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Treatment of electrostatic interactions in simulations remains a topic of current

research. These interactions are present in most biomolecular simulations, and they

remain an expensive part of the simulation. Herein we explore the application of

local molecular field (LMF) theory to this problem. Local molecular field theory

splits the Coulomb potential 1/r into short-ranged and long-ranged components. The

short-ranged component may be treated explicitly in simulations and the long-ranged

component is contained in a mean-field-like average external electrostatic potential.

In this thesis, the derivations and approximations inherent in using the previously

developed LMF theory are explored, and connections to classical electrostatics are

made. Further the approach is justified for molecular systems. The application of

LMF theory to several systems is explored. First, a simple system of uniformly

charged walls with neutralizing counterions is treated via simulations using LMF

theory. We then explore systems involving molecular water at ambient conditions.

A simple approximation to LMF theory using only the short-ranged component of



1/r is quite powerful for bulk water. A full treatment using LMF theory extends the

validity of such spherical truncations to nonuniform systems. This thesis studies the

successful treatment of water confined between hydrophobic walls with and without

an applied electric field – a system which is a classic example of the failings of spherical

truncations in molecular simulations. Additional results exemplify the applicability of

LMF simulations to more molecularly realistic simulations. Connection is also made

between these simulations of confined water and a related theory of hydrophobicity

due to Lum, Chandler, and Weeks (1999).
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Chapter 1

Introduction

Molecular simulations have become an increasingly important contributor to scientific

study as computing power has grown and the availability of simulation packages de-

veloped by experts has increased. Appropriately designed simulations can add insight

into important phenomena such as protein folding and the behavior of cell membranes.

Nearly all classical molecular simulations include point charge interactions and the

associated computational challenges. Biomolecular force-fields like charmm [64] and

amber [25] quite generally assign effective point charges to interaction sites even in

neutral molecules to represent the charge separation of the quantum mechanical elec-

tron cloud along bonds. In addition, water molecules are increasingly being included

explicitly in these simulations in order to attain molecular-level detail. Effective point

charges are found in most standard water models. These play a dual role, describing

both the strong local forces leading to the hydrogen-bond network in liquid water and

the longer-ranged dipole-dipole interactions.

In a standard simulation involving biomolecular solutes in water or salt solution,

only a relatively small number of particles are considered explicitly in the simula-

tion cell. Periodic boundary conditions are typically used to represent the isotropic

nature of the solvent away from the solutes and away from the macroscopic fluid

container walls [31]. For a simple fluid like argon, intermolecular interactions decay
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(a) Minimum Image (b) All Images

Figure 1.1: Periodic boundary conditions for simulations are traditionally treated
differently depending on whether the particles are charged. The main simulation box
in the center is periodically replicated to better represent the isotropic nature of the
fluid. Thus there are multiple images of the black and grey particles. For typical
short-ranged interactions, the minimum image convention (a) is reasonable, and the
black particle in the main simulation cell interacts only with the nearest image of
the grey particle. In contrast, when charges are involved, the interaction of the black
particle with all periodic images (b) of the grey particle is typically included.

rapidly enough that only the minimum (closest) image of solvent particles needs to

be accounted for in most cases. As shown in Fig. 1.1(a), only the pair interaction

between one particle and the nearest image of another particle must be considered.

In such cases, the potential is cutoff at some radius Rc, and interactions beyond Rc

are neglected.

However Coulomb interactions are long-ranged and need special treatment. Ne-

glecting 1/r interactions beyond a cutoff radius Rc is not reasonable as seen from the

divergence of the integral of 1/r beyond any Rc, specifically,

lim
R→∞

∫ R

Rc

1

r
dr = lim

R→∞
2πr2

∣
∣
R

Rc
= ∞. (1.1)
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A strict implementation of periodic boundary conditions requires summation of in-

teractions from charges in all periodic images of the simulation cell out to some

macroscopic boundary as indicated in Fig. 1.1(b). This boundary is often taken to

be a sphere immersed in a conducting solution, and in general the final result de-

pends on that macroscopic boundary condition as well. Manners of carrying out such

periodic sums correctly [9, 19, 23, 24], of performing the sums in a more isotropic

fashion [55, 111], and of spherically truncating the 1/r interaction in an optimal

fashion [29, 43, 47, 50, 75, 96, 110, 115] remain topics of current research.

In this thesis, we explore a method called local molecular field (LMF) theory [14,

102, 105, 107] which also prescribes a smooth spherical cutoff of the 1/r interaction.

A typical and valid objection to such spherical truncations was convincingly estab-

lished by Feller et al. [28] over a decade ago. Using solely a spherical truncation

leads to quite pronounced errors in properties when water is simulated in nonuniform

geometries, such as in a slab between vapor layers or near a lipid bilayer. However,

the LMF approach also provides a mechanism to include any net additive effects of

the long-ranged forces; this is exactly what is lacking in typical spherical trunca-

tions [93]. Furthermore, LMF theory is a framework in which we may understand the

net electrostatic effects of those long-ranged interactions that are often disguised by

the step-by-step application of lattice summation techniques and the assignment of

discrete point charges in the models. If nothing else, since spherically-truncated 1/r

potentials are still used when lattice sum techinques are prohibitive [8, 18, 91], the

LMF perspective may allow scientists to understand when spherical truncations are

appropriate and when they are fraught with peril.
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In Ch. 2, a derivation of LMF theory is given. The basic equation of LMF theory

encompasses the net additive long-ranged forces and appears to be simply a mean-

field equation; however, there are specific, physical approximations applied to exact

statistical mechanical equations that lead to the LMF equation. We will explore

both those approximations and also preliminary applications of LMF theory to non-

charged systems. LMF theory begins by splitting the potential into short-ranged and

long-ranged components, and such a split is not obvious for 1/r. Chapter 2 explains

the virtues of our chosen Gaussian-smoothed split and mentions original applications

of this approach to Coulomb systems, largely due to Chen [13] and co-workers. The

material discussed in this chapter has been well-established by previous researchers

in the Weeks group; however, this discussion is crucial to understanding the basis for

most of the work that follows.

Chapter 3 discusses the first application of LMF theory for charge interactions to

Monte Carlo simulations of a nonuniform slab-like system – two uniformly charged

walls with point counterions in the intermediary space. This deceptively simple sys-

tem has been much studied since it exhibits like-charged attraction, a phenomenon

of biophysical interest [15, 36, 52, 71, 87]. After an introduction to the rich physics

of this simple system, we will discuss the application of LMF theory to simulations

of this system. The two-charged-wall system provides a good base for understanding

the application of LMF theory and how it ties in with the approximations made to

yield the LMF equation. Also, the basis for like-charged attraction in this system is

explored in the context of structural rearrangements and insight available from the

LMF treatment.
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In Ch. 4, the LMF equation for electrostatic interactions is shown to simply yield a

static electrostatic potential due to a Gaussian-smoothed equilibrium charge density.

Previous authors [13, 14] have certainly been aware of this statement; however, the

implications have become clearer with our application of LMF theory to molecular

systems. We rewrite the LMF equation as a rescaled electrostatic potential and

introduce a Gaussian-smoothed charge density. Then the connections between the

LMF approach and other approaches to electrostatics in simulations are also explored

in more detail. In particular, the lattice summation techniques used as benchmarks

in this thesis are discussed in Sect. 4.6.

The interpretation of the LMF equation as a rescaled electrostatic potential also

proves quite useful for standard site-site molecular models. In Ch. 5, derivations

of the LMF equation for such site-site models are presented. In the end, the LMF

equation remains equivalent to that proposed in Chs. 2 and 4. However further

physically-based approximations are required to yield the electrostatic LMF equation,

Eq. (4.9). Results for LMF theory applied to the molecular dynamics of a site-

site water model in bulk are also presented. These results simply follow by using

only the Gaussian-smoothed spherical truncation of 1/r prescribed by LMF theory.

The structure is quite accurate employing only this truncation, and the energy and

pressure are easily corrected with the aid of simple analytical formulae based on the

equivalent of the Stillinger-Lovett second moment condition for molecules. However,

as mentioned previously, such truncations are well-known to lead to inaccuracies in

nonuniform geometries.

In Ch. 6, the full LMF treatment is used to correctly treat molecular dynamics

5



simulations of water in nonuniform environments. The first system explored is water

confined between two smooth hydrophobic walls. The reasons for the failure of spher-

ical truncations are explained, and the success of a full LMF treatment of the system

is demonstrated. Failings of spherical truncations are evident only when examining

electrostatic properties of the system, such as the potential drop across the interfacial

region, which results from ordering of the surface dipoles. These electrostatic prop-

erties result from a delicate balance between the short-ranged hydrogen-bonding of

water molecules and the long-ranged opposition to severe dipolar ordering. The LMF

approach provides a natural way to disentangle these two effects, which both result

from the point charges on the water model.

When an electric field is applied normal to the confining walls instead, as in [112],

even the density profiles of atoms are completely incorrect using solely spherical trun-

cations. This system can also be used to calculate the dielectric constant of water,

using an analogy to a classical dielectric slab. As shown in Sect. 6.4, relatively sim-

ple solutions of the LMF equation correct the structure of the water molecules in an

applied field; however, accurate determination of the dielectric constant proved to be

more challenging owing to the inherently greater fluctuations in the charge density

profile for short-ranged systems. A heuristic ensemble-like approach proved useful in

surmounting these difficulties.

The treatment of water in slab geometries is extended to enclosing surfaces with

atomic-level detail [82] in the latter portion of Ch. 6. For all previous slab geometry

systems, solving the LMF equation required solving a simple one-dimensional self-

consistent equation since the density profile depends only on position normal to the
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walls. Adding in structural detail along the surface would suggest that the density

now depends on r rather than just z. However, analysis of simulation results shows

that while the density does depend on r, the Gaussian-smoothing of the charge density

inherent in the LMF approach actually makes a one-dimensional equation quite a good

approximation. This result combined with the applicability of the LMF equation for

large site-site molecules shown in Ch. 5 strongly suggests that the LMF approach

will be relevant for slab systems of biomolecular interest such as membranes.

In Ch. 7, some connections are also made with a standard theory for hydrophobic-

ity developed by Lum, Chandler, and Weeks [62] (LCW). The LCW theory is related

to LMF theory, using an alternate treatment developed by Weeks [102]. We then

explore some observations based on the application of LMF theory to simulations of

water between hydrophobic walls that may be useful in understanding results that

contradict LCW conclusions and in improving on the LCW approach. In particular,

the conjecture of LCW that water near a hydrophobic surface may be viewed as a

shifted liquid-vapor interface has been controversial as researchers seek to identify a

“vapor” layer. LMF analysis of forces exerted on water molecules near hydrophobic

walls highlights how the physical framework of LCW theory could be made more

quantitative using simulation data, but this research is a work in progress.

Much of the work in this thesis has very natural extensions and interesting further

questions. Chapter 8 concludes this thesis and outlines some of these future directions.

Also, several appendices at the end touch on subjects that were useful in finding

various results in the thesis but might otherwise interrupt the logical flow of the main

results presented. The reader’s attention is directed to them where appropriate.
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Chapter 2

Local Molecular Field Theory

Local molecular field theory will be applied primarily to charge interactions. How-

ever, the derivation is quite general. Here, we review the derivation of LMF theory

for a single-component system with pair interactions w(r) and an external poten-

tial energy surface φ(r). We will use Lennard-Jones (LJ) interactions as an initial

example, following the original application of LMF theory. Then the technique as

applied to simple Coulomb systems is described. These are all developments in LMF

theory attributable to previous researchers in the field as reviewed by Weeks [102]

and furthered for Coulomb systems as initially described by Chen, Kaur, and Weeks

[14] and later extended by Chen and Weeks [15]. Thus this chapter is devoted not to

new results but rather to explanation of previously known results that will be used

extensively throughout the thesis. Also, since the final LMF equation appears to be

merely a mean-field equation, understanding the statistical mechanical roots of LMF

theory will be crucial in appreciating that the accurate results we obtain are due to

reasonable approximations based on an exact statistical mechanical framework be-

hind what might appear as a näıve mean-field ansatz. Furthermore, we will build on

this derivation later in Ch. 5 to justify the application of LMF theory to molecular

models, a focus of the latter half of this thesis.

The LMF formula may be derived for mixtures of particles labeled α, β, γ, and

8



so on, and interacting via wαβ(r) in various external potential energy surfaces φ(α)(r)

due to fixed charged objects [15]. In Ch. 4, we will explore this formulation to

reveal simpler connections of local molecular field theory to electrostatics. However

the basic assumptions of LMF theory are most evident through the discussion of a

single-component system, with the added benefit of substantially simpler notation.

Much of the following text is adapted from [85].

2.1 Motivation

The underlying idea of LMF theory is to obtain a mapping from a full system de-

scribed by pair potential w(r) between particles and an external potential energy func-

tion φ(r) acting on each particle individually to a mimic system defined by shorter-

ranged pair interactions u0(r) and a rescaled external potential energy function φR(r).

This may be summarized as

Full Mimic






w(r)

φ(r)







LMF−−→







u0(r)

φR(r)







.
(2.1)

We call the final combination a mimic system because we seek a system that captures

much relevant behavior of the full system with an alternate pair potential and a

modified external potential energy function. Further we seek this mapping to be

closed, in the sense that the mapping should not require any information about the

full system other than the original w(r) and φ(r). We also define the residual pair
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potential u1(r) such that

w(r) = u0(r) + u1(r). (2.2)

We may reasonably expect that some φR(r) could account for the neglected long-

ranged interactions u1(r), but we seek a more careful development of this intuition.

Certainly, the concept of mapping a pair interaction to a more short-ranged refer-

ence system is not a new idea. Thermodynamic perturbation theory begins with just

such a mapping [69]. The roots of LMF theory lie in the use of the so-called WCA

truncation of the Lennard-Jones (LJ) potential uLJ(r) due to Weeks, Chandler, and

Andersen [104]. The LJ potential is defined as

uLJ = 4εLJ

{(σLJ

r

)12

−
(σLJ

r

)6
}

, (2.3)

and the WCA core is defined as

u0(r) ≡ uWCA(r) =







uLJ(r) + εLJ if r ≤ r0,

0 if r > r0,

(2.4)

neglecting the purely attractive interactions

u1(r) ≡ uattr(r) =







−εLJ if r ≤ r0,

uLJ(r) if r > r0,

(2.5)

as shown in Fig. 2.1. The σLJ defines the length scale of the LJ potential and is the

position where the potential crosses zero, and εLJ defines the energy scale and the

depth of the potential well. This energy minimum is located at r0 ≡ 21/6σLJ.

Chandler, Weeks, and Andersen [12] observed that the structure of the LJ fluid

was reproduced much more succesfully by truncating and shifting the uLJ(r) potential
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Figure 2.1: The simple Lennard-Jones (LJ) pair potential, w(r), parametrized by
length scale σLJ and well depth εLJ may be split into a repulsive core u0(r) and an
attractive perturbation u1(r), following Weeks et al. [104].

at r0 to yield uWCA(r) rather than truncating uLJ(r) at σLJ as suggested by Barker

and Henderson [4]. The essence of this difference lies in that fact that the WCA

truncation preserves all the repulsive forces between particles, which are impulsive

in nature, and assumes that the remaining attractive forces cancel out and thus

have little impact on the structure in a dense fluid. A fluid with pair potentials

mapped from uLJ(r) to uWCA(r) is called a WCA fluid here. For a dense uniform

LJ fluid, the corresponding WCA fluid is a very reasonable approximation. However,

should the LJ fluid be placed in a nonuniform environment such as near a hard wall,

this approximation no longer holds. The LJ fluid has net attractive forces pulling

the surface particles towards the liquid phase which the WCA fluid does not have.

Furthermore, in general, WCA fluids have no liquid-vapor transition because there

are no attractive forces pulling them together.
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This, however, does not mean that the WCA short-ranged cores are irrelevant in

nonuniform situations. Rather, a method to include those net long-ranged forces, i.e.

LMF theory, must be employed. The basic idea will be splitting w(r) into u0(r) and

u1(r) such that u0(r) still encompasses the short-ranged forces and u1(r) is slowly-

varying over those forces. This idea is more generally applicable; therefore, for the

most part, we will express the derivation in terms of general pair potentials, but

we will use the LJ split to exemplify the approach after the initial derivation. This

approach may be historical in nature, but it does nicely emphasize the added advan-

tages we realize when using LMF theory to treat Coulomb interactions in lieu of LJ

interactions.

2.2 Exact Starting Point for LMF Theory

Beginning with the idea that the forces are the relevant physical interaction to con-

sider, the derivation of the LMF equation starts with an exact statistical mechanical

equation involving structure and forces, the Yvon-Born-Green (YBG) hierarchy of

equations [37, 69]. In one form, the first equation in the hierarchy1 reads

kBT ~∇ ln ρ(1) (r) = −~∇φ(r) −
∫

dr′ρ (r′|r) ~∇w (|r − r′|) . (2.6)

This equation maps the (singlet) density profile of the system, ρ(1) (r), to the force

due to an external potential energy surface, φ(r), and the convolution between the

1The determination of this equation from partition functions is relatively straightforward. Since

we will be applying LMF theory to mixtures and molecules in addition to single component fluids,

and those applicable YBG equations are far less available in textbooks, the derivation of Eq. (2.6)

and variants is presented in Appendix A.
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conditional singlet density, ρ (r′|r), and the force between particles. The conditional

singlet density ρ (r′|r) is defined as the density at position r′ given that a particle is

at r, and it may be defined mathematically as

ρ (r′|r) ≡ ρ(2)(r, r′)

ρ(r)
, (2.7)

where ρ(2)(r, r′) is the two-particle density associated with finding one particle at r

and another particle at r′.

The YBG hierarchy in general expresses each “degree” of particle density in terms

of density functions involving more particles. Thus, the single-particle density is de-

fined via a convolution of the two-particle density. Therefore, there are two difficulties

in solving the YBG equation. First of all, the density profile is defined in terms of the

even more complex conditional singlet density. Secondly, there is no obvious manner

to create a self-consistent loop to solve the equation.

Typical superposition closures of the YBG hierarchy resolve both difficulties si-

multaneously by approximating ρ (r′|r) ' ρ(1) (r′), leading to an equation where the

gradient over r can be interchanged with the integral in Eq. (2.6). However as

shown in Fig. 2.2, even for a bulk fluid, this is a very poor approximation for any

moderately dense liquid. Such an approximation neglects any excluded-volume or

specific-binding interactions. Thus, the usual superposition closure is generally very

inaccurate [57, 101]. The term ~∇ ln ρ(1) (r; [φ]) will be rapidly varying when φ(r) is

rapidly varying, and this function is determined from the convolution of two even

more rapidly-varying terms – ρ(r′|r; [φ]) and ~∇w (|r − r′|). Replacing the conditional

singlet density with the singlet density simplifies the problem but also effectively
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includes too many configurations where two particles are improbably close to each

other. Over-inclusion of these improbable configurations incorrectly includes large

repulsive forces in the integration and can lead to great inaccuracy.

|r−r’|

ρ

(r’|r)ρ

(r’)

Figure 2.2: Sketch showing the distinction between the singlet density ρ(r′) and the
conditional singlet density ρ(r′|r). The conditional singlet density encompasses at
least the excluded volume effects from a particle present at r.

As we have said previously, for LJ systems at least, there exists a good choice of

u0(r) that captures exactly those excluded-volume contributions. Thus, as a starting

point, we write the YBG equations for both the full sytem and an LMF-mapped

system as described by Eq. (2.1) as

kBT ~∇ ln ρ(1) (r; [φ]) = −~∇φ(r) −
∫

dr′ρ (r′|r; [φ]) ~∇w (|r − r′|) ,

kBT ~∇ ln ρ
(1)
R (r; [φR]) = −~∇φR(r) −

∫

dr′ρR (r′|r; [φR]) ~∇u0 (|r − r′|) . (2.8)

In these equations, the R subscript is meant indicate that we are now in a refer-

ence state defined by φR and u0(r). Further the density profiles and conditional

singlet densities are described as functionals of φ(r) and φR(r) to again emphasize

the rescaling of the external potential energy surface in the reference state.

Note that the two equations in Eq. (2.8) look quite similar. Substantial cancel-
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lation becomes possible if we postulate that we choose a φR such that

ρ(1)(r; [φ]) = ρ
(1)
R (r; [φR]). (2.9)

The simplest reference system, an ideal gas with u0(r) = 0, would solely require

choice of φR such that exp (−βφR(r)) = ρ(1) (r). Of course, at this point, it would

require knowledge of the full system density profile in order to do so. For more general

reference systems, this equation should be valid provided that the reference system

does not have larger cores than the full system, a requirement we would expect any

good mimic system to fulfill.

Currently, we do not have a manner to determine φR independently of the full

system, but we assume that we shall be able to achieve the equality in Eq. (2.9).

With this equality of singlet densities we may exactly write the difference between

the two equations in Eq. (2.8) as

−~∇φR(r) = −~∇φ(r) −
∫

dr′ρ (r′|r; [φ]) ~∇w(r) (|r − r′|)

+

∫

dr′ρR (r′|r; [φR]) ~∇u0 (|r − r′|) . (2.10)

The rapidly-varying terms involving ~∇ ln ρ(1) (r) have been eliminated. If we could

solve this equation, we would have a φR for the reference system that would exactly

yield the equality of singlet densities. However, different choices of u0(r) would gener-

ate different φR, and there is no guarantee that these reference systems would mimic

any other behavior of the full system aside from the singlet density and properties

that depend solely on this singlet density. Additionally, solving this equation entails

knowledge of the more complicated conditional singlet densities of both the reference

and the full systems, so it might seem that we have made no progress.
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2.3 Approximations to Yield the LMF Equation

The previous section contained exact statistical mechanical expressions, but from here

on, we will be making physically-motivated approximations to the exact equations.

These approximations will result in a final LMF equation below in Eq. (2.13) that

has a simple mean-field form. The derivation given below will elucidate that the

LMF equation is not a blind assertion of mean-field behavior but rather a valid and

accurate approximation, provided that we choose our mimic system carefully.

Recalling from Eq. (2.2) that

w(r) = u0(r) + u1(r),

the LMF derivation focuses on making several physically-reasonable approximations

based on choosing a short-ranged u0(r) that will induce the correct nearest-neighbor

structure, where the conditional singlet and singlet densities differ the most, and a

corresponding u1(r) that is slowly-varying on that length scale. When u0(r) and u1(r)

are chosen correctly, we expect a reference system of particles interacting via u0(r) in

a field φR(r) defined by LMF theory to mimic the behavior of the full system.

We seek a “special reference system” that we will call a “mimic system” that:

• Has a well-chosen u0(r) that mimics higher order correlations in the full system

as well as the singlet density profile.

• Can be treated via statistical mechanics without an a priori knowledge of the

full system other than φ(r) and w(r).

• Has an associated φR(r) that depends only on singlet density profiles of the
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mimic system and not on the more complex conditional singlet densities.

By making approximations towards these goals, the equality of densities expressed in

Eq. (2.9) will no longer hold exactly, and we will find an equation based on the exact

Eq. (2.10) that will also no longer be exact. But all will be accurately satisfied given

optimal choices of u0(r) and u1(r).

Rewriting Eq. (2.10) in a manner evocative of the approximations we shall make,

we find exactly

− ~∇φR(r) = −~∇φ(r) −
∫

dr′ρR(r′; [φ])~∇u1 (|r − r′|) (2.11a)

−
∫

dr′ [ρ(r′|r; [φ]) − ρR(r′|r; [φR])] ~∇u0 (|r − r′|) (2.11b)

−
∫

dr′ [ρ(r′|r; [φ]) − ρ(r′; [φ])] ~∇u1 (|r − r′|) . (2.11c)

Term (2.11a) of Eq. (2.11) depends only on the singlet density response of the

mimic system, and no information about the density response of the full system is

present. Thus if we could carefully choose u0(r) and u1(r) such that term (2.11b)

and term (2.11c) will be small, then term (2.11a) alone would define an equation for

the mimic system. In effect we will then have truncated the YBG hierarchy without

using problematic superposition closures.

To that end, we make two physically motivated approximations to Eq. (2.11):

1. Term (2.11b) probes the difference between the conditional singlet densities for

the full and mimic systems via convolution with ~∇u0(r). The integrand will be

quickly forced to zero at larger |r − r′| by the vanishing gradient of the short-

ranged u0(r). Since both the full and mimic systems have the same strong short-

ranged core forces with an appropriately-chosen u0(r), which should mainly
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determine the short-ranged part of the conditional densities, it seems plausi-

ble that with proper choice of u0(r), term (2.11b) can be neglected. This is

significantly better than any superposition approximation for the conditional

densities.

2. Term (2.11c) probes the difference between the conditional singlet density and

the singlet density of the full system. As explained previously with relation to

standard closures of the YBG equation, assuming their equality can be highly

problematic. However, we are saved by the fact that this difference is paired

with the term ~∇u1 (|r − r′|). Since u0(r) has been chosen to encompass core

interactions, u1(r) will be simultaneously slowly-varying over those nearest-

neighbor distances, so the associated force is essentially zero for exactly the

range of correlations where the conditional singlet density and singlet density

differ significantly. Thus we expect for many liquids that the integrand in

term (2.11c) may also be accurately approximated as zero.

These approximations are the basis not only for finding a closed equation for φR

but also for determining the appropriate u0(r) and u1(r) for which the solution of

the resulting LMF equation will lead to an accurate mimic system. When these

approximations are good, we expect the system prescribed by the LMF equation to

mimic behavior that depends either on the singlet density of the full system or on

the near range of the conditional singlet density of the full system.

Notably, the second approximation will fail when there are long-ranged pair corre-

lations such as capillary waves at surfaces or the divergence of the correlation length
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near the critical point. In those instances, the conditional singlet density will not

be approximately the same as the singlet density beyond nearest-neighbor distances.

However, we do expect this approximation to hold in charged systems away from the

critical point where there exist pair correlations that decay exponentially over those

nearest-neighbor interactions.

With these two approximations, we may write the LMF force equation

− ~∇φR(r) = −~∇φ(r) −
∫

dr′ρR(r′; [φR])~∇u1 (|r − r′|) . (2.12)

Since the integrand contains only the singlet density as a function of r′, we may take

the gradient with respect to r outside of the integral and integrate this force equation

over r to yield an equation involving energies. We find the general LMF equation

φR(r) = φ(r) +

∫

dr′ρR(r′; [φR])u1 (|r − r′|) + C, (2.13)

where the constant C will be set by boundary conditions. The form of this equation

highlights the connection with mean-field techniques. The rescaled potential energy

φR may be viewed as an averaging of the long-ranged portions of the pair potential

over the single particle density ρR(r). But the LMF equation is not simply a mean-

field ansatz. When we choose a u0(r) that incorporates enough of the w(r) interaction

to faithfully represent the core interactions, u1(r) is simultaneously slowly-varying

over these core interactions. In that case, self-consistent solution of Eq. (2.13) leads

to a short-ranged system that accurately mimics the nonuniform density, the pair

correlations, and thermodynamic quantities of the full system.

In the end, the mean-field equation stated in Eq. (2.13) will only be reasonable

when the approximations leading to its derivation are upheld. Therefore, u0(r) must
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reasonably encompass nearest-neighbor correlations and u1(r) must simultaneously

be slowly-varying over those correlations.

2.4 Application to a Nonuniform System

The LMF equation was derived in the context of a nonuniform fluid; in other words,

the particles experience not only interparticle interactions but simultaneously an ex-

ternal potential energy surface that destroys the translational symmetry of the fluid.

For LJ fluids, one of the motivations for deriving this equation was the failure of WCA

fluids to capture the range of wetting and drying behavior of LJ fluids near walls. De-

pending on the state of the LJ fluid and the attractions to the walls, full LJ particles

at the interface actually are pulled towards the bulk fluid and away from the wall,

thus “drying” the interface. As described in previous publications from the Weeks

group [53, 54, 106], this phenomenon is easily captured by the mean field in LMF

theory. The LMF equation also naturally encompasses the lacking attractive forces

necessary to form a liquid-vapor interface for a WCA fluid and the net attractive

forces from the bulk with the insertion of a hard sphere solute.

In the context of these nonuniform LJ systems we now will present some further

notation. We consider a LJ fluid next to a smoothed LJ wall, described by the external

potential energy function

φLJw(z) =
A

z9
− B

z3
, (2.14)

where A and B are greater than zero. This function represents the integrated inter-

action due to the smoothing of the standard LJ pair potential for a uniform fixed
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density occupying the x- and y-directions and the subspace z ∈ (−∞, 0). As done for

the LJ pair potential, we may split this external potential energy function into two

parts,

φ0(z) =







φLJw(z) − φLJw(z0) if z ≤ z0,

0 if z > z0.

φ1(z) =







φLJw(z0) if z ≤ z0,

φLJw(z) if z > z0.

(2.15)

As before when r0 was the position of the minimum for the LJ 12-6 potential, z0 will

be the position of the minimum for this LJwall potential.

Given these definitions we may rewrite the LMF mean-field equation, Eq. (2.13),

as

φR(r) = φ0(r) + φR1(r), (2.16)

with φR1 defined as the mean field result due to all long-ranged interactions,

φR1(r) = φ1(r) +

∫

dr′ρR(r′; [φR])u1 (|r − r′|) + C. (2.17)

Just as we have done for the pair interactions, the rescaled external potential en-

ergy function φR may now be viewed as composed of a short-ranged part φ0 and a

mean-field φR1 that encompasses all slowly-varying interactions. For nonuniform LJ

systems, φR1 is an important contributor since only for a very unique combination of

φ1 and u1(r) does φR1 cancel. However, the definition of φR1 is useful for understand-

ing the success of the WCA reference system in bulk and its failure at sufficiently low

densities.
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2.5 Application to a Uniform System

While LMF theory was originally derived for nonuniform systems, the LMF equation

is still applicable for uniform systems as well. The key lies in recognizing that the

radial distribution function g(r) often focused on in studying WCA systems may

also be exactly represented by the conditional singlet density [105, 107] based on the

equality

ρB g(|r − r′|) = ρ (r|r′) . (2.18)

Therefore by fixing one particle at the origin 0, we have

ρB g(r) = ρ (r|0) . (2.19)

The successful WCA results may be understood as fixing one LJ particle at the

origin, surrounding it with other LJ particles, and defining

φ(r) = uLJ(r), φ0 = u0(r), and φ1 = u1(r). (2.20)

When the WCA reference system works, this means that the long-ranged forces effec-

tively cancel and φR1 is negligibly small. Therefore φR is dominated by contributions

from φ0. We term the approximation of φR1 as zero the strong coupling approxi-

mation (SCA), because it works best in systems where the cores are quite strongly

interacting. As demonstrated by Weeks, Vollmayr, and Katsov [107], treating a lower

density WCA system simply requires the inclusion of a self-consistent φR1 in addition

to φ0 about one particle. With this, substantial improvement over pure WCA systems

was observed.
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However, it was also noted that for LJ systems, the LMF approach is not a catch-

all solution. At moderately low reduced densities such as ρ∗ = ρσ3
LJ = 0.1, deviation

between the self-consistent LMF solution and the true LJ system is observed. This

failure may understood in two ways. Firstly, for the given u0(r), we may no longer

approximate ρ(2) (r, r′) as ρ(1) (r) for distances from the particle at the origin where

~∇u1(r) 6' 0. Thus the approximation related to the neglect of term (2.11c) in deriving

the LMF equation is no longer as appropriate. As demonstrated by Fig. 2.3, this

failure may be displayed by a variety of three-particle chains that do not average out

in a spherical sense about the origin (due to the low density) and thus could not be

reasonably captured by simply the incorporation of a mean field centered about the

particle at the origin. The presence of the third particle in the chain is contingent on

the presence of the intermediary particle attracted to both it and the fixed particle.

Figure 2.3: Demonstration of configurations in a low density LJ liquid that would lead
to an inability to neglect the convolution of the long-ranged forces with the difference
between the singlet density and the conditional singlet density. The black particle is
meant to indicate the “fixed” particle necessary to apply full LMF theory to a bulk
simulation.

The first explanation also suggests a second perspective. If we could somehow
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increase the range of u0(r) then we might incorporate those chain interactions and

simultaneously make the neglect of term (2.11c) reasonable by making u1(r) simulta-

neously more slowly-varying over small distances. However, for LJ interactions, such

an approach is both nonintuitive and computationally nonadvantageous. Defining an

alternate u0(r) for uLJ is nonintuitive because the definition of short versus long is

set by the functional form of the pair potential and the physical idea that it is the

attractive forces that cancel in a dense, uniform LJ fluid. Further, it is computation-

ally nonadvantageous because the LJ interaction is already perfectly reasonable to

simulate. The utility of the LMF approach for LJ fluids instead lay in the possibil-

ity of developing theories around the hard-core-like WCA particles [53, 54]. These

observations are not true for Coulomb interactions.

2.6 Coulomb u0(r) and u1(r)

The Coulomb potential 1/r is a monotonically varying function, and the form of

the potential does not contain an inherent length scale. This may be viewed as a

difficulty of the application of LMF theory to Coulomb systems, and indeed figuring

out the appropriate partition of w(r) took researchers quite a while. But since there

is no fixed length scale in the potential, the split between short- and long-ranged, a

smoothed truncation length we will call σ, may be tailored to each situation. This is

not to imply a fitting parameter, but rather a consistency parameter. We expect that

choosing σ too small will result in poor and rapidly-varying results from full LMF

theory since the mean-field average will be over rapidly-varying interactions. However
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once σ reaches a σmin that is related to characteristic nearest-neighbor interactions,

the assumptions used to derive the LMF equation from the YBG hierarchy become

accurate, and we expect that self-consistently applied LMF theory will yield a true

mimic system. 2

A discussion of how to ascertain that u0(r) successfully contains the core interac-

tions in general is postponed until Ch. 3, and for the moment we shall accept that

doing so is possible. A more detailed discussion of application to Coulomb systems

follows here.

We define slightly new symbols. The pair interaction between two charges, qα and

qγ, is

w(r) =
qαqγ
εr

, (2.21)

working in CGS units. ε is simply the dielectric constant of a uniform medium

in which the charges are immersed. The details of charge magnitudes, signs, and

occasionally choice of units (CGS versus SI) will change from system to system, but

the underlying functional form 1/r will remain constant. Thus, following [22], we

will deal with functional forms associated with the splitting of the Green’s function

v(r) ≡ 1/r as

1

r
≡ v0(r) + v1(r), (2.22)

where v0(r) and v1(r) again represent the short-ranged and long-ranged interactions

respectively.

The first crucial step in application of LMF theory to Coulomb interactions in a

2Since we have not bounded errors for the approximations in developing LMF theory, this is an

approximate lower bound on σ, i.e. σ & σmin.
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uniform dielectric constant medium lay in determining the choice of v0(r) and v1(r).

Work of previous researchers [14] revealed that a beneficial choice of v1(r) is the

electrostatic potential due to a Gaussian of width σ, defined as

ρG(r) =
1

σ3π3/2
exp

(

− r2

σ2

)

, (2.23)

leading to a v1(r) of

v1(r) =
erf(r/σ)

r
. (2.24)

The corresponding v0(r) will then be given as

v0(r) =
erfc(r/σ)

r
. (2.25)

We term this a smooth Gaussian truncation of the 1/r potential because it is the

electrostatic potential of a point charge surrounded by a neutralizing Gaussian charge

density of width σ. This split is shown in Fig. 2.4 along with a demonstration of

the impact of increasing σ on v0(r) and v1(r). The form of v1(r) is slowly varying

over σ, and v0(r) approximately represents a core potential of range σ. Tuning σ to

larger values increases the range of v0(r) and simultaneously increases the “slowness”

of variation of v1(r) over characteristic nearest-neighbor interactions.

One possibly troubling aspect of this v0(r) is that it is not exactly zero at any

r, but most short-ranged potentials including uLJ(r) have this problem and v0(r)

does decay significantly faster than the full Coulomb 1/r and also faster than the LJ

potential. An even more advantageous reason for choosing this v0(r) was shown by

Chen et al. [14]. Separating the k-space form of 1/r into a portion that quickly decays

in k-space and a remainder that has only large k-components leads to this identical
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Figure 2.4: Demonstration of 1/r potential split for two different σ’s. When σ is
increased from 1 to 4, more of the 1/r core interaction is included in v0(r) and v1(r)
becomes correspondingly slowly varying.

potential split:

1

r
=

1

(2π)3

∫
4π

k2
· eik·r dk

=
1

(2π)3

∫
4π

k2
· e−k2σ2/4 · eik·r dk +

1

(2π)3

∫
4π

k2
·
(

1 − e−k2σ2/4
)

· eik·r dk

=
erf(r/σ)

r
+

erfc(r/σ)

r
. (2.26)

Thus defining v1(r) as erf(r/σ)/r may also be seen as choosing a v1(r) that is simulta-

neously slowly varying in r-space, and monotonic and localized to small k in k-space,

leading to a v1(r) that is quite well-suited for LMF averaging.

Initial charged systems that this approach was applied to were:

• The one-component plasma and one-component charged hard-sphere fluid [14].

Uniform systems of point ions and point ions within a hard sphere, with neu-

trality maintained by a postulated uniform charge density of opposing sign
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occupying all space.

• The size-asymmetric primitive model [15]. Uniform system composed of cations

(+q) and anions (−q) with differing hard sphere diameters.

• Uniform charged hard walls and point counterions [15]. Uniformly charged hard

walls with surface charge density −λ, infinite in the x- and y-extents. Either

only one wall at the origin with counterions confined to the space z ∈ [0,∞) or

two walls at z = 0 and z = d with neutralizing point counterions confined to

the space z ∈ [0, d].

In this thesis, we will further examine the final model system above in Ch. 3.

2.7 Strategies for Closing the Self-Consistent LMF Loop

Recalling Eq. (2.13),

φR(r) = φ(r) +

∫

dr′ρR(r′; [φR])u1 (|r − r′|) + C,

the φR determined by LMF explicitly depends on the effect of φR on the density

profile ρR(r; [φR]). Thus the equation has been solved only when the resulting φR

is consistent with the ρR(r) input into the equation on the right, i.e. when self-

consistency is attained.

In this thesis, we will address three manners of evaluating the self-consistency of

Eq. (2.13) for Coulomb systems, two approximate and one “exact” in a numerical

sense. Here each scheme is briefly sketched. Two approaches lie in the manner

of determining the density response to φR, and one approach lies in substantially
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simplifying the LMF equation itself. Further numerical details related to achieving

self-consistent solution are explored in the various chapters where they are employed.

2.7.1 Explicit Simulations

This is the most accurate approach. It may be viewed as “exact” for sufficiently

long simulations. Density profiles in response to a trial φR are calculated using the

statistical mechanics encompassed by molecular dynamics (MD) or Monte Carlo (MC)

simulations. There is no single equation associated with this density response, but

rather detailed simulations are used. Such an approach is relatively simple for the

two-wall system in Ch. 3, but requires more subtlety for molecular systems in Ch. 6.

2.7.2 Mimic Poisson-Boltzmann (MPB) Approximation

This approach is akin to, but more broadly applicable than, more traditional Poisson-

Boltzmann (PB) approaches. For the moment we simply state that MPB treats the

density response of the short-ranged system as that of an ideal gas in an external

potential energy surface encompassing only the long-ranged interactions. Thus the

corresponding equation is

ρR(r; [φR]) ' A exp (−βφR) . (2.27)

During the course of Chs. 3 and 4 we will explore the appropriateness of such an

approximation.
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2.7.3 Strong-Coupling Approximation

We have already touched on this approximation to the LMF equation in Sect. 2.5. In

a sense, the SCA approach lies along a different path than the previous two schemes

and in fact can be combined with either. The strong-coupling approximation assumes

that no second equation or simulation is necessary, but rather that

φR ' φ0 and thus φR1 ' 0, (2.28)

removing any need for self-consistency. This approximation may be coupled with

either explicit simulations or with an MPB-type prediction of the density response.

In essence this approximation may be appropriate when the short-ranged forces

dominate the long-ranged forces for the property of interest. This approach will often

be used as a path of first resort throughout the thesis, but one must carefully evaluate

its use.
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Chapter 3

Two-Wall System

In this chapter, we explore the uniformly-charged-wall system treated by previous

authors via the MPB closure of the LMF equation [15]. The first portion of the

chapter will deal with the physics and phenomena of this simple system and the latter

portion will detail the treatment of this system using Monte Carlo simulations. The

simplicity of this system allows for a more detailed exploration of the implementation

of the LMF equation and of the importance of the smoothed truncation length σ in

ensuring the accurate application of the theory than we will undertake for molecular

systems in later chapters. Many of the results in this chapter have been previously

published by Rodgers, Kaur, Chen, and Weeks [86], and much of the text below is

modified from [85].

3.1 Model System

The system examined here contains two uniformly charged walls separated by a

medium occupied by point counterions, which make the overall system neutral. This

model is quite simple but still exhibits the possibility of like-charged attraction of the

two walls, and, as such, has been much studied [36, 52, 61, 71, 73, 99]. The system

is composed of two infinite hard walls normal to the z-axis and positioned at z = 0

and z = d. Each wall has a negative surface charge density qw. Between the walls
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are positive point counterions of valence Z and charge Ze0 at a density that exactly

neutralizes the two walls. A uniform medium of dielectric constant ε permeates all

space even though z ≤ 0 and z ≥ d are inaccessible to the counterions.

We predominantly examine the two-wall system, but the corresponding one-wall

system with a wall at z = 0 and ions confined to z = (0,∞) will give us insight into

the appropriate length scales. Figure 3.1 shows examples of such systems; the length

scales and potentials exhibited will be discussed in the following subsection.
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Figure 3.1: The drawings illustrate the three length scales defined in the text: LG,
Lw, and LB [indicated by small filled-in circles in (a) and by dashed circles in (b) and
(c)]. Additionally the potential exerted by the wall(s) on the counterions is shown by
the thin line. The one wall systems show weak coupling with LB � LG in (a) and
strong coupling with LB � LG in (b). If counterion charge and wall charge density
remain the same, Lw is constant, and the coupling (represented by the ratio LB/LG)
is altered by shifting temperature up for weaker coupling and down for stronger
coupling. The relationship of temperature to these lengths is given in the text. In the
strong coupling pictures, LB is not the length scale of nearest-neighbor interactions,
and one envisions instead a “Coulomb core” of the order of Lw (represented by the
solid red circles) that captures these nearest-neighbor interactions. In (c), a strongly
coupled system is confined by two walls to a distance d such that the counterion layers
begin to significantly overlap and a single layer begins to form.
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3.1.1 Interactions and Length Scales

For this system, understanding length scales is a fruitful starting point [13, 71]. These

length scales will identify the independent parameters that define different thermody-

namic states and will also aid in the application of LMF theory. In particular for LMF

theory, when we split the 1/r potential into components, we will have to ensure that

the short-ranged interactions reproduce the “Coulomb core,” the range of interaction

needed to reproduce relevant nearest-neighbor correlations.

One important length scale is the modified Bjerrum length, namely the length at

which pair interactions including ion valence equal kBT , so that

LB =
Z2 e20
ε kBT

. (3.1)

One might näıvely assume that the “Coulomb core” size is of order LB. While this

is reasonable at low densities and weak coupling when typical particle spacings are

much greater than LB, this breaks down at strong coupling, when many particles are

within LB. In such instances, we expect the core size required to accurately represent

nearest-neighbor interactions to be smaller than LB.

Additionally, the Gouy-Chapman length, LG, may be found from the potential

energy of a single counterion in the field of one wall at z = 0 for a counterion at z,

namely

Uwall = −2πqwZe0
ε

· |z| (3.2)

Setting this potential energy equal to the thermal energy (kBT ), one obtains the
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Gouy-Chapman length, again modified to incorporate valency, as

LG =
εkBT

2π |qw|Ze0
. (3.3)

This length will be used as the basic unit of length while kBT will be taken as the

energy unit. In the two-wall system the electrostatic potential an ion experiences due

to both walls is constant, regardless of position, and thus the Gouy-Chapman length

scale may seem irrelevant. However it is useful to recall that this length scale will

also characterize the potential energy felt by an ion near one wall arising from the

layer of counterions near the distant wall, when d is large. Thus LG still characterizes

interaction lengths in the system.

A third length Lw may be defined as the length of a side of a square area of wall

that one counterion neutralizes,

− qw L
2
w = Z e0. (3.4)

One may easily see that

L2
w = 2πLGLB, (3.5)

so these three length scales are not independent.

In reduced units, which we denote by a tilde, two parameters uniquely define a

thermodynamic state of the two-wall system, the coupling strength ξ and the reduced

distance between the walls d̃ defined as

ξ ≡ LB

LG

=
2πZ3e30|qw|
(εkBT )2

and d̃ ≡ d/LG. (3.6)

When ξ � 1, the counterions are weakly coupled; they are strongly coupled when

34



ξ � 1. A system’s coupling may be strengthened simply by lowering the temperature

since ξ ∝ 1/T 2.

In Fig. 3.1, the small filled-in magenta circles represent LB for the weak coupling

case and the large dashed magenta circles represent the LB of a single counterion

in the strong coupling cases. The structural rearrangement of the two wall system

will be discussed further later, but understanding the different drawings for the one

wall situation is useful. In weak coupling, the neutrality spacing for counterions,

Lw, is less than the effective width of the potential well, LG, and so the counterions

effectively organize as a three-dimensional fluid between the walls. Once T has been

lowered to reach strong coupling, Lw > LG, and the interparticle neutrality spacing

Lw in the directions parallel to the wall is greater than their typical separation from

the wall in direction normal to the wall. Thus the particles are effectively confined

to a two-dimensional layer. For strong coupling, the typical particle spacing is of the

order of Lw and is smaller than LB. Thus for strong coupling, Lw better represents

the “Coulomb core” size.

With LG chosen as the length unit and the tilde indicating a value in reduced

units, the relation between length scales becomes L̃2
w = 2πξ.

As detailed by Moreira and Netz [71], the Hamiltonian for the two-wall system

may now be converted into a simple form in the reduced energy and length units kBT

and LG. For a system with a total of N counterions, the total potential energy is

U =
q2e20
ε

∑

i<j

1

rij

+
N∑

i=1

φ(zi) (3.7)
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so that we have, in reduced units,

Ũ =
∑

i<j

ξ

r̃ij

+
N∑

i=1

φ̃(z̃i). (3.8)

The volume of simulation box containing N counterions is Ṽ = Ã· d̃. The surface area

in the x- and y- directions may be stated in terms of ξ and N as Ã = N
2
L̃2

w = Nπξ. φ

is the potential energy due to the confining charged walls, and for the full system φ

is a constant taken as zero (since the electric fields due to each charged wall exactly

cancel).

The equilibrated nonuniform single particle density ρ (r) will depend only on z

owing to the symmetry in the x- and y-directions. Neutrality dictates that

∫ d

0

Ze0 ρ(z) dz = −2qw, (3.9)

which may be rewritten as

∫ d̃

0

L2
wLG ρ(LGz̃) dz̃ =

∫ d̃

0

n(z̃) dz̃ = 2. (3.10)

Here we have defined a dimensionless rescaled particle density n(z̃) as

n(z̃) ≡ L2
wLG ρ(LGz̃) = 2πξρ̃(z̃). (3.11)

For a single-wall system n(0) = 1, but the contact value n(0) is not constant in the

two-wall system.

3.1.2 Effective Attraction Between Walls

Beyond studying the application of LMF theory, we also will probe the effective at-

traction possible between like-charged walls for strong coupling and the associated
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structural rearrangements of counterions. One might infer this effective attraction

for highly-charged DNA in vivo from its compact nuclear form as mediated by oppo-

sitely charged histones. In vitro, this effective attraction of highly-negatively-charged

DNA is caused by the addition of multivalent cations, resulting in the formation of

compact toroids [32]. Rouzina and Bloomfield presented an argument relying on a

comparison of concentrations and length scales in the physical system to motivate

the use of this incredibly simple model system for explaining the attraction between

DNA helices [87].

The Gouy-Chapman picture for these systems has been available for a century and

is described in textbooks on colloids and biological physics [27, 72]. It is a mean-field

approach to electrostatics such that the equilibrium density profile is a Boltzmann fac-

tor of the electrostatic potential determined by the Poisson equation self-consistently

using the same Boltzmann density profile. The failure of this approach is well known

in this field as well – the Gouy-Chapman solution never predicts attraction between

two walls in this system, althought that is the “biologically-relevant” phenomenon of

interest here.

Other factors such as macroion geometry and discreteness of charge on the macroions

have been shown to be contributors to the mechanism of attraction between real

macroions; but such deficiencies in the uniformly-charged-wall model do not concern

us here. For the two-wall system, the attraction is due to correlation between coun-

terions; when correlations are important, traditional mean-field theory fails. Local

molecular field theory may be simply understood as a prescription for treating longer-

ranged slowly-varying interactions using a mean field while simultaneously explicitly
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treating short-ranged core interactions which lead to correlations. Thus this model

exhibiting like-charged attraction arising from counterion correlations will allow us

to demonstrate the accuracy of the local molecular field theory separation.

The pressure in the system serves to indicate whether the system is attractive

(P < 0) or repulsive (P > 0). Attraction is easily explained because any charged

component of an overal neutral system will be attracted to the remainder of the

system. In Fig. 3.2, this is illustrated for this simple system. The net negatively

charged wall will be electrostatically attracted to the counterions and the other wall,

because, in sum total, the remaining charge is positive. Repulsion results from the

collisions between the counterions and the charged walls.

=

= −1 + 2 − 1

= −1 + 1

Figure 3.2: Demonstration of the origin of the effective electrostatic attraction be-
tween two like-charged walls. The two-wall model system is net neutral and therefore,
one negatively charged wall is attracted to the net positive remainder of the system.
The presence of attraction or repulsion depends on the balance between this electro-
static attraction and entropic repulsion due to particle collisions with the wall.

Thus, the actual force between the two walls may be understood as a balance

between the electrostatic attraction between a negatively charged wall and the net

positive remainder of the system and the entropic repulsions due to collisions between

counterions and a wall. For this system, the exact equation for the effective pressure
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follows from the “contact theorem” [108] which yields

Force

Area
= Posm = ρ (zwall) kBT − 2πq2

w

ε
. (3.12)

The first term gives the entropic repulsions and scales as the equilibrium density

of counterions contacting the wall. The second term is the electrostatic attraction

between the wall and the remainder of the system. For this system the attraction is

independent of wall separation due to the fact that the wall is infinite in extent and

thus the forces between the wall and a counterion and between the wall and the other

wall are independent of z. Thus as distance varies, only the entropic repulsions will

vary due to the reorganization of counterion density between the two walls. This and

other pressure formulae are explored in more detail in Appendix C.

We define a rescaled pressure as

P̃osm =
2πL2

wLG

kBT
Posm. (3.13)

Thence, with the aid of Eq. (3.11), we may write a rescaled “contact theorem” as

P̃osm = n (z̃wall) − 1. (3.14)

The switchover at n(z̃wall) = 1 between attraction and repulsion is evident by writ-

ing the pressure in this fashion. Simulation is the only completely accurate way to

determine whether a particular (ξ, d̃)-state is attractive or repulsive.

Shown in Fig. 3.3 is a qualitative pressure versus distance curve for a moderately

coupled system. Regions of both attraction and repulsion are evident. The P vs. d

curve for moderately strong coupling may be understood descriptively. At infinite
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d, the counterions will essentially form two uncoupled clouds concentrated predomi-

nantly in layers within a few LG of each wall and with a few outlying ions spanning

the intervening space. For the full Coulomb system, this separation into two layers

may appear mysterious. A quick argument states that as d → ∞, the limit of two

separate one-wall systems must be recovered, and these systems have layers of charged

particles next to the walls. A more careful argument observes that if the particles

were uniformly spread across the distance d, this would maximize entropy, but free

energy is a balance between energy and entropy, and the normal repulsions between

particles in the interstitial space would be too great. Separation of the particles into

two separate layers spread over a few LG next to each wall minimizes the system’s

free energy. In contrast, local molecular field theory will provide a very natural ex-

planation for this separation into two layers. The splitting of 1/r into short- and

long-ranged components allows us to understand this layer formation in terms of a

mean-field barrier formed between the two walls due to the long-ranged interactions

between particles. We will discuss this in a bit more depth later once we derive the

form of LMF theory for this model system.

At d = ∞ the net force on each wall is zero, so P = 0 and n(zwall) = 1. The

variation of P (d) as d becomes finite depends on ξ in a complex balance between the

strength of repulsions between counterions (ξ) and the space available between the

walls (d). Thus we may describe qualitatively the progression of P vs. d for a strong

coupling system, but the exact curve shape is not clear without actual simulations.

At large but finite separations, each counterion layer associated with one wall

appears to the other layer as a charge distribution relatively smooth in the x- and
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Figure 3.3: Sketch of the P vs. d curve for moderate coupling strength ξ. Regions of
attraction (P < 0) and repulsion (P > 0) are evident.

y-directions. Very little microscopic structure is communicated from one side to an-

other. The weak repulsions between the few ions in the tail of n(z) in each layer result-

ing from confinement to a width d/2 raises the contact density slightly above 1, and

the interaction is repulsive. This physics is well-captured by the Poisson-Boltzmann

treatment even in strong coupling provided that the walls and the immediate layers

of counterions are treated as a weaker rescaled wall charge density.

When the two charged walls with individual counterion layers come closer to

each other, the counterions near each wall begin to “feel” the counterion structure

associated with the opposite wall and structurally shift to ease the repulsions from

the opposing counterions. This leads to a correlation hole opposite of each ion on the

opposing charged wall, and this correlated non-uniform charge distribution leads to

the onset of attraction. Figure 3.1(c) depicts this general situation.

As the walls approach even more closely, the two correlated layers progressively

shift to form a single layer with the neutralizing surface area allotted per ion now L2
w/2

rather than L2
w. This phenomena was nicely demonstrated by Rouzina and Bloomfield
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with simple calculations finding the lowest energy lattice structure for ∞-coupling

and varying distances [87]. The concept of a “Coulomb core” encompassing relevant

nearest-neighbor interactions further elucidates that this shift in layer structure would

not occur until these cores (defined by neutrality spacing) significantly overlap in the

z-direction. In Sect. 3.5 we will show that the formation of a true single layer uniform

in the z-direction leads to the distance of maximal attraction between the walls.

The general sketch of the “phase” diagram of this system in Fig. 3.4 provides a

visualization of the limits discussed. Data from careful simulations by Moreira and

Netz [71] are available for this phase diagram as well as explicit P̃ vs. d̃ curves for

varying ξ. We will compare our LMF results to these full simulations. Full simulations

are required for evaluation of the LMF treatment of this model system since there is

no exact analytical solution available for full ranges of ξ and d in the two-wall system.

d

Repulsive

R
ep

ul
si

ve

Attractive

ξ

2

~

12

Figure 3.4: Sketch of the two-wall phase diagram separating attractive (P < 0) and
repulsive (P > 0) regions on log-log scale for d̃ vs. ξ.
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There do exist analytical expressions for two limits for the two-wall system. The

weak coupling, Poisson-Boltzmann limit is nWC(z̃) = A/ cos2
(

A1/2[z̃ − d̃
2
]
)

where A

may be found by the neutrality requirement between the walls,
∫ d

0
dz̃ n(z̃) = 2. The

strong coupling limit is quite simply a constant density profile nSC(z̃) = 2/d. This

may be justified by the fact that for finite d and sufficiently large coupling ξ, the

counterions will be organized into a single two-dimensional layer between the walls,

and thus there will be no net normal force on the particles. Therefore, in the z-

direction, the particles behave as ideal gas particles in the constant external field: the

density distribution in the z-direction is entirely uniform. Furthermore, this implies

for very strong coupling that the lower crossover distance between repulsion and

attraction will be d̃ ' 2, as shown in Figs. 3.3 and 3.4.

Both of these exact limits have been derived from field theory along with correc-

tion terms [70]. However, for moderately strong coupling cases, no exact analytical

solutions exist and the addition of correction terms from field theory to the two lim-

iting laws is very inaccurate. Recently the mimic Poisson-Boltzmann approximation

to LMF theory has made analytical results feasible and meaningful [15], but full sim-

ulations are the most stringent benchmark for prediction of attraction and repulsion

between walls.

3.2 LMF for Wall Model System

In Ch. 2, local molecular field theory was derived for general nonuniform situations.

We will simply make this formulation more specific for the wall system. As stated
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before, the full system undergoes a mapping to a mimic system as

Full Mimic






w(r)

φ(z)







LMF−−→







u0(r)

φR(z)







yielding nR(z; [φR]) ' n(z; [φ]) provided that the σ used is sufficiently large for u0(r)

to capture nearest-neighbor interactions and for u1(r) to be correspondingly slowly

varying over those interactions. The wall system is truly nonuniform in only the z-

direction as implied already in the mappings and this allows for integration over x

and y.

We will introduce the LMF formula for this specific system and also develop some

intuition for the previous success of the mimic Poisson-Boltzmann closure for this

system [15]. Then, in later sections, we will examine simulation results in more

detail.

In essence, the goal is to simulate behavior that typical short-ranged simulations

would miss. Systems shown later in the thesis will be more extreme in their failure,

but this system is a good initial test case. Standard minimum-image simulations

neglect the net addition of long-ranged forces that occurs in the z-direction. As

shown in Fig. 3.5, the n(z) determined using pair interactions u0(r) and the bare

external field φ(z) = 0 is quite incorrect for ξ = 10 and d̃ = 20, yielding a contact

density indicating strong attraction, when in fact the ξ = 10 system is repulsive at all

d. Both LMF theory using φR and the strong coupling approximation using φ0 yield

particle densities much more in line with expectation. The densities are so rapidly

varying near the walls that we cannot see the rise above 1 on this distance scale, but
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certainly it is clear that φ0 and φR provide substantial wells to drive separation into

two layers.

0 5 10 15 20
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Figure 3.5: Demonstration of need for φ0 or φR in determining n(z) for ξ = 10,
d = 20, and σ = 14. The density response to the bare field predicts strong attraction
for a state that should be repulsive [71]. On this scale, the n(z) due to the strong
coupling approximation using φ0 and full local molecular field theory using φR are
barely distinguishable, but in Sect. 3.3, we will show that SCA begins to fail here.

From this point onward, all values should be assumed to be in reduced units

of length in LG and energy in kBT since this leads to simpler forms and a simpler

parameter space involving ξ and d̃. Values will no longer be labeled with a tilde

though.
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3.2.1 LMF Equation

The full LMF equation as given in Eq. (2.13) is

φR(r) = φ(r) +

∫

dr′ ρR(r′; [φR])u1 (|r − r′|) + C.

As shown in [13] and [15], for the two wall model system, immediate simplifications

may be made because

φ(r) =







0 if z ∈ (0, d),

∞ otherwise.

Due to the fact that φ is solely a function of z, we also know that ρ(r) = ρ(z) and

φR(r) = φR(z). This leads to

φR(z) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ d

0

dz′ρR(z′; [φR])u1

(√

x′2 + y′2 + (z − z′)2
)

+ C. (3.15)

Following steps detailed in Sect. B.1, we may write the LMF equation as

φR(z) =

∫ d

0

dz′nR(z′; [φR])G(z, z′), (3.16)

where G is defined as

G(z, z′) = −|z−z′| erf
( |z − z′|

σ

)

− σ√
π
e
−

“

z−z′

σ

”2

+|z′| erf
( |z′|
σ

)

+
σ√
π
e
−

“

z′

σ

”2

. (3.17)

Whereas previously C was undetermined in Eq. (2.13), here the constant has been

defined by the requirement that z = 0 is the zero of energy.

G(z, z′) may be understood as the electrostatic potential at z due to the convolu-

tion of rescaled positive charge density δ(z − z′) with a one-dimensional Gaussian of

width σ. This again emphasizes that Eq. (3.16) is simply a one-dimensional rewriting

of the full three-dimensional LMF equation. Shown in Fig. 3.6 are G(z, z′) and also
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the full Coulomb potential φ due to a positive planar charge density δ(z− z′). Notice

that G incorporates the full long-ranged forces due to this charge density at z′ = 15

but the force due to G near z = z′ is significantly attenuated.

 0

 4

 8

 12

 16

 0  5  10  15  20

z

Energy
φ(z,15)
G(z,15)

Figure 3.6: The long-ranged interactions averaged in LMF, G(z, z′), and the full
potential due to a plane of charge at z′, φ(z, z′), are shown for σ = 5 and d = 20 for
a plane of rescaled particle density located at z′ = 15. Near z = z′, G is much more
slowly-varying than the full interaction φ.

3.2.2 Previous Work with the MPB Approximation

As shown by Chen and Weeks [15], significant quantitative agreement with the overall

phase diagram sketched in Fig. 3.4 can be achieved by approximating the density

profile as

nMPB(z) = Ae−φR(z). (3.18)

The normalization constant A is adjusted at each step in a self-consistent iteration

so as to enforce neutrality, i.e.

∫ d

0

n(z) dz = 2. (3.19)
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In order to achieve a semi-quantitative match, a choice of σ for each combination of ξ

and d must be made. In [15], this choice is determined by a single fitting of the n(z)

for a one wall system at a moderate coupling strength (ξ = 40). With this single

fit, a relation for all ξ along the upper and lower branches of the phase diagram was

determined.

This one-to-one relation between ξ and σ seems to run counter to the initial

proposal of the 1/r split in the derivation of LMF theory. We argued that there

should in essence be some approximate σmin such that any choice of σ & σmin will yield

reasonably accurate results. However, when the approximate MPB density response

is used to close the self-consistent LMF loop, this is no longer true. The reason for

this is that, for the MPB approximation, a single choice of σ must represent both the

long-ranged forces and the degree of cancellation of short-ranged core forces. To fully

understand this statment we must examine why the MPB approach is successful for

the range of ξ and d combinations.

One manner of justifying the MPB closure is noting that it captures exactly both

the weak coupling (Poisson-Boltzmann) and strong coupling (thin slit) limits. Thus

the MPB prediction of density response seems a natural self-consistent loop closure for

spanning the range of coupling strengths. However, capturing the two extreme limits

does not guarantee the remarkably accurate results possible from MPB. As noted

before when Fig. 3.6 was introduced, G(z, z′) has attenuated forces for z within a

range of approximately σ from z′. The exact Poisson-Boltzmann limit is achieved

when σ → 0 and particles within an infinitesimal distance of z′ experience the full

force. Physically we may understand this as representing the fact that particles are
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so weakly correlated with each other that regardless of proximity they may best be

represented as a sheet of charge. The strong coupling limit is reach when σ → ∞,

corresponding to no interparticle forces normal to the walls. This counterintuitive

statement is true because when particles are strong correlated with each other they

organize into a single two-dimensional layer and thus the only substantial interparticle

forces are in the lateral direction. We may understand σ as approximating the width

over which particles exist in a laterally correlated layer.

Thus MPB includes an empirical representation of the discreteness of particles

by giving a width over which particles will arrange into effectively a single layer. If

particles are laterally correlated then they may not reasonably interact as two sheets

of charge. Therefore, the normal forces should be attenuated, as is done via G(z, z′).

Calculating φR(z) with a nonzero σ can lead to physically interesting phenomena

such as like-charged attraction [15]. However, since σ simultaneously represents the

extent to which particles layer due to correlations and also the slowly-varying long-

ranged forces, this essentially results in a one-to-one relation between a given ξ − d

combination and the appropriate σ within the MPB approximation.

Carrying out simulations instead removes this sensitivity in the density response

to the choice of σ, and thus we can better understand the overall implementation

of LMF theory. However, at least understanding the forces due to G can be use-

ful. G incorporates the net long-ranged forces normal to the surfaces that spherical

truncations neglect.

Interestingly, as a general rule, σMPB < σsim. This is also a result of MPB using

σ to represent both the core cancellations and the long-ranged forces through the
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Boltzmann approximation.

3.3 Strong Coupling Approximation for Wall System

A full solution to the LMF equation is not always necessary. We will first simulate

this system using the strong coupling approximation. As described in Sect. 2.4

and [15], the external field φ may be split into short-ranged (φ0) and long-ranged

(φ1) contributions.

The strong coupling approximation (SCA) consists of simulating particles inter-

acting via u0(r) in only the short-ranged part of the external potential, φ0(r). This

approximation is valid when the short-ranged interactions dominate, and no self-

consistency iterations are required.

3.3.1 φ0 and φ1 for the Wall System

The basic mechanism for splitting the external field is identical to that for splitting

1/r. For any electrostatic potential, the long-ranged portion of the interaction may

be found by convoluting the charge density with a Gaussian of the same width σ

to yield φ1. Then, φ0 is simply the difference between φ and φ1. Using this basic

prescription for our system, we find that

φ1(z) = −G(z, 0) −G(z, d), (3.20)

and thus

φ0(z) = 0 − φ1(z) = G(z, 0) +G(z, d). (3.21)
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We will approximate φR ' φ0 to capture the nearest interactions between each wall

and the ions, and thus, without iteration, a reasonable approximation to φR is known.

Additionally, the SCA provides a very natural way to see that the counterions will

begin to separate into two layers because φ0 has effective potential wells near the

walls. The forms of φ0 and φR are shown in Fig. 3.7 for two different scenarios.

When ξ is larger, the difference between the SCA potential φ0 and the full LMF

potential φR is smaller.
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Figure 3.7: φ0 and φR for ξ = 100 and ξ = 10 with d = 20. When the system is
more weakly coupled the difference between φ0 and φR (φR1) increases. At ξ < 1, we
expect φR1 to have even more significant additional contributions.

3.3.2 Finding P versus d Curves Using SCA

Since effective attraction between charged walls occurs when the system is moderately

to strongly coupled, we expect the SCA to perform well for many of the (ξ, d) pairs

explored. When the SCA was applied using a Boltzmann prediction for the density

response, the results were incredibly sensitive to choice of σ [15]. This was due to the
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fact that neutrality (
∫
n(z)dz = 2) was directly tied to the φ0(z) functional form since

n(z) ' A exp(−φ0) in the Boltzmann approximation with A determined by neutrality.

However, in simulations, neutrality is determined by the number of particles in the

simulation box and particle profiles are less tightly coupled to the φ0 functional form.

Therefore, we expect SCA to be more accurate in simulations.

As shown in Fig. 3.8, the strong coupling approximation can lead to a solid

prediction of the dependence of pressure on distance between the walls for a relatively

strongly-coupled situation. To emphasize this, both the results of full simulations and

also of the Boltzmann density response to SCA (data from [15]) are shown. The SCA

simulation results compare quite favorably to the results of the full simulations.
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Figure 3.8: Pressure versus distance curves for the strong coupling approximation with
simulations and the Boltzmann approximation from [15], compared to full simulations
and LMF simulations. ξ = 100, and for the SCA and LMF simulations σ = σmin for
d = 20 which is 34. For the Boltzmann approximation, σ = 10.7 (determination
described in [15]).
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3.3.3 Breakdown of the Strong Coupling Approximation

The success displayed in Fig. 3.8 should not imply that there is no need for full LMF

theory. For any given ξ, once d is large enough, φ0 using a σ appropriate for full LMF

theory will begin to plateau in the middle as shown for ξ = 10 in Fig. 3.9, and this

will lead to an equilibrated situation with too much density in the center and too

little near the walls. Even for distances where the plateau has not fully developed,

the barrier in the center will be less high in the center. As explained previously, the

effect of the plateauing will be far less than when a Boltzmann density response is

postulated; however, we do expect a difference. Shown in Fig. 3.10(a) is the wall

density for ξ = 10 at d = 4, d = 10, and d = 20. We can see the differences in the n(z)

determined by SCA and LMF theory develop as d increases, due to the difference in

φR(z) and φ0(z) at the center.
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Figure 3.9: The effect of d on the form of φ0(z) for ξ = 10 and σ = 14. At d & σ, a
barrier develops in φ0 as shown on the left. At d� σ, a plateau eventually forms at
intermediate z. This incorrectly predicts a finite “bulk density” as d gets larger and
would wreak havoc on the equilibration of canonical simulations.

At a single distance d, the SCA breaks down as ξ decreases from strong to mod-

erate coupling. Shown in Fig. 3.10(b) are plots for n(z) determined via the strong
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(a) Effect of d on SCA when ξ = 10
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Figure 3.10: (a): Range of breakdown of SCA over d at ξ = 10. As d increases, the
difference between φ0 and φR increases and the resulting wall density begins to differ.
(b): Range of breakdown of SCA over ξ at d = 20. As ξ decreases, the impact of φR

over and above φ0 at a given d increases. As the approximation’s name implies, at
even weaker coupling, SCA would be incorrect and full LMF theory is required.
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coupling approximation in simulation. In each graph, d = 20 and σ = σmin at d = 20.

From left to right, ξ goes from 100 to 20 to 10, and the breakdown of the strong

coupling approximation as the system becomes less strongly coupled is evident. As ξ

approaches weak coupling, φR would have an increasingly significant impact in com-

parison to φ0. In fact, in the limit of weak coupling, PB is completely correct so

φ0 would be 0, and φR1 would completely determine the density distribution of the

particles.

One could potentially resolve these issues using SCA by choosing a larger σ, but

that sabotages the computational advantage of LMF theory over series summation

techniques for Coulomb interactions. By increasing σ beyond the σmin required for full

LMF treatment, the number of particles necessary to make use of the minimum image

convention valid for the SCA simulations becomes larger. The use of self-consistent

LMF determination of φR is more appropriate to minimize computational effort.

3.4 LMF Simulation Approach

Some simulation results from a full self-consistent solution of the LMF equation have

already been displayed. In this section, we will present more complete results, and

the specifics of those simulations are explained in more detail.

3.4.1 Closing the LMF Equation

A full solution to the LMF equation is achieved by iteration to self-consistency since

φR and nR are interdependent functionals; in other words φR ≡ φR(z; [nR]) and
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nR ≡ nR(z; [φR]). Shown in Fig. 3.11 is a scheme depicting this requisite self-

consistency. The basic idea is that a Monte Carlo simulation is run with an initial

guess for φR(z), φ
(0)
R (z), in order to determine ρ(z). With that ρ(z), a new φR(z) is

determined via the LMF equation. And then another Monte Carlo simulation may be

run with the the new φR(z) to determine the next ρ(z). This cycle is carried on until

the new φR is the same as the previous φR within some tolerance. Further details

about how to implement this solution are given in Sect. 3.7. We stress that φ(z) = 0

must be replaced with a reference field φR(z) or some reasonable approximation.

(z)ρR

φR
1

0 z

d

z

Self

Monte Carlo Simulations

Consistency

Local Molecular Field Theory

Figure 3.11: Self-consistent solution of LMF theory with no further approximations.

3.4.2 General Results

Shown in Fig. 3.12 are P vs. d curves for coupling strengths 10, 20, 100, and 105.

Since determination of pressure is intimately linked to obtaining the correct nR(z) as

suggested by the contact formula for pressure, Eq. (3.14), only P vs. d curves are

shown for compactness.

Shown in Fig. 3.13 is a collapse of such curves for a wide range of ξ and d. Plotted
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Figure 3.12: Pressure versus distance data for ξ as given by Moreira and Netz [71]
and as found by simulations using full LMF theory. The values of ξ are 10, 20, 100,
and 105, and the respective values for σ are 14, 18, 34, and 650. The manner for
choosing σ is described in Sect. 3.7.
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are the distances d at which P = 0 for a given ξ. These distances are found by fitting

P vs. d curves with a spline in gnuplot and extrapolating to P = 0. The straight

line on the graph fits our MC data for the position d of maximal attraction or minimal

pressure; this will be addressed further in Sect. 3.5.
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Figure 3.13: Full simulation results from [71] are compared to the results of LMF
simulations for the points where P = 0. Additionally the points of minimum pressure
and maximal attraction found in LMF simulations are shown with an analytical fit
of dmin = 1.18L0.509

w which will be explained in Sect. 3.5.

The agreement between the full simulations and short-ranged simulations using

full LMF theory is quite striking. As argued in [86], this agreement is strong support

for the validity of the physical approximations underlying the derivation of the LMF

equation.
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3.4.3 g2D Correlation Functions

In [87], Rouzina and Bloomfield propose two unique two-dimensional pair correlation

functions to probe the structural rearrangements between particles as d varies. A

traditional g2D would look at the likelihood of finding particles at a distance r|| pro-

jected on the walls relative to a smeared uniform n(z) = 2/d. Instead, they suggest

two different pair correlations gsame and gopp that distinguish between pairs of parti-

cles that are on the same side of midplane and on opposite sides of midplane. This

unusual definition gives us insight into structural behavior tied to the development

of attraction between walls, which we will undertake in Sect. 3.5.

3.4.4 Determining the Smoothed Truncation Length σ

The crux of LMF assumptions as detailed in Ch. 2 is having a σ sufficiently large

to make u1(r) slowly-varying over relevant nearest-neighbor pair correlations and

to simultaneously have u0(r) capture those correlations. In [86], we introduced the

first scheme to choose σmin in as unbiased a fashion as possible. Since σmin is the

smallest σ that makes LMF theory consistent, as we increase σ in simulations with

full LMF we expect properties to vary significantly until σ > σmin. Additionally,

since most systems we examine show moderate to strong coupling, we expect that

σmin should scale as the relevant nearest neighbor spacing ā, which is less than LB.

The scheme we present monitors the system’s convergence of such spacing, but the

scheme could easily be modified to also monitor whether a weak coupling choice of σ

is more appropriate.
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We examine a single, simply-calculated structural length that will level off once

σ is sufficiently large if the theory is accurate. We defined Lnn at each Monte Carlo

step as the closest distance between the particle we attempt to move and any other

counterion. We average Lnn over the simulation, and examine the impact of increasing

σ on 〈Lnn〉. Shown in Fig. 3.14 are 〈Lnn〉 vs. σ as well as the convergence parameter

we examine, ∆ 〈Lnn〉 /∆σ. A reasonable criterion for defining σmin is the first σ at

which
(〈

L
(j)
nn

〉

−
〈

L
(j−1)
nn

〉)

/
(
σ(j) − σ(j−1)

)
< 0.005. σmin can be determined in this

manner for each (ξ, d)-pair as shown in Fig. 3.15, and this determination reflects

the structural rearrangement of the system. We expect σmin = k · ā where ā is a

characteristic spacing. For small d when the particles form a single two-dimensional

layer such spacing is Lw/
√

2 =
√
πξ, and at larger d when the system has formed

two distinct two-dimensional layers ā is Lw =
√

2πξ. With k remaining the same, we

expect that σmin should shift by a factor of
√

2. In the lower and upper manifolds

drawn for the σ-convergence curves in Fig. 3.15(a), a factor of
√

2 is evident.

Both 〈Lnn〉 and σmin are meaningfully related to the structure of the system.

Shown also in Fig. 3.15 are those two lengths compared to gsame. Notice that while

〈Lnn〉 is smaller than the position of the peak of g2D, the σmin determined is approx-

imately 50% larger, incorporating that nearest neighbor shell of interactions.

We may also take advantage of the rearrangement from two layers to one layer

since, for a single ξ, the σmin found at a larger d will be greater than or equal to the

σmin found for a smaller d. Thus by finding σmin only at the maximal d studied for a

certain ξ, we save computation time.

Shown in Fig. 3.16 are the values of σmin determined for a single layer at d = 2
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Figure 3.14: 〈Lnn〉 vs. σ and ∆ 〈Lnn〉 /∆σ vs. σ for ξ = 100 and d = 20. As σ in-
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largest and smallest σmin is due to the shift from two layers to a single layer. (b) gsame

for two of the distances along with 〈Lnn〉 (dotted lines) and σmin (dashed lines).
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and for two layers at large d compared to the appropriate ā accounting for the number

of layers (Lw/
√

2 or Lw respectively). When σmin is plotted relative to ā, all points

lie along the same trend whether σmin was determined from a one layer or two layer

scenario. Since σmin and ā are in reduced units, both values increase with increasing ξ.

In unreduced units, ā would not vary at all with ξ; it would only depend on whether

there are one or two layers. Also in unreduced units, we expect that at strong coupling

σmin will equal k · ā where k is on the order of 1. As coupling moderates and the

particles are no longer as well represented by a two-dimensional layer, we expect σmin

be slightly larger than k · ā in order to include core interactions normal to the surface

as well.

We therefore attempt a power law fit to all σmin versus ā data points, and find

σmin = 1.68 · ā0.94. This is a bit under the linear scaling we expect, but recall that for

moderate coupling we expect that σ will lie slightly above k · ā converging on linear

at larger ξ. If we instead attempt a linear fit to the higher ξ data, those data points

are nicely fit by the linear function σmin = 1.26 · ā with lower ξ points lying above the

line.

One catch of applying the strong coupling approximation is that we should use

σ > σmin determined in the fashion described here, but finding σmin requires additional

computational time. For simulations in this chapter, we find σmin only at the largest

d and use that for smaller d. Alternately, we could simply choose a conservative

estimate for k in σmin = kā such as k ' 1.5− 2.0. In practice, we will make just such

an expeditious choice in applying LMF theory to molecular systems.
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Figure 3.16: Demonstration of σmin scaling relative to neutrality spacing parallel to
the wall (ā which may be either Lw for two layers or Lw/

√
2 for one layers). At

larger ā, σmin scales linearly with ā, and at smaller ā, σmin values lie above the linear
prediction.

3.4.5 Calculating Pressure: Contact versus Midplane

In Eq. (3.14) of Sect. 3.1, the contact theorem for pressure is given as

Pcontact = n(0) − 1.

This formula is a simple connection between structure and thermodynamics, but it

poses numerical difficulties in simulations, since it requires the exact contact density

of particles at a hard wall. Since histograms are divided into finite-sized bins and

n(z) is rapidly varying near the walls, extrapolating to bins of width ∆z = 0 is not

easy. A formula incorporating the density at midplane would be preferable since it is

quite slowly varying around z = d/2.

This midplane approach has been used in simulations of this system before, but

it has been derived with the constraint of a hard wall at z = d/2 and thus only

valid for large distances [36] or alternately it has been posited without reference or
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proof [99]. A general formulation of such an approach is the method of planes [97].

The derivation is designed for dynamics simulations, but in the context of equilibrium

simulations it says that for the geometry of this system, any dividing plane zp may

be chosen and the normal pressure of the system is simply P = kBTρ(zp)+ 〈FLR〉 /A,

where FLR is the force due to interactions between particles on opposing sides of zp.

Appendix C provides the justifications and derivations for this system, since they are

not immediately clear from a literature search on this system. This basic statement

for pressure may be used to easily obtain the contact theorem by choosing zp = 0+.

Then the only “particle” to the left of the plane is the one wall, and in rescaled units

the net electrostatic force per unit area is −1.

In rescaled pressure units the midplane pressure formula for full simulations is

given as

Pmidplane = n

(
d

2

)

+
2πξ

A

〈
∑

i∈L

∑

j∈R

f (z) (rij)

〉

− 1 (3.22)

where the two summations pick out pairs of particles where i is to the left of midplane

and j is to the right of midplane, and f (z) is the interparticle force in the z-direction.

Appendix C gives details about the derivation of this formula. Since the forces be-

tween charged particles are also long-ranged, this midplane pressure formula requires

summing out to infinity in the x- and y-directions as well.

Fortunately, LMF theory provides an approximation to the midplane pressure

formula which will be accurate, provided that LMF theory is accurate. We proceed

by splitting f (z) into short- and long-ranged parts. The average of the short-ranged

forces is found via explicit summation over simulation configurations, and the average
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of the long-ranged forces is found via local molecular field averaging. This approach

yields

Pmidplane ' n

(
d

2

)

+
2πξ

A

〈
NL∑

i=1

NR∑

j=1

f
(z)
0 (rij)

〉

+
2πξ

A

〈
NR∑

j=1

∫ d
2

0

dz′ n(z′) erf

(
zj − z′

σ

)〉

− 1 (3.23)

where

f
(z)
0 (rij) = − ∂u0(r)

∂z

∣
∣
∣
∣
r=rij

(3.24)

and erf(∆z/σ) is the long-ranged force on a particle at zj on the right side of midplane

due to an equilibrated particle density at z′ on the left side of midplane. Since particle-

particle correlation effects are now only present in the first bracketed term, the second

bracketed term may be simplified with no further approximations as

Pmidplane ' n

(
d

2

)

+
2πξ

A

〈
NL∑

i=1

NR∑

j=1

f
(z)
0 (rij)

〉

+

∫ d

d
2

dz

∫ d
2

0

dz′ n(z) · n(z′) erf

(
z − z′

σ

)

− 1. (3.25)

The pressures obtained from the midplane approach and the contact theorem are

essentially identical at small d, and as d increases, we expect Pmidplane to be more

accurate than Pcontact since the midplane densities will be better converged on the

finite histogram grid. The values at large d are still close though. The density values

n(0) and n(d/2) are made more accurate by fitting nearby data to a second order

Taylor expansion about those points.
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3.5 Basis of Attraction

Correlation functions and pressure have previously been discussed from the stand-

point of implementation. Here, we discuss the inter-relation between the structural

rearrangement encompassed in the g2D correlation functions and the effective attrac-

tion between like-charged walls and show how the strong coupling approximation can

add insight into this as well.

A counterion induces a so-called “correlation hole” across midplane from itself

provided that the coupling is strong and the wall separation is sufficiently small.

As qualitatively explained by Rouzina and Bloomfield [87], the attraction between

walls is due to the cross-correlation between counterions on either side of midplane.

The basic idea is that once a correlation hole forms, then a counterion on one side

is exposed to a net negative wall surface area directly across from it and the net

electrostatic attraction begins to dominated. This is the main reason why charge

density representations smoothed in the x- and y-directions are inadequate to capture

forces between the two sides of the system.

In order to better understand the cross-correlation process between particles, we

discuss gsame and gopp as proposed by Rouzina and Bloomfield. To our knowledge, an

examination of these correlation functions have not been undertaken previously for

the two-wall system.

These functions have expected limits for small d and large d in strongly coupled

systems. As counterions move from two layers to one layer, the first peak of gsame

should shift by a factor of
√

2 as the required neutrality spacing shifts from Lw to
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Lw/
√

2. Simultaneously, in the limit of two completely uncorrelated layers, gopp = 1.0,

and as d decreases, a “correlation” hole in gopp will form with a radius of about Lw/
√

2,

and finally by d ' 2 where all particles are in a single layer we expect gsame = gopp.

Shown in Fig. 3.17 are these pair correlation functions for ξ = 20, ξ = 100, and

ξ = 1000 at a range of d. These trends in gsame and gopp are evident.
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Figure 3.17: The two-wall system’s g2D for a range of d and ξ. For ξ = 20, we can
observe the limits of g2D functional forms. For the two larger ξ intermediate distances
are on the order of dmin for Pmin. For ξ = 100, dmin = 6.0 and we can see the start of
preference for nearest neighbor ions to be on opposite sides. For ξ = 1000, dmin = 11.2
and at d = 10, we can see the peak difference developing.

Additionally we can see that as d increases beyond 2, the peak of gopp is increased

and the peak of gsame is decreased initially as particles maintain the two-dimensional

spacing of a single layer but begin to have a preference to alternate sides and thus
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develop some normal repulsion between each other. The development of this peak

difference indicates that particles are just beginning to partition into two layers as

d increase (or finally forming a single layer as d decreases). This first formation of

a single layer should coincide with the minimum pressure between the walls (and

also maximal attraction). When the single layer forms, the normal repulsion between

particles is no longer present, and simultaneously, the particles have the most space

available to them in the z-direction as a single layer, leading to the lowest value of

n(z) for a single layer and the minimum pressure.

When particles are in a single layer we expect them to transfer between sides

quite easily, so one could monitor the frequency of side-switching during Monte Carlo

steps; a frequency cutoff could be used to distinguish between a single layer and two

layers. One could also envision quantifying this single layer formation by monitoring

some difference between gsame and gopp for varying d. However, the definition of a

meaningful parameter based on these differences is not immediately obvious. Addi-

tionally analysis of either of these approaches would be rather subjective, because

the transition between two layers and a single layer is a relatively fluid process, as

suggested by the pair correlation functions in Fig. 3.17.

In lieu of attempting detailed analysis of simulation results, the scaling of this

point of maximal attraction (dmin) is easily and well explained with simple analysis

of the strong coupling approximation. Simply stating that maximal attraction occurs

when particles first form a single layer in the z-direction, one may use the strong

coupling approximation to predict a scaling between ξ and the d that yields Pmin,

called dmin. As first explained in [15], by Taylor expanding φ0 around z = 0, one
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finds to first order that

φ0(z) '
1

σmin

√
π
· 2z(d− z) (3.26)

provided that d < σmin. With this approximation the SCA barrier at d/2 is d2/(2σmin

√
π).

If we assume that single layer formation and therefore maximal attraction occurs when

this barrier is on the order of kBT (1 in reduced units), we find dmin '
√

2σmin

√
π.

We have shown in Sect. 3.7 that σmin scales linearly with ā, and therefore dmin ∝
√
Lw ∝ 4

√
ξ. A power law fit between dmin and ξ was previously shown in Fig. 3.13

with the fitting equation being dmin = 1.18L0.509
w . We may make an estimate of the φ0

barrier height that leads to single layer formation based off of this fit and the linear

relation σmin ' 1.26 · ā = 1.26 · Lw/
√

2 found previously in this section, by assuming

that the barrier is some fraction x of kBT , dmin '
√

2xσmin

√
π. Using the simulation

fits for dmin(Lw) and σmin(ā), we find that the single layer forms when the barrier is

approximately 0.44kBT , which is certainly on the order of kBT .

Using a simple expansion based on the strong coupling approximation of local

molecular field theory, we may make fruitful scaling predictions that would otherwise

be difficult to obtain even from detailed simulation data.

3.6 Inclusion of Physical Cores

The simplicity of this model might suggest that there will be difficulty in generalizing

to more typical systems where the charges are not point ions. However, LMF theory is

not restricted to such simple model systems. Inclusion of additional pair interactions

between charged particles is quite simple, since LMF in principle deals only with
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the long-ranged portion of the Coulomb interaction. This is crucial because most

force fields for intermolecular interactions include both charge-charge interactions and

Lennard-Jones interactions meant to represent the Pauli exclusion repulsions between

particles at short distances and van der Waals attractions at larger distance. These

more physical cores may be added into the short-ranged simulation without further

complications.

As a ready demonstration of this, simulations of ξ = 100 counterion-wall systems

with two different WCA cores were carried out with varying d. Recall that WCA

cores contain only the repulsive part of the Lennard-Jones pair interactions. The

mechanisms of LMF theory and σmin determination remain identical; we simply add

uWCA(r) to u0(r) in the pair-interaction sum in U for MC steps and f
(z)
WCA to f

(z)
0 in

the discrete sum for midplane-pressure determination. In each case, εLJ = 1.0. σLJ is

either 4.0 or Lw/
√

2. The P vs. d curves are shown in Fig. 3.18.

As one might reasonably expect, since the WCA cores impact only the counterion

interactions and not the interaction with the walls, the choice of a smaller σLJ has little

impact on the pressure values in comparison to point charges because the counterions

rarely if ever come within the range of the WCA core. In contrast, choosing σLJ to

be larger has a significant impact on pressure when particles form two separate layers

and d . Lw/
√

2. However, when the particles are finally forced into a single two-

dimensional layer at sufficiently small d, the WCA cores have much less impact on the

pressure because the forces are directed predominantly laterally along the walls rather

than normal to the walls. Figure 3.18 shows this to be the case for σLJ = Lw/
√

2. We

expect that for even larger σLJ, forcing the particles into a single layer would require
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much more force, but once the particles were in a single layer, the P vs. d profile

would be identical to that of the point counterions.
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Figure 3.18: Impact of including more realistic core potentials on pressure for ξ = 100.
The WCA potential is used with εLJ = 1.0 and σLJ equal to 4 and Lw/

√
2 = 17.7.

The small cores have virtually no impact on pressure, while cores with a size matching
the spacing in a single layer have a significant repulsive impact on the pressure until
d is small enough that the particles have been forced into a single layer.

Subsequent work in this thesis extends the application of LMF theory to simu-

lations of a water model. However, the simple extension here suggests that the LJ

core of the water model used should not affect the applicability of the LMF equation

to simulations. Rather, the point we will examine carefully in Ch. 5 will be the

extension of LMF theory to molecular models.

3.7 Implementing Monte Carlo Simulations with LMF

This model system has provided a nearly ideal situation for testing LMF theory and

SCA with simulations due to the high symmetry of the situation. Determining a

converged single particle density that depends only on z-position and subsequently
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solving an equation for φR that depends only on z is a numerically much simpler

task than that for a general three-dimensional external field, both with respect to

obtaining converged Monte Carlo particle densities and solving the LMF equation

numerically.

We have been able to quite simply implement standard canonical Monte Carlo

techniques with a minimum image convention. In this section we describe the details

of this implementation.

3.7.1 Basics of Monte Carlo Simulations

The system is simulated using a standard canonical Metropolis Monte Carlo (MC) al-

gorithm [31]. Thus N particles are simulated with N equal to an even integer squared

so that the particles may be initially placed on a square lattice. The simulation cell

has volume L×L×d with L chosen based on the requirement of neutrality in reduced

units,

N

2
· L2

w = Nπξ = L2 (3.27)

In general N is chosen with the intent that the minimum image convention is

justified. As such, a mimic particle should not interact with more than a single image

of any other particle. Since u0(r) is never exactly zero, we choose an Rc beyond which

u0(r) ' 0:

u0(Rc) = ξ
erfc(Rc/σ)

Rc

≤ ε (3.28)

where ε is a sufficiently small energy of interaction. Then, given this definition of Rc,
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any N that satisfies

L

2
=

1

2

√

Nπξ > Rc (3.29)

will justify the minimum image convention. ε is typically 10−3 and the smallest N

possible is used. For ξ around 104 or 105, ε is chosen as 10−2, and for smaller ξ, ε

could be chosen correspondingly smaller. In order to ensure continuity of energy at

Rc, u0(r) is shifted by the value u0(Rc).

Choosing an Rc beyond which 1/r could be set to zero would be completely wrong

since 1/r decays slowly. The beauty of the mimic u0(r) is that at large r, the leading

order asymptotic expansion, exp [−(r/σ)2] /r2, decays significantly faster than 1/r. A

numerical truncation of u0(r) is therefore only as problematic as standard approaches

for short-ranged pair interactions.

Random attempted MC steps are achieved by choosing a vector s of 3 random

numbers between -1 and 1, and setting the ∆r that is attempted equal to lsteps. The

attempted MC move is then accepted if the change in potential energy, ∆U , is such

that a random number between 0 and 1, R, satisfies R ≤ exp (−β∆U). An attempted

step that maintains or lowers the potential energy (∆U ≤ 0) will be accepted, and any

attempted step that increases the potential energy will be accepted with a frequency of

the Boltzmann factor of the energy change. The step length lstep in the simulations is

adjusted such that between 1/3 and 1/2 of attempted MC steps are actually accepted.

Particle moves are done as they would be in a three-dimensionally periodic system,

except that there is no image replication in the z-direction normal to the walls. Moves

are accepted or rejected based on the energy change ∆E with the typical Metropolis
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scheme. Any move that places a particle at z < 0 or z > d is immediately rejected

since the wall-counterion potential is defined to be +∞ in those regions.

Since the simulations were carried out in reduced units, defining ξ and d sets the

thermodynamic state of the simulation. The total potential energy U is

U =
N∑

i=1

φR(zi) + ξ
∑

i<j

erfc(rij/σ)

rij

. (3.30)

The distance rij is determined using the image of particle j closest to particle i in the

simulation box. In the SCA we approximation φR as φ0.

The initial particle distribution was obtained by placing the N = (2m)2 particles

on a square lattice in the x- and y-directions and choosing their z-positions based

from an n(z) determined from MPB theory as found described in [15], to enable

faster convergence of LMF solutions. n(z) was collected on a grid in the z-direction

with spacing ∆z = min
(
0.1, d

100

)
, and φR(z) was calculated on the same grid.

Values of the above described parameters are given in Table 3.1. All values in

the table are given in reduced units. Thus, even though in unreduced units σ and

the related “Coulomb core” maintain a constant value determined by neutrality as

coupling increases, in reduced units, σ increases.

3.7.2 Solving for φR

Previously shown in Fig. 3.11 in Sect. 3.2 is a diagram depicting the self-consistency

required for a solution to the LMF equation. The most straightforward scheme achiev-

ing this self-consistency involves the explicit iteration of equilibrated MC simulations

and φR(z) solutions. Schemes for mixing the impact of evolving φR(z) into the accu-
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ξ σ dmax Rc (ε) N

10 14 20 30 (10−3) 144

12 14 10 36 (10−4) 196

12.5 16 10 41 (10−4) 196

14 16 10 35 (10−3) 144

17 18 15 39 (10−3) 144

20 18 20 40 (10−3) 196

26 20 22 45 (10−3) 144

50 26 40 71 (10−4)* 144

100 34 20 81 (10−3) 100

103 80 20 210 (10−3) 100

104 230 25 570 (10−2) 100

105 650 40 1750 (10−2) 100

Table 3.1: Monte Carlo simulation parameters. Since σ is given in reduced units, σ

increases with increasing ξ; in unreduced units, we expect σ to converge to a constant

value scaling as ā (Lw or Lw/
√

2) as the coupling becomes stronger. *Note that

ξ = 50 has a larger range as defined by the energy cutoff requirement ε. This was the

largest ξ that the upper P = 0 value was found for, and greater numerical accuracy

was needed for that calculation since the pressures were so small due to the flatness

of P vs. d near the P = 0 point.
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mulation of nR(z) were explored. However in these simulations, the only step in this

direction was to assume that the changes in φR(z) were sufficiently small that the final

configuration of counterions in φ
(i−1)
R (z) was taken as essentially equilibrated in φ

(i)
R (z).

Solution of the LMF equation was iterated with simulation until self-consistency was

achieved as defined by

1

d

∫ d

0

∣
∣
∣φ

(i)
R (z) − φ

(i−1)
R (z)

∣
∣
∣ dz < 0.001. (3.31)

In these simulations, the general solution scheme is shown in Fig. 3.19. The initial

particle density distribution is analytically found via MPB calculation, and the LMF

equation is used to make an initial guess at φR for simulation with a σ appropriate

for simulation since σsim > σMPB. An initial equilibration for Neq Monte Carlo sweeps

is carried out, and then a continual looping over n
(i)
R

(

z;
[

φ
(i−1)
R

])

collection in Neq

sweeps and subsequent φ
(i)
R

(

z;
[

n
(i)
R

])

determination is done. Once the convergence

criteria in Eq. (3.31) are met after niter loops, then nR(z; [φR]), P , and g2D are

collected over Nave sweeps.
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Figure 3.19: Demonstration of the full solution of LMF equation and the subsequent
data collection in two wall Monte Carlo simulations. Equilibration and n(z) collection
for LMF iterations are done over Neq Monte Carlo sweeps. The convergence criterion,
Eq. (3.31), is met after niter iterations, and then averaged properties are found over
Nave Monte Carlo sweeps.

Shown in Table 3.2 are niter for ξ = 50 and various d, when n
(0)
R (z) = nMPB(z).
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The scheme converges to a solution quite quickly even for larger distances.

d 5 10 15 20 25 30

niter 1 1 1 2 2 3

Table 3.2: For ξ = 50, niter required to reach convergence of the LMF equation when

n
(0)
R (z) = nMPB(z) as d increases. Neq = 105 and Nave = 5 × 105.

3.7.3 Utility of φ0

As shown in Sect. 3.3, the strong coupling approximation can yield accurate results

in simulations. For strong coupling systems at small d, both φ0 and φR have very

shallow wells near the walls and thus choosing φR ' φ = 0 would even yield reasonable

results. However at larger d, the net normal forces due to particles extending to ∞

in the x- and y-directions become substantial. There, inclusion of effective wells near

the walls is required for simulations of short-ranged particles to correctly reproduce

their separation into two separate layers, as previously shown at the start of Sect. 3.2.

The strong coupling approximation and its corresponding φ0(z) has wells of depth

over 4 kBT for ξ = 10 and d = 20. To capture the separation of particles into two

separate layers, the inclusion of at least φ0 is absolutely crucial. As d grows larger

or ξ grows weaker, choosing a self-consistent φR will instead be necessary to obtain

accurate results. Already at ξ = 10 and d = 20, the SCA is beginning to break down

as shown in Fig. 3.10.

Even when φR is needed, we will not always be applying LMF to a system where

the mimic Poisson-Boltzmann approximation is reasonable. In the cases where cou-

pling is strong, φ0(z) could be a strong choice for φ
(0)
R (z) in LMF iterations.
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3.8 Summary and Conclusions

In this chapter, we reviewed the initial application of LMF theory to simulations of

a nonuniform charged system. The slab geometry explored will be examined again

for molecular systems in Ch. 6, but most of the basic LMF equation framework will

remain identical.

The model system we studied – two uniformly charged walls with interstitial neu-

tralizing point counterions – is of physical interest because it can exhibit like-charged

attraction between the two walls. In Sect. 3.1, we discussed the relevant length scales

of the system’s interactions to gain physical intuition about the appropriate length-

scale for the split of 1/r into short- and long-ranged parts. Work by Chen and Weeks

[15] using these lengthscale arguments in tandem with the mimic Poisson-Boltzmann

approximation successfully captured the like-charged attraction. While such an ap-

proach led to very good qualitative and near quantitative agreement with a single fit

to simulation data, simulations using full LMF theory lead to very accurate results

for the like-charged attraction with absolutely no fitting parameters. Not only do the

individual pressure versus distance curves for a range of coupling strengths agree quite

well with full simulation results due to Moreira and Netz [71] as shown in Fig. 3.12,

but so does the overall phase diagram in Fig. 3.13 documenting the wall separation

distances at which various coupling strengths cross between attraction and repulsion.

Carrying out these simulations also allowed us to study the technical aspects of

the application of LMF theory in greater detail than we shall undertake for molecular

systems. We studied the accuracy of the strong coupling approximation relative to
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the full self-consistent solution of the LMF equation – this relative accuracy depends

both on the coupling strength of the system and the separation between the walls.

Even for the nonuniform systems studied here, the applicibility of the strong cou-

pling approximation to a given phase point is not a black-and-white question. The

success of SCA and the eventual signs of the breakdown of SCA were presented in

Sect. 3.3. We also presented an “unbiased” method for determining σmin for a given

coupling strength based on monitoring the average distance of closest approach be-

tween counterions as σ is increased. We found that σmin scaled with the neutrality

spacing along the walls, as physically expected. Data for ionic correlations lateral to

the walls for varying coupling strengths and wall separations were collected for this

two-wall system. To the best of our knowledge, this was the first simulation data for

pair correlations lateral to the walls, which distinguish between particles on the same

side of midplane and on the opposite side. These correlation functions exhibited the

expected behavior during the transition from a single layer at small distances between

walls to two layers at large wall separation.

Overall, the LMF approach to electrostatics proved accurate and useful for this

simple slab system. Later in the thesis we will show that this accuracy holds for far

more complex systems than that presented here.
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Chapter 4

LMF Theory in Context

The treatment of Coulomb interactions both analytically and in simulations is a much-

studied problem. As such it is important to understand the LMF approach in the

context of other approaches. Below we will first place LMF theory more firmly in the

arena of classical electrostatics. Then we will detail different techniques ranging from

traditional mean-field analytical techniques to explicit series summation of Coulomb

interactions in quickly-convergent manners. Connections may be drawn between each

of these techniques and the LMF approach, and we will try to understand these.

4.1 Electrostatics via LMF Theory

Here we will examine the LMF equation for a mixture of species since fluids containing

charges must at least be a mixture of positive and negative charges. We need only

consider the mixture equation here because, with appropriate approximations, the

LMF equation for standard molecular models collapses onto the mixture LMF equa-

tion, as explained in Ch. 5. The YBG equation for mixtures is given in Appendix A,

and exactly the same approximations as used in Ch. 2 lead to the following LMF

equation for a species α in a mixture of different species indexed by γ and including

α:

φ
(α)
R = φ(α)(r) +

∑

γ

∫

dr′ ρR,γ(r
′) · u1,αγ(|r − r′|). (4.1)
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This general form was described by Chen and Weeks [15] in the context of charge-

charge interactions. And if the interactions being treated were of general LJ form

this would be the furthest simplification possible, with an LMF equation to be solved

for each different species with a complicated sum of pair interactions characterized

by distinct εαγ
LJ and σαγ

LJ weighted by density profiles.

However, if we apply LMF theory only to charge-charge interactions, a substan-

tial simplification that appeals to electrostatics may be achieved by leveraging the

observation by Chen and Weeks [15] that a single σ for all charged interactions proves

most useful and successful. With this observation, each u1,αγ(r) may be written as

u1,αγ(r) =
qαqγ
ε

erf (r/σ)

r
=
qαqγ
ε
v1(r). (4.2)

Thus Eq. (4.1) may be written exactly as

φ
(α)
R = φ(α)(r) +

qα
ε

∫

dr′

(
∑

γ

qγρR,γ(r
′)

)

· v1(|r − r′|) (4.3)

= φ(α)(r) +
qα
ε

∫

dr′ ρq
R(r′) · v1(|r − r′|), (4.4)

using the natural definition of charge density as

ρq(r) =
∑

γ

qγργ(r). (4.5)

Noting as did Chen and Weeks [15] that φ(α) may be due to both electrostatic and

nonelectrostatic components, we separate φ(α) as

φ(α)(r) = φ(α)
ne (r) + qαV(r), (4.6)

where φ
(α)
ne encompases nonelectrostatic confinements such as the smooth LJ walls

used in Ch. 6 and V represents the general external electrostatic potential.
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This observation naturally leads to the following rewriting of each LMF equation

for a species α as

φ
(α)
R (r) = φ(α)

ne (r) + qα

(

V(r) +
1

ε

∫

dr′ ρq
R(r′) · v1(|r − r′|)

)

(4.7)

= φ(α)
ne (r) + qαVR(r). (4.8)

Thus we now have a single rescaled electrostatic potential VR defined by one LMF

equation in terms of the charge density ρq,

VR(r) ≡ V(r) +
1

ε

∫

dr′ ρq
R(r′) · v1(|r − r′|). (4.9)

As with an external potential energy φ(r), if V is due to fixed charge distributions,

we may divide V into V0 and V1 as well as define a VR1 as in Sect. 2.4. In Ch. 5 we

will harness such a division to explain the success of LMF in treating bulk molecular

fluids. Further, we will explore an extension to systems we simulate in Ch. 6 where

such a separation is useful. For the moment though, we note that Eq. (4.9) is simply

a smoothed electrostatic potential due not to the convolution of the mobile charge

density with the Coulomb Green’s function 1/r, but rather to the convolution of the

charge density with a smoothed Green’s function erf(r/σ)/r.

Since erf(r/σ)/r is the potential due to a charge density with a Gaussian profile of

width σ, the integral portion of VR may be sketched as ρq∗ρG∗1/r where ∗ represents

a convolution and

ρG(r) ≡ exp (−r2/σ2)

σ3π3/2
. (4.10)
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Thus we exactly rewrite the LMF electrostatic potential from Eq. (4.9) as follows:

VR(r) = V(r) +
1

ε

∫

dr′ ρq
R(r′) · v1(|r − r′|) (4.11)

= V(r) +
1

ε

∫

dr′
∫

dr′′ ρq
R(r′) · exp

(
− |r′ − r′′|2 /σ2

)

π3/2σ3
· 1

|r − r′′| (4.12)

VR(r) = V(r) +
1

ε

∫

dr′′ ρqσ

R (r′′) · 1

|r − r′′| . (4.13)

The final equation has the form of a standard definition of the electrostatic potential

due to charge density as given in first-year textbooks like Purcell [80]. However, the

mobile charge density appearing in the integral of Eq. (4.13) is no longer the charge

density due to a simple linear combination of species’ density profiles weighted by

their valence, but rather a smoothed charge density defined as the convolution of the

charge density and ρG via

ρqσ(r) =

∫

dr′ ρq(r′) · exp
(
− |r − r′|2 /σ2

)

π3/2σ3
. (4.14)

Thus the LMF equation for long-ranged interactions may be viewed as simply doing

classical electrostatics on an equilibrium, smoothed charge density and defining a

single external rescaled electrostatic potential. In fact we may in general represent

the LMF equation as a modified Poisson’s equation,

~∇2 [VR(r) − V(r)] = −4π

ε
ρqσ(r), (4.15)

based on the smoothed charge density. This point was first made for the uniformly-

charged-wall model system by Chen [13], and it is immediately generalizable to the

mixture LMF equation dealt with here. Given that the LMF equation for site-site

molecules is identical to that for the mixtures as will be shown in Ch. 5, this view
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will also apply to most standard molecular simulations. In typical atomistic molecular

models, point charges are assigned to sites on molecules as a practical representation of

the quantum mechanical electron cloud and nuclear charges. The exact placement of

these point charges are quite crucial for the typical local behavior including hydrogen-

bonding and polar interactions. However to the extent that long-ranged forces lead

to electrostatic effects, it seems counterintuitive to assign too great a weight to the

exact placement of these point charges. Gaussian-smoothing of the charge density will

wash out a substantial amount of detail associated with the exact location of point

charges but leave the relevant accumulations of charge density. Further discussion of

this point will be delayed until Ch. 6 in Sects. 6.2, 6.4, and 6.6.

4.2 Other Approaches to Electrostatics

LMF theory and the choice of 1/r splitting have connections to various other ap-

proaches to electrostatics. In Sect. 4.3, we will briefly discuss connections to Poisson-

Boltzmann techniques which include ions implicitly through a charge density profile,

but predominantly we will focus on other approaches to electrostatics in simulations.

The treatment of electrostatics in simulations is a topic of continued research interest

and is also covered in simulation textbooks such as Frenkel and Smit [31]. Given the

substantial body of work, it is useful to understand how the LMF approach is similar

to and distinct from other electrostatics approaches.

First, we recall some material from Ch. 1. Traditional simulation techniques

for short-ranged interactions used the minimum image convention in order to sim-
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ulate particles within an infinite system [1, 31]. As depicted for two-dimensions in

Fig. 4.1(a), this approach projects periodic images of the main simulation cell out in

the x- and y-directions but assumes that particle i interacts only with the nearest

image of particle j. The validity of minimum image conventions hinges on the pair in-

teraction potential w(r) becoming numerically small if not exactly zero beyond some

cutoff radius Rc that is less than L/2.

(a) Minimum Image (b) All Images

Figure 4.1: Periodic boundary conditions for simulations are traditionally treated
differently depending on whether the particles are charged. The main simulation box
in the center is periodically replicated to better represent the isotropic nature of the
fluid. Thus there are multiple images of the black and grey particles. For typical
short-ranged interactions, the minimum image convention (a) is reasonable, and the
black particle in the main simulation cell interacts only with the nearest image of
the grey particle. In contrast, when charges are involved, the interaction of the black
particle with all periodic images (b) of the grey particle must somehow be included.
(This is an exact copy of Fig. 1.1.

Näıve application of the minimum image convention to Coulomb simulations is

highly problematic. Any purely minimum-image technique will neglect important

long-ranged interactions. But even more problematically, the 1/r interaction decays
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so slowly that it will never be sufficiently numerically small. In Sect. 4.4, several

intelligent manners to spherically truncate 1/r, not dissimilar to v0(r), will be dis-

cussed. However, such truncations are problematic in nonuniform geometries without

a VR. Often simulators rely on a picture similar to that in Fig. 4.1(b) where each

particle must interact with all periodic images of other particles. As such, lattice-sum

approaches described in Sect. 4.6 rely on taking the periodic replication of simula-

tions cells quite seriously and devising manners of exactly summing these interactions

across the periodic lattice so that it is quickly convergent. As the figure suggests, this

periodic lattice picture is less than fluid-like. Some research involves finding ways to

make such series summations more “isotropic” in nature to better represent fluids,

as discussed Sect. 4.6.3 [55, 111]. In the context of these simulation approaches,

LMF theory could be viewed as conceptually combining spherical truncation ap-

proaches with a long-ranged electrostatic potential that very naturally encompasses

the liquid-like nature of the surroundings through a convolution of interactions with

the equilibrium density profile.

4.3 Poisson-Boltzmann Techniques

Poisson-Boltzmann (PB) techniques treat electrostatics by assuming that charged

particles are essentially ideal gas particles responding to an electrostatic potential

generated by the equilibrium charge density of the particles.

In general for a solution of n charged species, this may be expressed as [69]

~∇2VPB(r) = −4πρq(r)

ε
= −4π

ε

n∑

i=1

ρiqie
−βqiVPB(r). (4.16)
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Often, the Poisson-Boltzmann equation is linearized leading to the Debye-Hückel

equation instead [37]. Linearizing the exponentials results in

~∇2VDH(r) = −4π

ε

n∑

i=1

(
ρiqi − βρiq

2
i VDH(r)

)

= VDH(r)
n∑

i=1

4πρiq
2
i

εkBT
= κ2

DVDH(r), (4.17)

where the Debye length LD is 1/κD. For the two-wall model system previously ex-

amined in Ch. 3, linearization is not necessary for easy solution. The analytical

expression for the density profile in the Poisson-Boltzmann approximation was given

in Sect. 3.1.

Poisson-Boltzmann techniques with varying ε have often been used to map out

electrostatic potentials on biomolecular surfaces based on the success of programs such

as DelPhi, developed by Honig and coworkers [39, 84]. However, Poisson-Boltzmann

approaches have a serious flaw in that the core interactions between particles are

treated in a mean-field sense just like the long-range interactions. For dilute systems

where the Coulomb interactions are weak and particles rarely come into contact with

one another, the PB approach is consistent and gives the exact Debye-Hückel limiting

law, but for many systems this neglect of pair correlations causes severe problems.

For the wall model systems this neglect is catastrophic since the attraction between

two walls is due to counterion correlations. Essentially, by including the full core

repulsions, configurations where particles are strongly repulsive get included in the

mean field average of the potential even though in the real system, the conditional

singlet density indicates that such configurations do not occur very often.

Various corrections to the Poisson-Boltzmann approach have been proposed. A
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recent example is correlation-corrected Poisson-Boltzmann (cPB) theory as devised

by Forsman [30]. In the cPB approach, the core Coulomb interactions are diminished

for all r < Rc in the Poisson-Boltzmann equation, essentially creating a correlation

“hole” and to avoid the overcounting of strong core repulsions. The approach was

quite successful, and there are many similarities between cPB and the MPB approach

for walls which was described in Chen and Weeks [15]. One of the reasons that the

MPB approximation was so successful is because it also has this effective correlation

hole included in its Boltzmann average. However, cPB has rather ad hoc choices of

correlation core sizes and of the functional form of the remaining long-ranged inter-

actions. Additionally, in scenarios where cPB is not as successful, ways to improve

the approach are not clear. In contrast, LMF theory provides a solid framework on

which to justify functional forms and to show avenues of improvement beyond the

mean field Poisson-Boltzmann level.

4.4 Spherical Truncation Techniques

Current work is still devoted to ways to spherically truncated 1/r. Each approach

yields pair potentials without discontinuities in energy and force. For uniform Coulomb

systems, these truncations are quite similar to the strong coupling approximation of

LMF theory where all particles interact via v0(r) without any further modification of

a VR1. While this discussion of spherical truncation techniques is certainly not meant

to be comprehensive, it will hopefully give a flavor of the wide variety of truncations

used and available in the literature.
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Other researchers may prefer an alternate choice of v0(r) than the one proposed

herein. In a certain sense, provided that v0(r) is sufficiently large to encompass the

core interactions and the remaining v1(r) is slowly varying over those interactions,

then another choice of v0(r) is reasonable. However, given that the choice of v1(r) =

erf(r/σ)/r optimally leads to a perturbation which is slowly-varying in r-space and

localized to small k-values simultaneously in reciprocal space, likely the choice of v0(r)

used here is well-posed for LMF. Also, any choice of spherical truncation will still

yield difficulties in a slab geometry without an appropriate VR.

4.4.1 Shifted Force Truncations

Shifted force truncations are algebraically the simplest manner of obtaining zero en-

ergy and force at the cutoff radius. For all r < Rc, a linear function is subtracted

from the potential as follows,

vSF =

{
1

r
+

r

R2
c

− 2

Rc

}

Θ(Rc − r). (4.18)

Θ(x) is the Heaviside step function. As shown in Fig. 4.2, this potential goes to zero

at Rc quite smoothly. However, the neglected portion of the potential does not have

a force that approaches zero for small r. Rather a constant force is subtracted from

all points in the potential.

4.4.2 Site-Site Reaction Field

The reaction field approach for charged systems is an extension of Onsager’s original

reaction field derived for a dipolar point particle with radius RRF in a dipolar fluid
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Figure 4.2: Plot of v0(r), vSF(r), vRF(r) and vCC(r). σ = 1.0, and Rc for vSF(r) is 2.0,
a point where v0(r) is small. RRF = 1.0 for both vRF and vCC(r).

approximated as a dielectric continuum [76].

The ion-ion interaction under reaction field may be mapped from 1/r to

vRF =

{
1

r
+

r2

2R3
RF

− 3

2RRF

}

Θ(RRF − r) (4.19)

with ε = ∞ to represent a conducting solution. This potential is also plotted in

Fig. 4.2.

While alternate derivations by writing Onsager’s reaction field in tensorial form

are possible [45, 74], this expression may also be derived in a manner more evocative

of LMF theory’s v0(r). Solving for the interaction between one point charge and

another point charge completely neutralized by a uniform distribution of charge within

a sphere of radius RRF, as depicted in Fig. 4.3(a), also yields vRF(r) [46].

A goal of further smoothing the interaction at RRF motivated an extension of reac-

tion field based on charge distributions to lead to an even more smoothly truncating

potential. As described in [46, 47], such a potential may be derived by looking at the
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Figure 4.3: Depiction of charge distributions leading to (a) the reaction field potential
and to (b) the charged cloud potential. The left portion depicts the single charge
density set leading to the interaction energy. The right portion translates this to
two delta functions interacting (leading to 1/r) minus two other charge densities
interacting, in a fashion similar to the LMF definition of v0(r).

interactions between one point charge with a uniform compensating spherical charge

cloud and another point charge with a uniform matching spherical charge cloud as

shown in Fig. 4.3(b). The charge distribution described may seem mysterious since

one charge was neutralized and the other was augmented. However, as qualitatively

shown these interactions are equivalent in r-space to taking the interaction between

two point charges and subtracting out the interaction between two smoothed spheres

of charge.

This description may be connected to the derivation of v0(r) for LMF applied

to Coulomb systems. v0(r) may be viewed as 1/r with the interaction between a

point charge and Gaussian charge distribution of width σ subtracted out, or alter-

nately as 1/r with the interaction between two Gaussian charge distributions of width

σ/
√

2 subtracted out. In some sense v0(r) is the ultimate symmetrization of charge

distribution interactions because two different manners of “smoothing” the charge

interactions lead to an identical functional form.
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Despite similarities in the charge distribution derivation, reaction field approaches

are motivated predominantly by finding a reasonable approximation to nearest-neighbor

pair interactions in a uniform system, and there does not exist a manner to include

long-ranged effects when needed. Similar issues exist with the less physically mo-

tivated shifted force truncations [28, 93, 114]. Any simple spherical truncation will

fail in situations where net addition of forces in the normal z-direction due to par-

ticle density spanning x and y to infinity can lead to nontrivial effects due to the

longer-ranged forces.

4.4.3 Generalized Reaction Field

Tironi et al. [96] developed a generalization of the reaction field approach to include

both contributions from a dielectric continuum and also a salt solution. At times

in the literature, generalized reaction field is used to refer to the “charged cloud”

approach of Hummer et al. [46] described previously, so careful checking of references

is required when interpreting the “reaction field” approach used in a paper.

The basis of this approach lies in defining a cutoff radius RRF such that ε = ε1

within the radius and ε = ε2 outside the cutoff radius. Then Poisson’s equation within

RRF is matched to a linearized Debye-Hückel solution for the given ionic strength

outside RRF. The resulting force equation simplifies to the reaction field expression

given previously in the limit of either high ionic strength or infinite ε2.

This approach to spherically-truncated pair interactions has been used in sim-

ulations of large biomolecules where the time scales of folding and unfolding are so
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large that more detailed series summation techniques are prohibitively expensive [91].

Recent detailed comparisons have found that such an approach is not unreasonable

for determining free energy surfaces when compared to Ewald summation [83].

4.4.4 Wolf Method

Another spherical truncation approach has been colloquially termed “Wolf sums.”

The original idea results from calculating energies in ionic crystals [109]. Wolf [109]

observed that standard sums of Coulomb energies may rapidly converge with the

observation that a given lattice region of one type of particle is neutralized by a

slightly shifted “mirror” lattice of opposite charges. This has been generalized to

fluids [110] by placing a neutralizing shell of charge at a cutoff radius Rc for each

interacting charge within Rc. For example if a +1 charge is surrounded by a total

charge of −1, then no neutralizing shell of charge is required. If, instead, the total

charge within a distance of Rc away from the +1 charge is −2, then a shell of charge

+1 would be placed at Rc in order for the sphere centered about the +1 charge to

be net neutral. However, the authors found that this sum in fluids did not quickly

converge as Rc was increased unless 1/r is also multiplied by a so-called “damping”

function. Not coincidentally the damping function is erfc(r/σ), leading to our choice

of v0(r) as the attenuated interaction between point charges.

Given the historical path of the development of the Wolf method, focus is often

applied to the quasi-summation technique used within the cutoff radius. This ap-

proach has led to success for a variety of systems [20, 29, 63, 66, 115]. However we
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suggest that the key to the success is not the summation approach applied to model

neutral spheres of charge, but rather the damping function employed almost as an

afterthought. In fact our accurate structural results for bulk water shown in Sect. 5.3

suggest that the damping erfc(r/σ) is actually the reason for much of the success of

the Wolf method in liquids.

4.4.5 Force Matching

A final spherical truncation technique used in a recent paper on Coulomb interac-

tions involves matching the forces due to a short-ranged potential with those due to

Ewald sums in a least-squares sense [50]. The authors focus substantial attention

on the ability of this force-matching technique to determine a vFM(r) which yields

quite accurate structure and thermodynamics. However examination of their analy-

sis shows that some spherical truncation approaches used as comparison in this paper

do not neglect a sufficiently slowly-varying potential. Thus we would not expect the

corresponding short-ranged potentials to yield accurate structures. In one case, the

authors do chose a vs(r) which is quite similar to our v0(r) chosen in Sect. 5.3; how-

ever they observe that the thermodynamic results are not as accurate. We show in

Sect. 5.3.4 that accurate thermodynamic properties may be obtained by applying a

simple perturbation approach to the calculation of energies and pressures.

In our view, the essence of the success of this force matching lies in the idea that

the long-ranged forces cancel in a spherical sense for these essentially uniform systems.

While this point in not emphasized, the authors do note that “corrections will likely

94



be necessary for inhomogeneous environments such as interfaces [50].” In the LMF

view, this means that some sort of VR must be included. In fact, as observed in the

previous chapter, slab geometries require substantial VR(z) due to net addition (rather

than cancellation) of long-ranged forces. Every single spherical truncation approach

described thus far would fail in a slab geometry without a correction similar to VR.

4.5 External Potential Method

The external potential method (EPM) was developed two decades ago as a heuristic

algorithm to account for this net additive force due to the long-ranged images. The

first signs of this approach may be found in Guldbrand et al. [36], and the general

approach typically used is detailed in Valleau et al. [99]. Referring back to Fig. 4.1(a),

in EPM, each particle i in the main simulation cell interacts with the nearest image

of each remaining particle j via full 1/r interactions. Additionally, each particle i

exists in a self-consistent external field VEPM(z) defined as

VEPM(z) =

∫ d

0

ρ(z′; [φEPM])vplate(z
′ − z) dz′ (4.20)

where vplate is the electrostatic potential generated by a plate of charge infinite in

x- and y-extent with a square with area equal to the cross-section of the simulation

box centered about particle i subtracted out. φEPM is self-consistently linked to ρ(z)

much as φR and ρR are linked in local molecular field theory. However EPM includes

the long-ranged effects of force addition solely as an algorithm without any physical

underpinning, so the extension to more general geometries is not clear. Also, perhaps

more problematically, the separation between short- and long-ranged interactions is

95



sharply at the boundary of the minimum image cell – particles interact via full 1/r

Coulomb interactions within the simulation box square prism of volume L × L × d

but just beyond that boundary the equilibrated charge density due to image particles

exerts a mean external field on each particle. In some senses EPM represents the

opposite extreme of spherical truncations – no concern is shown for reasonably cutting

off short-ranged interactions and smoothly transitioning to a mean-field average of

long-ranged interactions.

4.6 Series Summation Techniques

Series summations approaches such as Ewald summation and Lekner-Sperb summa-

tion have become the Coulomb calculation techniques of choice for high numerical

accuracy. The conditionally and slowly convergent sum over images n is

U =
∑

i<j

qiqj
ε

∑

n

1

|ri − rj − n| . (4.21)

The basic idea of summation techniques is to rewrite the slowly convergent sum of

1/r pair interactions in a way that the sum is rapidly convergent. Such a sum’s

convergence is still conditional on the order of the summation and depends on as-

sumptions about the sample’s macroscopic shape and boundary conditions. This

point will be crucial when we consider attempts to use a three-dimensional sum to

treat slab geometries shortly.

Below we will discuss a few manners of rewriting this conditionally convergent

summation. Since these summation techniques are the “gold standard” of approaches

for Coulomb interactions, they serve as our “experimental” data throughout this the-
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sis. The following is not meant to be a comprehensive discussion of these summation

techniques but rather a manner of highlighting some of the approaches used as bench-

marks for the performance of LMF in this thesis.

4.6.1 Three-Dimensional Lattice Sums

For three-dimensional periodicity, Ewald summation involves rewriting the sum with

real-space terms erfc(αr)/r and Fourier-space terms exp(−k2/4α)/k2, the transform

of erf(αr)/r. In these functions, α is simply a parameter that alters the extent to

which the 1/r interaction is computed in the real space sum or in the reciprocal space

summation. As α is increased, the k-space summation includes a greater extent of

the interactions and the r-space sum includes less. The Ewald rewriting of the lattice

sum is as follows [31]:

UEW =
∑

i<j

qiqj
ε

erfc(αrij,MI)

rij,MI

+
1

2πV

N∑

i=1

N∑

i=j

∑

k 6=0

qiqj
4π

k2
exp

(
k2

4α

)

cos(k · rij)

− α√
π

N∑

i=1

q2
i + J(M, P ). (4.22)

The first term is simply a sum over the real-space interactions between pairs of par-

ticles for the minimum image (MI). Writing the first term in this fashion requires a

choice of α that is sufficiently large that the neglect of erfc(αr)/r beyond some cutoff

radius that is less than half the width of the simulation box is reasonable. The second

term is the sum over the long-ranged lattice interactions calculated in Fourier space.

The number of k-vectors included in the sum depends on the degree of precision de-
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sired and the choice of α. For a desired precision, more k-vectors must be included

the larger that α is. The third term is a self-interaction term corresponding to the in-

teraction of a particle with the images of itself being subtracted out. The fourth term

represents an energy term that depends on both the polarization M of the simulation

cell and the assumptions about the macroscopic shape P of the sample as nicely dis-

cussed in [114]. For three-dimensional Ewald sums programmed into most molecular

dynamics programs, including dlpoly as used later on [90], the assumption is that

the macroscopic sample is a sphere, composed of a three dimensional lattice of cells,

embedded in conducting medium. In these instances, J(M, P ) = 0. The rewritten

sum given in Eq. (4.22) along with an appropriate choice of α allows one to track

real-space interactions only over the minimum image and to treat the Fourier-space

sums to reasonable accuracy with only a finite number of k-space lattice vectors.

Given the similarity of the three-dimensional Ewald summation’s k-space term

to v1(r) in LMF theory, comparisons between LMF theory and Ewald summation

are inevitable. In fact the long-ranged contribution VR1 in LMF theory may be

viewed as a Boltzmann-weighted average of the k-space sum in Ewald summation [21].

However there is a significant mathematical and philosophical difference between

LMF theory and any series summation technique. In LMF theory, our focus is on

separating the Coulomb interaction itself, and these long-ranged interactions only

contribute to an overall mean field in which the short-ranged mimic particles interact.

In Ewald summation, as in all series summation techniques, all interactions, both

the longer-ranged and shorter-ranged parts are meant to be accounted for at every

step in a simulation, and the details of the periodic boundary conditions play an
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important role. While the α in Eq. (4.22) is equivalent to 1/σ in the LMF functional

forms, no emphasis is placed on core interactions versus slowly-varying interactions

in the implementation of Ewald sums. The choice of α is made either to minimize

computational time or to allow the same choice of cutoff radius for the real-space

part of the Ewald sum and for other interparticle interactions. This means that the

physical meaning of v0(r) and v1(r) is often lost when using Ewald sums.

A wide variety of other lattice-like sums exist such as the fast multipole method

and particle mesh techniques as summarized in [31]. While series summation tech-

niques are more exact in accounting for explicit periodic long-ranged contributions

than the LMF approach, one could also argue that the series summation technique is

overly-dependent on the existence of periodic boundary conditions, which real ionic

systems never have. For example the potential of mean force between two interacting

ions in an explicit solvent exhibits artifacts of periodicity using Ewald summation [48].

The reliance of series summation techniques on periodic boundary conditions make

them hard to implement for more general geometries, and even simple planar geome-

tries such as the two-wall system still cause computational problems, with even more

problems arising from more general geometries.

4.6.2 Lattice Sums in Slab Geometries

The nonuniform systems considered in this thesis have a slab-like geometry which is

represented by nonuniformity in the z-direction and periodic replication in the x- and

y-directions. Various versions of Ewald summation exist for this geometry, some gen-
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eral and quite complex and expensive (two-dimensional Ewald) and others cheaper

but more limited in applicability (Hautmann-Klein Ewald) [93, 114]. Here we dis-

cuss the two lattice sum approaches used for our benchmarks in slab-like geometries,

Lekner-Sperb summation and corrected three-dimensional Ewald sums. There is cer-

tainly other recent research on lattice sums for such geometries [19, 23], but each of

these approaches is still inherently a lattice summation, with all the difficulties and

complexities that entails.

Lekner-Sperb summations [60, 92] were employed in the simulations used as a

benchmark [71] for the previous chapter on the two wall problem. We will summarize

the treatment as described by Moreira and Netz [71] for the charged-wall system.

For the single charged-wall system with neutralizing point counterions confined to

z ∈ (0,∞) and with coupling strength ξ defined as in Eq. (3.6), the periodic sum in

Eq. (4.21) may be rewritten using Lekner summation as

Ũ =
ξ

L̃

∑

i<j

vL(x̂ij, ŷij, ẑij) +
N∑

i=1

z̃i −
ln(2)

2
√

2π

√

ξN3/2 (4.23)

where the tilde indicates reduced units (LG for length and kBT for energy) and

a hat indicates lengths scaled by the lateral simulation box size L in lieu of LG.

For the two-wall system, the second term representing the potential due to wall-

particle interactions becomes a constant. The definition of vL contains the now rapidly

convergent summation rewritten with cosines and Bessel functions as

vL(x̂, ŷ, ẑ) = C − ln [cosh(2πẑ) − cos(2πŷ)]

+ 4
∞∑

l=1

cos(2πlx̂)
+∞∑

m=−∞
K0

(

2πl
√

(ŷ +m)2 + ẑ2
)

. (4.24)
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The constant C containing terms related to an arbitrary reference state chosen in

the derivation of Lekner sums and a further constant representing the self-energy

of particles (scaling as N) have been neglected. The neglect of these configuration-

independent constants will have no impact on acceptance ratios in the Monte Carlo

scheme nor on 〈U〉 /N which was used to gauge convergence of simulations with

respect to N in Moreira and Netz [71]. The sum in Eq. (4.24) is quickly convergent

at large distances between particles due to the rapid decay of K0 for large arguments;

due to the divergence of K0 for small arguments, the sum is rewritten for small

√

(ŷ +m)2 + ẑ2 as recommended by Sperb [92]. This further rewriting of the sum

depending on the magnitude of the argument of K0 makes the expression of energy

using Lekner-Sperb summation even more complicated.

Lekner-Sperb summations as summarized in Moreira and Netz [71] are as compli-

cated function-wise as two-dimensional Ewald sums. One advantage posed by Lekner-

Sperb summation is that the general manner in which the equations are derived is

the same regardless of degree of periodicity.

Given the complexity of writing two-dimensional sums and the corresponding

computational cost, a popular alternative for slab geometries is to carry out three-

dimensional sums with sufficient vacuum space between slabs in the z-direction, as

shown in Fig. 4.4. The justification for this idea is that the vacuum space decouples

the images in the z-direction. However, Spohr [93] shows that such three-dimensional

sums incorrectly treat long-ranged forces in the z-direction.

Spohr [93] correctly recognized that particles separated in the z-direction by a

distance greater than max(Lx, Ly) should essentially exert the force due to a uniform

101



� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(a) General slab geometry

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

E0

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

+
+
+

−
−
−

−
−
−

+
+
+

+
+
+

−
−
−

(b) Applied Field

Figure 4.4: Demonstration of implementation of a two-dimensional slab geometry us-
ing three-dimensional replication. In each, the desired slab system including periodic
repeats in the y direction (x is normal to the page) is the dark grey vertical line.
The black portion in the center represents the molecules in the actual simulation cell.
The white space corresponds to vacuum between images in the z-direction. (a) de-
picts a typically used simulation setup. Despite the long-ranged forces being wrong
in detail [93], the symmetry of the system about z = 0 means that the equilibrium
properties of this system are reasonable. In contrast, if an electric field is applied as
in (b), typical three-dimensional Ewald sums fail spectactularly and one must at a
minimum apply the slab correction developed by Yeh and Berkowitz [114].
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plate of charge on each other. The reason for this is that at such large distances, the

particles and their images in the x- and y-directions should essentially exert solely

z-directional forces on each other. When analyzing the force between particles for

spherical truncations and also for simple three-dimensional Ewald sums with what

might be considered sufficient vacuum space, Spohr [93] found that neither approach

converged to this force at large z-separations while two-dimensional Ewald sums did.

Traditional three-dimensional Ewald sums are very slowly convergent as the vacuum

space is increased. Often, such concerns do not have structural implications since the

average polarization of the cell is zero and these long-ranged interactions average out.

The G(z, z′) for LMF theory does have exactly this limit of constant force for large

|z − z′| as discussed in Sect. 3.2.

Yeh and Berkowitz [114] developed a correction to this three-dimensional approach

to the slab geometry which correctly leads to this “parallel-plate” limit at large normal

distances. They used this approach to treat a slab of water with an applied electric

field, a situation where standard three-dimensional sums fail. The essence of their

approach was realizing that a macroscopic spherical shape immersed in a medium of

infinite dielectric constant was a very poor assumption for a slab-like geometry. By

instead assuming a geometry that is infinitely thin in the z-direction immersed in a

vacuum, the shape term J is determined to be

J(M, P ) =
2π

V
M2

z =
2π

V

(
N∑

i=1

qi zi

)2

, (4.25)

and the force term is

− ∂J

∂zi

= −4π

V
qiMz, (4.26)
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scaling as N . With this simple term included in the standard equation for the three-

dimensional Ewald sum, the long-ranged “parallel-plate” forces converge much more

quickly with the increase of vacuum separation. This approach does still make an

assumption of an infinitely thin slab, and newer slab approaches attempt to minimize

the error in this assumption [19]. However, the simplicity of this approach makes it

appealing as a slab benchmark for our later systems.

4.6.3 Isotropic periodic sums

The final electrostatic approach we will discuss is a newer approach to series sum-

mation techniques which attempts to address the lack of “fluidity” in assuming an

exactly replicating periodic lattice of simulation cells [111]. We will not discuss the

details of the derivation or the resulting formulae; however, it is interesting to see how

this rather complex technique with unusual spherical and cylindrical images makes

the LMF approach seem relatively simplistic and more general in contrast.

For an isotropic, bulk-like fluid, the assumption is that there exists some spherical

local region delineated by Rc as for spherical truncations. The isotropic periodic sum

(IPS) essentially carries out the summation over spherical-shell images (rather than

traditional periodic images). While this approach is motivated as a summation tech-

nique, for bulk-like systems, it effectively results in a spherically truncated approach

much as for the Wolf method discussed previously. In order to treat a slab-like im-

age, using the IPS formalism, a cylindrical local region is used rather than a spherical

region [111].
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The IPS approach is possible for both Coulomb interactions and also LJ inter-

actions. For LJ interactions, this allows an accurate treatment of the hexadecane

liquid-vapor surface tensions with small cutoff radii. However, the authors do ac-

knowledge that the IPS approach is expensive for broad slabs, for then interactions

for all pairs in a cylinder must be calculated. Further their approach is not applicable

to liquid-liquid interfaces. Therefore, in such instances, they use particle mesh Ewald

for charge interactions [55]. In contrast, the LMF approach allows us to treat slabs

using spherical truncations and still include long-ranged forces. There is no need to

consider various shapes for “local regions.” Regardless of the system geometry, the

“local region” considered by LMF is spherical, but the long-ranged forces are included

by solving the modified Poisson’s equation described in Sect. 4.1.
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Chapter 5

Generalization of LMF Theory to Molecules

While the application of LMF theory to the model charged systems dealt with previ-

ously in this thesis and in other works [14, 15, 22, 86] has been useful, the reality is

that if LMF theory is going to be helpful in typical simulations, we must expand the

approach to molecular systems. In particular, we must first show that the LMF the-

ory proposed thus far is still reasonable for typical molecular simulation models. We

will also explore an initial application to a model of bulk water called the extended

simple point charge (SPC/E) model for both structure and thermodynamics.

5.1 LMF Equation for Molecules via Moments

As proposed by Chen in her thesis [13] and later in [15], one route to treat molecular

interactions lies in splitting intermolecular electrostatic interactions based on their

lowest nonzero moment. Thus, for water-water interactions, the appropriate pair

interaction to split into short- and long-ranged would be the dipole-dipole interaction.

As such, for two different dipoles pi and pj separated by position vector rij and angle

difference Ωij, the u1(r,Ω) would be

udd
1 (rij,Ωij) = (pi · ~∇)(pj · ~∇)

(
erf(r/σ)

εr

)

. (5.1)

And then the short-ranged udd
0 (r) would be defined as

udd
0 (rij,Ωij) = w(rij,Ωij) − u1(rij,Ωij) (5.2)
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where w(r,Ω) contains all intermolecular interactions including the dipolar interac-

tions. For many molecular models the intermolecular interactions may depend not

just on the relative angle of dipoles, but also on atom-atom separations.

Given this approach, one may easily derive from the molecular YBG equation

given in Appendix A an LMF equation quite similar to the ones we have encountered

previously. The LMF equation for a single-component liquid composed of molecular

dipoles would be

φR(rΩ) = φ(rΩ) +

∫

dr′dΩ′ ρ(r′Ω′) · udd
1 (rΩ, r′Ω′). (5.3)

The strongest advantage of such a rewriting is that the LMF equation averages

over the longest-ranged nonzero multipole moment of the molecule. Thus even if

the molecular model for a neutral dipolar molecule consists of point charges situ-

ated throughout the molecule, the averaging will solely be over the dipole-dipole

interactions, not over the point charge interactions which are present to give accurate

short-ranged interactions in addition to the correct net dipole moment. The approach

described above for treating molecules may well prove useful for analytical approaches

to solving the LMF equation for molecular systems.

However, for simulations, the stark reality is that most force fields, like charmm [64]

and amber [25], rely on assigning point charges to various atomic sites within the

molecules. Furthermore, intermolecular interactions are determined in standard simu-

lation packages not by calculating the relative body frames of two different molecules

but rather by doing sums of various pairs of those atomic sites. The models are

termed site-site molecular models. Thus by defining u1 in an orientationally depen-
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dent fashion, the resulting u0 must be defined in a similar fashion, drastically altering

the character of the intermolecular potential. In addition, the singlet densities used in

the molecular LMF equation depend on molecular position and orientation. The sim-

pler site singlet densities depend only on position and also are data more commonly

collected in simulation packages.

Therefore, LMF theory will be much more straightforward to integrate into stan-

dard simulation packages if instead we divide the long-ranged electrostatics just as

we have done before for point charges as

1

r
=

erfc(r/σ)

r
+

erf(r/σ)

r
= v0(r) + v1(r), (5.4)

and solve the electrostatic equation for VR given in Sect. 4.1. Further the rewriting

in terms of ρq enables one to envision the extension of the LMF equation for use in

more complex systems where there may be many different single particle densities

that could be collected, but only the singlet charge density is required. However,

such an approach requires us to reexamine the derivation of the LMF equation, for

now the various sites have specific bonds between them.

5.2 Deriving an LMF Equation for Small Site-Site Molecules

We start the derivation with a statement of the YBG equation for a mixture of various

site-site molecules. This equation is derived in Appendix A, but we will try to make

the general notation clear here. We owe much of the notation to Chandler and Pratt

as used in [10, 11], however in some instances we deviate for simplicity of notation.

Molecules are indexed by M and variants, and sites on molecules are indexed by
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Greek letters like α and γ, as for species in mixtures.

We assume that the potential energy component of the Hamiltonian of the system,

U , may be represented by

U =
∑

M

NM∑

i=1

w∗
M(RiM) +

∑

M

NM∑

i=1

nM∑

α=1

φ(αM)(r
(α)
iM)

+
1

2

∑

M

∑

M ′

NM∑

i=1

NM′

∑

j=1

(1 − δMM ′δij)

nM∑

α=1

nM′

∑

γ=1

uαMγM ′(|r(α)
iM − r

(γ)
jM′ |). (5.5)

There are NM total molecules of each type M , and there are nM sites on each molec-

ular type M . 1 In the sum above w∗
M(RiM) is meant to represent the intramolecular

bonding potential energy for the ith molecule M in position and orientation RiM.

Here RiM = {r1
iM, . . . , r

nM

iM }. While we will mainly treat systems with rigid geome-

tries, which would essentially result in delta-functions for constraints in the partition

function, we leave the bonding potential energy function in the current formulation

for generality and also greater simplicity. The second term in Eq. (5.5) represents

the standard external potential energy function φ here applied to each molecular site

with a possibly distinct form. The third term represents the summation over all pair

interactions between sites on distinct molecules. uαMγM ′(r) again allows for distinct

pair interactions for each possible site.

For a molecule M , the singlet density profile of a given molecular orientation is

described by ρ
(1)
M (RM), where RM represents the positions of all sites on the molecule,

and the (singlet) density profile of a site α on the given molecule M is denoted by

1Each molecular site is considered unique even if there are multiple sites of the same type. This

overcounting of indistinguishable sites is accounted for by a symmetry number in the partition

function. Thus SPC/E water would have nM = 3.
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ρ
(1)
αM(r). We may write the YBG equation for a given site as

− kBT ~∇
(

ln ρ
(1)
αM(r)

)

=

∫
(

dRM

dr
(α)
M

)
[

~∇w∗
M(RM)

]

%M |α(RM|r)

+ ~∇φ(αM)(r) +
∑

M ′

nM′

∑

γ=1

∫

dr′ργM ′|αM(r′|r)~∇uαMγM ′(|r − r′|) (5.6)

Here we also have two conditional densities. ργM ′|αM(r′|r) is the equivalent of the

conditional singlet density we considered for a singlet component fluid in Ch. 2; here

it is the density of site γ on molecule M ′ at position r′ given that intramolecular

site α on molecule M is at r. %M |α(RM|r) is the conditional density of a molecular

orientation RM given that site α on molecule M is at position r. This is inherently an

intramolecular conditional density. While not stated explicitly in the first integral, the

conditional density %M |α(RM|r) implies that rM
(α) is set equal to r within w∗

M(RM).

For simplicity in taking differences we note that we may write the long-ranged

part of the specific intermolecular pair interactions as

u1,αMγM ′(r) =
qαMqγM

ε
v1(r) (5.7)

and as before the short-ranged core interactions will be defined as u0,αMγM ′(r) =

uαMγM ′(r) − u1,αMγM ′(r) and will encompass all LJ-like core interactions as well as

the usual v0(r) terms. Furthermore, all bonding potentials will be assumed the same

in the mimic and full systems.

Following the standard path to LMF derivation, we take the exact difference be-

tween the YBG equation for the full system and the YBG equation for a mimic sys-

tem, assuming the equality of the singlet density profiles ρ
(1)
αM(r; [φ]) = ρ

(1)
R,αM(r; [φR]).
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Thus, we find

~∇φ(αM)
R (r) = ~∇φ(αM)(r) +

qαM

ε

∫

dr′ρq
R(r′) ~∇v1 (|r − r′|)

+

∫

· · ·
∫ [

~∇w∗
M(RM)

] {
%M |α(RM|r; [φ]) − %R,M |α(RM|r; [φR])

}

(

dRM

dr
(α)
M

)

+
∑

M ′

nM′

∑

γ=1

∫

dr′
{
ργM ′|αM(r′|r; [φ]) − ρR,γM ′|αM(r′|r; [φR])

}
~∇u0,αMγM ′(|r − r′|)

+
qαM

ε

∫

dr′
{
ρq|αM(r′|r; [φ]) − ρq(r′; [φ])

}
~∇v1 (|r − r′|) . (5.8)

Besides taking the differences as before, the sole other shift we have made is writing

terms using v1(r) where possible, and thus having charge densities ρq and conditional

charge densities ρq|αM in some terms. The final two terms in the above equation may

be neglected for exactly the same reasons as for a simple uniform fluid.

The new integrand unique to molecules is

[

~∇w∗
M(RM)

] {
%M |α(RM|r; [φ]) − %R,M |α(RM|r; [φR])

}
. (5.9)

This integrand will to a good approximation be zero provided that

ρM (RM; [φ]) ' ρR,M (RM; [φR]) . (5.10)

In other words, the densities of specific molecular orientations must be well approx-

imated by the mimic system. For small molecules, this seems like an eminently

reasonable approximation, since the prevalence of various relative intramolecular ori-

entations will be dominated by short-ranged interactions and the overall molecular

orientation should be quite well approximated given local short-ranged interactions

and the long-ranged orientational corrections due to VR. For large, flexible molecules
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similar to those in charmm [64] or amber [25], a less strict but sufficient approxi-

mation will be given in the final section of this chapter.

Assuming that the approximation in Eq. (5.10) is reasonable, we may write the

LMF equation for site-site molecular models as

φ
(αM)
R (r) = φ(αM)

ne (r) + qαMVR (r)

VR(r) = V(r) +
1

ε

∫

dr′ ρq
R(r′)v1 (|r − r′|) . (5.11)

Each molecular site now moves in a renormalized external potential due to an average

charge density that is partially contributed to by it and its bound molecular sites.

This might be cause for concern, since implementations of Ewald summation do

remove the effect of both the charge itself and these bound charges [89]. However, we

argue that this is reasonable since LMF convolutes the average charge density, not

the instantaneous charge density, with the slowly-varying long-ranged v1(r).

The equation above is identical to the mixture LMF equation as related in Ch. 4.

However, the preceding derivation for small site-site molecules helps us to understand

that the use of the mixture LMF equation for site-site molecules still is grounded in

the YBG equation with solid statistical mechanical approximations.

5.3 Results for a Bulk Fluid

We will apply the site-site LMF equation stated in Eq. (5.11) in the upcoming

Ch. 6. However, here we examine the application of the strong coupling approximation

(SCA) to bulk water. When we replace the point charge interactions on a water model

with v0(r), we will call this Gaussian-truncated (GT) water, since v0(r) is the potential
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due to a point charge neutralized by a Gaussian charge distribution. As we shall see,

GT water is quite accurate in the bulk. Though, given the range of continuing research

on spherical truncations for bulk fluids, this should not be surprising. We study the

SPC/E model of water [5], an extension of the SPC model [7].

5.3.1 SPC/E Water Model

A diagram of the model is shown in Fig. 5.1. SPC/E stands for simple point charge

model/extended, and, as can be seen in the diagram, one dominant feature of the

SPC/E model is point charges assigned to the hydrogen and oxygen atomic sites.

Furthermore, there is a Lennard-Jones core centered about the oxygen site. The LJ

core has a σLJ of 3.166 Å. If a LJ fluid characterized by that core size were at the bulk

density of water, the reduced density ρσ3
LJ would be 1.06, an incredibly high density.

Also, the first peak in the oxygen-oxygen radial distribution function is located at

approximately 2.7 Å - 2.8 Å, well within σLJ. The SPC/E model may be understood

as frustrated ion pairing between O and H sites; the combination of the push of the

LJ core with the pull of the oppositely-charged attractions results in

• hydrogen-bonding,

• a liquid structured as essentially a random tetrahedral network,

• the correct packing,

• long-ranged electrostatics such as dipoles, and

• many relevant thermodynamic properties.
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As suggested by the striking list of behavior captured by the geometry, three point

charges, and a LJ core, the balance of forces is quite delicate.

There are many competing models of water [35], but in essence most are similar.

There are slightly different geometries, charges, and choices of σLJ, but the appro-

priate parametrization has a relatively tight “sweet-spot” that relies on a delicate

balance between like-charged attraction and the LJ core repulsion to yield an ar-

ray of properties. Thus, while SPC/E may not be the most advanced water model

available, it is a reasonable representative of the general class and is used by many

researchers who are expert in molecular simulation.

+q +q

LJ

− 2q

Figure 5.1: Diagram of SPC/E model of water. The OH bond length is set to 1.0 Å,
and the bond angle is an idealized 109.5◦. Oxygen sites have a charge of −0.8476 e0

and hydrogen sites have a charge of +0.4238 e0. Additionally a LJ core is centered
on the oxygen with σLJ = 3.166 Å and εLJ = 0.650 kJ/mol.

5.3.2 Simulation Details

NVT molecular dynamics (MD) simulations of a cubic box of 1728 water molecules

were carried out in a cubic box with side length 37.27 Å using the dlpoly2.16 pack-

age [89]. The timestep was 1.0 fs and the temperature of 300 K was maintained by a

Berendsen thermostat [6] with a time constant of 0.5 ps. The simulations were equi-
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librated for 500 ps and then data was collected for 1.5 ns. Any error bars reported in

the data were determined by splitting the 1.5 ns simulation data into 100 ps blocks

and determining the standard deviation of the data set.

The smoothed truncation length σ used for v0(r) ranges from 3.0 Å to 6.0 Å –

from the nearest-neighbor distance to twice that. For σ ≤ 4.5 Å, Rc was set to 9.5 Å,

since the LJ interactions required a cutoff at that distance already. For σ = 5.0 Å,

Rc = 11.5 Å, and for σ = 6.0 Å, Rc = 13.5 Å. The benchmark for electrostatics is

three-dimensional Ewald sums with α = 0.3 Å−1 and kmax = (10, 10, 10).

5.3.3 Structural Results

The SCA approximation gives good results for pair correlation functions for the full

range of σ examined. Shown in Fig. 5.2 are all three site-site pair correlation func-

tions as well as the dipole-dipole correlation function. All correlation functions show

remarkably good agreement.

Since the lines lie directly on top of each other, the different gHH(r) have been

staggered by 0.2 vertically in Fig. 5.2(c). This was not done for gOO and gOH because

the initial peaks are so sharp that such a stagger does not clearly display the features

of the function as a whole. The agreement is quite strong, though there are slight

discrepancies in g(r) near the cutoff radius Rc. Overall, these results are not that

surprising or new since a large number of spherical truncations have been developed

to treat 1/r interactions in molecules as discussed in Sect. 4.4. From the viewpoint

of LMF theory, this success is due to spherical cancellation of long-ranged forces in
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(d) Dipole-Dipole Correlations

Figure 5.2: Correlation functions for bulk SPC/E water treated with three-
dimensional Ewald sums (Full) and with a range of Gaussian-truncated v0(r) (Trun-
cated). The smoothed truncation length σ varies from 3.0 Å to 6.0 Å. The site-site
correlation functions gOO(r), gOH, and gHH are displayed as well as 〈cos θ〉 (r). The
latter function is the average dot product between dipole unit vectors for molecules
separated by r, as shown in the inset in (d). In (c), the correlation functions due to
various v0(r) are vertically staggered by 0.2 to emphasize that 6 functions lie directly
on top of each other in the other plots.
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the bulk.

However, the agreement of the dipole-dipole correlation functions is surprising;

this was first observed by Hu [41] for acetonitrile. The correlation function 〈cos θ〉 (r)

is defined as the average dot product of two dipole unit vectors separated by a distance

r in the fluid. The plot in Fig. 5.2(d) shows that within the nearest shell of water

molecules, the dipoles are strongly positively correlated with each other, mostly due

to the fact that the preponderance of hydrogen-bonded configurations have dipoles

pointing in similar directions. The plot also shows that this correlation decays very

quickly into the bulk. Nezbeda [75] found that while a molecule-based cutoff scheme

yielded accurate site-site correlation functions, the dipole-dipole correlation function

was highly inaccurate. He found a long-ranged anticorrelation of dipoles with his

cutoff scheme. It seemed possible that a site-based truncation would be even less

accurate for that function since at some intermediate radius, the GT water molecule

could be viewed as having “non-zero” charge since the forces due to only some fraction

of the sites would be felt. However, our results suggest that the truncation of Nezbeda

[75] fails not as a result of issues with spherical truncations in general but rather owing

to his insufficiently large cutoff radii. The largest cutoff radii considered was 7 Å,

and apparently this led to severe neglect of orientational correlations even while the

site-site correlation functions were quite accurate.
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5.3.4 Thermodynamic Results

Shown in Table 5.1 are calculations of energy and pressure for the bulk SPC/E

system. Simply from the simulation output of dlpoly, we may obtain values for

the energy and pressure of the mimic system in the SCA and also for SPC/E water

simulated with Ewald sums. While we expect the latter to yield an accurate energy

and pressure for the system, under no circumstances should U0 and P0 be accurate,

where the 0 subscript is meant to indicate the contributions of v0(r) and uLJ(r) to

the energy and pressure. The results for U0 and P0 bear this out.

However, just as for simple ionic systems studied by previous researchers [14, 22],

we expect to be able to accurately approximate the long-ranged contribution to the

energy. Näıvely, we might hope to carry out the integration

U1

N
=
ρBq

2

2

∫

v1(r) {hOO(r) + hHH(r) − 2hOH(r)} dr (5.12)

to calculate U1/N , using the pair correlation functions from SCA simulations with

h(r) ≡ g(r) − 1 and with q ≡ qO. From now on, we will define

htot(r) = hOO(r) + hHH(r) − 2hOH(r). (5.13)

However, this approach will be highly unreliable since the SCA pair correlation func-

tions will most likely not be accurate for small k components, which are actually the

dominant contributor the integral above. Just as in [14], we write U1 as an integral

over k using Parseval’s theorem,

U1

N
=
ρBq

2

2

1

(2π)3

∫
4π

k2
e−k2σ2/4ĥtot(k)dk. (5.14)
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As shown in Appendix D, building on material from [10] and [37], we may write a

small k expansion of ĥtot in a manner analogous to the zeroth and second moment

expansion for Coulomb systems. At small k,

ĥtot ' 0 + ĥ
(2)
totk

2, (5.15)

where ĥ
(2)
tot is a constant. This constant may be related to the dipole moment, density,

and dielectric constant of water as

q2ĥ
(2)
tot =

kBT

4πρ2
B

ε− 1

ε
− µ2

3ρB

. (5.16)

Aside from the ratio (ε − 1)/ε, the first term is equivalent to the κ2
D contribution

for ionic solutions determined by Stillinger and Lovett [94]. The second term is a

nontrivial contribution from the dipole moment. In fact this constant is negative and

may be bounded from above by assuming ε→ ∞ as

q2ĥ
(2)
tot ≤ −3.145 × 103 kJ · Å6

mol
. (5.17)

Since water has a large dielectric constant and the dipole moment contribution is large

in magnitude, this is actually a relatively tight upper bound. Given this expansion,

we may analytically approximate U1/N as

U1

N
' q2ĥ

(2)
totρB

2√
π

1

σ3
. (5.18)

This correction is shown in Table 5.1, and the inclusion of this correction brings all

of the SCA energies much closer to the Ewald energy. Furthermore, all the U0/N and

(U0 + U1)/N are plotted as a function of σ in Fig. 5.3. The Ewald energy is shown

as a horizontal line, and this approximate correction performs quite well.
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Figure 5.3: Plots of U0/N and the correction U1/N as a function of σ compared
to Ewald results. Even for a conservative σ such as 4.5 Å, U0/N is still incorrect
by about 0.5 kBT per molecule. The analytical long-ranged correction U1/N which
varies as σ−3 resolves these inaccuracies on a systematic basis. Error bars are the size
of the symbols or less.

The SCA pressure data in Table 5.1 also performs inadequately relative to Ewald

sums. All SCA systems have a pressure higher than that of the Ewald sums. This

meshes with an observation by Izvekov et al. [50] that when simulating a system

very similar to SCA with σ ' 5.0 Å using the NPT ensemble, the bulk density was

slightly too low. The SCA systems are missing some net attractive forces based on

the pressure values, and therefore, an SCA system with variable volume would require

an additional applied external pressure in lieu of the net aggregate attractive forces.

Initially, given the success of the energy correction above, we hoped to apply a

similar approach using the virial equation

P1 = −ρ
2
Bq

2

6

∫
∂v1

∂r
· htot(r)dr. (5.19)
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Given our choice of v1(r), this may be exactly reexpressed using an integral over k as

P1 =
ρ2

Bq
2

6

1

(2π)3

∫ (
4π

k2
e−k2σ2/4 − 2σ2πe−k2σ2/4

)

ĥtot(k)dk. (5.20)

Plugging in the small k expansion however leads to a pressure correction which is

explicitly positive. According to [37, p. 347], this generalization of the virial equation

should not suffice – more information than the pair correlation functions alone is

needed to calculate the pressure.

Instead, we use a thermodynamic expression for the pressure,

P = T

(
∂S

∂V

)

T,N

−
(
∂U

∂V

)

T,N

, (5.21)

to calculate a correction for pressure in simulations. In general, we do not know

the energy or the entropy as a function of V ; however we do have an analytical

approximation to U1/N . If we also assume that the entropy of the full system is

well captured by the mimic system, i.e. S ' S0, then we simply need to calculate

the partial derivative of U1 with respect to V in order to determine the pressure

correction. Writing U1 in terms of N , V , and T , we find

U1(N, V, T ) =
2√
πσ3

(
V kBT

4π

ε− 1

ε
− Nµ2

3

)

. (5.22)

Rather logically, the intramolecular contribution to energy due to rigid molecular

dipoles does not depend on volume.
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Taking the partial derivative of U1(N, V, T ) with respect to V , we find

P1 = −
(
∂U1

∂V

)

T,N

= − kBT

2π3/2σ3

ε− 1

ε

= −0.2240

σ3

ε− 1

ε

kJ

mol Å
3

= −3.671

σ3

ε− 1

ε
katm, (5.23)

with σ given in Å. This correction term is purely negative, just as we expect. Since, the

term involving ε is now the only correction term, we use the experimental dielectric

constant of water, ε = 78. As shown in Table 5.1, including P1 brings nearly all

pressures into agreement with the Ewald result. Neither P1 nor U1/N brought the

σ = 3.0 Å data into full agreement with the Ewald results due to the fact that the

second order k-space expansion is inappropriate for the smallest σ used.

This data with error bars is also plotted in Fig. 5.4. Since the pressure data is

much noiser than the energy data, several of the higher σ were already barely within

error bars. However, the correction improves the agreement and is quite notable for

σ = 4.0 Å.

In general, as has been well established [14, 22], despite the highly accurate struc-

tures for SCA, the impact of the long-ranged forces on thermodynamics cannot be

neglected. A simple analytical energy correction yields much more accurate results

for both pressure and energy. The pressure correction could prove useful in carrying

out NPT simulations of an SCA fluid.
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5.4 Why is SCA So Successful for Dense Bulk Fluids?

In essence, the success of SCA for the structure of bulk SPC/E water means that

the forces due to VR1 are negligible. There will be constant corrections to energy and

pressure, but simulating in the NVT ensemble means that the incorrect long-ranged

pressure does not impact the structure. The success of SCA implies that VR1 should

simply be a function of r and that it is quite slowly varying.

One might posit that the VR we seek would be obtained by placing each site at

the origin (separately) leading to separate VR,α indexed by the site α placed at the

origin. Defining Vα(r) = qα/r, the LMF site-site equation from Eq. (5.11) can be

used. In other words, LMF would lead to a set of {VR,α(r)} spanning each instance

of a site fixed at the origin.
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However, this formulation ignores the fact that site α is inextricably bound to the

other sites in that molecule. The key to incorporating the physical reality is to start

with a more specific VR and then average that to a spherically symmetric situation.

This will not be the explicitly correct VR but it will be a solid approximation for a

bulk situation. In formulating a more specific molecular VR, we follow the prescription

from Chen and Weeks [15] for fields due to fixed charged species.

We may define a VR for a given orientation RM of a central molecule M with site α

fixed at the origin. In essence V(r) implicitly depends on that chosen orientation RM

with r
(α)
M at the origin 0. Thus we will write both VR and V to indicate their mutual

dependence on r and RM as VR,α(r;RM) and Vα(r;RM). As suggested previously we

may split Vα with short- and long-ranged parts defined as

V0,α(r;RM) = qαMv0(r) +

nM∑

γ 6=α

qγMv0

(∣
∣
∣r − r

(γ)
M

∣
∣
∣

)

(5.24)

V1,α(r;RM) = qαMv1(r) +

nM∑

γ 6=α

qγMv1

(∣
∣
∣r − r

(γ)
M

∣
∣
∣

)

. (5.25)

With this first step, we may also now write VR,α = V0,α + VR1,α with the long-ranged

part defined as

VR1,α(r;RM) = V1,α(r;RM) +

∫

dr′ρR,q|M(r′|RM; [VR,α]) v1 (|r − r′|) (5.26)

where ρq|M(r|RM) is the conditional intermolecular charge density at r given the

molecule orientation RM with α at 0. Here the LMF equation involves a conditional

density simply because the imposed external field in this case may be mapped to

placing a molecule at position RM with α at the origin.

As stated at the beginning of this section, the success of SCA for treating bulk
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water suggests that VR1,α(r;RM) ' 0. Given the uniformity of the fluid, in some sense

the long-ranged forces will not be dominated by any single molecular orientation but

rather the averaged effect of the molecular rotating about the fixed site α. Thus, it

seems quite plausible to approximate

VR1,α(r;RM) ' 〈VR1,α(r;RM)〉M |α = VR1,α(r). (5.27)

The 〈A〉M |α indicates an ensemble average of A over all possible orientations of M

given that α is at the origin 0. This may be represented via equation as

〈A〉M |α =

∫

· · ·
∫

A · %M |α(RM|0)

(

dRM

dr
(α)
M

)

(5.28)

where %M |α(RM|0) is the conditional intramolecular density that the molecule will be

oriented as RM given that α is at 0. The differential fraction on the right indicates

that we integrate over all molecular sites except site α. In essence, this means that

all orientation-specific interactions are encompassed wholly by the short-ranged V0,α.

We begin by determining the Boltzmann-weighted average of V1,α(r;RM),

〈V1,α(r;RM)〉M |α = qαMv1(r) +

nM∑

γ 6=α

qγM

〈

v1

(∣
∣
∣r − r

(γ
M

∣
∣
∣

)〉

M |α
. (5.29)

We first compute

〈

v1

(∣
∣
∣r − r

(γ
M

∣
∣
∣

)〉

M |α
=

∫

· · ·
∫

%M |α(RM|0)v1

(∣
∣
∣r − r

(γ)
M

∣
∣
∣

)(dRM

drα
M

)

(5.30)

=

∫

dr
(γ)
M %γ|α

(

r
(γ)
M |0

)

v1

(∣
∣
∣r − r

(γ)
M

∣
∣
∣

)

. (5.31)

Since %γ|α

(

r
(γ)
M |0

)

depends only on r
(γ)
M and not on r

(γ)
M , we may integrate v1 over

spherical shells, as done in Sect. B.2, and yield

∫

dr
(γ)
M %γ|α

(

r
(γ)
M |0

)

v1

(∣
∣
∣r − r

(γ)
M

∣
∣
∣

)

=

∫

dr
(γ)
M %γ|α

(

r
(γ)
M |0

)

G
(

r; r
(γ)
M

)

. (5.32)
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As derived in Sect. B.2, G (r;R) is the Gaussian-smoothed Green’s function associated

with a spherical shell of unit charge located at R. With this writing, we may express

V1,α as

〈V1,α(r;RM)〉M |α = qαMv1(r) +

∫

dr′%q|α (r′|0)G (r; r′) . (5.33)

Here %q|α(r|0) is meant to represent the intramolecular charge density at radius r

given that α is located at the origin 0.

To write the spherically averaged VR1,α, the final average we must take is

〈∫

dr′ρR,q|M(r′|RM; [VR,α]) v1 (|r − r′|)
〉

M |α
. (5.34)

This task is most clear when we explicitly write out the average and simplify from

there:

〈∫

dr′ρR,q|M(r′|RM; [VR,α]) v1 (|r − r′|)
〉

M |α

=

∫

· · ·
∫ (∫

dr′ ρR,q|M(r′|RM; [VR,α]) v1 (|r − r′|)
)

· %R,M |α(RM|0)

(

dRM

dr
(α)
M

)

=

∫

dr′ v1 (|r − r′|〉
{
∫

· · ·
∫

ρR,q|M (r′|RM; [VR,α]) %R,M |α(RM|0)

(

dRM

dr
(α)
M

)}

=

∫

dr′ ρR,q|α(r′|0; [VR,α]) · v1 (|r − r′|) (5.35)

As before, since ρq|α(r|0) depends only on the radial distance, we may average v1(r)

over spherical shells and find

〈∫

dr′ρR,q|M(r′|RM; [VR,α]) v1 (|r − r′|)
〉

M |α
=

∫

dr′ ρR,q|α(r′|0; [VR,α]) · G(r; r′).

(5.36)

Thus in the end, we find the following expression for a spherically averaged VR1,α:

〈VR1,α(r;RM)〉M |α = qαMv1(r) +

∫

dr′
{
%R,q|α(r′|0) + ρR,q|α(r′|0)

}
G(r; r′). (5.37)
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The sole difference between this and the simple calculation for a charge mixture is

that we now include a v1 for the shells of charge due to atoms constrained to site α

by intramolecular bonds. 2

For neutral, compact molecules like water, the sum of the first two terms will be

quite small, much smaller than qαv1(r). Also for rigid molecules like SPC/E water,

we may express %q|α(r′|0) as solely a sum of δ-functions. For example if the oxygen

site is fixed at the origin, then we have

ρq|O(r′|0) =
2qH · δ(r′ − rOH)

4πr2
OH

. (5.38)

As suggested, the resulting V1,α for each site, as shown in Fig. 5.5, is substantially

smaller than the original qαv1(r) due to the fixed atomic sites at the origin. We also

simultaneously expect that the force corrections due to long-ranged intermolecular

interactions will be small in magnitude in a bulk fluid. While the energy corrections

are nonzero, as shown in Sect. 5.3.4, the spherically averaged force resulting from

VR1,α will likely be quite small, just as V1,α.

The meaning of VR,α is subtly different from the original spherical formulation

based on mixtures. We may not escape the fact that the short-ranged interactions

contained in φR are very orientation specific. However, this orientational dependence

2In essence, this expression could again be expressed as a mixture LMF equation if we treated

the particles bound to site α as different mixture components than sites not bound to α [41]. The

particles bound to α would have u0 purely due to bonding energies but their v1(r) would contribute

to the long-ranged interactions.
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Figure 5.5: Comparison of 〈V1,α〉 (r) with the original potentials qαv0(r) and qαv1(r)
for both oxygen and hydrogen fixed at the origin. Here σ is chosen to be 4.5 Å.

need only be contained in the short-ranged interactions, as expressed by

VR,α(r;RM) ' qαMv0(r) +
∑

γ 6=α

qγMv0(|r − rγ|) + 〈VR1,α〉M |α (r), (5.39)

and for bulk water as we studied ∂ 〈VR1,α〉M,α (r)/∂r � 1.

This success for bulk ambient SPC/E water should not suggest that the SCA

approximation will be sufficient at lower density states, unless the σ were chosen

substantially larger. Further, with a smaller σ, LMF theory may succeed, but perhaps

the spherical averaging demonstrated in this section will not be valid. Therefore LMF

averaging would be relative to a given molecular orientation, and thus much more

geometrically complex.
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5.5 Deriving an LMF Equation for Larger Site-Site Molecules

Given the derivation of the site-site molecular equation in Sect. 5.2, one might mis-

takenly assume that for larger molecules like phospholipids or proteins, one must

choose σ large enough to produce all relevant intramolecular correlations with the

short-ranged potential, given that we assumed in Eq. (5.10) that

ρM (RM; [φ]) ' ρR,M (RM; [φR]) .

For all-atomistic molecular simulations, such a σ would be so large that it would

not be numerically tractable. However, the derivation given in Sect. 5.2 also begins

with a statement of the potential energy function U that does not mesh with the

implementation in molecular dynamics programs such as dlpoly [89], amber [25],

charmm [64], and namd [77].

In such programs and associated parameter sets, U may be more reasonably rep-

resented by

U =

ηS∑

α=1

Nα∑

i=1

∑

γ
1-2

w∗
b

(∣
∣
∣r

(α)
i − r(γ)

∣
∣
∣

)

+

ηS∑

α=1

Nα∑

i=1

∑

γ,δ
1−2−3

w∗
a

(

r
(α)
i , r

(γ)
1-2, r

(δ)
1-3

)

+

ηS∑

α=1

Nα∑

i=1

∑

γ,δ,ζ
1−2−3−4

w∗
d

(

r
(α)
i , r

(γ)
1-2, r

(δ)
1-3, r

(ζ)
1-4

)

+

ηS∑

α=1

Nα∑

i=1

φ(α)
(

r
(α)
i

)

+
1

2

ηS∑

α=1

ηS∑

γ=1

Nα∑

i=1

Nγ∑

j=1
︸ ︷︷ ︸

1−4 and beyond

(1 − δαγδij)uαγ

(∣
∣rα

i − r
γ
j

∣
∣
)

(5.40)

where there are ηS distinct types of sites and Nα particles of each site type α. The

intramolecular bonding is now represented by specific bond vibration terms (w∗
b ) of

two directly connected atoms, angle bending terms (w∗
a) of three linearly connected
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atoms, and dihedral torsion terms (w∗
d) of 4 linearly connected atoms, rather than one

full molecular bonding potential energy function like w∗(RM). The subscripts 1-2,

1-3, and 1-4 on positions are meant to represent relative positions between atoms con-

nected via bonds, angles, and dihedral torsions respectively. It should be understood

that care is exercised with the sums to only count each bond, angle and torsion once.

Further, there exist long-ranged, non-bonded interactions uαγ(r) between all pairs of

sites, provided that their closest linkage is a 1-2-3-4 dihedral link. Some parameter

sets actually scale down the Coulomb terms by a constant factor if particles are con-

nected via a dihedral link, but we will assume for the purpose of this discussion that

no scaling occurs.

For such a U , we find the YBG equation in Sect. A.5 as follows,

− kBT ~∇ ln ρ(1)
α (r) =

∑

γ
1-2

∫

dr′
[

~∇w∗
b (r, r

′)
]

%γ|α(r′|r)

+
∑

γ,δ
1-2-3

∫

dr′dr′′
[

~∇w∗
a(r, r

′, r′′)
]

%γδ|α(r′, r′′|r)

+
∑

γ,δ,ζ
1-2-3-4

∫

dr′dr′′dr′′′
[

~∇w∗
d(r, r

′, r′′, r′′′)
]

%γδζ|α(r′, r′′, r′′′|r)

+

ηS∑

γ=1

∫

dr′ργ|α(r′|r)~∇uLJ
αγ(|r − r′|)

+ ~∇φα(r) +
qα
ε

∫

dr′ρq|α(r′|r)~∇ 1

|r − r′| . (5.41)

Here ρq|α(r′|r) is the conditional charge density at r′ given that particle α is located at

r and ργ|α(r′; r) is the standard site-site conditional density. Both technically exclude

those atoms within one or two bonds of site α. Note that % in the first three integrals

are explicitly for sites connected via bonds, angles, and dihedrals respectively.
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Following yet again the same path for derivation, we find that the weaker condi-

tions for accuracy are:

* for sites α and γ connected via bonds,

%(2)
(
r(α), r(γ); [φ]

)
' %

(2)
R

(
r(α), r(γ); [φR]

)
(5.42)

* for three sites α, γ, and δ connected via a bond angle,

%(3)
(
r(α), r(γ), r(δ); [φ]

)
' %

(3)
R

(
r(α), r(γ)r(δ); [φR]

)
(5.43)

* and for sites α, γ, δ, and ζ involved in dihedral rotations,

%(4)
(
r(α), r(γ), r(δ), r(ζ); [φ]

)
' %

(4)
R

(
r(α), r(γ)r(δ), r(ζ); [φR]

)
. (5.44)

These approximations are much more easily supported by mimic systems with rea-

sonably small σ. This σ may have to be on the order of 1-4 distances since 1-4 pairs

have Coulomb interactions. In general though, we expect that LMF theory can be

applied in standard biomolecular all-atomistic simulations with reasonable success as

well.

Again, this bears to reason, given the success of SCA-like spherical short-ranged

potentials in dealing with Coulomb systems. However it is promising to know that

the strong results for nonuniform systems of water described in the next chapter

should be equally applicable to biophysically more interesting nonuniform simulation

choices.

132



5.6 Summary and Conclusions

In this chapter, we derived the further approximations needed to make the simple

LMF equation for a rescaled electrostatic potential valid for site-site molecular models.

For small molecules, the basic requirement is that the density profile, depending on

both molecular position and orientation, is well-captured by the mimic system, as

given in Eq. (5.10). For this approximation to hold the smoothed truncation length σ

should be at least the size of the molecule. However, for larger molecules described by

typical charmm-like intramolecular potentials, less restrictive approximations hold,

as stated in Eqs. (5.42), (5.43), and (5.44). These additional necessary approximations

for larger molecules imply that σ, the length-scale defining the range of the short-

ranged pair interactions, should be of the order of a few bond lengths so that the mimic

system can capture all necessary short-ranged interactions. This greatly extends the

usefulness of LMF theory for biomolecular simulations because σ will only need to be

about 5 Å rather than the size of lipids or proteins, which can be at least several nm

in size.

Furthermore, the success of the strong coupling approximation in predicting struc-

ture for uniform bulk fluids was shown in Fig. 5.2. Other similar short-ranged trun-

cations have been shown previously to accurately predict the pair correlations in bulk;

so this alone is not a new result. However, in Sect. 5.4, we use the LMF framework

to examine why the SCA is so accurate. We show that the long-ranged forces due

to sites on a central molecule are small when averaged spherically about any molec-

ular site. The accurated structure predicted by the strong coupling approximation
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suggests that this is true for the long-ranged forces represented by VR1 as well.

However, the impact of long-ranged forces on thermodynamics cannot be ne-

glected. As shown in Sect. 5.3.4, understanding the LMF approach from the perspec-

tive of perturbation theory allows us to correct the energies and the pressures gen-

erated via simulations in a simple and reliable manner. Figures 5.3 and 5.4 compare

the results due to the strong coupling approximation alone and the thermodynamic

results when the correction is included. Since the long-ranged energies neglected are

attenuated in k-space via a Gaussian with a width of 2/σ, we employed the small-k

expansion of intermolecular pair correlation functions due to Chandler [10] to de-

velop an analytical energy correction which led to much more accurate energies. In

addition, appealing to a simple thermodynamic relation, we correctly included the

impact of long-ranged forces on the pressure. The demonstrated value of these ana-

lytical thermodynamic corrections is very encouraging, and we hope to build on these

developments in the future.
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Chapter 6

Water Confined Between Walls

While the results for bulk SPC/E water presented in Sect. 5.3 are impressive, they

are well understood from a practical standpoint. LMF theory provides an interesting

window into why such spherical truncations of the 1/r potential are successful in

simulations, but the structure produced using the strong coupling approximation is

not unique to our choice of v0(r).

Given the success of spherical truncations of 1/r in the simulations presented, one

might reasonably ask why such approaches are not more broadly used in simulations.

They are used in large-scale biosimulations where the time scale of the interesting

transitions is greater that that reasonably accessible to simulations using series sum-

mation techniques [91], and there has recently been a study suggesting that various

spherical truncation techniques can yield folding landscapes in good agreement with

Ewald summation [83]. Work continues to this day developing good spherical trun-

cation schemes for 1/r [29, 50, 75]. However, most of the successes reported with

spherical truncation schemes are in relatively uniform situations, where, as argued

in the previous chapter, we would expect the SCA to perform well. Even many

all-atomistic protein simulations might be considered reasonably uniform in charge

density though certainly not in molecular identity.

In essence, consideration of only short-ranged forces to the exclusion of long-ranged
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dipolar forces has molecular level impact [93]. As previously discussed in Sect. 4.6.2,

Spohr [93] observed that the fault of spherical truncations in slab geometries lies in

the neglect of net-additive long-ranged forces. Magnets are physical examples of a

system where the local ordering competes with long-ranged energetic effects. This

leads to the formation of domain walls in magnets, which the short-ranged Ising model

fails to predict. In liquid water, the long-ranged forces for water models can similarly

have effects that propagate down to a molecular length scale.

None of the current work on spherical truncation schemes aside from LMF theory

is formulated so that it can address this long-standing well-known issue with such

approaches – the simulation of water in nonuniform situations such as in a slab

geometry [28].

6.1 Simulation Details

In this chapter, we will examine SPC/E water confined to a finite width in the z-

direction by walls at ±zw. In the first few sections, the confining walls are modeled

by the hydrophobic smoothed LJ walls [59], as shown in Fig. 6.1. The functional

form of each wall is

ULJw(z; zw) =
A

|z − zw|9
− B

|z − zw|3
(6.1)

with the constants of proportionality defined to be

A = 17447.5
kJ

mol
Å

9
B = 76.1496

kJ

mol
Å

3

in order to model paraffin [59]. The well depth of this functional form is on the

order of kBT , supporting the description of these walls as hydrophobic. We will also
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simulate confinement between model Pt(111) walls, but description of this surface

and simulation details specifically related to it are delayed until Sect. 6.6 when those

results are introduced.
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Figure 6.1: Snapshots of SPC/E water confined between hydrophobic LJ walls as
defined by Eq. (6.1). Initially we will study systems where no electric field is applied
as in (a), but we will later examine systems where electric fields are applied normal to
the walls as in (b). In such cases, the spacing between walls is adjusted to maintain
bulk density in the center, and the water slab polarizes in response to the applied
field.

We again use a modifed version of dlpoly2.16 [89]. Each simulation has 1024

SPC/E water molecules at 298 K maintained by a Berendsen thermostat [6] with a
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time constant of 0.50 ps. A timestep of 1 fs is employed. The lateral area of the

simulation box is 27.72 Å × 27.72 Å. The spacing between walls zw is adjusted to

yield bulk water density in the central region. We will examine systems where there

is no applied electric field and where there is an applied field E0. Table 6.1 gives the

zw for each applied field.

E0 (V/Å) 0.0 1.0 2.0 2.5 2.7 3.0

zw (Å) 22.5 21.53 21.19 20.72 20.97 21.07

Table 6.1: Hydrophobic wall spacings for varying applied fields E0.

We will treat electrostatics in the simulations in three ways. Our benchmark will

be corrected three-dimensional Ewald sums [114] as described in Sect. 4.6.2, and we

will label these results as “Full.” For these simulations, Lz is set equal to 140.0 Å,

such that Lz is over three times greater than the width of the water slab in the z-

direction and is 5 times as large as the lateral spacing of periodic images, making

the approximations in corrected three-dimensional Ewald sums reasonable. For these

simulations, the Ewald convergence parameter α is set to 0.34 Å−1 (equivalent to

σ = 2.94 Å) and the number of k-space vectors are (12,12,60). The real space cutoff

radius used for Coulomb and van der Waals interactions is 9.5 Å.

The other two electrostatics techniques used will be Gaussian-truncated water

using solely v0(r) interactions, labelled “Truncated,” and full LMF theory using v0(r)

interactions in tandem with a self-consistent VR, labelled “LMF.” Here a conservative

σ of 6.0 Å is chosen. We believe that σ = 4.5 Å should be greater than σmin as well;

however a smaller choice of σ leads to greater difficulty in obtaining a self-consistent

solution of the LMF equation. Details of the self-consistent solution are delayed until
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Sect. 6.5. A cutoff radius of 9.5 Å is maintained for LJ interactions, but the cutoff

radius is increased to 13.5 Å for the v0(r) interactions due to the larger σ.

For all simulations, the system is equilibrated for at least 500 ps, and then data

are collected for 1.5 ns. Any error bars shown below are calculated by looking at

the standard deviation of data calculated for separate 100 ps sub-windows of the

simulation.

6.2 Failure of the Strong Coupling Approximation

As pointed out by Feller, Pastor, Rojnuckarin, Bogusz, and Brooks [28], spherically

truncated water fails when confined into a slab geometry, such as a water-vapor in-

terface or a water-membrane junction. Here we first examine nonuniformity created

by confining SPC/E water between two hydrophobic walls modeled by smoothed

Lennard-Jones walls with no applied field. For this system, the strong coupling ap-

proximation consists of v0(r) interactions and the confining ULJw(z) since there are

no external fixed applied charges.

In this system, water molecules restructure at the hydrophobic wall interface in or-

der to break only one hydrogen bond per molecule on average rather than two [59]. In

the process of doing so, the water molecules form a dipole layer near each hydrophobic

surface with the dipole pointing toward the walls. The long-ranged forces oppose the

further organization of the dipoles near the wall, in a manner similar to Le Chatelier’s

principle. However, the short-ranged system includes no penalty for the formation of

a dipole layer and as such, the wall-proximal layer of water over-orients the dipole

139



to maximize hydrogen-bonding, and the dipolar orientation propagates into the bulk

region and does not relax to an average of zero except in the center as dictated by

symmetry. Perturbations in water structure near the wall results in a propagation of

the related electrostatic properties into the bulk region of the liquid. In Fig. 6.2, we

see the profiles of both the hydrogen bonding and the dipolar orientation. There are a

wide variety of geometric hydrogen-bond definitions [58]. We define a hydrogen bond

as all water molecules within 3.5 Å of each other with an H· · ·O-H hydrogen bond

angle θ that is greater than 150◦. The number of hydrogen bonds has no discernible

difference throughout the bulk region. However the dipole orientation, described by

the dot product of the dipole unit vector with the ẑ unit vector, shows substantial

differences throughout the entire slab region. We do expect the hydrogen-bonding

near the surface to be somewhat enhanced in the Gaussian-truncated (GT) system.

By the geometric criterion we use, virtually no difference in hydrogen-bonding is ev-

ident, but likely the energetic binding due to hydrogen-bonding is stronger. Instead,

looking at the probability of various intramolecular O-H bond orientations relative

to the wall normal pointing towards the bulk supports the picture that one OH bond

points more towards the wall. Figure 6.3 shows the probability density of various OH

bond orientations in the 1 Å layer closest to the hydrophobic wall. The increased

probability density of orientations with cos θ ' −1 for the GT water models relative

to SPC/E water indicate the enhancement of hydrogen bonds.

Shown in Fig. 6.4 are the density profiles of oxygen and hydrogen as well as the

charge density for this system. Aside from slight deviations in the peak proximal

to the walls, there is good agreement between the density profile determined with
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Figure 6.2: Plots showing (a) the hydrogen bonding profile and (b) the dipole orien-
tation profile of Gaussian-truncated water compared to that of SPC/E water treated
with corrected three-dimensional Ewald sums. Using the geometric criterion described
in the text there is no discernible difference in the hydrogen-bonding profile. The
dipole orientation profile, defined as the average dot product between the dipole unit
vector and the wall normal point toward the bulk, is clearly wrong, with strong overor-
ientation near the surfaces propagating into the bulk region. Only one in every 25
data points is plotted.
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Figure 6.3: Probability distribution for various intramolecular OH bond orientations
for water molecules in the 1 Å layer closest to the surface. We define cos(θOH) as
the dot product between a bond vector pointing from O to H with the wall normal
point toward the bulk. GT water clearly has a greater propensity to orient one of
its hydroxyl groups toward the wall than SPC/E water. Smooth lines provided as a
guide to the eye.
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corrected three-dimensional Ewald sums and that determined by spherical truncation

using v0(r). Even the charge density profile defined as ρq(z) = qH · ρH(z) + qO · ρO(z)

looks quite reasonable, and the formation of a dipolar charge layering near the walls

appears evident.
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Figure 6.4: In the top panel, ρO(z) and ρH(z) are plotted relative to the bulk density
of water. In the lower panel, the charge density ρq is plotted. ρq is defined as the
linear combination qOρO(z) + qHρH(z). For the most part substantial agreement is
evident between the density profiles for SPC/E water and for GT water. Very slight
deviations in the wall-proximal peaks are present.

In fact, these observations seem to contradict the previous conjecture that lo-

cal perturbations in molecular structure have long lengthscale effects in electrostatic

properties. The charge density profile appears to be quite accurate, aside from slight

deviations in the peak near the walls. This contradiction may be understood if we

look at the smoothed charge density ρqσ(z) in Fig. 6.5, as initially discussed in Ch. 4.
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The smoothed charge density of the system treated with corrected Ewald sums clearly

displays the dipole layer near each wall with first a layer of positive charge density and

then a layer of negative charge density. In contrast, when the system is simulated with

solely v0(r), a finite width dipole layer clearly does not form. We might interpret this

as the smoothed charge density reflecting true electrostatic behavior of the system.

The atomic level charge density ρq contains hints of the true electrostatic behavior,

however the relevant aggregate smoothed charge densities are two orders of magnitude

smaller than the peaks in the atomic level charge density. Furthermore, the peaks in

ρq span only 2 Å and we might reasonably assume that such details should be av-

eraged over an atomic volume, as suggested in introductory electrostatics texts [17].

Smoothing the charge density achieves just that.
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Figure 6.5: Gaussian-smoothed charge density of full SPC/E and GT water confined
between hydrophobic walls. The smoothing length σ is 6.0 Å, and one in every 25
points is shown. The failure of GT water to create a well-defined dipole layer localized
to the wall region is much more evident in ρqσ and than it was in ρq.

One criticism of the observation of the two orders of magnitude separation between
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ρq and ρqσ peak heights is that the peaks now span a much broader range in the z-

direction. However, that span is only one order of magnitude different, so there

still exists an approximately one order of magnitude difference in the peak areas.

Furthermore, the incorrect plateau region for the smoothed charge density of the

v0(r) system is still two orders of magnitude smaller and thus on the scale of the

noise in the simulation.

The alternate interpretation of the LMF treatment of electrostatics as the poten-

tial due to a Gaussian-smoothed charge density greatly clarifies when short-ranged

interactions without a self-consistent VR will be successful. If we view the short-ranged

cores as altered to reflect both Lennard-Jones cores as well as hydrogen-bonding and

polar attractions represented by v0(r), then the charge density which reflects the long-

ranged electrostatics is not ρq, but rather the Gaussian-smoothed equilibrium charge

density ρqσ . The Gaussian-truncated water model then encompasses short-ranged

effects like hydrogen-bonding. The longer-ranged electrostatics is represented by a

smoothing of the charge density, which is more in-line with the quantum-mechanical

reality that molecules have electron clouds, not pseudo-point charges. Given that

σ may be chosen as any value greater than some σmin for LMF simulations, too

much significance should not be assigned to a chosen σ. But interpreting the elec-

trostatic behavior based on some smoothed charge density rather than the atomic

level charge density may better reveal the long-ranged effects. Previous authors [44]

have suggested the atomic-level charge density profile as a less-biased representation

of electrostatic effects than some molecular-based cutoff scheme; perhaps a smoothed

profile is even less biased.
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An extreme exhibit of the failure of spherically truncated water more commonly

found in the literature [93, 114] is the electrostatic potential profile Φpol(z), defined

as

Φpol(z) = − 1

ε0

∫ z

−L/2

dz′
∫ z′

−L/2

dz′′ρq(z′′) (6.2)

in SI units. This potential profile is wholly due to the polarization of the water

molecules as a result of the presence of the surface. It should have a negative shift

proceeding from the surfaces into the water since the the water dipoles orient towards

the walls, and then a plateau should form representing the subsequently bulk nature

of that water. As shown in Fig. 6.6, GT water clearly does not exhibit a plateau

while true SPC/E water does. The lack of a plateau in Φpol(z) occurs for GT water

for exactly the same reason that ρqσ does not have clearly formed dipole layers nor a

bulk region of zero charge density. GT water models preferentially form as strong a

hydrogen-bonding network as possible without energetically penalizing surface con-

formations with strong dipolar ordering. This effect is shown qualitatively in Fig. 6.7.

6.3 VR Enables Gaussian-Truncated Water to Succeed

The inclusion of a self-consistent VR corrects the prominent difficulties of using short-

ranged water for this system. As shown in Fig. 6.8, using VR(z) in tandem with v0(r)

leads to exactly the plateau we expect for the polarization potential profile Φpol(z) in

the central bulk region, as well as correcting all other previously observed structural

and electrostatic deficiencies with GT water simulations:
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Figure 6.6: The electrostatic potential profile Φpol(z) due to water polarization near
the surface, as defined in Eq. (6.2), is plotted. SPC/E water exhibits a relatively
discrete decrease in potential moving from the wall into the bulk region. GT water
never forms a true “electrostatic” bulk region, identified here as a plateau in Φpol.
One in 25 data points is shown.

• the dipole orientation profile throughout the slab,

• intramolecular O-H bond orientation profile,

• the oxygen, hydrogen, and atomic-level charge densities near the wall, and

• the smoothed charge densities throughout the slab.

If we examine the orientations of water molecules near the surfaces in more detail

we again find substantial agreement between the full system and the treatment with

a self-consistent LMF solution. Shown in Fig. 6.9, are the dipole orientation profiles

for four distinct 1.0 Å width slabs of water normal to the walls. Each graph depicts

the probability density of a given water molecule orientation relative to the wall

defined as cos θµ = µ̂ · ẑ where ẑ points into the bulk. Since cos θ spans [−1, 1), if
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Figure 6.7: Diagram sketching the failure of GT water to account for the long-ranged
effects of dipolar aggregation near each wall. As represented pictorially above, GT
water simply includes forces within ∼ σ, indicated by the fully shaded water molecules
within the dashed circle. There is no energetic penalty to associated with the forma-
tion of the dipole layer shown with the arrows because the GT water molecule does
not interact with the lightly shaded molecules at all.
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Figure 6.8: Using the LMF-dictated VR corrects all structural and electrostatic prop-
erties for GT water. All properties above have excellent agreement between the full
LMF treatment and the corrected Ewald approach used for SPC/E. When the thick
black line for SPC/E is not visible, this is due to the LMF data overlapping so well.
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there is an equal likelihood of each orientation as we expect in the bulk region, then

P (cos θµ) ' 0.5. In the layer closest to the wall, a preference for dipoles pointing

towards the wall (cos θµ < 0) is evident, as well as the tendency for GT water to

allow overorientation of the dipole. While the probability distributions do not look

vastly different, it is exactly these slight shifts which lead to the errors in 〈cos θµ〉 (z)

and in Φpol(z). The poor predictions of GT water and the appropriate corrections due

to the LMF equation continue for several layers of water. In the central bulk region,

the errors in GT water are not as evident; this is largely due to the zero dictated by

symmetry. The trends for intermediate distances from the wall show that GT water

does indeed continue to skew orientational distributions well into the bulk region, and

at a detailed level, VR corrects these skews to within error bars.

The form of VR in Fig. 6.10 makes the reason for the success of clear. For the full

system there is no applied external potential V ; however there are net long-ranged

electrostatic effects due to the overall ordering of water molecules. The nonzero VR(z)

reflects this effect by applying a reorienting torque on surface water molecules. The

favorability of maintaining hydrogen bonds drives one intramolecular O-H bond to

orient with the hydrogen facing the wall. VR exerts a torque opposing this tendency.

The self-consistency of VR represents a statistical mechanical balance between the

favorability of maintaining hydrogen bonds and the penalty for creating an overly

severe dipole layer.
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Figure 6.9: Plots of P (cos θµ), the probability distribution of dipole orientations, in
various 1 Å thick slabs. The layers shown represent wall proximal layers in (a) and (b)
and bulk region layers in (c) and (d). Orientation of of the dipole pointing toward
the wall is evident in the closest layer to the wall. Detailed short-ranged interactions
of the water molecules actually lead the dipole to point on average slightly into the
bulk in the next 1 Å layer. The incorrect behavior of GT water, as compared to full
SPC/E and the LMF approach, is evident in every layer but the final layer. Such
deviations there are within the error bars because of the required symmetry about
z = 0.
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Figure 6.10: Plot of self-consistent VR(z) for water between the hydrophobic walls.
The main effect of VR is to exert a torque on the surface water molecules, opposing
the tendency of a hydroxyl group to point toward the wall. Self-consistency leads to
a statistical mechanical balance between the maintenance of hydrogen-bonding and
the opposition to dipole ordering.

6.4 Application of an Electric Field

Application of an electric field normal to the walls containing the slab of water, as

depicted in Fig. 6.1(b), actually results in a more extreme and obvious failure of

spherically truncated water. To the best of our knowledge, this failure has not been

published, but it is known by some researchers. When an electric field is applied to a

slab of water, the confined water should behave as a dielectric slab from introductory

electrostatics [17, 80]. Thus the water molecules should polarize in response to the

field to attenuate the applied field, and the dielectric constant is the ratio between

the applied field and the total field in the central region. This field Etot is defined in
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the following formualae as

Epol(z) =

∫ z

−∞

ρq(z′)

ε0
dz′ (6.3)

Etot(z) = E0 + Epol(z) (6.4)

ε =
E0

〈Etot〉c
, (6.5)

where 〈· · · 〉c indicates an average over the central region of the slab. The näıve

use of spherical truncations actually leads to a negative dielectric constant with this

definition.

The calculation of ε is not immediately necessary though since the failure of such

spherical truncations is evident in the density profiles of atoms and charge. The

profiles shown in Fig. 6.11 are qualitatively incorrect for GT water alone. Even for

1.0 V/Å, the weakest field strength we examine, GT water has organized in a near

crystalline fashion normal to the wall. Here we also see a milder example of the

failure of three-dimensional Ewald sums when they are not corrected, as beautifully

explained by Yeh and Berkowitz [114]. The reasons for this failure have been explored

to an extent in Sect. 4.6.2. Various examples of this failure will be seen throughout

this section on applied fields.

As depicted schematically in Fig. 6.12, using spherical truncations alone ne-

glects the long-ranged ordering of the water molecules in response to the applied

field E0. As in the case with no applied electric field, the long-ranged forces act to

attenuate and weaken the applied electric field in the central region as in Le Chate-

lier’s principle. Thus the water molecules over-order with the unattenuated electric

field. The failure of GT water is again an overdeference to short-ranged interac-
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Figure 6.11: Density profiles when a field of 1.0 V/Å is applied. The top panel
displays ρO(z) and ρH(z), and the bottom panel shows ρq(z). GT water is distinctly
incorrect for any density profile, and even three-dimensional Ewald sums (Ewald 3D)
without the appropriate slab correction due to Yeh and Berkowitz [114] are visibly
incorrect near the walls. One in 25 data points in plotted.
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tions without the consequences of the opposing net long-ranged forces. In contrast

to the previous case where the dominant short-ranged force was hydrogen bonding,

in this case there is another strong short-ranged force – the externally applied elec-

tric field. An energetically-favored arrangement of hydrogen bonding can actually

reinforce an incorrect strongly-ordered state favored throughout the liquid for strong

applied fields. Comparing the hydrogen-bonding profiles between the full system and

Gaussian-truncated system in Fig. 6.13, a greater degree of hydrogen bonding in the

GT system is clear throughout the bulk region. This hydrogen-bond stabilization

of an incorrect ordered state driven by electrostatics actually leads to very obvious

differences in structure.

In this section we will examine the range of electric field strengths studied by Yeh

and Berkowitz [112, 114], though these fields would reasonably be considered quite

strong [18, 98]. This choice is a somewhat direct, practical result of the impact of

fluctuations in the short-ranged systems, to be examined in more detail in Sect. 6.5.

One could attempt a strong coupling approximation where the electric fields are

generated by smooth walls of charge located at ±zw. However such an approximation

is nowhere near as successful as the strong coupling approximation used in Ch. 3.

This is caused by two different reaons. First the strong coupling approximation in

this system essentially assumes full shielding of the electric field in the central region,

which is appropriate for ionic systems but not for dipolar systems. Secondly, the

electric field generates an asymmetry in the charge density relative to wall positions,

and there is no unbiased fashion for shifting the origin of the charged walls to account

for this. Since a true SCA is not successful in this system, we mainly focus on the
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Figure 6.12: Schematics showing the net impact of neglecting the long-ranged forces
when a field is applied. In (a), the particles that exert forces on a given water particle
are shown in a darker color. Also, the full applied field E0 acts on that given particle.
In (b), a snapshot of particles within 10 Å of the origin in the simulation cell is given
for both the GT system and the full SPC/E system. The strong ordering of GT water
in the full applied field E0 is in sharp contrast with the mild orientation of the SPC/E
water with the attenuated total field Etot.
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Figure 6.13: Plot of the hydrogen bonding as a function of z for GT water and the full
system when E0 = 1.0 V/Å. The enhancement of hydrogen bonding in the applied
field is evident.
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self-consistent LMF approach.

The inclusion of a self-consistent VR(z) to represent the long-ranged net effect of

water-molecule polarization makes the density profiles again agree quite nicely with

the results for the full system. The form of VR(z) as compared to the original applied

V(z) in Fig. 6.14 demonstrates why the LMF approach is successful. In the purely

short-ranged system, the water molecules in the central region experience the full

force due to the applied field E0 without any attenuation of the field due to the

polarization of the water in response to the field. A self-consistent solution of the

LMF equation to yield VR(z) includes the effects of those long-ranged forces, such

that near the walls, the molecules experience nearly the full effect of the applied field

E0, while in the bulk region, the molecules experience only the net electric field Etot

which is substantially lessened.
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Figure 6.14: Plot of VR(z) for E0 = 1.0 V/Å. The full electrostatic potential V with a
constant slope of −1.0 V/Å is rescaled such that nearly the full electric field is applied
near the walls but the slope is substantially attenuated in the bulk region applying
the much weaker Etot on the GT water molecules in that region.

Given a self-consistent VR(z), determined as described later in Sect. 6.5, good
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agreement for all density profiles is found. The results for ρO(z), ρH(z), and ρq(z) are

shown in Fig. 6.15 for the full range of applied field E0 studied. 1 The inclusion of

VR(z) makes a substantial improvement over the GT water simulations using solely

v0(r).

Furthermore, for two of the studied fields, 1.0 V/Å and 2.5 V/Å, the more detailed

analysis of water molecule orientations shows equally strong agreement, in contrast

to simply Gaussian-truncated water. In Fig. 6.16, just as in Fig. 6.9, the probability

density of various orientations of water molecules relative to the walls are shown. In

P (cos θµ), cos θµ is defined as µ̂ · ẑ with ẑ point in the positive z-direction, just as the

electric field. When a water molecule orients with the field cos θµ > 0 and the molecule

is anti-aligned when cos θµ < 0. When an electric field is applied, the symmetry about

z = 0 is broken and thus orientations at the walls at ±zw are not equivalent, just

as the densities near each wall in Fig. 6.15 were not equivalent either. Only three

1.0 Å width layers are shown for each field in Fig. 6.16, the closest layer to each

wall, each of which exhibits strong orientational ordering, and a central layer which

has less net orientation, provided that long-range forces due to the water ordering are

accounted for. The asymmetry between the water layers near each wall is evident.

Charge density asymmetry might be viewed as simply due to the fact that the LJ

walls confining the water hold the oxygen centers relatively symmetrically confined,

but the hydrogen atoms preferentially orient towards the +z direction due to the

action of the electric field. However, the asymmetric orientations of dipoles is due to

1E0 = 2.7 V/Å is omitted for space but data for the corresponding dielectric constant will be

presented later.
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Figure 6.15: The density profiles ρO(z), ρH(z), and ρq(z) for the range of applied
field strengths. The site density profiles are in the top panels and the charge density
profiles are in the lower panels. For clarity, v0(r) plots are omitted on several of the
graphs and ρH(z) is only shown for E0 = 1.0 V/Å. The excellent agreement between
SPC/E water and the LMF approach is evident. One in 25 data points in plotted
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the fact that near the +z wall, the field orients the water dipole towards the wall,

just as the minimizing of hydrogen-bond breaking would do. In contrast near the left

wall, these two effects are in opposition. Therefore, this asymmetry is not surprising;

it is a direct consequence of the fact that the water slab has an atomic structure.

In the bulk region, we expect that 〈cos θµ〉 should be greater than 0; in other words

the molecules orient on average with the electric field. However the net effect of the

water molecule polarization should ensure that this average orientation in the bulk

dielectric region should be weaker than near the walls.

In fact, given the degree of structure across the entire slab when an electric field

is applied, it is interesting to look at the entire set of P (cos θµ) for all slabs of water.

This data is shown for the same two applied fields in Fig. 6.17. In Figs. 6.17(a)

and 6.17(b), three-dimensional plots show the P (cos θµ) of GT water for each z. The

vertical axis denotes the probability density, the horizontal axis the the z-value, and

the axis projecting into the page is cos θµ. Since each z-value has a unique probability

density function associated with it, any two-dimensional slice for a fixed z-value should

have a total area of 1. For each field, there is substantial orientation with the field

(high probability density for cos θµ > 0. In fact, even for E0 = 1.0 V/Å, nearly all

dipoles are aligned with the field, regardless of position within the slab when only

v0(r) is used.

Those two orientational surfaces are in sharp contrast with the true surfaces for

SPC/E water shown in Figs. 6.17(c) and 6.17(d). These surfaces are shown as a

two-dimensional projection of the three-dimensional plot, with the color or grayscale

indicating the value of the probability density. Looking at these projections, there
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Figure 6.16: Plots of P (cos θµ) within 1 Å wide layers for E0 = 1.0 V/Å and E0 = 2.5
V/Å. cos θµ is determined by the dot product between the dipole unit vector and
ẑ. Layers proximal to the left wall, (a) and (b), proximal to the right wall, (e)
and (f), and in the central bulk region, (c) and (d), are shown. There are distinct
profiles in the three regions due distinct structuring near each wall and in the bulk
region. In all cases, GT water clearly overorients the water molecules with the field.
Three-dimensional Ewald sums without the slab correction also overorient the water
molecules. The agreement between SPC/E water and GT water combined with VR

is evident.
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(a) E0 = 1.0 V/Å; Truncated (b) E0 = 2.5 V/Å; Truncated

(c) E0 = 1.0 V/Å; Full (d) E0 = 2.5 V/Å; Full

(e) E0 = 1.0 V/Å; LMF (f) E0 = 2.5 V/Å; LMF

Figure 6.17: Plots of P (cos θµ) for each z for E0 of 1.0 V/Å and 2.5 V/Å. Data for
GT water in are presented in three-dimensional plots. Data for SPC/E water and for
GT water LMF-corrected with VR are presented as two-dimensional projections with
the color variation indicating different probability densities as indicated by the scale
to the right of each graph. Actual data points are represented by black dots, with
interpolation between points carried out by gnuplot.
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is clearly a strong tendency to align with the field near each wall. However, there is

also a significant possibility of dipoles even anti-aligning with the field in the central

bulk region. This is more prevalent for the weaker electric field, but, nonetheless, the

differences of each from the results using simply v0(r) are quite severe. Treating the

simulations using LMF theory leads to strong agreement throughout the water slab

for all water orientations as shown in Figs. 6.17(e) and 6.17(f).

The results with dipole orientation already suggest that the LMF treatment cap-

tures not only the atomic density profiles but also the electrostatic behavior, since

dipole orientations followed the trend of electrostatics rather than densities for the

wate slab without a field. However the atomic level charge densities in Fig. 6.15

(repeated in Fig. 6.18) are not particularly evocative of the electrostatic behavior we

expect. Since the water slab should behave as a classical dielectric, we expect positive

charge to build up at the +z wall, negative charge to conglomerate at the −z wall,

and no net charge in the central region. The atomic level charge densities contain so

much detail about the ordering of oxygen and hydrogen atoms that the underlying

electrostatic behavior is not as clear. As in the case of no applied field, smoothing

the charge density, as shown in Fig. 6.18, displays the appropriate “electrostatic”

behavior.

Further, as suggested by the analogy to a dielectric, we may calculate the dielec-

tric constant for various approaches using the formulae in Eq. (6.5). From the charge

density profiles, we determine the total electric field as a function of z. This profile is

shown for E0 = 1.0 V/Å in Fig. 6.19. The ratio between the applied field and the to-

tal electric field in the central bulk region should simply be the dielectric constant, as
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Figure 6.18: Site charge densities ρq(z) and smoothed charge densities ρqσ(z) for the
applied field strengths. The atomic level charge densities are repeated for comparisons
sake. While the dielectric slab inherent to the simulations is not immediately clear in
ρq, ρqσ clearly shows positive charge near the right wall, negative charge near the left
wall, and zero charge density in the central region. GT water is obviously incorrect
in all cases, and the inclusion of VR leads to quite strong agreement. One in 25 data
points is plotted.

163



calculated in [112]. As is evident from the graph, Epol and E0 are of approximately

the same magnitude in the bulk region, thus the dielectric constant is determined

through division by a comparatively small number, Etot. In the tables below, we will

report both 1/ε and ε since 1/ε varies linear with the quantity calculated through

simulation, Etot. In essence, identifying 〈Etot〉 should be straightforward. However,

there exists variations due to simulation uncertainty and also possibly slight residual

atomic level structural details since the width between walls is certainly not a macro-

scopic or even mesoscopic distance. A previously used approach was to average the

polarization field over 5 Å or 10 Å windows in order to best determine 〈Etot〉 [112].

In these results, we instead integrate Epol(z) to determine Vpol(z). Then the slope

of a linear fit to the central region yields the average polarization field response and

seems relatively insensitive to the choice of fitting range. Figure 6.19 also shows

that incorrect electrostatic approaches such as solely spherical truncations and using

three-dimensional Ewald sums without a slab correction lead to overpolarization of

the water slab, and consequently a negative dielectric constant as calculated by the

charge density response.

The results for dielectric constant ε and also 1/ε are shown in Table 6.2. For

all applied electric fields, both the spherical truncation v0(r) and uncorrected three-

dimensional Ewald sums fail quite spectacularly. The water slabs overpolarize in

response to the applied field, leading to negative dielectric constants, though for dif-

ferent reasons. In the case of traditional three-dimensional Ewald sums, the overpo-

larization is due to interaction between the slab and the spurious dipole layer images

in the z-direction. For spherical truncations, the overpolarization is due to the lack of
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Figure 6.19: Plot of the total electric field as a function of z, defined to be a sum of
the applied field and the polarization response of the water, Epol. We expect that Etot

should be much smaller in the bulk region but still positive. The GT system and the
system treated with three-dimensional Ewald sums clearly do not meet this physical
expectation since they overpolarize in response to the field. In contrast GT water
treated with self-consistent LMF theory appears accurate. One in 25 data points is
plotted.
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any long-range forces resulting from the ordering of the water molecules. As before,

the data resulting from corrected three-dimensional Ewald sums are our benchmark.

Yeh and Berkowitz [114] showed that this approach to electrostatics is accurate com-

pared to two-dimensional Ewald sums that correctly represent the overall slab nature

of the system. Including the self-consistent VR(z) in combination with v0(r) leads

to substantially more accurate calculations of Epol and ε. However, these results are

less precise than those for corrected three-dimensional Ewald sums. The reasons for

this will be discussed further in the following section. This imprecision is tied to the

fact that LMF theory is still only a mean-field approach, and this simultaneously has

implications for the self-consistent solution of the LMF equation.

6.5 Fluctuations in LMF Electrostatics and Solving the LMF Equa-

tion

If we were to solely analyze properties such as ρq and the P (cos(θµ), z) surface, simple

linear mixing of the LMF solution with relatively few iterations would be sufficient.

However, very slight variations in these properties coherently add to lead to inaccu-

racies in the integrated electrostatic properties such as Φpol(z) and ε. Since we are

interested in these properties as a stringent test of the utility of LMF theory, we must

carefully consider why ε is more imprecise than corrected Ewald sums and address

this in our self-consistent solution of the LMF equation.

The imprecision in ε is due to the greater fluctuations about equilibrum charge

density profiles in the LMF simulations than in the Ewald simulations. Shown in
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E0 〈Epol〉c 1/ε ε

(V/Å) (V/Å)

1.0

Ewald3DC -0.9842 ± 0.0015 0.01580 ± 0.0015 63.4 ± 5.4

Ewald3D -1.3720 ± 0.0016 -0.3720 ± 0.0016 N/A (-2.7)

GT -3.2681 ± 0.0034 -2.2681 ± 0.0034 N/A (-0.44)

LMF -0.983 ± 0.010 0.017 ± 0.010 58.0 ± 55

2.0

Ewald3DC -1.94956 ± 0.0019 0.02522 ± 0.00095 39.7 ± 1.5

Ewald3D -2.5310 ± 0.0027 -0.2655 ± 0.0014 N/A (-3.8)

GT -3.31285 ± 0.00050 -0.65643 ± 0.00025 N/A (-1.5)

LMF -1.945 ± 0.011 0.0275 ± 0.0055 36.1 ± 7.9

2.5

Ewald3DC -2.3914 ± 0.0015 0.04344 ± 0.00075 23.03 ± 0.32

Ewald3D -2.8106 ± 0.0027 -0.1242 ± 0.0011 N/A (-8.0)

GT -3.3841 ± 0.0040 -0.3536 ± 0.0016 N/A (-2.8)

LMF -2.4031 ± 0.0070 0.03876 ± 0.0028 25.8 ± 1.8

2.7

Ewald3DC -2.5268 ± 0.0021 0.06415 ± 0.00078 15.59 ± 0.18

Ewald3D -2.9189 ± 0.0007 -0.08107 ± 0.00026 N/A (-12.3)

GT -3.3487 ± 0.0024 -0.2403 ± 0.0009 N/A (-4.2)

LMF -2.5266 ± 0.0032 0.0642 ± 0.0012 15.57 ± 0.29

3.0

Ewald3DC -2.6799 ± 0.0022 0.1067 ± 0.0007 9.371 ± 0.065

Ewald3D -2.9278 ± 0.0024 0.0241 ± 0.0008 N/A (41.5)

GT -3.3465 ± 0.0030 -0.1155 ± 0.0010 N/A (-8.7)

LMF -2.6875 ± 0.0045 0.1042 ± 0.0015 9.60 ± 0.14

Table 6.2: Comparison of polarization field due to the dielectric water slab and the

resulting dielectric constant ε for various applied fields E0. The results due to full

LMF theory agree reasonably well with corrected three-dimensional Ewald sums,

though not always quite within error bars. Both 1/ε and ε are given since 1/ε is

linearly related to the quantity determined via simulation. The overpolarization with

uncorrected Ewald sums or spherical truncations is clearly evident.
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Fig. 6.20 are the results for both LMF simulations and Ewald simulations, without

an applied field. In each case, results for the total 1.5 ns of simulation are shown

in solid thick black lines, and results for individual 100 ps blocks of the simulation

are shown in thin red lines. The electrostatic property plotted is the polarization

potential Φpol(z). As is clearly evident, lattice summation simulations display far

smaller fluctuations than spherical truncation techniques, even with a self-consistent

VR(z). The problem is compounded when seeking the ε for a given applied field

because ε is calculated by taking the inverse of the sum of two numbers with similar

magnitude but opposite sign, E0 and Epol. Very slight differences in a given Epol will

lead to substantial differences in ε.
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Figure 6.20: Fluctuations of Φpol(z) for water between hydrophobic walls with no
applied field. The thick black line represents the average over 1.5 ns and the thin
red lines are the results for 100 ps blocks within that 1.5 ns time period. GT water
corrected by VR has substantially more fluctuations about the equilibrium average
than corrected three-dimesional Ewald yields.

The reason for this is inherently tied to how the forces due to instantaneous fluc-

tuations of the charge density away from the equilibrium charge density are dealt

with. In general, the long-ranged forces resulting from any fluctuation of the charge

168



density profile away from the average profile will have a damping effect, driving the

instantaneous configuration back towards the equilibrium profile. For lattice summa-

tion techniques, any fluctuation away from equilibrium is replicated across all periodic

images in the x- and y-directions, thus leading to an overestimation of the system’s

instantaneous reponse. For the LMF approach, since the only representation of long-

ranged forces is through the VR, which represents the mean-field equilibrium effect of

the long-ranged forces, there is no penalty for instantaneous fluctuations away from

equilibrium. This is not a surprise since in Coulomb systems, it has been shown that

fluctuations should go as the surface area [68], and in short-ranged systems, fluctua-

tions vary as the volume. Relative to the true disordered fluid system, we hypothesize

that lattice summation techniques represent an overdamping of fluctuations and the

LMF technique represents an underdamping.

Such concerns about fluctations were not present in the uniformly-charged-wall

system in Ch. 3 because the charged sites were not connected to each other via

bonds and each particle had a net charge. For that system, the main effect of VR

was to exert a force on the center-of-mass of the single-site charged species. For the

water systems examined here, each water molecule is overall neutral, thus the main

effect of VR is not a net force on each molecule but rather a reorienting torque on

each molecule. Typical orientations of individual molecules are a result of both the

detailed local environment, and therefore hydrogen-bonding options, as well as the

VR; thus one would expect much more substantial fluctuations in any electrostatic

property resulting from the charge density of the species.

Another reality of these fluctuations is that they grow greater as more interactions
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are included in v1(r) and thus treated by VR. Figure 6.21 shows the fluctuations

about Φpol(z) for σ chosen to be 4.5 Å and 6.0 Å. While either of these σ might

reasonably be considered larger than σmin for water as shown in the bulk results,

solution of the LMF equation was more straightforward with the large σ because there

were weaker inherent fluctuations. For the walls with specific binding considered in

the next section, σ = 4.5 Å was more feasible; likely the specific binding of water

orientations at the wall driven by localized interactions rendered the fluctuations

less extreme. Given that LMF theory is an equilibrium theory and not a dynamical

one, we will not be overly concerned with this other than its impact on solving the

LMF equation; however perhaps further theoretical development would allow some

connection between the short-ranged LMF system and the true disordered fluid.
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Figure 6.21: Comparison of fluctuations about Φpol(z) for water between hydrophobic
walls for two different choices of σ greater than σmin.

As mentioned, these fluctuations do complicate the LMF self-consistent solution

for these systems. In essence the reason for this is that with each iteration step, we

must be able to distinguish between

• the inherent charge fluctuations in the system, and
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• changes in response to the variation of VR from iteration to iteration.

Various methods have been explored to make this distinction including iterative tech-

nques used for self-consistent equations [81] in quantum chemistry and integral equa-

tions for fluids [49, 56, 56, 78, 79] and a modified LMF equation developed to tame

the k = 0 term in LMF iteration as described in Appendix E. However, we found

that a simple ensemble-like approach best addressed the variations mainly due to

uncertainty in simulations. The requisite modification in the self-consistent LMF so-

lution is shown in Fig. 6.22. In essence, the idea is to run N parallel simulations

using a given V(i)
R with distinct initial configurations. This modification proved to

be necessary for only three V(z) – those due to no applied field, E0 = 1.0 V/Å, and

E0 = 2.0 V/Å. In these cases, using 10 parallel simulations proved to be sufficient.

Details of the timestep, simulation length, and steps to solution are given in Table 6.3

for all applied field values. Note that for the larger fields, simple linear mixing as done

for the previous MC simulations was successful, but for the weaker fields, aside from

running N parallel simulations per iteration timestep, linear mixing was employed as

well. 2

This approach to self-consistently solving the LMF equation is certainly not an

optimized approach. We expect that an approach more appropriate to adaptive solu-

2The one exception was generating reasonable independent initial configurations for no applied

field. In order to keep fluctuations bounded about the approximate plateau of Φpol(z), the real-space

iteration scheme described in Appendix E that tames the k = 0 component of VR was employed

with λ chosen to be σ. Once these initial configurations were generated for the first solution pass,

linear mixing was employed.
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Hydrophobic Walls :

E0 (V/Å) σ (Å) Nensemble ∆t (fs) Neq Nave λ Niter

0.0 4.5 10 2.5 104 2 × 104 0.05 9∗

0.0 6.0 10 2.5 104 2 × 104 0.1 3

1.0 6.0 10 2.5 104 2 × 104 0.05 15

2.0 6.0 10 1.0 5 × 103 104 0.1 7

2.5 6.0 N/A 1.0 5 × 103 104 0.1 20∗∗

2.7 6.0 N/A 1.0 5 × 103 104 0.1 20∗∗

3.0 6.0 N/A 1.0 5 × 103 104 0.1 20∗∗

Corrugated Walls:

E0 (V/Å) σ (Å) Nensemble ∆t (fs) Neq Nave λ Niter

0.0 4.5 10 2.5 104 2 × 104 0.1 10

0.0 6.0 10 2.5 104 2 × 104 0.5 3

Table 6.3: Details for solution of LMF equation for water systems. Details for the

corrugated wall simulations discussed in the next section are also given. Niter is the

iteration number needed for sufficient self-consistency to attain reasonable electro-

static properties such as Φpol(z) profiles and ε calculations. Far fewer Niter would be

necessary for ρqσ and and dipole distributions that are quite accurate. Slight vari-

ations in these properties coherently add to lead to inaccuracies in the integrated

electrostatic properties. ∗ This solution was not as well converged as others, so this

is an underestimate. ∗∗ VR used for simulation was determined from the average of

the charge densities obtained from the final 10 linear mixing iterations.
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Figure 6.22: Modification of the LMF solution iteration scheme to address inherent
fluctuations in water slab simulations.

tion of the equation during the simulation would look quite different than this. One

potentially fruitful path based on a Car-Parrinello-like approaches, as reviewed by

Frenkel and Smit [31], is discussed as future work in Ch. 8.

6.6 Atomically Corrugated Walls and Significance of ρqσ

By replacing the hydrophobic walls with empirical Pt(111) surfaces [82], we may

extend the LMF approach to moderately more realistic molecular surfaces. These

empirical surfaces order the water molecules near the surfaces, attracting the oxygen

atoms to localized binding sites. This surface is meant to represent specific interac-

tions and detailed ordering of water molecules at an atomically corrugated surface.

Figure 6.23(a) contains a schematic of a (111)-surface rectangular unit cell displaying

the spacing of the topmost layers of atoms. The potential we use does not have ex-

plicit atoms or charges, but rather simply encompasses the presence of binding sites

through exponential functions and various cosine functions to represent the periodic-

ity of the surface. Due to these localized binding sites, we expect that ρq(r) will be

expressly a function of r and not simply z.
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Figure 6.23: Display of (111) unit cell and associated nearby charge density. In (a),
three distinct subhexagons are also labeled that will be used to analyze nonuniform
density above the surface. However, despite this schematic, the surface modeled in
simulations is an approximate combination of exponentials and cosines to empirically
represent the effect of a (111)-surface In (b), the charge density of the 1.5 Å layer
closest to the wall is displayed in a two-dimensional projection. Actual data points
are shown as black dots, and gnuplot interpolated between those points.
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This corrugated surface is treated quite similarly to the hydrophobic surfaces in

simulation as described in Sects. 6.1 and 6.5. The simulation cell instead has a volume

of 30.49 Å × 28.806 Å × 140.0 Å to match the symmetry of the (111)-surface of a

solid with lattice constant 3.92 Å. The wall position parameter zm defined in [82] is

set to ± 15.4 Å to achieve bulk density in the central region. The simulation cell

now contains 1054 molecules. The corrected Ewald sum now has a k-vector set of

(13,12,60). The substantial difference is that we use a σ of 4.5 Å and correspondingly

decrease Rc to 9.5 Å. The smaller σ is qualitatively easier to iterate to self-consistency

in the corrugated system, suggesting that perhaps charge fluctuations are dampened

by the presence of specific binding at the surface.

In Fig. 6.23(b), the two-dimensional projection of the charge density in the 1.5 Å

layer nearest the (111)-wall onto the same unit cell shows that the expectation that

ρq(r) 6= ρq(z) is maintained. The surface induces a charge density very nonuniform in

the x- and y-directions. The apparent periodicity is due to the fact that the 2.77 Å

between binding sites is commensurate with the first peak in the bulk water gOO(r)

at 2.8 Å. However, as shown in Fig. 6.24, approximating VR(r) as VR(z) leads to

accurate results for the electrostatic potential profile between the (111)-walls. While

the electrostatic potential jump is of an opposite sign than for the hydrophobic walls

due to the different ordering of water molecules near the (111)-walls, the general

LMF framework remains identical to that for the hydrophobic walls with no applied

electric field. None of the other properties such as orientational distributions will be

presented. They are quantitatively different from the results for hydrophobic wall

confinement, but they all lead to exactly the same picture of the success of the LMF
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approach. The specific ordering of molecules near the walls is distinctly different

but the underlying reasons for the failure of v0(r) alone and for the success of VR(z)

remain the same.
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Figure 6.24: The polarization potential profile Φpol(z) between corrugated walls.
While the details of this potential profile are different than that for the hydrophobic
walls due to the specific binding of water molecules of the surface, the basic conclusion
remains the same. Inclusion of VR leads to substantial agreement while GT water
alone fails. For this simulation we have approximation VR(r) as VR(z). One in every
25 data points is shown.

The apparent contradiction of having VR depend on only z while ρq depends on r

can be resolved by understanding the smoothing effect included in calculating VR. As

can be seen in Fig. 6.25, if the (111)-surface is divided into three distinct hexagonal

binding regions – A, B, and C as labeled in Fig. 6.23(a) – the ρq(z) measured

along each hexagonal prism looks quite unique. However the negative charge density

enhancement over the topmost platinum location, site A, is only evident within about

6.0 Å of the wall. Further the σ used (4.5 Å) is somewhat larger than the spacing

of sites on the (111)-surface. Thus we expect the local effect of the binding sites
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to be reasonably encompassed by v0(r). Examining the Gaussian-smoothed charge

density leading to VR highlights which variations are important. Convoluting ρq(r)

with Gaussians in the x- and y-directions and subsequently analyzing sites A, B, and

C, we see that this density ρqσ

2D is indistinguishable from ρq(z) calculated initially as

only a function of z. The full three-dimensional smoothed charge density profiles ρqσ

again match exactly, indicating the same dipole layer formation regardless of position

laterally along the wall. This final convolution step is crucial in assessing the validity

of our conclusions. For the hydrophobic surface, ρq(z) for GT water and for full

system simulations looked indistinguishable until examined with complete Gaussian

smoothing. As before, the long-ranged interactions for the corrugated surfaces in

essence remain dominated by the slab-like geometry of the system, not by the atomic-

level detail of the slab in the lateral directions.

The success of the approximation VR (r) ' VR (z) seems quite promising for the

application of LMF to other slab geometries such as model biological membranes

or liquid-liquid interfaces. In general the charge density smoothing inherent in the

definition of the LMF equation also suggests that greater symmetries in solutions of

VR(r) may exist than intially suggested by the detailed symmetries of the problem. 3

Also, when studying the molecular simulations of atomically corrugated surfaces, the

smoothed charge densities reveal the underlying electrostatic asymmetries rather than

the detailed local structure.

We suggest that this smoothed charge density allows for a more direct analogy be-

tween molecular simulations and classical electrostatics. The LMF approach naturally

3This observation has also been made in work using LMF theory for a nonequilibrium system [21].
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Figure 6.25: Plot of various charges densities for water between corrugated (111)-
surfaces, both as purely a function of z and separated into the separate charge den-
sities based on position above the surface. A, B, and C are indicated in Fig. 6.23(a).
The top panel shows ρq, and there are clear distinctions in the various charge den-
sities. The middle panel displays the effect of convoluting the charge density with a
Gaussian of width σ in the x- and y-directions. With this smoothing, no distinction
amongst positions above the surface can be made. The full ρqσ is displayed in the
bottom panel and all profiles fully agree and display the expected dipole layer near
each wall. σ is 4.5 Å, and only a subset of data points is displayed for clarity.
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distinguishes the long-ranged charge-charge interactions representing overall dipolar

ordering from the short-ranged charge-charge interactions in simulations which cap-

ture hydrogen-bonding and short-ranged polar attraction. As previously discussed in

Sect. 2.6, any σ large enough to capture the relevant short-ranged interactions like

hydrogen-bonding should be correct for simulations. For physical interpretation of

ρqσ , we suggest use of a σ close to the minimum value that will work for simulations.

However we do no suggest that the smoothed charge density alone contains all rele-

vant charge-charge interaction information, since hydrogen bonding can be crucial in

determining the overall liquid structure. We instead propose that it encompasses the

net long-ranged effects best described by classical electrostatics and charge density.

The results presented in this chapter at least demonstrate the utility of including the

smoothed potential VR(z) due to this smoothed charge density in simulating short-

ranged interactions in nonuniform situations.

6.7 Applicability to More Realistic Corrugated Surfaces

The surface used in the previous section does have molecular-scale corrugation; how-

ever, it is not implemented like most detailed molecular models. The model was

originally developed to model metallic Pt(111) surfaces [82]. More realistic metallic

surfaces would require a treatment of image charges, which we will not address here.

However molecular surfaces modeled with standard force fields would at least have

charges at atomic sites near the surface. If the charges are free to move throughout

the simulation as would generally be the case for biological membranes or liquid-liquid
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interfaces, absolutely no change in tactic would be necessary. The charges associated

would those molecules would also be included in ρqσ .

However, if the charges are held fixed as is more likely for solid surfaces in classical

simulations of solid-liquid interfaces, then we must be a bit more careful. It will no

longer be true that VR(r) ' VR(z), however a closely related approximation will be

true. A potential for silica surfaces modeled by atoms [33] is currently being extended

by Hu [41] for work in the group. This potential includes point charges assigned to

Si, O, and H atoms that are predominantly held fixed. These surfaces have a VR that

will explicitly depend on r; however we will argue that the long-ranged portions of

VR encompassed by VR1 will to a good approximation depend on only z.

For these fixed surfaces, the external “field” would now consist of both nonelectro-

static components and electrostatic components. The imposed external electrostatic

potential V(r) would be

V(r) =
∑

sites i

qi
ε |r − ri|

, (6.6)

where the sum is understood to include sites outside of the simulation cell. This

external potential may be split into short-ranged component V0 and long-ranged

component V1 as

V0(r) =
∑

sites i

qi
ε
v0(|r − ri|), (6.7)

V1(r) =
∑

sites i

qi
ε
v1(|r − ri|). (6.8)

The sum for V0 is strictly over the minimum image, but the second sum implicitly

includes all sites in the surface. This suggests that a lattice sum technique will be

required, but for exactly the same reasons as why VR was simply a function of z for
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the corrugated (uncharged) walls, we expect that to a very good approximation

V1(r) ' V1(z). (6.9)

The sole requirement should be that σ be larger than relevant lateral spacing of sites

on the surface, such that the lateral charge density is sufficiently smoothed. In these

cases, VR is a function of r, but all dependence on x and y is contained in V0(r).

As a quick demonstration of the validity of this approximation, we construct a

(111)-surface with lattice constant a = 3.92 Å as for the previous surface. However

we arbitrarily assign charges of +1e0 for the first layer of atoms, −2e0 for the second

layer of atoms, and +1e0 for the third layer of atoms, as shown schematically in

Fig. 6.26. Then we calculate the difference between V1(r) and V1(z) over a variety of

sites at two distances ∆h above the (111)-surface unit cell.

+1−2
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+1

+1

+1−2

−2

−2
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+1

+1

+1

+1

Figure 6.26: Model (111)-surface with charges assigned to each layer.

The corresponding V1(z) would be determined by smoothing out the charges in

each layer laterally, such that the charged (111)-surface is now approximated by three

uniformly charged planes. With this representation we may exactly express V1(z) as

181



the sum of three exact analytical functions,

V1(z) =
∑

i∈layers

2πλi

ε
G(z, zi), (6.10)

where λi is the surface charge density of each layer. V1(z) is plotted in Fig. 6.27

and has a nontrivial contribution to the forces near the surface. However, since the

surface is net neutral, it decays to zero within a distance of approximately 2σ from

the surface.
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Figure 6.27: The one-dimensional V1(z) for charged (111)-surface for two different σ.
This approximation to V1(r) is nonnegligible within σ of the surface.

We approximate V(r) by employing corrected three dimensional Ewald sums, but

this requires some care since we can only employ Ewald sums in simulations that are

net neutral. Shown in Fig. 6.28 is a sketch of the simulation cell we used. The basic

idea is to construct the surface we are interested in with a +1 test charge above it and

then to construct a second mirror surface with opposite charges with a −1 test charge

above it. Specifically we constructed two (111)-surfaces of the same lateral size as
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that simulated in the previous section with Lz = 280 Å and the two surfaces equally

spaced from each other in the simulation cell, in order to decouple the discreteness of

the charge on the two surfaces as much as possible.

+
__

+ + _ _

+1 −1

+

Figure 6.28: Sketch of Ewald simulation cell used to estimate V(r). The (111)-surface
we are interested in (on the left) is mirrored across the dashed plane and the signs
of charges are reversed. Then there is a positive test charge on the left and a miror
negative test charge on the right. This combination allows us to approximate the
electrostatic potential above the left surface. The simulation cell is chosen to be quite
long in the z-direction in order to decouple the two surfaces as well as possible.

By carrying out single point energy calculations for the two test charges above

the appropriate (x, y) location on each surface, we may approximate V(r) because

the total energy of that system is a combination of V and the interaction between the

positive and negative test charges (U+−(z)) and the interaction amongst the two net

neutral walls (Uwalls),

V(r) ' VEwald(r) = 0.5 {UEwald(r) − U+− − Uwalls} . (6.11)

We may exactly calculate V0(r) for the configuration of one wall with a test charge,

to within the simulation energy precision, by carrying out single point energy calcu-

lations for the positive test charge interacting with the surface via v0(r). Thus we

determine V1(r) as

V1(r) ' VEwald(r) − V0(r). (6.12)
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This is approximate since the Ewald sums will propagate the test charges into all

the periodic image cells, but given that the lateral area spans 11 × 6 repeats of the

minimum rectangular (111)-surface unit cell of 2.77 Å × 4.80 Å, this should be a

more than adequate approximation.

Figure 6.29 shows the difference

∆V1(r) ≡ V1(r) − V1(z) (6.13)

for a test charge placed two distances about the surface – a distance equivalent to

the spacing between (111)-surface layers (2.26 Å) and a distance of 4.5 Å. Each of

these distances leads to a substantial V1(z). However as shown in the projection plots

in Fig. 6.29, ∆V1(r) is an incredibly small perturbation for a σ of either 4.5 Å or

6.0 Å. Again, the importance of the charge smoothing inherent in the LMF equation

is evident.

For exactly the same reasons as for the corrugated surface explored in the previous

section, we fully expect that ρqσ(r) ' ρqσ(z). Thus, even for fixed charged slab

confinements,

VR1(r) ' VR1(z) (6.14)

should hold to a very good approximation. In fact, we expect this to be an even

better approximation for VR1 since the mobile charge density is included and will

act to neutralize the fixed charged sites to an extent. Thus, these systems would

be treatable by exactly the same techniques as used throughout this chapter with

the sole difference that we must now include an applied electrostatic potential V(r)

representing the charged surface. This V may be approximated as the sum of V0(r)
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(a) ∆h = 2.26 Å; σ= 4.5 Å (b) ∆h = 4.5 Å; σ= 4.5 Å

(c) ∆h = 2.26 Å; σ= 6.0 Å (d) ∆h = 4.5 Å; σ= 6.0 Å

Figure 6.29: The residual ∆V1(r) in Volts projected onto the xy-plane for two heights
above the surface with two different σ. In each case the value of V1(z) several volts,
but the correction ∆V1(r) is substantially smaller.
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determined from v0(r) for all fixed point charges and a single analytical V1(z).

6.8 Summary and Conclusions

In the first half of this chapter, we examined the ability of LMF theory to address the

failings of spherical truncations of water when in a slab geometry. We studied SPC/E

water confined between hydrophobic walls, both with and without an applied electric

field normal to the walls. The case of no applied field has long been used as an example

of why the success of spherical truncations of water in bulk is “misleading.” While

the density profiles of spherical truncations of water in Fig. 6.4 appear accurate,

the semi-discrete jump in polarization potential at the surfaces is not reproduced

at all. Indeed, as shown in Fig. 6.6, spherical truncations never yield a plateau

in the potential in the bulk region as physically demanded. When an electric field

is applied, even the density profiles determined with spherical truncations alone are

highly inaccurate as dramtically illustrated in Fig. 6.11, and the predicted dielectric

constants in Table 6.2 are negative.

LMF theory provides a way to include the long-ranged forces neglected by spheri-

cal truncations of charge interactions in a self-consistent manner via the LMF rescaled

potential VR(z). The subtle structural and electrostatic failings seen in previous cal-

culations for truncated water confined between walls with no field are corrected by the

LMF treatment in Fig. 6.8. Furthermore, all structural and electrostatic properties

of water under an applied electric field in Sect. 6.4 are much more accurate with the

inclusion of a self-consistent VR. The LMF approach even yields the correct dielec-
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tric constants in Table 6.2 in contrast to the negative values for Gaussian-truncated

water alone. In addition, the interpretation of VR as the electrostatic potential due

to a Gaussian-smoothed charge density discussed previously in Sect. 4.1 suggested

examination of just that charge density. The form of ρqσ proved to be illustrative of

the underlying electrostatic effects, demonstrating the formation of a dipole layer at

each wall without a field in Fig. 6.8(d) and the accumulation of positive (negative)

charge density at the right (left) plate when an electric field was applied in Fig. 6.18.

The smoothed charge density also clearly showed the failure of spherical truncations

alone; this failure was not obvious from the atomic-level charge density profile with

no applied field.

While LMF theory is very successful in correcting equilibrium properties in this

system, we found in Sect. 6.5 that the fluctuations about the equilibrium polarization

potential profiles in molecular dynamics simulations of the LMF-corrected system are

much stronger than we found using the corrected three-dimensional Ewald procedure.

We hypothesize that the dynamical fluctuations of the true disordered fluid might lie

between the two extremes, but more theoretical development of LMF theoyr is re-

quired since it is only valid for equilibrium properties at the moment. But regardless,

the fluctuations during molecular dynamics simulations have consequences for the

iterative self-consistent solution of the LMF equation in weak applied fields. In this

thesis, we have dealt with these fluctuations by simulating a small “ensemble” of sys-

tems at each step of the iteration to self-consistency. However, the difficulty posed by

these fluctuations in the self-consistent solution of the LMF equation merits further

research so that LMF theory may be more broadly available as a technique for sim-
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ulating electrostatic interactions. In the concluding chapter, one possible approach

to self-consistent solution which might be reasonably integrated into simulation pro-

grams is proposed.

In Sects. 6.6 and 6.7, we demonstrated that the simple one-dimensional solution

of the LMF equation we used for smooth confining surfaces should have much broader

applicability for slab simulations. We simulated water confined between a corrugated

surface. This surface induces density profiles which are a function of x, y, and z,

as shown by Yeh and Berkowitz [113] and plotted in Fig. 6.23(b). Despite the

three-dimensional variation of the charge density profile, we successfully used the one-

dimensional LMF equation to correct for the neglected long-ranged forces. The only

important long-ranged electrostatic effect was the formation of dipole layers at each

corrugated surface, and, as shown in Fig. 6.25, the Gaussian-smoothing of the charge

density inherent to the LMF equation accurately isolated that effect as a function

of z alone. We further demonstrated in Sect. 6.7 that very similar approximations

should hold even for corrugated surfaces which also carry fixed charges. This indicates

not only that LMF theory should be broadly applicable to more detailed molecular

models, as shown in the previous chapter, but also that such an application might

prove much simpler than the atomically-detailed symmetries of the systems might

suggest.
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Chapter 7

Hydrophobic interactions

This chapter presents preliminary thoughts on hydrophobicity via analysis by LMF

theory. It is by no means meant to be a comprehensive study of this topic, but may

rather be viewed as a series of interesting and useful observations that we hope to use

as groundwork for future theoretical work.

An often-cited theory for hydrophobic interactions developed by Lum, Chandler,

and Weeks [62] (LCW) is motivated by ideas from local molecular field theory. In

this chapter, we shall attempt to highlight the connections between two different

derivations of LCW theory for hydrophobicity [62, 102] and the approach to LMF

theory we have taken thus far in this thesis. Furthermore by quantitative analysis

of simulation data using the standard LMF equation, we seek to understand the im-

pact of a criticized approximation in LCW theory – the treatment of water without

reference to tetrahedral structure or hydrogen bonding. In particular, since the pre-

vious chapter dealt with water between hydrophobic walls, we will attempt to draw

connections between an LMF treatment of simulated confined SPC/E water and the

LCW theoretical approach.
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7.1 LCW theory

The original derivation of LCW theory [62] proceeded by stating in essence the stan-

dard van der Waals surface excess free energy functional [88] though for three dimen-

sions rather than one dimension,

F0[ρ(r)] =

∫

dr

[

w(ρ(r)) +
1

2

∣
∣
∣~∇ρ(r)

∣
∣
∣

2
]

. (7.1)

In this equation w(ρ(r)) is a local free energy density. By taking a functional deriva-

tive of Eq. (7.1) with respect to ρ(r), placing appropriate boundary conditions on

ρ(r), and making a series of approximations, one finds

∂w(r)

∂ρ(r)
= m~∇2ρs(r) + 2a [ρ̄(r) − ρ̄s(r)] . (7.2)

In this equation ρs is a seemingly heuristic slowly-varying component of the interfacial

density profile and a bar over either ρs or ρ indicates a smoothing of that density profile

over a length λ that is typical of the range of interparticle attractions in the fluid. In

the context of LCW theory, this smoothing is defined as a Gaussian convolution. This

convolution might suggest our smoothing of the charge density with a Gaussian of

width σ, but the density in this equation refers to the center-of-mass density profile,

or alternately the atomic oxygen density profile. This equation is closed by a van

der Waals definition of w(ρ(r)) and a linear response treatment of the water density

changes to the excluded volume of hydrophobic species. However, the connection

of LMF theory to the presentation of the LCW derivation in the original paper is

unclear; thus, in lieu of the original derivation, we will discuss a derivation based on

a review by Weeks [102].
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In several papers on LMF theory and on hydrophobicity, authors refer to a “two-

step process” in using the LMF approach [54, 62, 67, 102]. During the course of

this thesis, we have often appealed to a different two-step process demonstrated in

Fig. 7.1. Simulation to determine ρ(r) alternated with insertion of ρ(r) into the LMF

equation to determine φR(r) leads to a self-consistent solution of the LMF equation.

The LMF equation for LJ fluids may be written as

φR(r) = φ0(r) + φ1(r) (7.3)

φR1(r) = φ1(r) +

∫

ρR(r′; [φR])u1(|r − r′|) dr′ + 2aρB. (7.4)

The parameter a is essentially the typical a for a van der Waals fluid representing the

“strength” of interparticle attractions and may be defined as

a = −1

2

∫

u1(r) dr. (7.5)

In connecting with previous authors’ work on hydrophobicity and drying, it seems

clearer to view their process as a three-step process instead, as shown in Fig. 7.2.

The abbreviations in the figure will be explained shortly.

ρ(r)

LMF

||

MD

<<

φR(r)

Figure 7.1: Simulation closure of the LMF equation.

In the three-step process, the single step of using simulation to find the density

response of the reference fluid to the current form of φR(r) has been replaced by two
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Figure 7.2: The “three-step” process employed by other authors in closing the LMF
equation without using simulation for the density response.

approximate numerical steps indicated by HA and HLR. 1 In the typical LCW theory,

HLR is not the closure used; an alternate linear response approach is used instead.

However, since we mostly will be following the derivation in [102], this closure path

seems the more natural to follow. We will make connections with typical LCW later.

HA refers to the hydrostatic approximation. This approximation is appropriate

for slowly-varying fields, thus it is only applied to the slowly-varying φR1. In the

hydrostatic approximation, the slowly-varying density ρs(r) at each position r is as-

sumed to depend solely on the value of φR1(r) at r. The density of the reference

system is exactly that which would exist in a bulk reference system with chemical

potential

µs,0(r) = µ0 − φR1(r). (7.6)

Thus ρs may be written as the function

ρs(r) = ρs(µ0 − φR1(r)). (7.7)

Weeks [102] combines this HA approximation with the LMF equation using Eq. (7.6)

1The two-step process referred to by other authors actually is achieved by combining the LMF

and HA steps into a single step.
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and inserting the LMF definition of φR1 into that equation. We will cover this af-

ter discussing HLR since understanding approximations and identifications following

from this substitution is crucial in connecting to the original LCW formula.

HLR stands for hydrostatic linear response and the crucial assumption is that

excluded volume effects resulting from φ0 and also from the reference fluid cores may

be represented reasonably by linear response about the smoothly varying hydrostatic

density. The HLR equation is

ρ0(r) = ρs(r)

{

1 +

∫

c0(|r − r′| ; ρs(r)) [ρ0(r
′) − ρs(r)] dr

′
}

. (7.8)

In this equation, c0(r; ρ) is the direct correlation function of the uniform reference

fluid at uniform density ρ. Since c0 is the direct correlation function and tends to

be a shorter-ranged indicator of particle correlations, each iteration of the equation

stresses correlations in the near vicinity of the hydrostatic density at r where the field

φR1 should not vary substantially, and thus seems reaonable for density response for

the hydrostatic approximation. Self-consistency of ρ0(r) in the equation above allows

for a more “non-local” representation of the correlations.

7.1.1 Standard LCW Equation

The usual differential form of the LCW equation as stated in Eq. (7.2), with a

modification to allow for slowly-varying attractions in the external field φ(r), may

be found through the following steps, again as described in [102]. The hydrostatic

approximation and LMF equation are combined to yield

µs,0(r) = µ0 − φ1(r) −
∫

ρ0(r
′)u1(|r − r′|) dr′ − 2aρB. (7.9)
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The connection with LCW relies on computing a series of differences. First we

define ∆ρ0(r) = ρ0(r) − ρs(r), the difference between the full density distribution of

the reference system and the slowly varying density. With this definition, we may

write

µs,0(r) = µ0 − φ1(r) −
∫

∆ρ0(r
′)u1(|r − r′|) dr′ −

∫

ρs(r
′)u1(|r − r′|) dr′. (7.10)

Using the mean-field theory statement that µ(ρ) = µ0(ρ)− 2aρ and also generalizing

the identity between a and the integral of u1 given in Eq. (7.5) to define a smoothing

of density profiles over the range of attractions as

2aρ̄(r) = −
∫

ρ(r′)u1(|r − r′|) dr′, (7.11)

we find

µs,0(r) − 2aρs(r) = µ0 − 2aρB − φ1(r)

−
∫

∆ρ0(r
′)u1(|r − r′|) dr′

−
∫

[ρs(r
′) − ρs(r)]u1(|r − r′|) dr′ (7.12)

µs(r) = µ− φ1(r) + 2a [ρ̄0(r
′) − ρ̄s(r

′)]

−
∫

[ρs(r
′) − ρs(r)]u1(|r − r′|) dr′. (7.13)

We may Taylor expand ρs(r
′) about ρs(r) to second order. Since u1(r) is a spherically-

symmetric, even function, the only terms surviving in the final integral will be those

due to (x′ − x)2, (y′ − y)2, and (z′ − z)2. Furthermore, those three terms will be

identical. Thus we can write

−
∫

[ρs(r
′) − ρs(r)]u1(|r − r′|) dr′ = m~∇2ρs(r) (7.14)
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with the constant m defined as

m ≡ −1

6

∫

r2u1(r)dr. (7.15)

Finally making the identification as in Rowlinson and Widom [88, p. 54] that

µs(r) − µ =
∂w

∂ρ
(7.16)

where w(ρ) is the local surface-excess free energy density, we have the standard LCW

equation

∂w(ρs(r))

∂ρs(r)
= −φ1(r) +m~∇2ρs(r) + 2a [ρ̄0(r) − ρ̄s(r)] . (7.17)

Therefore, as explained in [102], the slowly-varying density characterizing the

interface used in LCW theory is the hydrostatic density. The hydrostatic density is

considered a local response to the value of φR1. However, φR1 is due to the convolution

of the attractive forces and the density, so it is not a purely local function, though

it is an equilibrium-averaged function. In standard LCW theory ρ̄ is defined as a

convolution with a Gaussian of width λ, where λ2 ≡ m/a, to approximately average

over the range of slowly-varying attractions. The LMF approach would argue that

ρ̄ is better defined by convoluting the density by the long-ranged attractions as in

Eq. (7.11), but Gaussian smoothing is not a terrible choice provided a reasonable λ.

LCW theory also uses an alternate linear response closure in lieu of the HLR

approximation. And w(ρ) is defined using a simple van der Waals functional form

rather than dealing with chemical potentials. Details of the properties of water are

obtained by choosing the van der Waals a and b parameters such that the liquid

density and compressibility of the van der Waals fluid at 298 K match those of water.
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7.2 Criticisms of LCW Theory

At a qualitative level, LCW theory seems to suggest that a vapor layer exists between

a hydrophobic surface and the surrounding water, since the equation for the density

profile is determined from liquid-vapor coexistence equations. Analysis of simulations

often leads researchers to conclude that such a vapor layer does not exist since density

profiles do not have a smooth liquid-vapor-like interface (see e.g. [3]). Also detailed

questions related to the strength of interactions between solutes and water molecules

have been raised as a counterpoint to LCW theory (see, e.g., [16]. However, the

development of density profiles is a numerically complicated phenomena. Even in the

case of an intrinsically vapor-like interface, it can depend on a delicate balance of

attractions between the solutes and liquids. LMF analysis of such simulation data is

a way of quantitatively understanding this balance of attractions.

Other approximations in the theory have been questioned as well. Given that

local density fluctuations in water are Gaussian [42], the linear response closures used

in the theory above should be fine in the liquid phase, and a linear response closure

is exact in an ideal gas. However, the linear response closure used by LCW chooses

a simple interpolation between the two, and it is not at all clear that this is correct

at intermediate densities through interfaces. Furthermore, the linear response closure

used by Weeks [102] assumes that the reference fluid may exist at all intermediate

densities between the coexistence phases of the full liquid. For LJ interactions, the

reference system WCA may exist at all densities, and as such this is reasonable.

However, for liquid water, it is not at all clear that we may choose a reference fluid
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that fulfills this criterion; we will explore this point a bit further below.

One might also question the overall representation of water as essentially a LJ

fluid. Since the van der Waals parameters are chosen to match liquid water’s density

and compressibility and surface tension, one obvious fault is that the energetic binding

likely is qualitatively greater than the εLJ used for SPC/E water for example since

that energetic binding must account not just for long-ranged dispersive forces but also

for hydrogen bonding. Water’s surface tension is unusually large due to the broken

hydrogen bonds near the surface, and inclusion of this data allows the simple LCW

model to have a critical distance for drying between plates that is on the order of nm

rather than Å.

In contrast to the LCW approach, a given molecular model has εLJ and σLJ chosen

in tandem with point charges assigned to various sites in order to lead to a careful

balance of hydrogen-bonding, packing, and long-ranged dipolar behavior. Results

presented in the previous chapter suggest that at a minimum the long-ranged dipolar

behavior does not affect the density distribution when no electric field is applied.

We will quantify this observation shortly. Subsequent analysis of simulation data

with LMF theory will allow us to further dissect certain quantitative contributions to

surface behavior. We will then conjecture how one might synthesize understanding

from simulations and LMF theory to perhaps expand on the LCW/LMF theoretical

approach.
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7.3 LMF theory for van der Waals attractions

In the analysis of slab simulations of water molecules, it will at times be informative to

understand the relative magnitudes of the contributions of Lennard-Jones attractions

and of the long-ranged electrostatic interactions on the centers-of-mass of the water

molecules. Since the Lennard-Jones site is centered on the oxygen atoms, we may

consider the application of LMF theory to Gaussian-truncated (GT) repulsive-core

(RC) water where the interparticle interactions are composed of v0(r) between point

charge sites and additionally uWCA(r) between oxygen sites rather than uLJ(r). Use

of the strong coupling approximation for GT RC water in the bulk works just as well

as that for GT water as shown in Fig. 7.3. The reason for this is that relative to

the LJ core, water molecules are quite densely packed (ρσ3
LJ = 1.06), and thus the

attractive portion of the LJ interaction cancels to a very good approximation.
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Figure 7.3: Site-site pair correlation functions compared for bulk full SPC/E water,
Gaussian-truncated water, and Gaussian-truncated repulsive-core (RC) water. All
three functions agree quite well. For GT and GT RC water, one in every 10 data
points is plotted for clarity.
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Use of GT RC water for the mimic system in a slab simulation leads to an effective

external potential energy surface for oxygen sites that may be decomposed as

φO
R(z) = qOVR(z) + φLJ

R (z) (7.18)

= qOVR(z) + ULJw(z) +

∫

dr′ρO
R(z′)uattr(|r − r′|) + C. (7.19)

No alteration for the hydrogen sites is necessary since they do not have LJ interac-

tions associated with them. The general LMF equation for LJ interactions above is

reexpressed for the slab symmetry in Appendix F.

As suggested in Sect. 2.4, we may also split ULJw(z), the smoothed LJ wall

potential used in the previous chapter, in a WCA-like manner into a short-ranged,

purely repulsive component U0,LJw(z) and the remaining attractive interactions are

represented by U1,LJw(z). In this case, the repulsive-core contributions to the structure

will result from U0,LJw(z) and the pair interactions uWCA(r). The LJ attractions from

both the wall and the bulk fluid will lead to a slowly-varying modulation φO
R1(z).

7.4 Balance between forces

As a first exercise in understanding the various contributions of forces, we examine

the equilibrium between a liquid slab and vapor slab for

• full SPC/E water,

• GT water defined as v0(r) + uLJ(r), and

• GT RC water defined as v0(r) + uWCA(r).
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We simulate each of these systems with 100 ps of equilibration and 400 ps of data

collection. Aside from the length of data collection and the lack of confining walls,

the simulations are identical to those described in Sect. 6.1.

Examining ρO(z) in Fig. 7.4, the density profile is only different for GT RC water.

This may be understood as suggesting that the impact of φLJ
R (z) defined in this case

as

φLJ
R (z) =

∫

dr′ρO
R(z′)uattr(|r − r′|) + C (7.20)

is much more substantial than the effect of VR(z).
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Figure 7.4: ρO(z) profiles for slabs of full SPC/E water, GT water, and GT RC water
with vapor at the interfaces. GT water agrees well with SPC/E water, but GT RC
water develops a lower bulk density phase in equilibrium with a vapor phase. For GT
water and GT RC water, one in every 10 data points is shown.

The two potential energies, qOVR and φLJ
R , acting on the oxygen atoms are shown

in Fig. 7.5(a). 2 The conclusion that φLJ
R is more consequential than VR seems

2For this section we will not be self-consistently solving the LMF equation; rather we simply use

the LMF equation as a way to analyze the net contribution of long-ranged forces to the full SPC/E
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impossible based on their relative magnitudes.

−14

−12

−10

−8

−6

−4

−2

 0

 2

 4

−20 −15 −10 −5  0  5  10  15  20

z (Å)

Energy (kBT)

φR
LJ

q0vR

(a) qO · VR and φLJ
R

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

−20 −15 −10 −5  0  5  10  15  20

z (Å)

Force (kBT/Å)

due to φR
LJ

due to vR

(b) Net force on molecules

Figure 7.5: Impact of VR and φLJ
R compared. The magnitude of qO · VR, plotted

relative to kBT in (a), is much larger than φLJ
R . However average net forces due to

VR on water molecules are much less than those due to φLJ
R , as shown in (b). One in

every 10 data points in shown.

However, the key is that the net effect of VR is to exert a torque on the water

molecules. The relevant comparison is between the force due to φLJ
R (z) and the net

force that VR(z) exerts on each water molecule. As shown in Fig. 7.5(b), this compar-

ison meshes solidly with our expectations based on the vapor slab results. This seems

to suggest that at surfaces φLJ
R will matter much more for density profiles than VR(z).

This should not suggest that the effect of the charges on the water molecules leading

to hydrogen-bonding are not important to the formation of the liquid interface. They

are quite crucial, and are included in all three of our water models examined. Further

discussion of this reality will be delayed until later.

Since GT water accurately predicts the overall density profile for the vapor slab

and also for the confinement between hydrophobic walls, we will now mainly consider

Gaussian-truncated water and GT repulsive-core water in order to conserve simulation

water simulations.
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time. The dipole orientations will not be accurate, but we will not be examining those

for the moment. We will next simulate the following four wall-water combinations:

• GT water confined by ULJw (as in Ch. 6),

• GT water confined by U0,LJw (the repulsive portion of the LJ walls),

• GT RC water confined by ULJw, and

• GT RC water confined by U0,LJw.

As for the simulations in the previous chapter, we consider a total of 1.5 ns of sim-

ulation after 500 ps of equilibration. The density profile for each system is shown in

Fig. 7.6. The fact that all density profiles look distinct is a clear sign that both the

attractions due to the LJ walls and the attractions due to φLJ
R (z) contribute mean-

ingfully to the balance. Note that the SCA approximation for the walls (GT RC

water + UWCAw) does not perform nearly as well for density profiles as the SCA for

Coulomb interactions did. We would only expect this to be the case if there were an

exact balance between the wall attractions and bulk attractions.

These density profiles reflect our general expectations. Removing the LJ attrac-

tions on the water cores lead to greater particle accumulation near the surface, and

thus high ρ(z) peaks near the walls. Removing the LJ attractions from the walls led

to less particle accumulation near the walls compared to corresponding water model

simulated with LJ attractions on the walls. Interestingly the shift in particle density

is much more substantial for the removal of LJ cores from the fluid particles than

for the removal of attractions from the walls. Shown in Fig. 7.7 are the full φLJ
R
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Figure 7.6: The density profile ρO(z) for the various permutations of GT or GT RC
water paired with LJ walls or WCA walls. The region near the left wall is displayed,
but symmetry holds about z = 0. GT water is shown in solid red lines and GT RC
water is shown with dotted blue lines. LJ walls are shown with simply lines, and
WCA walls also have points associated with them. Only one in 5 data points are
displayed.

for the GT water particles and the contributions from U0,LJw(z), U1,LJw(z), and from

the interparticle attractions. 3 Using the LMF analysis, we may quantitatively say

that all water molecules at the surface experience a much greater effect from the bulk

attractions than from the LJ wall attraction.

We may also again do a calculation of the full force on water molecules due to the

LJ attractions and the long-ranged Coulomb forces, and compare those results to the

vapor interface examined in the previous section. Here we use the density determined

by corrected three-dimensional Ewald sums. Looking at the relative force effects in

3Again this is not a self-consistent solution of the LMF equation but rather an analysis based on

using the density profile due to GT water + ULJw(z) in the LMF equation in order to dissect the

contributions.
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Figure 7.7: Breakdown of various contributions to φLJ
R for the system simulated using

v0(r) + uLJ(r) + ULJw(z). Again, we simply use the LMF equation as an analysis
tool rather than a simulation tool. The net attraction due to the bulk LJ fluid easily
dominates the attraction due to the LJ wall, and a net repulsion from the wall is
therefore exerted by φLJ

R .

Fig. 7.8, we can see that the net force due to long-ranged Coulomb forces remains the

same except for an abrupt termination of the force when the wall confinement renders

the presence of any molecule highly unlikely. In that sense, the effects of dipolar forces

may be slightly greater for liquid-vapor interfaces, but this is predominantly due to a

somewhat more diffuse interface. The slight differences due to the shape of the water

interface in confinement have a greater difference on the profile of net forces due to

the interparticle LJ attraction.

The results above suggest that the surface density profile is a question of a quanti-

tative balance between solute (hydrophobic walls) and solvent (water) LJ attractions,

provided that hydrogen-bonding and packing are already well-represented. LCW

hoped that this would be captured by using the experimental g(r) and surface ten-
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sions. This general point about quantitative balance has also been made in relation

to simulations by Maibaum and Chandler [67] in an examination of the solvation of

hydrophobic clusters, but the LMF construct gives a more complete manner of quan-

tifying the contribution of solvent attractions. The data presented here is the first

step toward using the full LMF equation in a quantitative examination of hydropho-

bicity. Interestingly, the impact of dipolar interactions is only slight on molecules at

the liquid vapor interface and it retains a similar impact for the liquid-hydrophobic

interface profile.

The provision that hydrogen-bonding and packing must be well-represented is

clearly a stringent criterion for theory. However it is worth noting that England

et al. [26] recently developed a mean-field theory for the behavior of liquid water near

hydrophobic surfaces with the application of an electric field. The crux of the model
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was positing three distinct lattice sites: liquid, field-aligned, and empty sites and

the asserting a functional form for the transition between vapor and liquid between

walls. This density profile ansatz is certainly a reasonable starting point, but the

LMF approach could quite easily yield self-consistent equations for the density profile

and the alignment profile within a similar model. This, however, is speculation and

requires much further work.

Alternately, if we were to try to build on the work using the hydrostatic approxi-

mation and linear response as described in Sect. 7.1 to develop a theory, it is not at all

clear what the appropriate reference system would be. One of the major assumptions

in the hydrostatic approximation is that the reference system can exist at all densities

between the vapor and bulk density. As shown in Fig. 7.4, both Gaussian-truncated

water and GT repulsive-core water clearly have a liquid-vapor equilibrium, though

GT RC water does have a smaller bulk density. As a check to make certain that this

was not simply an artifact of an unequilibrated system, we also simulated GT RC

at a lower density with the initial configuration distributing water molecules evenly

across the cell. In a relatively short time, a clear vapor bubble had developed with a

higher density bulk region. Overall this should not be a surprise, but rather a result

of the important contribution of hydrogen bonding to water’s properties. GT RC

water still contains the short-ranged contributions to hydrogen bonding even as it

excludes the LJ attractions. This does not resolve the question of what a good refer-

ence system is but rather opens the way for more questions. As stated at the start

of this chapter, this was not meant to be a complete exploration of hydrophobicity

via LMF theory, but rather a collection of useful observations that we can glean from
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simple simulations. There is much more to be explored on this topic.

7.5 Summary and Future Work

In this chapter, we first reviewed the LCW theory for hydrophobicity [62] and tried

to draw connections with LMF theory as presented in this thesis. In that discussion

we closely followed the treatment of Weeks [102] closely. We then presented a more

detailed application of LMF theory in Sect. 7.3 for treatment of the LJ attractions

in water models. We introduced a second truncated version of water, which we called

Gaussian-truncated (GT) repulsive-core (RC) water, which not only replaces 1/r

interactions with v0(r), but also replaces the LJ core with a purely repulsive WCA

core. Even GT RC water maintains a liquid-vapor interface in the vapor-liquid slab

geometry owing to the ability of v0(r) to capture hydrogen-bonding; however, the

bulk density is lower because the LJ attractions are also an important contributor to

surface tension.

In Sect. 7.3, we used LMF theory as a tool to analyze the relative contributions

of forces to the interfacial structure of water molecules. Via such analysis, we showed

that the net contribution of LJ attractions to the surface forces are much more sub-

stantial than the net forces on molecules due to the long-ranged electrostatic forces

encompased by the LMF rescaled electrostatic potential VR. We also explained the

variation in water density profiles near surfaces for various combinations of inclu-

sion and neglect of LJ attractions for water molecules and for the hydrophobic walls.

Analysis inspired by the LMF equation shows that the dominant long-ranged force on
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molecules at interfaces is the net LJ attraction pulling surface molecules back towards

the bulk.

The analysis of simulation data we presented proved enlightening, but much fur-

ther work will be necessary to gain a new theoretical perspective on hydrophobicity.

Further examination of the mean-field approach of England et al. [26] to water, which

addressed both electrostatic ordering and hydrophobic effects using a simple lattice

model, might prove fruitful when connected with LMF theory. One might also hope

to further develop the LCW approach to hydrophobicity since it represents a simpli-

fication of the LMF approach. However, one must better understand what the most

appropriate reference system may be since Gaussian-truncated repulsive-core water

cannot exist at all densities, and such a property is useful in harnessing previous

analytical closures to the LMF equation such as the hydrostatic approximation and

also hydrostatic linear response.
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Chapter 8

Conclusions and Future Work

In most of this thesis, we have explored local molecular field theory as it applies to

electrostatics. Derivations of LMF for both simple fluids and for various molecu-

lar models were presented in order to justify the use of what appears to be only a

mean-field equation. We also made contact with many other electrostatic techniques,

highlighting their connections to LMF theory.

Overall, we have found the LMF approach to electrostatics to work remarkably

well in determining the equilibrium structure of charged fluids both in uniform and

nonuniform environments. LMF theory succeeds where spherical truncations alone

fail purely owing to the rescaled electrostatic potential VR.

One should be encouraged by the results presented herein, but there are certainly

many more questions to address. The previous chapter dealt with the first steps in

expanding this research to connect with hydrophobicity. Several other extensions have

been touched on briefly in the text, but here we will examine them a little further.

Improvements can be made in calculating the thermodynamics of bulk fluids us-

ing the strong coupling approximation. Simulations of the Gaussian-truncated water

model in tandem with simple analytical corrections yielded accurate values for the

internal energy and the pressure. However, ultimately, free energies are the most im-

portant thermodynamic quantity. First order perturbation theory states [69, p. 303]
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that

A

N
=
A0

N
+

〈

U
(1)
N

〉

0

N
. (8.1)

In this equation the energy in brackets may be identified as the U1 determined for

molecular fluids in Sect. 5.3.4. In essence, this equation means that the mimic system

reasonably captures all entropic contributions, an assumption which we already em-

ployed for our pressure correction. If this approximation generally holds, then we may

apply the analytical expression for U1 to correct the free energy for the mimic system

calculated through simulation. More work will be required to test this hypothesis.

The LMF approach has worked remarkably well in slab geometries, both for ionic

liquids and for site-site molecular models. Since the derivation of LMF for charmm-

like models in Sect. 5.5 led to the same LMF equation we have used throughout

this thesis, expansion to more physically relevant slab geometries seems quite feasi-

ble. Biological membranes and liquid-liquid interfaces should be treatable within an

identical framework. Furthermore, for fixed surfaces, such as the silica surface stud-

ied by Hu [41], we have shown in Sect. 6.7 that the LMF equation should collapse

into the one-dimensional form used for all the slab simulations herein to a very good

approximation.

Another interesting future direction would be to study the phenomena of elec-

trostriction between surfaces. Classical electrostriction theory states that densities

should increase with the application of a field, but Vaitheeswaran, Yin, and Rasa-

iah have found a decrease in density for certain fields. Since then, simulations by

Daub, Bratko, Leung, and Luzar have contradicted these findings and theoretical
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development by England, Park, and Pande supports both results [8, 18, 26]. LMF

simulations offer an interesting opportunity. In all the simulations thus far, the treat-

ment of electrostatics with a field applied between walls has been troublesome. In

the original simulations [98], the researchers applied an electric field only between

two finite plates and had surrounding bulk water. Electrostatics overall were treated

with traditional three-dimensional Ewald sums, and edge effects for the plates were

ignored. In the simulations by Daub et al. [18], a grand canonical simulation of water

between two semi-infinite plates was conducted, using spherical truncations to treat

electrostatics. Intuition informed by work in this thesis suggests that the spherical

truncations should be quite problematic, but the use of three-dimensional Ewald sums

may have issues as well. Also, in the simulations with finite plates, the plates were

only one atom wide, and thus there was electrostatic coupling between the “bulk”

reservoir of water molecules. LMF techniques would allow us to study the original

system with short-ranged electrostatics, such that we can remove coupling between

the “bulk” and the interstitial water, while still incorporating the long-ranged effects

of polarization.

One issue that we have barely explored in this dissertation is the computational

time needed to perform self-consistent LMF simulations. We have viewed our so-

lutions of the LMF equation as a demonstration of the principle, not as a detailed

exploration of how to best implement LMF. We have therefore focused more on the

theoretical development of LMF theory and on gleaning useful intuition from the

LMF approach. However, given a self-consistent solution, we found approximately

a factor of four speed-up in water slab simulations using the LMF approach with
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σ = 6 Å as opposed to corrected Ewald sums. This speed-up is not great, so timing

may never be a compelling reason to employ LMFtheory unless one could develop an

optimized and easily conducted path to the solution of the LMF equation.

A particularly interesting option for adaptive solution of the LMF equation dur-

ing simulation is developing a Car-Parinello-like approach. Following a discussion in

Frenkel and Smit [31], the essence of such approaches relies on writing a potential en-

ergy function whose minimum yields the desired equation that typically is solved for

iteratively whether it be the Schrödinger equation for electron clouds about moving

nuclei or the dipoles of moving polarizable molecules as discussed in [31]. By then

assigning psuedo-dynamics to the associated degrees of freedom, such as the dipole

polarization, the extended Lagrangian can yield equations of motion to propagate

those degrees of freedom. A lower temperature is assigned to the pseudo-dynamics so

that the degrees of freedom remain close to their minimum energy state, the solution

to the equation of interest. This is because typical Car-Parinello methods seek to

evolve the solution adiabatically such that at any given instant in the molecular dy-

namics simulation, degrees of freedom are quite close to their instantaneous minimum

energy state, so small masses are usually assigned to the degrees of freedom. In the

case of an LMF solution, we do not want the instantaneously appropriate energy;

rather we would like the VR appropriate to the equilibrium-averaged charge density.

Perhaps we can use the same framework and simply assign a large mass to the degrees

of freedom associated with the VR solution.

Based on a treatment in Arfken and Weber [2] and Jackson [51] for electrostatics,

one sees that Poisson’s equation for the electrostatic potential φ results from the
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minimization of the following energy-like functional U [φ] with respect to φ,

U [φ] =
ε

2

∫

dr
(

~∇φ · ~∇φ
)

−
∫

drρ(r)φ(r). (8.2)

Provided that δφ vanishes on the surface, the functional derivative is

δU

δφ
= −ε~∇2φ− ρ(r). (8.3)

In other words, functional minimization of U [φ] leads naturally to Poisson’s equation.

Previous researchers [65] have rejected this functional on the basis that the functional

actually yields the negative of the true electrostatic energy for the minimum. However

those workers were explicitly interested in using the formulation as an alternative to

evaluation of electrostatic energy at each time step. We would rather be interested in

using the functional as a tool to solve the self-consistent LMF equation adaptively.

Since VR may be expressed as the solution of a modified Poisson’s equation, we

posit that U [VR] may be expressed as

U [VR] =
ε

2

∫ (

~∇VR · ~∇VR

)

dr −
∫

{ρq
ext(r) + ρqσ(r)} VR(r)dr. (8.4)

Both the charge density of fixed objects, ρq
ext, and the smoothed charge density of

mobile charges ρqσ must be included. We may take the functional derivative as before

and find

δU [VR]

δVR

= −ε~∇2VR − ρq
ext(r) − ρqσ(r). (8.5)

Just as U is now a functional of VR, the kinetic energy T is now a functional of

VR, namely,

T [VR] =
1

2
MVR

∫ (
∂VR

∂t

)2

dr. (8.6)
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Therefore, the Lagrangian associated with the LMF equation is

L = T [VR] − U [VR], (8.7)

and, for the LMF solution, the equation of motion reads

∂

∂t
pVR

= MVR
V̈R ≡ δL

δVR

= ε~∇2VR + ρq
ext(r) + ρqσ(r). (8.8)

Note also here, that the charge density due to the fixed charges will cancel out ex-

actly with the V portion of VR, leaving only the portion due to the Gaussian-smoothed

charge density. In many senses, this approach has great similarities to standard nu-

merical solutions of Poisson’s equation and to Car-Parinello approaches used classi-

cally; however, the problem posed by the self-consistent solution of the LMF equation

ties these two problems together in a unique way potentially treated by the evolution

equation above.

In summary, LMF theory has been shown to be useful in the treatment of elec-

trostatics in simulations, but there is much more work that could be done in its

implementation and in using it for even more physically-relevant and interesting sys-

tems.
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Appendix A

Derivation of Various YBG Equations

In this appendix, we review the derivation of several YBG equations, specifically for

• a single component monatomic system,

• a mixture of monatomic components,

• a molecular fluid characterized by positions and Euler angles,

• a mixture of site-site molecules with intermolecular interactions expressed as a

sum over pair interactions between various atomic sites and the intramolecular

bonding interaction as a function for the whole molecule, and

• a mixture of site-site molecules with interactions described via a charmm-like

potential energy function.

These are well-established formulae with a well-known path to derivation; however,

the latter three equations are not easily found in textbooks. We appeal to these

equations in our derivations of an LMF equation for molecular fluids; thus they are

established here. Further, derivation of the former two provides the tools and notation

we will use in the later derivations.

Most of this discussion will be carried out specifically for intermolecular pair in-

teractions. The YBG formula for simple fluids and mixtures is generalizable to multi-
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body forces; however, LMF theory applies only for pairwise summable forces so focus

is applied to that situation.

Also, for notation, we will mainly follow the conventions of Chandler and Pratt [10,

11] developed for site-site models of molecular fluids in building towards a YBG

equation for a site-site molecular mixture; any substantial deviations will be noted.

A.1 YBG Equation for Simple Fluid

The derivation of the first equation in the Yvon-Born-Green hierarchy for a simple flu-

ids begins with the definition of single-particle and two-particle densities, ρ(1) (r) and

ρ(2) (r, r′) respectively. Here, we will define these densities in the canonical ensemble

(NVT) as

ρ(1) (r) =

〈
N∑

i=1

δ (r − ri)

〉

(A.1)

=
N

Z

∫

· · ·
∫

dr2...drN e
−βU(r,r2,...,rN), (A.2)

with U(r1, ..., rN) =
N∑

i=1

φ(ri) +
1

2

N∑

i,j=1

(1 − δij) · u(rij), (A.3)

and Z =

∫

· · ·
∫

dr1...drN e
−βU(r1,r2,...,rN). (A.4)

The function φ(r) specifies the external potential energy surface in which the fluid

exists. For the sum over pair interactions, the factor of 1/2 ensures that the interaction

of each pair of particles is counted only once and the factor of 1− δij ensures that we

exclude the interaction of each particle with itself. When φ = 0, ρ(1) (r) is simply the
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bulk density, ρB. We may similarly define ρ(2) (r, r′) as

ρ(2) (r, r′) =

〈
N∑

i,j=1

(1 − δij) · δ(r − ri)δ(r
′ − rj)

〉

(A.5)

=
N(N − 1)

Z

∫

· · ·
∫

dr3...drNe
−βU(r,r′,r3,...,rN). (A.6)

The two-particle density may be related to the standard pair correlation function as

ρ(2) (r, r′) = ρ(1) (r) ρ(1) (r′) g(r, r′). (A.7)

The first equation in the YBG hierarchy follows quite quickly when the gradient of

ρ(1) (r) is taken, as follows,

~∇ρ(1) (r) = −βN
Z

∫

· · ·
∫

dr2...drN
~∇U(r, r2, ..., rN)e−βU(r,r2,...,rN) (A.8)

−kBT ~∇ρ(1) (r) =
N

Z
~∇φ(r)

∫

· · ·
∫

dr2...drNe
−βU(r,r2,...,rN)

+
N

Z

N∑

j=2

∫

· · ·
∫

dr2...drN
~∇u(r1j)e

−βU(r,r2,...,rN) (A.9)

= ~∇φ(r) ρ(1) (r) +

∫

dr′~∇u(|r − r′|) ρ(2) (r, r′) . (A.10)

If we now further define the conditional singlet density ρ (r′|r) as the density at point

r′ given that another particle is located at r,

ρ (r′|r) ≡ ρ(2) (r, r′)

ρ(1) (r)
, (A.11)

we obtain the representation of the YBG equation used as a starting point for the

derivation of the LMF equation in Ch. 2, namely,

− kBT ~∇ ln ρ(1) (r) = ~∇φ(r) +

∫

dr′~∇u(|r − r′|) ρ (r′|r) . (A.12)
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For connection with the mixture definitions that follow, we finally note that a general

n-point density distribution function may be written as

ρ(n)(r1, ..., rn) =
N !

(N − n)!

1

Z

∫

· · ·
∫

e−βUdrn+1...drN. (A.13)

A.2 YBG Equation for Mixtures of Simple Fluids

As we move to more complex systems, the dominant difficulty will be one of counting

and keeping the indices straight. To begin with, we defined a multi-point distribution

function for a mixture composed of ηS simple particle species labeled by α in a

canonical ensemble defined by {Nα}V T where {Nα} represents the set of particle

numbers for each of ηS species. This multi-point distribution function shall be denoted

ρ
(N)
{α}(r) where N =

∑ηS

α=1 nα indicates the total number of positions held constant and

nα specifies the number of points for each species α held constant with α spanning

all possible species that have particles fixed. Thus r =
{

r
(α)
i

}

indicates the set of r
(α)
i

where 1 < i < nα and α again spans all species that have fixed points.

ρ
(N)
{α}(r) =

(
ηS∏

γ=1

Nγ!

(Nγ − nγ)!

)

1

Z
×
∫

· · ·
∫

e−βU





ηS∏

γ=1

Nγ∏

i=nγ+1

dr
(γ)
i



 (A.14)

where U is defined as

U =

ηS∑

α=1

Nα∑

i=1

φ(α)
(

r
(α)
i

)

+
1

2

ηS∑

α=1

ηS∑

γ=1

Nα∑

i=1

Nγ∑

j=1

(1 − δαγδij) · uαγ

(∣
∣
∣r

(α)
i − r

(γ)
j

∣
∣
∣

)

(A.15)

This expression for U is quite similar to that for the simple fluid. The most notable

difference other than more summations is the factor 1−δαγδij, which has been modified

from simply 1 − δij in order to achieve the same goal, to exclude self-interactions of

particles.

218



We now may proceed quite similarly to the simple fluid to write the YBG equation

for simple mixtures. We define the shorthand

dR ≡
ηS∏

γ=1

Nγ∏

i=1

dr
(γ)
i . (A.16)

Additional division of dR by dr
(α)
1 indicates exclusion of integration over the coordi-

nates of the 1st particle of type α. Below we write the single site distribution function

for species α, substituting position r for the position r
(α)
1 in U .

ρ(1)
α (r) =

Nα

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1

)

(A.17)

−kBT ~∇ρ(1)
α (r) =

Nα

Z

∫

· · ·
∫ (

~∇U
)

e−βU

(

dR

dr
(α)
1

)

(A.18)

Viewing the expression for U , we may write

~∇U = ~∇φ(α)(r) +
Nα∑

j=2

~∇uαα

(∣
∣
∣r − r

(α)
j

∣
∣
∣

)

+
∑

γ 6=α

Nγ∑

j=1

uαγ

(∣
∣
∣r − r

(γ)
j

∣
∣
∣

)

. (A.19)

Substituting this in the equation for the gradient of the singlet density profile of site

α, we find

− kBT ~∇ρ(1)
α (r) = ~∇φα(r)

Nα

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1

)

+
Nα(Nα − 1)

Z

∫

dr
(α)
2
~∇uαα

(∣
∣
∣r − r

(α)
2

∣
∣
∣

) ∫

· · ·
∫

e−βU

(

dR

dr
(α)
1 dr

(α)
2

)

+

ηS∑

γ 6=α

NαNγ

Z

∫

dr
(γ)
2
~∇uαγ

(∣
∣
∣r − r

(γ)
2

∣
∣
∣

) ∫

· · ·
∫

e−βU

(

dR

dr
(α)
1 dr

(γ)
2

)

(A.20)

Within this expression, we may identify the two-point distribution from Eq. (A.14),

written as

ρ(2)
αγ (r, r′) =

Nα(Nγ − δαγ)

Z

∫

· · ·
∫
(

dR

dr
(α)
1 dr

(γ)
2

)

e−βU . (A.21)
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Now substituting r′ for r
γ
2 in the integral and writing this in terms of one- and two-

point distribution functions leads to

− kBT ~∇ρ(1)
α (r) = ~∇φ(α)(r)ρ(1)

α (r) +

ηS∑

γ=1

∫

dr′ρ(2)
αγ (r, r′)~∇uαγ(|r − r′|). (A.22)

Writing this in the form which leads naturally to the LMF equation, we find

− kBT ~∇ ln ρ(1)
α (r) = ~∇φ(α)(r) +

ηS∑

γ=1

∫

dr′ργ|α(r′|r)~∇uαγ(|r − r′|), (A.23)

where ργ|α(r′|r) is the conditional density of a particle of type γ being at r′ given that

a particle of type α is located at r.

A.3 YBG Equation for Molecular Fluids

When treating molecular correlations, one of the most natural starting points is gener-

alizing the density distribution functions to depend not only on positions of molecules

but also orientations of molecules. In this way, as stated in Gray and Gubbins [34,

pp. 202-203], a YBG equation for intermolecular correlations may be written as

− kBT ~∇ρ(1) (rΩ) = ~∇φ(rΩ)ρ(1) (rΩ) +

∫∫

dr′dΩ′~∇u(|r − r′|ΩΩ′)ρ(2) (rΩ, r′Ω′) ,

(A.24)

with Ω meant to represent molecular orientation.

The LMF equation formulated by Chen [13] for generalized charged distribu-

tions by starting from the LMF equation for charged fluid mixtures and generalizing

to other lowest-order multipole moments may also be understood as being derived

from this equation, with u1 resulting from the lowest order multipole moment of the

molecule as suggested in [13, 15].
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For reasons discussed in Ch. 5, we find it more convenient to formulate an LMF

equation based on a YBG equation for site-site molecular models.

A.4 YBG Equation for General Mixtures of Smaller Site-Site Molec-

ular Fluids

Previous work [95] for site-site YBG equations begins the derivation by writing the sin-

glet density for a molecular site in terms of the singlet density for the entire molecule,

taking appropriate gradients on either side, and then reducing to a site-site represen-

tation. Since that work was designed for use in uniform fluids of hard sphere dimers

and subsequently extended to chains and square well monomer units, writing a gen-

eral formulation of the first equation in the YBG hierarchy based on their approach

is not so clearly done.

However, using the general formalism developed by Chandler and Pratt [11]

for the partition functions and density distribution functions of mixtures of site-site

molecular models, we may follow a similar path to the derivation of a general YBG

equation. The formalism originally was developed to also account for the possibility of

chemical reactions, and since this is not a concern in the inherently classical systems

we study, a few alterations will be made to simplify notation, with no impact on the

meaning of the equations.

The partition function for a mixture of molecular species M with total sites nM on

each molecule labeled by Greek characters such as α is given below with the position

of the α site on the ith molecule of type M given as r
(α)
iM and the positions of all nM
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sites on the ith molecule of type M given as RiM.

Q({M}) =

(
∏

M

NM !νNM

M

nM∏

α=1

(

Λ
(α)
M

)3NM

)−1 ∫

· · ·
∫

e−βU

(
∏

M,i

dRiM

)

(A.25)

where U is defined as

U =
∑

M

NM∑

i=1

w∗
M(RiM) +

∑

M

NM∑

i=1

nM∑

α=1

φ(αM)(r
(α)
iM)

+
1

2

∑

M

∑

M ′

NM∑

i=1

NM′

∑

j=1

(1 − δMM ′δij)

nM∑

α=1

nM′

∑

γ=1

uαMγM ′

(∣
∣
∣r

(α)
iM − r

(γ)
jM′

∣
∣
∣

)

. (A.26)

In this, νM is the symmetry number of the molecule. For example, for H2O, ν = 2 for

2 equivalent orientations, and for CH4, ν = 12 for 12 different equivalent orientations

– 3 equivalent rotations for each of 4 different C-H bonds fixed in position. With

symmetry numbers included, each “equivalent” atom may be correctly viewed as a

unique site. Thus H2O has 3 sites and CH4 would have 5 sites. Λ
(α)
M is the thermal

de Broglie wavelength for the atom α on molecule M.

Beyond the symmetry number, the expression for the partition function does not

look drastically different from the partition function for mixtures aside from having

summations both over the types of molecules and over the sites on each molecule. The

crucial difference comes in the definition of w∗
M to represent bonding terms within

each molecule. This also represents our greatest divergence from the notation of Pratt

and Chandler. In their paper, rather than defining energies, they defined bonding

factors as

b∗M(r
(1)
1M, r

(2)
1M, ..., r

(nM)
1M ) = HM(R1M)e−βw∗

M (R1M), (A.27)

which were meant to represent the Boltzmann factor of the intramolecular energies

when none of the bonds in that molecule were broken. In this formula, R1M rep-
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resents all of the position coordinates of the 1st molecule of type M and w∗
M is the

intramolecular energy due to bonds. HM(R1M) is 1 if all bonds are formed, and 0

otherwise. We instead do no worry about bond-breaking events and pull w∗
M into the

expression for U .

Now following the same path as done for simple fluids and mixtures, we write the

single-site density distribution function. Following the simplified notation used for

mixtures
∏

M,i dRiM will be written as dR, and division by dr
(α)
1M indicates integration

over all particle positions except the α site on the 1st molecule of type M . Thus, we

have

ρ
(1)
αM(r) =

NM

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1M

)

. (A.28)

Here again, r has replaced r
(α)
1M in U . Now taking the gradient with respect to r,

− kBT ~∇ρ(1)
αM(r) =

NM

Z

∫

· · ·
∫ [

~∇w∗
M(1M)

]

e−βU

(

dR

dr
(α)
1M

)

+
[

~∇φ(αM)(r)
] NM

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1M

)

+
NM(NM − 1)

Z

∫

· · ·
∫
[

nM∑

γ=1

~∇uαMγM

(∣
∣
∣r − r

(γ)
2M

∣
∣
∣

)
]

e−βU

(

dR

dr
(α)
1M

)

+
NMNM ′

Z

∫

· · ·
∫
[
∑

M ′ 6=M

nM′

∑

γ=1

~∇uαMγM ′

(∣
∣
∣r − r

(γ)
1M′

∣
∣
∣

)
]

e−βU

(

dR

dr
(α)
1M

)

.

(A.29)

Following definitions made by Chandler and Pratt [11] and subsequently Chandler [10]

as written below, we may simplify the site-site molecular YBG equation in terms of an

intramolecular density distribution function, ρ
(1)
M (RM), and a two-point intermolecu-

lar site-site density distribution function, ρ
(2)
αMγM ′(r, r′), specifically defined to exclude

intramolecular site-site correlations. Here we set R1M = RM, r
(α)
1M = r, and r

(γ)
2M′ = r′
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in U :

ρ
(1)
M (RM) =

NM

Z

∫

· · ·
∫

e−βU
(

dR

dR1M

)

(A.30)

ρ
(2)
αMγM ′(r, r

′) =
NM(NM ′ − δMM ′)

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1Mdr

(γ)
2M′

)

. (A.31)

Substituting these definitions into the expression for the gradient of ρ
(1)
αM(r), we find

− kBT ~∇ρ(1)
αM(r) =

∫

· · ·
∫ [

~∇w∗
M(RM)

]

ρ
(1)
M (RM)

(

dRM

dr
(α)
M

)

+
[

~∇φαM(r)
]

ρ
(1)
αM(r) +

∑

M ′

nM′

∑

γ=1

∫

dr′ρ
(2)
αMγM ′(r, r

′)~∇uαMγM ′(|r − r′|).

(A.32)

This final equation is quite similar to the YBG equation for mixtures. Indeed, the

only difference is the term including the gradient of the bonding energy and the

intramolecular density distribution function. Thus we must focus on this term to

determine what approximations are reasonable.

In order to put the YBG equation in the form with which the LMF equation is

derived, we must divide each side by the singlet density of site α on molecule M .

− kBT ~∇ (ln ραM(r)) =

∫

· · ·
∫ [

~∇w∗
M(RM)

]

%M |α(RM|r)
(

dRM

dr
(α)
M

)

+ ~∇φαM(r) +
∑

M ′

nM′

∑

γ=1

∫

dr′ργM ′|αM(r′|r)~∇uαMγM ′(|r − r′|) (A.33)

Here we introduce conditional densities again. ργM ′|αM(r′|r) is the equivalent of the

standard conditional density, an intermolecular conditional density of finding site γ on

molecule M ′ at position r′ given that a site α on molecule M is located at position r.

%M |α(RM|r) is the intramolecular conditional density of a molecular orientation RM

given that site α is located at position r. This notation for intramolecular density
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does diverge from Chandler and Pratt [11]; it is the equivalent of their two point

contraction function s(2).

A.5 YBG Equation for General Mixtures of Larger Site-Site Molecular

Fluids

Here, we derive a separate YBG expression for larger site-site molecules because in

most simulation potentials, such as those defined by the charmm [64] and amber [25]

parameter sets, the potential energy due to “intermolecular” interactions (LJ inter-

actions and point charge interactions) is not written as distinct summations over

molecules and their intramolecular sites. Rather the LJ and charge interaction con-

tribution to U is a sum over all sites separated by at least three bonds (i.e. excluding

atoms bonded or connected via angle bending).

The expression for the partition function Q does not change, but U does. Here

α is summed over the total distinct sites in the system, ηS =
∑

M nM . w∗
b is a bond

energy function, w∗
a is the angle energy function for three sites, and w∗

d is an energy

function depending on the torsion angle between two bonds around a connecting bond
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axis. With this notation, we find

U =

ηS∑

α=1

Nα∑

i=1

∑

γ
1-2

w∗
b

(∣
∣
∣r

(α)
i − r(γ)

∣
∣
∣

)

+

ηS∑

α=1

Nα∑

i=1

∑

γ,δ
1−2−3

w∗
a

(

r
(α)
i , r

(γ)
1-2, r

(δ)
1-3

)

+

ηS∑

α=1

Nα∑

i=1

∑

γ,δ,ζ
1−2−3−4

w∗
d

(

r
(α)
i , r

(γ)
1-2, r

(δ)
1-3, r

(ζ)
1-4

)

+

ηS∑

α=1

Nα∑

i=1

φ(α)
(

r
(α)
i

)

+
1

2

ηS∑

α=1

ηS∑

γ=1

Nα∑

i=1

Nγ∑

j=1
︸ ︷︷ ︸

1−4 and beyond

(1 − δαγδij)uαγ

(∣
∣rα

i − r
γ
j

∣
∣
)
. (A.34)

Note that U written in this way is identical to the mixture U other than the first

three terms related to bonding interactions. Following the same rules for unique

sites within molecules, the Nα = NM for site α on molecule of type M . The first

three terms are for bond vibrations, angle vibrations, and dihedral rotations of two

bonds around a connecting bond. Technically, these usually depend on only r, θ, and

φ respectively, but we include positions for generality and application later. These

sums are understood to count sets of atoms connected via bond, angular, or torsional

potentials only once. Also, the brace beneath the four sums indicates that interactions

are only included here if sites are at most connected by a dihedral bonding term (and

no other bonds). One complication for the amber force field is that non-bonded

interactions are scaled down for 1-4 (dihedral) pairs. LJ interactions for 1-4 pairs

are divided by 2.0 and Coulomb interactions are divided by 1.2. We will not address

this complication, but it conceivably could be included in this formalism as well. The

new all-atom force field for charmm does not scale the Coulomb interactions for 1-4

pairs.

226



Just as before, we write the singlet density distribution function as

ρ(1)
α (r) =

Nα

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1

)

. (A.35)

Taking the gradient of the U defined in Eq. (A.34), we find

− kBT ~∇ρ(1)
α (r) =

Nα

Z

∑

γ
1−2

∫

· · ·
∫ [

~∇w∗
b

(

r, r
(γ)
1-2

)]

e−βU

(

dR

dr
(α)
1

)

+
Nα

Z

∑

γ,δ
1−2−3

∫

· · ·
∫ [

~∇w∗
a

(

r, r
(γ)
1-2, r

(δ)
1-3

)]

e−βU

(

dR

dr
(α)
1

)

+
Nα

Z

∑

γ,δ,ζ
1−2−3−4

∫

· · ·
∫ [

~∇w∗
d

(

r, r
(γ)
1-2, r

(δ)
1-3, r

(ζ)
1-4

)]

e−βU

(

dR

dr
(α)
1

)

+
[

~∇φ(α)(r)
] Nα

Z

∫

· · ·
∫

e−βU

(

dR

dr
(α)
1

)

+
Nα(Nα − 1)

Z

∫

· · ·
∫
[

ηS∑

γ=1

~∇uαα

(∣
∣
∣r − r

(α)
2

∣
∣
∣

)
]

e−βU

(

dR

dr
(α)
1

)

+
NαNγ

Z

∫

· · ·
∫
[

ηS∑

γ 6=α

~∇uαγ

(∣
∣
∣r − r

(γ)
2

∣
∣
∣

)
]

e−βU

(

dR

dr
(α)
1

)

. (A.36)

Making appropriate substitutions and dividing through by the singlet density of

site α as usual, we find

− kBT ~∇ ln ρ(1)
α (r) =

∑

γ
1−2

∫

dr′
[

~∇w∗
b (r, r

′)
]

%γ|α(r′|r)

+
∑

γ,δ
1−2−3

∫

dr′dr′′
[

~∇w∗
a(r, r

′, r′′)
]

%γδ|α(r′, r′′|r)

+
∑

γ,δ,ζ
1−2−3−4

∫

dr′dr′′dr′′′
[

~∇w∗
d(r, r

′, r′′, r′′′)
]

%γδζ|α(r′, r′′, r′′′|r)

+ ~∇φα(r) +

ηS∑

γ=1

∫

dr′ργ|α(r′|r)~∇uαγ(|r − r′|). (A.37)

227



Here again, % indicates some sort of intramolecular conditional density, but because

we specifically know how many points each force term refers to, we do not have to give

those conditional densities in terms of the whole molecule’s orientation, but rather

just the density of the local relative orientations. And now the standard conditional

density ργ|α(r′|r) will explicitly exclude atoms which are bonded to site α or within

2 bonds of site α.

If we separate uαγ as

uαγ(r) = uLJ
αγ +

qαqγ
εr

, (A.38)

then we may write a simpler formulation with which to do the LMF derivation (at

least for keeping track of indices),

− kBT ~∇ ln ρ(1)
α (r) =

∑

γ
1−2

∫

dr′
[

~∇w∗
b (r, r

′)
]

%γ|α(r′|r)

+
∑

γ,δ
1−2−3

∫

dr′dr′′
[

~∇w∗
a(r, r

′, r′′)
]

%γδ|α(r′, r′′|r)

+
∑

γ,δ
1−2−3−4

∫

dr′dr′′dr′′′
[

~∇w∗
d(r, r

′, r′′, r′′′)
]

%γδζ|α(r′, r′′, r′′′|r)

+

ηS∑

γ=1

∫

dr′ργ|α(r′|r)~∇uLJ
αγ(|r − r′|)

+ ~∇φα(r) +
qα
ε

∫

dr′ρq|α(r′|r)~∇ 1

|r − r′| . (A.39)

Here ρq|α(r′|r) is the conditional charge density at r′ given that particle α is located

at r.
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Appendix B

Smoothed Green’s functions for Various Geometries

The LMF equation is derived in Ch. 2 for very general geometries and boundary

conditions. Therefore, Eq. (2.13) and Eq. (4.9) involve three-dimensional integrals.

However, for two geometries considered in this thesis – slab confinement in the z-

direction and radial symmetry about the origin – the integrals may be simplified

to dependence on only one variable. In the course of this simplification, Green’s

functions smoothed by a Gaussian of width σ occur naturally. In this appendix, we

derive out these smoothed Green’s function which prove useful in solving the LMF

equation in Chs. 3 and 6 and in analyzing certain bulk water results in Sect. 5.4.

In essence, for each geometry, we seek to write equivalents of the standard LMF

Green’s function for long-ranged electrostatics,

v1(|r − r′|) =
erf
(

|r−r′|
σ

)

|r − r′| , (B.1)

that depend only on a single variable. This leads to simpler solutions of the LMF

equation in real-space using simulation data.

In general, these simplifications are exact when the singlet density profile ρR(r; [φR])

depends not on r but rather on a single variable like z or r. As shown in Sect. 6.6,

since the original Green’s function arises from a Gaussian-smoothed charge density,

these simplifications to the LMF equation will be approximately true even for density

profiles which contain greater local variation.
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Since the LMF equation may be expressed in terms of electrostatic potentials, as

explained in Sect. 4.1, we will base the analysis on the following writing of the LMF

equation as

VR(r) = V(r) +
1

ε

∫

dr′ ρq(r′; [VR]) · v1 (|r − r′|) + C, (B.2)

where VR is the LMF rescaled external electrostatic potential, and V is the originally

imposed external electrostatic potential.

B.1 Planar 1-D G(z, z′)

For slab simulations where there is complete uniformity in the the external field V in

the x and y directions such that V is only a function of z, we may simplify the LMF

equation to a one-dimensional equation as shown in [13, 15]. This can be done by

direct manipulation of Eq. (B.2), written for this symmetry as

VR(z) = V(z) +
1

ε

∫

dr′ ρq(z′; [VR]) · v1 (|r − r′|) + C. (B.3)

In essence what we seek is a Green’s function G(z; z′) such that

VR(z) = V(z) +
2π

ε

∫

dz′ ρq(z′; [VR]) ·G (z; z′) + C. (B.4)

In other words, using the rewriting of Eq. (B.2) as

VR(z) = V(z) +
1

ε

∫

dz′ρq(z′; [VR])

∫

dr′′δ(z′ − z′′)v1(|r − r′′|) + C, (B.5)

we may define G(z; z′) as

G(z; z′) =
1

2π

∫

dr′′δ(z′ − z′′)v1(|r − r′′|)

=

∫

s′′ds′′v1

(√

s′′2 + (z − z′)2
)

. (B.6)
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Defining ζ ≡ z − z′, we find

G(ζ) =

∫

s ds

erf

(√
s2+ζ2

σ

)

√

s2 + ζ2
. (B.7)

If we were to integrate this equation explicitly, an infinite constant would result, thus

the simpler path is to take the derivative of this equation with respect to ζ, solve

the s-integral, and then integrate back to obtain G. Since the original LMF equation

was only defined up to a constant, the constant of integration will be swept into the

existing integration constant C and used to set the zero point of energy:

∂

∂ζ
G(ζ) = −ζ

∫ ∞

0

erf

(√

s2 + ζ2

σ

)

s ds

(s2 + ζ2)3/2

+ ζ

∫ ∞

0

1
√

s2 + ζ2
· 2

σ
√
π

e−(s2+ζ2)/σ2

√

s2 + ζ2
sds. (B.8)

These integrals over s may be solved quickly by identifying

v =
1

√

s2 + ζ2
, dv = − s ds

(s2 + ζ2)3/2
,

u = erf

(√

s2 + ζ2

σ

)

, du =
2

σ
√
pi

e−(s2+ζ2)/σ2

√

s2 + ζ2
sds. (B.9)

Now using integration by parts, we find

∂

∂ζ
G(ζ) = ζ erf

(√

s2 + ζ2

σ

)

1
√

s2 + ζ2

∣
∣
∣
∣
∣

∞

0

= − ζ

|ζ| erf

( |ζ|
σ

)

= − erf

(
ζ

σ

)

. (B.10)

So now we may find G(z; z′) by integrating over ζ from ζ = z0−z′ to ζ = z−z′ where
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z0 is the chosen zero point of the potential,

G(z; z′) =

∫ z−z′

z0−z′
dζ

∂G(ζ)

∂ζ
= −

∫ z−z′

z0−z′
dζ erf

(
ζ

σ

)

(B.11)

= −ζ erf

(
ζ

σ

)

− σ√
π
e−ζ2/σ2

∣
∣
∣
∣

z−z′

z0−z′
(B.12)

= − |z − z′| erf
( |z − z′|

σ

)

− σ√
π

exp

(

−
(
z − z′

σ

)2
)

+ |z0 − z′| erf
( |z0 − z′|

σ

)

+
σ√
π

exp

(

−
(
z0 − z′

σ

)2
)

. (B.13)

This G(z; z′) represents the potential at position z due to a Gaussian-smoothed

sheet of charge placed at z′.

B.2 Spherically Symmetric 1-D G(r, r′)

For simulations of bulk substances where the external field V is simply a function of

r, we may again simplify the LMF equation into an equation depending on only one

variable. As done in the previous section we proceed by directly manipulating

VR(r) = V(r) +
1

ε

∫

dr′ρq(r′; [VR]) · v1(|r − r′|) + C. (B.14)

Again we seek a Green’s function, this time denoted G(r; r′) such that

VR(r) = V(r) +
1

ε

∫

dr′ρq(r′; [VR]) · G(r; r′) + C. (B.15)

The function G(r; r′) is the potential at r due to a unit charge smoothed into a

spherical shell at r′ and then Gaussian-smoothed. Again writing

VR(r) = V +
1

ε

∫

dr′ρq(r′; [VR])

∫

dr′′
δ(r′ − r′′)

4πr′2
v1(|r − r′′|) + C, (B.16)
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we may identify G as

G(r; r′) =

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)

∫ ∞

0

r′′2dr′
δ(r′ − r′′)

4πr′2

erf
(

|r−r′′|
σ

)

|r − r′′| . (B.17)

Carrying out the integration we find

G(r; r′) =
1

2

∫ 1

−1

d(cos θ)
erf
(√

r2−2rr′+r′2

σ

)

√
r2 − 2rr′ + r′2

=
1

2rr′

[

|r + r′| erf
( |r + r′|

σ

)

+
σ√
π
e
−

“

r+r′

σ

”2

− |r − r′| erf
( |r − r′|

σ

)

− σ√
π
e
−

“

r−r′

σ

”2
]

. (B.18)

One point to keep in mind for this expression for G is that for large r 1, i.e. the

potential at large distances (r − r′ large) due to a source charge shell r′,

lim
r→∞

G(r; r′) · r = 1. (B.19)

In other words, this expression yields correct behavior at large distances because a

shell of charge at r′ centered about the origin should appear no different than a point

charge at the origin. As always, we expect our correct pair distribution functions to

decay sufficiently fast at large r, such that

VR(r) = V(r) +
1

ε

∫

dr′ρq(r′; [VR]) · G(r; r′) + C

will not diverge. However, if this equation is closed to obtain self-consistency one

must take care with the k-space components. As shown by Chen et al. [14] for the

MPB closure, if the closure is analytical, it is almost certain that solving the LMF

equation in k-space is more appropriate, using the mixing shown in Appendix E. If

the closure is achieved with simulations, the r-space version of the k-space mixing

1We use the large x expansion of erf(x) ' 1 − exp(−x2)/(x
√

π).
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scheme shown in Appendix E should be employed to take care of the k = 0 divergence

of G.
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Appendix C

Determining Pressure for the Charged Two Wall System

This appendix is intended to be a companion to Ch. 3; therefore many of the symbols

briefly defined in this appendix are expained in more depth in that chapter. The

essential goal of this appendix is to explain the formulae used to calculate the pressure

of a system composed of point counterions contained between two uniformly charged

walls. These relations are given briefly in Sects. 3.1 and 3.4.5. At times, the pressure

in this system is called osmotic pressure in analogy with systems in equilibrium with

a bulk salt solution.

Osmotic pressure is the external pressure needed to apply to a solution in order to

counterbalance the osmotic flow of solvent into the solution through a semi-permeable

membrane. In the case of the uniformly-charged-wall model with point counterions,

the osmotic pressure and pressure might be considered interchangeable because the

solvent only occurs as the uniform dielectric constant. The solution is defined as the

space between the two walls including the counterions. If osmotic pressure between

walls is positive, then a positive pressure would have to be applied to the walls to

oppose the flow of solvent into the system. Since space is essentially the solvent then

this can be interpreted as the force per unit area needed to be applied to the walls

in order to keep the walls separated at that distance d, i.e., not allow open space to

flow into or out of the system.
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For this simple system, one may describe the osmotic pressure by focusing on a

single plane in the system and making a few physically motivated arguments. Since

osmotic pressure may be readily compared with a more traditional description of

pressure in this system, there will always be a positive contribution to pressure due to

the particle density at that chosen plane. Recall that osmotic pressure is the external

pressure needed to oppose the osmotic flow of solvent into the system. Therefore we

must also take into account the internal attractive forces between the charged wall

and the oppositely charged particles across the plane. So regardless of what position

zplane between the walls we choose to examine, we would expect the osmotic pressure

to take the form

Posm = kBT ρ(zplane) +
〈FLR〉
A

(C.1)

where 〈FLR〉 is the average force felt on objects to the right of a dividing plane at

zplane due to the objects on the left of the plane and A is the cross-sectional area of

that dividing plane in the actual simulation cell.

This simple argument is not sufficient proof of the formula. However this formula

has been obtained approximately by imposing the requirement of a hard plane at the

center of the simulation cell [36], and much more generally through use of the local

pressure tensor and continuity equations [38, 97].

C.1 Contact Theorem

Perhaps the most obvious choice for dividing plane is directly adjacent to one of

the confining walls. This plane gives rise to what is commonly called the “contact
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theorem,”

Posm = kBT ρ(zwall) −
2π q2

w

ε
. (C.2)

Here, ρ(zwall) is particle density contacting a wall, qw is the charge density on the

uniformly charge wall. This equation has been derived by Wennerström et al. [108] via

a statistical mechanical analysis of the configurational partition function for several

geometries of the cell model for polyelectrolytes. Since the position of the hard wall

is the lower limit for integration in the z-direction, the “ideal” gas term kBT ρ(zwall)

is part of the pressure. The wall position is part of a constant associated with the

potential energy; therefore, the second term results as well.

Alternatively, the second term may be easily motivated through the idea of the

net force between the objects to the left and right of the dividing plane. Since there

is only a static uniformly charged wall on one side of the plane, averaging the force

is not necessary; the force between the wall on one side of the plane and every other

object on the other side of the plane is a constant. Assuming that the dividing plane

is immediately next to the left wall, the total force on the left wall may be written as

a sum of the force on the left wall due to all 2N ions and the force on the left wall

due to the right wall. Thus we have

FLR

A
=

1

A
(FIons-on-LW + FRW-on-LW) . (C.3)

The electric field Ewall due to a uniformly charged wall is a constant 2πqw/ε pointing

out from the wall. Thus, we may expand the force on each ion ion as the charge

on that ion multiplied by the field, Ze0Ewall. We do the same for the total force
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between walls using the total charge on the other wall within the simulation box,

qwA. Therefore,

FLR

A
=

1

A

(
2N∑

i=1

Ze0
2πqw
ε

+ qwA
2πqw
ε

)

. (C.4)

The sum above runs over 2N particles since we assume that N particles the area A

of one wall. The summand is a constant, so we simply multiply the summand by the

total of 2N particles, yielding

FLR

A
=

2πqw
ε

(

λ+
2NZe0
A

)

. (C.5)

Finally, we may use an identity required by neutrality,

NZe0
A

= −qw, (C.6)

to simplify the expression for FLR further. Thus, we find

FLR

A
=

2πqwZe0
ε

(qw − 2qw) = −2πq2
w

ε
. (C.7)

With the appropriate definition of reduced pressure as discussed in Sect. 3.1, the

osmotic pressure at contact may be written very simply as

P̃osm =
L2

wLG

kBT
Posm = n(z̃wall) − 1. (C.8)

The length Lw is associated with the area of wall required to neutralize a single

counterion, and LG is the distance away from the wall at which a single wall potential

is equal to kBT .

As has been noted by several authors, this equation poses numerical difficulties in

regions where the pressure crosses over between attractive and repulsive. The contact

theorem requires one to take the difference between two nearly equal quantities. Often
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this is emphasized as the reason for wanting to determine the osmotic pressure using

the midplane as dividing plane [36, 71]. However, as shown later, finding the pressure

at the midplane also involves taking the difference of nearly equal quantities. A

more careful statement of why the midplane is preferable involves the difficulties in

accurately extrapolating the particle density at the wall from a simulation [99]. Since

either the contact theorem or the midplane “theorem” involve the difference of similar

values, the crucial difference is that the density at midplane may be determined to

much greater accuracy than the density at contact even with finite-sized histogram

bin widths because the density is so much more slowly-varying at the center of the

simulation cell.

C.2 Posm at Midplane With a Hard Wall

Guldbrand et al. [36] derive an alternate formula for the pressure based on particle

density at the midplane, again by analysis of the configurational integral. In their

analysis, the presence of a hard wall at midplane (z = 0) is required in order to derive

the expression. This wall keeps an exactly neutralizing N counterions in each half of

the simulation but allows interactions between particles to penetrate from one side

to another. This expresion is

Posm = kBT ρ(z = 0) +
〈FLR〉
A

, (C.9)

where FLR is the average force between walls and particles to the left of the plane and

walls and particles to the right. The hard wall is used in both the derivation of the

formula and in simulations in that paper and in Moreira and Netz’s simulations [36,
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71].

Guldbrand et al. [36] assert that the presence of the hard wall does not alter the

results in the thermodynamic limit. In fact they find a convergence in their results as

the lateral dimension of the simulation cell is increased. In addition, Moreira and Netz

[71] use this technique for simulations with larger distances between walls where the

pressure is numerically small and state they find no difference with values obtained

by the contact theorem. We use these latter simulations as benchmarks in Ch. 3.

However in the case of the uniformly-charged-wall and point-counterion system,

the polarized states, e.g. N + 1 ions on the left and N − 1 ions on the right, could

potentially make 〈FLR〉 more attractive, for then there is a net attractive charge

pair to the left and right of the plane. The results in [71] seem to suggest that for

larger distances where the particles are already predominantly in two layers, these

polarized states do not contribute to the configuration integral significantly. However,

at intermediate distances when particles are transitioning from single layer ordering

to double layer arrangement, these fluctuations could be significant, and the use of a

hard wall completely cuts out those contributions. However, without a hard wall, one

should use electrostatice techniques relying on the periodicity of the simulation cell

with care, for these would result in a far more macroscopic fluctuation in net charge

and overestimate the resulting attraction between sides.
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C.3 Posm at Any Plane via the Local Pressure Tensor

A more rigorous way of deriving the general formula can be found via the local

pressure tensor P (r). Writing P in index notation as Pαγ , the local pressure tensor

may be defined as the infinitesimal force in the α direction across a planar infinitesimal

area with its normal in the γ direction [38, 97], in other words,

dF = dA · P thus dFα = dAγ Pαγ . (C.10)

The local pressure tensor has two contributions, kinetic and potential. The kinetic

term may be best understood as the rate of momentum transfer per unit area from

one side to the other as a particle traverses the dividing surface dAγ. The potential

contribution may be seen as the forces that cross the dividing surface, a point we will

return to.

The kinetic contribution to Pαγ due to particle i crossing the surface dAγ is a

combination of its momentum in the α direction and the rate at which it crosses the

surface in the γ direction so that

PK
αγ(r) =

N∑

i=1

piαviγδ (ri − r) . (C.11)

To find the equilibrium P (r) one must average over phase space. Assuming equal

masses for all particles, this equation can be written as

PK
αγ(r) =

N
∫
drN

∫
dpN p1αp1γ

m
δ(r1 − r)e−βU(rN )e−βK(pN )

∫
drN

∫
dpNe−βU(rN )e−βK(pN )

. (C.12)

Using appropriate rearrangements and simplifications, such as
〈

p
i

〉

= 0 and 〈p2
iα/m〉 =

1
β
, this simplifies to

PK
αγ(r) = kBTρ(r)δαγ or PK(r) = kBTρ(r)I.f (C.13)
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The kinetic term has been identified with an ideal gas contribution [100]. The po-

tential term, however, has ambiguity for this very general form of the local pressure

tensor; the identification of a force between two distal particles as being “present” at

point r is ambiguous. The symmetry of this situation instead makes the identification

of particle contributions clearer. Before fully addressing this point, some basic results

for equilibrated systems in the planar geometry will be described [88, 100].

For a system in equilibrium, mechanical stability implies ~∇ · P = 0. Additional

requirements are that off-diagonal components of P are zero and that the two trans-

verse components of the pressure tensor, Pxx and Pyy, are equal to one another. This

all combines to show that P is a function of z only and furthermore Pzz is constant

and equal to the external pressure applied to the surfaces.

Given these simplifications, the choice of the “method of planes” (MOP) to ex-

plicitly integrate over the x- and y-directions makes sense. Starting from continuity

equations, Todd et al. [97] derive the following components of the pressure tensor

across a macroscopic dividing plane with its normal in the z-direction. There is no

constraint on the z-position of this plane, because any choice should yield the same

pressure. All information about the transverse terms is lost, but the crucial Pzz

remains, so that

PU
αz(z) =

1

2A

∑

i

Fiα sgn(zi − z), (C.14)

PK
αz(z) =

1

A

∑

i

piαpiz

m
δ(zi − z). (C.15)

The kinetic term yields the expected ideal gas term ρ(z)kBT δαz. The potential term

is a sum over the net force on each particle i in the α direction, Fiα, with the sign
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changing depending on whether the particle is on the left or the right of the plane.

This can easily be shown to be equivalent to 〈FLR〉
A

when pair interactions are used.

Since we know from symmetry that only Pzz of all three Pαz is nonzero, we now only

examine Pzz,

PU
zz(z) =

1

2A

∑

i

∑

j 6=i

sgn(zi − z)Fz,ij, (C.16)

where Fz,ij is the force on particle i due to particle j in the z-direction. This leads to

PU
zz(z) =

1

2A

∑

i∈R

∑

j 6=i

Fz,ij −
1

2A

∑

i∈L

∑

j 6=i

Fz,ij

=
1

2A

∑

i∈R

∑

j∈L

Fz,ij +
1

2A

∑

i∈R

j 6=i
∑

j∈R

Fz,ij −
1

2A

∑

i∈L

∑

j∈R

Fz,ij −
1

2A

∑

i∈L

j 6=i
∑

j∈L

Fz,ij.

(C.17)

In the second line, the second and fourth terms vanish because the expansion of

each summation yields pairs like Fz,12 + Fz,21 which cancel identically. On using the

symmetry Fz,ij = −Fz,ji, the remaining two sums may be combined to obtain

PU
zz(z) =

1

2A

∑

i∈R

∑

j∈L

Fz,ij −
1

2A

∑

i∈L

∑

j∈R

Fz,ij =
1

A

∑

i∈R

∑

j∈L

Fz,ij. (C.18)

Therefore, the osmotic pressure, which may be identified as the external applied

pressure needed to maintain mechanical stability, will be given by

Posm = ρ(z)kBT +
〈FLR〉
A

with FLR =
∑

i∈R

∑

j∈L

Fz,ij. (C.19)

The inclusion of wall-particle and wall-wall interactions in this scheme is relatively

simple to accomplish. The walls will not contribute to the kinetic term because they

are held immobile. However the walls will be two more objects to include in the sum

over forces between the left and right sides. In the paper by Varnik et al. [100], only
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the wall-ion forces are included in this sum, perhaps because this wall-wall force is

negligible in a Lennard-Jones system, however the wall-wall force contribution should

certainly be included in this Coulombic system [100].

As opposed to using continuity equations, Heinz et al. [38] have also derived this

MOP from the local pressure tensor by understanding it as extending the dividing

plane with a normal in the z-direction such that it occupies the entire simulation cell

area in the x- and y-directions [38].

C.3.1 Summary

Via the method of planes, a very general equilibrium expression for osmotic pressure

at any chosen dividing plane (z = zp) becomes

Posm = ρ(zp) kBT +
1

A

〈
∑

zi>zp

∑

zj<zp

Fz,ij

〉

. (C.20)

In the reduced units of Ch. 3, this equation is

P̃osm = n(zp) +
2πξ

Ã

〈
∑

z̃i>z̃p

∑

z̃j<z̃p

F̃z̃,ij

〉

, (C.21)

where ξ is the coupling strength of the system as defined in Sect. 3.1, and a tilde

indicates division of lengths by LG and division of energies by kBT .

C.4 Method of Planes for the Two Wall System

We must take careful account of the fact that the two walls should be regarded as

“particles” in the summation above. By explicitly separating contributions due to
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ions and due to walls, we may write

P̃osm = n(zp) +
2πξ

Ã

(

FLI-on-RW + FRI-on-LW + FLW-on-RW +
∑

i∈L

∑

j∈R

f̃ z(rij)

)

. (C.22)

The abbreviation LI indicates ions with z < zp and RI represents ions with z >

zp. Similarly, LW and RW indicate the left wall and the right wall, respectively.

The terms FLI-on-RW + FRI-on-LW + FLW-on-RW add up to −1 for similar reasons as for

our determination of the contact theorem at the beginning of this appendix. The

final term in the first line is essentially FLI-on-RI expanded in terms of forces between

individual ions. The summand f̃ (z)(rij) is equivalent to F̃z,ij, but we now have used

the fact that these pair interactions are spherically symmetric.

Following the LMF approach, we split each f̃ (z)(rij) into short-ranged and long-

ranged contributions – f̃
(z)
0 (rij) and f̃

(z)
0 (rij) – as

P̃osm = n(zp) − 1 +
2πξ

Ã

〈
∑

i∈L

∑

j∈R

f̃
(z)
0 (rij)

〉

+
2πξ

Ã

〈
∑

i∈L

∑

j∈R

f̃
(z)
1 (rij)

〉

. (C.23)

We may explicitly calculate the average of f̃
(z)
0 during the simulations, but f̃

(z)
1 is

long-ranged. For us to exactly calculate that contribution we would require a lattice

sum. However, as explained in Sect. 3.4.5, we may quite reasonably approximate

this as
〈
∑

i∈L

∑

j∈R

f̃
(z)
1 (rij)

〉

'
〈
∑

j∈R

∫ zp

0

dz′n(z′) erf

(
zj − z′

σ

)〉

. (C.24)

The midplane theorem employed involves choosing zp = d/2. Furthermore, with the

LMF electrostatic approach, we are equipped to handle polarized states with N + 1

ions on the left and N − 1 ions on the right without violating macroscopic neutrality

because such instantaneous polarization does not propagate out to infinity.
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Appendix D

Molecular Moment Conditions and Energy Corrections

In this appendix, we derive the small k-expansion of bulk pair correlation functions

for site-site molecular models, as originally done by Chandler [10]. This expansion is

the molecular analog of the standard Stillinger-Lovett moment conditions [94], and

we will use it to correct the thermodynamics of bulk water simulated using the strong

coupling approximation (SCA).

In Sect. 5.3.4, we study the thermodynamics of bulk SPC/E water simulated with

SCA by using only the Gaussian-smoothed truncation of 1/r,

v0(r) =
erfc (r/σ)

r
. (D.1)

As with thermodynamic perturbation theory, we expect that the total nergy of the

system will be composed of two contributions,

Utot = U0 + U1, (D.2)

where the Gaussian-truncated (GT) water will yield U0 and the neglected interactions

due to

v1(r) =
erf (r/σ)

r
(D.3)

are contained in U1.

In general, the total energy of bulk water in simulation may be written as

Utot

N
=
ULJ

N
+
ρB

2
q2

∫
1

r
{gOO(r) + gHH(r) − 2gOH(r)} dr (D.4)
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where q ≡ |qO|. When we simulate truncated water, we obtain both ULJ and the

electrostatic energy due to v0(r) exactly; we identify that sum as U0. As is evident

from the data presented in Sect. 5.3.4, the remaining U1 is an important contribution

to the total energy.

Thus we need to find the neglected U1 which we cannot calculate during the

simulation:

U1

N
=
ρB

2
q2

∫

v1(r) [gOO(r) + gHH(r) − 2gOH(r)] dr =
ρB

2
q2

∫

v1(r)htot(r)dr. (D.5)

One might consider using the simulation-calculated g in the equation above to obtain

U1; however this would be a poor approximation. Instead, we follow a path very

similar to that used for the strongly-coupled ionic solution, relying on the first and

second moments of the molecular solution in k-space [14, 22]. The Fourier transform

of v1(r) is

v̂1(k) =
4π exp (−k2σ2/4)

k2
. (D.6)

Therefore, by Parseval’s theorem, the energy correction in Fourier space is

U1

N
=
ρB

2
q2 1

(2π)3

∫
4π

k2
exp

(
−k2σ2/4

)
ĥtot(k)dk. (D.7)

The bulk of this appendix is devoted to determining an accurate small-k expansion

for ĥtot(k), in the vein of those derived by Stillinger and Lovett [94] for ionic solutions.

Only a small-k expansion is required because the exponential in the integral above is

only non-zero for small-k values.
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D.1 Exact Moment Conditions

Both Høye and Stell [40] and Chandler [10] derived an equation for the dielectric con-

stant in terms of the site-site correlation functions. In reviewing various molecular

results, Hansen and McDonald [37] refer to Martin [68] in stating that such equations

may be derived based on sum rules. However, a point that may not be fully appre-

ciated in the context of molecular fluids is that these sum rules may quite easily be

used to approximate the correction U1 discussed above.

We proceed by essentially following steps in [10] with slight alterations since there

appears to be differences in the definition of χαMγM ′ between Chandler [10] and

Hansen and McDonald [37]. In essence, these moment conditions are not new results.

However, since we will be using the formula for numerical applications in Sect. 5.3,

stepping through the derivation allows us to fully understand the formula and to take

care with units.

Given a test charge Q immersed in a dielectric fluid, we expect that for large r

lim
r→∞

V (r) · r =
Q

ε
, (D.8)

and alternately in k-space,

lim
k→0

V̂ (k) · k2 =
4πQ

ε
. (D.9)

If, instead, we look at the microscopic response of the site-site molecular fluid, we

expect

Vmicro(r) =
Q

r
+ 〈Vpol(r)〉Q , (D.10)
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which in k-space is

V̂micro(k) =
4πQ

k2
+
∑

M,α

zαM ρ̂αM |Q(k)
4π

k2
. (D.11)

The final term is basically a statement of Poisson’s equation for the charge density

profile of the molecular sites given that a charge Q is fixed at the origin.

Taking Q to be small, we appeal to linear response in order to calculate the charge

density response of the molecular sites. By definition, we have

δρ̂αM(k)

δψ̂γM ′(k)
= χαMγM ′(k), (D.12)

where ψ̂γM ′ is a weak external potential energy field that couples to the density of

site γM ′ [37, p. 64]. For a charge Q at the origin, this energy would be 4πQzγM ′/k2.

Therefore, to linear order,

ρ̂αM |Q(k) = ρ̂αM |0(k) +
∑

γM ′

χαMγM ′(k)
4πQzγM ′

k2

= (2π)3 · ρM · δ(k) +
∑

γM ′

χαMγM ′(k)
4πQzγM ′

k2
. (D.13)

Applying this statement to the equation for V̂micro(k) and appealing to net in-

tramolecular neutrality, we find

V̂micro(k) =
4πQ

k2
+ (2π)3 4π

k2

∑

M,α

zαM · ρM · δ(k) +
4π

k2

∑

αM

∑

γM ′

4πQ

k2
zαM · zγM ′ · χαMγM ′(k)

=
4πQ

k2

{

1 +
4π

k2

∑

αM

∑

γM ′

zαM · zγM ′ · χαMγM ′(k)

}

. (D.14)

Matching this linear response formula with the macroscopic expectation, we have

1

ε
= 1 +

4π

k2

∑

αM

∑

γM ′

zαM · zγM ′ · χαMγM ′(k) (D.15)
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For a typical conducting fluid with ε→ ∞, this would lead immediately to

1 = lim
k→0

{
4πβe20
k2

ρ SZZ(k)

}

(D.16)

where ρ is the total number density of all particles. This means that up to second

order in k, we have

SZZ(k) = 0 +
kBT

4πρe2
0

k2, (D.17)

the typical zeroth and second moment conditions for ionic fluids [37].

However, for molecular fluids we must be more careful. The response functions

χαMγM ′ depend on both intramolecular and intermolecular behavior. First, we restate

the equation we will build from:

(
1

ε
− 1

)

= lim
k→0

{

4π

k2

∑

αM

∑

γM ′

zαM · zγM ′ · χαMγM ′(k)

}

.

As Chandler [10] noted, from the compressibility theorem, we know that

lim
k→0

χ̂αMγM ′(k) = −∂ρM ′

∂µM

= χ̂
(0)
M M ′ , (D.18)

where µM indicates the chemical potential of molecule M , and the dependence on

site identity is lost. Expanding χ̂αMγM ′ up to second order in k as

χ̂αMγM ′(k) = χ̂
(0)
M M ′ + k2χ̂

(2)
αMγM ′ +O(k4) (D.19)

leads to

(
1

ε
− 1

)

=
4π

k2

∑

M

∑

M ′

(
∑

α

zαM

)(
∑

γ

zγM

)

χ̂
(0)
M M ′ + 4π

∑

αM

∑

γM ′

zαMzγM ′χ̂
(2)
αMγM ′ .

(D.20)

The first term vanishes owing to the neutrality of each molecule; thus we know exactly

(
1

ε
− 1

)

= 4π
∑

αM

∑

γM ′

zαMzγM ′χ̂
(2)
αMγM ′ . (D.21)
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We may also write χ̂αMγM ′(k) in terms of intramolecular and intermolecular distri-

bution functions as

χ̂αMγM ′(k) = −βρMδMM ′ω̂αγM(k) − βρMρM ′ĥαMγM ′(k), (D.22)

where we define the intramolecular correlation function as

ω̂αγM(k) = δαγ + %̂α|γ(k), (D.23)

with %α|γ(r) again representing the conditional intramolecular density of site α being

at r given that site γ is at the origin. Before proceeding, note the similarity to the

response function for a simple mixture:

χ̂αγ(k) = −βραδαγ − βραργĥαγ(k). (D.24)

The sole differences lie in the self term requiring a Kronecker delta for both the site

and the molecule and in a requisite contribution from intramolecular correlations.

Using the alternate definition of χ̂ in terms of ω̂ and ĥ, we may expand those

definitions in terms of k alternatively. The k0 term of ω̂αγM is

ω̂
(0)
αγM = δαγ +

∫

%α|γ(r)dr = δαγ + (1 − δαγ) = 1. (D.25)

Therefore the charge-weighted sum of the k0 terms due to ω̂αγM for a given molecule

M is exactly zero due to the neutrality of the molecule:

∑

α,γ

zαMzγM ω̂
(0)
αγM =

∑

α

zαM

(
∑

γ

zγM

)

= 0. (D.26)

The charge weighted sum of all k2 terms due to ω̂αγM for a given molecule M may

be found to be

∑

α,γ

zαMzγM ω̂
(2)
αγM = −1

6

∫
∑

α,γ

zαMzγM%αγ(r)r
2dr =

µ2
M

3
+
αM

β
, (D.27)
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where µM now refers to the permanent dipole moment of the molecule in the fluid

and αM is the polarizability of the molecule.

Thus, to second order in k, we may write

∑

M

∑

α,γ

zαMzγM ω̂αγM ' k2
∑

M

(
µ2

M

3
+
αM

β

)

. (D.28)

Now, for the intermolecular correlations, we expand

ĥαMγM ′(k) = ĥ
(0)
MM ′ + k2ĥ

(2)
αMγM ′ , (D.29)

where k = 0 behavior is independent of sites again by the compressibility theorem.

Therefore, just as before, summing over all molecules and sites will lead to the k0

term being zero due to molecular neutrality.

∑

αM

∑

γM ′

zαMzγM ′ĥαMγM ′(k) = 0 + k2
∑

αM

∑

γM ′

zαMzγM ′ĥ
(2)
αMγM ′ , (D.30)

Arguments have been made for why we should expect the second term in the expansion

to exist [10]; the easiest argument is that for the dielectric constant to exist, this term

must exist. More detailed arguments involve diagrammatic expansions. Given the

expansion of ĥ to second order in k, we may exactly write

(
1

ε
− 1

)

= −4πβ

k2

(

k2
∑

M

ρM

(
µ2

M

3
+
αM

β

)

+ k2
∑

αM

∑

γM ′

zαMzγM ′ρMρM ′ĥ
(2)
αMγM ′

)

.

(D.31)

D.2 Specialization to SPC/E Water

While the previous formula may seem complicated, we can use it to exactly express

the small k behavior of hOO + hHH − 2hOH. We begin by simplifying all the sums
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as appropriate for a single component molecular fluid of density ρB and permanent

dipole µ without any polarizability α.

ε− 1

ε
= 4πβ

(

ρB
µ2

3
+ ρ2

B

∑

α

∑

γ

zαzγĥ
(2)
αγ

)

(D.32)

Now, carrying out the summations over α and γ, recalling that in the notation of [10]

each individual atom is given its own index, 1 we find that

∑

α

∑

γ

zαzγĥ
(2)
αγ = q2

(

ĥ
(2)
OO + ĥ

(2)
HH − 2ĥ

(2)
OH

)

= q2ĥ
(2)
tot . (D.33)

By using this result in the previous equation, we find the exact expression

q2ĥ
(2)
tot =

kBT

4πρ2
B

ε− 1

ε
− µ2

3ρB

. (D.34)

Thus at small k, we may approximate ĥtot as

q2ĥtot ' 0 + k2

(
kBT

4πρ2
B

ε− 1

ε
− µ2

3ρB

)

. (D.35)

D.3 Units

Care must be exercised in numerically applying this formula due to units. The process

above used CGS units.

We have

kBT = 4.141 × 10−14 erg (D.36)

µ = 0.8476 e0 lOH cos

(
θHOH

2

)

= 2.35 × 10−18 esu · cm (D.37)

ρB = 3.335 × 1022cm−3. (D.38)

1In order for this to be correct, the partition function must include corresponding symmetry

numbers as mentioned in Appendix A.

253



Therefore, we may write

kBT

4πρ2
B

= 2.963 × 10−60 erg · cm6 (D.39)

µ2
B

3ρB

= 5.520 × 10−59 esu2 · cm5 = 5.520 × 10−59 erg · cm6. (D.40)

Based off of these values, we find that q2ĥ
(2)
tot < 0 regardless of the ε chosen.

An upper bound on q2ĥtot is found by assigning ε→ ∞,

q2ĥtot ≤ −
(

5.224 × 10−59 g · cm8

s2

)

k2. (D.41)

Since the dielectric constant of water is rather large, this upper bound is actually

rather tight, within the approximation of a second order expansion in k-space.

Finally, we convert the constant into units of kJ·Å6/mol in order to simplify our

calculations in the text,

5.224 × 10−59 g · cm8

s2
·
(

1 kg

1000 g

)

·
(

1 m

100 cm

)2

= 5.224 × 10−66

(
1 J

1 kg · m2/s2

)

·
(

1 kJ

1000 J

)

= 5.224 × 10−69 kJ · cm6 ·
(

6.022 × 1023

1 mol

)

·
(

108 Å

1 cm

)6

= 3.145 × 103 kJ · Å6

mol
. (D.42)

D.4 Energy Correction Formula

As stated at the beginning, we may write the energy correction as

U1

N
=
ρB

2
q2 1

(2π)3

∫
4π

k2
exp

(
−k2σ2/4

)
ĥtot(k)dk. (D.43)

Using our expansion for ĥtot(k) at small k, we have

U1

N
' ρB

2
q2ĥ

(2)
tot

1

(2π)3

∫

4π exp
(
−k2σ2/4

)
dk ≤ 0. (D.44)
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This integral is exactly solvable and thus we have an analytical approximation for U1:

U1

N
' q2ĥ

(2)
tot

4πρB

16π3

8

σ3
π3/2 = q2ĥ

(2)
totρB

2√
π

1

σ3
. (D.45)
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Appendix E

Stable k-space Solution of the LMF Equation

This appendix is based on a technique originally proposed by a former Weeks group

member Kirill Katsov and explained in [13] and [14]. The originial scheme has modi-

fied to a form more easily transformed to r-space by Weeks [103]. We first explain why

the LMF solution would not be stable in k-space. Then the techniques for addressing

this problem are discussed.

As discussed in Sect. 4.1, we may write the LMF equation for the rescaled elec-

trostatic potential (not potential energy) as

VR1(r) =
1

ε

∫

dr′ρq
R,tot(r

′; [φR])v1(|r − r′|), (E.1)

where v1(r) ≡ erf(r/σ)/r. The charge density in the integral includes both the

mobile and stationary charge densities since this is an equation for the slowly-varying

part, VR1. The short-ranged contributions of the stationary contributions will be

represented separately by V0.

In k-space, where f̂(k) indicates the Fourier transform of f(r) and our convention

is to have 1/(2π)3 in the k-space to r-space transform, we may write the LMF equation

as

V̂R1(k) =
1

ε
ρ̂q

R,tot(k) exp

(

−k
2σ2

4

)
4π

k2
(E.2)

For bulk fluid the underlying difficulty of this equation is that when we have the
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correct VR we expect

ρ̂q
R,tot(k) ' 0 + αk2 + O(k4). (E.3)

However, unless we have the correct φR, we instead may find

ρ̂q
R,tot(k) ' C + αk2 + O(k4). (E.4)

A non-zero C causes iteration of the LMF equation in k-space to diverge. Even if one

tries to integrate in r-space this long-ranged difficulty will likely show up.

The technique used in [14] is to exactly rewrite the LMF equation in two ways

and then take a linear combination of the two:

k2V̂R1(k) =
1

ε
ρ̂q

R,tot(k) exp

(

−k
2σ2

4

)

4π, (E.5)

κ2V̂R1(k) = κ2V̂R1(k). (E.6)

Summing these two exact forms, we obtain

V̂R1(k) =
1

ε
ρ̂q

R,tot(k) exp

(

−k
2σ2

4

)
4π

k2 + κ2
+

κ2

k2 + κ2
V̂R1(k). (E.7)

Now with a simple (and exact rewriting) this looks like a linear combination of

two solutions (with some k-space dependence):

V̂R1(k) =
k2

k2 + κ2

1

ε
ρ̂q

R,tot(k) exp

(

−k
2σ2

4

)
4π

k2
+

κ2

k2 + κ2
V̂R1(k). (E.8)

However, the underlying “trick” is more evident in the writing of the first term given

in Eq. (E.7). Even if the k0 term in Eq. (E.4) in non-zero, this term will no longer

diverge. Neither will the second term. Furthermore, self-consistent iteration will drive

the k0 term of ρ̂q to zero since that is the only way to attain self-consistency. This

may be seen for the bulk by expressing both ρ̂q
R,tot and V̂R1(k) as even series in k.
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In the iteration for the MPB solution, Chen et al. [14] found that a choice of κ

close to the Debye length led to a stable solution.

The newer observation by Weeks [103] is that any f(k) with a small k-expansion

f(k) ' k2 +O(k4) (E.9)

will work as well as k2/(k2 + κ2). Thus we may generally write

V̂R1(k) = f(k) · 1

ε
ρ̂q

R,tot(k) exp

(

−k
2σ2

4

)
4π

k2
+ [1 − f(k)] · V̂R1(k). (E.10)

Further, if we use

f(k) = 1 − e−
k2l2

4 , (E.11)

then these equations are easily integrable.

Thus we obtain

V̂R1(k) = ·1
ε
ρ̂q

R,tot(k) exp

(

−k
2σ2

4

)[

1 − exp

(

−k
2l2

4

)]
4π

k2
+ V̂R1(k) exp

(

−k
2l2

4

)

.

(E.12)

Converting to real space yields

VR1(r) =
1

ε

∫

dr′ρq
R,tot(r

′)







erf
(

|r−r′|
σ

)

|r − r′| −
erf
(

|r−r′|√
σ2+l2

)

|r − r′|







+
1

l3π3/2

∫

dr′VR1(r
′) exp

(

−|r − r′|2
l2

)

. (E.13)

One may alternately obtain

VR1(r) =
1

ε

∫

dr′ρq
R,tot(r

′)




erfc

(
|r−r′|√
σ2+l2

)

|r − r′| −
erfc

(
|r−r′|

σ

)

|r − r′|





+
1

l3π3/2

∫

dr′VR1(r
′) exp

(

−|r − r′|2
l2

)

, (E.14)
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emphasizing the short-ranged nature of the difference.

Either of these equations may now be converted to use the smoothed Green’s

functions derived in Appendix B for either a slab geometry or spherical symmetry.

In simulations, the r-space version of this k-space iteration scheme is useful for making

initial guesses at structure, as in Sect. 6.5.
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Appendix F

One-Dimensional LMF Equation for LJ Fluid Between Walls

In Ch. 7, we apply LMF theory to the Lennard-Jones (LJ) attractions between water

molecules confined between hydrophobic walls. Just as done for charge interactions

in Sect. B.1, we may simplify the LMF equation to an integral over one dimension.

In this appendix, we document this transformation.

We specify our functional forms as

uLJ(r) = 4εLJ

[(σLJ

r

)12

−
(σLJ

r

)6
]

(F.1)

u0(r) = uWCA(r) =







uLJ(r) + εLJ if r ≤ r0,

0 if r > r0,

(F.2)

u1(r) = uattr(r) =







−εLJ if r ≤ r0,

uLJ(r) if r > r0,

(F.3)

where r0 is the position of the minimum in uLJ(r), 21/6σLJ.

Starting from the full three-dimensional LMF equation for the Lennard-Jones

contribution, namely,

φLJ
R (r) =

∫

dr′ρR(r′)u1(|r − r′|) + C, (F.4)

we may assume that r = (x, y, z) = (0, 0, z), define s′ =
√

x′2 + y′2, and recall that
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both ρR as well as φR are functions of only z. Then we may write

φLJ
R (z) =

∫ ∞

−∞
dz′
∫ 2π

0

dθ

∫ ∞

0

s′ ds′ ρR(z′)u1

(√

s′2 + (z − z′)2
)

+ C, (F.5)

where for this appendix we assume that φLJ(z) = 0.

We then define ζ = z′ − z and substitute in this definition along with dζ = dz′

and z′ = z + ζ,

φLJ
R (z) = 2π

∫ ∞

−∞
dζ

∫ ∞

0

s′ ds′ ρR(z + ζ)u1

(√

s′2 + ζ2
)

+ C. (F.6)

The definition of u1(
√

s′2 + ζ2) depends on whether its argument is less than or

greater than r0, and we will obtain terms from the integration for each case.

For all s and ζ such that
√

s′2 + ζ2 ≤ r0, we have

u1(r) = −εLJ, ζ ∈ [−r0, r0], and s′2 ≤ r2
0 − ζ2. (F.7)

Thus ∀(s′, ζ) :
√

s′2 + ζ2 ≤ r0,

φLJ
R (z) = −2πεLJ

∫ r0

−r0

dζ

∫
√

r2
0
−ζ2

0

ρR(z + ζ)s′ds′ (F.8)

= −πεlj
∫ r0

−r0

dζ ρR(z + ζ)
[
r2
0 − ζ2

]
(F.9)

φLJ
R (z) = −πεLJ

∫ r0

0

dζ (ρR(z + ζ) + ρR(z − ζ)) ·
[
r2
0 − ζ2

]
. (F.10)

For all s and ζ such that
√

s′2 + ζ2 > r0, we have

u1(r) = uLJ(r) and ζ ∈ (−∞,∞). (F.11)

The magnitude of ζ also has implications for the range of s′, namely,

s′ ∈







[0,∞) if |ζ| ≥ r0,

[√

r2
0 − ζ2,∞

)

if |ζ| < r0.

(F.12)
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Thus ∀(s′, ζ) :
√

s′2 + ζ2 > r0,

φLJ
R (z) = 2π

∫ −r0

−∞
dζ ρR(z + ζ)

∫ ∞

0

uLJ

(√

s′2 + ζ2
)

s′ds′

+ 2π

∫ ∞

r0

dζ ρR(z + ζ)

∫ ∞

0

uLJ

(√

s′2 + ζ2
)

s′ds′

+ 2π

∫ r0

−r0

dζ ρR(z + ζ)

∫ ∞

√
r2
0
−ζ2

uLJ

(√

s′2 + ζ2
)

s′ds′ (F.13)

= 2π

∫ ∞

r0

dζ (ρR(z + ζ) + ρR(z − ζ))

∫ ∞

0

uLJ

(√

s′2 + ζ2
)

s′ds′

+ 2π

∫ r0

0

dζ (ρR(z + ζ) + ρR(z − ζ))

∫ ∞

√
r2
0
−ζ2

uLJ

(√

s′2 + ζ2
)

s′ds′.

(F.14)

In order to simplify this formula for φLJ
R we may analytically evaluate

∫ ∞

a

uLJ

(√

s2 + ζ2
)

s ds = 4εLJ

∫ ∞

a

(
σ12

LJ

(s2 + ζ2)6
− σ6

LJ

(s2 + ζ2)3

)

s ds. (F.15)

By defining R = s2 + ζ2 and therefore dR = 2s ds, we may reexpress this as

∫ ∞

a

uLJ

(√

s2 + ζ2
)

s ds = 2εLJ

∫ ∞

a2+ζ2

(
σ12

LJ

R6
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Thus ∀(s′, ζ) :
√

s′2 + ζ2 > r0, we may simplify

φLJ
R (z) = 4πεLJσ

2
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2
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(F.19)
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Finally combining the terms for all s′ and ζ up to a constant, we find

φLJ
R (z) = C − πεLJ
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(F.20)

Resubstituting z′ − z for ζ, we have

φLJ
R (z) = −πεLJ
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[
z′2 − (z′ − z)2

]

+ 4πεLJσ
2
LJ

∫ ∞

r0+z

dz′ (ρR(z′) + ρR(2z − z′))

(

1

5

(
σLJ

z′ − z

)10

− 1

2

(
σLJ

z′ − z

)4
)

+ 4πεLJσ
2
LJ

(

1

5

(
σLJ

r0

)10

− 1

2

(
σLJ

r0

)4
)
∫ ∞

z

dz′ (ρR(z′) + ρR(2z − z′)) . (F.21)

The constant may be defined from the requirement that φLJ
R (z = 0) = 0. Numerically,

we implement this by choosing C so that φLJ
R (z = 0) = 0.
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