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One way to analyze the performance of a heuristic is to compute the worst-case ratio betweenthe cost of a solution produced by the algorithm to the cost of an optimal solution. If this ratio isbounded by �, we refer to this algorithm as an approximation algorithm with performance ratio �or simply as a �-approximation algorithm.k-Delivery Traveling Salesman Problem: Given n identical pegs placed at arbitrary loca-tions, a vehicle with a maximum capacity of k pegs, and n slots (demand points), each requiring apeg, the problem is to �nd a shortest tour for the vehicle in which all the pegs can be transported totheir slots without exceeding the capacity of the vehicle. This problem is referred to as k-deliveryTSP. It is a generalization of the traveling salesman problem (TSP), and is therefore NP-hard. Thedistances between the given points satis�es the triangle inequality since the vehicle can always takea shortest path between any two points. Replacing the distances between each pair of points bythe shortest-path distance between them ensures that the triangle inequality is satis�ed.Haimovich and Rinnooy Kan [17] studied a special case of this problem when all the pegs arelocated at one central depot, and are delivered with a vehicle of capacity k. They provided anapproximation algorithm that obtains a performance ratio of 3. For geometric graphs | graphsinduced by points in the plane with Euclidean distances as edge-weights, they provided a polyno-mial time approximation scheme for constant k. Christo�des [11] surveys various issues, includingproblem formulation and algorithms, related to the vehicle routing problem, where the vehiclesoriginate at a central depot. In STOC '97, Asano et al [6] gave a polynomial-time approximationscheme for the same special case in the geometric setting, when k is O(logn= log logn). Anily andHassin [2] demonstrated an algorithm that obtains a ratio of 2.5 for the 1-delivery TSP. The �rstconstant factor approximation algorithm for the general problem was given by Chalasani, Motwaniand Rao [10]. We will refer to their algorithm as the \CMR algorithm". They obtained an approx-imation ratio of 9.5. They also gave better algorithms for the cases k = 1 and k =1, that obtainratios of 2 in both cases. Independent of our work, Anily and Bramel [1] showed that a modi�cationof the CMR algorithm improves the approximation ratio to 7 � 3k (in fact, we show that one canobtain a better bound of 6:5 by modifying the CMR approach). They also gave another algorithmwith an approximation ratio of c(k) + 12 log2 k, where 2 � c(k) � 3.Our Results: We summarize the results presented in this paper below:� For the k-delivery TSP, we provide a natural approximation algorithm that runs in polynomialtime and show that its performance ratio is at most 5. Since the proof is complex, we �rstprove a simpler bound of 6.5; this proof contains some of the basic ideas.� For geometrical instances, such as points in the plane, the algorithms of Arora [4, 5] andMitchell [20]) can be used to obtain an (1 + �) approximation of the TSP, and this leads toan approximation factor of 4(1 + �) for these instances.� We also describe a simple algorithm that �nds a preemptive tour whose length is at most 5times the length of an optimal preemptive tour.Signi�cance of our work: We explain below how our algorithm fundamentally di�ers fromprevious algorithms and why it is likely to return far better solutions in practice than them. Theprevious methods for solving the general k-delivery TSP su�er from the following drawback. Theystart with two tours, one containing all the pegs (source nodes) and the other containing all theslots (delivery nodes). The basic idea is to traverse the cycle of pegs, collecting k pegs, then switchover to the other cycle and deliver the k pegs, repeating the process until all pegs are delivered.The delivery route thus alternates between the two cycles; it turns out that it is easy to analyze2



the cost of shuttling between the cycles in this scheme. Such a scheme su�ers from the drawbackthat the individual tours for the pegs and slots do not take advantage of the proximity of pegsand slots. In most instances, one can do better by alternating pickups and deliveries withoutwaiting for the vehicle to become either completely full or completely empty. We derive a naturalalgorithm that uses a single tour containing all points, combines pickups and deliveries arbitrarily,and takes \corrective" action only when the vehicle becomes either full or empty. The main hurdleis in proving a good analysis of this more natural scheme. Our analysis shows signi�cantly betterapproximation ratios for our algorithm than the previous algorithms. In addition, preliminaryexperimental studies show that our algorithm returns much better solutions.Note: We will assume that we can start the vehicle's tour at any location. If the starting pointis �xed, our method still applies with an additive factor of 1 in the approximation factors.Preemptive Tours: A fundamental issue is that of preemptive versus non-preemptive traver-sals. In a preemptive traversal, pegs may be dropped at intermediate locations; in other words, wemay pick up a peg and leave it at some location, and return later to collect it and deliver it. In anon-preemptive solution, we carry a peg from its source to its destination without ever unloading itfrom the vehicle at intermediate nodes. The nature of the problem and algorithms to �nd solutionscan change if drops are permitted.Fig. 1 shows an example in which the best preemptive tour is shorter than the best non-preemptive tour. The edges shown cost 1 unit each. A tour with a capacity-2 vehicle that leavesa peg at point A and delivers it later costs 8 units. If we are not allowed to drop a peg atintermediate locations, we incur a higher cost (regardless of where the tour starts), and an optimalnon-preemptive tour costs 10 units. This raises a very fundamental question | what is the worst-case ratio of the cost of an optimal non-preemptive tour to that of an optimal preemptive tour? Ourexample shows that the ratio is at least 54 .
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SlotsFigure 1: Example to show that intermediate drops help even for k = 2.We show that the ratio between the optimal non-preemptive and preemptive tours is at most 4,by showing that given a preemptive tour of length L, we can �nd a non-preemptive tour of lengthat most 4L. This theorem is proven by using a variety of di�erent ideas. One interesting method isa general technique for simulating a preemptive tour of a unit capacity vehicle by a non-preemptivetour, that travels the same distance (Lemma 2.7). We also develop many other methods that areneeded in showing that the constants are fairly small | one idea is to collect k2 pegs and to deliverthem, rather than waiting to collect k pegs.Related Work: A closely related problem is the stacker-crane problem. This problem toois that of making deliveries with a vehicle of capacity k. But, in the stacker-crane problem, theobjects are not identical and each object has a speci�c target destination. The goal is to �nd ashortest tour that performs the transportation. For the unit capacity case, Frederickson, Hecht and3



Kim [15] gave an algorithm with an approximation factor of 1.8. For the case when the underlyingmetric is a tree, Frederickson and Guan [13, 14] have given fast algorithms to compute optimalsolutions for the preemptive case, and fast approximation algorithms for the non-preemptive case(the problems are NP-hard even for trees). Knuth [19, Section 5.4.8] discusses Karp's work [18]on the problem for paths and trees. Fast algorithms were given by Atallah and Kosaraju [7] forthe cases in which the graph is either a simple cycle or path. The algorithms are slightly faster forthe cases when drops are permitted. Frederickson [12] showed improved running times for a cyclewhen no drops are allowed. The issue of tours under various types of restrictions has also beeninvestigated by Arkin, Hassin and Klein [3].Outline of the paper: In Section 2 we describe an approximation algorithm for the k-deliveryTSP that obtains an approximation ratio of 5. We �rst prove a simpler bound of 6.5 in Section 2,and then in Section 3, we provide a better analysis of our algorithm. We also show how to \convert"a preemptive tour to a non-preemptive tour. We prove that the total length of the non-preemptivetour obtained by our algorithm is at most 4 times the length of the preemptive tour. In Section 4,we describe a simple algorithm that �nds a preemptive tour whose length is at most 5 times thelength of an optimal preemptive tour.Notation: An optimal non-preemptive tour for the k-delivery TSP is denoted by Ck, and anoptimal preemptive tour is denoted by C0k. We will use Ck or C0k to denote the length of the touras well, and one can distinguish between the two meanings from the context.2. An approximation algorithm for k-delivery TSPIn this section, we provide an approximation algorithm and an analysis for its performance. Wealso show how to simulate a preemptive tour by a non-preemptive tour. In particular, we show thatC1 � kC 0k (Lemma 2.7). (This also shows the interesting result that C1 = C01; C2 � 2C02; C3 � 3C 03.)We prove the following theorems.Theorem 2.1: Consider an arbitrary instance of k-delivery TSP. There is a polynomial-time ap-proximation algorithm that �nds a non-preemptive tour whose length is at most 5 times the lengthof an optimal tour (possibly preemptive). In the special case when the points are speci�ed on theplane, and edge-costs are speci�ed by Euclidean distances, the approximation ratio can be improvedto 4(1 + �), for any constant � > 0.Theorem 2.2: The length of an optimal non-preemptive tour of a k-delivery TSP instance is atmost 4 times the length of an optimal preemptive tour, i.e., Ck � 4C 0k.2.1. Overview of the algorithmThe main idea is the following: �rst construct a tour of all the given points. Starting from someinitial vertex, we traverse the tour, picking up pegs, and delivering them to slots, on-line. In otherwords, when the vehicle passes through a node with a peg, it picks up the peg, and when it passesthrough a slot, it drops a peg there. We show that if the vehicle has unbounded capacity, then thereis always a starting point such that the vehicle can complete all deliveries without ever runningout of pegs. If the vehicle has bounded capacity k, the simple scheme outlined above does not4



work directly. We need to address the following two situations: (a) the vehicle is full when a pegis visited, and (b) the vehicle is empty when a slot is visited.In the following discussion, we assume that k is even. We will describe how to handle thecase when k is odd later. The performance ratio is at most 516 for odd k. We treat the vehicleas full when it has k=2 pegs on it, and the remaining capacity is used as a \bu�er". The touris broken up into segments of 3 kinds: (i) neutral segments with equal number of pegs and slots,(ii) positive segments that have k=2 more pegs than slots, and (iii) negative segments that havek=2 more slots than pegs. Neutral segments are processed as mentioned in the above scheme. Inmost practical situations, most parts of the tour constructed may be neutral segments, and in thiscase our algorithm would do very well since neutral segments are processed by traversing themonly once. By de�nition, there are as many positive segments as negative segments. We computea minimum-weight perfect matching between the positive and the negative segments. When thevehicle is passing through a positive segment on its tour, it delivers the excess pegs to the negativesegment to which the positive segment is matched.The main di�culty in analyzing such a scheme is that the cost of a matching between thepositive and the negative segments has to be bounded with respect to an optimal tour. Note thatthe matching does not include all nodes in the original problem and therefore it could possibly bearbitrarily expensive. Another complication is that the segments do not have the same number ofpoints on them. The techniques used in the previous results [1, 10] do not yield a bound on the costof such a matching. We show how to bound the cost of the matching with respect to an optimaltour, and use it to derive a better approximation bound. We now describe the algorithm in detail.2.2. The algorithm1. Construct a tour T that visits all the points.2. Fix a reference point P on the tour T .3. Traverse the tour T in some direction starting from P .4. Compute the excess function excess(e) for each edge e of T . excess(e) = pegs(e)�slots(e),where pegs(e) is the number of pegs encountered before e is traversed, and slots(e) is de�nedanalogously as the number of slots encountered before e.5. For each value of i 2 [0; k=2) do(a) Break the tour into pieces by removing all edges with excess(e) � i mod k=2. Callthese edges cut edges. Fig. 2 shows a sample tour and a plot of the excess function fora counterclockwise traversal of the tour (with k = 6 and i = 0).(b) We get p-pieces (positive pieces), n-pieces (negative pieces) and 0-pieces (zero or neutralpieces) as follows.� A p-piece is one where the excess function is x on the cut edge preceding the piece andx+k=2 on the cut edge following the piece; for all edges e in the piece, excess(e) 2(x; x+ k=2).� A n-piece is one where the excess function is x on the cut edge preceding the piece andx�k=2 on the cut edge following the piece; for all edges e in the piece, excess(e) 2(x� k=2; x). 5
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Figure 2: A tour and the excess function plotted for k = 6 and i = 0.� A 0-piece is one where the excess function is x on the cut edge preceding the piece andx on the cut edge following the piece; for all edges e in the piece, either excess(e) 2(x� k=2; x) (such a piece is called decreasing) or excess(e) 2 (x; x+ k=2) (such apiece is called increasing).(c) Compute a matching on the p- and n-pieces as follows:� Construct a weighted bipartite graph B = (V +; V �; E) on p- and n-pieces as follows:� There is one vertex in V + for each p-piece and one vertex in V � for each n-piece.For each p-piece u+ and each n-piece w�, the edge (u+; w�) has weight equal to theminimum-weight edge connecting a vertex in u+ and a vertex in w�.� Compute a minimum-weight perfect matchingM in the bipartite graphB. A p-pieceand a n-piece that are matched to each other are said to form a p=n-pair.(d) Now traverse the tour starting from any point in both clockwise and anticlockwise di-rections as follows: (Assume for now that we start each traversal at the beginning of apiece with exactly k=2 pegs. Lemma 2.3 shows how this assumption is unnecessary).� On encountering a 0-piece, we move along the piece picking up pegs and deliveringthem. Since we start with k=2 pegs, we can do this in a single traversal and reachthe end of the piece with k=2 pegs. Note that we leave the piece with k=2 pegs.� When we encounter the �rst piece of a p=n-pair, we service the pair as follows:suppose we encounter a p-piece P+ which is matched with n-piece P� by edgee 2M . Note that there must be an edge e0 corresponding to e, such that e0 connectssome vertex in P+ to some vertex in P�, and the weight of e0 is the same as that of e.Traverse P+, performing pickups and deliveries, until e0 is encountered. Now, moveto the beginning of P�, and traverse P� performing pickups and deliveries. Thenmove back to the point in P+ where we left o� and continue performing pickupsand deliveries. Note that after servicing a p=n-pair thus, we �nish with k=2 pegs.The case when the n-piece is encountered before the p-piece is handled similarly.� When we encounter the second piece of a p=n-pair, we simply traverse the piecewithout performing any pickups and deliveries (since it has already been serviced).6



(e) For both the tours (clockwise and anticlockwise) described above, �nd a valid startingpoint (i.e., a starting point such that we never run out of pegs and the number of pegscarried is at most k). Lemma 2.3 guarantees the existence of such a starting point.6. Return a shortest tour from amongst the k tours constructed (two for each i 2 [0; k=2)).2.3. Analysis: a weaker boundWe can prove an upper bound of 5 on the approximation ratio achieved by the above algorithm.Since the proof is complex, we prove a simpler bound of 6:5 that contains the basic ideas. In fact,for the simpler proof we can �x i = 0 in the above algorithm. To prove the better bound, we needto try all values of i. Section 3 contains the proof for the bound of 5. We also prove the relationshipbetween the tour generated by the algorithm and C0k (Theorem 2.2).Lemma 2.3: A valid starting point is guaranteed to exist in Step 5e of the algorithm.Proof: Suppose we started the tour constructed by the algorithm at the beginning of any piecewith a vehicle preloaded with k=2 pegs. Then the following invariant is maintained throughout thetour: The vehicle has exactly k=2 pegs when it traverses a cut edge from one piece to another. Wecan verify that the number of pegs carried by the vehicle always lies in the interval [0; k]. Thiswould be a valid tour except for the fact that we assumed that we started with k=2 pegs initially.Let n(e) be the number of pegs carried by the vehicle as it traverses edge e (beginning with k=2pegs). Consider the edge emin, where n(e) reaches its minimum value, say x (break ties arbitrarily).Suppose we start a new vehicle with no pegs from edge emin. Let n0(e) be the number of pegscarried by the new vehicle as it traverses edge e. It can be veri�ed that n0(e) = n(e) � x. By thechoice of emin, this ensures that the number of pegs carried by the vehicle always lies in the interval[0; k]. This proves the existence of a valid starting point for the tour and in fact, also gives a simplemethod to �nd such a starting point. 2Based on the above lemma, we can also show the following.Lemma 2.4: There is a polynomial-time approximation algorithm for the 1-delivery TSP (i.e.,the vehicle has in�nite capacity) with a performance ratio of 1.5. For geometric instances on theplane, the approximation ratio is 1 + �, for any � > 0.Proof: Let TOPT be a minimum length tour of all the points. Since C0k is a tour of the points,TOPT � C0k. The algorithm constructs a tour T of all the points. For the algorithm, we will assumethat an �-approximation of TSP tour is used, and therefore the weight of the tour is at most�TOPT � �C 0k. If Christo�des' algorithm is used, then � � 1:5. For geometric instances, such aspoints in the plane, the algorithms of Arora [4, 5] and Mitchell [20] can be used to obtain a (1+ �)approximation of the TSP tour. In this case, � = 1 + �, for any constant � > 0. Using the sameideas as in the above lemma we can show that there is always a valid starting point on this tour,such that we never run out of pegs. 2In Step 5c we �nd a matching M on the p- and n-pieces. We need to bound the weight of thematching M . We cannot bound the weight of the matching by the method used in [10] since thematching is not being found on a graph that involves all the pegs and slots. We use a di�erentapproach to bound the weight of the matching. 7



Let A be a minimum-weight perfect matching between pegs and slots, where a peg must bematched to a slot. We use A to denote the matching, and its weight. One can distinguish betweenthe two meanings from the context.2.3.1. Bounding the matching AThe following lemmas derive an upper bound on the ratio of the weight of matching A to the weightof an optimal preemptive solution. Even though there are other ways of proving this directly, theseproof methods also show how to \simulate" a preemptive solution with a non-preemptive solution.Our main goal is to prove the following theorem.Theorem 2.5: A � k2C0k.This theorem follows once we establish the following lemmas.Lemma 2.6 (Chalasani, Motwani and Rao [10]): A � 12C1.We now prove that a non-preemptive unit-capacity vehicle can simulate a preemptive capacity-kvehicle, with an increase of the length of the tour by a factor of k. One could attempt to provethis by walking around the cycle k times, but the problem is that we may attempt to pick up a pegthat is not yet \available".Lemma 2.7: C1 � k � C0k.Proof: Consider a tour C 0k which delivers pegs to slots and is allowed intermediate dropping points.We will show that we can convert this tour into one of length k � C0k where the pegs are carried toslots with no intermediate drops by a unit capacity vehicle. Assume the vehicle of capacity k startsat s and returns to s.We construct an auxiliary multigraph G = (V;E) from the tour as follows. The vertex set ofgraph is de�ned to be: V = fsg [ fxjx is an intermediate drop point gImagine that we store the pegs on numbered compartments in the vehicle. The numbers are1 : : :k. The tour starts from s and visits pegs/slots and intermediate drop points. We can view thetour as \segments" where it goes back and forth between the vertices of the graph we constructed(see Fig 3). We create k edges in G for each movement done by the vehicle between two verticesof G. Each edge corresponds to a numbered compartment. We associate with each such edge, thepegs which were placed into this compartment and the slots which were serviced by removing apeg from this compartment. Thus each edge is associated with an alternating sequence of pegs andslots. As the vehicle moves from vertex x to vertex y of G, each numbered compartment undergoesvarious changes:1. Lose a peg (leave x with a peg, arrive at y with no peg). The corresponding edge is associatedwith a peg/slot sequence of the form sps : : : ps. (Here p represents a peg and s a slot).8



2. Gain a peg (leave x with no peg, arrive at y with a peg). The corresponding edge is associatedwith a sequence of the form psp : : :sp.3. Move without carrying anything from x to y (we may load and unload pegs in this compart-ment during the motion). The corresponding edge is associated with a sequence of the formpsp : : :ps (possibly empty).4. Move carrying a peg from a vertex to another vertex (we may unload and load pegs in thiscompartment during the motion). The corresponding edge is associated with a sequence ofthe form sps : : : sp (possibly empty).Each edge corresponding to a compartment is a labeled edge in the multigraph. Type (1) edgesare labeled as � edges. Type (2) edges are labeled as + edges. We subdivide edges of type (3) bya vertex xy. The edge from x to xy gets the label + and the edge from xy to y is labeled as a �edge. We subdivide edges of type (4) by a vertex xy. The edge from x to xy gets the label � andthe edge from xy to y is labeled as a + edge. We can think of a + edge as being associated withan odd length alternating peg/slot sequence that begins and ends with a peg. Similarly, a � edgecan be thought of as being associated with an odd length alternating peg/slot sequence that beginsand ends with a slot.Lemma 2.8: For each vertex of the auxiliary multigraph G, the number of + labels incident to itis equal to the number of � labels incident to it.Proof: For each compartment, the contribution to the + and � label is the same. Consider avertex v that is a dropping point. The number of pegs that are carried to it are carried away.(Formally, each vertex v occurs a number of times on the tour. There are 4 cases (a) come with apeg, leave it here and go (+v+), (b) come with a peg, leave with a peg (+v�), (c) come with nopeg, go with no peg (�v+), (d) come with no peg, go with a peg (�v�). Number of case (a) and(d) are the same since (a) increases peg count and (d) decreases peg count.) 2In order to construct a solution that does not drop pegs at intermediate locations, we need toconstruct an alternating sequence of pegs and slots which visits every peg and every slot. Find anEuler tour that alternates using + and � edges in this multigraph. (When we enter a vertex on a+ edge we can leave on a � edge and vice-versa.) The Euler tour can be interpreted as a non-droptour solution for a vehicle with unit capacity. The unit capacity vehicle simply traverses the edgesin the order of the Euler tour. When we traverses a particular edge, we service the sequence of pegsand slots associated with that edge. The de�nition of + and � edges ensures that we encounterpegs and slots in an alternating fashion. This therefore gives a non-drop tour solution with unitcapacity. This completes the proof of Lemma 2.7. 2We illustrate this construction by an example in Figure 3. Suppose we are given the preemptivetour that starts at s, pick up a peg on path A and drop it o� at the �rst drop o� point. We thentake the loop marked B performing one delivery, come back to pick up the dropped o� peg andtake the loop marked C. We return with a peg, drop it o� at the same place, we then take the pathD, drop o� a second peg, come back to pick up the �rst peg on path E, deliver it on path F, pickup the second peg and take path G, returning to s.Corresponding to this traversal, we construct the auxiliary multigraph G. We have three verticesto begin with. Path A gains a peg and is marked +. Path B is a loop on which we leave withouta peg and return without a peg, we subdivide this edge and it is a +� edge. Path C is a loop on9



which we leave with a peg and return with a peg and so we subdivide it and mark it a �+ edge. In asimilar manner we �nish the construction of the multigraph. An Euler tour in this multigraph thatalternates between + and - edges is easy to �nd. This corresponds to a non-preemptive traversal.
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Figure 3: Illustrating construction of auxiliary multigraph G = (V;E) for a unit capacity vehicle.2.3.2. Bounding the matching MLet W be a matching (which we call a wiggly matching) that matches pegs to slots such that allpoints are matched except for some k=2 pegs in each p-piece and k=2 slots in each n-piece. We usethe wiggly matching to bound the cost of the matching M as follows:Lemma 2.9: M � 2k (A+W ) (1)Proof: Consider the symmetric di�erence of A andW . A is a perfect matching andW is a matchingwhere all the pegs and slots in the 0-pieces are matched, and in each p- (n-) piece, there are k2unmatched pegs (slots). The symmetric di�erence has even length cycles and paths. Since A is aperfect matching, the symmetric di�erence is a collection of disjoint augmenting paths (with respectto W ) that start and end with edges from A at vertices of degree 1 in the graph A [W . The onlyvertices having degree 1 are pegs in the p-pieces and slots in the n-pieces. Each augmenting pathwith respect to W has a peg at one end and a slot at the other end. This gives us paths frompegs to slots such that each p-piece has k=2 paths emerging from it and each n-piece has k=2 pathsending on it. This collection of paths can be decomposed into k=2 perfect matchings between p-and n-pieces(because the edges of a d-regular bipartite graph can be decomposed into d perfectmatchings [8]). It follows that the weight of the minimum weight perfect matching on the p- andn-pieces is at most the average weight of the k2 matchings we found. By triangle inequality, theweight of the symmetric di�erence is at most the sum of the weights of the matchings. This provesthe lemma. 2Recall that T is the tour of all the points constructed by the algorithm. Let T (�) be the totallength of the p=n-pieces and let T (0) be the total length of the 0-pieces. Let T (C) by the total lengthof the cut edges. Then T = T (�) + T (0) + T (C). 10



2.3.3. Bounding the matching WLemma 2.10: W � k2 �12T (�) + T (0)� (2)Proof: We will construct the wiggly matching separately for 0- and p=n-pieces. A 0-piece can betraversed in one of the two directions by a vehicle with no pegs initially such that pegs are pickedup and delivered without having to back up. Suppose this vehicle operates like a stack, pushingand popping pegs. For each j 2 [0; k=2), consider the pegs which were placed in location j of thisstack and the slots which were serviced by popping a peg from location j of this stack. This de�nesa path of the form psp : : : s where p stands for a peg and s stands for a slot. We match each pegon this path with the slot immediately following it. The total length of the matching edges is atmost the length of the path. But the length of the path is at most the length of the 0-piece. Sincewe construct k=2 paths, the total length of the matching within this 0-piece is at most k=2 timesthe length of the 0-piece.A p-piece can be traversed (in either direction) by a vehicle with no pegs initially such thatpegs are picked up and delivered without having to back up. The vehicle ends up with k=2 pegsat the end. Analogous to the construction for a 0-piece, we de�ne a path corresponding to eachlocation j of the stack. Each path is of the form psp : : :sp. Now we can match pegs with slotseither starting from the left or the right. In either case, one peg is left unmatched. We choose thelower cost matching amongst the two. The total cost of the two matchings is exactly the cost ofthe path. Thus the smaller of the two matchings costs at most half the length of the path. Againthe length of each path is at most the length of the p-piece. Since we construct k=2 paths, the totallength of the matching within this p-piece is at most k=4 times the length of the p-piece. A similarconstruction can be done for n-pieces. Hence the lemma follows. 2Theorem 2.5 bounds the weight of the matching A to be at most k2C 0k. Substituting into (1) forA from the theorem and for W from (2), we getM � C0k + 12T (�) + T (0) (3)2.3.4. Proof of Theorems 2.1 and 2.2.Note that in the two tours constructed by the algorithm, each 0-piece is traversed once and eachcut edge is traversed once. Also the �rst of each p=n-pair is traversed once while the second istraversed thrice. Averaging over the two traversals, we charge each p=n-piece twice. Each edge inM is traversed twice.Hence the average length of the two tours constructed is at most2M + T (0) + 2T (�) + T (C) � 2C 0k + 3T (0)+ 3T (�) + T (C)� 2C 0k + 3T� 2C 0k + 3�C0k = (2 + 3�)C 0k11



Since � � 1:5, we obtain a worst case approximation ratio of 6:5. We can also view this as aconstructive proof bounding the ratio of Ck to C0k. In that case � = 1 and we obtain an upperbound of 5 on the ratio. In Section 3 we show a bound of (2 + (2� 4k2 )�)C0k. Using this improvedbound, we get an approximation ratio of 5, and we can bound the ratio of Ck to C0k by 4. Also, forgeometric instances (consisting of points in the plane with Euclidean distances), using an (1 + �)-optimal tour [4, 5, 20] in the �rst step of the algorithm, we obtain a ratio of 4(1 + �). 2If we are given a �xed starting point q, we obtain a tour that starts and ends at q as follows.We apply the algorithm as usual. Suppose this constructs a tour that starts and ends at q0, whichis a peg without loss of generality. We �rst move from q to q0, traverse the tour constructed bythe algorithm and on reaching q0 again, move back to q. We pay an additional cost of twice thedistance between q and q0, which is at most the cost of the optimal tour, since the optimal tourincludes 2 paths between q to q0. This adds 1 to our approximation ratios.3. A better analysisNotice that the previous analysis did not use the fact that we try di�erent break-points and averageover them. We now present a better analysis that builds on the basic ideas from Section 2.3 toshow that the average tour length for the k tours constructed is actually at most (2+(2� 4k2 )�)C0k.Examining the proof of Lemma 2.10, we observe that the proof constructs k=2 paths within eachpiece of the tour. The contribution to the total length of the �nal tour is the average path-lengthin the p=n-pieces plus twice the average path-length in the 0-pieces. Here, \average" refers to theaverage length of the k=2 paths. The earlier proof bounded each path-length by the length of theentire piece. We will improve the analysis by getting better estimates for the average path-lengthsby averaging over all values of i used to de�ne the cut edges of the tour.For a node v (peg or slot) in the tour T , de�ne before(v) to be the edge preceding v in T andafter(v) to be the edge following v in T .It will be useful to identify the paths constructed by the proof of Lemma 2.10 with the valuesof the excess function on edges within a piece. In the following discussion, we �x a value of i usedto de�ne the cut-edges. For a given i, for every integer j 2 [0; k=2), we construct a path in eachpiece based on the values of the excess function as follows. An edge e is said to be a j-edge ifexcess(e) � j (mod k=2).For a p=n-piece, the path consists of the pegs p such that before(p) is a j-edge and the slots ssuch that after(s) is a j-edge. For a 0-piece, we de�ne the paths di�erently depending on whetherthe piece is increasing or decreasing. For a increasing 0-piece, the path consists of the pegs p suchthat after(p) is a j-edge and the slots s such that before(s) is a j-edge. For a decreasing 0-piece,the path consists of the slots s such that after(s) is a j-edge and the pegs p such that before(p) isa j-edge. See Figure 4 for an illustration of this de�nition of paths. Observe that by this de�nition,for all cases, the path for j = i always has zero length. For a p-piece, it consists of a single peg.For a n-piece, it consists of a single slot. For a 0-piece, the path for j = i is empty. The readercan verify that the paths constructed by this de�nition are identical to the paths constructed inthe proof of Lemma 2.10.Let l(�)ij be the total length of the paths corresponding to j (by the above correspondence)within the p=n-pieces when i is used to de�ne the cut edges. We de�ne l(0)ij similarly for the pathswithin the 0-pieces. 12
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Figure 4: Illustrating the de�nition of paths in terms of the excess functionCall an edge e in a piece j-sandwiched if e is not a j-edge and there is some j-edge before e andsome j edge after e in the piece (the j-edges need not be immediately before and after e). Notethat the property of being a j-edge is independent of the value of i; however, the property of beinga j-sandwiched edge depends on the value of i used to de�ne the cut-edges. In any piece, the pathcorresponding to j (described above) consists of j-sandwiched edges and j-edges Thus the length ofthis path is bounded by the sum of the total length of the j-sandwiched edges and the total lengthof the j-edges in the piece.Let p(�)ij be the total length of the j-sandwiched edges within the p=n-pieces when i is used tode�ne the cut edges. We de�ne p(0)ij similarly for the the 0-pieces. Let q(�)ij be the total length ofthe j-edges within the p=n-pieces when i is used to de�ne the cut edges. We de�ne q(0)ij similarlyfor the 0-pieces. By the above de�nitions, we havel(�)ij � p(�)ij + q(�)ijl(0)ij � p(0)ij + q(0)ijAlso, when i is used to de�ne the cut edges, let T (�)i be the total length of the p=n-pieces, letT (0)i be the total length of the 0-pieces and let T (C)i be the total length of the cut edges.Note that Xj 6=i q(�)ij = T (�)iXj 6=i q(0)ij = T (0)i13



Now, the analysis of the previous section bounded the average length of the two tours producedwhen a particular value of i is used to de�ne the cut edges. In terms of the notation introduced,this bound can be written as4kA+ 2k Xj 6=i l(�)ij + 4k Xj 6=i l(0)ij + 2T (�)i + T (0)i + T (C)i� 2C0k + 2kXj 6=i �p(�)ij + q(�)ij �+ 4k Xj 6=i �p(0)ij + q(0)ij �+ 2T (�)i + T (0)i + T (C)i= 2C0k + 2kXj 6=i p(�)ij + 4k Xj 6=i p(0)ij + �2 + 2k�T (�)i + �1 + 4k�T (0)i + T (C)iLet L be the length of the constructed tour averaged over all the k=2 values of i. Summing up theabove bound over all values of i, we getk2L � kC0k + 2kXi Xj 6=i p(�)ij| {z }S1 +4k Xi Xj 6=i p(0)ij| {z }S2 +�2 + 2k�Xi T (�)i| {z }S3 +�1 + 4k�Xi T (0)i| {z }S4 +Xi T (C)i| {z }S5 (4)We will compute a bound for sum of the last �ve terms of the right hand side of (4) in termsof T .Consider a particular edge e of the tour. Let us calculate its contribution to the various termsin (4). Suppose e is an r-edge. For each value of i 2 [0; k=2); i 6= r we scan to the left and rightof e for the closest i-edges before and after e. Let Ai be the portion of the path between (and notincluding) these two i-edges. When i is chosen to de�ne the cut edges of the tour, Ai is a (p=n or0) piece. Accordingly, we label the segment Ai as p=n or 0. Note that we use the term segmentas opposed to piece, as a segment Ai may or may not be a piece depending on the value used tode�ne the cut edges.Edge e contributes to l(�)ij i� Ai is a p=n segment and e is j-sandwiched within Ai, i.e., i� Ajis completely contained within Ai. The edge e contributes to l(0)ij i� Ai is a 0-segment and e isj-sandwiched within Ai, i.e., i� Aj is completely contained within Ai. The edge e contributes toT (�)i i� Ai is a p=n segment and contributes to T (0)i i� Ai is a 0-segment. It contributes to T (C)i i�i = r.Claim: If Ai is a p=n segment, it cannot be contained in any other segment Aj (j 6= i).Proof: Since Ai is a p=n segment, the excess function changes by k=2 from one end to the other.Hence there must be some point within it where the excess function is j mod k=2. Hence one ofthe end points of Aj must be within Ai, proving the claim. 2Suppose x of the segments Ai are 0-segments and (k2 � x � 1) of them are p=n segments. Letus calculate the number of times edge e is counted in the various terms in (4).The contribution to S1 is the number of pairs (Aj ; Ai) such that Aj is contained in Ai and Aiis a p=n segment. By the above claim, Aj must be a 0-segment. Thus the number of such pairsis at most x(k2 � x � 1). The contribution to S2 is the number of pairs (Aj ; Ai) such that Aj iscontained in Ai and Ai is a 0-segment. By the above claim, Aj must be a 0-segment. Note thatif Aj is contained in Ai then Ai is not contained in Aj . Thus the number of such pairs is at most14



x(x�1)2 . The contribution to S3 is k2 � x � 1. The contribution to S4 is x. The contribution to S5is 1.Thus the contribution of edge e to the sum of the last �ve terms in (4) is at most2kx�k2 � x� 1�+ 4k x(x� 1)2 + �2 + 2k��k2 � x� 1�+ �1 + 4k�x+ 1= k � 2k � 2xk � k � 2kHence the sum of the last �ve terms in (4) is at most (k� 2k )T . Using this bound in (4), we getk2L � kC 0k + �k � 2k�Tand hence L � 2C0k + �2� 4k2�T� 2C0k + �2� 4k2��C0kSince � = 1:5, we obtain a 5 � 6k2 approximation algorithm. As before, we can also view this asa constructive proof bounding the ratio of Ck to C0k. In that case � = 1 and we obtain an upperbound of 4� 4k2 on the ratio.3.1. Odd values of kWhen k > 1 is odd, we can use our algorithm using k�1 as the capacity of the vehicle. Theorem 2.5and Lemmas 2.6 and 2.7 are true for all values of k, independent of its parity. In Lemmas 2.9and 2.10, k should be replaced by k � 1. If the proof is repeated with these modi�cations, theperformance ratio increases by an additive term of 2k�1 . The performance ratio in this case is atmost 5� 6(k�1)2 + 2k�1 � 5:1667.4. A preemptive algorithmIn this section we describe a simple strategy that also achieves an approximation factor of 5 for thepreemptive k-delivery TSP. Our algorithm outputs a preemptive solution (i.e., may drop pegs atintermediate locations during the course of the algorithm), and the length traveled by the vehicleis compared to the length of an optimal preemptive solution.This algorithm is a modi�cation of the strategy given by Chalasani, Motwani and Rao [10].4.1. The CMR AlgorithmWe �rst review the algorithm given by Chalasani, Motwani and Rao [10] for this problem. Wethen show that a modi�cation of the algorithm improves the approximation ratio to 6:5 withoutpreemption, and 5 with preemption. We will assume for simplicity that n is a multiple of k, andthat k is even. The former assumption can be made to hold by adding at most k � 1 dummypeg/slot pairs. 15



1. Find tours (of almost minimum weight) Tp and Ts of the pegs and slots points respectively.(This step could be implemented using Christo�des' heuristic for the TSP.)2. Break Tp and Ts into paths containing k vertices each, by deleting every k'th edge from eachcycle.3. View each k-path as a \super-node," and construct an auxiliary complete bipartite graphwhich has one vertex for each of the super-nodes in Tp and Ts. The weight of an edge in thisbipartite graph is the shortest distance between a pair of points belonging to the respectivesuper-nodes.4. Find a minimum-weight perfect matching M in this bipartite graph.5. Traverse the tour Tp and at the end of each segment use the matching M to transport the kpegs to the corresponding delivery point (super-node) in Ts.The total length of such a tour is shown to be at most 3Tp + 2Ts + 2M � 4:5Ck + 3Ck + 2kA.As shown in [10], A � kCk. Using Christo�des' approximation for the TSP, Tp and Ts are at most1:5Ck. The approximation ratio obtained is therefore at most 9:5. For geometrical instances, suchas points in the plane, the algorithms of Arora [4, 5] and Mitchell [20]) can be used to obtain an(1+�) approximation of the TSP, and this leads to better approximation factors for these instances.Theorem 2.5 shows that A � k2C0k. Since C 0k � Ck, we also have A � k2Ck. Using this improvedupper bound on the weight of A, the approximation ratio of the algorithm improves from 9:5 to8:5. A small change to the algorithm improves it further to an approximation factor of 7 as follows.We can traverse Tp in two ways. A clockwise traversal and an anticlockwise traversal gives us twotours whose total length is at most 4Tp+4Ts+4M � 12Ck+4(Ck2 ). The smaller of these two tourshas length at most the average of these two tour lengths, which is 7Ck.Figure 5 illustrates why each segment of the tour Tp is charged at most 4 times by the twotours. Observe that each segment of Tp is traversed once in one of the tours and thrice in the othertour.4.2. An improved non-preemptive algorithmWe now present an improved algorithm that obtains an approximation ratio of 6.5.1. Find tours Tp and Ts as before.2. Break Tp and Ts into paths containing k=2 vertices each.3. View each segment of Tp and Ts as a super-node and construct the auxiliary bipartite graphas before.4. Find a minimum-weight perfect matching M in this auxiliary graph. Mark the segments ofTp sequentially as B1; B2; : : : around the cycle. Each edge in M matches a segment in Tp toa segment in Ts. Let the segment matched to Bi; i = 1; 2; : : : be called Ri, and let Mi be theedge of M connecting Bi and Mi. 16
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Slots

Edge in M

Clockwise Tour

Anticlockwise TourFigure 5: Two tours in Tp.5. The delivery schedule is as follows. Assume that the vehicle starts at the beginning of segmentB1 with k=2 pegs, and proceeds along Tp, picking the pegs in its path. For i = 1; 2; : : :, whenit reaches the vertex in Bi incident to the matched edge (Mi) in M , it travels across this edge,and delivers to Ri the pegs that were collected from Bi�1 (when i = 1 we deliver the pegs westarted with). After delivering the pegs, it retraces back on Mi and continues along Tp.6. Finally, when the vehicle returns to the starting location, it is carrying k=2 pegs. Lemma 2.3guarantees that there exists a valid starting point on this traversal, such that the vehiclenever run out of pegs or exceeds its carrying capacity.The algorithm above generates a valid vehicle routing without violating the capacity constraintsof the vehicle due to the following reason. When it is on a segment of Bi that precedes Mi on Tp, itis carrying k=2 pegs from Bi�1 and the other pegs that have been collected from Bi. Since Bi hasat most k=2 pegs, the total number of pegs that it is carrying does not exceed k. On reaching Mi,the vehicle goes to Ri and delivers the k=2 pegs that were collected from Bi�1. Therefore when itreturns to Bi and resumes its journey, it reaches the end of Bi with k=2 pegs that were on Bi.The reason that the algorithm gives a better approximation ratio is as follows. Observe thatthe algorithm goes around Tp only once (except for segment B1) instead of twice. This decreasesthe length traveled. But, the cost of M is now more since there are twice as many segments asbefore in each of Ts and Tp (because the segments have only k=2 vertices each).Extending the analysis from the previous algorithm, we get M � C 0k. The vehicle traverses Tponce, Ts twice and M twice. We get the following result: the distance traveled by the vehicle inthe scheme devised by the above algorithm is at most Tp + 2Ts + 2M+ � 6:5Ck. Therefore theapproximation ratio is at most 6:5. 17
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