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Chapter 1lintroduction

Magnetic resonance imaging (MRI) has been widely usedramiavasive clinical
and research modality for the study of human anatomy. However, sulpécin
during scanning remains a severe problem and may degrade quality below
levels acceptable for clinical diagnosis. Recent improvementyigidt high spatial
resolution MRI of the brain (~ 0.2 mm) make this problem more adat fr this
application the tolerance to motion is reduced, and scan time eagext. The latter
makes it more difficult for the subject to maintain the sametipasihroughout the
scan, which is especially problematic for children and patients.

To compensate the effects of head motion during data acquisition banein-
optical motion tracking system is proposed. The system comprisesrdn® MR
compatible infrared cameras that are fixed on a holder right abravén front of the
head coil. The resulting close proximity of the camera(sheoobject allows precise
tracking of its movement. During image acquisition, the MRI scamuses this
tracking information to prospectively compensate for head motion hystaudy
gradient field direction and RF phase and frequency. Experimentsriped on
subjects demonstrate the system was able to improve MR imaljy duanotion

occurred during acquisition.



Chapter 2Review of Literature

Magnetic resonance imaging (MRI) has been widely usedramiavasive clinical
and research modality for the study of human anatomy. It exgheitshenomenon of
nuclear magnetic resonance (NMR) in an external magneiit, fivhereby nuclei
absorb and re-emit certain radio frequency (RF) waves duringgehamuclear spin
state. Image formation using NMR signals was developedLdyterbur and
Mansfield (Lauterbur, 1973; Mansfield and Grannell, 1973) in 1973 based oal spati
encoding principles, which won them the 2003 Nobel Prize in Physiolagy a
Medicine. Since then, MRI has undergone dramatic improvementstiredtatures
that define image quality, such as resolution, signal-to-noise (@NR), contrast
enhancemant and speed. Specific structures, such as artermss, l@giite matter

fiber tracts, can also be visualized by manipulating RF fields and |@gaietic field.

2.1 Principles of Magnetic Resonance Imaging

2.1.1 Nuclear Magnetic Resonance Signal
The nucleus is composed of protons and neutrons, each of which intlynsical
possesses angular momentum often called spin (Liang et al., 2000; Gerlach and
Stern, 1924). Nuclei with an odd number of protons and/or an odd number of
neutrons have a net spin. Because the nucleus is positively charggdssedses
angular momentum, it possesses a magnetic mofmaiso (Rabi et al., 1938). The

relationship between the spin angular momentum and magnetic moment is



p=yJ [2.1]

Where y is the gyromagnetic ratio. A related constgntis also widely used, which

is defined as
V4
-7 2.2
” 2 [2.2]

The value ofy or ¥ is nucleus-dependent. For hydrogen (protgn)s 2.675<10°
rad/s/T,¥ is 42.58MHz/T. Because of its high concentration in the body in \aater

fat molecules, and their relatively high gyromagnetic ratiohgrdrogen proton is the
source of signal for most clinical MRI exams.
In the absence of an externally applied magnetic field, theoggdrspins in

biological materials have random orientations, therefore the vettor of the
magnetic moments, often referred to as net magnetization, denotiith bis zero.

However, if an external magnetic fielBo is applied, the spins will take only a

discrete number of orientations, which equals to twice the nuclearvgpie plus

one. For protons with a spin of 14;, has two possible orientations with respect to

§o direction.

Since spins in different orientations have different energy ofaaten with

the external magnetic fieldo, two energy states can be measured for protons, a

high- and a low-energy state. The high-energy state is whenssgligned opposing
Bo, or spin-downE , while the low-energy state is when spin is aligned \Bith or
spin-up E,. At equilibrium, the relative populations of the up and down states are

given by the Boltzmann distribution as:



N
N _ ex;{_ _’*‘Boj <1 B 2.3]
N, KT KT

Where his Planck’s constant with the value=1.0546<10°%%.s;k is Boltzmann's
constant, with the valu&=1.381x102%J/K; T is the absolute temperature of the
sample in Kelvin.

Since the net magnetizatidﬁo is the vector sum of the individual magnetic
moments, the excess of spins in the spin-up state resultsﬁoaaligned with the
external fieldBy. To measure MRI signal by the RF receiver ctll, needs to be
tipped away from the longitudinal directioBy(direction) to the transverse plane
(orthogonal tdBy). This can be achieved by applying a radiofrequency (RF) pulse at
the Larmor frequency,

w, =B, [2.4]

The RF pulse is normally turned on for a few microseconds orseatinds.

The created B magnetic field makes the spins to precess, As a result, the ne

magnetization is tipped away fromy Blirection, creating a measurable transverse

componentﬁxy.
e : . . @BO . .
At equilibrium, the fractional population differen - is very small, which

is about 1 in 100,000 nuclei at 1.5T. Because the population differesoesimall,

the equilibrium net magnetizatidﬁo is also small, making the measured MR signal

—_—

M« small. Therefore, to get a better signal-to-noise ratid})Shhage, a strongds

is desirable.



2.1.2 Spatial Localization for Imaging
A basic example of spatial localization is selective e@xich and Fourier spatial
encoding. To form an image, the first step is to localize tipeats by exciting the
magnetization only within a specified slice or slab of body r{Bin et al., 2004,
Lauterbur, 1973; Mansfield and Grannell, 1973). This slice selectiothisvad by
applying the RF pulse in the presence of a magnetic field gita@ieAs given by the
Larmor equation, the precession frequency is proportional to the frelagth. The
gradient therefore creates a variation in the Larmor freqyualong the direction of

the gradient. So, as shown in Figure 2-1, the RF pulse with a speeduencyw,
excites only spins at a specific positigrbecause only those spins possess a resonant

frequency that equals to the frequency of the applied RF pulseséiéetion of
another slice can be accomplished by changing the RF frequemcgxdmple in
Figure 2-1, increasing the RF frequency will excite aesicore superior while
decreasing the RF frequency will select a slice moreiarfeThe thickness of the
slice is determined by the bandwidth of the RF pulse and the ampbiutiee

gradient, as:

Ao

G,

Az [2.5]

Where Az is the slice thicknes$;; is the applied gradient field strength and is

the bandwidth of the RF pulse.
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Figure 2-1 Slice selection. Activating a given agnetic-field gradient creates a linear
correspondence between the magnetic-field strengind the position along the gradient. An RF

pulse with center frequency @, excites spins located at positiorZ, ; the bandwidth of Aw and
the gradient strength determine the slice thicknesdz.

After the slice selection gradient is turned off, a phaseding gradient®,)
can be implemented. The magnetization accumulates a y-dep@hdeeat when the

y-gradient is kept on for a time, :

¢, =157,y [2.6]

The encoded phase can be written in terms of the k-space $mafieency (Twieg,

1983) in y direction:

¢, =27k, y with k, =4G 7, [2.7]
The gradientG, varies each time after excitation in a step-like fashion, t

gather enough information for localizing the spin densitydirection.



The frequency encoding gradiggt is applied afteGy. A negative dephasing
lobe is followed by a positive lobe, during which an echo of the magtietn is
formed and the signal is measured. The accumulated x-dependent phase is:

@, =Gt X=27K X with k, =G t, [2.8]
The gradientG, is a constant, and the tintgis a variable along the measurement

period.

These spatial encoding events can be depicted in a graphivat faalled a
pulse sequence. Figure 2-2 shows the basic gradient echo (GREN&2glescribed

above.

RE - 14
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Figure 2-2 Sequence diagram for a 2D gradient Bo imaging sequence. RF pulse is a sinc
function. G, is the slice selection z-gradient, is the phase encoding y-gradient, pictured as a
series of horizontal lines to denote that it is bag stepped regularly through increasing values
during different repetition periods. G, is the frequency encoding x-gradient ané is the
measured echo signal.

The spin densityp(x,y,z, )and the measured signa(k,,k,) satisfy the

following equation:



s(k,.k,) = [[ p(x. . z) expti2z (k,x+ k, y))dxdy [2.9]

fov
Therefore, sufficient k-space coverage is needed to reconteushage of the spin

density with inverse 2D Fourier transform,

(XY, 2,) = j j s(k, k,) expi2z (k,x+k, y))dkdk, [2.10]

The k-space trajectory of the GRE imaging sequencdusrated in Figure

2-3. The initial phase i&, =k, =0 after each slice selection, corresponding to the

center of the k-space. A phase encoding gradient moves the k-sppory
vertically to ak, depending on the curre@®, (red vertical line). The dephasing lobe
of the frequency encoding gradient transverses the trajectarphtally toky min(red
horizontal line). The positive read gradient then brings the spikgqte with signal
being measured (red arrows). This gives one line in k-spaciesexperiment is

repeated by stepped changf@gto obtain a complete set of data (black arrows).
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Figure 2-3  k-space trajectory for 2D gradient elgo imaging sequence. The signal starts from
k«=k,=0 after each slice selection rephasing lobe. Phaesecoding gradient moves the k-space
trajectory vertically to a k, depending on the currentG, (red vertical line). The dephasing lobe of
G, transverses the trajectory horizontally tok, i, (red horizontal line). The reversed read
gradient then brings the spins tdk, max through a complete set ok, values (red arrows). The
experiment is repeated by changings, to obtain a complete set of data (black arrows).

The MR signal is collected by uniformly sampling points inkkspace rather

than by continuous monitoring, leading to discrete k-space coverage.

M-1IN-1

sk, k) = 3.3 p(MAX, nAy) exp— i 2z (maxk, + nayk,)) [2.11]

m=0 n=0
WhereM andN are the number of sampled k-space data points in x and y direction;

Axand Ay are the pixel size. Therefore, the image of the spin dessitin be

reconstructed from the discrete inverse Fourier transform of the k-space dat



The total scan time required for 2D GRE acquisition is desdriby the
following equation:

Toeq = TRXM x NEX [2.12]

WhereTR equals the repetition time amNEX equals the number of repetitions used
(signal averaging). For a scan willR 1s, phase encoding 256, aN&X 2, the total
scan time is about 5 minutes. A higher resolution scan using much phase
encoding can prolong the scan time even more. Fast imagitggstsaare therefore

developed.

2.1.3 Fast Imaging — Echo Planar Imaging
The first ultra high-speed imaging technique was proposed by Mihah 1977
(Mansfield, 1977), named Echo Planar Imaging (EPI). Since thamusaEPI
techniques have been proposed.

EPI encodes complete image position information in a single acguisite
rather than phase encoding a single line of k-space with efRemtérval. Therefore,
with a single excitation, an image can be formed. A GRE-E&uence is shown in
Figure 2-4(a). Phase encoding of individual gradient echoes is thtbagise of a
series of blippedsy pulses. Figure 2-4(b) illustrates the k-space trajectotheoEPI

sequence.
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Figure 2-4 (a) An EPI sequence with blipped phasencoding gradient. (b) K-space trajectory
for the corresponding EPI sequence.

Because of the longer readout, EPI suffers more than GRE froousdyipes
of artifacts. In regions of high field inhomogeneities or at fates between tissues
of different susceptibilities, image distortions or signal drop-@ut lbe generated.
The odd and even echoes shown in Figure 2-4(b) may have slight tinsmgiches
caused by imperfections in the gradients, which translate intoe phaers and

manifest themselves as duplicate images of the main image along the plas®dire

2.2 Motion Artifacts

2.2.1 Origin of motion artifacts
For a slow high resolution structural scan, the head motion of abopetive
volunteer causes motion artifacts primarily in the phase-encadimegtion. The
frequency encoding direction is less affected since the k-sf@aecorresponding to
the readout direction are collected over a relatively short periadef milliseconds

or less, and can be regarded as instantaneous on the timefscalst @hysiologic

11



motion. However, in the phase encoding direction, the positions are enopded
step-wise changing magnetic field gradient prior to the acouisif each line of k-
space. Therefore, the time interval between neighboring two poiptsase encoding
direction is TR, which ranges from tens of milliseconds or several secondararut
be regarded as instantaneous. The motion will cause additional plifésedosthe
spins from line to line, which will corrupt the spatial encoding ang gise to
ghosting.

Head motion is usually random motion, which makes the artifacts stheat

along the phase encoding direction and can obscure pathology (Figure 2-5).

Figure 2-5 An axial brain image exhibits ghostig due to head motion. Since the movement is
random, the ghosts are smeared out along the phasacoding direction (left/right).

Recent improvements that yield high spatial resolution MRI of the ki
0.2 mm, Figure 2-6) make this problem more acute, since for thigatpm the
tolerance to motion is reduced, and scan time is increased @usin, 2007; van

Gelderen et al., 2007). The latter makes it more difficult ier gubject to maintain

12



the same position throughout the scan, which is especially probleimatbildren

and patients.

Figure 2-6 A high resolution T2* weighted GRE bain image. The resolution is 208 200x 1000
micrometer, and the scan time is about 5 minutes.

2.2.2 Correction for Motion Artifacts
Several methods have been proposed to solve the head movement probl&h in M
All model head movement as rigid body motion with six degreessetibom (DOF),
namely three rotations and three translations along the MRI co@diystem. These
parameters are then used to either retrospectively or prosggcdmpensate for the
effects of motion on the image data.

Retrospective motion correction addresses motion artifacts dlter
acquisition of a complete set of raw image data. While thistigrk well for in-
plane motion, it is generally inadequate for through-plane motiomapty because

it cannot correct for the effects of this motion on the localmaggation history (i.e.
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changes in saturation level of longitudinal magnetization due to miotiiced
changes in the image-slice location). To avoid this problem progeegtotion
correction technigues have been proposed recently (Lee et al., 1998;dLed @96;
Thesen et al., 2000; van der Kouwe et al., 2006; Ward et al., 2000). Theyhiack
head motion and rectify the acquisition planes correspondingly, by adjgsadient
direction and RF phases and frequencies. This avoids problems telétedeffects
of motion on spin history.

The object motion parameters used by prospective and retrospective
correction methods can be derived from MRI data using image oratavigased
methods. Image based methods use image registration algorithntsdiotide motion
parameters (Friston et al., 1995; Friston et al., 1996; Jenkinsan22G2; Thesen et
al., 2000). These techniques, while straightforward, can only calculatienafter
acquiring a volume and are therefore always lagging the motiso, Ahy ghosting
and blurring artifacts that motion may cause may affect thmuracy of the
registration algorithms.

Navigator based motion correction methods acquire a motion-sensitive
reference signal with the image (Ehman and Felmlee, 1989;dt £995; Lee et al.,
1998; Lee et al., 1996; van der Kouwe et al., 2006; Barnwell et al., R@@ah et
al., 2004). The earliest navigator method was capable of detecting ocoely
dimensional (1D) translation (Ehman and Felmlee, 1989) by employiregjaency
encoding gradient but no phase encoding gradient before image acquisitton. S
after, orbital navigators (Fu et al., 1995; Ward et al., 2000), spheraadators

(Welch et al., 2002; Wyatt et al., 2005; Petrie et al., 2005), cloveréadators (van
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der Kouwe et al., 2006) and other navigators (Spuentrup et al., 2002; Thiel et
2002) (Wang et al., 2005; Pipe et al., 2002)were proposed to allow &kingeof 3D
motion. However, the extra time required for measuring the navigatwes led to

an increased scan time.

Bo* e TE1 e TE2
MAY IMAGE

. A

©

Figure 2-7 Navigator sequence and its applicatiofor motion correction. (a) X-NAV sequence
for x-axis displacement measurement. The NAV echa interleaved into the imaging sequence
and is similar to an image echo, except that no pea encoding is applied. (b) A transverse section
of the legs of a volunteer. Left leg moved from s@to side while the right leg stayed stationary.
The artifact caused by the left leg motion was markd with the arrow. (¢) The X-NAV data
obtained during the scan. The motion of the left lg and the static position of the right leg were
clearly shown. (d) Motion corrected images using #aNAV data from (c). The motion artifact of
the left leg was eliminated. (source: Ehman and Fellee, 1989)

(b)

Self-navigating methods can also be used to retrospectively tconsmn
when combined with particular image acquisition techniques including cioaje
acquisition (Glover and Noll, 1993; Glover and Pauly, 1992; Kim et al., 26083l
acquisition (Glover and Lee, 1995; Liu et al., 2004; Meyer et al., 1992ardu
Glover, 2007), and PROPELLER (Pipe, 1999; Pipe and Zwart, 2006; Wang et a

2005; Pipe et al., 2002). These all involve the collection of redundant MR| da
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usually including the central region of the k-space. The over-sampldcdal region
of k-space provides intrinsic averaging of image features rbadtices motion
artifacts, and can be further used to correct spatial inconsesent position,
rotation, and phase between acquisitions. One drawback of these methbds is

increased scan time related to redundant k-space sampling.

(b)

Figure 2-8 k-space trajectory. (a) projection; If) spiral; (c) PROPELLER.

Alternatively, external motion tracking systems can be used folr iutition
correction. These tracking systems rely on additional hardwarh, agieniniature
coils (Derbyshire et al., 1998; Nevo et al., 2002), fiducial samfidesmtar et al.,
1997), optical reflectors (Eviatar et al., 1999) or stereo camBi@d €t al., 2006;
Tremblay et al., 2005; Zaitsev et al., 2006). Among them, stereo opystains have
been shown to give good motion correction results with reasonable accurac
retrospectively (Tremblay et al., 2005) as well as prospectiizdyd et al., 2006;
Zaitsev et al., 2006). The stereo tracking system works in @avath the scanner
thus needs no extra scan time for motion detection in the imagimgersee.
However, there are limitations to the current tracking systémesmost important
being that the tracking target required for monitoring object positsoreither

uncomfortable for the subjects (e.g., a mouthpiece used in Zaitsdy 2006), or
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hard to combine with close-fitting receiver arrays (e.g.,paused in Tremblay et al.,
2005). To overcome these limitations, we developed an in-bore videomgagistem
for prospective motion correction that monitors the position of featareghe
subject’s face. The system was designed to allow high resolgtiormm) MRI at

7T in the presence of substantial head motion.

2.3 Stereo Tracking System

Stereo tracking system includes two cameras, acquiring in@Egd® same object
simultaneously from slightly different view points. To determine3bBemotion of an
object, the system needs to be accurately calibrated beforel@adbject’'s motion
parameters can be estimated by analyzing the image qetsred by the stereo
system. The tracking feature points are first detected in ea&ge pair and the 3D
position of these feature points are calculated through steeegutation. The 6-
DOF motion parameters (3-DOF translations plus 3-DOF rotaticeus)be further

estimated based on the 3D coordinates of these feature points.

2.3.1 Camera Calibration
Camera calibration is a crucial issue in computer vision. teseto determine the
relationship between a 2D image perceived by a camera @gesnperceived by
multiple cameras) and the 3D information of the real objectcif&ecamera
calibration is especially important for applications that involvérimeneasurements,

such as dimensional measurements (Tomasi and Kanade, 1992), object motion
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(Broggi, 1998; Charbonnier and Fournier, 1995), visual inspection (Newman and
Jain, 1995), etc.

Camera models usually involve of two sets of parameters: egtrarsl
intrinsic. Extrinsic parameters, including a rotation and translatector, model the
geometrical relationship between the camera and the scenasitnfparameters,
including focal length, principal points, and distortions, model the intge@metry
of a camera. They determine how to derive an image point position tiigespatial
position of the point with respect to the camera. The position and aireenof a
stereo setup is also intrinsic since it is independent of scemetuse. Intrinsic
parameters remain constant after cameras are set upextrilesic parameters may
change with different scenes. The estimation of these twoSptaameters is called
camera calibration, which allows one to relate the image nezasuts to the spatial
structure of the observed scene.

The existing camera calibration approaches can be classiitedthree
categories:

a) Linear closed-form methods. These methods construct a linear
transformation to relate 3D points with their 2D projections (Al¥det and Karara,
1971; Faugeras and Toscani, 1986; Hall et al., 1982). Then least sqe#nedsrare
used to get the closed-form solution. The advantage of these metkiwelsimplicity
of the model and fast computation. However, they have the followsagldantages.
First, the linear models don't include lens distortion, which makeethesthods less
accurate. Second, camera parameters are not explicit in tieeetsrand constraints

(i.e. rotation matrix should be orthonormal) are not considered.
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b) Non-linear optimization methods. When lens distortion is considertbe in
camera model, the relationship between the 3D scene points angDhaiojections
becomes non-linear. The non-linear error function is usually defsethe distance
between 2D image points and the projection of the 3D points. Camenagbars can
then be optimized iteratively by minimizing the defined error fiamc{Faig, 1975;
Slama et al., 1980). The advantage of these methods is that amyiatistan be
considered in the model and good accuracy can be achieved byngeaolrect
convergence. However, a good initial guess is required to gearactrrect
convergence.

c) Two-step methods. These methods first find closed-form soldbossme
parameters, then do iterative optimization for the other or aleoparameters (Tsai,
1987; Weng et al., 1992b; Zhang, 2000). These methods take the advantages of the
previous two methods and can always converge quickly to a correcosatiue to
the closed-form guess in the first step. Explicit intrinsid aextrinsic camera
parameters and major distortions (namely, radial, tangengeéntering) can all be

estimated with high accuracy in a short time.

2.3.2 3D Reconstruction
3D reconstruction computes the position of a point in 3D given itgenia two
views and the camera intrinsic parameters. The linear triaigulmethod (Bouguet,
1999; Hartley and Zisserman, 2003) back projects rays from theuradasnage
points and find the intersection of the two rays for the 3D point. Sinwes are

inevitable in the measured points, the epipolar constraint (explairgection 4.2.2
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in detail) may not be satisfied and the intersection of the bagkgbed rays may not
exist. Sampson error correction is applied to these measured fmicsrect first-
order errors (Torr and Zisserman, 1997). This approximation is vadvdmn the
error of the measured points is small. However, the epipolarraontsis still not
satisfied exactly. A more costly triangulation method (legrand Sturm, 1997) can

find the optimal 3D points by solving a sixth-degree polynomial.

2.3.3 Object Tracking
Visual tracking is a very important component for systems withiggif@ns in robot
control (Milella and Siegwart, 2006), surveillance (Coifman et 198), human-
computer interface (Gorodnichy and Roth, 2004), and visual reconstrucoora$i
and Kanade, 1992). Various tracking methods have been proposed, which can be
classified in four categories: model based (Kakadiaris andxXdst 2000; Zhou et al.,
2004), region based (Hager and Belhumeur, 1998), contour based (Blake et al., 1993)
and feature based (Shi and Tomasi, 1994; Yao and Chellappa, 1995; Zheng and
Chellappa, 1993) methods. In this project, feature based trackingdishesmuse of
its subpixel precision, speed, as well as robustness.

The feature tracking process can be divided into two major ssbtEature
selection and feature tracking. Good features can be identifiedgas er corners
(Harris and Stephens, 1988) or zero crossings of the Laplafciha onage intensity
(Marr et al., 1979). However, these feature selection criteeaoften defined
independently of the tracking algorithm. With the Kanade-Lucas-$ortia.T)

tracker, instead, a good feature is defined as the one thatdaacked well or that
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can make the tracker work best (Lucas and Kanade, 1981; Tomasi an@rfana
1991). The tracker starts from Lucas and Kanade’s fast imgggtragion technique
that makes use of the spatial intensity gradient of theam#g find a good match
(Lucas and Kanade, 1981). After that initial work, Tomasi and Kadadeloped a
feature tracker based on sum of squared intensity differences @®Dassumed
translational inter-frame motion (Tomasi and Kanatani, 1991). Therarshi omasi
proposed an affine model to make the region matching better over limgespans
(Shi and Tomasi, 1994). Subsequently, Tommasini proposed an extension of this
tracker to automatically reject spurious features, which madé&abker even more
robust (Tommasini et al., 1998). Now, the KLT tracker has beenywseld in many
systems for high accuracy tracking, such as facial festacking, robot control, and

flow velocity measurement.

2.3.4 3D Motion Estimation

Computing a 3D rigid motion that maps a set of 3D points to anathes the basis

of the absolute orientation problem (Horn, 1987; Horn et al., 1988). It m@ortant
computer vision task and has numerous applications, such as robotics, pose
estimation, and motion analysis. Solutions to this problem include closadand
iterative methods, between which closed-form solution is preferredube of its
robustness and efficiency. Iterative methods, however, may dppei in local
minima of the error function and always need a good initial glBessause of these

reasons, we adopted closed-form methods for our motion estimation.
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Four major closed-form solutions are used for 3D rigid body transtowns.
The first one was proposed by Arun (Arun et al., 1987). In their denmvabtation is
represented as a standard orthonormal matrix and the solutiondsdpette singular
value decomposition (SVD) of a covariance matrix of the data. kHenvehis method
will fail if the data is seriously noisy or becomes planamdyama (1991) and
Kanatani (1994) corrected this with different ways of derivatiomrnH(1987)
represented rotation using quaternions and the solution is the eigegnvec
corresponding to the largest positive eigenvalue of a symmettrexntdorn (1988)
later also used an orthonormal matrix to represent rotation, anvedi@m alternative
method that used manipulation of matrices and their eigenvalue-eigenvector
decomposition. Walker et al (1991) presented a solution by represeotitign and
translation together as a dual quaternion. These four algorithmscomgared with
respect to accuracy, stability and efficiency by Eggeraletl997). The accuracy
shows no discernible differences, while the SVD method (Arun .et1887;
Umeyama, 1991) gives the best stability. Even though it is someVdwetrsthan
Horn’s (1988) method, the superior accuracy and stability made us chusse

method in our research.
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Chapter 30bjective

The overall objective of this project is to design a new trackipgtem to

prospectively correct head motion for MRI. This optical systéould be compatible

with MRI. It should be fast, robust, and accurate for tracking ofl meation and

should also be able to communicate with MR scanner before the MRIada

acquired. With the accomplishment of this project, sensitivity ahlviRI to head

motion should be substantially reduced. Specifically, the objectives are:

1)

2)

3)

To setup the optical tracking system. One or two MR compatitftared
cameras should be used for tracking with illumination of infrare®4. The
tracking system needs to be able to determine the sublesats position in
real time (three rotations plus three translations).

To program MR pulse sequence to receive motion parameters fraptibal
tracking system and apply motion correction in real-time. Refeach
excitation, the MRI scan computer should be able to read the motion
parameters to adjust the gradient field direction and RF phaskeap@ncy

in the imaging sequence to compensate the changes in position.

To evaluate the system accuracy and performance. Specifiaalneed to
evaluate the accuracy of the optical tracking system, the atatibraccuracy
of the combined optical and MRI system, and the acquired MRI imadgyqua

with and without motion compensation.
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Chapter 4 Prospective Motion Correction for MRI using a

Stereo Tracking System

4.1 System Setup

MRI experiments were performed on a GE (Milwaukee, WI, UBRMRI system,
equipped with a detunable volume transmit coil and a 32-channel eemdi head
coil (Nova Medical, Wilmington, MA, USA). The optical tracking 8 included
two MR compatible infrared cameras (MRC Systems GmbH, Genres part of a
stereo-vision system to measure the subject’'s head motion in8DsiZe of the
cameras was 28 x 18 x 30mrThey were fixed on a holder right above and in front
of the head coil (Figure 4-1). The distance and the angle betwearwtbiee 12 cm
and 28° respectively. Surrounding each camera lens, six infrare@iigtiing diodes
were used to illuminate the field of view. The distance frobmmdameras to the face
was around 8cm. The high spatial resolution of this setup (640 x 480 pbmis, 188

x 10cnf field of view) allowed detection of very small movements.

Camera Coordinate System
[

5y ' ﬂ
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Figue 4-1 Eiperimental setup. The top pane ismaillustration of the position of the cameras
and head coil in the MRI scanner bore. The bottommages show the real instruments. Cameras
are highlighted with the red ellipse.

The two cameras were connected to a filter box (MRC SystembH,
Germany) via the camera connector cable. This low pass fitech has a cutoff
frequency of 1MHz, was used to prevent interferences caused higth&requency
signals of the MR scanner, as well as possible infiltration Rfffdquency noise into
the magnet room. The video output signals were then captured by @ N&drphis
frame grabber (Matrox Electronic Systems Ltd. Quebec, Canadimg a standard
BNC cable connection, by a tracking computer running a Linux operatsignsy
Real-time tracking and motion estimation software was develogeng C++. The
tracking speed was 10Hz. The tracking computer communicated thethMRI
scanner through a TCP/IP connection (Santos et al., 2004) to provide tlodecons
(scan computer) with the real-time motion parameters. This edlothe image
acquisition pulse sequence to alter gradient direction and RF gifsetes and

frequencies to compensate for the changes in object position.
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4.2 System Calibration

A precise calibration is necessary to achieve the goal abmobrrection for high-
resolution MRI. A three step calibration procedure was developed, wittided
the calibration for each single camera, the calibration for teees and the
calibration between the stereo cameras and the MRI scanner.

To achieve this, a calibration phantom was designed, the internahiofi w
consisted of a grid of rectangular prisms (Figure 4-2a)echout of a plastic form.
The prisms were all of equal size, 10 x 10 x 18nflength x width x height), and
were 10 x 10mr apart, except those on the four corners, which were cut into
triangular prisms to provide differentiation in the height directidre open spaces in
the phantom were filled in with saline to make them visible td.MRe cover of the
phantom was 2.4mm thick. On the surface of the phantom, a piece ofwitpa
black-and-white checkerboard representation of the internal gricitteeched (Figure
4-2b). This design provided many corners for calibration, and thestiegp corners

improved calibration accuracy.
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Figure 4-2 Calibration model. (a) Schematics dhe phantom; (b) View of the actual phantom
surface.

4.2.1 CCD Camera Calibration

Camera calibration is required to build a model that can mageba a 3D world and
a 2D image. The pinhole model is a widely used one and its geoitigsiiation is

presented ifrigure 4-3:

In this camera model, a 3D poiM ,, =[X,,,Y,,,Z,]", is transformed from
the world coordinate system to the camera coordinate systems[X.,Y.,Z.]".
Through central projection, the ideal (undistorted) image coordinatbeobbject
point is m, =[x,,y,]'. However, common cameras are often characterized b
somewhat distorted projection behavior which cadlsesobserved (distorted) image

point shifting tan, =[x,,y, ] .
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Camera Coordinate System

M=(Xy, Yy, Zy)"
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World Coordinate System

Image Coordinate System W

Figure 4-3 Pinhole camera geometry. ©is the camera center and also the origin of the ozera
coordinate system, Q is the principle point, M is a point in the spacewhich has different
coordinates in the world and camera coordinate systns, and my and m, are the image of M in
the image plane with and without lens distortion.

In practice, the image in the image plane will beHer sampled by a frame
grabber card and stored in an image memory buffez.relationship between a point

M,, in the world coordinate system and its imaggin image pixel coordinate can

be represented as

M. =R(M, -C) 1.
X, X MZ, X,

m, = = f =fm, =f [4.2]
yU YC/ZC yﬂ

. X | xu(1+klr2+k2r4)+2plxuyu+ pz(r2+2xj) (4.3]

CLe) Lk ekt 2p,x,y, + py(r? + 2y2) |

Wherer? = x> + y?
X D x, +

m,=| "|=| " % [4.4]
Yo D,Ya + Yo
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R and C are rotation matrix and translation vector whichamacterize the
transformation between the world coordinate systam the camera coordinate

system; f is the focal lengthm , is the normalized coordinat&; andk, are the radial

lens distortion coefficientsp; andp, are the tangential lens distortion coefficients;
Dy, Dy are the number of pixels per metric unit dista(féer most imaging sensors
currently manufactured, pixels may be assumed giyfequare, implyindgx=Dy. In

the general case, they may be differeli;,y, arg the coordinates of the optical

center (principal point) in the image coordinatsteyn. The objective of the camera
calibration procedure is to determine optimal valfier these parameters based on

image observations of a known calibration targatc& any calibration poinM,,
and its corresponding image in the CCD semsqrshould satisfy Equation 4.1-4.4,

the unknown parameters can be determined when dhguwted projection of a
known structure (i.e. a checkerboard pattern) nestcine best with the observed
projection on the image. If enough (larger than thenber of unknown camera
parameters) calibration point pairs are givencimmera parameters can be estimated.
A closed-form solution for the unknown parameterth@ut considering lens

distortion gives a good initial guess. In absentcéws distortion, the projection of

M, to m  can be simplified as:

x Dxf%jtxo f X +%,
mele - ] 45

f f.y, +
Dny—+y0 yYn Yo

c
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Where f, = fD, and f, = fD, represent the focal length of the camera in tesfns
pixel dimensions in x and y direction.

Denoting the homogeneous coordinates of a vextefx,y,A | by X, i.e.

X =[x y,A 1", Equation 4.1 and 4.5 can be written as:

f X, O
sm, = f, ¥, OM,
1 0 [4.6]

R -RC] -~ - -
:|<[||o]{O ) }szK[R|T]MW=PMW

Wheres is an arbitrary scalek is a 3«3 matrix, mapping the normalized image
coordinates to the image pixel coordinaté€s: —RC ; andP is a 3x4 matrix, called
the perspective projection matrix. In matRxthere are a total of 10 unknowns: 4 for
K, 3 forR and 3 forC. The parameters containedknare called the intrinsic camera
parameters (distortion parameters are intrinsiarpaters too, but are not estimated in
this closed-form solution), and thoseRrandC are extrinsic parameters.

Vanishing points can be used for calibration far stmplicity and ease of
computation (Bouguet, 1999; Daniilidis and Erns%96; Wang and Tsai, 1991).
Figure 4-4 shows a perspective image of a squar€éAB spacem

mn2’ mnS

nl?
and m , are the four corners of the square observed inirttege plane after
normalization, which means:

1/ f, — Xy
m, = U, -y, |m, [4.7]
1
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Square in the World

Image Plane

Figure 4-4 Camera calibration using a square taget. (a) PrOJectlon of a square ABCD to the
image plane; (b) The image and the four vamshlngcpnts{vl, V2, V3, V }, and the horizon

line kH

By assuming the optical center is at the centethefimage, the intrinsic

parameters to be estimated are therefgreand f, only, and Equation 4.7 can be
simplified as:

m, = 1/f, 0fp, =sK'p, [4.8]
1

WhereK, is the intrinsic camera matrix without principleipts, andp, (i =LA 4)is

the homogeneous pixel coordinates of the corndes alibtraction of the optical

center.

From the geometry in Figure 4-4, the two vanistpogts \71 and \72 can be

determined by:
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A, =M, xm ~ = =

DT LV =k Xk,

b2 = Mg X Mhog = by =V, xV 9
N ~ ~ H 1 2 .
Ay=m ,xm = .- T

= M =V, Tk Xk,

Ay=m, xmy

Where x is the standard cross product. All the equalitieBquation 4.9 are defined
up to scale. However, the normalized coordinateshefcorners are not available
since the focal lengths are unknown. But the poadrdinates of the four corners

p,(i =LA 4) are available, so Equation 4.9 should be writtepixel unit:

T~ (1 A= ~ e XN

I m 0GP XK P2) =HG LG, = (30 (K 252) =K 20

A, =(K ;lps)X(K ;lp4): K;)l % i P P

b = (PGB ZKGR] G~ afpy ek iy =k 20| 4100
A, =(K ;)lp4) x (K ;)lpl) =K ;)1 Ay ° ’ °

=y TK RS

Where K, is the adjoint oK. SinceK is a 3«3 matrix, andu, v are 3-vectors, we

have (Ku)x (Kv) = K" (ux v ) (Faugeras and Robert, 1996). Becdgss invertible,

K" =|K|(KT)™, thereforeK™ =K . And also explicitly,

I

X
<t
o
I
>0
]
X
>1
N o

n

Ao W No Pg
I
Ol Tl Tl TI

:>XH =V x VP [4]11

w =
X
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>
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>
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I

=

Because the two vanishing poin?g and \72 are mutually orthogonal:

IN
X
ol

i

V, LV, & (KJVP) L(KV))

- N [4.12]
< (V)T (KTTKHVP =0
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In Equation 4.12V and V> can be calculated from Equation 4.11, and areteeno
here as \71" =[a,,b,,c]" and \72p =[a,,b,,c,]", so Equation 4.12 provides one

constraint in the focal lengths:

&% BB oo o [4.13]

2 2
f, f,
Another constraint for the focal lengths comes fittvn fact that the diagonals

of the square ABCD are orthogonal too. Therefdrmilarly, we get:

b = (KD x(KB) =K TR | | [V, = (KA (KPR =KV
ho = (K B,) < (K B) =K T2 [ |V = (KR x (K A) =K V)

Then, since

V, LV, & (KJVP) LK V) [4.15]

& (VA (KK VP =0
We get another constraint for focal lengths witmatéeng \73p =[a,,b;,c,]", and

v/} =[a,.b,,c,]":

+¢,c, =0 [4.16]

So, f, and f, are the solution of Equation 4.13 and 4.16.

Next, the extrinsic parameters can be initializzdagh homography (Zhang,
2000). Without loss of generality, the calibratipattern plane is assumed to be on

Z,, =0 plane. Denote th&" column of the rotation matriR by ri. From Equation

4.6, we have
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X, N Xw
Yo |= K[rl r, rs T] g = K[rl ry T] Yo [4.17]
1 1 1

Therefore, a calibration poinﬁW (sinceZy is 0, MW =[Xy, Yy ") and its image
m , Is related by a homographi;

si, =HM,  with H=K[, r, T] [4.18]

p

To calculate the homography, we first define &19vector H, as

[h;,h] ,h]1", whereh' (i=1,2,3) is thé™ row of H. Then Equation 4.18 can be

written as
X, | |h{ 3 sxp—ﬁlTM:W =0
Y, | = h] [M,, = syp—ﬁ;MW:O

When all the corners in our calibration checkerdqgaattern were used(Figure 4-2b),
which was 100, we had 100 of the above equatiomesd can be written as
LH_ =0, whereL is a 209 matrix. Therefore, the solution &f, is the right
singular vector ofL associated with the smallest singular value. Nbtt H is

defined up to a scale factor. Denotidgby its column vectoH =[h, h, h, ,Jfrom

Equation 4.18, we get

r,=AK'h,
= K h
[r, 1, TI=AK H =1 2 [4.20]
[y =1y %I,
T = K *h,
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To assurer; andr, are unit vectorsﬂ_[‘ ELl ‘+‘K :}h J/Z (or choose either
2
1 1 , ,
A=r—"— or A=——— since they are very close). However, because eno
K h,| Kh,|

the computedR =[r, r, r, Jdoes not in general satisfy the properties of tatian

matrix, therefore we need to do the following:
r<ry/)ry
rp 1= (ruly)n [4.21]
A
ry=r;xr,

Where “«” means “to be replaced by”, and <,> is the stathdamer product.

The solution of the intrinsic parameters from Eqat4.9 — 4.16, and the
extrinsic parameters from Equation 4.18 — 4.21 raesuno lens distortion of the
cameras. However, the MR compatible cameras usethig project exhibited
significant lens distortion, especially radial digion. So to estimate all the camera

parameters, we need to use the already calculaeangters as an initial guess for

the minimization of the nonlinear cost function:

2
ii”m X’fY’XO’yO’kl’kZ’plipZ’Ri’Ti’MWj)H [4.22]

i=1 j=1

Where m  (f,, f,, %, Yo, K, Koy Py P2, R Ti M ;) is the projection of pointM
from the world coordinate system into fffecalibration image according to Equation
4.1 — 4.4. The 33 rotation matrixR; has 3 DOF only and is converted to a13
vector through Rodrigues formula for computatioficefncy (Faugeras, 1993 ;

is the measured pixel coordinahd.is the total number of views used for calibration
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and N is the number of corners on the calibration targetach view. It has been
shown that calibration errors decrease when moagé® are used (Zhang, 2000), so
20 ~ 30 calibration images were used in our proféigure 4-5 shows two calibration
images, with red “+” marking th8l=100 corners (Harris and Stephens, 1988). The
nonlinear minimization is solved with sparse GaNssvton algorithm (Hartley and

Zisserman, 2003, Section 9.3).

(b)

Figure 4-5 Two views of the calibration targetThe 100 red crosses on each image mark the
extracted corners used for calibration.

4.2.2 Stereo Calibration

After calibration of both cameras, the relationshgiween the two cameras can be
estimated. Le©; andO. be the camera centers of the left and right casrendl, I’

the corresponding image planes respectively (Figu&. Given a poiniM in the
world, its projection on the left image ns, and on the right image a’. For every

point on the lineOM, their projections in the left image are afl, but their

projections in the right image are on a ling which is called the epipolar line of.

The linel  is the intersection of the platiewith the planeX , defined bym, O, and
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O¢, which is called the epipolar plane. Because fhipotar geometry is symmetric,
pointm’ in the right image corresponds to an epipolar llinén the left image, which
is the intersection of the same plaKewith the left image plané. Furthermore, all
epipolar planes (with differeri¥l) contain the lineD.O.’. They all intersect at a

common poineand intersect’ also at a common poiet, which are called epipoles.

M

baseline

Figure 4-6 The epipolar geometry. M is a pointri space, Qand O, are the two camera centers.
The camera baseline @ intersects each image plane at the epipoles e ard O, , O., M and its
images m and m’ all lie in a common plane, calledpgpolar plane. The two lines me and ne are
epipolar lines.

The epipolar geometry provides a computationaliag@mce in stereo vision
that for a point in one image, its correspondemctheé other image must lie on the
epipolar line, and therefore the search space éari@spondence is reduced from 2D
to 1D. But to get that, the rotatidRs and translationl s between the two camera
coordinate systems need to be determined.

Given a set of points in spat&; (i=1,...,Mrepresents the number of images
used for calibrationj=1,...,N represents the number of corners in each caliloratio
image), and letM ; =[X.Y,Z51" . My =[Xy.Y.Z5]" be the Euclidean

coordinates oMj; in the two camera coordinate systems, then
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M ‘cij =RM +T, [4]23
From each camera’s calibration step, we get thensit parameters. Also, since the

two cameras get images of the same object simulteshg they have the relation:

Mg =RM, +T ' ‘D-1 ' 'p-L

o L =M =RIRIM, + T, -RRT, [4.24]
Mcij = Riij +T,
Therefore, with theM calibration images, we geM rotation and translation
estimations. The median of these is used as thaliguess to search for the optimal

Rs andTs by minimizing the following cost function:

M N S 2
Zzur%pij_rg]p(K’kl’anpl’plel'kllkz’pllpzyRi,Ti.Rs,Ts.MWj)H [4.25]

i-1 j=1

Wherer%pij = [mf)ij ,m;;j]T is the observed corner position in both the leff aght

images; M, is the point in world coordinate system;

wj
ﬁ’lp(K,kl,kz, P P2, K' Ky Ko Py P2 R TR TG, M) is the projection of a space
point My; to the two cameras by combining Equation 4.1 —ahd 4.25K andK’

are the calibration matrix of the two cameras, udelg f,,f ,%,,y, and

x1 Ty
fr fy0%0 Yo 5 Ki Ky, Pr, P, @andky, ks, py, p, are distortion parameter®;, andT; are

the extrinsic parameters corresponding toithealibration image captured by one
camera. The nonlinear minimization is also solvath ihe sparse Gauss-Newton
algorithm (Hartley and Zisserman, 2003). Note theEquation 4.25, all the intrinsic

parameters of the two cameras are to be refineth ¢vveugh they have been

determined already after calibration of each caméhna& reason to do it here is that
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the epipolar constraint can provide some refinenoenthese parameters for better

calibration accuracy.

4.2.3 3D Reconstruction from Stereo
With all the parameters of the stereo known, fratym eorresponding image points
andm’ in the two camera images, we can retrieve the @rdinate of that point
based on stereo triangulation (Hartley and Zisserr2@03; Hartley and Sturm, 1997,
Bouguet, 1999). From epipolar geometry in Figui@ A, m’, O, andO; must lie in
the epipolar plane, therefore the back-projectibrihe two linesO.m and O;,/m’
intersect in 3D at the poit. The computation of a 3D point position from itsage

in two 2D views is called stereo triangulation.

T be the normalized coordinates for

Let m, =[x,y,]" and m_ =[x.,V.]
points m and m’ respectively, calculated using Equation 4.2 — #fiér the two
cameras being calibrated. L&t =[X_,Y,,Z.]" and M_=[X_,Y.,Z.]" be the

coordinates oM in the two camera coordinate systems respectiviedyy Equation

4.2, we can get:

X, X
M,=2Z]y, |=2M,, M.=Z]|y, |=zm, [4.26]
1 1

With the knownRs and Ts from stereo calibration, andl_ =R M _+T, from
Equation 4.23, we get:

Zm =ZR.m +T [4.27]

C n C S n S
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SinceZ, and Z_ are the unknowns, the above equation can be tewas:
~ o~ 1Z
[_Rsmn mn{ ‘j|=Ts [4.28]
z
DenoteA =[-R_,m_, m_] (a 3x2 matrix), the least square solution is then:

E} =(ATA)'ATT, [4.29]

c

If there is no noise im andm’, Equation 4.29 returns the exact 3D position
of the pointM, which is the intersection of the two back-prajmgtraysO:m and
Oc/m’ . However, if noise exists, the two rays don’t iseet in general, it is thus
necessary to estimate a best solution for the poiBD world. This can be realized
by Sampson correction of the measured points (@ladhd Zisserman, 2003). But
before Sampson correction, the epipolar constregats to be reiterated here.

For Equation 4.27, by taking the cross product Wighfollowed by the inner

product withm ,, we obtainm, - (T, xR m ) =0. This can also be written as:
m Em, =0 where E=[T], R, [4.30]

E is called the essential matrix, ajil], is the skew-symmetric matrix d@f, defined

as.
0 - TsS Tsz
[TS]X = Tss 0 _Tsl [4-31]
-T, Ty 0

Equation 4.30 mathematically describes the epipoterstraint illustrated in

Figure 4-6. In particular it means that, lies on the epipolar liné, =Em_ .
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A typical observation of a noisy point correspormiem . <> m_ doesn’t in
general satisfy the epipolar constraint. They havése corrected tan, <> m,
which have minimum distance to the measuned<«> m_ but satisfy the epipolar
constraintm | Em__ =0 exactly. To emphasize the dependencyxoa[m’,m 1",
we will write the epipolar constraint a€.(x) = . O’his cost function may be

approximated by a Taylor expansion to first order:

oC
C-(x+6.)=C_(x)+—E
g(x+6,)=Cc(X) ™

3, [4.32]

T
nc?

The corrected x, =[m/.,m ]" satisfy the constraint, i.€_(x,)= .0Since

we have C.(x)+ OCe
OX

X, =X+90 6, =0. Denote the partial derivative matrix

X 1

(Jacobian matrix)aa& asJ and the costC.(x pse, the Sampson correction term
X

o, is thus the solution of equatial®, = —¢:

8, =-J"(3I") e [4]33
The corrected point is therefore:

X, =x-J"(J33") e [4.34]
Explicitly, the cost here is =m_Em _, and the Jacobian matrix is:

O¢

J=—
OX

:[(ETrﬂﬁln)li(ETrﬁ;)Z’(Erﬁn)l’(Er‘ﬁn)Z] 4-$5]

The elements af in the previous equation are computed by the cha@as:

T~ T~
Ot :amnEmn :6mn om Em,

J, = —
OX OX OX om

= (LOOET, = (E"M)), [4.36]

n n n n
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Then from Equation 4.34 the corrected point is:

Xne || % (E'm,),
Yoo | _| Yo | _ m, Em, (E'm,), (4.37]
Xoo | | Xa | (ETM,)7+(ETM,); +(EM,); +(EM,)5| (EM,),
Yoo | [ Yn (EM,),

After Sampson error correction, the 3D positionagboint can be estimated
using Equation 4.29. But since Sampson correctsoa first-order correction, it is
accurate only if the noise in each image is smadking it a suboptimal solution. The

optimal solution could be found by minimizing then€tion:

Cc(m,,m )=d(m_ ,m _)>+d(m_ ,m_)* subjectto m ' Em =0 [4.38]
Whered(*,*) is the Euclidean distance between the poiftas cost function can be
minimized using Newton iteration algorithm, but i more computationally

expensive. The Sampson error correction therefmesa close solution but a much

cheaper computation.

4.2.4 Integrated Optical and MRI System Calibration
The optical tracking system measured the motioampaters in the camera coordinate
system. These needed to be converted to the MRtic@abe system to be used by the
imaging sequence. Therefore, an accurate calibbratias necessary to estimate the
rotation Rmc¢) and translationT(c) between the camera and MRI coordinates.

To achieve this, the phantom was put in the tafigéd (approximately the
position of a subject’s face) within the field aéw of the scanner and video cameras
(Figure 4-7). A 3D image of the phantom was acqlilyy the MRI scanner

(resolution 0.4 x 0.4 x 0.7 miNTR=55ms, TE=6ms, FA=10°, Slice Number=40) and
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the stereo measured the 3D position of the caldaratorners on the surface pattern
based on stereo triangulation including distorttorrection for the cameras (Section

4.2.3).

CamerdConrdinate Svstem

< ()

-+
MRI Coord

Figure 4-7 Calibration between the optical systa and MRI scanner. The calibration phantom
was put in the field of view of both the cameras ahthe MRI scanner.

To estimate the surface corner positions in MRIrdoates, the internal
structure needed to be extracted. Figure 4-8 slwwslices from the 3D scan of the
calibration phantom. We used corners to describdrternal structure, which when
connected are the sides of prisms. Harris corrteictien (Harris and Stephens, 1988)
was applied on these MR images. A potential probiesly be caused by air bubbles
inside the phantom, i.e. the blue arrow in Figw&a4 which could result in a false
corner. To correct this, lines were fitted on tbeners and the crossings of these lines
were marked as real corners, shown with red “+Figure 4-8. The MRI coordinates
of these corners can be determined from their m&eldinates and the slice position

information from DICOM image header (Section 9.2).
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(a) (b)

Figure 4-8 Two images from the 3D scan of the ldaration phantom. The red crossings mark
the corners. The blue arrow marks an air bubble iside the phantom.

For each side of the prism, we have forty positionMRI coordinates since
we scanned 40 slices. They were used to estimateditesponding corner position
on the phantom surface. Figure 4-9a shows the astimof one side of a prism from
the extracted corners. Blue dots were the obseoogders (Figure 4-8), which
obviously did not lie on a line because of noise.aloid this, a line that minimizes
the perpendicular distances from each of the pdmtthe line needs to be fitted.
Principal Components Analysis (PCA) is a good sotufor 3D line fitting. Denote
all the blue dots alm=[Xmi,Ym:Zml" andMm=[ Mm1, Mmz... Mmd (i=1,2,...K)
wherek is the total number of slicek equals to 40 here). Principal components

(P=[p1 p2 p3]) of M, are the eigenvectors of the covariant matrikef
M M! =P'DP .39]
SinceMy, is of size Xk, PCA generates three orthogonal components. The

first principal component (denote pg gives the direction vector of the line because
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it explains as much of the variance in the poirstgsapossible with one dimension
(green line in Figure 4-9a). The second and thwchgonents [, and ps) define
directions perpendicular to the line, and are tinergerm in the fitting (blue lines in
Figure 4-9a). The function of the fitted line i®thfore:

|, =mearfM ) +tp, [4.40]

Where t is the free variable for the line function. Thelme tposition of the
corresponding corner on the surface can be estihiaeause the thickness of the

phantom cover is known as 2.4mm (red circle in Fegl+9a).

1207

100~

Figure 4-9 Phantom corner position estimation iMRI coordinate system. (a) shows one side of
a prism. Blue dots are the observed corner positioalong that side; green line is the estimated
side and the red circle is the estimated corner pit®n on the phantom surface. (b) shows the
alignment between the extracted internal structurggreen) of the phantom and a simulated ideal
model (red). The green lines are the side of the jsms and the red circles are the estimated
corners position in MRI (all dimensions are in mm).

By performing the line fitting on each side of &fle prisms inside the
phantom, one can estimate all the corner positionghe surface. These corners do
not lie in a plane exactly because of noise. Sy there further registered to a

simulated phantom surface (checkerboard patterhg dorners on the simulated
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phantom were transformed into the MRI coordinatsteay and were the corrected
positions used for calibration. Figure 4-9b shows tesults after alignment. Red
prisms represent the simulated phantom, which Bas 10 x 18 mm rectangular
prisms in the middle and triangular prisms on therfcorners. Green prisms are
structures extracted from the MRI 3D image. Redles represent the calibration
corner positions (on the camera-visible checkebapid, 2.4 mm from the liquid
surface).

Therefore, based on the simultaneous measuremeéritee same points in
both the MRI scanner and stereo coordinates, ta¢ign (a 3x3 orthonormal matrix
Rm¢ and translation (a 3x1 vectdr,,) between them can be calculated using a

singular value decomposition (SVD) method (Secticdh3).

4.3 Real-time Motion Calculation

4.3.1 Kanade-Lucas-Tomasi Tracker
The Kanade-Lucas-Tomasi (KLT) tracker (Lucas andhd€ee, 1981; Tomasi and
Kanatani, 1991; Shi and Tomasi, 1994) is a featuaeker widely used in the
computer vision community. It offers sub-pixel a@y and is very computationally
efficient, therefore is utilized for the head trangkin this project.

Denotel (x,t) as the image intensity, whexas the position of a point, artd

is time. As the object moves, the image intendiignges in a complex way, but if the
camera grabbing frequency is sufficiently hightloe movement between successive

images is sufficiently small, we can model the sugcessive images as:
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I (x+d,t+7)=1(X,1)+n(x) [4.41]
Where 1 is the time difference between sampling of the tinmmes;d is the
displacement vectod(,dy)T; andn is noise.

The displacement vectdris the one that can minimize the residual error:
e(x) =D [1(x, +d,t+7) - 1(x;, )] [4.42]
W

Wherex; are points in the Gaussian window W centered.on
When the displacement vector is small, the intgngitnction can be

approximated by Taylor series expansion truncaidte linear term, as:
ol
I (X, +d,t+7) = I(xi,t+r)+a—(xi t+7)d [4.43]
X
By dropping the time term in the intensity for simpy and denoting
h(x,) =1(x;,t+7)—1(x;,t), 9(X,) =2—|(xi ,t+7), we can rewrite the residual error
X
as:
&0 =X [h0x) +g(x,)d] [4.44]
W

To find the displacemenmt, we let the derivative of the error to zero:

06 _ 2> [n(x;) +9(x;)dp(x;) =0
od W [4.45]
= zg(xi )T g(x,)d = zh(xi )a(x;)
In other words, we must solve the equation:
Gd=e [4.46]
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Where G is a symmetric 22 matrix G =Zg(xi)T g(x;)and e is a 1 vector
W

e:Zh(xi)g(xi). However, because of the linearization of EquatibA3, the
w

solution ofd is only approximately correct. Iteration in Newtstyle is therefore

needed to search for the right displacement bympbag h(x; )with newd in each

step. Iteration is stopped when differencalirs negligible, which usually takes less
than 5 iterations.

It can also be seen from Equation 4.46 that tagetiable displacement, both
eigenvalues ofc must be larger than noise level. Explicitly, twoasl eigenvalues
mean a roughly flat intensity within a window; ada and a small eigenvalue
correspond to an edge and two large eigenvaluessemt corners. So, to select good
reliable features, we accept a window if:

min(A1,12) > A 4.47]

Where 11, 12 are the eigenvalues Gf and 4 is a predefined threshold.

4.3.2 Stereo Matching

In Section 4.2.3, it was shown that the positionaof3D point can be
reconstructed from two perspective images. To aeh&correct 3D reconstruction,
point correspondences between two images needdsthblished. A large amount of
work has been carried out for matching differenages of a single scene (Chou and
Chen, 1990; Weng et al., 1992a), but the resuksnmt satisfactory if the only

geometric constraint, i.e., the epipolar constragnot used. In our application, after
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stereo calibration, the epipolar geometry is knotherefore robust correspondences
can be established between the two images (Zéiaag 1994).

After applying KLT on one of the camera image, we N feature points
suitable for tracking. For each point; (i=1,2,...N) in image 1, a corresponding

epipolar line can be found dg = Em ,, whereE is the essential matrix defined in

Equation 4.30,m,; is the normalized homogeneous coordinate for pointFigure
4-10 shows the two epipolar lines (red lines ircdlrulated for two randomly picked
points (red “+” in a). Both lines contain the capending points. Therefore the

search range for a matching point is narrowedltaral centered on the epipolar line.

All corners m; (j=1,...,number of corners) are detected in this bamaandidates

(Harris and Stephens, 1988) and correlations amapated to search for the

corresponding point.

(a) (b)
Figure 4-10 Epipolar lines estimated after steo calibration. (a) shows an image from one of
the camera and two randomly picked points. (b) shosvthe image from the other camera and the
estimated epipolar lines corresponding to the twodints in (a) respectively.
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Given a pointm; in image one and candidate pointq'j in image two, a
correlation window of size (B1)x (2m+1) centered at each of these points was
used. The correlation coefficient is defined as:

S [ (m, +A) =T, m)][1,m; +A4)-T,(m)) ]
c(m,,m;) = AW [4.48]

J(Z[Il(mi +A)- l‘l(mi)]]ZJ(Z[lz(m;j +A) T, (m )]]2

AeW AeW

Where A are the points in the Gaussian window W centered zero.

I (m) = ZIk(m+A)/[(2n+1)(2m+l)] Is the average at poimh of Iy (k=1,2).

AeW
Correlation measures the relationship between twalaws. Possible correlations
range from +1 to —1. A zero correlation indicatest there is no relationship between
the windows. A correlation of —1 indicates a perfieegative correlation, meaning
that as the intensities in one window go up, theeogo down. A correlation of +1

indicates a perfect positive correlation, meanhag tntensities in both windows have
the same pattern. A best match pointrferis therefore the one im;j which has the
highest correlation. However, there could be caglesre no match point exist in
image two for a point in image one (occlusion, m&sof field-of-view, etc), so a
minimum correlation threshold was set to avoid thisblem. Therefore, the best

match point is
m, = max{c(m;,m; )} > c_threshold [4.49]

In our implementatiom=m=7 for the correlation window, and a correlatiorehold

of was set to 0.7.
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4.3.3 Rigid Motion Estimation
3D positions from the corresponding points in the views can be calculated based
on stereo triangulation. When these feature paamés tracked in real-time, rigid
motion parameters (rotatid®., translationl ;) can be calculated.

Given two sets of point§$x,,X,,....X, Band{y,,y,,....y, }in 3D space at

successive time, rigid motion parameters are thetisn by minimizing the cost
function (Arun et al., 1987; Horn, 1987; Horn et, al988; Kanatani, 1994;

Umeyama, 1991; Haralick et al., 1989):

2

& _Z||y, (Rex, + T, [4.50]

The minimum should occur when the partial derivatf s* with respect toT

equals zero.

£y R +T.))(-1) =0

=22l (Rox T - w51
=>T.,=Yy-RX

Where
13 13
=¥V y=— 4.52
X=g2X V=2 [4.52]

Therefore onc®. is known, T can be calculated easily.

To minimize ¢* with respect tdR., the orthonormal constraint of the rotation matrix

needs to be used. LeR, =[rlT,r2T,r3T]T, where eachr] is a row of R.. The
constraints can be written as:

rer,=1 k=123
rir,=1 j=Kk

J

[4.53]
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Construct the Lagrangian function fef with the above constraint, we get

:iZ(VIk rex =T, k)2

=k [4.54]
+ Zﬂ,k (rlr =1+ 22,11, + 22,01, + 24,071,

k=1

Whereyi:[yil Yi2 yia]T’ Tc:[Tcl Te, Tc3]T-

Substitute the constraint @f in Equation 4.51 to Equation 4.54, we get

N 3
—\\2
= ZZ(Ym rkT(Xi _X))
=k [4.55]
+Z/1k (rlr =)+ 22,11, + 22,01, + 24,001,

k=1
Then take the partial derivative ef with respect ta, , and set them to zero, we get:

\ N
Z(Xi =X)X% = X) 1AL A+ Al = z(yil V)X —X)
i1 =1

N N

Z(Xi = X)X = X) Ty + Al Aof, + ATy = z(in —Y2)(X; —X)

i=1 i=1

[4.56]

N N
Z(Xi = X)X = X) g+ Agly + Agl 5 + Aol 5 = z(yi3 —Ys)(X; =)
i1

i=1

Let

A=Y (% ~R)x ~%)"
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B= {Z(yu -Y)(X; —X) Z(yiz -Y,)(X, —X) Z(yi3 —¥.)(X —Y)}

y [4.57]
= Z(X. -X)(y; -
Equation 4.56 can be rewritten as
AR! +R!A=B=R_AR! +A=R_B [4.58]

SinceA is symmetric,AT = A, therefore(RCARI)T =R_A'R] =R_AR] is also
symmetric. Both of the two terms on the left-side aymmetric, which means the
right-side must also be symmetric

R.B=B'R] [4.59]

If the singular value decomposition (SVD) Bfis B=UDV' whereU andV are
orthonormal an® is diagonal, then

R.UDV'™ =(UDV")'R! =VDU'R] [4.60]

It can be observed that a solution Ryris simply

R, =VU' [4.61]
But Kanatani (Kanatani, 1994) proves that this sofugives a reflection instead of

rotation if dety/U")=-1. So the correct solution should be adjusted to
=Vv| 1 u’ [4.62]
det(vU™)

Which obviously still satisfies Equation 4.60.
Given 3D feature point positions at any two sudeessimes, real time

motion parameters can be calculated by first canostrg the correlation matriB

53



using Equation 4.57, then calculating the rotatnfrom the SVD ofB using

Equation 4.62 and finally determining translatioyfrom Equation 4.51.

4.4 Motion Calculation in MRI coordinates

4.4.1 Motion in MRI physical coordinates
During the actual experiment, a number of featwiats on the object (or face) were
automatically selected in the left camera imagerafthich the corresponding points
were identified in the right camera image (Sect#b8.2). After correction for the
image distortion of the camera lenses, the posiibthese feature points could be
calculated in 3D using triangulation (Section 4)2The changes in position of these
feature points in the camera images were tracked towe (Section 4.3.1), allowing
calculation of changes in their 3D position. Thenslation and rotation parameters
were then estimated from this collection of 3D peifSection 4.3.3). However, these
parameters were in the camera coordinate systenmegukd to be transformed into
MRI coordinate system based on the prior calibradiata.

At time to, the relationship between the points MRI coordisa®é,) and
camera coordinateX{) can be described as follows, based on calibratata:
X, () =R X (ty)+ T, [4.63]
whereRm. and T are the rotation and translation parameters ferdbnversion
between MRI and camera system (Section 4.2.4).

At time t, the tracker measures the movement parametersainera

coordinate system,
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Xc(ti) = chc(to) +Tc [464]
WhereR; and T, are the rotational and translational motion patanse Using the

above two equations, we can calculate the move(natiationR, and translatior )

in MRI coordinates,

Xm(ti) = RmcRcR;lcxm(to)_ RmcRcRilT + Rchc +Tmc

=R, =R R.R. [4.65]
Tmz—RmcRchlT + R T+ T,

mc " mc

4.4.2 Motion in MRI logical coordinates
Since the pulse sequence used MRI logical coordisgstem instead of physical
coordinate system, the motion parameters calculfabed Equation 4.65 need to be
transformed into the logical coordinate system.

MRI physical coordinate system refers to the stasthdaes of an MRI magnet
system, shown in Figure 4-11. The subject is ugymdiced head first into the magnet
and carried in by a sliding gantry on the patiaie. If the person is supine (lying on
his/her back), the head point aloi@j, Z,, (direction of the main magnetic field),
right shoulder alongO,, X,, (left-right direction), and nose alon@,,Y,, (up-down
direction). Qy is the gradient isocenter, where the gradientslyme zero magnetic
field and which typically corresponds to the certérthe magnet. This coordinate
system does not change and is used in camera andgydiim calibration in Section
4.2.4.

The MRI logical coordinate system, however, depenrdshe prescribed scan

plane. As in Figure 4-11, &, O .Y, and QZ_ correspond to frequency encoding,
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phase encoding and slice selection directions otispé/. These change with

different scan plane prescription and are used in pise sequence.

MRI Logical

Coordinate System Z1.

O
MRI Physical X
Coordinate System

Xu

Figure 4-11 MR physical and logical coordinatesystem. {Qy, Xy, Yum, Zu} is MRI physical
coordinate system, which doesn’t change after the Rl system is set up. {@, X., Y, Z. } is MRI
logical coordinate system, which changes with diffent prescribed scan plane. X is the
frequency encoding direction, Y is phase encoding direction and Zis slice selection direction.

The rotation and translationR(,,and T, ) between these two coordinate
systems can be read out from the pulse sequerardladtscan-plane is prescribed:
X)) =R, X )+ T,) [4.66]
Therefore, the final motion parameters as will Beduby the pulse sequence should
be (see derivation in Section 9.1):

[4.67]

[4.68]

The motion parameterfR{,r and Tr) Were sent from the tracking system to the
MRI scanner over a TCP/IP connection (Santos et 2004) for real time

compensation of motion.
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4.5 Motion Correction for MRI

Motion correction was evaluated using a GRE puls@eece. The sequence updated
the scan parameters before each RF excitationeG@am for rotation was performed
by adjusting the gradient rotation matrix; correctifor translation in the slice
selection and read out direction was performed djysting the RF transmit and
receive frequencies and phases respectively; angcotion for translation in the

phase encoding direction was performed by adjustiegeceive phase offset. Since
the correction for translatiof,,, = [dx,dy,dz]T is different in all three directions,

we will discuss each of them separately.

4.5.1 Rotation Correction

MRI can acquire images in any plane, which is redliby varying the frequency-
encoding, phase-encoding, and slice-selection gmaavaveforms. The directions of
these three gradients define the, X, and 4 for MRI logical coordinate system
(Section 4.4.2). Therefore, after the operator&spription of a scan plan, the logical
gradient waveforms that are played out should khighcoordinate system. However,
a magnetic field gradient system normally consi$tenly three orthogonal gradient
coils that generate gradient field in the physi¥gl, Yy and 4, axis. In order to

create the three logical gradient waveforms, thpbgsical waveforms should be
digitally mixed. The mixing ratios are determineg d&ngles of the prescribed scan

plane and can be described with an orthonormatiootanatrix.
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Gox (1) Gy (1)
G () [=Ry ()] Gy (1) [4.69]
G, (t) G (1)

Where Gy and Gk (k=X Y, Z) are the physical and logical gradient waveforms
respectively,R,, (0) is the same matrix in Equation 4.66. When motiocurs during
the acquisition, the orientation of the gradiertds needs to be adjusted in real time
to follow the motion. The rotation matrR.or from Equation 4.67 is thus used in the
pulse sequence to correct the combination of phalgiadient waveforms to generate

the desired logical gradient waveforms.

4.5.2 Slice Selection Displacement Correction
It has been shown in Figure 2-1 that a slice carexmted by applying a slice-
selective RF pulse. Since RF pulse is frequenagesigk, only spins resonating at the
same frequency can be excited. To make an RF mpa#ally selective, it is
necessary to make the spin resonance frequencyiopedependent, which is
accomplished by applying a linear z-gradient fieldring the excitation. In the
presence of this gradient, the Larmor frequengoattionzis given by
@(2) =y(B, +G,2) = 0, + )G,z [4.70]
Therefore a slice at positiom can be excited by an RF pulse with
frequencyw(z) . If, however, the object moves in this direction, frequency of the
RF pulse needs to be adjusted to select the sdogefst each excitation (Figure
4-12),

a)l(zidz)=7/(BO+Gz(z+dz)):a)0+7@z(z+dz) [4]7
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Frequency of

RF pulse
IJ‘ Slice-select A Slice-select

f /gradient gradient
o "

Figure 4-12 The change of RF frequency to selettte same slice when motion occurs. Under
the same slice-selective gradient, to follow the rion, the only way is to change the RF
frequency.

For a GE scanner, the RF frequency generation gaatibe broken up into 3
components: center frequency, slice selection dedtguency, and phase. The center

frequency isw,, which is only B dependent, e.g. 298MHz for a 7T scanner. The

delta-frequency component creates an output wischdded to the output of the
center frequency path for slice selectiopG(z in Equation 4.70). The phase
component determines the phase of the RF transisié p

Without loss of generality, we assurze0 from now on, because it is a
constant after scan plane prescription and ahlys the variable changing with
motion. Figure 4-13 shows the sequences for sétergon and the three components
that determine RF frequency and phase. For the GBfuence used in our
application, a SINC RF excitation pulse in conjumttwith a slice-selection gradient
is used. The center frequency is a constant, wisi@B8MHz as mentioned above.

After prescription by an operator, delta frequenty is set, which is zero here

because=0 (the black straight line ad,, ). Also, the phased, is zero.
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Figure 4-13 Slice selection sequences (RF puts®l z-gradient) and the three components that
generate the RF pulse, i.e. center frequency, delfeequency and phase. t=0 is the start of TR
and only one TR is shown here.

Figure 4-13 also shows a parameter isodelay, wisch very important
parameter for an RF pulse. After the RF pulse @ygad out, because of precession
caused by the slice selection gradient, the trasev@agnetization will generally not

be coherent across the slice. Instead there wilbhmese dispersiong(= )G, zt). A

rephasing lobe with an opposite polarity to theeslselection gradient is therefore
needed to compensate for the phase dispersionsdtielay is the parameter used to
calculate the optimal area of rephasing gradientis |defined as the effective

precession or dephasing time that results in tlaselaispersion across the slice. As
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shown in the figure, the rephasing gradient lolepétive blue lobe) should have the
same area as the slice selection gradient undgelesp
G, -isodelay= A, [2]7
Where A is the area of the slice rephasing lobe. The sbafiee rephasing lobe does
not affect the phase, only the area matters. FOISINC RF pulse used in GRE, the
isodelay is nearly equal to one-half the RF pulgktw

After the rephasing gradient lobe, phase dispersibnthe transverse
magnetization is eliminated for each RF excitatipulse. Since multiple RF
excitations have to be applied for imaging (Secfiadh?2), the phase at the start point
of isodelay should therefore also be consisteneéémh excitation.

If no motion occuredd, =d, =0, meaning no phase difference adjustment
is made between RF excitations. However, if therdisplacement in the z direction,
the delta frequency component needs to be changbdaw offsetd  =,G.,d,, a
phase therefore is accumulated. At the start afely, the phase is:

d, =/G,d, (At + pw_rf 1-isodelay [4.73]

This phase obviously is not zero anymore (the bhesof d,in Figure 4-13),

which will not cause phase dispersion across sln, rather phase difference
between every RF excitations. This phase needs teubtracted in the RF phase
generation path to recover net zero phase at iapdéte red line ofd, in Figure
4-13). All parameters in Equation 4.73 are knowteptAt, which is the period of
turning on the delta frequency before the RF pplags out. Therefore, to calculate

the correct phase, the constathas to be measured.
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To measureAt, a cylindrical shaped phantom was used. The adgartf this
phantom is that when scanned axially (and the pmardxis is aligned wittBy),
every slice is exactly the same. We set phase érmgogradient to zero, and
reconstructed the data with FFT transformation oinlythe frequency encoding
direction. The resultant is therefore a hybrid spanage, with every line in the
frequency encoding direction corresponding to thefilp of the phantom. Figure
4-14 shows the hybrid magnitude and phase imagieegbhantom (256128 matrix,

TR=100ms, TE=6ms, FA=10°, Slice Thickness=1mm).rifliee is exactly the same

due to identical phase encoding.

Figure 4-14 Hybrid magnitude and phase image dhe cylindrical phantom. Phase encoding
gradient is zero. Frequency encoding is left-rightlirection.

If a linear frequency is added to each RF excitafrequency, the selected
slices will vary correspondingly. However, becatls® phantom is cylindrical, every
slice along the slice-selection direction is theneaTherefore the measured signal

could be regarded as from the same slice. Whepltase encoding gradient is set to
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zero, the hybrid magnitude image will not changet the phase along the phase
encoding direction will change linearly, as showrrigure 4-15.

RF

k-space Magnitude Phase Complex
frequency

N\
N\

Figure 4-15 The hybrid space image after applyma linear RF frequency. Phase encoding
gradient is set to zero. For each RF excitation,stfrequency changes linearly with a step\w .
Perform FFT on each measured echo in k-space we cgat a hybrid image. The magnitude of
each line in the frequency encoding direction (showwith a curvature shape) represents the
object profile. The red line is to select an arbitary point in the hybrid image, and the phases of
those points also change linearly with a stepg . Complex means to combine the magnitude and

phase of the point in that line.

Only three lines are shown for illustration. The fRéguency changed with a
step Aw. The acquired k-space signals were reconstrucgeBHI along only the
frequency encoding direction. The magnitude prsfiEl have the same shape
because the profile of the phantom is independéice position. However, the
phase of any arbitrary point along the phase engodirection (red line) should vary
linearly corresponding td\w, shown asp, ¢+ A¢, ¢+ 2A¢. Even thoughAg can
be calculated by using only two lines, improvedcgi®n is achieved when using all

the information from an acquisition

view-1
Ag=ar z P PM] [4.74]
i=1
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Whereview is the total number of phase encodiRgjs the reconstructed complex
value of an arbitrary point (must be on the scartgdct) on thé™ phase encoding
line.

Then because

A¢g = Aw(At+ pw_rf 1/2—isodelay [4.75]
We can find the only unknown parametilr, which equals to 264s for the scanner
used.

If we calculateA¢ as the negative value of Equation 4.75 and change
phase of the RF pulse with tig, the linear phase change along the phase encoding

direction caused bwAw should disappear (keep the phase encoding grastidrat
zero), meaning the phase accumulation at the stagodelay is compensation to
zero. Since this compensation depends on a coneasurement oAt , the effect of
using variousAt for RF phase compensation is illustrated in FigtHE5, in which

Af (Af =27Aw) was set to 100Hz; (a) uses the corr&tt264 s and the resultant
phase image is very homogeneous showing the foltypensated phase, while (b-d)
uses At=180us, 230 us and 48Qs and the resultant images show obvious

uncorrected residual phases.
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(© (d)

Figure 4-16 The hybrid phase image of the phanto when phase encoding gradient is set to
zero. RF transmit frequency varies linearly along he phase encoding direction. (a) Phase
correction is calculated with At =264 .S ; (b) Phase correction is calculated withAt =180 45 ; (c)

Phase correction is calculated withAt =230 ; (d) Phase correction is calculated with
At =480us .

It can also be seen from Figure 4-16 that the plraage is very sensitive to

the change ofAt (if Af is set big, e.g. 100Hz), therefore the imagefitsah be used

for the measurement aft. After setting aAf for RF pulse, start changing its phase
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using variousAt. The At that results in the most homogeneous hybrid phaage

is the correciAt for the scanner.

4.5.3 Frequency Encoding Displacement Correction

A frequency encoding gradient waveform consiststvad portions, a dephasing
gradient lobe and a readout gradient lobe. Theripplaf the dephasing gradient lobe
is opposite to the readout gradient lobe, whiclused to prepare the transverse
magnetization so that an echo signal can be credtadater time. The time of the
echo peak is determined by the area under the deghgradient lobe. Because of
the similar reason as in the previous sectiongtii® reaches its maximum (all spins
are in phase, without considering Bthomogeneity, susceptibility variations, etc)
when the area under the readout lobe equals tartee of the dephasing lobe. To
describe this quantitatively, denote the dephagnaglient asGy, the spins along the
frequency encoding direction precess at differesgdencies:

o(X) = y(B, —G,X) [4.76]
The phase accumulation due to the dephasing gtafliera rotating frame with
frequency ofw, = B,) is
9y (X) = =G, XT [4.77]
WhereT is the duration of dephasing gradient.

When the readout gradie@ is applied, an additional phase dispersion is

introduced. The accumulated phase will be:

P(X) = G, x(t-T) [4]78
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At a specific timetecng=T, the phase in the above equation equals zero, inteati

the spins are in phase and form an echo. If we tenécho to be at the center of the
k-space, the readout gradient must be on for a Time2T (Figure 4-17). So during
the acquisition period from O fbq the sampled data produces a symmetric k-space

line spanning Kminto kg max(Figure 2-3).

t=0
|
Gx | i
| I
| C*Rﬂ :
| |
HEQ I : .
| | | |
| | | |
| | | |
| | | |
CF : : : : ; : 298MHz
At PWw, BXW
| |
| |
a, ! ! BW_
L ! ' xFov *
(I | I
d, {m
d, =d_(At'+pw_gxw/2)

Figure 4-17 Frequency encoding gradient, the acggsition window associated with it, and the
three components that generate the receive frequepand phase.

When motiondy occurs at this direction, the RF receive frequemegds to be

offset by

d, =1G,d, [4.79]
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Given a receive bandwidth+ BW and the targekFOV (x direction FOV), the
readout gradient should be

BW

7/ .

By substituting Equation 4.80 to 4.79, we can petdffset receive frequency

. BW d, [4.81]
xFOV

Similarly as in Figure 4-13, the offset frequendyacge results in an extra
phase on the echo signal. It has to be subtracted the receive phase for each
acquisition to get rid of phase difference causgdlifferentx displacement (Figure
4-17).

d, =d, (At'+pw_gxw/2) [4.82]
Wherepw_gxw/2is the pulse width (duration) of the readout geatliAt' is the time
interval between start of the delta frequency aatd dcquisition.

To measure At', we again set phase encoding gradient to zero and
reconstructed the hybrid phase image. Change tteveefrequency linearly with a
step Af (e.g. 100Hz) for each k-space line acquisition, emchpensate receive phase
using Equation 4.82 with various\t'. The At' corresponding to the most
homogeneous phase image was therefore the caxtedf the scanner. Figure 4-18
shows four hybrid phase images correspondingtto= 144.s, 100us, 200us and
300us. The homogeneous image (a) means the receive ghased by frequency
offset was all compensated and therefate = 144.<. The diagonal shape was due

to the applied linear change of the receive frequen
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(c) (d)

Figure 4-18 Hybrid phase image used for measureant of At'. Phase encoding gradient is set
to zero. RF receive frequency varies linearly alonthe phase encoding direction with a step of
100Hz. (a) Phase correction is calculated witAt'=144 4 ; (b) Phase correction is calculated

with At'=1004s; (c) Phase correction is calculated withAt'=200.s . (d) Phase correction is
calculated with At'=300us .

4.5.4 Phase Encoding Displacement Correction

Phase encoding gradient is applied while the mazat&in is in the transverse plane

but before the readout (Figure 2-2). By varying pi@se encoding linearly, a linear
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phase is introduced to the magnetization in thes@lesmcoding direction (Figure 2-2).
FFT is used to reconstruct the spatial informatibthe object.
Since the frequency and phase encoding can be zadhlyndependently,

Equation 2.11 can be simplified to one dimension:
N-1 )
s(k,) = Y p(nAy) exp(i 27k, nAy) [4.83]
n=0

Where y = nAy, Ay andN are the pixel size and number of pixels in phasmeéing
direction respectively. For each phase encoding, skee gradienG, changes with a

constant step creating a constai, (Ak, =AG,z ). TheN steps phase-encoding

starting at the bottom edge of k-space (Figure @aB)therefore be written as:

ky(m):(m—%)Aky m=01,...,N -1 [4]8
The signal is:
N-1
s(m) = > p(nAy) exp(i 2zinAy(m— N /2)Ak,) [4.85]
n=0

To satisfy the Nyquist criterion, the phase encgditep sizeAk, must be chosen so

that:

ORI S 456
yFOV  NAy

Substitute Equation 4.86 to 4.85, we have
N-1 ] 1

s(m) = Y p(nAy)exp(i2znay(m— N /2)——)
n=0 NAy 4 $7]

N-1
= > p(nAy)exp(m)expEi2znm/ N)
0

=

The image can be reconstructed from the discretzse Fourier transform:
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p(NAY)(-D)" = Els(m) exp(2mm/ N) [4.88]

m=0
The factor (-1) means to change the sign of the alternate elenuéntise output
image.
If there isdy displacement occurred in this direction, the phafséhe receiver needs

to be changed:

p(NAY +d,)(-1)™ '™ = fs(m) exp{i 27m (n+d, /Ay)j

-0 N
. [4.89]
N dy/ A i2zmd
= p(nAy+d,) =>"| s(m)(-D®'* ex TA—V (-D" expf2zmn/ N)
m=0 y
Note also that
N

k,(0) = —EAky =G, )z, [4.90]

WhereG, (0) is the gradient for the first step phase encoding.
—i —izN .

“)YY —exp P d. |=exg —Pd. | = exp—izNAK, d 4.91
(-3 {Ayy Ny O |~ exd-iaNak,d,) [4.91]
Substitute Equation 4.90 to 4.91, we get
(=)™ = exdi2mG, (O)r,d, ) [4.92]
Therefore, the phase offset needed to follpwisplacement is:

27m
dg = (Zmﬁy Oz, + yFOVde [4.93]

The first phase offset term in Equation 4.93 is phase accumulated in the
first encoding step; the second term is a lineasphramp, meaning the phase

increase2zd, / yFOV per phase encoding step.
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Note that most of the time, when off-center FOVeguired, the shift theorem
for Fourier transforms was simply used, which saysshift the image along a
direction, a linear phase ramp is needed in thguBecy space (the second term in
Equation.4.93). But in our case, this is not eyattle because phase encoding
started from O instead ofN2. Whend, is a constant, the linear phase ramp does
produce an off-center FOV. The constant phase (grsn in Equation 4.93) does not
affect the image contrast because magnitude image ot change at all and phase
image has only a global shift. However, wignvaries with motion, the first term
multiplied with dy is not constant anymore. Thus if not compensadetfacts will

appear.

4.5.5 Summary of Position Compensation
The pulse sequence updated the scan parameten® l@zfoh RF excitation. The
correction of motion for the GRE sequence can lpensarized as follows.
a. Correction for rotation was performed by adjustitige gradient rotation
matrix with Reorr (Equation 4.67).
b. Correction for slice selection translation was perfed by adjusting the RF
transmit frequency offset withyG,d,, and adjusting the RF phase with
d, =-,G,d,(At+ pw_rf1l-isodelay (Equation 4.73).

c. Correction for read out direction translation wasfgrmed by adjusting the

RF receive frequency witld | :%dx(Equation 4.81), and adjusting the
X

receiver phase witll , = -d , (At'+ pw_gxw/2) (Equation 4.82).
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d. Correction for translation in the phase encodiingation was performed by

adjusting the receive phase offset Wim@:(ZmGy(o)reryiﬂcr)andy

(Equation 4.93). (The total receiver phase offseherefore the summation of

phase shiftincand dl, =d, +d,)

4.5.6 K-space Line Re-acquisition
An additional feature of the pulse sequence wasitlaiowed for a re-acquisition of
motion corrupted k-space lines. This feature watkeddo reduce the effect of motion
that was too fast to be compensated by gradient RiRdfrequency and phase
adjustment. Re-acquisition was performed when tbaam that occurred during the
acquisition of a given k-space line exceeded aeprdweshold. The displacement
threshold for the reacquisition of a k-space linesvget to 0.2mm (because image
resolution was chosen to be about 0.2mm). A ratatioeshold was not used because
head rotation was always perceived as a displade&nvell. This is because
rotation is defined relative to the center of theage, whereas the head generally
pivots around the back of the head, where it igpetpd by the receive coil array,

opposite of the part of the head viewed by the came

4.6 Software Flowchart for the Motion Correctiorsfm

Figure 4-19 shows the software flowchart of thepps®ed motion correction system.

Calibration was done offine and was programmedhwMATLAB. Real time
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tracking software was running on Linux with C++. eThHracking computer
communicated with the MRI scanner through a TCPORnection to provide the

console (scan computer) with the real-time motiarameters.

(offine Caibration

Laft Camara Calibration

) ) Camera Systemn and MR
Stereoc Camera Calibration [ Sranner Calibration

yal

Right Camera Calibration

éual-Time Gnrrer.:tioa

Feature Point Detection in Left Camera

L 4

Find Comesponding Point in Right Camera

v Phase encoding step n=0

Feature Point Tracking -

L

3D Reconstruction

¥

Motion Estimation in MRl systam

v TCP/IP

Prospective Correction for MRI Scan

b 4

Yes

Figure 4-19 Software flowchart for the prospectie head movement correction system for MRI.
Calibration is all done offline and programmed with MATLAB. Real-time correction is
programmed with C++ running in Linux. N is the number of total phase encoding steps for a

scan.
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Chapter 5Results and Discussion with the Stereo Motion
Correction System for MRI

5.1 Camera Calibration Test

The cameras used in this project have 4 mm lensgésvare positioned about 8cm
away from the volunteer’s face. Distortion of tin@aiges is very serious. Figure 5-1a
shows the distortion model on each pixel of onthefstereo cameras. The blue cross
in the center marked the image center and the diake marked the principal point.
Each arrow represented the displacement of thd pawesed by lens distortion. The
displacement was bigger at the corners of the imadpch reached more than 50
pixels. It meant that without a correct camerabration, the 3D estimation from
stereo would not be accurate. Image (b) shows ekehgoard image acquired with
the corresponding camera. The edges of the chemketlpattern were not straight.
Instead, they were curved because of the distationage (c) shows the image after

distortion correction, which recovered the straigféckerboard edges.

Complete Distortion Model

1L L T
Pl

Tl e e S
R T T | L
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Figure 5-1 Lens distortion and correction for acamera. (a) Distortion model of the camera.
The arrows and number on the curve mark the distorion direction and amplitude. (b) an image
of a checkerboard pattern. The lens distortion is bvious especially close to the corners of the
image. (c) lens distortion corrected image of b.

5.2 Stereo Reconstruction Validation

The checkerboard pattern was attached to a higklysittve, 6-axis-
positioning system (M-824 compact 6-axis-positiongygtem, Physik Instruments,
GmbH & Co. KG, Germany) to test the stereo’s accyurdhe hexapod was driven
by six high-resolution actuators with sub-microregsion Experiments were done
outside of the scanner since the positioning systers not MR-compatible. The
cameras were fixed firmly on top of the moving fdan at a distance of about 8cm
to simulate the position of the stereo with resgecthe human face. The platform
was controlled by a computer to move in the X, iy & direction over known
distances and rotate around the three axes withvikriegrees, where the x, y and z
were defined as the two orthogonal axes of thégrlat and the z axis was defined as
pointing out of it. Camera images were acquire@ath position to measure these

movements. The discrepancy between the real andureghpositions was evaluated
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to determine the stereo’s accuracy, which turned tm be 0.04+0.03mm,
0.03£0.02mm and 0.02+0.01mm in X, y and z directaond errors of rotation around
X, Y and z axes were 0.03+0.13°, -0.02+0.05" afd#D.03° respectively. This high
accuracy is well within the highest available MRIsgkition, which garantees

adequate motion correction.

5.3 Tracker Noise Evaluation

Since the motion correction was performed for eachuired k-space line, the
tracking noise was also an important factor. Owl-tiene tracking was based on
feature points, which provided sub-pixel accuragy Wwas also sensitive to noise in
the video images. The tracking noise was evaluayetionitoring a stationary object
for several minutes by tracking 3 feature points.

When the tracker was set up outside of the scatimemoise was very small
even by tracking only 3 feature points, as showrTable 1. However, when the
tracker was put inside the MRI, a significant inseaf the error was observed, even
without scanning. During a scan the noise levelaased even further. This might be
attributed to remaining interference of the MRI senwith the video cameras.
These findings suggest that there is an effech@fstatic magnetic field as well as of
the switching gradients and/or RF. The maximumsdigtion error exceeded 2mm,

which was unacceptable for the high-resolution MRtion correction.
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Table 1 Accuracy and noise of the tracker when was put outside or inside of the scanner.

Tracker Qutside

Tracker Inside (no

Tracker Inside (during

scan) scan)
Mean o Max Mean o Max Mean o Max
x (mm) 0.065 0.047 0.215 0.002 0.315 1.057 0.702 0.609 2.772
y (mm) 0.027 0.014 0.068 0.076 0.034 0.179 0.052 0.057 0.314
z (mm) 0.029 0.025 0.107 0.158 0.221 0.918 0.111 0.288 1.138
rx () 0.021 0.014 0.061 0.146 0.169 0.740 0.047 0.226  0.881
ry () 0.016 0.024 0.081 0.068 0.080 0.338 0.034 0.143 0.588
rz () 0.038 0.028 0.132 0.019 0.249 0.864 0.545 0.485 2.166

To reduce the tracking noise, multiple feature inere used. Figure 5-2

shows the maximum x-translation error as a funotibthe number of feature points.

It shows that tracker noise decreased with incngasumber of feature points. For

our application, we opted to select around 20 gotiot keep the maximum error

below 0.2 mm and 0.2 degree.

Max x Translation Error(mm)
t

5

10

15

20

Number of Tracked Feature Points

25

Figure 5-2 Noise of the tracker. The maximum xranslation error as a function of the number

of tracked feature points.

However, the number of feature points on the hufaee detectable with both

video cameras was often below 20, in part becafiseeocameras’ limited field of
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view of about 13 x 10cfn To overcome this we decided to place a stickethen

subject’s forehead that displayed a number of whigagles on a black background.

5.4 Calibration Accuracy Between Stereo and MRIBimate System

The calibration phantom (Figure 4-2) was used &t the calibration accuracy
between the stereo system and the MRI scanner, Bisstphantom was put at an
arbitrary position. The stereo measured the copositions in 3D and transformed
them to MRI coordinates based on the calibrationltesThen 3D MR images were
acquired, from which the 3D MRI coordinates of therners were determined.
Accuracy was obtained by measuring the discrepartyeen the estimated position
(obtained by using the camera model and calibraparameters) and real ones
(measured from MR images). This procedure was regeat different arbitrary
phantom positions. The accuracy of these points fwasd to be 0.06+0.05mm,
0.10+£0.08mm and 0.15+£0.13mm in the X, y, and zctima in the MRI coordinate
system respectively, which should be sufficienttfa@ motion compensation task.
The results are also visualized in Figure 5-3 whretation and translation
parameters are calculated from these points ardiit phantom positions. Solid lines
show parameters estimated using MRI images. Dotiees | show parameters
estimated using camera images but further trangidrmto MRI coordinate system.
The two sets of estimation matched very well, wmobkans the calibration between

the two coordinate systems was accurate.
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Figure 5-3 Rotation and Translation parameters stimated from MRI images (solid lines) and
from camera images transformed into MRI coordinategdotted lines). The two sets of lines
matching very well means the calibration between eaera and MRI is accurate.

5.5 Pulse Sequence Test with a Phantom

To test the accuracy of RF frequency and phasestu@nt for translational
displacement in slice-selection, phase-encodingfaatpiency-encoding directions, a
high resolution phantom was scanned with our mediflcRE sequence. (Rotation
doesn’t need to be tested for the sequence bedaass requires rotation matrix
adjustment but doesn’t need any frequency or pbasgwensation.) Halfway through
the experiment, a translation of 10mm was execatetithe scan was continued until
the end with the phantom staying at the new pasifidhe particular motion pattern
was used to maximize errors near the centeryedfplce, which causes the most

salient artifacts.
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Figure 5-4 shows the results of three sets of s€abh6x128 matrix, TR=
100ms, TE= 6.9ms, FA=38D The first column represents the control scarheuit
motion, second and third columns represent scanb displacements, without
correction and with correction respectively. Digglaments were executed all in the
OwmZwn direction, so for axial scans (a-c), displacememse in the slice-selection
direction; for coronal scans (d-f) with frequenayeding superior-inferiordyZy),
displacements were in the frequency-encoding decfor coronal scans (g-i) with
phase-encoding superior-inferiddyiZy), displacements were in the phase-encoding
direction. It can be seen that for all cases, tisplacements were compensated
successfully, which means the measurement of scapeeific timeAt and At' is
accurate and the strategy of RF frequency and pdjastments are correct.

Note that image (g-i) show an aliasing artifact daese of the small FOV
prescribed in the phase-encoding direction, whiobywever, does not affect the

displacement compensation test.
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(9) (h) 0)
Figure 5-4 Translation compensation of a phantom(a,d,g) were scanned statically; all others
were scanned with the phantom locating in one pogiin for the first half of the scan and the
second half in another position 10mm apart. (b,e,hikere scanned without position correction,
but (c,f, i) were with correction. Displacements ina-c) were in slice-selection direction; (d-f)ni
frequency-encoding direction, and (i) in phase-encoding direcion.
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5.6 System Performance Test

With all the separate parts of the prospective omotiorrection system validated, the
performance of the system as a whole needed tedtedt The optimal way is to
evaluate hybrid space data of a scan with moti@taBse ideally without motion, all
lines in the phase-encoding direction should bectbxaligned. Imperfect alignment
would indicate imperfect motion compensation. Iftimo can be corrected fully, then
an alignment should be achieved.

We set phase encoding gradient to zero and recatstr the hybrid data
(resolution 0.23mfM TR=100ms, TE=25ms, FA=10°). Figure 5-5a showsionot
induced by the breathing of a volunteer recordeth he tracker during the scan.
Image (b) was scanned without real-time motionestiion and the lines in the phase
encoding direction shifted during the scan. Whesspective motion correction was
applied for image (c) acquisition, those lines wataligned.

Since the in plane resolution was only 0.2mm, tbdegatly aligned linesn
Figure 5-5b suggested that the error of the wholeection system should be less
than a pixel or 0.2mm. Therefore, this is a quickl @oarse way to validate the

accuracy and reliability of the system.
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Figure 5-5 The MR hybrid image without phase emading gradient. (a) Small breathing
induced head movement was observed during the scafthe volunteer. (b) without motion
correction; (c) with motion correction.

5.7 Volunteer Study

The efficacy of the tracking system was studiedaonormal volunteer under an
institutional review board-approved protocol. A rinail in-plane spatial resolution of
0.23 x 0.23mm a slice thickness of 3mm, 300ms TR, 25ms TE didfl angle

were used. Four motion conditions were studied: witk cyclic breathing-related
head motion (Section 5.7.1), one with minimal mot{&ection 5.7.2), one with large

stepwise motion (Section 5.7.3), and one with sjpadual motion (Section 5.7.4).
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5.7.1 Breathing Related Motion
During this experiment, the volunteer was instrddte not pay any effort to lay still.
Motion parameters reported by the tracker (Figuéa®) showed cyclic head motion
with a period consistent with the respiratory cydlbe observed rotation was mainly
around the x-axis and the translation along thgiz{@ the MRI physical coordinate
system), which suggested a nodding like motion. §ds was performed twice, once
without motion correction and once by using thespextive motion correction
technique proposed here. Figure 5-6c¢,e showecttieat though the motion was only
about 2mm and 1°, ghosting and blurring artifactsenclearly observed in the high-
resolution images (0.23 x 0.23rAin-plane resolution). The prospective line-by-line
motion corrected image using our real-time comp@msasystem showed much
improved image quality and a virtual eliminationgifosting artifact (Figure 5-6d,f)
as compared to the uncorrected images (Figure €:6Ehe reacquisition rate was

2.3%.
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Figure 5-6 Prospective breathing induced motionorrection for the 2D gradient echo
acquisition. Images (a,b) show the evolution of mimn parameters reported by the tracker
during the acquisition of images (c) and (d) respdiwely. Image (c) was scanned without motion
correction, and (d) was with motion correction; (e)and (f) were zoomed in on an area in the
frontal brain indicated by the red square in imagegc) and (d) respectively.

5.7.2 Minimal Motion
During this experiment, the volunteer was instrdcte stay as still as possible.
Despite the efforts of the volunteer, the motiomapgeters reported by the tracker
(Figure 5-7a,b) showed a small gradual and jitennotion. This scan was also
repeated twice, once without (a,c,e) and once \Wth,f) motion correction. Both
uncorrected (c,e) and corrected (d,f) images hawdlas quality and show little

evidence of ghosting. The reacquisition rate otiFegb-7d was 4.6%.
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Figure 5-7 Prospective motion correction data dhined for a volunteer that attempted to
minimize head motion. Images (a,b) show the motioparameters reported by the tracker during
the acquisition of images (c) and (d) respectivelymage (c) was scanned without motion
correction, and (d) was with motion correction; (e)and (f) magnify an area in the front of the
brain (the area marked by the red square in (c) andd) respectively).

5.7.3 Large Stepwise Motion
Experiments in the presence of strong intentionaion demonstrated the robustness
of the prospective motion correction technique (Fég5-8). The motion parameters
reported by the tracker indicated a range of modibalose to 10 mm translation and
10 degree rotation. The severe ghosting and bturartifacts observed without
correction (e,h) were almost entirely avoided vatbspective motion correction (f,i),
and the image quality of (f,i) was very similar (ghg), which were acquired in the
absence of intentional motion and with motion ccticer on (motion parameters in

a). The reacquisition rate for (f,i) was 10%.
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Figure 5-8 Example of the performance of the prg=ective motion correction method in the
presence of large stepwise motion during the acquii®n of multi-shot 2D gradient echo images
on a normal volunteer. Images (a-c) show the motioparameters reported by the tracker during
the acquisition of images (d-f) respectively. Imagéd) was scanned without intentional motion
during the scan, whereas (e,f) were scanned in tipeesence of motion; (e) was acquired without
correction but (f) was acquired using the proposedhethod. (g-i) show additional detail in an
area in the front of the brain that was indicated ly the red square in images (d-f).

5.7.4 Slow Motion
The final motion type that was investigated waswslmotion resulting in large
displacements and/or substantial rotation angleenEvithout any reacquisition this
type of motion was handled well by the prospectivation correction system. The

motion parameters reported by the tracker (Figuéd,6) showed that the range of
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the motion was close to 10 mm of translation andd&@rees of rotation. The
reacquisition rate for (f,i) was 0% since the reasjon mode was turned off. Image
quality of (f,i), when motion correction was useslas notably better than (e,h),
acquired in the absence of motion correction. Funtore, image quality of (f,i) was
similar to (d,g), acquired in the absence of interdl motion (motion parameters in

a).
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Figure 5-9 Prospective motion correction in th@resence of slow motion. The motion
parameters reported by the tracker during the scarof images (d-f) are displayed in (a-c),
respectively. Image (d) was acquired in the absencd intentional head motion, (e,f) during slow
head motion, where, unlike (e), (f) was acquired h the proposed correction method. A
magnification of the area in the red box in (d-f) $ shown in (g-i).
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5.8 Discussion

In this study, a method for the prospective coroectof 3D motion for high-
resolution MRI was developed and evaluated. Preamyimlata obtained on a human
volunteer show substantial image quality improvetrfen high resolution gradient
echo imaging at 7T, in particular under conditiofgeriodic head motion related to
breathing and intentional head rotation.

To obtain adequate tracking accuracy, the cameeass put right above the
MRI receiver coil, monitoring the human face fronvexry small distance. Since the
stereo 3D reconstruction accuracy depends on thle and relative distance between
the two cameras, the best setup of the two canstrasid be explored further for
better accuracy.

The accuracy of the calibration between the tracket the MRI scanner is
also essential for system performance. Since alitbtion parameters were estimated
in the camera coordinate frame, they had to besfoamed precisely to the MRI
coordinate frame to be used in the sequence. Haweaigoration was difficult in this
system because the tracker can only see the swfdbe calibration object, whereas
the MRI can only see its internal structure. A poerg publication (25) dealt with this
issue in an iterative way. They used three geddilieflective spheres for estimating
the initial coordinate transformation, and themat®ely refined this transformation
based on the internal structures of the phantoris Miethod, though accurate, took
more than 30 minutes to accomplish. This limitatieess addressed in our project by
designing a phantom with high resolution, well @edke structures. Since every

parameter of the phantom was known, the relatipndbetween the external
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appearance (black-and-white checkerboard) andniatéviR-visible structure was
easily established, which simplified the calibratemd shortened the calibration time
to several minutes.

The noise of the tracker was another importantofaessential for reliable
correction of MRI data. It was demonstrated herd Htaleast 20 feature points
needed to be tracked for adequate precision. Becaluthe setup of our cameras,
only a part of a face, lacking a large number atdee points, could be seen from the
cameras. This was the reason for using a “trad@rget” mounted to the forehead. If
the cameras could be put further away from the,fdoect tracking of the face
curvatures could be used instead of these featirdgsp Fixing the cameras to the
inside of the magnet bore, instead of to the trainsail as was done here may be a
solution. Another solution to this issue of limitédld of view would be the use of
cameras with a fish-eye lens, which would give rgda view for a given camera
distance from the face. However, the camera distortorrection may be more
complicated. It has also been demonstrated thatdlse comes from the interference
between the cameras and the MRI scanner, so a bkigdding or hardware filtering
could be a solution too.

Due to the tracker’s relative low frame rate sorast imotion could not be
adequately corrected. For this reason, a reacmusfunction was added to the
sequence in this project. The number of re-acquiiregs (reacquisition rate) was
dependent on the type of head motion and quiteki e.g. 2.3% for the conditions
presented in Figure 5-7d and 10% for those in Eidu4Bf. Considering the resulting

improvement in image quality and the small increasdaotal imaging time, this
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sacrifice appears worthwhile. Nevertheless, impdavacking speed might reduce or
eliminate the need for re-acquisition. This was ficored in the “slow motion”
experiment, during which the re-acquisition wasiéar off. Under this condition, the
tracking speed exceeded the head motion speedtingsn excellent image quality
without any reacquisition, as was seen in Figug€f). With the continuing increase
of computational power, and improved motion tragkedgorithms, it is therefore
expected that the need for re-acquisition will leeluced. One possible area for
improved tracking is the use of predicitive estiesator object motion, for example
by using Kalman filtering.

Although the motion correction scheme presentece hgas effective in
reducing the effects of motion on image qualitg(eompare Figure 5-6d and Figure
5-8f with correction versus the not corrected \asiin Figure 5-6¢ and Figure 5-8e),
there remain possibilities for improvement. For rapée, the motion-corrected
images in Figure 5-8f and Figure 5-9f are slightijerior to the corresponding
images acquired during the minimal head motionyfagp-8d and Figure 5-9d). This
apparently imperfect motion compensation could be  a number of factors, for
example phase changes due to small changes inBgeahplitude, or subtle changes
in B; amplitude and phase. The contribution of thesecedf and their potential
mitigation remains to be investigated.

In this current method, quantitative validationimiage quality improvement
on volunteer study has not been fulfilled. One It teasons is that since image
resolution is only 0.2mm, the reference image (mmion) can hardly be exactly the

same slice as in the with motion case, which makemtitative comparison very
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difficult. To get a better validation, we need ¢ésttthis technique on more volunteers

and ask neurologists to give objective judgmenttherimage quality.
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Chapter 6 Prospective Motion Correction for MRI using a
Single Camera

A substantial amount of clinical and research MRhag®s are rendered unusable
because of subject motion. To solve this problenosgective motion correction
based on external tracking systems has been prbp8s&eo optical tracking system
has been shown to give good real-time motion comeavith reasonable accuracy.
However, the calibration of this system is very ptinated and time consuming, as it
requires a camera system calibration as well aglibration between cameras and
MRI system using dedicated phantoms. We therefaspgse an alternative motion
correction method for MRI that does not requirelration and can work with just a

single video camera.

6.1 System Setup

All experiments were performed on a GE (Milwauked, WSA) 7T MRI system. An
MR compatible infrared camera (MRC Systems GmbH, Gagnwas fixed on a
holder right above and in front of the head coig(ffe 6-1). Six infrared emitting
diodes were used to illuminate the field of viewheTdistance from the camera to
volunteer’s face was around 8cm. The high spatsblution of this setup (320 x 240
pixels, about 13 x 10chfield of view focusing mostly on the nose of thdunteer)

allowed the detection of sub-millimeter movements.
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Camera Coordinate System

MRI Coordinate System

Figure 6-1 System setup. The camera was fixedyht on top of the head coil.

6.2 Method

Rather than using phantom calibration scans, theshad uses training scans to
estimate head position and link the camera imagasarement to the MRI scanner
coordinate system.

During the training scan, the subject was askeslawly move his head in the
directions that were least restrained, includintptrons in the axial and sagittal
planes.N EPI (Section 2.1.3; parameters: 128x96 voxels @ver18 cm, 11 3mm
slices with 0.5mm gap, TE 50ms, TR 1.2s) and camei@ges were acquired
simultaneously (Figure 6-2). From the EPI imagesfiom parameters in the MRI
coordinate system (3 rotations and 3 translatidmsjween each volume were
calculated with image registration method. Sincenea images were acquired
simultaneously with EPI, each camera image inithieing data thus corresponded to
a motion vector. The training data were then saeskd on the motion parameters to
help speed up the real-time search. An ROI regioa fose) was also selected based

on these training camera images.
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Figure 6-2 Method of the motion estimation using single cameraN training EPI and camera
images were acquired. From EPI images, 6DOF motioparameters were calculated from
registration for each training data. During the red-time scan, the most similar camera image in
the training data was found for the newly acquiredcamera image. The corresponding motion
parameters from EPI were sent to MRI pulse sequend®r prospective motion correction.

During the real-time scan, the correlation betwéem ROI of the newly
captured camera image and the ones in the traga@ntera images was calculated to
find the most similar one. The corresponding motparameters of that training
image served as the estimation of the current peaiion. These motion parameters

were then sent to the MRI scan computer at 10Hedsp& gradient echo sequence
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was modified to incorporate motion correction byuating gradient rotation and RF

frequencies and phases before each RF excitatemti¢8 4.5).

6.2.1 Motion Computation
The motion parameters can be calculated from\tf&P1 images in the training data
through image registration. Image registration lnes the mapping between a pair of
images, so that one image after transforming vhth mapping parameters can be
matched to the other one.
Y, =R X, +T, [6.1]
WhereXi=[x1, X2, Xia] " andY=[yi1, Vi2, Vis] " are the corresponding points in the two
images in MRI physical coordinate system (after dfarmation as in Section 9.2)
andRy, T are the rigid body transformation between them.

The registration parameters can therefore be detedrby minimizing the
sum of squared intensity differences between imdgeaston et al., 1995; Friston,

2007):
£ = Z”Yi -RX, —Tt”Z = Z”Yi - (X, ?pt)||2 [6.2]

Where f is the transformation function, amal = [pa, Pw..., Pl iS the vector
containing three rotation and three translatiorapeaters.

Givenn corresponding points in the two images, Equati@cdan be solved
using Gauss-Newton algorithm (Section 9.3). Forriikiteration, the vectop; is

updated as:

p, ™ =p, ™ +(373)"3"b 6.3]
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ot (Xip, ™) of (X,ip, ™) of (X;p,™) |
aptl aptZ aptG
of (X,ip ™) of (X0 ™) of (X,:p,™) |
Where J = 0Py 0P, Py (3nx6 matrix) and
M M M
of (X,ip ™) A (X ™) of (X,:p,™)
aptl apt2 aptﬁ
Y, - f(X;:p,"™
L~ FXgpe )
_ o (M
£= Vo= TXaip ) (3nx 1 vector).
M
Y, - (X0, ™)

For each iteration stepy; are re-sampled using the new transformation

matrix. The iterative process is repeated ugttiican not be decreased or for a fixed
number of iterations. This approach is based onasumption that the starting
estimate is close to the correct solution and ti&gie is smooth, which is the case in
our application because the motion between suaeessiages acquired in the
training data is very small and the relative lowalation EPI images are smooth.
Therefore the possibility that a solution stuckaifocal minimum instead of a global

minimum is small

6.2.2 Best Match Search
The search for the camera image in the training tizt most closely matched the
newly acquired image was realized through a simtylaneasure. The correlation
coefficient (CC) is optimal in similarity measures aefined in Equation 4.48,

reiterated here for a correlation between imagaadB within a windowWw:
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3 (Ax) - A)(B(x) - B)
cc= W [6.4]

J@(A(x)—ﬂ)jzJ@V(B(x)j)]z

Where A and B are the mean pixel values of imageandB within the windowWw

respectively. To speed up the computation, theetadron in image space can be

calculated in frequency space using FFT.

Let A(x) = AX)- A, é(x) = B(x) — B, then the numerator in Equation 6.4 is

CC, = > A(x) B(x) =§ A(n) B(n) [6.5]

Where N is the size of the window. It can be calculatetbuigh IfA(k), Fourier

transform ofA(n); and IfB(k), Fourier transform oé(n).

Since

~ N-1 Ak .
IFFT[FA(k)-F (k)):%z (K)-Fo (k)e'2mmK/N
k=
N-1N-1 . N-1 . . .
% z A(m)e~12mk/ N -ZB(n')e'z’m k/N gi2zmk/N
n'=0
~ N-1 i A
_1E n)B(n.)[ze i27(n-n m)k/Nj
N n=0n'=0 k=0

The quantity in parentheses is 0 for all valuesnbfexcept those of the form

n'=n—m+ pN, where p is any integer. At those values, it is 1. Therefor

IFET (E, (k) - Fs (K)) = S AMB(—m+ pN) [6.6]

=0

>

By comparing Equation 6.6 with 6.5, the correlaticoefficient can be
calculated as follows: convert the two images toVHotors, FFT the two vectors,

multiply one resulted transform by the complex cgajte of the other, inverse FFT
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transform the product and the first componemt() is the correlation coefficient. All
other components dFFT(IfA(k)- IfB*(k)) are the values of the correlation at different

lags.

6.3 Result

6.3.1 Accuracy of the Motion Estimation

To estimate the accuracy of the method, severautesnof data were acquired,
consisting of 145 EPI volumes and the corresponti#tgjcamera images. During this
time, the subject slowly moved his head in thedfioms that were least restrained,
mainly rotations in the axial plane. All the EPlages in the training set were
registered to a reference (the first volume in trening set can be used as a
reference) to get the motion parameters. The rafgetation around g axis was
about 17 degrees and translation jp cirection was 18mm (Figure 6-3).

Figure 6-4 shows the correlation of two randomlys#n images in the
training data set with all images. The curve sutgyésat the correlation is higher
when positions are close, which means CC is a goeasurement for most closely

match image search.
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Figure 6-3 Motion parameters from the training data set. The total number of training images
is 145. The motion is mainly rotation around £; axis and translation in X, axis.
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Figure 6-4 Correlation of two randomly chosen irages with all training images. Red crossings
mark the chosen image, (a) the correlation betwedmage No. 47 with others; (b) the correlation
between image No. 100 with others.

To test the accuracy of motion estimation, the daee divided into two sets,
set A and set B. For every camera image in sdiétost similar image in set A was
determined based on correlation. The motion parmet this image in set A served

as motion estimate for that image in set B, whetieadrue motion was derived from
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registration of the EPI image in set B to the refiee. Difference between camera
derived position and EPI registration parameters waed to validate motion
estimation accuracy.

A k-fold cross-validation method (Duda et al., 200Bswsed, wherk was
chosen to be 10. Training images were divided ktolds. For each trial, one fold
images were used as set B, while the remaikifigold images formed set A. After
repeating the validatiok times by using all different sets of B, the averagror
across thek trials was computed. Translation error i, XYy and 4, direction is
0.021+ 0.249mm, 0.004 0.052mm and 0.0010.066mm and rotation error around
Xm, Ym and % axis is 0.00%0.026°, -0.00%0.050°, and -0.0060.129°
respectively.

However, note that this error estimation was onhe tif the sampled motion
space covered the whole space the volunteer coolte nmside the head coil. For
instance, if the sampled space during trainingestagy covered rotations abouf Z
while during the real-time scan, the volunteer ntbaeound X axis, even though a
most closely matched image in the training dataccte determined based on the
highest correlation coefficient, the estimated wmotparameters were not correct.
Therefore the key issue for this method is to sangd complete as possible the

motion space (the volunteer moves as much as heloang the training stage.
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6.3.2 Volunteer Study
A GRE sequence modified to incorporate motion afiwae by adjusting gradient
rotation and RF frequencies and phases before R&ckxcitation was used on a
normal volunteer under an institutional review labapproved protocol (parameters:
512x384 voxels over 24x18 ém3mm slice thickness, TR=100ms, TE=30ms).
During the real-time scan, the most similar camerage in the training data was
found for the newly captured camera image baseti@gorrelation coefficient inside
the ROIs (nose area chosen from the training dathg corresponding motion
parameters of that training image were sent td\iRe scan computer at 10Hz speed
for prospective motion correction.

Experiments were performed with and without motemmrection each with
similar motion. Results are shown in Figure 6-5e Tihage quality of (b) is similar to
(a), and much better than (c). The results sugthestthe new system has good
precision to be used in high resolution MRI. Moticarameters shown in (d,e) were

not smooth because of the not dense enough sangblthg training data acquisition.
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Figure 6-5 Prospective correction of large motio. (a) was acquired without intentional motion
during the scan. (b c) were scanned in the presenoémotion; (b) was acquired using the
proposed method but (c) was without correction. (&) show the evolution of motion parameters
during the acquisition of image (b,c), respectively

6.4 Discussion

We propose a new motion correction method for MRhgisingle camera without
any calibration. A short training scan is requitedallow object motion estimation
from the camera images. It does not need any trgdirget, therefore is more user
friendly. Initial testing results show that this tined is very promising.

The major factor that affects the motion estimatonuracy is the registration
error from EPI images. Even thought registratiom ¢gt sub-voxel accuracy, if
motion occurs between the acquisition of the fastl last slice of a volume, rigid

body registration is not able to correct. This doé a problem in our training data
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acquisition, because the TR of EPI acquisition seisrelatively long (1s) to get a
good coverage of the brain, and the volunteer vgé&kedato continuously move his
head during that period of time. In addition, ghasifacts in a single slice could
make the registration even harder. A solution te ihthat during the training period
of time, the volunteer should move very slowly tdroduce negligible artifacts
coming from these two effects.

Another issue that could affect the accuracyhes EPI image quality. The
tradeoff for EPI's fast imaging speed is that itffexs image distortions, especially in
a high magnetic field like in our case, which mayturn affect the registration
performance. Field inhomogeneity can cause imagi@rtions and even signal loss.
Even though a high order shim can ameliorate thablpm to some extent, the
inhomogeneities remain, particularly close to tesair and tissue-bone interfaces.
And even the field can be shimmed to almost homeges in the brain for
acquisition of the first image in the training, theld changes when volunteer moves
for about 20 degrees and 20mm, which could resuldifferent distortion in the
images and cannot be recovered by solely registratturthermore, gradient non-
linearity, Nyquist ghost, etc, could also distorPIEacquisitions (Cohen and
Weisskoff, 1991; Farzaneh et al., 1990; JezzardGiack, 1999).

The correlation coefficient was proved to be optimaearching for the most
similar image in the training data for a new imalgevas not only accurate, but also
insensitive to noise because global informatioannmage has been used. However,
the accuracy for motion estimation does not jut om the best image search. It

depends on the completeness of the sampled mgiame sluring training stage. If the
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sample space is very limited, then the best mat&ye is not able to provide correct
motion parameters.

In conclusion, to get the best performance withs timethod, several
conditions have to be satisfied: EPI image quatguld be good and the volunteer
should move slowly and to the full extent (not Etgecause of the tight receive coil

used) during the training data acquisition.
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Chapter 7Conclusion

Head motion during scanning can greatly affect MiRhge quality and is a major
reason for rendering data useless in both clingcad research application. High-
resolution brain structural imaging is especialympromised by head movement
because high-resolution scans have longer scan ime new motion correction
methods were proposed here using either stereosorgée camera to measure and
correct rigid body motion in real time. A gradiestho sequence was modified to
accept motion estimates before each TR to adjesgthdient orientations and RF
frequencies and phases for each excitation. Images reconstructed on the scanner
computer for immediate access. Experiments donk tdith of the two methods
demonstrated a consistent improvement in imageitgutimotion occurred during
the acquisition.

The advantage of using an optical system was t#dlygarallel computation
to the pulse sequence, therefore no extra scarimmg was needed for motion
detection. The camera set up right on top of thadheoil provided very high
sensitivity for motion estimation.

For the motion correction method using stereo camjethe position
estimation accuracy was better than 0.1mm and Ovilsich has been shown to be
good enough for high-resolution imaging. Howeverdid have several drawbacks
that a good calibration took some extra preparaiioe before experiments, and the
“tracking target” used for motion detection was matially user friendly. The first

problem was not a big issue since stereo calibratidy needed to be done offline
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once as long as the cameras were fixed solidlyhenhblder (Section 9.4), and the
calibration between the cameras and the MRI scanasrsimplified to just several
minutes. For the second problem, the tracking tanges used only to remove noise
caused by the scanner. A better shielding of timeecas should be able to solve the
problem.

For the single camera method, no calibration wasleé at all, but only a
short training period. The big advantage of thighod was that no tracking target
was needed, because face features were used\dficgathotion detection. It is more
user friendly. However, the accuracy depended aototEPI image quality and
sampled motion space during the training stage. tRer first problem, parallel
imaging (Pruessmann et al., 1999) should be ablenpyove both the speed and
image quality. For the second problem, the volunséeuld be instructed to move as

much as he can inside the coil during the traimiat acquisition.
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Chapter 8 Future Work

In this project, two systems were built for progpex motion correction for high-
resolution MRI in 7T. The feasibility of using opdictracking system to help MRI
image acquisition has been demonstrated. But futtorkk can be carried out to
improve the performance further.

Both methods calculated motion after acquiringeuidlata. Therefore, there is
always a time delay for correction in the sequercdaetter solution is to predict
motion using the Kalman filter. Another positiveafere about Kalman filter is its
ability to remove tracking noise, which may furthead to an unnecessary tracking
target for the stereo correction method.

Currently, the motion calculation was done cortiimgly and whenever it was
ready, it was sent to the MRI scan computer. The BtRh computer then read the
motion parameters inside the registers and exedbhtedorrection. Therefore when
MRI started to read the data in the registers, thay not be fully updated yet. As a
result, the adjustment of gradients and RF fregesn@nd phases may use
uncorrected parameters. A future work is to syncizethe motion computation and
MRI motion correction to avoid this problem.

A better way to acquire training data for theggncamera method is to
synchronize camera image acquisition with navigat®dhe purpose of training is to
link camera images with motion parameters in MRtesys The EPI takes too long to
achieve this. A 3D navigator, however, will takdyoseveral milliseconds to tens of

milliseconds. As a result, the sampling of completation space will take less than
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one minute. With this method, we will be able tantmne the advantage of both
optical system (parallel computation with the seope® and navigator (fast

acquisition), and is believed to be more practical.
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Chapter 9 Appendices

9.1 Derivation of motion in logical coordinate syst

The rotation and translationR(, and T,,) between MRI physical and logical

coordinate systems can be read out from the palgeesce after the scan-plane is
prescribed as in Equation 4.66 (the time variabig dropped for brevity):

X =R (X;+Ty) [9.1]

New motion parameters are denotedRsand T,, in physical coordinate system.

Use subscripts “0” and “n” to define the positiogfdre and after motion (short for

“old” and “new”), we have

X" =R_(X%+T,) [9.2]
and
Xo =R (XP+T,) [9.3]

The new motion parameters in logical coordinateesg®R, andT, must also satisfy
the physical and logical relation, as

Xp =R, (X['"+T,) P.4
So,

X! =R X =T,
=RR, (XS +T,)]-T,
=R'R_ X2 +R'T_-T, [P.5
= RR Ry (X0 + To) [+ RIT,, T,
=RR, R, X7 +R'R R, T, +RIT, -T,
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Since the scan plane needs to follow the motiomeansX; should equal

X} all the time, therefore the rotation term in Edqpat9.5 should be the identity

matrix and the translation should be zero:

RHlRmle :I Rn :RmRmI
— [9.6]
R;lRmRmITmI +R;le _Tn =0 Tn :Tml +R;1Tm

The motion parameters that need to be sent toetipgesice for correction are
the difference between the new ones and the old aaal-out from the sequence (i.e.

R, andT,_, ), which are:

IQcorr = RmRmI [97]
Tcorr = R(:grr Tm [98]

9.2 MRI Coordinates from DICOM Image

To get the MRI physical coordinate (millimeter)afy point from its DICOM image
(index) is not very straightforward, because theg two different coordinate systems
and different units.
DICOM uses patient coordinate system, meaningxXml acan

Xgincreases right to left

Yqincreases anterior to posterior

Zgincreases inferior to superior
MRI physical coordinate system on the other hardkfged as:

Xmincreases left to right

Ymincreases posterior to anterior
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Znincreases inferior to superior
DICOM headers have directions within the image gla®. the X and Y; direction,
ri.=HeadedmageOrientationPatient[1:3] [9.9]
r,=HeadeldmageOrientationPatient{4:6] [9.10]
whereRy=[r1 r, r3] is the rotation matrix describing the DICOM imagiane in the
patient coordinate system. The direction orthogomdhe plane, i.e. thegdlirection,
is defined as
ry=r;xr, [9.11]

Then inter-slice distances need to be determinedurd transformation. If
only one slice is scanned,
z = Header.Slicethickness [9.12]
Otherwise, it can be calculated from slice posgiaas

z =( Headeiitt1)ImagePositionPatient- Headeri).ImagePositionPatienjr3[9.13]

wherei is the index of one slice.

Voxel size is therefore,
v = [HeadeRixelSpacindl) HeadePRixelSpacind?2) Z] [9.14]
where PixelSpacing saves in-plane pixel size in@NMC

Position of the first voxel in DICOM'’s patient calinate system is
Vo = HeadetmagePositionPatient [9.15]

To map voxels to the patient coordinates is

H

R, * diag(v) vo} [9.16]

dicom_to_ patient —
=P { 0 1

Wherediag(v) is a 3«3 matrix with the diagonal elements coming frem
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Then map from the patient coordinate system adopiedICOM to the MRI

physical coordinate system is a rotation abouZtheis:

-1
-1
H patient_to_ MRI = [917]
1
1
Combine both transformations:
H = H patient_to_ MRI * H DICOM _to_ patient [918]
Any voxel in DICOM image has MRI coordinate as
X, =HX, [9.19]

Note that if MATLAB is used, the voxel index is frol instead of 0, a translation

1 -1

1
matrix mat = 1 1 is needed to be multiplied with Equation 9.18 #&or

1
correct mapping.

H = H patient_to_ MRI * H DICOM _to_patient* mat [920]

9.3 Gauss-Newton Algorithm

Gauss-Newton iteration is a technique to locate nhieimum of a multivariate
function that is expressed as the sum of squaresroefinear functions (Kelley, 1999;
Nocedal and Wright, 2006). In this section, we db Imave the ambition to state new
concepts on Newton iteration, but just to give avdgion for a better explanation in

Section 4.2.1, 4.2.2 and 6.2.1.
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Let f be the function that maps a measurement vediorough parameter vectgr to
another measuremeytthe solutiorp is obtained when distaneg is minimized:

&2 =y - focp)° [2]2
By assumingf (x;p) as a linear function in the neighborhoodpef a Taylor series

expansion will lead to the approximation

f(xp) = f(x;po)+%;f’“(p—po) [9.22]

The derivative of the error function @itis

(f :_Zﬁ(xp)(y_fOCM) [9.23]
p op

And becausef (x;p) is linear,

of (x;p) _ of (x;po) [9.24]
op op |

Substitute Equation 9.22 and 9.24 to 9.23, we get

08 _af (x;p,)" of (X;po)

=2 f(x; —%%(p-p,)- 9.25
o o (f(Xpo) + o (P=Po)-Y) [ ]
Let the Jacobian matrix be:
J= M [9.26]

op

oe? .
Then solve fop when Y =0:
Y

p=0"3)" 3", +p, [9.27]
Therefore, the solutiop is obtained with an initial estimapg and refined iteratively

according to:
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P..=173)" e, +p, [9.28]

The above algorithm is suitable for minimizationtiwrespect to a small
number of parameters, but not suitable for miningzcost functions with respect to
large numbers of parameters because of the heardemuwf matrix inverse in
Equation 9.28. However, in this project, when mpayameters need to be estimated,
e.g. 0M+8 unknowns in Equation 4.22, the Jacobian masrixery sparse and can be
taken advantage for great time savings.

Use Equation 4.22 as an example, the parametées éstimated are intrinsic

parametersa=[f,, f %, Y.k K,, P, p,]" and extrinsic parameter®;,T; (using

b, =[r;.r,,...T;] to denote the 6DOF parameters describing thengnphcan be

written as
p=(a' ,bI,b; ,...,b{,, )T [9.29]

The Jacobian matrix is therefore

Al Bl
om A B
J= p_| M2 2 [9.30]
op M O
AM BM

Where A; =dm , /da,B; =om /db;. The sparse condition is because of the fact
that each projected pointa . depend only o and b; but not any otheb, (j =1i),
so thatom b /db; = Q Then Equation 9.28 can be solved for each itemagtep a lot

faster based on this sparse matrix.
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9.4 Stereo System QA

The stereo camera calibration takes quite some Itmmhat does not have to be done
every time before using it, as long as nothing gean Therefore, it is important to
check the stereo to make sure nothing changed sgstem QA. It can be realized by
comparing the 3D position estimations for a chelo®ard pattern using either camera
or the stereo. Because the checkerboard size 8rknwe are able to estimate corner
positions in 3D from a single camera based on hoapiyr (Equation 4.18 — 4.21).
The difference between single camera and ster@onagin can be very large even if

a small change in the cameras’ parameters chakgga¢ 9-1)

o * o)

C
Figure 9-1 3D reconstruction error if camera paameters change. The solid lines projection is
correct and the dotted projection is the result fron different camera parameters with a small
focal length and principle point change. It's obviais that the 3D estimation magnify the camera
parameters distinction.

Figure 9-2 shows the 3D corner positions estimatgidg left camera (red
circles), right camera (blue circles) and stereoedg circles). When correct
calibration parameters were used, the three estinsamatch perfectly as shown in
(a). But if a very small change is made on the [fteagth, e.g. 0.1mm, they differ

quite a lot (b). Also, the difference between thesémations can be calculated. For
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image (a), the maximum error between left-right eearestimation is 0.0098092; the
maximum error between left-stereo camera estimasi@064398; and the maximum
error between right-stereo camera estimation i87%99. But for image (b) the
maximum error between left-right camera estimat®f.48134; the maximum error
between left-stereo camera estimation is 3.287; taedmaximum error between
right-stereo camera estimation is 3.107. Therefatee stereo QA can be
accomplished either visually or quantitatively.

In real application, the calibration parameters wge do not change, while
cameras’ status may change accidentally. But the enagnification should be the
same as in this simulation. Therefore, each tinferbeéhe stereo system is used, run

the system QA to make sure if a re-calibrationgeassary.

Figure 9-2 3D position estimation for a checkertard pattern. Every circle represents a corner
of the checkerboard. Red circles represent positianestimated from the left camera; blue circles
represent positions estimated from the right cameraand green circles represent those estimated
from the stereo. (a) correct calibration parametersvere used. (b) focal length was changed with
0.1mm.
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