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Two new numerical techniques that are useful in the simulation of high fi-

delity, vortical interactional aerodynamics for rotorcraft are developed. The first

is a simple, general and radically different approach to the problem of overset

grids connectivity in the numerical solutions of partial differential equations with

arbitrary geometry. The second is an approach for addressing one of the most

pressing issues in rotorcraft aerodynamics, the simulation of vortices and their

interactions with the rotorcraft. It is a technique to automatically capture and

track the vortices for subsequent interactions using very high-resolution helical

grids. While the underlying problem in the former is fundamental and of general

interest to computational science, the latter is specific to problems in rotorcraft

aerodynamics, and is still in its infancy.

The overset structured grids connectivity developed in this thesis is based

on a cell selection process instead of the traditional explicit hole cutting as an



essential ingredient. Hole cutting is a byproduct of this process and the holes

that arise are both automatically optimum and not affected by any imperfection

on the wall surface. It can be regarded as a generalized method that can cut holes

around both flow refinement and bodies indiscriminately. The greatest strength

of this approach is the simplicity of its concept and the implementation, which

results in a very elegant and compact algorithm.

The heart of the vortex tracking methodology is a set of long helical grids

with high grid density at the central core where each vortex trajectory resides at

the completion of the tracking process. Only the quasi-steady state problem is

studied here. The technique is successfully tested on a half-span Quad Tilt Rotor

in high speed forward flight. Several technical problems related to quasi-steady

vortex tracking under certain flight conditions are also presented.

The two new techniques are also applied to the problems of 2D blade vortex

interaction (BVI) and co-rotating vortices with encouraging results. Coupled

with monotone cubic interpolation for the connectivity, these techniques used in

2D BVI are able to track the distorted vortex long after the interaction. These

vortex tracking problems in rotorcraft CFD are difficult to handle without the

use of IHC.
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Chapter 1

Introduction

The purpose of this thesis is to accurately model vortical flowfields of rotorcraft

numerically for very large distances. Two new numerical techniques are devel-

oped to help achieve this. The first is a simple approach to the problem of overset

grids connectivity for the numerical simulation of partial differential equations

(PDE) with complex geometry and/or relative grid motion, and the second is

a methodology for high resolution and automated tracking of helical vortices

in rotorcraft computational fluid dynamics (CFD) using the above connectivity

approach.

1.1 Physical Understanding

A large number of phenomena in science and engineering are accurately de-

scribed by PDEs. Almost all of those that are of importance to scientists and

engineers are either highly nonlinear, have complex geometrical boundary, or

contain components with relative motion. These attributes necessitate the use

of numerical methods on high performance computers to obtain any reasonable

solution. This, in turn, requires the construction of a grid in the solution domain

1



that serves to approximate the space continuum. The design of the grid (in par-

ticular the grid density) generally requires some prior knowledge of the solution

before the PDE could be solved. In this respect, several general classes of grids

have been developed for this purpose, e.g., structured, unstructured, adaptive

Cartesian, etc. This work employs overset Chimera) structured grids exclusively

for all numerical studies.

There exists a problem in numerical PDEs that is of fundamental and intense

interest to the rotorcraft CFD community. This is the high resolution capturing

of very long helically rotating blade tip vortices from first principles (i.e., using

only conservation of mass, momentum and energy), and the simulation of the

subsequent interaction with other blades, aircraft components and themselves.

The two pictures in Fig. 1.1 show these helical vortices from propellers and

a helicopter rotor made visible by the effect of natural condensation of water

vapor in the atmosphere inside the low-pressure region within the vortex core.

The importance of an accurate solution to this problem in a reasonable time

frame to engineering and science is well documented.

The significance of the above problem to rotorcraft aerodynamics stems from

the strong effect of the blade tip vortices on the performance and behavior of

the rotor and airframe. Each vortex is generated at the tip of a blade due to

the ‘leaking’ of air from high- (bottom of blade) to low-pressure (top of blade)

region, setting it into circular motion. It is structurally similar to a miniature

tornado or hurricane. Its core diameter is generally a few inches across and has

a peak swirl velocity of about a couple hundred miles per hour. Besides causing

vortical interactions, which induce noise, vibration, fatigue, etc., these energetic

vortices represent a loss of useful energy at the expense of more fuel burn.

2



Figure 1.1: Helical vortices generated by propellers and a helicopter. (Courtesy

of Erik Frikke (above) and Dany Gaule (below)

3



The outboard portion of a rotorcraft blade is where most of the aerodynamic

lift is generated. Unfortunately the region in the vicinity is also where the

flowfield is most intense and complicated. The flow regime encountered here is

from high subsonic to transonic with the possible appearance of shock waves. A

large velocity and pressure gradient exists in the flow field around the tip vortex.

The solution at the vortex core has the form of a steep inverted spike for the

pressure or density field and a peak/valley pair for the swirl velocity. This flow

feature is maintained for a long distance as the vortex spirals downward (and

backward in a forward flight). The mechanism for the generation of a tip vortex

and its numerical investigation is studied in detail in Duraisamy [1] and will not

be discussed here.

In light of the above, it is easily understandable why the prediction of the

strength, size and trajectories of these helical vortices and the simulation of their

interactions with anything in their path is of utmost importance for the design

and analysis of a high-performance rotorcraft.

1.2 Motivation and Objective

This well-known aerodynamic problem has remained, to this day, generally un-

solved despite years of intensive studies employing different methods and levels

of approximation. It has long plagued the rotorcraft industry and research com-

munity alike. The numerical solution in the region surrounding the vortex can

not capture the fundamental vortex feature described above for an extended pe-

riod of time. The computational difficulty is essentially because of a large change

in the solution within a small confined region. The solution gradient calculated

4



using finite differences is always underestimated near the peaks or troughs. The

situation is compounded by the insufficient grid resolution to resolve the sharp

features. This leads to a gradual and steady ‘lowering’ of the peaks as the vortex

convects downstream. Eventually the vortex is weakened to oblivion by energy

dissipation through the action of viscosity.

The ability to numerically preserve the vortex structure for a long period of

time is indispensable for the simulation of the aerodynamic interactions between

the vortices and other aircraft components that are so crucial to the accurate

prediction of a rotorcraft’s behavior including the ”Brownout” phenomenon.

Two avenues are generally available to ameliorate the problem: 1) use of

higher accuracy numerical methods and, 2) grid refinement. Although high-

order accurate schemes can help alleviate the problem, it has limited potential

by itself. Grid resolution is ultimately the most important issue. Grid refinement

is, however, computationally very expensive. Various types of grids have been

used by previous investigators, ranging from adaptive unstructured to overset

structured to a combination of these. In recent years, overset structured grids

seem to be making progress in tackling this problem.

While a few researchers suggest that at least some new mathematical ideas

similar to that for the proper treatment of shocks is required, the results from

this work reinforces the belief that all or most of the ingredients for this problem

are already in place. The hurdle lies in the implementation of a seemingly

simple vortex tracking methodology, which is depicted in Fig. 1.2 where specially

constructed high core-resolution grids are used in an attempt to capture the tip

vortices.

One of the objectives of this thesis is to compute, with unprecedented accu-

5



Figure 1.2: Helical vortex-tracking grids.

racy, economy, and from first principles, the properties of the vortices and their

interactions using overset vortex tracking grids. The two pictures in Fig. 1.1

clearly depict the visualization of the desired flow solution.

1.3 Previous Work

1.3.1 Overset Grids Connectivity

The first paper on the methodology of overset grids most widely cited appeared

in 1983 was published by Steger et al. [2] at NASA, for computations in aero-

dynamics, although the general idea most likely arose many years before. It has

since been applied to different fields outside of aerospace such as biological flow,

hydrodynamics, geodynamics [3], droplet dynamics [4], oceanic flow [5], etc. The

6
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Figure 1.3: Overset connectivity in moving grids.

usage of overset connectivity is particularly important in problems with moving

grids, such as the simple unsteady 2D airfoil vortex interaction in Fig. 1.3

There are likely many in house or commercial codes that have some limited

capability in establishing overset grids connectivity to various degree of sophisti-

cation and geometry complexity. In this section, only those existing algorithms

and codes that are more general in their ability to handle geometry with some

degree of arbitrariness (at least in intention), have dedicated publications on

the method employed and have been reasonably widely used and tested will be

briefly reviewed. In recent years, existing connectivity algorithms are gradually

maturing to the point at which further improvements are likely to be only in-

cremental. The complexity of the algorithm is probably the last remaining area

that needs significant improvement.

The most widely used overset grids connectivity code is probably PEGASUS

[6], especially Version 4. The amount of user input required in this version is

rather large. The latest Version 5 has been completely rewritten from scratch,

with the main objective of automation and lower expertise requirement for the
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user. It has evolved from the first connectivity code in the early eighties. PE-

GASUS has always been a stand-alone code and not specifically associated with

any solver, but is extensively used with OVERFLOW. It has been used to study

some very complex geometry such as the Boeing 777 in a landing configuration.

Despite the latest effort, however, it is still relatively slow and requires a lot of

user input. It is thus not suitable for problems with moving grids that require

connectivity recalculation every time step. PEGASUS employs the hole map

method (as explained in Chapter 3) as its hole cutting technique. This method

is very memory intensive especially for 3D problems.

DCF3D [7] is another NASA code that is primarily associated with OverFlow-

D although it can also be stand-alone. It was designed from the beginning to be

used for moving grids, which is why it has to be fast. Like PEGASUS, DCF3D is

also widely supported. The older version uses basic analytic shapes to cut holes.

The latest version, however, uses an innovative combination of hole map and ray

casting techniques, called object X-ray, to significantly improve their weaknesses

and combine their strengths. This technique is likely the most advanced among

existing methods.

BEGGAR [8] is an Air Force code developed at Eglin Air Force Base specifi-

cally for store separation problems, although theoretically it can also solve other

external aerodynamics problems. These are inherently unsteady problems with

moving grids. This code is somewhat slower than DCF3D and has a limited user

base because it was designed from the beginning for store separation. It is also a

monolithic code and is integrated with a flow solver. For hole cutting, it employs

the ‘mark and fill’ technique which, in different versions, is used in several other

codes as well.
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Another code that is mostly used for non-aerospace applications is Overture

[9], which was developed at Los Alamos and later at CASC of Lawrence Liver-

more. It was evolved from an earlier work by Chesshire and Henshaw [10], which

was published in 1990. It has been used for problems like internal combustion

engines, trucks, submarines, some fundamental flow problems, etc. Overture,

unlike other codes, is written in C++ using object oriented methodology. It is

also capable of solving moving body problems. It is, however, not very widely

distributed. The hole cutting technique used is a variant of the ‘mark and fill’

for BEGGAR.

While the four codes mentioned above are Government supported, FAS-

TRAN [11] is a commercial software developed at CFDRC. Its hole cutting

technique is yet another variant of ‘mark and fill’. Although it was used in [11]

for a 2D store separation problem, the example showed the code is barely fast

enough for a fast moving body problem. Its suggested remedy was a recalculation

every few time steps. This is surely not acceptable for a rotorcraft problem.

Xcog (2D) [12] and Chalmesh (3D) [13] were developed in Sweden in an

academic environment as a stand-alone code. They have been used in hydrody-

namics for propeller and ship design. The connectivity problem analysis seems

to be given careful consideration. Moving body problems, however, were not

demonstrated. Again, holes are cut with a variant of a two-step ‘mark and fill’

technique.

DiRTLib [14] and SUGGAR [15] are more general codes that can handle

unstructured grids with any generalized cells. It also differs from the other

codes in that it uses wall distance to grid points as part of the hole cutting tool.

Distances, however, are quite costly to calculate especially because they may not
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always be required by the solver. This code is not yet widely distributed because

it is relatively new. It is nevertheless quickly gaining acceptance.

Some of the main features of these codes at this writing are summarized in

Table 1.1. The general logic of the algorithm behind each of the above existing

codes is similar although their implementations in practice are very different. It

primarily concerns the identification of those grid points that are inside multiple

bodies of arbitrary shape and size. An algorithm of this nature is inherently very

complex and error prone. The new approach given in this thesis completely does

away with this concept. Another problem with the existing approach, besides its

significant complexity, is that those points that are inside refinement grids (such

as vortex grids in this work) need to be identified as well. This latter group of

points are either ignored or treated separately. This problem is solved seamlessly

in the approach given in this thesis with no distinction between the two groups.

1.3.2 Rotorcraft Vortical Flow

True high-fidelity rotorcraft vortex capturing and tracking to a large wake age

and the subsequent blade or airframe-vortex interaction in CFD using Euler/Navier−

Stokes equations alone (without external wake models, vorticity confinement or

excessive expense) is still evading researchers. Numerous studies and attempts

have been made to achieve, at least partially, this objective in the past two

decades. Most of these are first targeted at the hovering rotor, because it is the

most fundamental of all rotorcraft vortex interaction problems. It is also the

only one that can take advantage of the axisymmetric nature of the flow, and

thus tremendously reduces the problem size of a multi-bladed rotor to a single

blade with a periodic boundary condition. This smaller problem size allowed
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Code name Organization Method Comments Widely

used?

PEGASUS 5 NASA original, Hole slow, not for moving yes

N. Suhs map grids, tested with

large problems

DCF3D NASA Ames, Object Fast, widely used yes

R. Meakin X-ray with OverFlow-D,

significant user-input

BEGGAR Air Force Eglin Direct large code, for store no

R. Maple, cut separation, reported

D. Belk unreliability

OVERTURE Lawrence Liver. Direct C++ for non- no

W. Henshaw cut aerospace application

DirtLib/ U. of Alabama Octree multi-resol., structured yes

SUGGAR R. Noack /unstruct. grids, serial

FASTRAN CFDRC, Direct not widely no?

Z. J. Wang cut demonstrated

ChalMesh/ Chalmers U. of Direct some similarity with no

Xcog Tech., Sweden, cut OverTure

A. Peterson

Table 1.1: Some main features of existing connectivity codes at this writing.
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researchers to study the problem of vortex capturing and diffusion with the high

performance computers available at the time. The first such study using the

inviscid Euler equations was published by Roberts and Murman [16] in 1985,

while Wake and Sankar [17] provided the first results using the Navier−Stokes

equations in 1989.

After years of improvement to the underlying numerical technique, Wake

and Baeder [18] presented the then most complete results and comparison with

experimental data for such a reduced hovering rotor problem in 1996 using the

TURNS code. This code was first published in Srinivasan and Baeder [19]. More

recently in 2001, Strawn and Djomehri [20] provided a very detailed study (and

comparison with experimental data) of this well-investigated problem for UH-60

rotor concentrating their efforts on, among others, the grid-independence issue.

In addition, Potsdam and Strawn [21] provides a good reference on the half-span

and whole-aircraft V-22 tilt rotor hover problem in which the download and

aerodynamic interaction with the wings were considered and extensively investi-

gated. However, only the usual force-related quantities were presented without

any of the vortex related quantities. Both stationary and rotating isolated rotor

were also studied. These last two works were conducted using NASA’s overset

grids Navier−Stokes flow solver OverFlow-D.

A very detailed study of both fixed and rotary wing tip vortex formation

and evolution was presented by Duraisamy in [1] using a modified version of

the TURNS code. One- and two-bladed hover cases were modeled using a sin-

gle blade with a non-nested vortex grid and a highly refined background grid

respectively. For the two-bladed case, the tip vortex was tracked up to two revo-

lutions. Extensive comparison with experimental data was conducted which was
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generally favorable. This study was also extended to include flow control with

blowing at the blade tip.

Recently, rotor hover calculations have also been conducted outside the United

States. Kang and Kwon [22] at KAIST used solution adaptive mesh refinement in

unstructured grids to study the Caradonna and Tung rotor. In Europe, a hover

study of the BO-105 and model 7A rotors using two numerical codes (FLOWer

and CANARI) and including aeroelastic effects was published in Beaumier et al.

[23]. It also accounts for a laminar-turbulent boundary layer instead of a fully

turbulent one. This study was performed in ONERA and DLR using a more con-

ventional single-grid method. Another paper on model 7A rotor hover problem

was written by Benoit and Jeanfaivre [24] using overset grids similar to [20] in the

framework of the European CHANCE (Complete Helicopter Advanced Numer-

ical Computational Environment) project. Unlike the other studies mentioned

above that use symmetry condition, all the blades in the rotor were modeled

here. The intention of this study was the investigation of meshing strategies for

overset grids and thus no experimental data were shown. Another European

project with a much wider collaboration known as EROS [25] was initiated with

the objective of a common European Euler code for rotorcraft aerodynamics.

Another fundamental problem case in the study of rotorcraft vortex interac-

tion is the unsteady 2D blade vortex interaction (BVI). Rai [26] published one

of the first results for this problem. While the emphasis in the latter half of this

thesis is on general 3D vortex tracking and interaction, this 2D BVI problem

provided a good initial testing ground for the general 3D case.

Many researchers have investigated this problem in the years since. Recently

it was studied using adaptive unstructured grid with 2nd-order accuracy by
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Oh, Kim and Kwon [27], [28]. Results compared well with experiment reported

by Lee and Bershader in [29]. High-resolution results of both the vortex and

the acoustic wave were obtained using adaptive cells, but at a cost of 32 cells

across the vortex core. This cost, which is mostly from the unstructured nature,

might be unbearably high for some complicated 3D problems using present-day

computers. This is compared with only four cells used in the present work, and

Tang [48], while having similar rate of vortex diffusion.

Vortex tracking grids are very simple and logical and certainly not entirely

new, though not very common either. They have been used by a group of

researchers [30] to track non-rotating vortices for fixed wing aircraft. In this

paper by Hariharan and Sankar [30], only two overset grids were used − one

wing grid and another stretched vortex grid (not nested). The latter was placed

close to the actual vortex trajectory. This ensures that the grid is not too

skewed relative to the vortex after adaptation (because the grid stations are not

rotated) to ensure orthogonality. A captured vortex distance of about 50 chords

was achieved using a 7th-order ENO scheme.

Spall [31] also used the Euler equations with the more common 2nd-order

scheme to numerically study wing tip vortex preservation. However, grid clus-

tering around the vortex was achieved by using patched grids instead of the more

versatile overset grids. A convection distance of at least 13 chords was achieved.

Helical vortex grids were also used by Egolf et al. [32] to capture vortices from

a 4-bladed rotor. Each of the non-nested grids extends about 80◦ from the tip

trailing edge, ending just before the next blade. Thus no blade vortex interaction

was simulated. Grid points concentrated at the center of the boundaries of

the stretched grids were fanned out to reduce cell aspect ratio there, and so
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increase grid quality. But cells at the corners were significantly skewed as a

result. Nevertheless encouraging results were obtained for the short length of

vortices.

One adaptation technique in overset structured grids that can be used to

track flow features [33] is the Adaptive Spatial Partitioning and Refinement

method developed in Overflow-D. In this method, successive levels of off-body

Cartesian grids are generated, adapted, and refined around flow features, based

on solution error estimation. This technique has all the advantages associated

with simple Cartesian grids. The grids, however, are not necessarily aligned

with the dominant direction of the flow features, and thus can be relatively

skewed with respect to the direction with the largest solution gradient. This

method has been successfully applied to many practical problems containing

shocks. Overflow-D was also used in [20] to capture a hovering rotor wake. The

above-mentioned adaptation technique, however, was not utilized.

Vortex methods are another class of numerical techniques for rotor wake anal-

ysis [34] [35] [36] [37] [38] [39] [40]. They are relatively inexpensive compared to

most CFD methods and have proven to be very useful in predicting vortex posi-

tions, vortex roll-up, load distributions over the blades, and rotor performance.

There is no artificial diffusion and the governing vorticity transport equation is

solved using finite-difference approximations to the space and time derivatives.

Some empiricism is assumed in the initial strength, core size, release location

and diffusion rate of the vortex. The induced velocity field can be reconstructed

from the application of the Biot-Savart law once the position and strength of the

vorticity is computed at each time step. These free vortex methods have proven

to be particularly useful for a broad range of practical problems in rotorcraft
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aerodynamics, aeroelasticity, and acoustics, and are at the heart of nearly all

comprehensive forms of helicopter analyses.

The aircraft platform used for the development of vortex tracking method

in this work is the Quad tilt Rotor (QTR). Some of its background information

and history can be found in Snyder [41], Corrigan et al. [42] and in Vertiflite

[43]. Several authors have conducted numerical studies of the QTR aerodynam-

ics. Most of these concentrate on the fountain flow phenomenon in hover. The

numerical flow field and general behavior of this aircraft was extensively inves-

tigated in [44]. Some of the problems studied are download in hover and low

speed forward flight. The rotors in [44] are modeled as an actuator disk. Sitara-

man and Baeder [45] investigated the fore/aft rotor interaction using coupled

CFD/free wake analysis. Further references on QTR can be found in these two

references.

Despite numerous studies of rotorcraft vortical flow using different techniques

applied to Euler/Navier−Stokes equations as outlined in this section, vortex

preservation and the simulation of their interactions remain a very challenging

task. The vortex tracking technique developed in this thesis provides the latest

tool for an attempt to significantly improve upon existing methods. It automat-

ically tracks the location of the vortices and accordingly positions the helical

grids that are both locally high-resolution and economical.

1.4 Outline of Thesis

The work reported in Chapters 2, 3 and 4 is geared towards the eventual ob-

jective of developing a general vortex tracking methodology. The new concept
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underlying the overset grids connectivity method as given in Chapter 3, how-

ever, is generally applicable to any problem in numerical PDEs with an arbitrary

geometry.

Chapter 2 concentrates on two topics of relevance to overset grids, namely

interpolation and data communication. These two issues directly affect the ac-

curacy and efficiency of the flow solver. Their underlying mathematics and

technology are not new, and mostly developed somewhere else. Some of the

viewpoints and details, however, seem to be new and unavailable elsewhere, e.g.,

exact coordinate transformation, the curse of dimensionality in high-order inter-

polation, one-sided vs. two-sided data communication for interpolants in overset

grids, etc. This chapter concisely summarizes some of the important results

relevant to the objective of this work.

In Chapter 3, the exposition of a new and surprisingly simple approach to

the central problem of overset grids connectivity in numerical PDE with complex

geometry and/or moving components is undertaken. This approach is completely

general and is fundamentally different from existing methods that are publicly

available. It has several prominent advantages over the existing technology.

Of these, the simplicity of its concept is considered the most significant. This

is especially true considering the logical complexity of existing codes and high

level of experience and knowledge (depending on which code) expected of the

users.

One manifestation of the extreme simplicity of this concept is the total trans-

parency of this approach to the user, and the fact that the primary operation

is the comparison of two numbers (the cell sizes). No additional information is

required as input besides those needed by the solver. This is in stark contrast
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to existing codes.

It is not within the scope of this thesis to discuss at length the different im-

plementation methods and strategies employed in existing codes. They would

be briefly discussed as appropriate in serving to more clearly explain and differ-

entiate the new approach outlined here.

In Chapter 4, attention is turned to the problem of high fidelity vortex track-

ing. The main theme here is the use of overset vortex tracking grids to capture

the tip vortices of rotorcraft (QTR is considered as a test case) blades with very

high precision and their interactions with other aircraft components. These are

flexible, adaptive, long and slender nested helical grids that completely embed

the vortex trajectory. They have very high resolution at the inner core, and yet

contain only a small number of points.
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Chapter 2

Computational Methodology

This chapter concentrates on two topics that are especially important to overset

grids technology: interpolation and data communication in parallel computation.

They address respectively the issues of accuracy and efficiency of the flow solver.

For other numerical techniques such as unstructured grids, the former topic is

mostly irrelevant while the latter is significant in a less complicated sense. Next

section briefly reviews the solver employed here before embarking on these issues.

2.1 Flow Solver

The underlying flow equations in the solver used throughout this work are derived

from the three conservation laws for mass, momentum and energy. This vector

equation is generally expressed as

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2.1)

where Q is the conservative variable vector {ρ, ρV, ǫ} of mass, momentum and

energy density and F,G,H are the inviscid flux vectors, e.g., F = {ρu, ρu2 +

p, ρv, ρw, (ǫ+ p)u}. It is extensively discussed in the classic text of Hirsch [47].
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The solver was developed in house at University of Maryland for the purpose of

solving rotorcraft CFD problems although it is general enough for other com-

pressible flow applications as well.

This code is generally third-order accurate in space, time as well as inter-

grid interpolation. The vortex-preserving scheme for the spatial discretization is

similar to those employed by Tang [48]. In this scheme, the 4th-order difference

scheme is employed for the first two derivatives of a 3rd-order piecewise quadratic

variable extrapolation. Without limiting, this results in a vortex diffusion of

about 10% after a free convection distance of 10 chords for a Cartesian grid

with four cells across the vortex core. For limiting, the BAP (biased averaging

procedure) proposed in [49] is employed for the grids to suppress any possible

oscillation around shocks at the blade tips. This limiter is not strictly TVD

(total variation diminishing) and thus still produces some small oscillations. It

might also be very computationally expensive if the biased averaging functions

chosen are trigonometric, e.g., tangent or hyperbolic tangent.

The time integration scheme employs explicit 3-stage TVD Runge−Kutta

(RK) scheme as given in Shu and Osher [50] for non-body-conforming grids.

It consists of three stages of Euler forward difference and is a third-order RK

method with the optimal CFL. It is a low storage scheme compared with some

classical RK methods because it does not need to store any intermediate re-

sults. The first-order Euler implicit time integration scheme is used for all body-

conforming grids.

20



2.2 Interpolation in Overset Grids

In the many diverse applications of computational science in which discrete data

are common, such as solution reconstruction in CFD, solution communication

between overset grids, experimental data interpolation (e.g., equation of state

data), computational graphics/geometry etc., the following problem is frequently

encountered, which has been stated in a simple one-dimensional form:

Given a set of discrete data {fi} that represent samples of some unknown

function on the real line (equally spaced or not), estimate the set of slopes {f ′

i} at

the same points subject to some conditions (monotonicity-preserving, convexity,

order of accuracy etc.) on the final results.

Both {fi} and {f ′

i} are then used to perform subsequent computations. Note

that without the stipulated monotonicity-preserving condition, the problem is

easily solved with conventional finite difference or spline methods (in fact, the

slope estimated from these methods is, in one type of interpolation as discussed

later, the first of a two-step procedure). This is sufficient when the data are

smooth. When the data gradient is large, as is often encountered in all the ap-

plications mentioned above, these simple slope estimates are no longer accurate

and create spurious oscillations in the final results, whatever the application.

Monotonicity-preserving conditions are then required to restore physical reality

and sometimes prevent negative quantities from appearing. They can take the

form of constraints on the slopes, slopes that are non-oscillatory a priori (i.e.,

limiter functions), increasing the degree of the interpolating polynomial, adding

new mesh points etc.

The problem statement above is simple and clear. It is also such an important

subject that this section is allocated to summarize some of the important results
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relevant to CFD of hyperbolic conservation laws and overset grids. The emphasis

here is intentionally heavy on fundamentals and less on the seemingly countless

number of methods for interpolation. Naturally, there are many different ways

to estimate f ′

i , each producing different final results. This gives rise to a rich

research area on a seemingly simple subject that has attracted some of the best

minds in the field and resulted in many research papers over the years. It is also

important to note that this subject involves just discrete mathematical analysis

and contains no physics.

In the context of CFD using overset structured grids, two applications of this

subject are of interest here: i) piecewise solution reconstruction within a grid cell,

and ii) solution interpolation from another grid. While reconstruction, which is

fundamentally an extrapolation, is one of two steps for flux evaluation in the

flow solver, interpolation is used in overset method for solution communications

among grids. Both determine the spatial order of accuracy of the computation

and are required to yield results that are oscillation free for monotone but dis-

continuous data. A large literature exists for the reconstruction process ([51],

[52], [53], [54]) and will not be further discussed here. This section will concen-

trate on high-order (cubic) interpolation of solutions between overset grids. This

is still not very common among existing overset-grid CFD codes but is essential

for certain problems that need interpolations from large gradient region (such as

2D BVI problems in the presence of a shock as discussed in Chapter 4). How-

ever, methods developed for interpolation can also be applied to reconstruction

in conservation laws and vice versa. Practical differences between them will be

mentioned at the end of this section after monotonicity constraint is discussed.
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2.2.1 Preliminaries

A straightforward but essential definition of monotone data is needed for the

following discussion and for the high-order extensions of the monotonicity con-

straints: {fi} are said to be locally monotone in the interval [xi, xi+1] if the data

are increasing or decreasing at the four points i − 1, i, i + 1 and i + 2, i.e., if

fi−1 ≤ fi ≤ fi+1 ≤ fi+2 or fi−1 ≥ fi ≥ fi+1 ≥ fi+2.

By considering all possible relative positions of the four points, we can classify

the data at these points, for the purpose of monotonicity analysis, into three

types, shown in Fig. 2.1a, as i) locally monotone data, ii) local extremum, and

iii) oscillating data which we assume here is either spurious or due to insufficient

mesh resolution. This last type will not be further considered here. Type i)

and ii) can be further divided into one with and without an inflection point as

shown in Fig. 2.1b. Oscillatory data of type iii) always have an inflection point.

The presence or absence of an inflection point is an important consideration in

monotonicity constraint such as MP5 [58] and M3 (as detailed later).

For the purpose of discrete analysis, a general function can be said to consist

of regions with 3 different features: monotone regions, extrema and disconti-

nuities. A discontinuity, however, cannot be represented unambiguously using

discrete data, i.e., it is impossible to classify a data set as having a discontinuity,

but only as a data set with large gradient. Having noted that, we show in Fig.

2.2 that it takes at least five data points to be able to distinguish between an

extremum and a possible discontinuity. The set of 3 data points with circles in

both figures have the same values. Yet they can contain either a discontinuity

or an extremum depending on the neighboring values. It is important to be

able to detect the latter because the continuation property inherent in Taylor’s
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extremum oscillationmonotone

1 2 301 2 30 1 2 301 2 30

with inflection without inflection with inflection without inflection

a) 3 types of data

b) 2 types of monotone and extremum data

Figure 2.1: Data classification for monotonicity analysis purpose.

expansion, and thus finite differences, is broken across a discontinuity.

Two concepts are central in the discussion of monotonicity constraints for

the estimated slope f ′

i : median and minmod. The median of three numbers,

median(x, y, z), is the one that lies between the other two. The minmod of two

numbers minmod(x, y) is the median of x, y and 0. Effectively, minmod returns

the smaller of the two numbers in absolute term if both have the same sign

and returns zero otherwise. For programming purposes, they can be expressed

mathematically as

minmod(x, y) =
1

2
[sgn(x) + sgn(y)]min(|x|, |y|)

median(x, y, z) = x+minmod(y − x, z − x)

= y +minmod(x− y, z − y)

We make a few observations concerning the properties of a median. First,

the median lies in the interval defined by any two of the three arguments. This

is quite obvious. Second, the constraining of a number to lie within an interval
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1 2 30 41 2 30 4

extremumdiscontinuity

Figure 2.2: At least 5 points are required to distinguish between an extremum

and a possible discontinuity.

can be enforced by using the median function. Third, if any two of the three

arguments of a median, say x and y, are accurate to a certain order, then the

median is also accurate to the same order because of the first property above

and the fact that any value between x and y has the same order of accuracy as x

and y. Minmod, on the other hand, arises naturally in monotonicity constraint

to be discussed later.

It is also observed here that while minmod(x, y) is a stable function, maxmod

(x, y), similar to minmod except for the change from min(|x|, |y|) to max(|x|, |y|),

is unstable (like the popular ENO scheme [53] in CFD) since there is a large

change of returned value when x approaches 0− and y is positive fixed or when

x approaches 0+ and y is negative fixed. In practice, however, x and y usually

represent two neighboring slopes, and a discontinuity is likely the reason when

this happens. A limiter or a constraint, if present, then takes effect to prevent a

large change and returns a stable value. ‘Superbee’ limiter is such an example:

final slope = minmod(maxmod(x, y), 2minmod(x, y))
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The final slope is stabilized by the term 2minmod(x, y).

2.2.2 Piecewise Cubic Hermite Interpolation

For interpolation at a point between i and i+ 1, the simplest and most natural

interpolant that utilizes both fi and f ′

i is the piecewise cubic Hermite interpola-

tion, which can be written as a polynomial

f(x) = c0 + c1x+ c2x
2 + c3x

3 (2.2)

where

0 < x < ∆x(= xi+1 − xi)

cn = cn(fi, f
′

i , fi+1, f
′

i+1)

c0 = fi, c2 =
3si+ 1

2

− 2f ′

i − f ′

i+1

∆x

c1 = f ′

i , c3 =
f ′

i + f ′

i+1 − 2si+ 1

2

∆x2

si+ 1

2

=
fi+1 − fi

∆x
= linear slope

It can also be rearranged into a different form:

f(x) = fiH1(x) + fi+1H2(x) + f ′

iH3(x) + f ′

i+1H4(x) (2.3)

which is commonly used and more suitable for coding purpose, especially for

bi- and tricubic interpolant. In contrast, Lagrange interpolation refers to any

method that utilizes only fi without f ′

i . The second-order and C0 smooth linear

interpolation that is common among most existing overset-grid CFD codes is the

simplest example.

The cubic Hermite interpolant in (2.2) has a continuous first derivative, i.e.,

it is C1 smooth, because of the f ′

i . It may be C2 depending on how {f ′

i} are
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obtained. It is nth-order accurate (n ≤4), if f ′

i and f ′

i+1 are (n-1)th-order. Thus,

the original slope estimate {f ′

i} does not need to be more accurate than third-

order, since this would produce a maximum of 4th-order interpolant. However, a

third-order finite difference stencil is non-symmetric. In order to maintain sym-

metry, the 4th-order central difference with a 5-point stencil is usually employed.

Since the stencil for the computation of certain types of constraint intervals (to

be discussed later) is also 5-point, this does not enlarge the stencil.

Near a discontinuity, however, the accurate slope above has the wrong sign

and becomes grossly inaccurate (see Fig. 2.3). This happens because this 4th-

order slope of a quadric actually consists of two linear slopes, one for the 3-point

central and another for the 5-point central, with weights of 4

3
and −1

3
respectively,

i.e.,

f ′(xi) =
fi−2 − 8fi−1 + 8fi+1 − fi+2

12
=

4

3

fi+1 − fi−1

2∆x
−

1

3

fi+2 − fi−2

4∆x

It is the latter linear slope crossing a discontinuity that gives an unrealistically

large negative contribution that results in the wrong sign. The problem is serious

because it indicates the data is decreasing instead of increasing or vice versa.

Incidentally, it does not arise if both linear slopes cross the discontinuity, i.e.,

if the discontinuity is between i-1 and i+1. This, however, would still result in

a very inaccurate slope. The problem of having the wrong sign can be avoided

by requiring the 4th-order slope to lie within a certain interval using the median

function. This would be discussed in the next subsection.

Localness in the determination of f ′

i and thus the interpolant (2.2) is impor-

tant when storage requirements are critical, e.g., on parallel computers with local

memory, in multidimensional problem or very large data sets. In contrast, the

complete spline interpolant, using f ′

i that makes (2.2) C2 smooth, is not local.
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i−1 i i+1i−2 i+2

Figure 2.3: Slope of a quadric with wrong sign at point i near a discontinuity.

For interpolations in CFD, localness is favored at the expense of C2 property,

which is not required by Euler’s equation.

2.2.3 Monotonicity and Loss of Accuracy at Extrema

The interpolant (2.2) may not be monotone between i and i+ 1 even for locally

monotone data. To preserve monotonicity of the data, f ′

i and f ′

i+1 must be

constrained to lie in the interval

f ′

i , f
′

i+1 ∈ [0, 3si+ 1

2

] (2.4)

where si+ 1

2

is given in Eq. (2.2). This is equivalent to f ′

i ∈ [0, 3si] where

si = minmod(si− 1

2

, si+ 1

2

). The interval [0, 3si] expressed using minmod is the

intersection of the two intervals [0, 3si− 1

2

] and [0, 3si+ 1

2

]. Minmod thus arises

naturally from the constraint of monotonicity interval. This sufficient condition

was first observed by de Boor and Swartz [55], and is a simplified version, or a

subset, of the more accurate version shown as the shaded region in Fig. 2.4. This

region is the necessary and sufficient condition for monotonicity preservation. It

was independently found by Fritsch and Carlson [56] and Ferguson and Miller
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Figure 2.4: Necessary and sufficient condition for monotonicity preservation.

[57]. However, the use of this full region, instead of the simpler square subset,

makes the interpolant non-local because of the elliptical region outside the square

and thus not easily coded into the algorithm.

The monotonicity preserving (or MP) interval given in Eq. (2.4) employs the

minmod function, which returns zero in the case of local extremum where the

two linear slopes are of opposite sign. This is necessary to produce a monotone

interpolant across the extremum. The problem is, of course, that the data at

local extremum are non-monotone to begin with. The insistence on monotonicity

of the interpolant for non-monotone data is inconsistent and has the effect of

“clipping” or flattening the peak (of a vortex for example) as shown in Fig. 2.5.

It degenerates f ′

i there to first-order and the interpolant accuracy to second-order

(same as linear interpolation). This results in a globally first-order L∞ norm of

the slope.

This phenomenon is especially undesirable in the simulation of vortical flow

when a vortex convects into another grid and interpolation near the peak is

unavoidable. It causes significant numerical diffusion of the vortex. Deactivating

the constraint at the extremum is a possible solution but is unstable in the sense

that it might cause a sudden change in the slope. Thus we have a situation in
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Figure 2.5: Clipping of an extremum due to monotonicity preservation.

which preventing oscillations near a discontinuity creates an accuracy problem

near an extremum. This dilemma is also present in a solution reconstruction.

2.2.4 M3 Interpolation

The above problem of conflicting requirements at discontinuities and extrema is

caused by a very small or zero si acting as one of the two bounds in [0, 3si] of

(2.4). It can be overcome by enlarging this small MP interval near an extremum.

This allows more “room” in the interval for an accurate slope. Several methods

are available to restore this accuracy. Here the ‘M3’ method proposed by Huynh

in [59] is chosen for its simplicity. Like the UNO scheme in [54], it is constructed

from consideration of the straight line and the two parabolas (through points

i − 1, i, i + 1 and i, i + 1, i + 2 respectively) between i and i + 1 as depicted in

Fig. 2.6 (dashed lines). The median of these three curves is defined as the curve

that lies between the other two and shown as a solid line in Fig. 2.6. It is always

the straight line for data with an inflection point (Fig. 2.1b). Equivalently, the

median curve can be used to identify if the data has an inflection point.

The properties of this median curve is worth reviewing before proceeding.

The most important is the fact that the median is strictly monotone when the
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Figure 2.6: Definition of the median (solid line) of two parabolas and a straight

line between i and i+ 1 as the middle of the three lines.

data are monotone and thus its slope always lies inside the MP interval of Eq.

(2.4). In contrast, neither of the two parabolas from which the median is con-

structed is necessarily so. The straight line is, of course, always monotone. In

fact, none of the two first-order slopes (si− 1

2

and si+ 1

2

) and the three second-

order slopes for point i always result in a monotone interpolant. This fact can

be proven as follows. The equation of the median and its first derivative can be

expressed as

pi+θ(x) = fi + si+ 1

2

(x− xi) + di+θ(x− xi)(x− xi+1) (2.5)

p′i+θ(x) = si+ 1

2

+ di+θ(2x− xi − xi+1) (2.6)

where θ = 1

2
, xi ≤ x ≤ xi+1 and

di+ 1

2

= minmod(di, di+1)

di =
si+ 1

2

− si− 1

2

xi+1 − xi−1

These same equations also describe the two parabolas when θ = 0, 1 respec-

tively. Considering increasing data only (si+ 1

2

≥ 0) on a non-uniform mesh, the
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maximum value di can attain is di < si+ 1

2

/∆xi+ 1

2

since si− 1

2

≥ 0 for mono-

tone data and xi−1 < xi. Similarly, the minimum value di+1 can attain is

di+1 > −si+ 1

2

/∆xi+ 1

2

since si+ 3

2

≥ 0 for monotone data and xi+2 > xi+1. There-

fore we obtain, from the definition of di+ 1

2

,

−si+ 1

2

∆xi+ 1

2

< di+ 1

2

<
si+ 1

2

∆xi+ 1

2

(2.7)

Multiplying by (2x − xi − xi+1) throughout, one gets a new inequality with a

larger bound

−si+ 1

2

< di+ 1

2

(2x− xi − xi+1) < si+ 1

2

(2.8)

since |2x−xi−xi+1| ≤ ∆xi+ 1

2

. Finally, adding si+ 1

2

to the inequalities to obtain,

using p′
i+ 1

2

(x) from Eq. (2.6)

0 < p′
i+ 1

2

(x) < 2si+ 1

2

(2.9)

which shows the slope is always positive. This implies that pi+ 1

2

(x) is strictly

increasing (thus monotone) and that the MP condition Eq. (2.4), i.e.,

p′
i+ 1

2

(xi), p
′

i+ 1

2

(xi+1) ≤ 3si+ 1

2

(2.10)

is always satisfied. The same derivation for a uniform mesh results in a tighter

bound

1

2
si+ 1

2

< p′
i+ 1

2

(x) <
3

2
si+ 1

2

(2.11)

The slopes of the median curve at i and i+ 1 are then evaluated as f ′

i+ 1

2

(xi)

and f ′

i+ 1

2

(xi+1). These two slopes can be considered as the second order extension

of the first-order slopes si− 1

2

and si+ 1

2

. The minmod of the two resulting slope

values at each point i,

ti = minmod(f ′

i− 1

2

(xi), f
′

i+ 1

2

(xi)) (2.12)
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which can be proven to be O(∆x2) accurate compared with si, is then used to

extend the monotonicity interval Eq. (2.4) to

f ′

i ∈ [0, 3si,
3

2
ti] (2.13)

This extended interval preserves extrema and takes effect only on extrema where

data are supposed to be non-monotone. The factor 3

2
is chosen as the upper

limit in (2.11). These derivatives are then used as the final values for the cubic

interpolant in (2.2). We note here that ti is the final UNO slope first proposed in

the landmark paper by Harten et al. [54] to achieve uniform 2nd-order accuracy.

The above ‘M3’ method is also used for solution reconstruction in [60] after

modification of the coefficients.

2.2.5 Limiter Functions

Methods to compute slopes that satisfy the constraint (2.4) are generally divided

into two types: i) a slope computed first from finite difference and then com-

bined with a constraint (as described in the previous section) and ii) a nonlinear

averaging function (limiter function) of the first-order linear slopes on the left

and right of the point i, si− 1

2

and si+ 1

2

, computed in a one step procedure that

automatically satisfies the constraint. This was first presented in [61] and [62].

It was shown by Hunyh in [59] that there is no linear formula for f ′

i above first-

order that also automatically satisfies (2.4). There are, however, many nonlinear

formulas that do. They are called limiter functions and their properties will be

briefly discussed in this section.

Since a limiter function just averages si− 1

2

and si+ 1

2

and does not use any finite

difference formula, it differs from the finite difference plus constraint method in
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several aspects: i) there is complete freedom in designing a formula for the

slope, giving rise to many new limiters over the years, ii) its order of accuracy is

not immediately obvious, but it is at least first-order and at best second-order

accurate (the necessary condition will be proven shortly), iii) it must possess

certain necessary properties (that do not arise in the finite difference formula)

as given below:

a) From the requirement of unit independence, it must be homogeneous of

degree one, i.e.,

f ′

i(ks, kt) = kf ′

i(s, t)

f ′

i(s/t, 1) = f ′

i(s, t)/t

or

f ′

i(s, t) = tf ′

i(r) = tg(r) (2.14)

where k = 1/t is the unit conversion factor, r = s/t, s = si− 1

2

and t = si+ 1

2

. This

requirement implies that a limiter is really a function of one variable, i.e., ratio

of the two linear slopes, or g(r).

b) f ′

i lies between si− 1

2

and si+ 1

2

, or g(r) ∈ [1, r]. This ensures f ′

i to be at

least first-order and thus the interpolant (2.2) at least second-order accurate.

c) f ′

i is symmetric in s and t:

f ′

i(s, t) = f ′

i(t, s)

tg(r) = sg(1/r)

Thus

g(r) = rg(1/r) (2.15)

The variable 1/r of g implies that g(r) for r > 1 is defined by g(r) for 0 ≤ r ≤ 1

and thus only g(r) in the interval 0 ≤ r ≤ 1 needs to be defined. To examine the
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slope of (2.15) at the symmetric point r = 1, (2.15) is differentiated (assuming

g is C1) to yield

g′(r) = g(1/r) −
1

r
g′(1/r) (2.16)

Substituting r = 1 and since g(1) = 1,

g′(1) =
1

2
(2.17)

While this symmetry property is not absolutely essential nor necessarily true

for the function f , nevertheless, the above analysis shows that it gives rise to

desirable properties.

d) f ′

i satisfies the MP constraint (2.4) or g(r) ∈ [0, 3minmod(1, r)].

Since the best accuracy attainable from the combination of two first-order

slopes is second-order, a limiter function is at best second-order accurate. The

necessary condition to achieve this is shown next. Since the second-order accu-

rate slope of fi is f ′

i = (s+ t)/2 = t(r + 1)/2, or

g2(r) = (r + 1)/2

its derivative g′2(r) is also 1

2
anywhere on 0 ≤ r ≤ 1. For any other limiter

g(r) with the same slope at r = 1, i.e., g′(1) = 1

2
, the order of accuracy of the

difference g(r)− g2(r) is O((1− r)2) at worst (which corresponds to a quadratic

g(r)− g2(r)). Since 1− r = (t− s)/t = O(∆x) or first-order accurate, we obtain

g2(r) − g(r) = O(∆x2)

Thus, g(r) is second-order accurate if and only if g′(1) = 1

2
.

Some of the more well known limiters are given in [59] and will not be further

elaborated here.
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2.2.6 Interpolation Example

An example of interpolation of a specially constructed function will be given in

this section. Fig. 2.7a) depicts a function of the velocity profile of a Scully vortex

model vθ = Γ/2πr · r2/(r2 + r2
c ) with a discontinuity towards the right. Equally

spaced sample points are marked in squares. Here, ∆x =0.025 and rc is set to 0.06

so that the peaks are not on the points. Fig. 2.7b) show the interpolated values

from these samples for four different interpolants. The linear case, although

satisfactory at discontinuity, is inaccurate and monotone at extremum. The

unlimited cubic has the opposite problem, i.e., oscillation at discontinuity. This

is solved by the monotone cubic, which eliminates the oscillation but, like the

linear, introduces a new monotonicity (‘clipping’) problem at the extremum.

Finally, this latter problem is significantly remedied by the M3 cubic without

disturbing the desirable traits at the discontinuity. The 5-point 4th-order finite

difference formula is used as the original f ′

i for the 3 cubics above.

2.2.7 Bicubic Interpolation

Interpolations for multidimensional problems can be calculated by either re-

peating the 1D procedure in every dimension, or extending it to an inherently

multidimensional bi- or tricubic interpolation. The latter is generally preferred

for economic reason if the stencil size is large. The essence in its application to

overset grids is summarized in this subsection.

A bi- or tricubic interpolant [63] [64] contains 4ndim terms and, since it is

inherently multidimensional, contains many cross terms. The definition of func-

tion monotonicity is less clear and more complicated. In addition, the cross

derivatives also need to be constrained. It is based on another constraint for
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Figure 2.7: An interpolation example using four different interpolants (one linear

and three cubics).
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the cubic function - that f does not change sign on [fi,fi+1]. For an increasing

function, we have

−
3fi

∆x
≤ f ′

i and f ′

i+1 ≤
3fi+1

∆x

The proof is given in Carlson and Fritsch [63]. If f above is replaced by another

cubic fy(x), the two inequalities become a constraint for fxy.

This solver employs piecewise Hermite cubic monotone interpolation for both

coordinates and field solutions. This is shown to be important in chapter 4

when interpolating from a high gradient region. Besides accuracy, smoothness

of coordinate transformation and consistency with grid metrics in the flow solver

are two important reasons for using Hermite cubic rather than linear interpolant.

The coordinate transformation of a curvilinear grid can be exactly and ana-

lytically defined when its primitive metrics and cross derivatives are taken into

consideration. This piecewise analytical expression is precisely the piecewise

Hermite tricubic interpolant and is used in the code for coordinate calculations

everywhere. Contrary to its name, this interpolant produces exact (not approx-

imate) and consistent coordinates. It results in a C1 smooth transformation

function and is the lowest order interpolant consistent with the grid metrics

used by the solver. The more popular decoupled cubic interpolant is free of

cross derivatives but is not C1. The commonly used trilinear interpolation is not

consistent because it ignores the metrics and, furthermore, is only C0 continuous.

Cubic interpolation has an added benefit of allowing a larger spacing amplifi-

cation factor between two interpolated grids (usually about 2:1 ratio). Its biggest

drawback is the tremendous cost disadvantage associated with an enlarged sten-

cil. This will be further elaborated in the section “Curse of Dimensionality”

later.
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For the interpolation of 2D coordinates in overset grids, the bicubic can be

functionally written as

x(ξ, η) = fn(xi,j,xξi,j,xηi,j ,xξηi,j; ξ, η) (2.18)

where 0 < ξ, η < 1, i, j represents all the corner points of a cell, xi,j are the grid

coordinates, xξi,j,xηi,j are the primitive grid metrics and xξηi,j is a cross deriva-

tive defined to nullify the metric invariants in the source term of the transformed

Euler equations, i.e. (xη)ξ − (xξ)η = 0. These are also all the grid related quan-

tities that appear in the flow solver (together with the metrics on the mid-point

of each cell edge for the Riemann solver). The bicubic is thus the lowest order

coordinate transformation consistent with the solver if the same grid metrics in

the transformed flow equation are used in (2.18). The commonly used bilinear

function is not consistent because it ignores the metrics. In this work, inter-

polations of solution and coordinates employ bi- or tricubic interpolant. The

solver, however, provides another option to use cubic interpolant for boundary

conditions.

2.2.8 Reconstruction vs. Interpolation

We are now ready to note some of the practical differences between reconstruc-

tion and interpolation in CFD as mentioned in a previous section. Reconstruc-

tion, or extrapolation, is usually required for all data points whereas interpola-

tion is usually needed only for a few selected points away from the boundary.

This subtle difference discourages the use of non-local methods such as compact

scheme or spline methods to compute the slopes {f ′

i} for interpolation. Compact

scheme has the advantages of better spectral resolution, smaller stencil for the
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same order of accuracy and smaller or no biased stencil at the boundary. The

fact that these selected interpolation points are away from the boundary also

implies that no special one-sided formulas are needed. Reconstruction, on the

other hand, is required near the boundary.

Another difference is that the use of both fi and f ′

i in reconstruction yields

second-order accurate solution, whereas the same data and slopes would result

in a fourth-order interpolant. That is why linear Lagrange interpolation which

does not use f ′

i and employed in many existing overset grid solvers is sufficient

to match the solver’s second-order accuracy in reconstruction that uses {f ′

i}.

Furthermore, reconstruction in a cell is generally only piecewise continuous

and extends from i− 1

2
to i+ 1

2
while an interpolation is at least globally C0 and

extends from i to i+ 1.

Finally, the coefficient for the monotonicity constraint in (2.4) is 3 (cubic) for

interpolation while it is 2 (quadratic) for reconstruction. This latter coefficient

of 2 is due to the requirement that the reconstructed value from i − 1

2
to i + 1

2

using fi and f ′

i must satisfy fi−1 ≤ f(x) ≤ fi+1.

2.2.9 Curse of Dimensionality in High-Order Interpola-

tion

Consider the increase in computational cost per point per variable when a prob-

lem is extended from 2D to 3D. It is 50% for an interior point, that is, from

two fluxes to three. For an interpolated point, however, it is about n times,

where n is the number of stencil points in each direction (n = 6 for monotone

cubic interpolation). To be exact, the increase is n times for coupled and from

n + 1 to n2 + n + 1 for decoupled interpolation in each direction respectively.
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This is many times larger than the 50% for an interior point. This also comes

in addition to the usual “curse of dimensionality” for total number of points in

a problem extension from 2D to 3D. For a steady state case, this problem can

be partly avoided by turning to high-order only when close to convergence.

The problem can also be partly overcome if the interpolation is coupled in

the three directions, i.e., tricubic. In this case, derivatives can be precalculated

on all donor cells. This saves cost for nearby interpolated points with many

common stencil points. This is not as effective for decoupled interpolation, since

new sets of points are created after each direction.

The number of derivative evaluations for a 3D tricubic and decoupled cubic

interpolation is 43 − 23 = 56 and 2(n2 + n + 1) respectively. It is a variable in

the latter case and is equal to 14, 42 and 86 for 2-, 4- and 6-point stencils. We

note that 32 of the 56 derivatives in the former case are cross derivatives.

In light of the above, it is recommended that a single layer of grid outer

boundary points be interpolated instead of the more commonly used two layers.

This also minimizes the required overlap region besides the high cost problem

mentioned above. Tricubic is preferred to decoupled cubic due to its more ratio-

nal derivation and lower cost for large n. Biased stencils for first interior points

are necessary if 5-point interior stencils are to be maintained. They are, however,

not necessary if a 4th-order compact scheme is used. For hole fringe points, how-

ever, the penalty for using as many layers as possible is usually not as high since

the number of hole points is usually much smaller. In addition, a multi-layer

hole fringe has the advantage of better insulation against contamination from

invalid hole solutions as explained in the last section.
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2.3 Computing Environment

Since the introduction of the Earth Simulator supercomputer in Japan in 2002,

there has been a revival of interest in the architecture of vector processors in the

United States. Unlike traditional vector machines with only a small number of

processors, modern vector architecture is scalable and massively parallel. Besides

being an impressive 5 times faster than its closest competitor in its debut, the

most surprising feature about Earth Simulator is the very high sustained speed

(anywhere from 30% to 88% of peak) achieved in some real world applications.

This is significant compared with the average of about 10% achieved in the

much more popular cluster architecture built with commodity superscalar cache-

based processors. While Japanese vendors have never really abandoned vector

architecture, heavy emphasis on acquisition cost in the U.S. has resulted in the

present situation in which Cray Inc. is the only U.S. vendor still making custom

vector processors. Its latest model is the Cray X1 [65] with its new distributed

shared-memory architecture. Although the initial cost per processor of a Cray

X1 is several times that of a typical cluster, total life cycle cost of both systems

are comparable [66].

Some of the advantages of a vector processor are that it needs less data

dependency checking, lower processor complexity and thus power consumption,

fewer instructions (for arrays) and more processor parallelism compared with a

scalar processor. Performance evaluation of the Cray X1 has been published by

several groups of researchers ([67], [68], [69]).
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2.3.1 Code Migration to the Cray X1

One advance feature of the Cray X1 that is of general importance to the work in

this thesis (and to overset grids technology in particular) is the built-in hardware

support for one-sided communication between processors, or global address space

(GAS, to be elaborated in the next section), with its Co-Array Fortran (CAF)

implementation [70]. CAF is a relatively new parallel Fortran first proposed by

Prof. Numrich [71] with a small language extension using co-arrays to facilitate

data passing in a parallel code. This language feature is slated to become part of

the next Fortran standard. CAF gives the Cray X1 a significant advantage over

other massively parallel systems, as its compiler is not generally available. A

CAF compiler for distributed memory architecture in clusters is still in its early

stage and is even less generally available (see [72] and the references therein).

Parallelization on the Cray X1 is performed in a hierarchical manner by the

compiler and the programmer. At the lowest level is vectorization. This is per-

formed by the compiler on vectorizable loops (such as the 1D loops in the modi-

fied subroutines of the Riemann solver, variable extrapolation, solution update,

etc.). Data are fed into the two vector pipelines in each processor. Frequently

used hard-to-vectorize loops (such as the tridiagonal solver) impose significant

performance penalties on the code. The next level up is multi-streaming. This

is optional and activated/deactivated through the compiler command. This op-

tion performs limited parallelization and distributes every 1D loop in a structured

grid to each of four processors which together comprise a multi-streaming proces-

sor (MSP). The highest level of the hierarchy is inter-processor communication

(using models like MPI, CAF, OpenMP, etc.) and is the responsibility of the pro-

grammer. This includes communication across the 4 MSPs in a node, between
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nodes in a cabinet and between cabinets, with increasing physical distance.

Migration of a serial scientific code to a parallel-vector machine requires some

modification for optimal performance. This involves a reassessment of the code

for both single-processor and parallel (or communication) performance.

2.3.2 Single Processor Optimization

Single processor optimization for Cray X1 primarily implies vectorization of fre-

quently used loops. Certain existing numerical schemes and functions are inher-

ently non-vectorizable and thus perform poorly on a Cray X1 processor. These

include Gauss-Seidel (GS)-like implicit time integration, alternating indexing in

MultiGrid, almost the entire process of overset grids connectivity, etc. Vector-

ization of other segments of a structured-grid CFD code oftentimes increases

the length of the code because of the need for the creation of more vectors (or

arrays) and loop fission, or breaking up of a loop into several smaller ones and

storing temporary variables in arrays. This is the case in the Riemann solver

and the solution updating subroutines.

As an example of the performance penalty for unvectorized code, approximate

solution of a 1D block tridiagonal system using LUSGS implicit time integration

scheme is about half as costly as a 1D inviscid flux evaluation in a superscalar

processor. On the scalar unit of a Cray X1 processor, this figure skyrockets

to about 200%. This penalty is similar for the solution of a scalar tridiagonal

system for calculating derivatives using compact schemes. One way to minimize

this is to convert the system into a vector tridiagonal system. Initial evaluation

of the (unmodified) connectivity code as given in this thesis on a Cray X1 also

confirms a severe penalty of the order of >100%.
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2.3.3 Processor Communication

As the number of processors and/or overset grids increases in a computation, in-

terpolation of boundary values become increasingly dominant in the overall CPU

time. While the former scenario necessitates more communication between pro-

cessors, the latter increases the number of interpolated points. Interpolations

may require solutions that reside in remote memory, and their access can be ex-

pensive due to the required communication overhead and distance the messages

need to travel. Thus the parallelization technique and its relation to system

architecture can become very important in efficiency optimization. This section

discusses some significant communication issues of particular relevance to overset

grids.

In the context of numerical PDE, parallelization can be implemented in two

ways, closely corresponding to the two methods of processor communication,

i.e., i) one-sided or ii) two-sided. These two methods give rise to very different

codes, programming efficiency and communication efficiency. Whereas the latter

is commonly implemented with the industry standard MPI library, the former is

relatively new and has important advantages over MPI. Its implementation, such

as that in CAF, is based not on library subroutines but on a simple language

extension to arrays called co-array. The most significant difference between these

two methods is that two-sided communication requires coordination, or hand-

shaking, with the remote processor in order to establish a data communication

channel while the other does not. This mode of communication is invoked by

a send and a receive pair of subroutine calls from the two processors. In other

words, remote data access in one-sided communication does not involve the re-

mote processor, at least in concept. In a Cray X1, this is supported in hardware
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with its global memory address space. This difference in concept has especially

important implications for overset grids methodology.

With the above in mind, it is instructive to recognize that two types of data

communication scenarios are frequently encountered in the parallel execution

of numerical PDE: a) at the common boundaries between any two neighboring

subdomains (assigned to two different processors) of a decomposed structured or

unstructured grid where an extra layer of cells are duplicated for holding received

data, and b) at the outer boundaries and hole fringes of overset (overlapping)

grids where interpolations are required for the supply of boundary conditions.

Both type a) and b) can use either one-sided or two-sided communication meth-

ods mentioned above. It is also possible to have both types of communication

scenarios in an overset grids CFD code in which the decomposed subdomains

of some grids in a) are distributed among the processors just like other inde-

pendent grids of the mesh in b). But the following discussion is restricted to

communication problems in type b) only.

While both the size of the passed message and the identity of the commu-

nicating processors are known a priori in the former type, neither of these is

generally known in the latter. In addition, these two unknowns in type b) may

vary in the course of the computation for grids with relative motion. A conse-

quence of this is that two-sided communication protocol is not, for programming

purposes, as convenient and natural as one-sided since no processor would have

any knowledge when to expect a data request, if there is any at all, from any

other processor. In other words, a requesting processor can not simply call a

‘receive’ subroutine whenever it needs to access remote data because the remote

processor does not know when this might happen. While it is, in principle, possi-
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ble to set up the code to call a probing subroutine to check for any such request

after a preset period of time, this is impractical and time consuming at best.

None of these is a problem for type a) since everything about the data exchange

is known and remains constant during computation.

2.3.3.1 Two-sided Communication in Overset Grids

For the data passing scenario in overset grids of (type b above), the usual method

to access remote data in a two-sided communication is to pass one very long mes-

sage between any processor pair in a bulk communication once and only once

at the end of every time step instead of many short messages each for every

interpolated boundary point whenever it is needed. Because of this, every pro-

cessor must first calculate and gather the local data (interpolated solutions from

all donor cells that reside locally) that it owns and required by all other pro-

cessors. It must then store them in an array Qsend(:,ndonor,nproc), where

nproc indicates the receiving processor ID and ndonor counts local donor cells

destined for nproc. The information required in the gather operation of this step,

iBndPtDonor(:,nbndpt,ngrid) (and iHolePtDonor(:,nholept,ngrid)) where

nbndpt and nholept count receiver points in grid ngrid, is obtained from the

output of the connectivity subroutine (see Chapter 3). Once all the data are

prepared, a synchronization barrier in the code is executed to ensure all pro-

cessors have finished the interior computations and ready to receive boundary

values before communications are initiated. Data received are first stored in a

separate array Qrecv(:,ndonor,nproc), where nproc is the sending processor

ID, and then scattered, or distributed, to their respective receiver points.

Solution for the next time step can begin immediately in any processor as
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soon as its scatter operation is complete without another synchronization barrier

since no more local data are needed by any other processor. This is an advantage

compared with one-sided communication, and a result of the fact that interpo-

lations are calculated remotely in the processor of the donor grid and only the

interpolated solutions are passed. It enables combined load balancing of the

solver and the interpolation / communication steps.

The difficulty with this method lies in the fact that all the remote inter-

polated data required by the local grids in any processor are possibly scat-

tered around in multiple non-contiguous blocks in different processors. In other

words, Qrecv(:,ndonor,nproc) is not stored in the same order as the orig-

inal iBndPtDonor(:,nbndpt,ngrid). This requires additional book-keeping,

receiver point- and donor cell-counting, new arrays (with varying memory size

for problems with moving grids) and most importantly, complex coding logic.

Thus the implementation of this gather/scatter operation and optimization in

the code can be very lengthy. The resulting code is also much less readable and

understandable. In short, the different order of Qrecv() (gather/scatter opera-

tions) and iBndPtDonor() results in extensive code modification because of the

required bulk communication, which in turn is due to the nature of two-sided

communication.

2.3.3.2 One-sided Communication in Overset Grids

One-sided communication as implemented in CAF, in contrast, is free of this dif-

ficulty. It requires very minimal modification to only one statement (besides the

co-array declarations and load balancing subroutine), incorporating a co-array to

the solution array in the body of the serial code where the stencil data is accessed,
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i.e., from Q(nDonGr)%node(:,i,j,k) to Q(nDonGr)[nproc(nDonGr)]%node(:,i,j,k).

There is, however, a trade-off for this programming simplicity. It results in

a lot more data passing between processors and, indirectly, a necessary second

synchronization barrier before the next time step that would increase processor

idle time for any load imbalance in the interpolation / communication step. The

former results from the fact that the data for the entire stencil in the donor

grid (which in this work contains 43=64 points) are passed to the requesting

processor where the interpolant would then be calculated. The interpolant is

not calculated remotely because this would then require the remote processor

to gather the local interpolated data in a different order than the original one

in iBndPtDonor(:,nbndpt,ngrid). In other words, passing only the computed

interpolants instead of the whole stencils would require the remote processor to

go through the same tedious procedure as described above in the ‘two-sided’

subsection.

This problem of a much larger message size seems to affect only overset

grids methodology because of the need to interpolate from a stencil. Unstruc-

tured grids or any domain decomposition methods that do not need interpolation

should be free of this difficulty.

Because the interpolations are calculated locally, interior solver for the next

time step can not begin until all interpolations have been computed. Otherwise

the stencil data for the unfinished interpolations of the previous time step might

be overwritten. This necessitates a second synchronization barrier that prevents

combined load balancing of the solver and the interpolation / communication

steps. The load imbalance of the latter step for linear interpolation and small

number of processors in close proximity may be tolerable. It can, however,
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become very expensive if this is not true. This is especially so for the very costly

cubic interpolation (as explained in the section on Curse of Dimensionality in

this chapter). The built-in hardware support for global address space in Cray

X1 reduces the impact of this penalty.

One can of course choose to adopt the same tedious procedure that the two-

sided model requires but use co-array to facilitate the bulk communication. This

would, however, significantly nullifies the inherent advantage and defeats the

purpose of one-sided model in overset grids.

2.3.3.3 Interim Summary

A brief summary of the pros and cons of one- and two-sided communication

models in their applications to parallel numerical PDE using overset grids as

detailed above is appropriate. The two-sided model is inefficient from the pro-

grammer’s point of view, but it results in a much smaller message size and needs

only one synchronization which in turn enables the combined load balancing of

computation and communication. One-sided model, in contrast, has exactly the

opposite of the above three features.
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Chapter 3

A New Approach to Overset Grids

Connectivity

Numerical simulations of partial differential equations (PDE) for complex geome-

tries, such as those encountered in computational aerodynamics for aerospace or

marine applications, can be approached with any of several types of grids such

as unstructured or overset structured. This chapter is concerned with the latter,

which can be dated back to the 1983 paper by Steger et al. [2].

In this chapter, the inner workings of a fundamentally different approach to

structured grid connectivity in overset method is presented and several related

concepts introduced. This approach is based on a cell comparison process instead

of the traditional hole cutting as an essential ingredient. The final results of

conventional hole cutting is a byproduct of this process and the holes that arise at

the end are both automatically optimum, in a sense to be explained later, and not

affected by any complication or imperfection on the wall surface. Furthermore,

the solver does not need to blank out invalid hole points for solution update

at every time step. The prevention from contamination of the field points is

naturally provided by the mathematical property of hyperbolicity. Neither does
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this approach require any kind of tree data structure to expedite the donor search

process. Its efficient execution relies on the physical proximity and continuity

of the test points (boundary and hole fringe points) and the detection of non-

overlapping grid-pairs. Only simple stencil walking with an approximate but

fast cross and dot product inside/outside test is used. This approach can also be

regarded as a generalized method of cutting holes around both flow refinement

grids and walls indiscriminately. The greatest strength of Implicit Hole Cutting

is the simplicity of its concept and implementation which results in a very natural

and compact algorithm.

In addition to this new approach, this chapter also discusses the tricubic inter-

polation used in the algorithm. This interpolation provides an exact description

of the coordinate transformation that is both C1 smooth and consistent with

grid metrics used in the solver. These properties are not found in the more com-

monly used linear interpolation. Unfortunately it also increases the cost of the

execution quite significantly.

Overset grid methodology is well suited to problems involving relative mo-

tion between body components. Some applications that are of practical interest

to the aerospace community include rotorcraft, turbomachinery, aircraft store

separation, rocket stage separation, air drop, pilot ejection, etc. The method

is especially important for rotorcraft and other problems with high speed grid

motion. Problems with lower speed motion (e.g. store separation) have been

attempted, without using overset grids, with a series of steady state problems

each having a different relative position. The method has also seen wide appli-

cations in other areas such as, ships/submarines, road vehicles, biological flow,

environmental flow, oceanography, etc.
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Figure 3.1: A composite of five grids (two curvilinear for airfoils and three nested

Cartesian for a vortex) each with multiple holes cut out by both vortex grids

and airfoils. New boundaries are frequently generated around holes and cuts.

3.1 Introduction to Overset Grids Method

Overset grids methodology is based on an elementary requirement in the theory

of PDE, i.e., boundary condition is required everywhere along the boundary of

the domain, including any holes cut out inside the domain (Fig. 3.1). New

boundaries around holes and cuts are frequently generated in overset grids, es-

pecially for grids with relative motion. For a hyperbolic PDE, the boundary

condition is, of course, subject to the constraint of characteristic conditions. For

the sake of simplicity, however, most codes do not strictly satisfy this.

Consider an assembly of overlapping structured grids around an aircraft. The

function of a grid connectivity algorithm is to establish a connection (through

interpolation of boundary values) between all these independent and arbitrarily

arranged grids so that they behave like a single grid, or more appropriately, like
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an unstructured cluster of structured grids interwoven with overlapping bound-

aries such as that shown in Fig. 3.1, which shows a composite of five grids. All

redundant points that are not part of the overlapping boundaries are discarded

as hole points. Each grid in the figure has multiple holes and some of them

intersect.

The output from the algorithm is a list of these boundary interpolation points

(their indices and grid numbers) and their donor cells (indices of one corner point,

grid numbers and locations of the points in the cells in curvilinear coordinates).

Once connectivity is established, solutions at interior points of all grids are com-

puted independently as usual except that hole points are not updated, while

those at the overlapping boundaries are interpolated so that all grids can feel

the presence of all the others and behave as one. This assembly of either struc-

tured or unstructured grids provides tremendous flexibility for problems with

very complex geometries and moving components. It also allows independent

‘object-oriented’ component grid generation that drastically simplifies the whole

process.

Grid connectivity as described above is an expensive and daunting task,

although some recent versions of connectivity codes have attempted to ameliorate

this. These codes are also long with complicated logics, at least when compared

with that of a flow solver, which has a much more standardized and straight-

forward logic.

Grid connectivity for traditional unstructured or finite element grids, on the

other hand, is built-in and completely natural. No computation of any kind is

required other than having two sets of numbering systems, one each for the cells

and the nodes around them, and an array for the cells indicating the indices
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of the nodes around them. This array establishes full connectivity of the grid.

However, since the cells have connections that are rigidly water-tight rather than

arbitrarily overlapping, unstructured grids are not as flexible when components

move relative to each other and regriding becomes necessary. In the same situ-

ation, the same set of structured grids can be used in overset method without

regriding. Only their connectivity needs to be re-established. Overset structured

grids are really unstructured globally with arbitrarily overlapping connections

but structured locally. They thus enjoy both global geometric flexibility and all

those advantages associated with structuredness. They may however sometimes

suffer from local geometric inflexibility.

Some existing and well-known structured grid connectivity codes for solving

PDE are given in chapter one. These are DCF3D [7], Overture [9] [10], PEGA-

SUS [6], Beggar [8], ChalMesh [12]/Xcog [13] DiRTLib [14]/SUGGAR [15] and

FASTRAN [11], all of which differ considerably in implementation, technique

and detail but similar in approach, that of using walls to cut holes. This is

generally outlined in the next section.

3.2 Existing Connectivity Approach

The approach commonly used in overset method for connectivity requirement

between grids is divided into two steps. First, a “Chimera” hole-cutting tech-

nique is chosen and used to identify those points that are inside a given hole

region with any arbitrary shape (that describes an aircraft surface geometry for

example). These points are blanked out, i.e. identified in an array iblank, which

indicates the inside/outside status of all grid points for all given hole region. The
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points at the fringe of this initial minimum-size hole are not suitable to receive

hole boundary values because of the large difference in grid resolution. The hole

is then expanded or resized so that a better grid overlap is achieved. From this,

a list of hole fringe points that require information from other grids to serve as

boundary conditions can be easily extracted. Together with grid outer bound-

ary points, this intergrid boundary point (IGBP) list includes J,K,L indices and

X,Y,Z coordinates of the points and their grid numbers. The iblank array is also

used in the flow solver for the purpose of preventing updating of solutions for

points in the holes. In this step, the major difficulty lies in the determination of

iblank. See Meakin [7] for the latest technique using object x-rays and a summary

of other alternative methods such as mark-and-fill, surface normal vector, ray

casting and hole-map method. Object x-rays is an ingenious combination of hole

map and ray casting methods, exploiting the merits of each while avoiding their

disadvantages for 3D objects.

Next, for each point in the IGBP list, a search is conducted to find an op-

timum donor cell from all potential grids. The three major problems in this

step are the determination of i) the inside/outside status of a point for a cell,

ii) a search path from a starting cell (may be the cell on the outer boundary

closest to the point) to the donor cell (one that encloses the point) and iii) the

computational coordinates s (between 0 and 1) of the point in the cell (usually

second-order linear coordinate transformation is assumed). The method for the

point status in i) is much less involved than that used in the first step because of

the much simpler shape and edges of a cell compared with that of an arbitrary

region. Reference [73] lists a number of these ‘domain connectivity’ methods.

Some kind of tree data structure, such as polygonal mapping tree, alternating
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digital tree etc., is also commonly used in the preprocessing to expedite the

search process in step ii). It is interesting to note that it is possible to solve all

three problems including the search direction in ii) using only s, provided s is

not too large or the point not too far away. This step is only required when the

donor grid is curvilinear. The case for Cartesian donor grid is trivial and the

indices of the bottom left vertex of the donor cell are simply

J,K, L = INT
−→xp −

−→xo

∆−→x
+ 1 (3.1)

where ∆−→x are the grid spacings and −→xo the coordinates of the bottom left most

grid point.

3.3 Implicit Hole Cutting (IHC) - A New Ap-

proach

The idea of Implicit Hole Cutting was first reported in [77] for 2D problems and

applied to 2D airfoil/shock vortex interaction. This chapter concentrates only

on 3D cases although the two main subroutines can be used for both 2D and 3D

problems. Figures to help explain the text are mostly 2D for clarity purpose.

Several previously unreported concepts combine to make Implicit Hole Cut-

ting possible, but two issues are central in its understanding. The first is that

hole points inside a solid body do not need to be identified and blanked out

in the solver in order to perform a valid computation without contamination.

The only requirement is that the hole fringe layers be ‘thick’ enough and com-

pletely enclose the body. This will be further elaborated in the next section.

This implies that the same flow solver for a single structured grid can be used
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in an overset method with no modification other than increasing the dimension

of the relevant arrays by one to accommodate multiple grids, e.g. P(i,j,k) to

P(i,j,k,ngrid). However, the iblank array is still required for three other auxil-

iary functions, namely, contour plotting, blanking out hole points for convergence

checking purposes in the calculation of residuals for steady state problems and

residuals for implicit Newton subiterations. In other words, unsteady problems

with explicit time integration will have no use for iblank except for contour plot-

ting.

Secondly and more importantly, the IGBP list and iblank array can be ob-

tained in an alternative method without explicitly knowing where the holes are,

cutting them out and expanding them. Neither is it necessary to use any kind of

tree data structure in a preprocess to help search for donor cells. This method is

a cell selection process (as opposed to a wall cutting process) based on the main

criterion of cell size (and may be some other cell properties), and hole cutting

around bodies is a byproduct of this operation. Cell size, or inverse Jacobian, is

a parameter also required by the flow solver. Thus no additional calculation is

needed. It can cut holes around bodies without knowing the exact location of the

walls because the ‘hole-cutting effect’ of the body can be felt through either one

of the following two mechanisms, progressively smaller cell size towards the wall,

or grid topology with always a fixed index for walls such as K=1. For almost

all practical problems, the former alone is sufficient and the latter is usually not

needed. This is better understood if one realizes that somewhere embedded in

the cell size array is the information of the approximate location of the body.

This information is all that is required to cut the optimal holes around the body.

Because a wall is not used as a cutter, hole cutting failures in some existing
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methods caused by imperfections or difficulties at the wall (e.g. thin bodies,

mismatch/openings or leaks on wall surface, etc.) are irrelevant. One example

as shown in Fig. 3.2 is an opening/gap on the surface that causes the sweep over

all surface cells to proceed through the opening to the inside surface of the body

and emerges from the same opening after sweeping through all the cells on the

inside surface. Extra code logic is needed to prevent this from happening.

The absence of such failure also eliminates the possibility of orphan points

or leakage. Orphan points caused by insufficient overlap, though, must still be

checked.

The hole thus obtained from this method is also automatically optimum

in the sense that the match in cell size between the first layer of hole fringe

points and their donors is always the best. There is no need for a separate step

for hole optimization or overlap minimization with user specified or calculated

parameters such as offset value, wall distance or donor health/potential. Nor

does it require the grids to be ordered by priority or grouped by hierarchy.

Offset value is a user-specified integer indicating the number of cells a hole

is to be enlarged. This can be used to correct the status of points inside sharp

bodies (e.g. trailing edge) that are mistakenly labeled ‘normal’ because of failure

in the chosen hole-cutting method. This inevitably introduces arbitrariness and

increases user workload and expertise requirement.

Another problem is the use of distances between points and the wall in some

existing methods (especially for overset unstructured grids) for cutting holes.

This criterion has the undesirable effect of cutting the hole at the same location

regardless of possibly large difference in grid resolution. This could, in some

cases, potentially result in hole fringe points interpolating from donors whose cell
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Figure 3.2: Overlap region of two grids on wall surface. Top − Perfect match.

Bottom − A mismatch/gap in the two overlap surface on the wall is an example

where extra code logic is needed in existing approach to prevent hole cutting

failure.
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volumes are drastically different from those of the receivers, thus deteriorating

accuracy of the interpolation.

This cell selection process can also be regarded as a generalized method for

cutting holes around both bodies and some flow features, e.g. a vortex, shock

or any refinement grid, indiscriminately and simultaneously. This can be seen

clearly in Fig. 3.1 where multiple holes are cut out by the presence of both

vortex grids and bodies, and similarly later in Fig. 3.16 for a 3D case. Existing

methods use only bodies as the cutter and thus need another procedure to cut

holes around these other flow features.

This approach results in a very simple and compact algorithm with only three

main subroutines. This is principally due to the absence of any traditional hole

cutting using walls as the cutter, hole optimization or tree data structure. The

code is completely integrated in the flow solver with no additional input besides

those required by the solver. It can also act as a stand-alone code if a main

routine is provided. The algorithm is best explained and understood by means

of a pseudo code.

In a nutshell, the IHC method routes through every point in the grid system

to test and select the best quality cells in a multiply overlapped region, i.e.,

search for all donor cells of every point in all overlapped regions and keep only

the best, leaving the rest as hole points. All points are divided into two types :

boundary or interior, with obvious meaning. Boundary points of a grid are first

tested before the interior points. The reason for this division will be clear in the

next section. Thus, we have the following in the main routine of the solver to

start off the connectivity code:

DO nRecvGr=1,NG
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CALL BoundaryConnect(...)

CALL InteriorConnect(...)

ENDDO

It is also possible to first test boundary points of all grids before the interior

points as follows:

DO nRecvGr=1,NG

CALL BoundaryConnect(...)

ENDDO

DO nRecvGr=1,NG

CALL InteriorConnect(...)

ENDDO

The grid information needed as input to the subroutines is a bare minimum:

1) dimensions, 2) coordinates, 3) cell sizes (inverse Jacobian) and 4) topology.

But cell sizes are calculated in the solver and need not be prepared separately

by the user. In addition, special topology such as periodic cut, wake cut, etc.

can theoretically be detected in the code. Whether or not those grids with wall

boundary are self-protective, i.e., cells on the wall surface are the smallest in

the entire grid system, no input is required from the user once a set of grids

with reasonable quality are generated. This is thus the most transparent a

connectivity code can ever get, and requires no user experience and knowledge

of overset method.

In contrast, the corresponding procedure used for the existing approach,

which is generally divided into 2 steps, is broadly outlined below. 1) Hole-cutting

- a test is performed on every grid point to determine its status of inside/outside
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of all enclosed bodies (called holes). 2) Expand the resulting ‘minimum’ hole and

find donors for its fringe points - both the expansion and donor search are linked

and performed simultaneously. This is more clearly explained in the pseudo-code

below.

DO ngrid=1,Ng

DO, for every point of ngrid

CALL hole-cutting routine (i.e. determine status of point and store in Iblank)

ENDDO

ENDDO

Next, identify hole fringe points from Iblank

DO, for every hole fringe point

DO, for every other grid

Find donor stencil

Assign a suitability index to donor (could be from hierarchy or priority list; index

can be distance from surface, cell volume, etc.)

ENDDO

If index is 0, mark point as hole and change fringe point (expand hole)

Store receiver and donor information

ENDDO

Naturally, a larger portion of the CPU time is expected to be spent in

InteriorConnect() because of the larger number of interior points. Detection

of non-overlapping grid-pairs as discussed in the next section would tremendously

reduce this CPU time.

It is important to note that the IHC approach cannot, by itself, identify
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points inside the body. It can only identify the hole fringe region surrounding

the body. This is, however, sufficient for IHC because firstly, the hole (body) is

now completely isolated and cutting it out in a separate process does not pose

a challenge and is not costly. But more importantly, as explained in the On

contamination and hyperbolicity subsection, the points inside the body should

not affect the solution and thus are not essential.

It is clear from the description of the two approaches above that the sequence

of their processes are opposite of each other. The existing approach is an inside-

out process in which the minimum hole is first cut and then expanded, whereas

the outside-in process of the IHC locates the hole fringe region first and then

cuts the remaining isolated minimum hole. The outside-in process is one reason

why location of the body is not required in IHC to locate the hole and why any

hole-cutting difficulty at surface is irrelevant.

The simplicity of the IHC approach is also reflected in the fact that there are

only three subroutines in the algorithm, namely, BoundaryConnect(), InteriorConnect()

and FindDonor(). These will be discussed in the following sections.

3.3.1 BoundaryConnect() and InteriorConnect()

Both of these subroutines are very similar in content. InteriorConnect() is

more straightforward than BoundaryConnect() however. Other differences will

be highlighted in the following discussion.

SUBROUTINE BoundaryConnect(...)

DO, for every continuous bound. pt. of grid nRecvGr

RecvCellVol = 1.e30
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IF(point is close to wall) ILowOrder = .TRUE.

DO, for every overlapping or untested grid nDonorGr

IF(nDonorGr is Cartesian) THEN

IF(donor Io(n) is beyond 3rd cell from boundary) Io(1) = -1

ELSE

Io(n) = iStartCell(n,nDonorGr,nRecvGr)

CALL FindDonor(...)

iStartCell(n,nDonorGr,nRecvGr) = Io(n)

ENDIF

Check for overlapping with untested grid

IF(possible donor found) THEN

IF(donor smaller than receiver) THEN

Store nDonorGr, donor and receiver indices

Store interpolation coef.

ENDIF

ENDIF

ENDDO

Check for overlapping with no mutual cutting

ENDDO

Test one interior point of each non-overlapping grid to check for total embedment

RETURN

SUBROUTINE InteriorConnect(...)
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DO, for every continuous interior point of grid nRecvGr

RecvCellVol = InvJacob(i,j,k,nRecvGr)

DO, for every overlapping grid nDonorGr

IF(nDonorGr is Cartesian) THEN

IF(donor Io(n) is beyond 3rd cell from boundary) Io(1) = -1

ELSE

Io(n) = iStartCell(n,nDonorGr,nRecvGr)

CALL FindDonor(...)

iStartCell(n,nDonorGr,nRecvGr) = Io(n)

ENDIF

IF(possible donor found) THEN

IF(donor smaller than recv. .or. forced donor)

Store nDonorGr, donor and receiver indices

Store interpolation coef.

ENDIF

ENDIF

ENDDO

ENDDO

RETURN

1) On using cell size to cut holes around solid bodies and refinement grids.

For every point of a grid, all other grids are searched for having any potential

donor cell for this point. (An interpolated boundary point is one whose boundary

type is not specified and not updated in the flow solver. A donor cell is one that
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encloses this point). In the case of multiple donor cells, the one with the smallest

cell volume, i.e., inverse Jacobian, may be selected as the optimum donor. Other

geometric criteria, e.g. cell aspect ratio, orientation etc, may be important in a

high gradient region. They are, however, not as straightforward to use and will

not be considered here (see [6] for the use of cell difference parameter CDP).

The cell volume associated with a boundary point is assigned infinity regardless

of its original value, since this point must always have a donor cell even if its

cell volume is already the smallest among all possible donor cells. In contrast,

cell volume associated with an interior point is its original value. If this value is

already the smallest, then no donor cell is qualified and this point is a normal

field point.

2) On non-overlapping grids and why boundary points of a grid are tested

first before interior points in order to eliminate unnecessary tests. Many compo-

nent grids are non-overlapping and far apart in most applications. One can take

advantage of that to eliminate many of the tests on the much more numerous

interior points by testing boundary points first. This tremendously reduces CPU

time spent in testing interior points. Non-overlapping grid-pairs can be detected

from the following two conditions: i) none of the boundary points on the grid

being tested (grid A in Fig. 3.3 left) has any potential donor cell from the part-

ner grid (B), and ii) the partner grid (B) is not fully embedded inside the grid

being tested (grid A) (embedment is shown on the right in Fig. 3.3). Only one

point from grid B needs to be checked for condition ii) once i) is satisfied, since

satisfying i) implies grid B is either completely outside or completely embedded

in grid A. This can be theoretically any point but preferably close to the mid-

point of the grid since boundary points of an embedded grid may be so close to
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Figure 3.3: Non-overlapping grid-pair and embedded grid-pair.

the boundary of grid A that an outside status is returned because of insufficient

stencil size (see Stencil size of next section). This condition can be easily deter-

mined for a Cartesian grid A (upright or inclined). For a curvilinear grid, a donor

search must be performed. If both conditions are satisfied, the interior points

of the test grid (A) will not be tested and Ioverlap(nRecvGr,nDonorGr) is

assigned 0 (1 for overlapping pair). The matrix Ioverlap(nRecvGr,nDonorGr)

is symmetric and the diagonal elements are irrelevant. Hence, only the upper

triangular elements need to be determined. The lower triangular elements must

also be filled because they will be accessed in the subroutine.

Since many boundary points need interpolation anyway, tests on these points

first yield the additional benefit of detecting non-overlapping grids. Without this,

the increase in cost with number of grids, NG, would have been boundless (for

the same number of points). Non-overlapping grids help keep the cost flat with

increasing NG for interior (but not boundary) points.

Interior points of two overlapping grids, A and B, that share the same part of

a solid wall (this can be either O-H, C-H or 1-wall grid) as sketched in Fig. 3.4 do

not need to be tested for cutting each other’s hole since it is assumed here that

cell quality (i.e., volume) of each grid is good enough for the region each covers
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Grid A Grid B

common wall of A & B

Solid body

Grid C

Figure 3.4: No mutual cutting between grids that share part of a wall (A and

B). Possible cutting between A and C, or B and C.

even though quality of the neighbor grid may be even better in the overlap region.

This is done to both expedite the connectivity process and reduce the number

of interpolation points since, as explained later, interpolation is an expensive

process especially if it is high-order. Ioverlap(nRecvGr,nDonorGr) is assigned

-1, not 0, in this case because a zero value copied to the lower triangular element

would later cause its partner grid nDonorGr to mistake this grid pair as non-

overlapping and ignore even the boundary point interpolation. The way to detect

such ‘no mutual cutting’ overlapping pair is to identify the grids of the donor

cells for the boundary test points just above the wall surface.

For an O-H or C-H test grid A, condition ii) can be relaxed so that the partner
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1−wall grid topology

possible overlap

wall points

grid B

Figure 3.5: Wall points on one-wall grid topology must also be tested for having

potential donor cells, not for interpolation, but for detection of overlapping grids

coming in from the wall.

grid (B) is not fully embedded inside the outer boundary of grid A, since the wall

and wakecut boundary are inside this outer boundary. It is not necessary to test

points on the wall and wake cut. For a grid with one-wall topology, however,

points on the wall are tested, not for interpolation purpose, but for the detection

of the unusual event schematically shown in Fig. 3.5 in which it overlaps with

the partner grid (B) coming in from the wall boundary. This grid (B) could be

a long and skinny vortex grid. Should this happen, test on interior points will

be carried out.

3) On continuity of test points (boundary or interior) in order to shorten

search path without using tree data structure. The starting cell for a search

in a particular grid is either i) the donor cell of the previously tested point

(if there was indeed a donor cell), or ii) the last cell next to the grid bound-

ary in the previous search path before the search steps out of that boundary
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Figure 3.6: Illustration of alternating forward / backward scan to ensure conti-

nuity for interior test points.

if the point is outside the grid (in which case indices of this last cell are made

negative to indicate unsuccessful donor search). Due to the proximity of the

present and the previous test points in case i) if test point continuity is main-

tained, the donor cells of the two points are also in close proximity. This would

considerably shorten the search path. No tree data structure whatsoever is re-

quired to expedite the search. The three indices of the starting cell are stored

in iStartCell(n,nDonorGr,nRecvGr) where n=1,2,3. This storage is required

for each grid pair and the matrix is not symmetric in nDonorGr and nRecvGr.

Lacking a previous point for guidance, the first test point of a grid would

arbitrarily start the search in other grids from the cell with the lowest indices, i.e.,
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(1,1,1). This naturally results in a long search path but is limited to only the first

boundary and first interior point of every grid in the first time step. Employment

of any accelerated search technique here (e.g. some tree data structure) is not

really warranted, as this would also unnecessarily complicate the algorithm for

a negligible gain in efficiency.

Continuity of interior points can be achieved quite effortlessly by running

the I,J,K DO loops for the test in alternating forward and backward direction

as symbolized by the arrow in Fig. 3.6. For a 3D problem scanning in the

K,J,I direction sequentially, the K,J and I loops are swept backwards for odd

istep, even K+istep and odd J+K+istep respectively. Here istep is the time step

iteration number.

Continuity of boundary points is much more difficult to maintain. Neverthe-

less, it can still be achieved for the O-H (3 sides), C-H (5 sides) and one-wall

(5 sides) grid topology with additional logic in the code. A free grid without

any solid wall, however, will have one discontinuity in traversing through all the

boundary points. Occasional discontinuity in test points would not affect the

speed of the algorithm appreciably, but the resulting long search path at the

discontinuity may pose difficulty along the path if it has to go through some

complex topology.

In order to avoid test repetition at the eight corner points and twelve bound-

ary lines of a grid if each of the six sides is scanned from first to last point,

the dimensions of the two sides normal to each of the I, J and K direction used

in the test are (JMAX-2)*(KMAX-2), IMAX*KMAX and IMAX*(JMAX-2) re-

spectively as illustrated in the diagram in Fig. 3.7. The savings achieved both

here and during solution interpolation is not negligible especially for long and
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Figure 3.7: Test repetition at boundary lines and corners is avoided by using

interior dimensions.

skinny grids (e.g. vortex grids) and/or when the disproportionately expensive

high-order interpolation is used (as will be explained later).

4) On contamination and hyperbolicity. All test points, whether they fall

inside or outside a solid body, are treated indiscriminately. If a point inside

the body finds a donor, it will be interpolated even though neither it nor the

value it gets is valid. This interpolation is of no consequence and does not

contaminate the rest of the grid because invalid points are always fully insulated

from the normal field points by the layers of hole fringe points that will be

interpolated from valid donor cells from other grids (as will be explained in the

last two paragraphs). In view of the inconsequence of this action and the very

small anticipated number of such points, additional code logic to avoid this is

not needed. The grid of these donor cells is usually, but not necessarily, the

boundary conforming grid of the body inside which the above mentioned points

fall. The distance of the first fringe layer from the surface depends on the relative

cell volumes of the receivers and the donors and is always optimum.
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Grids are almost always designed such that cells are smaller the closer they are

to the wall surface. This ensures the availability of donor cells for the hole fringe

points and thus that the ‘hole-cutting effect’ of the wall is felt. In the unusual

situation in which even the smallest donor cell on the surface is bigger than all

of the receiver volumes, hole fringes can still be formed by the criterion that cells

with index in the direction normal to wall less than or equal to jHoleImmune

(user specified) must be donors regardless of volume (as exemplified Fig. 3.8

where airfoil grid is donor). Such a grid system, however, has doubtful overall

quality. jHoleImmune also serves a similar purpose for a receiver grid. Points

with index in the wall-normal direction less than or equal to jHoleImmune can

not be receivers regardless of volume (see Fig. 3.8 again where the airfoil grid

is now receiver) and are not being tested at all. This enforces the sanctity of

a wall boundary condition. The value of jHoleImmune can be different for this

forced non-receiver and the previous forced donor case.

Immunity against being tested and becoming receivers also helps reduce the

number of test points and CPU time especially for viscous grids where a large

number of points in the boundary layer can be immunized. Indeed, with a much

larger jHoleImmune for viscous grids, the cost of connectivity is not very much

higher than that for inviscid grids that have much smaller number of points. A

note of caution is appropriate here. jHoleImmune is not the OFFSET variable in

PEGASUS 5 or similar parameters in other codes for hole expansion purpose.

Hole expansion is irrelevant in this approach.

So far, all holes cut are assumed to be away from the surface. That is what

jHoleImmune enforces. However, it is sometimes more convenient for a near-

body (untrimmed) grid to cut through the body and build another (or several)
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Figure 3.8: An unusual situation in which the smallest cell on an inviscid grid

wall is larger than all receiver cells. jHoleImmune = 5 immunizes the first 5

grid lines from the wall against receiving or force them to be donors.

partner grid(s) for the wall that it misses. Examples include collar grids and grids

that cover secondary surface features. Untrimmed grids and their partners can be

topologically represented by the schematic shown in Fig. 3.9. This topological

arrangement also applies to surface refinement grids with no cut through the

body (Fig. 3.10) - in fact this is a special case of Fig. 3.9. jHoleImmune for

the untrimmed grid as a receiver must be set to 1 when testing interior points

against its partner grids so that even its wall surface can feel the presence of the

missed wall. The automatic and unambiguous detection of untrimmed grids and

their partners is difficult. They can be visually identified, however, and specified

manually.
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untrimmed wall of grid A and B cuts through body
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Figure 3.9: Sketch of multiple untrimmed grids (A,B) with multiple partner grids

(C,D).

surface refinement grid

Figure 3.10: Similar treatment for surface refinement grid as for untrimmed

grids.
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Theoretically, contamination of normal field points by the invalid hole points

is avoided because of the hyperbolic nature of the fluid equations in time. Hyper-

bolic solutions are ‘local’ and have finite speed of information propagation. This

implies the region of influence of any invalid point is limited and depends on the

time step size ∆t specified by the user. The hole fringe layers that separate the

field points from the invalid hole points act like a cushion of insulation against

contamination. The thicker the layers, the longer time the invalid solutions need

to cross it in order to contaminate. If the distance traveled by the information

from any invalid point at the end of ∆t is less than the thickness at the thinnest

section of the fringe, contamination would be theoretically impossible since the

solutions at all fringe points (some of which are already contaminated) would

have been replaced with valid solutions from other grids through interpolation.

This is why blanking out hole points in the solver to avoid contamination is not

necessary. This situation with an overset hole is somewhat similar to a black

hole in which outside information can fall in but information inside the hole can

never escape and be felt outside. This remains true as long as the numerical

schemes employed to solve the equations do not violate the propagation proper-

ties dictated by the mathematics of hyperbolic PDE.

Furthermore, because of the above reason, there is no difference between a

hole point inside the flow field and one that is inside a body. Hence the exact

shape of the wall surface has lost its significance as a hole cutter and any surface

grid imperfection can be forgiven. This tremendously reduces the complexity of

the connectivity algorithm since using walls to cut holes is no longer required.

Thus the name Implicit Hole Cutting. However, for the purpose of calculating

residuals and plotting contours, as mentioned before, hole points inside a body
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must be identified.

The above theory results in a rather unusual situation in which fringe thick-

ness, information propagation speed and more importantly ∆t are now theoret-

ical determinants of possible contamination. Fortunately, first-order checks of

many cases indicate that commonly encountered ∆t is usually well within a con-

tamination limit. Nevertheless it is advisable to make frequent checks whenever

possible.

Numerically, the issue of contamination can be explained as follows. Meth-

ods for time integration can be classified as either explicit or implicit. From

the mathematical behavior of partial differential equations, one can say that

an explicit method mimics the ‘local’ behavior of hyperbolic equations while

an implicit method mimics the ‘global’ behavior of parabolic equations. Both

methods, however, have been used successfully for either equation despite obvi-

ous physical violation for the wrong combination of method and equation. This

can be explained by the fact that distant information does not contribute much

to the solution at a point, whether it is an implicit method applied to a hy-

perbolic equation or an explicit method applied to a parabolic equation. The

inclusion or exclusion of this information in the numerics contributes very little.

Thus, it is safe to say that an implicit method applied to a hyperbolic equation

for a grid with a hole does not significantly, and theoretically should not, cause

contamination especially if Newton subiterations are used, provided the fringe

thickness condition in the previous paragraph is satisfied. Of course, for this to

be true, values at the invalid points must not be very large. Otherwise even a

small fraction of it can make a significant contribution (or contamination) to a

distant point. This can usually be satisfied by the finite values assigned as the
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initial condition. In addition to this, attention must also be given to the situa-

tion in which only a few points span across a hole caused by a thin (or small)

body, i.e. where grid resolution difference is too great.

3.3.2 Subroutine FindDonor()

This subroutine is called by both InteriorConnect() and BoundaryConnect()

to find donor cells.

SUBROUTINE FindDonor(...)

DO

Get starting cell (previous donor) Io(n) for the search

Cross+dot product for inside/outside cell test

IF(inside of cell) jump out of DO loop

Check for moving back to a previously tested cell

Check for cut across concave boundary

Check for crosses into solid body

Check for cut across O- and C-grid periodic boundary

IF(point is outside boundary) THEN

negate Io(n)

GOTO the end and return

ENDIF

ENDDO

21 IF(point is beyond first interior point .and. not LowOrder case) THEN

negate Io(n)
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GOTO the end and return

ENDIF

Get coordinates of stencil points for interpolation

Calc. initial guess of dIo(n) (use linear interp.) or set to .5

niter = 0

DO WHILE(residual > tolerance)

niter = niter+1

Solve for interp. coef. dIo(n) with Newton iter.

IF(dIo(n) outside range .and. niter.ge.3) THEN

Move to neighbor and GOTO 21

ENDIF

ENDDO

IF(point is beyond second interior point .and. not LowOrder case) THEN

negate Io(n)

ENDIF

RETURN

END

-A quick first-order inside/outside cell test. This test of whether a point is

inside or outside a cell is required in every step of the search. A quick cross

and dot product test suffices for a first-order estimate. This is much faster than
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Figure 3.11: A first-order cross and dot product test for the inside/outside status

of a point.

calculating interpolation coefficients using Newton iterations though not very

accurate for points close to the boundary (if the boundary face is highly curved).

For a point to be inside a cell whose boundary faces are initially assumed to be

planar, all six dot products of the inward normal vector at any point on each

face, −→ni in Fig. 3.11, and the vector between the point P and the base of the

inward normal vector, −→ri · (−→ni ×
−→ri ), must be positive. This is equivalent to

requiring the point to lie on the ‘in’ side of each boundary face. If the point is

outside, the direction of the next move in the search is indicated by the faces with

negative dot products. This test requires that the three axis in computational

space follow the directions of the right hand rule. Otherwise, it would lead the

search away from the donor.

-Indefinite search. The possibility of a search going in a loop indefinitely,

i.e., repeatedly coming back to previously tested cells, arises because of the

simplifying geometric assumption underlying the above test. This can happen

when a point is close to a cell boundary face that is not exactly planar and the
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Figure 3.12: Inside/outside status of a point close to a truly curved cell boundary

can not be determined from cross and dot product test.

test does not reliably indicate its inside/outside status (Fig. 3.12). This can

be solved by storing the current test donor cell indices after a preset number

of searches. Every subsequent test cell would be checked against this for any

repetition. Once repetition is first detected, a donor is assumed found regardless

of its correctness. The subsequent cubic coordinate interpolation will be able to

accurately determine the correct status and move accordingly. Checks are also

easily provided for search across the wake cut in O-H/C-H grids and for stepping

out of the grid boundary.

-Grid topology, besides indicating physical and interpolated boundaries, is

required for a search in determining the action to be taken when it steps out of

the grid boundary in computational space. Four types of topology are common

and often sufficient for aerospace applications : O-H, C-H, free and one-wall.

The wake cut boundary of O-H and C-H grids would move the search back into

the grid. Other topology types such as grids with opposite or adjoining walls
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can be accommodated without significant alteration to the logic of the code.

-Stencil size. The Hermite cubic monotone interpolation employed in the

solver for flow solutions requires a 6-point stencil in each direction, or 5 points

for each of the two center points where first and cross derivatives are required.

This derivative is required to be at least 3rd-order (4-point) in order to achieve

full accuracy of the cubic interpolant. A larger 5-point 4th-order stencil is used

for reasons of symmetry. Unlike solution reconstruction in the solver, a 4th-order

compact scheme can not be used for interpolation as explained in chapter 2. A

6-point stencil implies that the first two cells from each grid boundary are not

qualified as donors. However, the second cell must not be ruled out after the

first approximate test since it might be so close to the third cell that the more

accurate test later may reveal that the point is indeed in the third cell. Note

that for coordinate interpolation, we use a smaller 4-point tricubic stencil for the

reason of consistency with the metrics in the solver as mentioned before.

-Implicit interpolation. This problem of mutual coupled interpolations be-

tween two boundary points with 6-point stencil and minimum overlap (Fig. 3.13)

is not as severe as in linear interpolation with a 2-point stencil because it is as-

sumed that the first and the last point in the 6-point stencil do not contribute

significantly to the interpolated value. We can thus justifiably avoid the more

expensive implicit interpolation, easing the already very costly interpolation that

we employ. Furthermore, this problem does not exist when one of the two points

is a hole fringe and the other a grid boundary point if the latter is interpolated

first. This is due to the fact that solutions at the hole fringe points which lie on

the first fringe layer have been updated by the solver and are valid to provide

interpolation to the grid boundary point. Likewise, neither does the problem
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minimum overlap
for 6−pt stencil

Figure 3.13: Implicit interpolation for two outer boundary points with minimum

overlap and 6-point stencil is not used.

arise when both of the points are hole fringe points. Thus in the solver, all grid

boundary points are interpolated first before the hole fringe points.

-Low-order linear interpolation is unavoidable for the situation illustrated in

Fig. 3.14. The boundary points immediately above the wall side of a grid will

have donor cells with insufficient stencil width. Normally these cells would have

failed the test for this reason. But in this situation they must be accepted and

a lower-order 4- or even 2-point stencil be employed here. These points are

identified in subroutine BoundaryConnect() as J<n (where n is a small user

specified number, e.g. 4, and J is normal to wall) for O-H and one-wall topology.

-Initial guesses of the interpolation coefficients for Newton iterations can be
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Figure 3.14: Small stencil low-order interpolation is unavoidable for points close

to wall marked X.

either approximate solutions from trilinear interpolation or simply set to 0.5, i.e.,

midpoint assumed. Tests have shown that the former is more efficient for high-

order interpolation since it provides better estimates for fewer Newton iterations

which consume a large percentage of CPU time. However, the latter is favored

for coarser multigrid levels when linear interpolation is used.

-Concave boundary. Detection of a concave boundary is important when the

search steps out of the boundary. It is also one of the most difficult tasks in

this approach. Failure in the detection might result in a point being mistakenly

assigned as outside the grid when it is actually inside. Visual identification

usually works but is a crude method.

-Indefinite toggling. Even with accurate interpolation, it is still possible for

the final donor cell to toggle indecisively between two neighboring cells if the

point is very close to the border. It was decided that a move to the neighbor

for an out of bound point (s<0. or s>1.) is made only at the end of the third

Newton iteration since it usually takes about 3 iterations to converge.
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-Multigrid. In a multigrid situation where every alternative grid line is succes-

sively removed, the third cell becomes the second (first) cell in the first (second)

coarser level and the stencil must be reduced to 4-point (2-point).

-Unstructured grids. The main principle behind Implicit Hole Cutting, i.e.,

using cell size comparison to locate hole fringe and cut hole, is valid whether the

grids are structured or unstructured. The implementation, however, is different

for the latter in the donor search because of the unstructured coordinates and

volume data arrays. Cross and dot product in/out test for stencil walking and

wall boundary crossing in FindDonor() would have to be modified due to loss

of data structuredness.

3.4 Advantages of ‘IHC’

The new approach used in ‘IHC’ results in numerous significant advantages not

realizable in the conventional approach. Some of these are summarized below:

a) No need to specifically cut holes around arbitrary bodies. This is the most

difficult step in the conventional approach.

b) No hole cutting failure due to imperfections/difficulties at the wall (e.g.

mismatch/opening, thin bodies, surface discontinuities, etc.) because these sur-

face features are irrelevant in a cell comparison process. In fact cells in the

vicinity of the wall are never subject to the comparison process.

c) No hole optimization step needed. Holes that arise at the end of the process

are always automatically optimum because the criterion for cell comparison and

optimization are the same.

d) No need for user to manually order grids by priority or group by hierarchy.
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e) No extra step needed to cut holes around wall-less refinement grids (e.g.

PEGASUS 5 Level 2 Interpolation). Holes around bodies and refinement grids

are formed indiscriminately.

f) Many points in and near the boundary layer can be immunized, further

speeding the code for viscous grids.

The most significant of these advantages, however, is undoubtedly the ele-

gance and simplicity of this approach which results in a very compact algorithm.

The algorithm is implemented with less than a thousand lines of Fortran90 code,

or about an order of magnitude smaller than that using existing approach.

3.5 Parallel Implementation

Load balancing in the parallel execution of overset connectivity codes using ex-

isting approach is much harder than that of the flow solver due to the unknown

and varying (in problems with relative motion) number of fringe points and the

amount of work needed to find all donors. This problem is critical for cases with

moving components, such as rotorcraft, since the connectivity needs to be up-

dated every time step and the CPU time for connectivity is a significant fraction

of the total time. While the number of points in a grid is a reasonable crite-

rion for load distribution in a solver, it is not a valid prediction of connectivity

cost. Since hole cutting and donor search are the most expensive operations in

conventional connectivity, the most accurate way to balance load is to use the

number of cells on the hole-cutting surface and the number of IGBPoints that

need interpolation as the criteria for work distribution. They are considered the

smallest work units in connectivity. This is, however, also the source of most of
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the difficulties in the connectivity algorithm.

The parallel implementation of the Beggar code is detailed in [8] in which four

phases are implemented in increasing order of efficiency. In the first three phases,

the connectivity code is executed in the background on separate processors with

increasing balance of the load distribution. Only the last phase is considered a

truly parallel attempt, executing both the solver and connectivity on the same

processors and taking the smallest work units into consideration.

Several references, e.g. [74], [75], are available on the parallel implementa-

tion of the adaptive OverFlow-D code. In [75] a dynamic load balance scheme

is outlined in which the work load of donor search and solver are balanced con-

currently across the processors, using the number of IGBPoints and grid points

respectively for this purpose. While the number of IGBPoints is allowed to vary

in the long term because of moving holes, hole cutting is not considered in the

balancing criterion.

Since PEGASUS [6] is stand-alone and not associated with any particular

CFD code, its parallelization can not be combined with that for a solver. Fur-

thermore, it is not designed for problems with moving components.

Load balancing in Implicit Hole Cutting, on the other hand, is considerably

simpler. Since the two main loops in ‘IHC’ are over grids, work load can be dis-

tributed grid-by-grid just as in the coarse-grain parallelization of the solver. This

is a direct consequence of the approach advocated in the ‘IHC’ algorithm. In a

coarse-grain implementation, all coordinates and cell volume arrays, unlike the

solution arrays, are stored in every processor. This increases memory require-

ment for these two arrays but simplifies the job since no massive communication

is necessary. This is however not recommended for fine-grain parallelism.
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If the parallelism is implemented using Co-Array Fortran, cell volume and

coordinates arrays need not be stored in every processor since the one-sided

communication (no hand-shaking required) to access remote memory where the

donor cell resides is easy to implement using co-array. Typically only a small

number of donor cells are needed.

The CPU time of the preceding time steps for every receiver grid in the sub-

routines BoundaryConnect(...) and InteriorConnect(...) can be used as

the criterion to distribute workload. This is the most accurate coarse-grain load

balancing criterion and it works equally well on heterogeneous clusters. Some

time saving features are more costly in parallel mode (e.g. double work in the de-

tection of non-overlapping grids for some grid-pairs in the BoundaryConnect(...)

loop) due to their sequential nature. Iterations in the InteriorConnect(...)

loop are, however, independent. Every work package in these two loops can be

assigned to different processors every time step since each processor has all the

information it needs to work on any package. Load balancing then becomes

straightforward and can even be combined with that for the solver.

3.6 Examples

Compared with that of a flow solver, the validation of a connectivity code is

much simpler and less uncertain. Good correlation of a few sets of results from a

solver with experimental data for a particular flow condition does not automat-

ically verify the correctness of every numerical scheme in the code for all flow

conditions. Confidence in the solver to produce acceptable results is gradually

gained over time after repeated applications by a wide group of users. This is

89



X

Y

Z

Figure 3.15: Half-span QTR-like model.

also one reason why the lifespan of a software is many times that of the hard-

ware that it runs on. It is not inconceivable that some of the numerical schemes

are not suitable for certain flow conditions or body configurations and that a

time-tested code produces disappointing results under these conditions.

The verification of a connectivity code, on the other hand, is much more

certain if the body geometry and configuration is general enough. It is easy to

determine visually if a hole is incorrectly cut or if a receiver point has the wrong

donor cell. In other words, the range of conditions within which the results are

right or wrong is more narrow.

Some 2D test problems on blade vortex interaction will be given in the next

chapter on vortex tracking (see Fig. 3.1 for an example). Only 3D test problems
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will be considered in this section. The first example is a Quad Tilt Rotor (QTR)

like configuration with blades, nacelles, nested front vortex-tracking grids, wings,

fuselage and background grids (Fig. 3.15). The grid system consists of 39 grids

and about 3.1M grid points for a half-span model with moderately coarse spacing

(except for inner vortex grids). Figure 3.16 (top) shows a constant stream-wise

section and the holes in the background grid cut around the rotors, a wing and

the vortex grids. The bottom frame shows the negative 3D image of the same

holes. These holes are appropriately cut and serve as verification of the validity

of this new approach.

Required CPU time on an Alpha 21264 processor at 667 MHz to generate all

necessary parameters for the solver using the more expensive cubic interpolation

was about 35 seconds. The use of linear interpolation reduces the time by about

20−25%. This significant reduction is not surprising considering the expense of

cubic interpolation as explained earlier.

Figure 3.17 depicts three snapshots of a movie showing holes in a background

grid for a half-span QTR with vortex grids. The blocks at the tip of the blades

are refinement grids added to increase the resolution in the region immediately

beyond the blade tip grids, since the background grid has a rather coarse spacing

of 0.45 ctip and the flow field at the tip region is intense. Each of these grids

contains only about 17K points but has high grid density especially in the radial

direction in which the density matches that of the blade grid. Hence, two types

of refinement grids are present in this example, blade tip refinement and vortex

grids. It should be noted again that the figure does not represent any aircraft

components. It shows only the holes caused by the components in the back-

ground grid shown at the top of the figure. This grid system and connectivity
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Figure 3.16: Holes caused by blades, vortex grids, wings and engine nacelle (for

the bottom figure).
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Figure 3.17: Three snapshots showing holes in the rectangular background grid

cut out by a half-span QTR with rotating blades. Note that these are not aircraft

body grids.
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are used in the next chapter for the development of vortex tracking methodology.

To the user, the addition of these refinement grids is completely effortless

(apart from the effort needed to generate them) and the establishment of their

connectivity with other grids is totally transparent. This demonstrates one of the

advantages and flexibilities of overset grid methodology in general and Implicit

Hole Cutting in particular (in that holes around bodies and refinement grids are

indiscriminately cut as previously explained). This flexibility, of course, can be

considered to be gained at the expense of the requirement of a connectivity code.

The third example considers a multi-aircraft configuration and is intended

to demonstrate the capability of this new approach to handle very general and

arbitrary geometry with relative motion among the components. Figure 3.18

depicts snapshots of a movie showing holes in the three near-field Cartesian

background grids cut out by an approaching QTR overtaking a stationary QTR

aircraft. This situation is frequently encountered on the deck of an aircraft

carrier. Two types of motions are present in this problem- rotation of the blades

and translation of the aircraft. The 3 grids have a total of 9M points, while the

entire grid system contains 112 grids and 14M points. In this case computation

was performed with every other line removed.

The fourth and last example focuses on the static grids of the V-22 ro-

tor/nacelle. The difficulty in this case lies in the close proximity of the com-

ponents and the fact that the shape of the holes cut out by each other are not

easily discernible and thus not easily specified by the user. Fig. 3.19a shows the

surface and volume grids of the rotor/nacelle together with the outline of two

background uniform Cartesian grids. Fig. 3.19b are the holes in the background

grids resulting from existing approach and IHC respectively. The user-specified
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Figure 3.18: Three snapshots showing holes in the three background grids cut

out by an approaching and a stationary aircraft underneath with rotating blades

(note that these are not aircraft body grids).

95



hole (left) is not necessarily optimum even though its straight cut may look bet-

ter than the wavy cut (right) from IHC, whose optimum hole shape is really a

function of grid resolution.

Fig. 3.20 is an example in which the hole cut in the hub component grids

by another close-by component grid may be more complicated in that the shape

may not be easily discernible and thus may be hard for the user to specify. Here

again in Fig. 3.20b the optimum hole in the hub grids is completely dependent

on the resolution of the volume grids.
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a) Surface (left) and volume (right) component grids.

b) Holes in the two background grids using existing approach (left) and IHC (right).

Figure 3.19: V-22 rotor/nacelle assembly. Grids courtesy of NASA Ames.
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a) Surface grids of blades and hub.

b) Holes in the two hub grids using existing approach (left) and IHC (right).

Figure 3.20: V-22 nacelle hub and blade. Grids courtesy of NASA Ames
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Chapter 4

Automated Vortex Tracking in

Rotorcraft CFD

High-fidelity, far-field and economical blade vortex capturing, tracking and sub-

sequent interaction is one of the most important aerodynamics problems in ro-

torcraft. Its solution is also one of the most difficult to obtain. This chapter

documents the use of multiple helical vortex tracking grids and the development

of an automated tracking technique to achieve this objective. The technique is

developed and tested first in 2D then on the interactional aerodynamics of a

generic Quad Tilt Rotor in airplane mode and low speed forward flight. Initial

results suggest the feasibility and potential of such an approach.

4.1 Introduction

It is a well known fact in the rotorcraft CFD community that high fidelity vortex

capturing and the subsequent body or blade vortex interaction is of utmost

importance and one of the most challenging aerodynamics problems in the design

of future advanced rotorcraft. The essential problem is one of numerical vortex
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diffusion. Unlike numerical shock smearing or oscillation, which only spreads

out or oscillates the shock but leaves the jump magnitude relatively unchanged,

numerical diffusion can make the vortex disappear entirely. In addition, a shock

is nonlinear and has a built-in steepening mechanism while a vortex is, like a

contact discontinuity, linear with no such mechanism. Mathematically, a shock

can be thought of as resembling a step function and a vortex as resembling

a delta function. While the problem of high resolution non-oscillatory shock

capturing has been basically solved since the 70’s, the same can not be said for

low-diffusion vortex capturing.

This chapter outlines the development of a true rotorcraft vortex capturing

method and presents results of fore-aft rotor and wing interaction for a Quad

Tilt Rotor (QTR) configuration. For simplicity, only the front and aft rotors

and rear wing are represented here to showcase the essential elements of the

technique. Future studies will include other secondary body components, which

are non-essential for the present purpose. Figure 3.15 in the last chapter shows

a half-span QTR-like model and its helical vortex-tracking (V.G.) grids used for

computational purposes while the top and front views in helicopter and propeller

mode are shown in Fig. 4.1. A possible overset grid system for the front and

aft rotors is also shown in Fig. 4.2. The rotors and wings (outer section of rear

wing) of this particular QTR are identical in scale to those of a V-22 tilt rotor.

A major aerodynamic issue of the QTR in forward flight is the interaction of

the aft rotor with the wake of the front rotor which could potentially result in

significant performance degradation and large vibratory loads on the aft rotor

and wing.

The work documented in this chapter has two objectives, i.e., to conduct a
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Figure 4.1: Top and front view of the proposed QTR.

Figure 4.2: QTR rotor-wing-vortex grid system.
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preliminary study of interactional aerodynamic phenomena unique to QTR in

particular and tilt rotors in general, and to develop automated vortex tracking

method that yields economical and high resolution vortices suitable for the study.

The work on 3D vortex tracking first started as an investigation of vortex tracking

in unsteady 2D BVI although the methods are very different. This 2D problem

is discussed in the next section as a precursor.

4.2 2D Blade Vortex Interaction

The 2D BVI problem is the simplest idealized model of the unsteady interaction

between a blade and a vortex and has been extensively studied in the last two

decades. It can be simulated with either unstructured or overset grids (which re-

quire hole cutting) and has steadily matured to the point where the computation

from first principles is not too expensive. Its accuracy requirement, however, is

still one of the most stringent because of the interaction of the vortex with a

possible shock.

The moving overset grids shown in Fig. 4.3 illustrate the effect of hole cutting

during BVI. The vortex region is discretized by two nested square Cartesian

grids (27×27 ∆x =0.095 for outer grid, 41×41 ∆x =0.025 inner grid). The

inner grid has a resolution of just four cells across the core. A grid system

with higher resolution as shown in Fig. 4.4 consists of two coarser outer grids

(25×25 ∆x =0.125, 31×31 ∆x =0.04) that move at the free-stream velocity and

a finer inner grid (25×25 ∆x =0.01667 with six cells across core) that tracks

the movement of the vortex and keeps it at the center. Time step size is kept

constant at 0.25% chord for a Mach no. = 0.8.
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Figure 4.3: Illustration of hole cutting in moving grids during BVI (double vortex

grids for lower resolution case).
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Figure 4.4: Triple vortex grids for higher resolution case. The grids contain

approximately equal number of points as that of the double grids.

Tracking is necessary since the vortex trajectory changes in the vicinity of

the airfoil before and after the interaction, and the innermost grid might not

be large enough to contain the entire core. However, the vortex profile lacks

a definite recognizable shape in this vicinity. The grid thus loses track of the

vortex in this region. When this happens, the vortex grid defaults to move at

the free stream velocity. When the vortex profile eventually reappears after the

interaction, the grid is hopefully in the immediate vicinity and able to recapture

it and places itself in the center of the vortex, provided that the vortex path has

not been too severely affected.

Moving the curvilinear grid of a solid body using grid metrics requires that

the connectivity be reestablished every time step. For the 2D Cartesian grid of a

vortex (no solid body grid) moving to the right, however, we can employ ‘moving

static grids’ in which the leftmost line is discarded and a rightmost line is added
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Figure 4.5: A moving static grid.

at the same time after the vortex has moved a distance equal to the grid spacing

∆x. This is schematically shown in Fig. 4.5. This way, connectivity needs to be

reestablished only once every few time steps depending on the value of ∆x. The

variables on the new added line are then interpolated from the optimum donor

cells.

This BVI problem consists of an O-grid (121×38) around a NACA 0012

airfoil at zero angle of attack in a freestream velocity of Mach 0.8. The non-

dimensional vortex strength is 0.2 with a tight core radius of 0.05 chord. The

vortex is initialized at −8 chords with a miss distance of −0.26 and −0.125.

The computation is terminated when the vortex is at +8 chords after 6400 time

steps. Elapsed CPU time on a 667 MHz Alpha processor is about 8 minutes for

a total point count of about 6800.

Figure 4.6 and 4.7 show the pressure contours before and after the interaction.

Results for both linear and cubic interpolation are shown. It is observed that

the interaction with the airfoil and shock distorts the vortex profile, resulting in

105



Figure 4.6: Pressure contour just before interaction.

higher vorticity on one side. The subsequent sinusoidal trajectory of the vortex is

probably due to this asymmetry and the associated rotation. This phenomenon

is also vaguely observable in the results obtained in [28]. The results with linear

interpolation in Fig. 4.7a also show the same phenomenon. The vortex is,

however, much more diffused, convecting slightly faster and rotating at a higher

period of 11 chords/rev. This figure clearly indicates the importance of high-

order interpolation of boundary values in a high gradient region.

The instantaneous pressure contours during BVI are displayed in Fig. 4.8

showing four snapshots of a movie. Several additional phenomena can be ob-

served in the movie besides that just described above:

- The λ-type shock formed during interaction is clearly visible.

- Acoustic waves are generated and dispersed (better captured in [28] with

adaptive mesh).

- The lift history curve shown in Fig. 4.10 indicates that the interaction has
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Figure 4.7: Pressure contours of distorted vortex after interaction.

107



-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

Figure 4.8: Instantaneous pressure contours during BVI.

a long lasting effect on the airfoil.

The same distortion effect is also observed in the decay of vortex peak-to-

peak velocity in Fig. 4.9a. Before interaction, differences in the linear and cubic

results are insignificant. The decay after interaction depends on the direction in

which it is measured. The sinusoidal curve in the figure is due to measurements

in the fixed horizontal direction as the vortex and its ‘lump’ rotates. Linear

interpolation results of the lower curve shows an increase in vortex diffusion of
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about 20% and an increase in the rotation period to 11 chords/rev (same as

obtained from Fig. 4.7). Note that cubic interpolation is important only during

the interaction in which large gradients exist. The erratic oscillation of the curve

in the airfoil region is meaningless since the vortex is not well defined there.

Results for the triple grid vortex in Fig. 4.9b shows that high-order inter-

polation is still important even in a high resolution BVI although the difference

is not as drastic as before. The pressure contours in Fig. 4.7c also shows di-

minished sign of distortion after about four to five chords behind the trailing

edge.

Although the 2D BVI problem has been extensively studied for a long pe-

riod and its basic phenomenon well understood, its CFD simulation from first

principles using different codes still yields inconsistent results (visible in lift mag-

nitude). Even results from the same code using various values of a parameter,

e.g., limiter, are visibly different. Figure 4.10 shows the lift and moment time

history of the airfoil generated using two different limiters. The general trend

is well captured. But they show discrepancies before and after the interaction.

The minimum Cl is the same at −0.185. This value has ranged from −0.18 to

−0.25 as reported by different researchers (e.g. [48], [27], [28]).

This discrepancy is likely due to the severe interaction of the two flow features

with high gradients, i.e., shock and vortex, in the vicinity of the airfoil and its

associated numerical sensitivity. Undoubtedly more work is needed to clarify this

issue. This fundamental 2D BVI problem is sophisticated but simple enough to

provide an excellent test bed for high accuracy check of a compressible CFD

code.

One approximate indication of the performance of a connectivity method is
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Figure 4.9: Decay of vortex peak-to-peak velocity.
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Figure 4.10: Lift and moment time history of an airfoil in a 2D BVI for two

different limiters. M∞ = 0.8, Γ/(V∞c) = −0.2, yv = −0.26, rc = 0.05.
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the CPU time needed for connectivity establishment relative to the flow solver

time. This, of course, depends on the type of solver employed, location and

number of grids etc. For the present 2D BVI problem, this figure is about 15%,

an acceptable performance.

4.3 CoRotating Vortices

Before investigating the more complicated tracking of helical vortices, it is in-

structive to briefly study the results and test the method for a simpler dual vortex

case without any vortex-generating body. This ideal steady state problem with

two co-rotating vortices, which is the result of their mutual swirl effect, would be

investigated in this section. The vortices are initialized upstream as boundary

condition. Their core radius rc is 0.05 and their centers are 6rc apart. Mach

number and non-dimensional vortex strength are 0.25 and 0.2 respectively. The

dual purpose of this study is the employment of a pair of highly concentrated

high resolution grids to track the vortices as they rotate around each other to

form a double helix and to observe the numerical diffusion. The tracking pro-

cedure and the grid system are similar to that for a rotor in the next section

except that the vortices here are essentially straight.

The pair of doubly-nested vortex grids with small but high-resolution cores

are initially straight and parallel (see bottom right of Fig. 4.11 for a cross

section). Gradually they adapt to become a double helix (top of Fig. 4.11)

as the co-rotating vortices are being tracked. The system of 5 grids in Fig.

4.11 contains a total of 3165 points per axial section (= 21×21×2 + 23×23×2

+ 35×35). Compared with a conventional approach using non-tracking static
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Figure 4.11: Top − ‘Spaghetti’-like adapted double helix inner vortex tracking

grids. Bottom − Axial distance scale contracted (left) and doubly-nested vortex

grids (core ∆s=0.01) (right). rc=0.05.

113



Z

X

Y

,
axial distance

pr
es

su
re

100 200 300
0.9

0.92

0.94

0.96

0.98

1

Non-dimensional pressure at vortex center

Figure 4.12: Pressure contour near far end and numerical diffusion of pressure

at vortex core.

grids with similar resolution, the point count of this grid design is significantly

lower. The background grid not shown is a static rectangular block (35×35)

with a uniformly spaced square core stretched in the transverse directions. The

core ∆s in the transverse and axial directions are 0.01 and 0.24 respectively. For

about 380 axial sections, the total number of points is 1.2 million.

The vortices are tracked and grids adapted until the flow is fully developed.

The pressure contour at the far end and numerical diffusion of the vortices (as

measured by the pressure at the vortex core) are shown in 4.12. It can be seen

that the diffusion is practically nil after a tracking distance of about 1500 core

radii or about 330 axial ∆s. Since the resolution of 10 grid cells across the core

is more than sufficient, this result is within expectation. The significance of this

study lies in the economy of the computation due to the use of vortex track-

ing. The success in this mostly straight line case, however, does not necessarily

guarantee its feasibility in helical tracking, which would be investigated next.
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4.4 Vortex Tracking Methodology

Despite its promise and potentially high payoff, vortex tracking technology in

CFD for rotorcraft aerodynamics is still relatively new and uncommon, espe-

cially for the method given here. The central idea underlying this computational

methodology is deceptively simple. The difficulty lies in the implementation of

this idea in a codable and robust algorithm. The heart of the method is a set of

long helical vortex tracking grids with high grid density at the central core where

each helical vortex trajectory resides at the completion of the grid adaptation

(or tracking) process.

4.4.1 Vortex Grid Generation

The generation of the initial grid system for a helical vortex starts from at least

2 (as used in this work), but not more than 3, nested and mildly stretched 2D

Cartesian grids (21×21 points with 1.15 stretching factor for the innermost grid).

Three grids are usually preferable for problems with strong interaction such as

hover. They are then extruded to become long helical ‘spaghetti’ grids. The

achieved resolution at the innermost grid can be very high (∆s of about 1% tip

chord or less) and yet requires only a very small number of points (300−400K

for one revolution of the grids).

Compared with nested grids, a single stretched grid has the drawbacks of

unnecessarily larger number of points and very high cell aspect ratio, of about

30:1 in our case, in the outer edge region. This can be reduced to a much milder

3:1 by using 3 nested grids, or 9:1 for 2 nested grids. Spreading out the clustered

points at the outer edge can also reduce the ratio but creates the problem of
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highly skewed cells at the corners. Another drawback is the lack of a transition

zone for grid resolution to decrease smoothly from the very fine square core to

the coarse background grid at the far end of the vortex grid. This problem is

made much less severe in nested grids by merely extruding each outer grid a

little further than the inner one. But perhaps the most important reason for

using nested grids is the possibility of faster tracking by using the coarser grid

for initial tracking and the finest grid for eventual fine tuning of the trajectory.

An axial spacing of about 20−25 times ∆s is found to be sufficient to capture

the vortex well. Anything much larger than that runs the risk of being too

dissipative for the vortex. For a 3-grid system, the two inner grids have the

same axial spacing, while the outer grid axial spacing is relaxed to 1.5 times

larger. Every 2D station of each grid is tilted so that it is orthogonal to the

direction of extrusion. The pitch distance of the initial helix can be reasonably

arbitrary (but preferably estimated from existing wake models if possible), since

the tracking process would gradually adapt the grid to align with the vortex

trajectory and keep it at the center.

Figure 4.13 shows one station of a nested 2-grid system and the hole caused

by and filled up with the innermost grid. All overset grids connectivity com-

putations are performed using the new approach explained in Chapter 3. This

code generates a set of holes in the grid system for the rotors and wings such as

that shown in Fig. 3.16.

The above vortex grid system compares very favorably in terms of number

of points and resolution with commonly used overset grids, such as those in [20]

which contain 64M points of mostly Cartesian background grids with 5% tip

chord resolution. More importantly, the axial axis of these helical tracking grids
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Figure 4.13: One station of the nested vortex grids and a hole at the center.

is approximately aligned with the direction of vortex convection. This eliminates

the problem of skewness between convection direction and a grid plane which is a

significant source of diffusion for Cartesian grids. In exchange for this advantage,

a special grid adaptation method for vortices, as outlined in the next section, is

necessary.

4.4.2 Grid Adaptation

The first 2D station of the helical tracking grids must be placed close to the

blade tip trailing edge as shown in Fig. 4.14 so that it is able to capture the

vortex. Otherwise the entire vortex would be missed completely.

Once a vortex is somewhere within the grid, the location of its center (tra-

jectory) at every nth 2D station is easily determined by testing for the minimum

pressure (or maximum vorticity). These offset distances from the grid center

(in terms of number of ∆s of the square core) for all the in-between stations

are interpolated from a cubic interpolant to maintain a grid smoothness of at
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Figure 4.14: One end of the nested vortex grid system is placed at the blade tip

trailing edge to capture the vortex. A slice of the semi-circular tip-cap grid is

also shown.

least C1. Naturally they can not be whole numbers of ∆s and the vortex at

these in-between stations may not be exactly at the center. The grid is sub-

sequently adapted according to these offset distances. The increasing spacing

in the transversely stretched tracking grids is taken into account in determin-

ing these distances. The two geometric parameters adjusted by the adaptation

process are the radial and pitch distance.

Solution values at the new locations after adaptation can either be inter-

polated from other grids or remain unchanged before they are time-marched

again. The latter option may need a little longer time to converge before the

next adaptation step.

With an inexact initial estimate of the trajectory, part of the vortex down-

stream is likely to be outside the grid. No guidance is available to adapt this part
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of the grid. The amount of offset distance to adapt is then linearly extrapolated

for the first such test station. The rest can be taken to be either the same as this

first one or extrapolated again. A faster way is to truncate the grid temporarily

at a certain preset distance downstream of the location where the vortex leaves

the grid. This last option is especially attractive for poor initial estimate of the

trajectory.

4.4.3 Frozen Grids

The above grid adaptation process involves multiple steps as more and more of

the vortex is captured at the center of the grid. Each step lasts as long as it

takes for the vortex to emerge closer to the grid center and stabilize. This takes

thousands of iterations. The complete capture of the vortex (from several to

a dozen or more such steps depending on how good the initial estimate of the

trajectory is) can thus be very time consuming even though the total number

of points has been drastically reduced by using vortex grids. Traditional meth-

ods of convergence acceleration can only reduce CPU time to a certain extent.

Further acceleration requires the use of multiple stages of different ‘frozen grids’

that can be conveniently implemented with overset grids (whether structured or

unstructured).

Frozen grids can only be used for steady state problems and is based on the

premise that grids with relatively little solution change and flow activity can be

frozen during most of the adaptation process. That implies all except the outer

vortex grids used for tracking the trajectory. CPU time for the adaptation can

be drastically reduced (about 70−80% for the case in this work). They must be,

of course, unfrozen at the last stage. There is plenty of room for the design of
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different combinations of frozen grids.

Since they are larger and have square cores fine enough to capture the vortex

(though not as sharp), the outer vortex grids are used for tracking purposes

initially while the inner vortex grids are frozen. They remain frozen until the

last adaptation stage is completed. The inner grids can then be used for fine

tuning the trajectory. It was observed that without the fine tuning, the accuracy

of the captured inner vortex trajectory is 0−2 grid spacings (or 0−2% ctip), which

for many purposes is accurate enough.

4.4.4 Convergence and Vortex Formation

Obtaining a converged solution and capturing the vortices using the slender

vortex grids is much harder compared with simply refining the wake grids in the

background (which can be prohibitively expensive). It is not sufficient to use

thrust or other integrated quantities to determine if convergence is reached. The

vortex is a very demanding flow feature that does not form and settle as quickly

and easily as the integrated quantities. This is especially true the further away

it is from the tip trailing edge where it is generated.

Vortex at any section along the grid can only form after those preceding it.

As time progresses from quiescent flow, the tip vortex gradually strengthens it-

self and stabilizes starting from the blade tip trailing edge. This process then

propagates along the vortex grid. Because the initial estimate of the trajec-

tory is generally not very accurate, the vortex would gradually deviate further

from the grid center until it leaves the grid and disappears entirely. A residual

history curve that is still going sideways instead of dropping off on its way to

machine zero most often indicates the vortex is still actively forming somewhere
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Figure 4.15: Residual history of component grids. All except vortex grids exhibit

approximately linear decrease.

downstream even though the integrated quantities have long since converged.

Fig. 4.15 shows a typical example of the convergence history of individual

grids before adaptation. As opposed to the curves for other near-body or off-

body background grids which drop off more or less linearly, those for the vortex

grids level off after an initial drop. They remain leveled for a while before diving

precipitously, often passing the curves for the other grids, racing towards machine

zero. The extent of the horizontal movement depends on grid resolution. The

residual curve for the inner vortex grid can go sideways for tens of thousands of

iterations before the plunge, giving an initial impression that it has stagnated.

Fig. 4.16 depicts the convergence history for several adaptation stages. The

initial estimate of the trajectory in this case is quite good, as can be inferred

from the small number of adaptation steps. The convergence is faster the closer
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Figure 4.16: Residual history of outer vortex grid during the adaptation steps.

the entire vortex is to the grid center as shown in the last few steps in the figure

(the very quick last step is not shown). Another observation is worth noting

here. The final capture of the vortex can still be several adaptation steps away

even when the entire vortex is already inside the outer grid and within close

range of the center. This is possibly due to the fact that the exact trajectory of

the vortex is still not definitely known when a sizable part of it is still outside

the fine square core of the grid.

4.4.5 Adaptation Automation

The above adaptation process can be automated by first determining if the

vortices have settled before adapting the grids. This can be done by checking

the locations of the vortex centers at every nth station after a preset number of

iterations. If they remain unchanged for three or four such tests, it is assumed
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that they have all settled and adaptation is activated. Numerous examinations

of the convergence curve also confirm that the residual at this point is about half

way through the final ‘plunging’ phase as can be seen in Fig. 4.16.

4.5 Demonstration of Vortex Tracking

Examples in this chapter are computed in quasi-steady state. This is a state

in which the effect of rotation is simulated but not the physical rotation itself.

In a real experiment, rotational effect can be obtained simply by rotating the

blades. In a computational simulation, however, this effect is obtained from

the combination of two separate steps, namely, the rotation of the blade grid

and the addition of a grid velocity term in the flow equation. Without the

latter, the blade would move but no rotation would be felt. Quasi-steady state

is the state in which the former is omitted. It can not be exactly replicated in

a real experiment because these two steps are really inseparable. It can only

be thought of as a frozen moment in time, and the computation is marching in

time towards that fictitious moment. This is an example of the general ability

of computational science to simulate a phenomenon either not realizable or too

difficult to perform in an experiment. Quasi-steady state eases the process of

vortex capturing and provides an accurate starting state to initiate the unsteady

case with rotation.

The underlying flow equation in the simulation is inviscid to ensure that any

vortex dissipation detected is numerical in origin. While every grid runs with its

own global time step, this value is different for different grids. Towards the end

of convergence, the same time step of ∆ψ = 0.0625◦ is used throughout.
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NACA00xx airfoil sections are assumed for both the blades and wings. Blade

twist distribution is a quadratic curve fit of the bilinear distribution of the origi-

nal blade, with a total twist of 40◦. Thickness and chord length at the tip are 9%

and 22 in. respectively. The blades are given a precone angle of 2.75◦. The wings

have a dihedral of 3.5◦, a forward sweep of 6◦ and a chord of 100 inches. These

parameters for the rotors and wings (outer section of rear wing) are identical to

those for the V-22 tilt rotor. In order to minimize the total number of points,

O-H grids have been used throughout. These are blunted at the trailing edge

to eliminate the O-grid singularity and smoothen the periodicity condition. To

further reduce time to insight, several components deemed more secondary for

vortex capturing have been omitted. These include engine nacelles and spinner,

fuselage and, in some cases, front wing. Two background grids, one Cartesian for

near-field (with a coarse ∆s = 0.45 ctip) and one stretched Cartesian for far-field,

connect all the component grids together.

The two rotors are 53◦ out of phase and positioned such that the front vortices

do not hit other components directly in order to avoid severe interaction. A

vortex in a direct hit, such as that through the wing, can only be accurately

captured in an unsteady rotating case (this is discussed at the end of the chapter).

Freestream Mach number and temperature are 0.445 and −2.8◦C respectively,

which are taken from Meakin [76] for a V-22 forward flight simulation. With

a rotational speed of 333 rpm and a radius of 19 ft, this yields an effective tip

Mach number of 0.76. The rotational speed is increased to 397 rpm for hover or

any flight condition in the transition zone.

Parasite drag is estimated from the equivalent flat plate area of 54 ft2, as

suggested in [41], and an assumed air density of 0.0015 slug/ft3 at an alti-
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tude of 14,930 ft to be about 9,378 lb, or 0.0476 when non-dimensionalized

by 1

2
ρ∞V

2
∞
Arotor (which is really flat plate area / rotor area). For this drag, the

required average forward thrust on each of the 12 blades is 780 lb (or 0.0040).

This can be obtained by setting the pitch angle at the tip to about 43.3◦ (or

46.4◦ at 75% R). For the same cruise condition, the collective pitch angle in [76]

was found to be 39◦ at the tip (45.1◦ at 75% R). The higher pitch angle obtained

in this thesis is expected considering the use of symmetric NACA00xx instead of

the cambered XN-series airfoils. The baseline case studied here has a tip angle

of 45◦. This results in a thrust about 2.3 times higher and a shock at the blade

tip that is extended inboard to a radial distance of r ≃ 0.8.

Several different basic body and grid configurations are set up to study the

unique aerodynamic problem of QTR in forward flight. These include front

rotor only, front-aft rotor pair and front-aft rotor pair with rear wing, all with or

without vortex tracking grids. Collective angles at the tip for these cases are set

to 43◦, 44◦ and 45◦. A minor study of grid refinement of the background grids

has also been conducted, but the results are inconclusive as of this writing and

will be left to future work.

4.5.1 Normal Force Distribution

Figure 4.17 shows the spanwise non-dimensionalized normal force (thrust) dis-

tribution on the three aft rotor blades with and without the rear wing. Azimuth

ψ in the figure is measured counter-clockwise front view from down position,

while the blades are rotating clock-wise. In this convention, the wing’s azimuth

is 270◦. The three curves without wing are not identical because the front and

rear rotors are not aligned and thus the flow is not axisymmetric.
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The presence of a wing closely behind the prop-rotor has a significant effect

on the blade thrust. Referring to the top figure, it is observed that blades that

are approaching the wing (from below) experience a beneficial influence in the

thrust, while those that are receding from it (above the wing) experience an

opposite effect. Similarly, this is also true for the front blades as shown in Fig.

4.18 for a lower tip collective pitch of 44◦. The thrust on each blade (area under

curve) is 0.00722, 0.00613 and 0.00371. The large difference of 50% between the

first and the last value is due to the negative blade load in the region inboard of

about r ≃ 0.5. It is noted here that the largest streamwise separation distance

between the preconed blade and the forward-swept wing is only 2.37 ctip at the

blade tip.

A clearer picture of this effect is the plot in Fig. 4.19 of the thrust on a blade

against azimuth angle. Results are given for 3 different tip collective pitch, 43◦,

44◦ and 45◦. The sharp jump at ∼270◦ reflects the presence of the wing. The

thrust in each case in the absence of the wing is indicated by the dash lines.

Comparison of spanwise normal force distribution on one of the rear rotor

blades (ψ = 310◦) with and without using vortex grids in the absence of a wing

is shown in Fig. 4.20. The difference is non-negligible despite only mild vortical

interaction with the blade. With the vortex grids, the normal force is lower

inboard and higher outboard of r ≃ 0.8, resulting in a net decrease in total

thrust of ∼3.5% from 0.00985 to 0.00951 as given in the table later.

4.5.2 Pressure Distribution

Figure 4.21 shows the corresponding chordwise pressure distribution of the aft

blade, with and without the rear wing and vortex grids, at ψ = 310◦ and r =
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Figure 4.17: Spanwise normal force distribution for the three aft rotor blades.

Top − with rear wing. Bottom − without rear wing. Tip collective pitch = 45◦.
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Figure 4.18: Spanwise normal force distribution for the three front rotor blades

with front wing. Tip collective pitch = 44◦.
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Figure 4.20: Spanwise normal force distribution with and without vortex grids.

0.88R, where the maximum normal force of Fig. 4.17 is. The sudden jump in Cp

at the far right is due to the blunt trailing edge of the O-H grid, resulting in a

stagnation point there. The larger thrust in the presence of the rear wing, which

is evident in the previous figures on normal force, is manifested in the higher

pressure at the bottom surface and lower pressure at the top. A small rearward

shift in Cp (0.02-0.03 ctip is also seen when vortex grids are used for tracking.

4.5.3 Blade Thrust

A comparison of some thrust values on the rear blades are given in Table 4.1.

In general, a difference of about 0−3% can be expected between cases with

and without vortex grids. The values in the presence of the rear wing differ

considerably from those without the wing (as in Fig. 4.17). Results in line 4

and 2 correspond to the top and bottom figures in Fig. 4.17 respectively.
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Figure 4.21: Pressure distribution at r = 0.88R with and without rear wing and

vortex grids.

Blade (ψ =) 70◦ 190◦ 310◦

No wing (no VG) 0.00920 0.00922 0.00985

No wing (VG) 0.00940 0.00899 0.00951

Wing (no VG) 0.00964 0.00832 0.01402

Wing (VG) 0.00970 0.00814 0.01422

Table 4.1: Comparison of forward thrust on the three rear rotor blades. VG −

vortex grid.
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4.5.4 Flow Field and Vortex Contour

Pressure contours of the six blade tip vortices at two streamwise sections im-

mediately behind each rotor are shown in Fig. 4.22 together with two enlarged

views. The straight lines at the blades and in the background represent grid sec-

tion boundaries. The almost constant contour line density of the front vortices

near the rear rotor shows that they have suffered very little diffusion. The miss

distance (closest encounter with the blade, refer to the bottom right of Fig. 4.22)

in this case is 1.39 ctip, at span- and chord-wise location of r = 0.780R and x =

0.158c on the upper surface. The strength of the interaction is thus considered

weak to mild. The closest distance between the front and rear vortices is 1.18

ctip.

4.5.5 Vortex Trajectory

We lastly examine the trajectory of a vortex as it passes and interacts with the

rear rotor and wing. Figure 4.23 plots the trajectory of the vortex that expe-

riences the closest blade encounter in terms of non-dimensional radial position

and deviation in the streamwise direction from initial estimated trajectory. The

azimuth angle is measured from the twist axis of the front blade. The results for

front rotor only (unimpeded convection) are also plotted for comparison and to

check for any path deviation due to the presence of the rear rotor-wing assembly.

The relative positions of the interacting components are more clearly depicted

in the two views of Fig. 4.24.

Neglecting the absolute values of the trajectories, it is observed that the two

paths in both plots of Fig. 4.23 are very close for most of the trajectory before

about 180◦. They start to deviate after that, indicating the vortex is being de-
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flected by the rear rotor-wing. The deflection from the unimpeded trajectory

at 199.5◦ is 18.4% and 11.4% ctip in the streamwise and radial direction respec-

tively. The closest distance to the rear blade and its vortex, given previously as

1.39 ctip and 1.18 ctip, occur at 149.5◦ and 168.3◦ azimuth respectively.

In contrast, the trajectories of the other two front vortices (not shown) expe-

rience almost no deviation caused by the presence of the rear rotor-wing. This

is easy to understand considering the nearest interacting body or vortex is more

than four ctip away.

As a first-order accuracy check of the vortex trajectory, it is noted that the

trajectory is determined only by the free stream and blade rotational velocity

since the effect of induced velocity and wake contraction in high speed propeller

mode is negligible. For M∞=0.445 and a∞=1081 ft/s (T∞=−2.8◦C), V∞ is 481

ft/s. In the time the vortex takes to travel a front-aft rotor separation distance

of 38.74 ft, it would have rotated 38.74’/481 × 333rpm/60 × 360◦ = 161◦. This

is confirmed both visually in 333rpm 60 visually in Fig. 4.24 and from the

adaptation result which gives a value of 160◦.

4.5.6 Accuracy of Interpolation

Accuracy of the CFD solution is determined partly by interpolation of the bound-

ary values. The interpolation accuracy requirement for the QTR vortex tracking

problem is much less critical than that for the 2D BVI with shock examined

in the last section in which solutions are interpolated from inside the vortex

and across the shock. Nevertheless, it is still important to conduct at least a

first-order check. This can be glimpsed through continuity of the solution and

its derivative across external boundaries and hole fringes. This is shown in the
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pressure contours of Fig. 4.25. The superimposed lines near the boundary of a

grid cut-section (thick lines) indicated by the arrows show that data have been

accurately transferred between the grids. The accuracy is seen to be slightly

lower at hole fringes where the grid is coarser. Some oscillations can also be ob-

served across the shock. This is due to the non-TVD nature of the BAP limiter.

The figure shows good overall interpolation accuracy.

4.6 Some Difficulties with Quasi-Steady Vortex

Tracking

As stated before, vortex capturing and grid adaptation is most conveniently

performed in quasi-steady state, which can be thought of as a frozen moment

in time. There are, however, some flight conditions for which capturing and

tracking in quasi-steady state may pose some difficulties. This section discusses

three such cases in QTR, namely, a) a direct hit through the front wing, b) a

weak vortex in forward flight and c) a very long vortex grid. While results from

the first and last case indicate some positive aspects, those from the second is

less so and does not immediately suggest any possible workaround.

4.6.1 Direct Hit

What happens to a vortex behind a solid body after passing through it in a quasi-

steady state? This is an interesting question because, as mentioned before, the

situation does not exactly exist in this state in the real world. It is, nonetheless,

important in the context of vortex tracking. Figure 4.26 shows such a case

with the same forward flight condition as in the previous section but a different

136



Y

X

Z

,

Y

X

Z

a) External boundary interpolation between blade and blade tip grids.

Y

X

Z

b) Interpolation at the hole fringe of a tip refinement grid from blade tip grid.

Figure 4.25: Accuracy of inter-grid interpolation. Solution/derivative continuity

in pressure contour at a blade tip.

137



front rotor azimuth such that one of the vortices passes right through the front

wing. Enlarged views of this vortex and another mostly freely convecting vortex

are shown in Fig. 4.27. For some yet unknown reasons, capturing the vortex

emerging from the other side of the front wing proves to be elusive. Repeated

adaptations of the vortex grid have failed to capture it definitively. The vortex

does not seem to be contented with settling down at the center of the grid.

A much better solution to this problem, if possible, is to avoid having to track

a vortex that has experienced such a direct hit. A quasi-steady state is, after all,

merely a starting condition for the simulation of a rotating rotor. Starting from a

different condition without such strong interaction is more desirable and equally

valid. Furthermore, a direct hit in the rotating case is a transient phenomenon

lasting only a short period of time and has no appreciable effect on the vorticity

downstream of the disrupted vortex. In some problems, however, finding an

initial geometric configuration free of such strong interaction may not be easy.

Another plausible solution that has not been attempted is tracking ‘on the

fly’, i.e., while the rotor is rotating. The initial condition can be either impulsive

or a quasi-steady state solution. The feasibility and solution behavior of this

method for an impulsive start is still unknown. Based on experience gained from

quasi-steady vortex tracking, this has its own merits if it works, two of which are

described and exemplified in this and the following subsection on weak vortex.

This is an area of research ripe for further investigation considering automated

vortex tracking for mild vortical interaction is now gradually maturing and in

routine use without significant user effort. It is, however, outside the scope of

this thesis and will be left for future study.
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(a) Front oblique view. Outer vortex grids of front

rotor not shown.

(b) Rear oblique view.

Figure 4.26: A direct hit with the front wing at Mach 0.445.
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(a) Vortex after direct hit.

(b) An unimpeded vortex.

Figure 4.27: Vortex pressure contours of the direct hit case.
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Figure 4.28: Tracking a weak vortex at Mach 0.1 (µ = 0.137), nacelle tilt = 30◦.

Front view of grids for rear rotor/wing. Outer vortex grids not shown.

4.6.2 Weak Vortex

Spanwise loading on a rotating blade at certain azimuths in an edgewise forward

flight may have a profile that peaks much further inboard than that in an axial

flight condition. The loading at the tip in such a profile is usually small. In

a quasi-steady state, this results in a weak or no vortex generated at the tip.

Tracking such a weak vortex is likely to be more difficult and unreliable due

to a relatively noisier background. The problem is particularly acute further

downstream where the vortex is more diffused. Vortex tracking, if possible at

all, may then increasingly require repeated user intervention for a successful

capture.

Figure 4.28 shows such a case for the rear rotor-wing assembly in forward
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(a) Pressure contour of the 3 vortices at a cut sec-

tion indicated by the vertical line in the previous

figure shows one of them is weak.

(b) Spanwise loading on the blades also indicates a

small loading at the tip for the weak vortex.

Figure 4.29: A weak vortex from a blade on the retreating side.
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flight of 64 knots (Mach number = 0.1, µ = 0.137). Rotor tilt is 30◦. This

nacelle incidence lies somewhere in the middle of the upper and lower limits for

conversion protection for the V-22 tilt-rotor. The spanwise loading on one of the

blades, as shown in the figure, is seen to have a small loading at the tip even

though the total thrust on this blade is higher than the other two. It is also seen

from the vortex pressure contour that the weak vortex is barely strong enough

to be distinctly recognizable.

Again, this problem is only restricted to vortex tracking in quasi-steady state.

Similar to the above direct hit case, the problem is a transient phenomenon and

should be avoidable for tracking in an unsteady rotating case.

4.6.3 Long Vortex Grids

In low speed flight, vortices stay close to the rotor and other components for an

extended period of time because they are not being swept away as quickly. For

the study of interactional aerodynamics, this implies that a much longer vortex

needs to be captured than that required in high speed flight. A natural question

that arises is then how long can a vortex be tracked and how rapidly does it

decay? Another closely related question is how the computational cost is related

to vortex grid length?

To obtain a basic understanding, a single-bladed rotor in a forward speed

of µ = 0.137 (same as the above case) with a vortex grid of length extending

for more than 900◦ is examined. This grid length is equivalent to about 160

ctip. The converged results are shown in Fig. 4.30. It is seen from the figure of

the pressure contours that the vortex appears to remain sharp and suffer little

diffusion after such long convection. Figures for the decay in pressure at the
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center and peak-to-peak swirl velocity show that diffusion after about 2 1/2

revolutions is around 30%. This is a sufficiently small amount that should not

cause accuracy degradation in high fidelity vortex interactional aerodynamics.

The gradual rate of vortex decay appears to be steady and does not seem

to indicate any obstruction to the use of an even longer vortex grid. The only

impediment in a real application is computational cost, which increases non-

linearly with grid length. This is understandable since a traveling wave in the

solution after an adaptation would need more time iterations to traverse the

entire length, reflect off the ends of the grid and eventually settle down. This

problem manifests itself in the longer time required for convergence.

It should be noted here the potentially misleading comparison of the total

length of vortex convection as given here with that often cited for an axisym-

metric multi-bladed hovering rotor in which only a single blade is modeled with

periodic boundary conditions on the two opposite sides of a wedge-shaped grid.

For the latter case, a two-revolution convection for a 4-bladed rotor, for example,

is really only 2/number of blades = 1/2 revolution. There is no vortex convection

and thus diffusion for the other 1 1/2 revolutions since solutions on one periodic

boundary are directly injected into the other.

4.6.4 Numerical Sensitivity of Vortices

A significant problem with high-resolution vortex-tracking grids is that down-

stream trajectory is very sensitive to upstream results and certain numerical

parameters (i.e., limiter, order of accuracy, interpolant etc.). This implies that

a small disturbance or error upstream could be increasingly magnified down-

stream. Because this has a large effect on the predicted BVI which may occur at
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(a) Long vortex grid extends for about 900◦.
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(b) Pressure contour of vortex shows little diffusion.

Figure 4.30: Tracking a single long vortex at Mach 0.1 (µ = 0.137), nacelle tilt

= 8◦.
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Figure 4.31: Vortex diffusion with wake age.
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Case Time Integration Spatial accuracy Limiter Vortex interp.

Baseline Implicit O(1) 2nd-order BAP normal

C1 Implicit O(1) 3rd-order BAP normal

C2 Implicit O(1) 3rd-order none normal

C3 Explicit O(3) 3rd-order BAP normal

C4 Implicit O(1) 2nd-order BAP frm BackGr

C5 Implicit O(1) 2nd-order BAP frm BackGr

Table 4.2: Solver parameters (for background grids only) employed for trajectory

sensitivity study.

some distance from the blade tip, the solver must be capable of predicting the

upstream trajectory very accurately. In contrast, force related quantities such

as thrust, pressure etc., are not very sensitive to these parameters.

It is instructive to conduct a limited study on this sensitivity issue for a low

speed forward flight. The problem in Fig. 4.28 for a weak vortex is revisited and

used as a test problem with the difference that each vortex is now assigned three

levels of nested grids. It is re-computed here for different input parameters and

numerical schemes. The various options selected for this study are given in Table

4.2. Case C4 and C5 are the same except that all hole points of the background

grids (those inside bodies) in C5 are not updated every time step (i.e., dQ = 0.).

Note that this updating is irrelevant for explicit time integration.

Figure 4.32 shows the deviation in the trajectory of one of the three vor-

tices from the baseline result. Several parameters, e.g. time integration, spatial

accuracy, limiter, interpolant etc., are changed to gauge the sensitivity of the

predicted trajectory. It is observed that the choice of donor grids, i.e., the in-
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Figure 4.32: Deviation of predicted vortex trajectory from baseline.

terpolant, for the boundary points has the largest effect on the downstream

trajectory (C4 and C5). The deviation from the baseline result is 0.6 tip chord

after about one revolution. Temporal and spatial order have a much smaller

effect of < 0.1 chord as indicated by the two curves at the bottom (C1 and C3).

Comparison between C4 and C5 (top two curves) also shows that updating the

hole points of the background grids has only a moderate effect far downstream

after the first revolution.
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Chapter 5

Conclusion

This thesis has developed two new numerical techniques that are very useful in

the simulation of high fidelity vortex capturing and vortical interactional aerody-

namics for rotorcraft. The first is a simple, general and fundamentally different

approach to the problem of overset grids connectivity for the numerical solu-

tions of PDE. The second is a technique to automatically capture and track

rotating vortices and subsequent vortical interactions using very-high resolution

yet economical nested helical grids. While the underlying problem in the former

is fundamental and of general interest to computational science, the latter is

specific to problems in rotorcraft CFD and is still in its infancy.

Some of the major conclusions in this thesis are summarized in the following.

5.1 Overset Grids Connectivity

1) Of the several advantages of the IHC overset grids connectivity concept given

in this thesis, the most significant is its inherent simplicity. This results in a

compact algorithm with about an order of magnitude lower count of source line

of code (SLOC) compared with existing codes. More importantly, the simplicity
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increases robustness through more automation and by avoiding extra code logic

to handle new exceptions.

2) Holes in the grids that overlap with bodies of arbitrary shape are not

explicitly cut in the algorithm. This explicit hole cutting process is the most

difficult step in the existing approach. Holes arise naturally as a by-product of

the cell size comparison process. They are also inherently optimum for numerical

accuracy without requiring another step in the routine.

3) Mostly because of the absence of any required overhead in the hole cutting

and donor cell searching routines, the execution speed of the IHC code, after

limited comparison with several existing codes, is 3-10 times faster in the first

time step. However, similar executions for subsequent time steps in a moving

grid problem are much faster for all codes because the starting shape and extent

of the holes are already known and the change at every time step is incremental.

The IHC speed advantage in all subsequent time steps is thus understandably

diminished.

4) Difficulty of the IHC algorithm at body surface is inherently non-existent

and no user input or hole-cutting expertise is required. This increases robustness

and is especially important for unsteady moving body cases where it would be

impossible to check and modify input at each time step.

5) All tested problems thus far indicate that this new concept does not seem

to have any apparent comparative disadvantage or deficiency.

6) High-order (cubic) monotone interpolation for boundary points, which is

still uncommon among existing overset CFD codes, carries a disproportionately

higher cost (4-6 times on the Cray X1E depending on the relative number of

boundary points) than the more common linear interpolant. However, the cost
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could be justified in cases where the interpolation point is near a vortex core and

vortex preservation is important.

5.2 2D Blade Vortex Interaction

A simulation of the well-investigated unsteady 2D BVI problem using vortex

tracking grids was performed on a NACA 0012 airfoil and a vortex with a non-

dimensional strength of 0.2 and a core radius of 0.05 chord. This acts as an

initial test bed of vortex tracking for the general 3D implementation.

1) This problem can now be simulated at a sufficiently low cost of only 8

minutes on the Alpha 667 MHz processor using overset vortex grids such that

various parametric studies (various limiters, time integration schemes, oscillating

airfoils etc.) can be conveniently performed for an in depth investigation of this

problem.

2) The interpolation order of accuracy and monotonicity was found to be crit-

ically important for the preservation of the vortex structure after the interaction

with the airfoil. Cubic interpolation is able to clearly capture the distorted vor-

tex profile which the linear interpolation almost completely misses. The latter

also results in a predicted vortex swirl velocity that is about 25-30% lower.

3) The salient features of the problem were well captured. These include the

λ-type shock, acoustic wave propagation, vortex distortion due to interaction

with airfoil and long duration of the after-effect.

4) Reasonable agreement was achieved with experimental measurement of

instantaneous lift and moment history as well as other qualitative flow features.

5) The calculated minimum lift coefficient (and Cl during and after inter-
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action), remains a sensitive quantity of questionable accuracy. This value is

calculated to be 0.185 here, and ranges from 0.18 to 0.25 as reported by different

researchers.

6) The most glaring issue is the accuracy of the shock-vortex interaction and

the inconsistency and sensitivity of the results as reported by various researchers,

although the trends are in reasonable agreement.

7) Cl is found to be quite sensitive when comparing the results using two

different parameters, namely minmod and the higher-order UNO limiters. The

Cl with minmod is about 15% higher when the vortex is two chords downstream

and 10% lower when it is two chords upstream of the leading edge.

8) The multiple holes in the 3- or 4-grid system for this 2D problem are found

to be optimally cut at all instances using the new IHC connectivity approach.

In addition, the contour lines are also smooth across the hole boundaries.

9) This 2D BVI problem provides an excellent testbed for checking the high

accuracy of a compressible flow solver because of its geometric simplicity and

the presence and intense interaction of a shock and a vortex.

5.3 Vortex Tracking in Rotorcraft CFD

A half-span Quad-Tilt-Rotor-like configuration serves as the platform for the

development, testing and investigation of automated vortex tracking. All geo-

metric dimensions (except airfoil sections) are taken from the V-22 tilt-rotor.

The tracking of a pair of co-rotating vortices is also being tested for robustness.

1) Initial study of vortex tracking using specially designed long nested vortex

grids suggests its feasibility as a practical investigative tool.
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2) The most immediate problem in the development of a practical vortex

tracking methodology that was successfully solved in this work is the automation

of the tracking process. Tracking the vortex and adapting their grids manually is

very labor intensive and requires frequent user attention. The automated process

devised in this thesis works fine for weak to mild vortical interaction without any

user intervention. This may need minor modification for strong interaction.

3) The difficulty of vortex tracking lies in the implementation and its related

issues such as, among others, grid adaptation, unambiguous vortex detection,

vortex convergence, tracking automation and adaptation acceleration. Some

of these were not anticipated at the outset. They arised in the course of in-

vestigation of the initial failures of this methodology. Implementation of this

methodology for mild vortical interactions in quasi-steady state is successful.

4) The tracking of a pair of co-rotating vortices and their grid adaptation,

which was basically a 2D process for a cross section, were performed without

major difficulty. The vortices were very well preserved with practically no decay

after a convection distance of 1500 core radii, except that at that distance they

were showing some signs of instability.

5) Vortex tracking was demonstrated on the front/aft-rotor interactional

aerodynamics of a Quad-Tilt-Rotor-like aircraft in a steady high speed forward

flight of Mach 0.445. All six blade tip vortices from the front-aft rotor pair were

simultaneously and automatically tracked and captured in quasi-steady state. A

mild interaction of a front vortex with a rear blade was simulated and the vortex

trajectory was visibly deflected 0.2 ctip by this interaction.

6) Expectedly, the pitch angle of 46.4◦ at 75% R for a steady flight of Mach

0.445 was slightly higher than the published results of 45.1◦ produced by OVER-
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FLOW using cambered XN-series instead of the symmetric NACA00xx airfoils

used in this work.

7) As a first check of tracking accuracy, vortex trajectory extracted from

the adaptation result is consistent with that calculated from the combined free

stream and blade tip rotational velocity of Mach 0.445 and 663 ft/s respectively.

8) Interpolation accuracy as revealed in the continuity and smoothness of the

solution and its derivative across grid boundaries was found to be satisfactory,

particularly at the blade tip and vortex core region.

9) The vortex tracking method was also tested to its limit in quasi-steady

state under three flight conditions that are difficult to simulate: i) a direct hit of

the vortex through the wing, ii) a weak vortex in edge-wise forward flight, and

iii) a very long vortex grid. In the case of i) a direct hit, the vortex downstream

of the hit, for some yet undetermined numerical reason, could not be perfectly

contained in the core even after repeated tracking.

10) Tracking a weak vortex in forward flight (ii) may become more prob-

lematic the further downstream the vortex is. Tracking it on the ‘fly’, a future

research extension, may possibly be the only solution.

11) The results from the test with very long vortex grids (iii) was encouraging.

With a very fine grid spacing of 1% ctip at the core, each nested vortex grid

contains only about 300K−500K points per revolution depending on the blade

aspect ratio. This core resolution is sufficient to preserve the vortex and reduce

diffusion to about 30% decay for a convection distance of 160 ctip or about 2.5

revolutions for the QTR rotor. This is achieved using a spatial scheme with

only 3rd-order accuracy, compared with 7th-order or higher generally agreed to

be necessary.
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12) For the numerical sensitivity study, the downstream trajectory of the

predicted high-resolution vortex is found to be very sensitive to some parameters,

the most significant of which is the interpolants for the boundary points of

the vortex grids. Its deviation is on the order of one tip chord length after

a convection distance of one revolution. Other parameters such as temporal and

spatial order of accuracy and non-updating of hole points have a smaller effect.

13) The most important and fundamental conclusion that can be drawn from

this work is that automated vortex tracking and interaction in rotorcraft CFD

is feasible and can be made practical, although some problems still need to be

successfully overcome. The methodology is still in its infancy. Considering the

potentially large payoff, it is now ripe for further research and development.

5.4 Key Contributions

The major contributions of this work are the development of two new numerical

techniques. The first one is a whole new approach to overset grids connectivity,

i.e., cutting holes in grids. It significantly alleviates two of the major deficiencies

in existing codes, namely complex logic/algorithm and high level of expertise

required of the users. This results in a simple, efficient and robust approach.

The second technique, automated vortex tracking, is specific to rotorcraft

CFD. Here the nested vortex grids design allow a very compact and high-

resolution core with only a small number of grid points. The grid axis is also

aligned with the vortex axis, thus minimizing the skewness problem. These ad-

vantages, however, come with the price of vortex tracking and its associated

difficulties some of which this work has successfully overcome.
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Another contribution in this work concerns piecewise cubic Hermitian inter-

polation in overset grids. This interpolant has proven to be significantly more

vortex-preserving than its more common linear counterpart.

5.5 Future Work

Overset Grids Connectivity

The new concept for overset grids connectivity given in this thesis is equally

applicable to unstructured grids. Two modifications to the algorithm, however,

are required. Stencil walking in the donor search step is no longer an increment

or decrement of one for the index. The neighboring cell number is available in

the cell connectivity array. Another modification is required when the search for

donor cell steps outside the computational domain or crosses into a solid body.

This is also checked from the cell connectivity array in a similar way. Since

unstructured grids is not absolutely necessary for vortex tracking, this extension

is placed lower in the priority list.

The calculation of interpolation coefficients using Newton-Raphson iterations

are relatively expensive. Efficiency of the connectivity code can be further im-

proved if initially only the cross and dot product test is used, without the inter-

polation coefficients, to determine the approximate indices of all possible donor

cells. The coefficients are calculated only after the best donor cell has been

identified. This requires some non-trivial rearrangement of the code logic.

Other planned work include:

-Automatic detection of untrimmed grids. When some region of a wall is

replaced or altered by a protrusion, the original body-conforming grid does not
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necessarily have to be redesigned. This grid, with part of the wall missing, is

now called an untrimmed grid. The new protruded wall (and its associated

grid) causes a hole in the untrimmed grid that extends all the way to the wall

surface surrounding the protrusion. The automatic detection of untrimmed grids

and the protruded wall grids is a more challenging problem that requires some

careful study and testing. It is also one of the last remaining hurdles for complete

transparency for problems with untrimmed grids. It is, however, not critical for

users who can visually identify these grids quickly.

-Increase robustness in the detection of highly concave boundaries. Stepping

out of a highly concave grid boundary in the search path does not necessarily

imply no donor cell is in the grid. Preferably, the code is able to cross the

gap (possibly through some ghost cells) to reach the other side and continue

the search. Similar to the above, this is another automatic geometric feature

identification. It is, however, more difficult to identify visually and specify as

special input.

-More test cases for documentation of robustness and efficiency. This is a

necessary step in order to increase the confidence level in the maturation of an

algorithm.

Vortex Tracking in Rotorcraft CFD

The most important and challenging future work for the vortex tracking method-

ology is the extension to unsteady rotating blades. Unlike other planned work

outlined in this section, it also has the most uncertain outcome. Experience

with quasi-steady state vortex tracking to date does not unambiguously reveal

the likelihood of success. The most immediate question is the possibility of cap-
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turing the vortex far downstream since it has been found that a downstream

vortex requires a more stable flow environment and a converging solution to

form and strengthen in a quasi-steady state. A related question is the effect of

time-varying grid metrics on the magnitude of vortex dissipation. But as men-

tioned in the last section of Chapter 4, this is probably the only way to overcome

some of the difficulties encountered in quasi-steady state vortex tracking. It is

also a major undertaking laden with uncertainties.

Another problem that needs more attention is the unambiguous detection of

the correct vortex when two vortices are in the same neighborhood. This problem

has been encountered in hover computation in which the vortex grid immediately

after the first blade passage mistakenly tracks the vortex from the wrong blade.

Visual detection and manual adjustment is only a temporary solution. This

problem is a subset of the more general issue of automated tracking for strong

vortical interaction in which either the vortex profile is occasionally but severely

distorted or its trajectory passes through a solid body.

To gain more confidence of the computation, grid independence of the solu-

tion is another issue to be confronted with. A minor study of grid refinement

of the two background grids has yielded inconclusive evidence. This, as well as

the refinement of the near-body grids, needs to be revisited and more carefully

studied in the near future.

Perhaps the most interesting future problem for research and study is vortical

interactional aerodynamics. This could be interaction with tail rotor, itself or

airframe under any flight condition. This problem can only be generally tackled

after the above problems are solved.

Lastly, the remaining issue of numerical accuracy in the 2D BVI problem of
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Chapter 3 must not be forgotten. Despite the simplicity of the problem setup

compared with other 3D problems, this issue is probably the most stringent

accuracy test for a compressible CFD code.

These possible future research topics are proposed on the basis of limited

experience to date with vortex tracking methodology. Other candidate problems

would almost certainly arise as more is learned about this methodology. It

can be seen from the above proposed work that vortex tracking is a rich and

young research topic in rotorcraft CFD providing many more years of challenging

research and study.
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