair-promoting genes in astrocytes.  

4.1.2 Assessing the role of OECs for maintaining astrocytes of the OB in a 
neurogenesis supportive state 

The work presented thus far, examining OEC-astrocyte crosstalk, exploited in vitro models. 

Thus, future work will determine whether OECs can maintain neurogenesis supportive 

astrocytes in an in vivo model. Astrocytes and OECs express many of the same glial markers 

such as GFAP, S100ß and BLBP. Yet, previous work from our lab revealed OECs are neural 

crest derivatives (Forni et al., 2011). Therefore, we plan to use a transgenic mouse line floxed 

for the neural crest marker Sox10 to target OECs in the OB. We propose to deplete OECs 

using Sox10flox/flox mice (Finzsch et al., 2010) via local injections of AAV-Cre into the OB of 
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adult mice. We hypothesize that the altered communication between astrocytes and OECs will 

shift astrocytes of the OB from neurorepair-promoting to neurotoxic.  

While GFAP is the most widely used marker for pan-reactive astrocytes, recent 

transcriptomic studies revealed that complement component-3 (C3) is specifically upregulated 

in neurogenesis-inhibitory astrocytes (Liddelow et al., 2017; Liddelow & Barres, 2017). Thus, 

in addition to glial fibrillary acidic protein (GFAP), we will analyze whether OEC depletion in 

the OB causes a change in C3 expression in astrocytes. Our preliminary studies using AAV-

Cre mediated local Sox10 knockdown in the ONL suggest OEC depletion increases the 

number of C3 positive glia but not the number of Sox2 positive cells in the RMS (Figure 13). 

Similar to the Sox2 data, no difference was observed for Ki67 or PCNA positive cells across 

the RMS (Figure 14). Curiously, no change was observed for GFAP or Iba1 (a microglia 

marker) expression across the RMS (Figure 14), although there was a slight increase for both 

markers at the injury site (data not shown). No difference was observed for DCX positive 

NSCs (Figure 13), which represent a subpopulation of Sox2 positive cells. NSCs were also C3 

positive (Figure 13) for either treatment. Following Sox10 knockdown, Sox2 positive, DCX 

negative cells that were positive for C3 increased 278% as measured by immunofluorescence. 

These cells represent oligodendrocyte and astrocyte populations, as evident by S100ß signal 

(Figure 13 B’’ and B’’’, insets, orange and blue). Notably, despite unchanged GFAP signal, the 

S100ß signal increased in glia following Sox10 knockdown (Figure 13), suggesting increased 

reactivity (Villareal et al., 2014). 

Characterization of C3 positive cells adjacent to the RMS following local Sox10 knockdown 

in the OB showed that C3 staining overlapped with GFAP positive astrocytes (Figure 15, open 

arrowheads), Olig2 positive oligodendrocytes (Figure 15, arrowheads) and Iba1 positive 
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microglia (Figure 15, asterisk). Both oligodendrocytes and astrocytes were also Sox2 positive 

(yellow), while microglia were not, consistent with previously shown data (Zhang et al., 2014). 

The majority of C3 positive cells were found to be astrocytes. In particular, out of C3 positive 

cells, less than 10% overlapped with the microglia marker Iba1 (purple), around 20% 

overlapped with the oligodendrocyte marker Olig2 (red), while more than 45% overlapped 

with the astrocyte marker GFAP (magenta). Very few cells were positive for the neuronal 

marker NeuN (data not shown). Some C3 cells did not overlap with any of these markers, but 

were Sox2 positive (yellow), possibly indicating the radial glia (Emsley et al., 2012). 

4.2 Limitations of Experimental Approach  

Previous studies report that zinc sulfate lesion (ZL) of the OE results in cell death in the 

OB (Kim et al, 2006). We observed no differences in GFAP or C3 expression in OB astrocytes 

10 days after ZL, despite a significant increase in the number of OECs (data not shown), 

serving as a control for our studies. A minimum of one week is predicted for viral transduction 

to be efficient, and our preliminary studies indicates a difference in astrocyte reactivity 14 days 

after OEC depletion. Therefore, an optimum timeline needs to be established to observe the 

changes predicted in astrocytes following AAV-Cre injections with appropriate controls. In 

addition, it is important to remember that the OB is a highly regenerative system which is 

expected to be maintained by numerous neurogenic and gliogenic signals. Therefore, in 

addition to knockdown of OECs, it may be necessary to induce CNS injury to trigger the 

expected changes in astrocytes. For this purpose, experimental autoimmune encephalomyelitis 

(EAE) model could be used. Studies show improved recovery following OEC transplantation 

into the CNS in multiple mouse models of CNS injury, including EAE (Li et al., 2015). 

However, the changes in astrocyte recovery in these models are often overlooked. EAE is the 
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primary mouse model for MS and in addition to the oligodendrocyte cell loss, it is 

characterized by activation of astrocytes, and loss of their end-feet around small blood vessels 

even at early stages (Brosnan & Raine., 2013). This standardized animal model for injury is 

advantageous because it provides multiple readouts without the need for any CNS-invasive 

techniques. Moreover, EAE increases neural progenitor and stem cell migration from the SVZ 

to the OB, while the proliferating GFAP positive cells at the cortical layers of the OB remained 

constant (Picard-Riera et al., 2002). In collaboration with Dr. Vanja Lazarevic at NIH/NCI, 

we repeated these experiments on EAE mouse brains and confirmed the increased migration 

of several cell types 30 days p.i. (Figure 16). In EAE mice, the percentage of DCX positive 

cells and the percentage of GFAP positive cells increased significantly where the RMS entered 

the OB (Figure 16 C & D). The percentage of proliferating oligodendrocytes, determined by 

co-staining for the proliferative marker Ki67 and the oligodendrocyte marker GPR17, 

increased in the corpus callosum (Figure 16, E), although the difference did not reach 

significance in this first study. Thus, using this EAE model ± Sox10 ablation and examining 

the olfactory bulb, may reveal the dramatic astrocytic changes predicted from our earlier work, 

with OECs modulating astrocytic reactivity. Specifically, following OEC depletion, inducing 

the EAE model should attenuate the factors that maintain astrocytes in the OB and thereby 

enable us to observe a significant difference in astrocytes in the absence/scarcity of OEC 

secreted factors. Additionally, we expect that OE OECs would eventually proliferate and 

replace the dead OB OECs. This state could be used as an internal control via changing the 

timeline after the AAV-Cre injection. 
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4.3 Recommendations for Future Research  

A significant gap in our knowledge lies in regulation of FGFR signaling by the immune 

system which determines, at least in part, the proliferative states of astrocytes that contribute 

to the formation of the glial scar and inhibit regeneration. Over the last years, it has become 

increasingly clear that the FGFR pathway has a regulatory role in astrocyte differentiation and 

response to injury (Fahmy & Moftah, 2010; Goldshmit et al., 2014; Kang et al., 2014; Liddelow 

et al., 2017). Our results imply that in astrocyte monocultures, Y653/654 is phosphorylated 

and transduces signals in response to FGF2 (or FGF1) secreted by astrocytes in an autocrine 

manner. In response to LPS-induced stress signal, astrocytes suppress pY653/654 and 

upregulate pY766. However, for a significant increase in Y766 phosphorylation, astrocytes 

need to be also stimulated with OEC-HSPGs. One of the important questions that still 

remains is how FGFR1 nuclear trafficking is initiated by astrocytes in reaction to the LPS-

induced stress signal. Secretory FGFs (FGF1 and FGF2) are known to be upregulated 

following injury (Goldshmit et al., 2014; Woodbury & Ikezu, 2014; Ornitz & Itoh, 2015). 

Moreover, both FGF1 and 2 and FGFR1 can accumulate in nuclei after injury (Wiȩdłocha et 

al., 2005). Although FGFR1 protein doesn’t have a nuclear localization signal, it has been 

suggested that it is co-transported with FGF2 (Stachowiak et al., 2011; 2015; 2016). However, 

we found that FGF2 stimulation by itself doesn’t induce nuclear accumulation. Hence there 

must be additional astrocyte regulated factors that induce FGFR1 activation and intracellular 

trafficking. One such candidate protein is Anosmin1, a heparan sulfate dependent extracellular 

matrix protein that binds to FGF/FGFR1 complex and regulates FGF signaling (Choy & 

Kim, 2010).  
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Anosmin1 is coded by ANOS1 (previously called KAL1) gene and its expression is required 

for neural outgrowth and targeting (Rugarli et al., 1993). Yamada and colleagues studied 

Anosmin1 expression in chicken embryos and showed that Anosmin1 is essential for neural 

crest formation and that it regulates the activities of several growth factors, including FGF 

(Endo et al., 2012). ANOS1 has been identified in human, chicken, zebrafish, and musk shrew 

(reviewed in Dellovade et al., 2003). Although the whole mouse genome is annotated, an 

ANOS1 orthologue has not been identified suggesting that the gene has been lost (possibly 

due to redundancy of function by another molecule) or shows such significant sequence 

divergence that it cannot be detected (Hu & Bouloux, 2011; Rugarli et al., 1993). Although the 

gene has also not been found in rat, immunocytochemistry for Anosmin1 revealed robust 

staining in the OB, and Anosmin1 has been shown to promote olfactory neuronal 

development during rat embryogenesis (Soussi-Yanicostas et al., 2002; Clemente et al., 2008). 

These results indicate existence of an orthologue gene in rat and mouse genome, possibly on 

an autosome (Hu & Bouloux, 2011). During development, the identity of the cells expressing 

Anosmin1 in nasal regions is still unclear – however in the cerebellum the majority of 

Anosmin1 positive cells were also S100ß positive, pointing to a glial source (Gianola et al., 

2009). In agreement, human brain RNAseq data shows the highest ANOS1 expression to be 

in mature astrocytes (Zhang et al., 2016). 

Anosmin1 is an extracellular regulator of FGFR1 and Anosmin1 binding to either 

FGF/FGFR/HSPG complex or to FGFR-alone can have opposing effects, such as 

proliferation versus differentiation (Hu & Bouloux, 2011; Hu et al., 2009). Notably, the glucidic 

composition and structure of HSPGs varies with species, cell type, and age which could 

control the binding and function of the different Anosmin1 domains (reviewed in Hu & 
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Bouloux 2011). Our results indicate a significantly increased proliferation in immortalized 

astrocytes stimulated with Anosmin1 and LPS, exceeding that observed with either stimulation 

alone (Figure 17). Indeed, earlier studies indicate that Anosmin1 (Garcia-Gonzalez et al., 2010) 

or inflammatory signals (Liddelow & Barres, 2017) alone has no/or little effect on cell 

proliferation in vivo.  

In summary, Anosmin1 can regulate FGFR1 signaling by differentially binding to ligands 

as well as HSPG and/or FGFR1. We hypothesize that insufficient levels of the right HSPG 

in the ECM together with excessive Anosmin1 may: 1) block FGFR signaling and 2) cause 

nuclear FGFR1 accumulation and increased astrocyte proliferation. Thus, it would be 

interesting to investigate the role of Anosmin1 for OEC-astrocyte crosstalk both in vitro and 

in vivo. 

Clearly, when working in vivo, multiple parameters can change including changes in other 

neural niche cells. The OB provides a unique neural niche that supports neuroregeneration, 

with OECs being an integral component of OB plasticity. Future work will utilize this system 

to extend our in vitro results to identify factors that support astrocyte health, and apply these 

cues to astrocytes outside of the neurogenic zones of the CNS to improve recovery following 

injuries. 
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Figure 13: OEC depletion increases C3-positive glia in vivo 

APPENDIX A: 

OEC depletion increases the number of C3 positive astrocytes along the RMS 

Figure 13: OEC depletion increases the number of C3 positive glia along the RMS. (A 
and B) Following Sox10 knockdown, Sox2 positive, DCX negative cells that are positive for 
C3 increased 278% (B’’, inset, orange). These cells represent oligodendrocyte and astrocyte 
population, as evident by S100ß signal (B’’ and B’’’, insets, orange and blue). Notably, S100ß 
signal was found to be increased in glia following Sox10 knockdown (A’’’ versus B’’’, blue). 
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Figure 14: No difference was observed for GFAP, Iba1 or cell proliferation markers following 

OEC depletion  

AAV-Cre mediated local Sox10 knockdown in the ONL did not cause an increase in the 
number of Sox2 (A and B, yellow) positive cells along the RMS. No difference was observed 
for DCX positive NSCs (A’ and B’, cyan), which represent a subpopulation of Sox2 positive 
cells. NSCs were also C3 positive (A’’ and B’’, orange) for either treatments. Scale bar 
represents 100μm in low mag and 40μm in insets. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: No difference was observed for GFAP, Iba1 or cell proliferation markers 
following OEC depletion. Scale bar represents 100μm. 



 89 

Figure 15: OEC depletion increases astrocyte neurotoxicity in vivo 

 
 
 

 

 

Figure 15: The majority of C3 positive cells are GFAP positive astrocytes. 
Characterization of C3 positive cells at the intersection of RMS and the OB. Following local 
Sox10 knockdown in the OB, C3 staining overlaps with GFAP positive astrocytes (magenta, 
open arrowheads), Olig2 positive oligodendrocytes (red, arrowheads) and Iba1 positive 
microglia (blue, asterisk). Oligodendrocytes and astrocytes, but not microglia are Sox2 positive 
(yellow). Less than 10% C3 positive cells overlapped with microglia marker Iba1 (purple), 
~20% overlapped with oligodendrocyte marker Olig2 (red), > 45% overlapped with astrocyte 
marker GFAP (magenta). Some C3 cells did not overlap with any of these markers but were 
Sox2 positive (yellow). Scale bar represents 20μm. 
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Figure 16: EAE increases number of progenitors in the OB 

APPENDIX B: 

Experimental autoimmune encephalomyelitis increases the number of progenitors reaching 
to the OB from RMS 

 

 

Figure 16: EAE increases the number of progenitors along RMS to the OB. (A) 30 days 
p.i. of EAE (B) and WT control adult mouse OBs immunostained for DCX on coronal 
sections (A and B, left images) and GFAP on sagittal sections (A and B, right images). In EAE 
mice, the percentage of DCX positive cells (C) and the percentage of GFAP positive cells (D) 
increased significantly at the intersection of RMS and the OB. (E) The percentage of 
proliferating oligodendrocytes, determined by the co-staining of proliferative marker Ki67 and 
oligodendrocyte marker GPR17, was increased in the corpus callosum (not significant, 
p=0.0788). N = 3; * p ≤ 0.05; unpaired t-test. Scale bar represents 50μm. 

43

Changes in OB
C

D

E

A
. 
E

A
E

B
. 
C

o
n

tr
o
l



 91 

APPENDIX C: 

Co-stimulation of astrocytes with Anosmin1 and LPS increases astrocyte proliferation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 17: LPS and Anosmin1 have a combinational effect on astrocyte proliferation. 
Viability test on immortalized astrocyte line C8D30 shows significantly increased proliferation 
following 24hr 1μl LPS treatment (black dashed lines, rhombus) compared to untreated, 
control astrocytes (red lines, circle) (top image, 24hr, and bottom image, day1). 5ng/ml 
Anosmin1 significantly increased astrocyte proliferation on days 3 and 5, while no difference 
for LPS treated group was observed for these time points (bottom image). Compared to 
control group, combinational stimulation of LPS and Anosmin1 resulted in increased astrocyte 
proliferation on day5 (turquoise line, triangle) which was also significantly higher compared to 
either stimulation alone (bottom image, blue line, triangle, or black dashed line, rhombus) 
(N=3, * p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001; two-way ANOVA). 
  

Figure 17: Co-stimulation of astrocytes with Anosmin1 & LPS increases 

astrocyte proliferation 
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