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The primary challenge for vehicles entering planetary atmospheres is surviving

the intense heating and deceleration encountered during the entry process. Entry

capsules use sacrificial ablative heat shields and sustain several g deceleration. The

high lift produced by the Space Shuttle geometry resulted in lower rates of heating

and deceleration. This enabled a fully reusable vehicle that was protected by heat

shield tiles.

Hypersonic waveriders are vehicles that conform to the shape of the shock wave

created by the vehicle. This produces high compression-lift and low drag, but only

around a design Mach number. Atmospheric entry can reach speeds from zero to as

high as Mach 40. A morphing waverider is a vehicle that deflects its flexible bottom

surface as a function of Mach number in order to preserve a desired shock wave

shape. It was demonstrated in this work that doing so retains high aerodynamic lift

and lift-to-drag ratio across a wide range of Mach number.

Numerical simulations were conducted for case-study waveriders designed for



Mach 6 and 8 for flight at their design conditions as well as with variations in

angle-of-attack and Mach number. A single-species air model was used between

Mach 1 and 12 with the RANS k − ω SST and LES-WALE turbulence models. A

seven-species air model was used for Mach 15 at 60km altitude and Mach 20 at

75km.

Analytical methods were used to construct a reduced-order model (ROM)

for estimating waverider aerodynamic forces, moments, and heating. The ROM

matched numerical simulation results within 5-10% for morphing waveriders with

variations in angle-of-attack, but discrepancies exceeded 20% for large deviations of

rigid vehicles from their design Mach numbers.

Atmospheric entry trajectory simulations were conducted using reduced-order

models for morphing waverider aerodynamics, the Mars Science Laboratory (MSL)

capsule, and the Space Shuttle. Three morphing waveriders were compared to the

Space Shuttle, which resulted in reduced heating and peak deceleration. One mor-

phing waverider was compared to the MSL capsule, which demonstrated a reduction

in the peak stagnation heat flux, a reduction in the peak and average deceleration,

and a reduction in the peak area-averaged heating.
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Chapter 1: Introduction

The NASA Space Shuttle Orbiter (SSO) marked the reusable vehicle in the

history of space flight, a capability that promised to reduce the complexity and

increase the frequency of space access. This achievement was enabled by improve-

ments in materials and by modifying the aerodynamic design so that they could

withstand the extreme conditions endured during atmospheric reentry.

Now we ask: Can we do better than the Space Shuttle? Can we use our knowl-

edge of the fundamental principles of high-speed flow and modern computational

tools to design an entry vehicle with even better high-speed aerodynamic properties?

Is it possible that such improvements could result in atmospheric entry conditions

and vehicles not much different than those in routine commercial air travel?

The objective of this work is to evaluate a concept for Earth and Mars entry

vehicles, the “morphing waverider,” that produces high aerodynamic performance

across the wide range of conditions encountered in atmospheric entry. The intro-

duction includes a discussion of atmospheric flow regimes and how entering vehicles

interact with the background atmosphere. The discussion of entry physics and

aerodynamics is presented as it relates to near-Earth space access and planetary

exploration. Specific examples are considered for low-altitude orbit of Earth and

1



interplanetary missions from Earth to Mars. Hypersonic waveriders are then intro-

duced. These are a class of vehicles that produce the highest known aerodynamic

performance at entry speeds. Reduced-order models for aerodynamics and the im-

portance of dynamic stability are then discussed. This is followed by a review of

related work, the scope of the present work, and a thesis outline.

1.1 Flow Regimes for Vehicles Entering Earth’s Atmosphere

Flight in Earth’s atmosphere from zero to atmospheric entry speeds can be

categorized into the regimes outlined in Fig. 1.1. Each flight regime has physical

properties that must be accounted for in the context of atmospheric entry [1]. There

are features of high-speed flight that are insignificant at lower speeds. For example,

as the flight speed increases beyond Mach 1, flow features include shock waves, high

temperatures and rates of heating, chemical reactions, ionization, and nonequilib-

rium chemistry and molecular kinetics. The entire entry process into the Earth’s

atmosphere from low-Earth orbits of 150-500km spans approximately Mach 25-30

down to zero [2]. Each of the flight regimes listed in Fig. 1.1 is discussed in the

following paragraphs.

Early aircraft and modern general aviation aircraft typically fly at speeds less

than 100 m/s, approximately 30% of the speed of sound [1]. As shown in Fig. 1.1,

the flow in this regime is “incompressible,” which greatly simplifies the analysis of

the aerodynamics. For incompressible flow, the near-body density field changes by

less than 5% and can be assumed constant. Temperatures do not noticeably change,
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Figure 1.1: Flight regimes of low-Earth orbit entry vehicles as a function of Mach

number and relevant altitude. The governing equations are also shown in

their approximate realm of applicability in these flow regimes, modeling

methods, important physical properties and effects, and the named flight

regimes [2]. The subsonic and supersonic flight regimes have a precise

border at Mach 1, whereas all other flight regimes, important physical

properties, and modeling method ranges are approximate.
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friction may be neglected, and only the pressure and velocity fields are allowed to

vary.

As conditions increase beyond Mach 0.3 but less than Mach 1, free-stream air

is compressed by a vehicle. This flight regime is appropriately described as “com-

pressible.” For most commercial and military aviation, the density variations in the

flow are significant enough that they must be accounted for in estimating aerody-

namic properties of a vehicle. Similar to incompressible flow, however, temperature

variations are not significant and friction is a minor contributor to the net drag

force [3].

The regime between approximately Mach 0.8 and 1.3 is referred to as “tran-

sonic.” Local variations in flow speed around a vehicle can exceed the speed of sound

in transonic flight [3]. Flow fields can include shock waves, supersonic regions, and

subsonic regions simultaneously at different locations throughout the flow. Shock

waves cause rapid pressure jumps and can greatly affect the lift, drag, control, and

stability of vehicles in transonic flight.

In the supersonic flow regime, above Mach 1, shock waves are created by

all vehicles [1]. Post-shock flow and the near-body flow field may have regions of

subsonic flow or the entire near-body flow field may remain supersonic. Pressure,

temperature, and density change discontinuously across a shock wave created by

a vehicle. The relative magnitude of the change in these variables is related to

how blunt the local vehicle geometry is and how fast it is flying. The angle of a

shock wave on the vehicle becomes smaller as the Mach number increases. The rise

in pressure and temperature across the shock increases with Mach number, which
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pushes the hotter, denser flow closer to the vehicle’s surface. As the flight speed of

the vehicle increases further, friction and heating become increasingly important and

must be accounted for at speeds above approximately Mach 2. Between Mach 2 and

3, the choice of vehicle material becomes severely limited by the high temperatures

encountered. Materials considerations are described separately in Section 1.1.1.

By approximately Mach 3, the bonds between the diatomic oxygen and nitrogen

air molecules, O2 and N2, begin to vibrate. This “vibrational excitation” begins to

change the physical properties of air with increasing flight speed, and these property

changes begin to affect the aerodynamic properties of vehicles.

The hypersonic flight regime begins at approximately Mach 5, or 1,500m/s.

Aerodynamic heating becomes the most significant feature of increasing flight speed

[4]. Thick, turbulent, viscous boundary layers along a vehicle’s surface cause addi-

tional heating and drag. Diatomic oxygen begins to dissociate near the leading edge

by Mach 6. The dissociated, highly reactive free-molecular oxygen cascades along

the surface of the vehicle downstream. By Mach 8 in the stratosphere, 10% of the

oxygen has become dissociated and envelopes the vehicle in a highly reactive sheath

of free-molecular oxygen.

At hypersonic speeds, friction becomes a significant contributor to the drag

force and heating due to turbulent flow along the surface of a vehicle. A viscous com-

ponent as high as 20-30% of the overall drag force may be expected for a streamlined

vehicle.

Between Mach 10 and 25, referred to as the “high-hypersonic” flight regime,

chemically reactive flow becomes a dominant feature. Ninety percent of the oxygen
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is dissociated by Mach 15 and ionization occurs in trace quantities. The stagna-

tion region temperatures can exceed 10,000K and radiative heat transfer becomes

increasingly important above Mach 20 [2]. Ionization requires such large amounts

of energy and high temperatures that only a few percent of the flow field is ionized

by Mach 25 [4]. Ultra-high-temperature ceramics (UHTCs) and refractory metals

can be used for short-duration flight in this speed range.

At the highest hypersonic flight condition, “entry speeds” begin on the order

of 7.8km/s for low-Earth orbit (LEO) and reach 11km/s for lunar return [1]. In this

flow regime, ionization is a dominant feature. At least 10% of the flow field is ionized

at lunar return speeds. Radiation is the dominant mechanism of heat transfer as flow

temperatures reach tens of thousands of Kelvin. To a rough approximation, radiative

power depends on Mach number to the eighth power [4], and so becomes increasingly

important at the highest Mach numbers. Because temperatures above Mach 30 can

reach tens of thousands of degrees kelvin, sacrificial heat shields, known as ablative

thermal protection systems [2], are used to protect entry vehicles. Ablation removes

thermal energy from the hot flow by absorbing it into the phase change of the

sacrificial ablative material rather than allowing the vehicle to be heated by the

extreme temperature gradients. Solid material sublimates into vapor and the mix of

hot air and ablation products convect downstream, leaving the near-body flow field

and taking thermal energy away with it. These gaseous ablation products affect the

near-body flow field and the aerodynamic properties of a vehicle.

The first regime encountered by entry vehicles at their highest speed and

altitude is hypersonic rarefied flow. While air is composed of discrete molecules,
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the numbers of molecules involved in the flow around a vehicle can be billions of

billions or larger [5]. Numerical simulation of each molecule individually in the high

densities encountered at low altitude is an intractable problem. At lower altitudes,

air can be considered a continuous medium and fields of flow variables are tracked

rather than individual molecules. At altitudes above approximately 95km, however,

the average distance between molecular collisions becomes large enough that the

continuum-flow approximation no longer applies [6]. This occurs when the Knudsen

number, Kn = λ/L, becomes large relative to the mean free path between molecular

collisions, λ, and the wingspan or diameter of a vehicle, L. The wingspan or diameter

of an entry vehicle typically ranges from 4m for a capsule to 24m for the Space

Shuttle [1].

Though these thresholds are debated, locally rarefied flow must be considered

for Kn > 10−2, such as in the vehicle wake or around a control surface, and globally

rarefied flow must be treated for Kn > 10−1, which affects the entire near-body flow

field and vehicle aerodynamic properties. Boundary layer effects due to rarefaction

and complications that affect the viscous drag at a vehicle’s wall must be treated

for Kn > 10−3 [7]. The variability of Knudsen number with altitude is depicted

for Earth and Mars in Fig. 1.2 for a 10m vehicle. A depiction of rarefied flow

about a 1m Mach 10 flat plate is presented with varied altitude in Fig. 1.3, from [8]

using the discrete particle analysis method DSMC [11] solved in the analysis code

MONACO [12]. This figure illustrates the highly rarefied nature of flow above 120km

and the coherent shock structure that develops as a vehicle descends, coalescing

from a “cloud” of particles at higher altitudes into the recognizable shock surfaces
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of continuum flow fields.

At hypersonic speeds in the rarefied regime, chemical reactions between air

constituents occur over finite time. These reactions must be explicitly accounted for

over distance and time, described as “non-equilibrium” chemistry. Many thermody-

namic properties and our estimates of their effects on the flow field are based on a

known probability distribution of the molecular speeds. This is known as “kinetic”

equilibrium. In rarefied flow, the probability distribution of molecular speeds may

not conform to the equilibrium distribution [5]. This kinetic non-equilibrium cannot

be analyzed with continuum methods, which are formulated based on the assump-

tion of kinetic equilibrium. Particle analysis methods such as Molecular Dynamics

for highly rarefied flows and Direct Simulation Monte Carlo for transitional and

rarefied flows must be used to account for the effects of kinetic non-equilibrium [6].

For a 10m entry vehicle, the effects of kinetic non-equilibrium and rarefied flow be-

come increasingly important above 95km and critical by 110km. As is discussed in

section 2.1, the effects of rarefaction and kinetic non-equilibrium may be neglected

for heavy, low-lift vehicles, while consideration of these effects become increasingly

important for accurately estimating the aerodynamic properties and flight paths for

lighter, high-lift entry vehicles.

These diverse flight regimes and the conditions experienced by vehicles pass-

ing through them illustrate the important considerations required for optimizing the

aerodynamic properties of a vehicle through a dynamically changing atmosphere.

For example, the SSO descended from the top of the atmosphere at nearly 8km/s

and 120km to subsonic speeds 10km above ground in approximately 2,000 seconds.
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Figure 1.2: Knudsen number for Earth and Mars with altitude for 10m vehicle using

atmosphere properties from [13–15].

Figure 1.3: Mach number contours of a 1m Mach 10 flat plate at 10◦ angle-of-attack

for various Knudsen number and corresponding altitude in Earth atmo-

sphere. The Knudsen range is shaded to depict transition from contin-

uum to rarefied regime. Adapted from [8–10].
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Figure 1.4: Temperature, pressure, and density with altitude based on the 1976 US

Standard Atmosphere [13].

This variability is shown in the flight paths of several Earth entry vehicles in Fig.

1.5. The nominal flight paths of the Space Shuttle Orbiter and the Apollo capsule

returning from LEO and the Apollo capsule returning from the moon are overlaid

along with single-point flight conditions for various supersonic and hypersonic ve-

hicles for comparison. The 10% and 90% thresholds for the fraction of molecules

experiencing vibrational excitation and dissociation with speed and altitude in the

flow field near the leading edge of a vehicle are also illustrated. The variability in

these effects with speed and altitude are due to the variations in air density and

temperature with altitude, depicted in Fig. 1.4 according to the 1976 US Standard

Atmosphere [13,16–18].

At more than twice the speed of a conventional airliner, the Concorde Su-

personic Transport cruised at 18km altitude and 0.6km/s, Mach 2 in the strato-

sphere [19]. At this speed and altitude, the fraction of molecules that are vibra-
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tionally excited in the near-body flow field is less than 10%. The SR-71 supersonic

reconnaissance plane cruised at 24km and 1.0km/s, or Mach 3.3 [20]. At this speed,

nearly 20% of the molecules are vibrationally excited and the associated changes in

the physical properties of the air begin to affect the vehicle’s aerodynamic proper-

ties. The X-51A WaveRider scramjet demonstrator cruised at 21km altitude and

1.5km/s [21], reaching the hypersonic flight regime where extreme heating and aero-

dynamic forces limited its flight duration to hundreds of seconds because of the high

speed and air density. The X-15 piloted hypersonic research aircraft reached a max-

imum speed of 2.0km/s at 31km and a maximum altitude of 108km at 1.7km/s [22].

At the maximum speed condition, the vehicle flew like an aircraft in dense, tur-

bulent flow, with the variability in the properties of air resulting in complications

for aerodynamic performance and control. At the maximum altitude condition, the

vehicle flew as a suborbital nearly-ballistic projectile through rarefied flow with min-

imal control authority. At this altitude and speed, a few percent of the diatomic

oxygen became dissociated and accelerated oxidation of the aircraft’s Inconel outer

skin. The X-43A hydrogen-fuel scramjet demonstrator reached 3.3km/s, approxi-

mately Mach 9.6, at 34km and was self-propelled for 11 seconds [23, 24]. Despite

record flight speeds and altitudes of these supersonic and hypersonic vehicles, none

reached half of the speed of an entry vehicle and only the X-43A flew in a regime

where air chemistry affected its aerodynamics.

The SSO and Apollo Capsule descend from a 200km LEO through an entry

interface of 120km and approximately 7.9km/s. There is minimal control authority

or flight path variation in the rarefied regime, and each vehicle follows the same
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flight path despite substantially different aerodynamic and inertial properties until

approximately 95km. Below this altitude, the vehicle aerodynamic and inertial

properties result in a deviation of their flight paths by as much as 20km during

deceleration from nearly 8km/s down to approximately 3km/s. The mechanism by

which the SSO retains altitude and the implications for heating and deceleration are

the subject of Section 1.2. Figure 1.5 shows that rarefied flow has minimal effects

on the flight path for vehicles such as the SSO and Apollo Capsule. These vehicles

spend much of their flight paths in reactive flow at altitudes between approximately

45km and 80km.

For the first half of the SSO descent from 120km, the nitrogen dissociation

and reactions with dissociated oxygen are important. The flow along the SSO is

primarily laminar. The majority of orbital energy is dissipated between 70 and

50km for the SSO and just 50 and 45km for the Apollo Capsule. These flow regimes

include both the peak deceleration and the peak heating for these entry vehicles,

spanning chemical reactions with nitrogen and oxygen as well as laminar through

majority-turbulent flow. For the final third of the descent and deceleration, the flow

field is very turbulent, chemical reactions are minimal, and the vibrational excitation

of air molecules becomes negligible below approximately 25km.

In contrast to return from LEO, the Apollo Capsule returned from the moon

at nearly 11km/s through highly reactive and ionized nitrogen and oxygen. The

lunar return capsule reached a lower altitude for the majority of its deceleration,

dissipating approximately three quarters of its initial energy between 45 and 40km.

As is discussed in Chapter 2, this combination of higher speed and higher density
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Figure 1.5: Air chemistry near the leading edge with speed and altitude for Earth

entry vehicles. Velocity-altitude map adapted from [4] with vehicle data

from [19–24] and flight paths adapted from [2].

13



and lower altitude results in substantially higher heating than a high-lift vehicle

such as the SSO returning from LEO.

1.1.1 Materials Considerations

The temperature and rates of heating that a vehicle encounters during flight

restrict the material options available. Peak temperatures and rates of heating

near the leading edge may require different materials at the leading edge than are

allowable on the windward or leeward planform of a vehicle. Conversely, materials

limitations or capabilities may define requirements on vehicle aerodynamics or flight

path. It is discussed in Section 2.1 that reducing the payload mass of a given vehicle

correspondingly reduces the heating and peak deceleration of the vehicle during the

entry process.

For incompressible through subsonic compressible flow, aluminum alloys are

preferred for structural and external surface components due to their high strength-

to-weight ratios and the temperatures encountered at these speeds. In transonic

flow, temperatures may rise tens of degrees near the leading edge compared to

the free stream, but maximum temperatures are of minimal concern for common

aerospace materials such as aluminum alloys. As the flight speed of a vehicle in-

creases, friction and heating become increasingly important and must be accounted

for at speeds above approximately Mach 2. Aluminum alloys begin to rapidly weaken

beyond 200◦C and lose over 90% of their strength by 300◦C [27]. At Mach 2, tem-

peratures at the nose tips and leading edges of wings and fins are high enough that
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Figure 1.6: Maximum air temperature with Mach number in the stratosphere.

aluminum can no longer safely be used for extended durations. Higher service-

temperature materials such as titanium and steels must be used in these regions,

while aluminum may still be used for the majority of the planform and internal

structure. The increase in temperature along with Mach number is depicted in Fig.

1.6 for equilibrium chemically reacting air in the stratosphere where the ambient air

temperature is 217K. By Mach 3, approximately 1,000m/s, temperatures become

hot enough that the entire exterior of a vehicle must be titanium or other heat-

resistant material. For example, the Mach 3.3 SR-71 reconnaissance aircraft was

primarily titanium [20]. Conventional turbojet engines may reach beyond Mach 2,

but encounter rotational speeds and temperatures too high to operate at Mach 3

and above [25].

Entering the hypersonic regime, at Mach 5, temperatures at the leading edge

exceed the service temperature of any titanium alloy. These high temperatures

require the use of heavier high-temperature metals, high-temperature composites,
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or cooling systems for sustained flight [26]. Oxidation-resistant materials must be

used on all surfaces due to increased exposure to free-molecular oxygen and higher

temperature-dependent reaction rates. Options are carbon-based composite materi-

als and the refractory metals: primarily niobium, molybdenum, tantalum, tungsten,

rhenium, and their alloys [27]. For extended flight durations above Mach 6, the en-

tire exterior of an aircraft must be made of oxidation-resistant materials with higher

service temperatures than titanium alloys. For example, the X-15 Hypersonic Re-

search Aircraft used Inconel for speeds up to Mach 6.7 [22].

By Mach 8, 10% of the oxygen is dissociated and envelopes the vehicle in a

highly reactive sheath of free-molecular oxygen. While specialized materials exist for

sustained flight at speeds up to Mach 10, their use is accompanied by the penalties

of increased cost and fabrication complexity. Even the least expensive refractory

metal is more than an order-of-magnitude more costly than aerospace-grade alu-

minum alloys [28–31]. Refractory metal strength-to-weight ratios are much worse

than aluminum alloys, which results in a heavier vehicle with mass-related perfor-

mance penalties. Additionally, fabrication using these metals or high-temperature

composites pose many challenges in comparison with conventional machining, cast-

ing, forming, and fastening. At speeds in the high-hypersonic regime, Mach 10-25,

flight durations must be limited based on transient heating and a vehicle’s ther-

mal mass and thermal management. Vehicles entering from LEO, such as the SSO,

may accomplish their descent with survivable, reusable materials by ensuring that

transient temperatures along the trajectory never exceed critical thresholds [2].

For the highest heat fluxes such as during lunar return at 11km/s, ablative heat
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shields are thought to be the only viable option [2,32]. There are four disadvantages

to ablation. First, there is a minimum temperature required for pyrolysis of the

sacrificial material. Second, the erosion of the surface increases roughness and adds

to drag and heating. Third, the erosion changes the shape of a vehicle and is typically

non-uniform, which introduces control and stability complications. Finally, ablation

is inherently a consumable process that limits the possible duration of flight.

1.2 Early Entry Vehicles

Low Earth Orbit (LEO) begins at approximately 200km above mean sea level

(MSL). Entry from LEO occurs typically at 7.8km/s with noticeable aerodynamic

deceleration for an entry vehicle beginning at approximately 120km, where the atmo-

sphere becomes sufficiently dense [33]. Enduring excessive deceleration is a challenge

in Earth’s atmosphere due to the relatively high density. By contrast, decelerating

to sufficiently low speeds to touchdown safely is the challenge in the thinner Mar-

tian atmosphere [34]. In either case, it is shown in this section that minimizing the

mass, maximizing the lift coefficient, and maximizing the lift-to-drag ratio of an

entry vehicle yields less severe heating and deceleration during the entry process [2].

The development of entry vehicles includes suborbital ballistic capsules, lifting

capsules that were used for entry from LEO and lunar return, and high-lift vehicles

such as the Space Shuttle Orbiter (SSO) used for LEO return. Lifting capsules have

also been used for interplanetary missions. This section describes the progression

from ballistic capsules to the high-lift SSO and how the mechanism of lift enabled
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flight paths that resulted in lesser heating and peak deceleration.

During the first U.S. human suborbital space flight experiment in 1961, Red-

stone 3, part of Project Mercury, astronaut Alan Shepard endured 11.6g peak de-

celeration during his ballistic descent back into the atmosphere. This and subse-

quent flight experiments flew along a trajectory intended to match the return from

LEO [33]. The ballistic Freedom 7 entry capsule used in this experiment produced

no nominal lift force. These earliest entry vehicles fell into the atmosphere and relied

purely on aerodynamic braking to slow the capsule during descent. This ballistic

descent resulted in reaching the lower, denser atmosphere at high speeds. Purely

ballistic entry forced an astronaut to endure a peak deceleration of 10-12g from low

Earth orbit (LEO) [35], but it was discovered during Project Mercury that even

small amounts of lift can reduce this to 8-9g [36]. Modern lifting capsules can limit

this peak to approximately 5-6g [37], and high-lift vehicles such as the Space Shut-

tle Orbiter (SSO) reduce this to less than 3g [38] depending on vehicle loading and

entry conditions. A ballistic capsule free body diagram is depicted in the left half

of Fig. 1.7 and a lifting capsule is depicted in the right half of Fig. 1.7. A ballistic

capsule can be made into a lifting capsule by offsetting the center of mass (COM) as

depicted in Fig. 1.7. This COM offset enables a capsule to fly with a nonzero angle

of attack, α, generating a lift vector. This lift vector results in shallower flight path

angles, αp, which allows a vehicle to dissipate its initial energy at higher altitudes

where heating and drag are lesser than at lower altitudes. The shallow flight path

angle and longer duration of deceleration and reduces peak deceleration and heating

during entry; effects that are attributed to the lift vector and improved lift-to-drag
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Figure 1.7: Ballistic entry-capsule free-body diagram (left) and lifting capsule

(right). These diagrams illustrate that the offset center of mass (COM)

creates an imbalance in pressure-based aerodynamic forces that result

in an angle-of-attack and a net lift force.

ratio.

The Gemini capsules and the Apollo Command Module produced a lift-to-drag

ratio of 0.3-0.4 in the hypersonic regime [39]. The TPS of the Apollo capsule eroded

50mm during entry, supported by a 250mm-thick support and interface structure

to the capsule airframe. The combined mass of an ablative TPS and structure

can account for more than 30% of the entry mass of a lifting capsule. The Space

Shuttle Orbiter (SSO) improved upon the lift-to-drag ratio up to approximately

1 in the hypersonic regime [40]. This increase was enough to reduce the peak

deceleration down to 1-3g depending on the initial flight path angle and landing

weight [38,40]. This also simplified the sacrificial ablative heat shield of the Apollo

capsule to reusable 25mm-thick ceramic tiles across the windward planform and

UHTCs at the leading edge of the SSO [38].

To illustrate the penalty of a more robust airframe or TPS, the empty SSO

outweighed its payload by a factor of at least three. The thermal protection system
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(TPS) accounted for 12.5% of the SSO empty mass, which reduced the possible

payload mass by 25% had a TPS not been necessary at all for the SSO [41].

Heating rates and temperatures are extremely high for Earth and Mars entry,

intimately coupling the design of an entry vehicle, its TPS, its payload, and its

flight path. Higher peak deceleration requires more robust airframes and structures,

resulting in added structural mass and decreased payload. Higher heating requires

a more substantial TPS, adding mass. This added mass compounds the heating and

deceleration endured by an entry vehicle, which requires further added inert mass

for airframe robustness and thermal protection. This compounding mass penalty

led to lifting capsule TPS mass fractions as high as 33%, and SSO payload mass

fractions as low as 19% to the International Space Station [42].

A comparison of the flight paths for a ballistic capsule, a lifting capsule, and

a high-lift body are presented in Fig. 1.8 based on a planar lifting entry model

detailed in [43]. For generating the comparison plots in Fig. 1.8, the lifting capsule

is based on the Apollo capsule aerodynamic properties [44], the ballistic capsule

is the Apollo capsule with zero lift coefficient, and the high-lift vehicle uses the

aerodynamic properties of the SSO [44]. All vehicles are assigned the same reference

area, mass, and leading edge radius. Only their aerodynamic coefficients and flight

path angle vary. The lift-to-drag ratios for these vehicles are 0, 0.3-0.4 depending

on Mach number, and 1, in order of increasing lift.

For the same initial conditions, a higher lift coefficient results in reduced peak-

deceleration and heating. This is due to flying higher in less dense air and dissipating

initial energy over a longer entry duration. The mass-specific energy of a vehicle
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Figure 1.8: Ballistic capsule, lifting capsule, and high-lift vehicle entry conditions.
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entering Earth’s atmosphere at 120km is 31.8MJ/kg, all of which must be dissipated

by touchdown. The entry duration is just 8 minutes for a ballistic capsule, 10-11

minutes for a lifting capsule, and nearly half an hour for the high-lift vehicle as

depicted in Fig. 1.8. While this is a greatly simplified comparison, the high-lift

vehicle flight path and entry duration agrees with flight data for the SSO [45]. The

stagnation heat flux depicted in Fig. 1.8 is the instantaneous heating rate per unit

area at the stagnation point for a wall fixed at the free-stream temperature and has

a reference leading edge radius of 1m. The heating rate describes the instantaneous

heat flux endured by the vehicle, whereas the total heat load is the heating rate

integrated in time. A longer entry duration of a high-lift vehicle corresponds to a

reduction in the heating rate despite a similar total heat load because it is spread

out over a much longer period.

The transient temperature during the entry heating process is determined by

the energy balance between the heating due to air compression and viscous friction,

the heat rejection through convection and radiation, and the heat transport and

absorption by the vehicle’s thermal conductivity and thermal mass. The longer the

entry duration, the lower the heating rate and the longer convection and radiation

can reduce the buildup of thermal energy, which minimizes the peak temperature.

Conversely, short entry duration results in higher heating rates and higher peak

temperatures. While materials selection and structural design optimization can

contribute to minimizing peak transient temperatures, the present work focuses on

the flight trajectory dynamics of entry vehicles and their aerodynamics along the

flight path. Extending the entry duration can be accomplished by an improvement
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in a vehicle’s lift coefficient, ballistic coefficient, or glide ratio. The lift coefficient,

CL, drag coefficient, CD, ballistic coefficient, β, and glide ratio, L/D are defined in

Eqns. 1.1 - 1.5 as functions of the dynamic pressure q = 1
2
ρv2, the reference area S,

the vehicle mass m, and the aerodynamic lift and drag forces. A quantity named

the entry parameter has been found important in the context of lifting entry and is

given in Eqn. 1.6.

CL =
FL

1
2
ρv2S

(1.1)

CD =
FD

1
2
ρv2S

(1.2)

L/D = FL/FD = CL/CD (1.3)

CMi
=

Mi

1
2
ρv2Sc

(1.4)

β =
m

CDS
(1.5)

ξ =
m

CLS
(1.6)

The lift and drag coefficients are dimensionless functions of the vehicle ge-

ometry, angle of attack, α Reynolds number, Re = ρvd/µ [46], and Mach number,

M = v/a, where a is the local speed of sound given by a =
√
γP/ρ =

√
γRT/Mm =√

γkBT/mm. Here, γ is the heat capacity ratio cp/cv, R is the universal gas constant,

Mm is the molar mass of the gas, kB is Boltzmann’s constant, T is the static tem-

perature, and mm is the average mass of a single molecule. The moment coefficient

for the ith axis is defined in Eqn. 1.4 using the chord of the vehicle, c. The ballistic

coefficient is a dimensional quantity that represents a ratio of the vehicle’s inertial
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resistance to the fluid drag. A a large ratio indicates minimal effect of the fluid and

a small ratio suggests substantial effect of the fluid; i.e., the vehicle will decelerate

quickly. In the limit of an infinite ballistic coefficient, a vehicle’s trajectory would

match a vacuum trajectory. Typical ballistic coefficients are on the order of 102 to

103 kg/m2 for spacecraft, and an order of magnitude larger for aircraft [47]. The

entry parameter is a dimensional quantity that correlates to a vehicle’s sink rate. A

small entry parameter corresponds to a vehicle that remains aloft much longer and

can bleed off speed at high altitude before descending into dense atmosphere below.

A large entry parameter corresponds to a vehicle that would descend more quickly.

A large entry parameter and quicker descent results in higher heating and deceler-

ation magnitudes, as depicted in Fig. 1.8. Therefore, the desire is to produce entry

vehicles with minimal entry parameter as a first-order approximation to minimize

entry heating and peak deceleration.

The lift, drag, and moment coefficients are functions of Mach number, Reynolds

number, orientation of the vehicle, and control surface deflections. The general

schematic for a vehicle aligned with its free-stream flow in the z direction is de-

picted in Fig. 1.9. The same vehicle is depicted in Fig. 1.10 in the planetary

reference frame, (xp, yp, zp), with free-stream velocity v at reference angle-of-attack

α and flight path angle αp relative to the planet’s horizontal tangent coordinate in

the flight direction, zp. As illustrated in Fig. 1.10, the drag force is defined as paral-

lel to and in the opposite direction of the vehicle velocity relative to the free-stream.

The lift force is defined as perpendicular to the free stream.
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Figure 1.9: Aerodynamic forces on a vehicle aligned with the free-stream flow.

Figure 1.10: Aerodynamic forces on a vehicle with velocity v at angle-of-attack α

and flight path angle αp.

25



1.3 Hypersonic Waveriders

A hypersonic waverider is a vehicle with a shock attached all along its leading

edge, from wingtip to wingtip [48]. The shock or flow field attached to the vehicle

is known as the “design” shock or flow field. The originally proposed vehicle is

referred to as the “caret” or “lambda” waverider, because its base profile resembles

the caret character or Greek letter lambda, Λ. This vehicle is depicted in Fig.

1.11. As the figure demonstrates, a planar shock is attached along the leading edge

underneath the vehicle. The lower surface of the vehicle corresponds to the stream

surface location of the post-shock deflected flow for the “design” Mach number

and “design” shock shape. Flow cannot penetrate the shock laterally or upstream,

and flow cannot penetrate the vehicle. Because the shock is attached all along the

leading edge, the high-pressure post-shock flow is captured between the shock and

the vehicle as a temporally-stationary flow field. This high-pressure pocket creates

significant compression lift. Following the stream surfaces with the upper and lower

surfaces results in low drag. This combination of high lift and low drag yields very

high lift-to-drag ratios for waveriders compared to any other vehicles flying in the

hypersonic regime [2, 4].

There are many ways to construct a waverider and many shapes of design

shocks that may be used, which is discussed in Chapter 2. A conical shock wa-

verider, for example, is depicted in Fig. 1.12 for a 12◦ conical shock and Mach 6.

A much more complex design shock is depicted in Fig. 1.13 for a Mach 5 waverider

constructed using an approximate method known as “osculating flow fields.” This
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Figure 1.11: Planar shock hypersonic waverider schematic.

method is described in Chapter 2. A comparison of these three example vehicles in

Figs. 1.11, 1.12, and 1.13 illustrates the range of design freedom available to wa-

veriders considering that the only requirement for this class of vehicles is an attached

shock all along the leading edge.

A morphing waverider is a vehicle with an attached shock all along its leading

edge that maintains a constant design-shock shape as the Mach number changes by

deflecting its lower surface to conform to the stream surface of the design flow field.

As the Mach number increases for a given shock, the stream surface deforms closer

to the design shock. A detailed description in the context of a conical-shock derived

waverider is provided in Section 2.5.

1.3.1 Waverider Caveats

While waverider construction theory generates ideal geometries that can achieve

a very high lift-to-drag ratio, there are important considerations that complicate

their implementation and have implications for their realizable performance. These

effects are discussed individually in the series of following paragraphs, each having

a significant potential effect on the design and performance of a realistic vehicle.
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Figure 1.12: Conical shock hypersonic waverider flow field schematic.

Figure 1.13: Mach 5 osculating flow field waverider riding its theoretical design shock

constructed by interpolating between 25 adjacent wedge flow fields.
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1. The “design point” is a restrictive flight condition. Waveriders are designed

for a specific orientation, Mach number, and a specific shock shape. Deviating from

this design point renders the design flow field invalid and will have implications for

the vehicle performance. In many cases these effects are marginal, but pitching

upward or slowing down eventually will cause shock detachment from the leading

edge. Addressing this consideration and characterizing the effect of varying the

speed and orientation has been the subject of past studies, e.g. [43, 50]. Practical

vehicles have control surface and trim requirements that preclude operation at a

fixed orientation. A transport vehicle or entry vehicle will also have to vary speeds

as well. In the case of a transport, speed must be varied between zero and cruise.

In the case of an entry vehicle, speed must vary between orbital speed and zero.

2. A sharp leading edge in not physical. Waveriders are constructed geomet-

rically assuming a perfectly sharp leading edge. In reality, the leading edge of a

vehicle must be fabricated with a finite thickness, technically making the idea of

an “attached” shock impossible. Every waverider will have a finite thickness at its

leading edge and realistically have a small region where a bow shock stands off from

it. Bow shocks produce large amounts of localized pressure drag, localized heating,

and local high temperatures. The effect of a finite-thickness leading edge on drag

can be minimized for a small leading-edge thickness relative to the vehicle size.

3. Small leading-edge radii lead to excess heating. The rate of heating at

the leading edge increases for smaller leading-edge radii, as is discussed in Chapter

2. Above approximately Mach 10 for extended periods of flight, the leading edge

must be blunted in order to reduce heating of the vehicle and enable survivable
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peak temperatures. Otherwise, with leading edge geometry that is too sharp, the

stagnation temperature of the flow will heat the leading edge beyond the service

temperature of any material. Active heat removal, blunting the leading edge, or a

combination of methods is required for a vehicle to survive heating for an extended

period.

4. Vehicle aerodynamic properties such as lift and drag are inherently surface-

temperature dependent. For a colder wall, such as a cool vehicle newly inserted

into a hot hypersonic flight condition, heat will flow from the near-body air into

the vehicle surface due to the strong temperature gradient. This heat flux removes

energy from the flow, increasing the viscous friction at the surface and increasing

the net drag. viscosity increases nonlinearly with increasing temperature. This

suggests that a cold vehicle newly inserted into a given flight condition will have

lower drag and a higher L/D than a vehicle whose surface has heated up, allowing

the near-body flow to stay hotter and yield more viscous drag at its surface. The

viscous component of drag on a vehicle will increase as heating causes the surface

temperature to increase.

5. Waverider construction methods neglect viscous effects on design-shock

and post-shock flow-field properties. Waveriders are constructed using inviscid su-

personic flow theory with attached shocks. Viscous effects, non-ideal sharpness, and

transient flow structures may yield deviations in actual flow fields compared to the

idealized design flow field. At a minimum, viscous effects due to the boundary layer

must be accounted for.

6. Waverider flow fields assume equilibrium chemistry. At high Mach number,
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non-equilibrium chemical reactions in the near-body flow field will affect vehicle

performance. As we will see, there is a method that enables the use of equilibrium

chemistry for flow fields at high speeds, but high-hypersonic speeds require the

consideration of non-equilibrium chemistry in the near-body flow field.

7. Waveriders are constructed using approximate flow field solutions. The

use of non-exact design flow field solutions will yield deviations in actual vehicle

performance compared to predicted performance, particularly with the osculating

flow field method and the computed flow field method. As will be elaborated in

Chapter 2, there are conditions that lessen the error for these approximate-flow-field

methods. Of related concern is the use of continuum flow fields at high altitudes

where transitional and rarefied flow effects become important. A rarefied boundary

layer allows a non-zero slip velocity at the wall, which will reduce the viscous drag

compared to continuum theory. Rarefaction will also prevent the formation of a thin,

coherent shock surface and allow flow to escape around the leading edge, reducing

the geometry’s effectiveness at capturing a high-pressure pocket as is the basis of

its high performance from continuum theory.

With the exception of rarefied flow, each of these effects is addressed in the

present work by either introducing a physical model or modifying the vehicle geom-

etry. The mechanism for investigating the effects of these phenomena is numerical

simulation of the waverider near-body flow fields. An example numerical simulation

of the Navier-Stokes equations for a conical-shock-derived waverider was presented

in Fig. 1.12. The detailed description of the fluid dynamics models used for numer-

ical simulation is provided in Chapter 3.
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1.3.2 Reduced-Order Models

Numerical simulations of the Navier-Stokes equations are valuable for under-

standing the detailed features and structures of a near-body flow field. However,

the solution for a given three-dimensional waverider and flow-field configuration can

be very expensive. These solutions are possible for a single flight condition, but are

unreasonably expensive for the time scales of a full entry trajectory. For example,

the time scales for the flight path of an entry vehicle can be thousands of seconds

and the speed and orientation of the vehicle can vary throughout. Therefore, having

an alternative and less expensive way to study the flight path is important.

A reduced-order model is an approximation of more detailed physics. In this

context, a flight path does not depend explicitly on a precise value of a flow variable

at a precise location. Instead, it is dependent upon the composite coefficients of

forces and moments. Entry trajectory simulations are computed using two- to six-

degree-of-freedom (6DOF) flight dynamics models. A 2DOF simulation uses lift and

drag forces along a vertical flight plane. A 6DOF simulation allows variation in three

spatial dimensions and three orientation dimensions. Force and moment coefficients

of the vehicle in each flight condition are required for each degree of freedom. With

estimates of the aerodynamic coefficients and their variability with Mach number,

Reynolds number, and vehicle orientation, it is possible to construct an approximate

flight path using a 2DOF to 6DOF flight dynamics model with immensely less

computing resources than computing a a full near-body flow-field at each time step

along the flight path. This has been the standard method of trajectory estimation
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for ballistics and aerospace vehicles for the last century [51–54]. The accuracy of

the constructed flight path is dependent upon the accuracy of the ROMs used.

To understand the utility of ROMs, consider the following comparison. The

full numerical simulation of an entry vehicle such as the SSO would require inte-

gration of its flight path over approximately 2,500 seconds. Numerical solutions

are solved in time by advancing the flow field from its current state by a small

increment of time called the time step. If millimeter-sized elements are needed at

its surface in order to yield accurate aerodynamics with CFD, a sub-microsecond

time step would be required for much of the flight path. This would require several

billion total flow-field time-step integrations and lead to a total computing time on

the order of 108 CPU-hrs. A 6DOF entry trajectory using a reduced-order model

for aerodynamic coefficients, by contrast, would require sub-second time steps and

produce a trajectory solution in 10−3 CPU-hrs. This simplification inherently incurs

a penalty in accuracy but results in much faster computation.

A reduced-order model for aerodynamic coefficients may be constructed from

simplified physics models compared to the numerical simulation of an entire flow

field. Such methods may be Modified Newtonian Theory for hypersonic flow [4],

discussed in Chapter 2, or similar approximations of flow fields from which lift and

drag forces may be extracted. An example of the latter method is a wedge-derived or

cone-derived hypersonic waverider using the analytical inviscid flow-field solutions

for wedges and cones. Alternately, a ROM may be produced by the interpola-

tion of a discrete data set produced with numerical simulations or experimental

results. Consider an entry vehicle, for example, with an expected entry parameter
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Figure 1.14: Bracketed flight path with discrete points for steady-state numerical

solutions to be used for interpolation

of 400kg/m2. Using the Equilibrium Glide Approximation to be provided in Section

2.1, one could produce a bracketed flight path using entry parameters of 300, 400,

and 500kg/m2. As depicted in Fig. 1.14, aerodynamic coefficients may be obtained

at discrete points using numerical simulations of steady flow at intervals of Mach

number and altitude. A flight path may then be simulated using a 6DOF trajectory

model and interpolation of the discretely mapped aerodynamic coefficients. The

total computational cost of numerical simulations using this approach is potentially

many orders of magnitude less than a full numerical simulation of the actual vehicle’s

entry flight path.

Alternately, a wide parametric mapping of vehicle properties across Mach num-

ber and density altitude for a given vehicle, orientation, and control condition can

provide interpolation functions to be used more generally, as depicted in Fig. 1.15.

The bracketed flight path provided in Fig. 1.14 provides a more efficient use of
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Figure 1.15: An example discrete surface function of L/D with Mach number and

altitude to be used for interpolation

computing resources.

1.3.3 Dynamic Stability

An important and often under-examined subject of high-speed and entry ve-

hicle aerodynamics is that of dynamic stability [2,56]. Flight trajectory models are

highly concerned with the entry parameter and the glide ratio under various flight

conditions, while stability of vehicle orientation is often one of the last considera-

tions. This is critical to consider earlier in the design and evaluation process for

two reasons. First, a high-performing vehicle configuration may be analyzed at an

unstable equilibrium, prone to destabilization. In order to investigate the stability

of a vehicle, it must be perturbed from its trimmed flight condition, where orien-
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tation moments are balanced. The resulting change in moments about the center

of mass will either restore a vehicle to equilibrium, in which case it is stable, or

the vehicle will further diverge from its unstable equilibrium. In the latter case,

additional stabilizing features or control surfaces must be added in order to produce

a practical, flyable vehicle. Stabilizing features and control surfaces inherently add

drag and will penalize the lift-to-drag ratio of an uncontrolled initial design.

A well-known stable vehicle is the Cessna 172 Skyhawk, depicted in Fig. 1.16.

While the main wing provides lift, the fixed horizontal stabilizer ensures that a stable

pitch-angle can be maintained in the event of a perturbation from this equilibrium.

Were the horizontal stabilizer constructed with a larger angle-of-attack than the

main wing (in the same direction), a destabilizing moment would be produced.

In the context of a Cessna 172 Skyhawk, the vertical- and horizontal-stabilizers

were designed specifically to produce restoring moments for an aircraft perturbed

from equilibrium. Inherently, however, the addition of these features to the core

fuselage and main wings add weight and drag to the vehicle. Similarly, the addition

of stabilizing features and control surfaces to hypersonic vehicles will add weight and

drag compared to the base geometry. This added drag can have significant effects on

the performance of a hypersonic vehicle such as a waverider. The key to minimizing

the effect of these added features is to design the core vehicle with inherent stability

or minimal instability where possible so that the additional stabilizing forces and

moments required are minimized. The stability of a vehicle is evaluated by first

evaluating the baseline moments in the intended equilibrium configuration and then

evaluating the change in these moments following a perturbation in the vehicle’s
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Figure 1.16: A Cessna 172 Skyhawk is in straight and level, unaccelerated flight

(top). The main wings provide lift, while the horizontal stabilizer pro-

duces a balancing downward force so that the net pitch moment is

zero. A deviation from this stable equilibrium, such as a 5◦ pitch-up

(bottom), results in a restoring force induced by the horizontal stabi-

lizer and an accompanying restoring moment (red) that pushes the air-

craft back to its stable equilibrium condition. Aircraft outline adapted

from [57].
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orientation. During a glide ratio optimization, for example, configurations that

yield high performance may be operating unrealistically at an unstable equilibrium

and therefore may not be preferable to a stable, lower-performance configuration.

1.4 Review of Related Work

Waverider development dates back to the late 1950s. There are three cate-

gories of work that are discussed in this section. The first is the progress of design

and construction methods for waveriders that have evolved for more than half a

century. The design methods have been accompanied by reduced-order methods

for estimating aerodynamic coefficients. These include waverider aerodynamics and

thermodynamics, modifications for realistic leading edges, viscous effects, and off-

design performance. These reduced-order models enable efficient flight trajectory

simulations and wide searches for optimal configurations compared to higher-cost

CFD flow-field simulations. This is followed by the numerical simulation of the wa-

verider flow-field in order to analyze performance, both on- and off-design as well as

with inviscid and viscous flow. The final category is the attempt to enable efficient

operation across a wide range of speeds. This includes prior studies of the potential

use of hypersonic waveriders at high-hypersonic speeds and at variable speeds as is

important for entry vehicles.
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1.4.1 Waverider Design and Analysis

In 1959, Terence Nonweiler proposed a supersonic vehicle shape for which a

planar shock remains attached all along its leading edge [48]. The top surface of

the vehicle would be tangent to the free-stream flow in order to not disturb it, and

the lower surface would be defined by the stream surface that emanates from the

leading edge, deflected downward by the planar shock. The vehicle would therefore

not disturb the post-shock flow from inviscid theory, and a stationary high pressure

region would be bounded between the vehicle lower surface and the shock wave. Such

a vehicle can be described as “riding” the high pressure region between the body

and the attached shock, providing significant advantages for compression lift in the

hypersonic regime. Following the stream surface beneath the vehicle additionally

results in low drag while producing high compression lift. If the lower surface of

the vehicle deviates above the ideal fluid stream surface, the vehicle would produce

lower drag but also lower lift due to the added expansion volume for the post-shock

flow. If the lower surface of the vehicle deviates below the stream surface, the vehicle

would produce higher lift but also higher drag due to adding more obstruction to the

flow. Therefore, deviations in either direction from the post-shock stream surfaces

either result in increased drag or reduced lift. Early designs from Nonweiler include

the “caret” waverider, which is derived from a planar shock and resembles a sharp

wedge as was depicted in Fig. 1.11.

Following this work, Nonweiler developed a more detailed description of the

design and theory in “Delta Waves of Shape Amenable to Exact Shock Wave The-
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Figure 1.17: Caret-type waveriders designed from a planar shock at Mach 8 and

(left to right) 15◦, 20◦, and 15◦ with half of the vertical aspect ratio.

The models are depicted in wireframe in order to show underlying

detail with external edges outlined in blue and the planar design shock

highlighted in green.

Figure 1.18: Various waveriders designed from a 12◦ planar shock at Mach 10.

ory,” which included performance estimates from hypersonic inviscid oblique shock

theory [58]. These waveriders were of the caret type, which Nonweiler calls “Delta

Waves,” and included variations in the design variables of Mach number, planar

shock angle, and caret angle or, equivalently, aspect ratio. A key feature is that

Nonweiler used a known inviscid flow field to both design and analyze his vehicles.

It should be noted that more complex vehicle geometries are also possible with a

planar shock, such as those depicted in Fig. 1.18.

In 1963, J.G. Jones used the Taylor-Maccoll solution for the supersonic flow
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Figure 1.19: Caret-type waveriders designed from a 15◦ conical shock at Mach 8 and

(left to right) ratio of wingspan to the radius from the conical axis to

the wingtip of ∞, 2, 1, and 0.625.

produced by a cone [59, 60] as an extension of the simple wedge flow-field design

[61]. Provided that a wedge flow field is simply a special case of a conical flow

field for an infinitely large radius, Jones’ method for conical-shock-derived vehicles

afforded many more degrees of freedom while retaining the advantage that the design

flow field was still known. Development of these attached-shock supersonic vehicles

gained popularity around the United Kingdom in the 1960s, with conical flow fields

extending to power-law bodies that are known to produce lower drag than cones

[62, 63], integration of these idealized shapes into practical aircraft geometries [64],

and experimental validation of conical-shock waveriders at Mach 4 [65]. Upper-

surface lift was added by Moore [66]. A generic construction method is depicted in

Fig. 2.9 for an example conical design shock.

Until the 1980s, waverider geometries were constructed and optimized from

flow fields with known solutions [67]. In the early 1980s, interest in hypersonic wa-

verider design and performance estimation returned, including inclined and elliptical

cones and cones with longitudinal curvature by Rasmussen [68,69]. Mundy [49] and
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Figure 1.20: General Waverider Construction Method: Beginning with a selected

design shock shape (a), one traces a leading edge along the shock (b).

Shock and leading edge symmetry about a vertical plane ensures sym-

metrical aerodynamic forces, while constructing the vehicle below a

horizontal symmetry plane such as the example conical shock ensures

a lifting body will result. Stream surfaces are traced back from the

shock in order to form each surface, as depicted in (c) for the upper

surface and (d) for the lower surface. The point at which the stream

surfaces are truncated downstream of the shock is termed the “base

plane” and is a free design variable. The upper and lower stream

surfaces and base plane enclose a volume that represents the internal

vehicle volume, illustrated in the context of the conical shock flow field

in (e) and the resulting vehicle alone in (f).
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Rasmussen [50] included viscous effects with classical known flow fields such as cones

and power-law bodies in the mid 1990s. Development continued with perturbation-

based and linearized approximate flow fields such as thin shock-layer theory [70].

The late 1980s and early 1990s saw the emergence of computed flow fields. With

the advent and proliferation of practical computing hardware, these models could

be used for both design and computational estimation of complex geometries that

still conform to known and computed flow fields, a practice that would have been

intractable before high-speed computers. Examples include the viscous optimization

of conical-shock-derived hypersonic waveriders by Bowcutt and Anderson [71, 72],

power-law bodies [68], generalized shock geometries [73,74], and the parametric op-

timization enabled by efficient evaluation of these flow fields [71, 75, 76]. Viscous

effects in the case of Bowcutt and Anderson [71] and continued by Corda [75] are

approximated using empirical relations for the friction coefficient on a supersonic flat

plate, whereas the pressure-based forces are interpolated from the inviscid design

flow field.

The design flow-fields were not entirely external [77–79]. Kothari [77] proposed

waverider construction from inward-turning flow fields in 1996, reporting lower heat-

ing and a higher lift-to-drag ratio than was attainable by external flow fields. Yu

reported similar findings in 2000 [79] using optimized convergent flow fields, and

Billig determined that inward-turning flow fields for waverider-based engine inlets

outperformed those constructed using external flow fields in the context of inlet

pressure recovery and propulsion-related performance metrics [80]. The generalized

computed flow fields yield more degrees of freedom for optimization, however it is
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noted by Starkey that simple symmetric or similarity-solution flow fields are much

more practical for large surveys of parametric optimization [81, 82]. A high-degree-

of-freedom and low-cost compromise between these two extremes began with the

Osculating Cones method developed by Sobieczky [83] and experimentally validated

by Mill [84].

The Osculating Cones method is based on the approximation that cross-flow

components between adjacent planar cross sections of a high-speed flow field can

be neglected. Therefore, the field may be constructed with a selectable number

of osculating planar sections of a conical flow field at selectable distances between

planes. Each osculating plane may have its own design conical flow field, and the

space between osculating planes is simply interpolated between the bounding plane

values. In principle, a singular conical flow field can be recovered with the appro-

priate planar flow field and inclination assigned to each of the osculating planes.

The caveats with the osculating cones method are 1) positioning of each subse-

quent plane and leading edge point laterally does not guarantee continued shock

attachment, and 2) cross-flow components may not be negligible for large geometric

gradients. As long as the geometry does not change too abruptly and planar flow

fields are selected that have minimal cross-flow components, the osculating cones

method enables arbitrarily high degrees of freedom at a low computational cost.

The Osculating Cones method has been extended by Rodi to osculating power-

law body flow fields [85,86] and generalized osculating flow fields [87] where a refer-

ence solution field is interpolated from a lookup table or curve-fit computational re-

sults. Perhaps the most prolific waverider technology developer in the public record
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is P.E. Rodi. Rodi has demonstrated the utility of these approximate flow field meth-

ods for parametric optimization, including investigating osculating flow fields in the

context of minimizing wave drag [88], maximizing boundary layer stability [89], in-

creasing lift with the upper surface [90], reducing leading edge heating [91,92], and

minimizing acoustic signature [93]. In the context of optimization of aerodynamic

coefficients and comparison to other non-waverider vehicles, it should be noted that

Rodi reports inviscid lift-to-drag results.

Efficient and accurate evaluation of aerodynamics and heating is the goal of

reduced-order modeling, which enables tractable flight trajectory computations and

optimization with a large number of model evaluations. Aside from suggesting new

design methods, e.g. [94–96], many contributions to reduced-order modeling are

motivated by modification of waverider geometries for realism. These modifications

include leading edge blunting and off-design operation with respect to orientation

and speed. While early ROMs assumed nominally sharp leading edges, leading edge

blunting was investigated for waveriders using Modified Newtonian Flow theory [4]

by Santos beginning in 2009 [97, 98]. Supported by experimental evaluations of

waveriders (e.g. [99, 100]), both investigations of leading edge blunting concluded

that realistic radii will have a significant effect on the drag coefficient and the lift-

to-drag ratio. For a typical slender vehicle, a leading edge radius just 0.1% of the

vehicle’s width can result in approximately a 10% reduction in lift-to-drag ratio.

Leading edge heating modeling was addressed by Vanmol for a circular cross

section leading edge in 1991 [101, 102], and heating of the full bodies of power-law

waveriders was addressed by Santos in 2005 for prescribed isothermal wall temper-
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atures [103]. Both cases included classical round leading edge and flat plate heating

models as described in [4]. Variable-geometry leading edge designs intended to min-

imize local heating and drag have been recently approached by Hinman and Rodi

in 2017 [104] in the context of a two-dimensional nose tip with inviscid flow. Under

this premise, various optimization outputs resulted in nearly 20% reduction in peak

heating and nearly 10% reduction in pressure drag compared to the baseline circular

cross section.

1.4.2 Numerical Simulation of Waverider Flow Fields

The practical use of hypersonic waveriders includes operation across a wide

range of conditions that span speed, orientation, and altitude. As flow fields or ge-

ometry become too complex for reduced-order modeling, they must be analyzed with

high-fidelity computations. The numerical simulation of waverider flow fields started

with off-design angle-of-attack and speed investigations by Long in 1990 [105] and

Jones in 1992 [106] for waveriders with sharp leading edges using the Euler Equa-

tions [3]. Long found advantages in increased lift with increasing pitch angle and

maximum lift-to-drag occurring at small, positive angle of attack. Early attempts at

viscous simulation include those of Takashima beginning in 1992 [107,108], in which

the compressible Navier Stokes equations are used. The computational resources

available at that time, however, limited grid generation to 96k cells in Takashima’s

study and prohibited evaluation of turbulent flows or demonstration of grid conver-

gence. While un-converged simulations can be deeply insightful for general features
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and trends in variables, these results are subject to an unknown degree of uncer-

tainty. Similar results were reported by Liao [109].

Perhaps the most insightful numerical investigation of waverider aerodynamics

was conducted by He and Rasmussen in 1994 [110]. Due to computational resource

limitations of the time, they used the inviscid Euler Equations to conduct the off-

design investigations and the Navier-Stokes equations to investigate the effect of

Reynolds number. He and Rasmussen were able to construct a 185k-element grid

for the viscous simulations. The inviscid simulations spanned the effect of angle of

attack, Mach number, and slightly blunted leading edges. They discovered that the

optimal lift-to-drag ratio usually occurred at a non-zero angle of attack, sometimes

negative, but that the magnitude of this maximum was within 10% of the zero

angle-of-attack value. They also found a monotonically decreasing inviscid lift-to-

drag ratio for each of the eight waverider configurations considered. However, the

reduction in lift-to-drag between Mach 2 and Mach 8 was typically only about

10%. Note that this trend does not include the effects of viscosity or turbulence.

The leading-edge blunting investigation included the baseline sharp leading-edge

geometry and uniform filleting slight enough to retain 98% and 96% of the original

vehicle’s wingspan. The conclusion drawn from these configurations is that very

slight blunting of the leading edge results in a slight decrease in the lift-to-drag

ratio, but this reduction diminishes with increasing angle of attack. Finally, He

and Rasmussen found that viscous effects for Reynolds numbers of 108 to 106 can

reduce the inviscid lift-to-drag estimate by 10-30%, respectively. The computational

resources of the time precluded the grid resolution required to capture turbulence
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or demonstrate grid convergence. The inviscid results should be accepted with the

caveat that viscous and turbulent effects are not accounted for. A viscous study by

Jackson found low sensitivity in aerodynamic coefficients at Mach 14 on-design and

Mach 8 off-design [111].

Y. Shi, et al. [112,113], investigated a conical-shock-derived caret waverider in

1996 and 1997 in a study similar in scope to part of He and Rasmussen’s work. Be-

cause they had more capable computational power, they could include the turbulent

and viscous effects for both on- and off-design conditions [112] as well as the addi-

tional effect of side-slip or yaw angle [113]. Shi’s team was the first to investigate

waveriders at high-Reynolds-number with turbulent flow models, which enable the

approximate capture of fine-scale turbulence effects without requiring intractably

fine computational grids. Their qualitative conclusions were similar to those of He

and Rasmussen, however Shi’s team also saw shock detachment, shock-boundary-

layer interactions, and flow separation on the leeward surface with as little as +5◦

angle of attack. The effect of a small yaw angle did not have a large impact on the

lift or lift-to-drag ratio, but did decrease both.

Silvester, et al., investigated the viscous aerodynamics of a caret waverider

in 2004 [114], particularly interested in the effects of blunting. Contrary to prior

numerical investigations but corroborated by experimental results, Silvester’s team

found that small amounts of leading edge blunting can reduce the lift-to-drag ratio

by as much as 30% [115,116]. They also found that the viscous component of drag

can exceed the pressure component of drag for realistic flight dynamic-pressure. A

more precise treatment of leading edge blunting was provided by Chen in 2011 [117]
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and Li in 2017 [118], finding that small bluntness ratios can reduce the lift-to-drag

ratio by as much as 30-50%.

At high altitudes, the air reaches sufficiently low density that the continuum

assumption breaks down and boundary layers behave differently. For waverider entry

vehicles, the effect of rarefaction must be considered. Osculating-cone waveriders

at high altitude and zero angle of attack were numerically evaluated by Graves in

1999 and 2001 [7,119]. Graves found a lift-to-drag ratio much lower than unity but

higher than the estimate using continuum flow.

1.4.3 Hypersonic Waveriders Across a Range of Flight Conditions

Criticisms of the single “design point” operation of waveriders dates back to

Nonweiler, who noted that the geometries amenable to exact shock wave shapes

were only valid for the specific Mach number and orientation at which they were

designed [58]. Preceding the discussion of the following attempts to enable efficient

operation of waveriders on-design across a range of speeds, one must recall that prior

studies had found only modest reductions in lift-to-drag ratio for increasing Mach

number and that the optimal lift-to-drag ratio typically occurs at a nonzero angle

of attack.

Past attempts to enable the high-performance operation across a wide range

of speeds began with the numerical investigations of rigid waveriders at off-design

speeds conducted in the 1990s [?, 105–113]. In 2009, Corda [120] suggested a four-

part caret waverider called a “star body” waverider, where each of the waveriders

49



may be designed at a different Mach number. For example, the bottom waverider

may be designed for Mach 4, the top waverider may be designed for Mach 8, and

the lateral waveriders may be designed for Mach 6. These waveriders don’t produce

positive lift for zero angle of attack except when the highest design speed is on

the bottom. When the two lateral waveriders that comprise the star body are not

identical, a nonzero yaw moment and lateral force is produced. When inverted, a

star-body waverider produces negative lift at zero angle of attack. The high-pressure

pocket of the higher Mach number side outweighs the high-pressure pocket created

by the lower Mach number side. For these reasons, the practical implementation of

a star-body waverider requires operation at nonzero angles of attack and requires

symmetry about the vertical plane.

The Boeing Company produced a patent in 2002 [121] on the concept of using

actuated leading-edge slats to reach out and touch a variable-geometry shock as the

speed of the vehicle is changed. One issue with this approach is that the aerody-

namic forces depend strongly on the stream surface position. The positioning of

the leading-edge slats correspond to the position of the design shock, but the vehi-

cle’s bottom surface does not correspond to the design flow field’s stream surface.

The deviation of the vehicle surface from the stream surface results in additional

compression or expansion in the post-shock pocket of air beneath the vehicle.

Li proposed a two-part tandem waverider in 2013 [122], each with a distinct de-

sign Mach numbers. Liu proposed the dual-cone waverider in 2014 [123], a blended-

body configuration that can operate half of its geometry on-design at each of two

design Mach numbers. The composite vehicle does not operate on-design at either
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speed or aside from these speeds. An overview of the attempts to operate on-design

or efficiently at multiple speeds was provided by Ding [124], which highlighted the

concept that waveriders are most efficient at their design speed, and performance

compromises must be accepted for operation at other speeds.

A key feature of the present work, “morphing waveriders,” is to fix the design-

shock shape for various speeds and the associated leading edge and top surface

[125,126]. As the speed changes, only the stream surface must change. This requires

small in-plane strain of the stream surface and retains on-design performance with

respect to angle-of-attack and Mach number. The concept was evaluated in the

context of entry vehicles for Earth [127] and Mars [128] with a reduced-order model

for entry dynamics and compared to conventional entry capsules and the Space

Shuttle Orbiter.

Without fully entering an atmosphere and touching down on the planetary sur-

face, waveriders for use in planetary atmospheres have been investigated by groups

led by Anderson [129], Sims [130], Johnson [132, 133], Lavagna [134], Knittel [135],

Rodi [136], and Edelman [137, 138]. Key results from the Anderson study include

the high performance estimated for various planetary atmospheres. Venusian wa-

veriders at lower altitudes reached a lift-to-drag ratio near 15. The generally more

viscous atmosphere of Mars resulted in lower glide ratios, reduced by approximately

two thirds. Johnson, Lavagna, and Knittel each separately investigated waveriders

for aero-assist maneuvers, either for trajectory modification along an interplanetary

route or for orbital-path modification such as transition from hyperbolic to elliptical

orbits or to effect a change in orbital inclination angle. In each case, it was found
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that the high lift and low drag of waveriders even at high altitudes was beneficial in

creating the desired trajectory modification without the less efficient expenditure of

thruster fuel or excessive loss of energy through aerodynamic drag-based aero-assist

maneuvers.

1.5 Scope of the Present Work

The key questions addressed here are 1) Is there an advantage to morphing

a waverider across the wide range of entry speeds? 2) Can a morphing waverider

out-perform a lifting capsule on Mars or the Space Shuttle on Earth? 3) Is overcom-

ing the technical challenges associated with morphing worth any advantage demon-

strated? The present study seeks to answer the first two questions in an effort to

advance an understanding of the potential of morphing waveriders. These answers

determine whether the concept merits further investigation. The third question is

deferred for future work.

The high lift and low drag enabled by waveriders makes them ideal candi-

dates for entry vehicles, provided that the heating conditions are survivable. Prior

analytical models for waverider aerodynamics and trajectory simulations were in-

complete. Aerodynamics models have not been compared to numerical simulations

in order to understand their accuracy. Errors in performance estimates are not

known to originate from pressure or viscous components, or on which surface. Prior

numerical investigations into waverider aerodynamics couldn’t include the fidelity of

turbulent flow structures and chemical reactions. The present effort includes the ad-
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vantage that modern computing resources enable higher-cost investigations that can

address these gaps in understanding of waverider aerodynamics and the accuracy of

reduced-order models.

Formulating the strategy to address questions #1 and #2 leads to the following

four goals. The first goal is to select appropriate models for numerical simulation

and conduct simulations on a candidate vehicle with varied Mach number, angle of

attack, and in reactive, hypersonic flow. While large leading edges such as capsules

and the Space Shuttle allow much of the post-shock flow chemistry to develop,

it remains unknown how a smaller-radius “cold wall” (relative to the adiabatic

temperature) affects the post-shock flow chemistry. The second goal is to select

appropriate analytical models in order to build a reduced-order model for pressure

and viscous forces and moments. The third goal is to use numerical simulations to

evaluate the accuracy of the reduced-order model for waverider aerodynamics across

Mach number and angle of attack. The comparison of ROM accuracy will determine

what level of confidence can be applied to flight path modeling. The fourth goal

is to compare the entry trajectories of morphing waveriders computed using the

developed ROM to classical lifting entry vehicles for Earth and Mars. This study

will culminate in entry trajectory comparisons between a morphing waverider and

two classical entry vehicles: the Space Shuttle for Earth’s atmosphere and the Mars

Science Laboratory (MSL) capsule for Mars’ atmosphere.

The following topics are specifically outside the scope of the present work and

are not addressed. Each of them is an important consideration that is recommended

for future work, but does not fit within the present scope of effort and resources. The
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first topic is rarefied flow at high altitude. Extremely-low entry-parameter vehicles

will need proper treatment of the effects of rarefied flow. For the entry conditions

and vehicle comparisons chosen for the present work, aerodynamics and flight path

differences in the rarefied regime for Earth and Mars are minimal. Significant decel-

eration, heating, and flight path angle change only occur in the continuum regime.

The second topic is surface interactions, including gas-wall chemical reactions, ero-

sion, and ablation. It is expected that comparison vehicles will be designed with

stagnation heating rates lesser than the Space Shuttle, enabling a fully reusable ve-

hicle and rendering the consideration of these effects unnecessary. The third topic

is optimization. Neither the vehicle geometry nor the angle of attack throughout

the entry trajectory will be formally optimized. The final comparison vehicles will

be the result of design iterations that represent reasonable vehicle configurations.

1.5.1 Thesis Outline

In the next chapter, entry dynamics models are presented, which illustrate

the benefits of high lift and high lift-to-drag ratio. A method for constructing

a hypersonic waverider and estimating its near-body flow field is presented. The

conical-shock method is selected for case study vehicles. Two methods of blunting

the leading edge are presented, followed by models for hypersonic aerodynamics,

friction and heating, and transition to turbulence.

In the third chapter, numerical methods for simulating high-speed, turbulent,

reactive flows are presented, with case studies that illustrate the convergence and
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order of accuracy of the proposed methods. For high-speed flow, a variable heat

capacity ratio model and a seven-species reactive flow model are used. Verification

and validation of the proposed methods is provided in the context of a flat plate in

turbulent hypersonic flow and a cylinder in reactive hypersonic flow.

In the fourth chapter, the results of the case study vehicles are presented for

on-design operation and off-design orientation and Mach number. The effect of

leading edge blunting is summarized, and the implication of off-design orientation

on stability is discussed. A seven-species reactive flow model is used to present the

waverider near-body flow field at Mach 15 at 60km and Mach 20 at 75km with a

discussion of the species concentrations in the near-body flow field.

The fifth chapter is a comparison of the aerodynamic forces and moments com-

piled from numerical simulation results to the reduced-order aerodynamics model

proposed. Considerations include viscosity and turbulence, angle of attack, and

Mach number, with a focus on the comparable agreement between the ROM and

CFD results and implied degree of accuracy. The effect of altitude and wall temper-

ature are also summarized. The fifth chapter closes with a comparison between rigid

and morphing waveriders and important considerations such as L/D across Mach

number and the associated surface deflection and strain.

The sixth chapter is a comparison between morphing waveriders and classical

entry vehicles. The Space Shuttle is chosen for comparison in Earth’s atmosphere

and the Mars Science Laboratory capsule is chosen for Mars’ atmosphere. The

results are presented to emphasize the heating and deceleration during the entry

process.
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The conclusion chapter summarizes the efforts of the present work and the

resulting insights gained. Unique contributions are highlighted, primarily demon-

strating that the morphing-waverider entry-vehicle concept merits further investi-

gation and summarizing the advantages discovered in the present work. Caveats

and limitations of the models used and case studies presented are discussed, and

recommendations are made for future work.
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Chapter 2: Analytical Approach

This chapter describes a collection of models that together allow the efficient

estimation of waverider aerodynamics, heating, and entry flight paths. The collec-

tion of the models used in their specified regions of application is called the au-

thor’s Waverider Reduced-order Analytical and Investigative Tool for Hypersonics,

or “WRAITH.” Any future reference in this work to the waverider reduced-order

model (ROM) or WRAITH are synonymous. First, the simple Equilibrium Glide

model is presented and discussed. This model provides insights into how entry

heating and deceleration generally scale with vehicle properties and constant aero-

dynamic coefficients. Next, the Planar Lifting Entry equations are used as the basis

of entry trajectory comparisons. Entry heating models are then presented, which use

hypersonic flow theory and empirical calibration. Hypersonic aerodynamics mod-

els are then selected for the reduced-order model formulation. The second half of

this chapter includes simplified models for hypersonic aerodynamics and high-speed,

high-temperature air.
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2.1 Equilibrium Glide Entry Model

Consider the atmospheric entry of a lifting vehicle from a low, circular orbit

with a constant entry parameter (Eqn. 1.6) along the entire entry trajectory. This

vehicle executes no pitch or banking maneuvers and descends along an equilibrium

glide path as it decelerates. If we approximate the variation of density with altitude

as an exponential, ρ(h) = ρpe
−h/hs [139], we arrive at an algebraic approximation

for the entry conditions with altitude as a function of the entry parameter, the

planetary radius and surface density, and the atmosphere’s scale height [139,140]:

v

ve
=

[
1 +

(
ρprp

2

CLS

m

)
e−

h
hs

] 1
2

(2.1)

Here, we used the approximation that the circular orbit velocity is equal to the

entry velocity. For context of this velocity approximation, the SSO’s entry speed

was 98.8% of its circular orbit velocity [47]. We have also taken advantage of the

stationarity of dynamics in equilibrium glide so that the velocity at any altitude is

a specifically defined fraction of its initial circular-orbit velocity. Using this approx-

imation for velocity as a function of altitude, the average dissipated power per unit

area, deceleration, and entry duration can be approximated as [4, 141–143].

Q

S
(h) =

1

2
ρ(h)v3(h)CD (2.2)

a(h) =
q(h)CDS

m
(2.3)

t(h) =
1

2

√
r0/g0

L

D
ln

(
1 + (v/ve)

2

1− (v/ve)2

)
(2.4)

One stagnation heat flux model commonly used for planetary atmospheres is the

Chapman Method [47], presented in Eqn. 2.5. The instantaneous stagnation heat
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flux depends on the vehicle speed, v, and leading edge radius, RLE, the local flow

density, ρ, specific heat capacity at constant pressure, cp,∞, free-stream tempera-

ture, T∞, the enthalpy at the wall, hw, and some calibration constants unique to a

particular vehicle and atmosphere. Defining the heat flux at the stagnation point

at the wall as

qw,0 =
c√
RLE

ρmvn

(
1− hw

haw

)
(2.5)

the model uses the assumption that the specific heat capacity is constant. This is

called a “calorically perfect” gas. High-temperature effects are corrected for using

the recommended closure coefficients of m = 0.5 and n = 3.04 for Mars and n = 3.00

for Earth [47, 139]. The proportionality constant, c, is dependent upon vehicle

geometry. For a capsule in Earth or Martian atmosphere, a value on the order of

c = 2× 10−8 matches experimental and flight test results.

The adiabatic wall enthalpy and wall enthalpy at temperature Tw are defined

as [4]

haw =

∫ T∞

0

cp(T )dT +
rv2

2
(2.6)

hw =

∫ Tw

0

cp(T )dT (2.7)

where r is the “recovery factor,” approximated as Pr1/2 for laminar flow near the

stagnation point. The latter quantity is defined using the specific heat capacity and

temperature at the wall, cp,w and Tw. For a constant heat capacity, these integrals

simplify to haw = cp,∞T∞ + 1
2
rv2 and hw = cp,∞Tw.

A key feature of the Chapman Method is that qw,0 ∝ R
−1/2
LE , so doubling the

leading-edge radius results in approximately 30% lower stagnation heat flux. There
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is also a strong dependence of the heat flux on the flight velocity and moderate

dependence on density, indicating that stagnation heating will be minimized for

vehicles that can slow their speed while retaining higher altitude. For identical initial

velocity and altitude, and the same end condition of zero speed at zero altitude, lower

heating is achieved by decelerating before descending into denser atmosphere.

Results from the Equilibrium Glide entry approximation are presented in Fig.

2.1 for entry parameters of 1,000, 500, 250, and 100kg/m2. A lifting capsule typically

has an entry parameter on the order of 103kg/m2, while high-lift vehicles such as

the Space Shuttle, Boeing’s X-37, and Sierra Nevada Corporation’s Dream Chaser

pictured in Fig. 2.2 lie in the range of 250-500kg/m2 depending on their loading

configuration [44]. These high-lift vehicles are depicted in Fig. 2.2 along with the

Apollo lifting capsule.

For depicting the equilibrium glide entry approximation in Fig. 2.1, the glide

ratio was set to 1/4, 1/2, 3/4, and 1 to produce the listed entry parameters. The

results are depicted for entry from a 200km LEO into Earth’s atmosphere in 2.1.

In each case, a reference nosetip radius of 1m was used for illustrating how the

stagnation point heat flux varies with entry parameter. The dissipated power flux

is the instantaneous power dissipated by the vehicle per unit area through drag and

heating. This value corresponds fairly well to the average surface heat flux and

stagnation heat flux by a small scalar. The dissipated power flux is much larger

than even the stagnation heat flux. Fortunately for entry vehicles and their thermal

protection systems, nearly all of the dissipated power for an entry vehicle is carried

away by the convective atmosphere and radiation. Only a small fraction is absorbed
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Figure 2.1: Equilibrium glide entry approximation of entry conditions for Earth’s

atmosphere
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Figure 2.2: Apollo lifting capsule [144], NASA Space Shuttle Orbiter [145], Boeing

X-37 [146], Sierra Nevada Corporation Dream Chaser [147]
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by the vehicle as thermal loading [2].

Figure 2.1 shows the consistent flight path envelope of velocity and altitude

across vehicles with large differences in their entry parameter. As shown in the

velocity plot and the accompanying heating and deceleration plots, vehicles that

descend more steeply incur higher stagnation heat fluxes, higher dissipated power,

and higher peak deceleration than those that dissipate their energy higher in the

atmosphere before descending.

The scaling factor between the stagnation heat flux and the dissipated power

flux is illustrated in Fig. 2.1, for example, by the ξ = 1000kg/m2 vehicle. The

vehicle must dissipate 1600W/cm2 on average across its reference surface at 60km

in order to decelerate, but its stagnation heat flux is only 76W/cm2. The typical

magnitude of average heat flux is on the order of 1% of the dissipated power flux [2].

The Equilibrium Glide entry approximation estimates velocity, Mach number,

and dissipated power profiles with altitude accurately. The approximation produces

a moderately accurate estimate of stagnation heat flux and integrated heat load,

while qualitative trends are preserved very well. This is largely due to the assump-

tion of uniform aerodynamic coefficients across Mach number, Reynolds number,

and Knudsen number, constant angle of attack, and a flight path angle always near

zero. The total entry duration is well matched, but its prediction of time along with

altitude is not. Because of this temporal accuracy issue, the deceleration is erro-

neously biased toward the lower altitudes of the flight path. The peak-deceleration

magnitude matches more complex entry trajectory models fairly well.

A final note on the accuracy of the approximation is that the peak deceleration
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Figure 2.3: Entry altitude and time for SSO and Apollo and Gemini capsules [148]

tends to lie on the conservatively benign limit of the practical range of a flight vehicle

because the entry angle and glide angle are always assumed to be close to zero. A

steeper initial entry angle will result in higher peak deceleration, while a shallower

initial entry angle will result in lower peak deceleration. Since the Equilibrium Glide

entry approximation does not provide accurate temporal information, a summary of

descent over time is presented in 2.3 of the entry profile for the Space Shuttle and

capsules used for Gemini and Apollo [148]. This graph shows the difference between

reentry profiles for Apollo, Gemini, and the Space Shuttle [148]. The Gemini and

Apollo reentered much more steeply than the Space Shuttle. The Shuttle’s reentry

profile must stay within a tight corridor between the equilibrium glide limits. This

ensures that it will slow enough to avoid skipping out of the atmosphere and not

over-shoot the runway if it is too high. If it is too low, it will encounter excessive

surface temperatures and load factor.
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2.2 Planar Lifting Entry Model

The equations that govern the entry into planetary atmospheres of lifting vehi-

cles can be separated into the constants unique to a given planet and the dynamics

equations that are updated at each increment of time. For a planar lifting entry,

the dynamics equations are summarized in Eqns. 2.8-2.12 [56]:

g = g0

(
rp
r

)2

(2.8)

dαf
dt

=
1

v
g0

(
FL
m
−
(

1− v2

v2c

)
g cos(αf )

)
(2.9)

dv

dt
= −FD

m
− g sin(αf ) (2.10)

dr

dt
= v sin(αf ) (2.11)

dθ

dt
=
v

r
cos(αf ) (2.12)

where g is the local value of the planetary gravity for the orbital distance r, αf is

the local flight path angle, v is the vehicle velocity, and θ is the orbital angle. The

quantities FL and FD are functions of angle of attack, α, as well as Mach number,

Reynolds number, and control surface deflections. These variables are depicted in

the orbital schematic for Earth in Fig. 2.4. Equations 2.13-2.15 are pre-computed

constants used to integrate the dynamics equations:

g0 = GMp/r
2
p (2.13)

µp = G(Mp +m) (2.14)

vc =

√
µpM

r
(2.15)
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In this context, g0 is the surface gravity of the planet, G is the universal

gravitational constant (6.674×10−11m3kg−1s−2), rp is the planet’s mean radius, Mp

is the planet’s mass, µp is the planet’s reduced mass, m is the vehicle mass, and vc

is the circular orbit velocity for the radial distance from the center of the planet,

r, where r > rp, and orbital altitude is described as the height above the planetary

surface, h = r − rp.

2.3 Entry Heating Models

Heating must be evaluated at locations along the vehicle and at the stagna-

tion point for various Mach and Reynolds numbers. While the Chapman model is

a relatively simple method for estimating the stagnation heat flux for an entry cap-

sule, a newer model was developed by Van Driest [149]. In the newer method, the

stagnation point heating for a vehicle’s blunted leading edge can be approximated

as that for a cylinder, given by

q0,cyl = 0.57Pr−0.6(ρ0µ0)
1/2(haw − hw)

√
du

ds

∣∣∣
0

(2.16)

or a sphere, given by

q0,sph = 0.763Pr−0.6(ρ0µ0)
1/2(haw − hw)

√
du

ds

∣∣∣
0

(2.17)

where Pr = cpµ/k is the Prandtl number, k is the thermal conductivity, ρ0 and µ0

are the stagnation density and viscosity, and du
ds
|0 is the rate at which the velocity at

the outer edge of the boundary layer increases along the surface curvature coordinate
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Figure 2.4: Schematic for entry variables for a vehicle at position (r, θ), velocity v

at angle-of-attack α, and flight path angle αp. The Earth image is taken

from NASA GSFC [150].
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from the stagnation point, s. This value is approximated as

du

ds

∣∣∣
0

=
1

RLE

√
2(p0,2 − p∞)

ρ0
(2.18)

Beginning with the free-stream temperature and pressure, the stagnation density

is computed using the stagnation temperature and stagnation pressure behind a

normal shock, given by [151]

T0 = T∞

(
1 +

γ − 1

2
M2
)

(2.19)

p0,2 = p∞

[
(γ + 1)M2

2 + (γ − 1)M2

] γ
γ−1
[

γ + 1

2γM2 − (γ − 1)

] 1
γ−1

(2.20)

Using the ideal gas equation of state [3],

p = ρRT (2.21)

the stagnation point density is computed using p2,0, T0, and the gas constant for

air, R = 287J/kg/K. Viscosity is computed using the stagnation temperature and

Sutherland’s Law [152]:

µ(T ) = µref
Tref + C

T + C

(
T

Tref

)3/2

(2.22)

where µref = 1.789 × 10−5Pas is the reference viscosity at reference temperature

Tref = 288K, and C = 110K [4].

Now consider the stagnation heat-flux components as evaluated from Eqns.

2.6 - 2.22. A spherical leading edge inherently has higher stagnation heating than

a cylindrical leading edge. This is due to the greater opportunity for compressed

and heated flow to escape the stagnation region for the axisymmetric flow compared
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to the planar symmetric flow. This “relieving” effect causes the sphere to have a

thinner boundary layer, which increases the thermal gradients normal to the wall

and results in a higher heat flux [4]. Although free-stream velocity and Mach number

don’t explicitly appear in Eqns. 2.16 and 2.17, they are implicitly included in the

stagnation temperature and pressure behind the normal shock, Eqns. 2.19 and 2.20,

and the adiabatic wall enthalpy, Eqn. 2.6. At high speeds, the dependence works

out to q0 ∝M3, which agrees with Chapman’s Method of Eqn. 2.5.

Along the leading edge away from the stagnation point, Lee developed a heat

flux estimate using laminar boundary layer theory and the local inclination angle,

θ, [153]:

qw,LE(θ) =

2q0θ sin(θ)

[(
1− 1

γM2

)
cos2(θ) + 1

γM2

]
√

(1− 1
γM2 )

[
θ2 − θ

2
sin(4θ) + 1−cos(4θ)

8

]
+ 4

γM2

[
θ2 − θ sin(2θ) + 1−cos(2θ)

2

]
(2.23)

where the stagnation heating value, q0, is obtained from either 2.16 or 2.17, depend-

ing on the vehicle geometry. An example of the heating predicted around the leading

edge using the Lees method is provided for various Mach numbers and leading edge

radii in Fig. 2.5.

Heating away from the leading edge requires another estimation method. The

Stanton number is a dimensionless heat transfer metric defined using the heat flux

at the wall, qw, density and velocity of the free-stream, ρ∞ and v, and the current

and adiabatic wall enthalpy [4]:

CH =
qw

ρ∞v(haw − hw)
(2.24)
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Figure 2.5: Heat flux about the leading edge from Eqn. 2.23 for 30km altitude and

Mach 20, 10, and 5 with leading edge radii of 3mm and 30mm.

The current wall enthalpy and adiabatic wall enthalpy were previously defined in

Eqns. 2.6-2.7. The Stanton number may be estimated in relation to the friction

coefficient using the Reynolds analogy as [149]:

CH =
1

2
cfPr

−2/3 (2.25)

The friction coefficient calculation method will be described in section 2.6.5.

2.3.1 Radiative Heating

In the present work, radiation between surfaces on the waverider will be ne-

glected. Instead, what will be considered is the radiation between each surface panel

and either cold space or the surface of the Earth. The surface of the Earth is as-

sumed to be a standard day, for which T = 288.15K. The altitude of the vehicle

is assumed to be sufficiently high that the effective temperature of the sky above is
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that of space, at 2.7K. The heat transfer due to radiation for panel i with emissivity

εi, area Ai, and temperature Ti, is given by [154]:

qrad,i = εiAiσ(T 4
i − T 4

2,i) (2.26)

where σ = 5.67 × 10−8W/m2/K4 is the Stefan-Boltzmann constant and T2,i is the

temperature of the surface that the panel is radiating to. Bottom-surface panels

are assumed to be radiating to Earth’s surface, therefore T2,i = 288.15K; whereas

top-surface panels are assumed to be radiating to cold space, therefore T2,i = 2.7K.

2.4 Waverider Construction

As discussed in 1.3, waveriders can be constructed from known, computed, or

approximate flow fields. This section uses the known flow field about an axisymmet-

ric cone at zero angle of attack as the design flow field. The steps of construction

form the subsections of the present section, as outlined in the following procedure:

1. Select and solve a design flow field

2. Define the leading edge on the design shock

3. Trace the stream surfaces from the leading edge to the base plane

Following the construction procedure, the aerodynamic forces and moments can be

computed for a waverider’s stream surface at the design Mach number and zero

angle of attack using the flow field solution. The forces on the other surfaces and

the effects due to off-design Mach number or orientation are addressed in subsequent

sections.
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Figure 2.6: Taylor-Maccoll flow field schematic and coordinates.

2.4.1 Solution for the Conical-Shock Flow Field

The design flow field is a cone at zero angle of attack, described by a similarity

solution derived by Taylor and Maccoll in 1933 [60]. This is given by the set of

governing ordinary differential equations shown in Eqns. 2.27-2.28.

γ − 1

2

(
1− v2ρ̂ −

(dvρ̂
dφ̂

)2)(
2vρ̂ + cot φ̂

dvρ̂

dφ̂
+
d2vρ̂

dφ̂2

)
− dvρ̂

dφ̂

(
vρ̂
dvρ̂

dφ̂
+
dvρ̂

dφ̂

d2vρ̂

dφ̂2

)
= 0

(2.27)

vφ̂ =
dvρ̂

dφ̂
(2.28)

The solution to the Taylor-Maccoll equations is a flow field of a single similarity

variable, φ̂, with solutions in the form of vρ̂(φ̂) and vφ̂(φ̂). Flow variables along a

ray of constant φ̂ emanating from the cone vertex are constant. Flow field variables

only vary across rays, illustrated along with the coordinate system in Fig. 2.6.
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First, a flight Mach number and shock angle, β, are chosen. The shock angle

has a minimum value for a given Mach number according to the Mach angle βmin =

arcsin( 1
M

). The solution to Eqns. 2.27-2.28 is found by integrating the equation

from the shock angle to the cone surface where vφ̂ =
dvρ̂

dφ̂
= 0. The classical Runge-

Kutta 4th-Order method (RK4) is implemented for the integration [155]. An angular

increment of 0.01◦ is used in the present work, empirically found to be sufficient to

determine the flow variables to at least three significant figures. The zero-crossing

is cubically interpolated from the integration points. The RK4 algorithm is listed

in Eqns. 2.29-2.34 for a generic function y(x) with initial value y(x0) = y0 and

increment ∆x, where the value at xn+1 = xn + ∆x.

dy

dx
= f(x, y) (2.29)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (2.30)

k1 = ∆xf(xn, yn) (2.31)

k2 = ∆xf(xn +
1

2
∆x, yn +

1

2
k1) (2.32)

k3 = ∆xf(xn +
1

2
∆x, yn +

1

2
k2) (2.33)

k4 = ∆xf(xn + ∆x, yn + k3) (2.34)

Conversion from the Taylor-Maccoll spherical coordinate system to Cartesian coor-

dinates is accomplished using Eqns. 2.35-2.39

vx = vρ̂ sin φ̂ cos θ̂ (2.35)

vy = vρ̂ sin φ̂ sin θ̂ (2.36)
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vz = vρ̂ cos φ̂ (2.37)

v = (v2ρ̂ + v2
φ̂
)1/2 (2.38)

M(φ̂) =
v√

γRT/Mw

(2.39)

Note that the azimuthal velocity, vθ̂, is zero for the selected conical flow field. The

post-shock Mach number, M2, pressure, p2, temperature, T2, density, ρ2, and deflec-

tion angle, δ, can be computed once the Taylor-Maccoll solution is obtained using

the Oblique Shock Relations for conditions immediately behind the shock, listed in

Eqn. 2.40 - 2.44 [156].

cot δ = tan β

(
(γ + 1)M2

2(M2 sin2 β − 1)
− 1

)
(2.40)

M2
2 sin(β − δ) =

(γ − 1)M2 sin2(β) + 2

2γM2 sin2 β − (γ − 1)
(2.41)

T2
T1

=
((γ − 1)M2 sin2(β) + 2)(2γM2 sin2 β − (γ − 1))

(γ + 1)2M2 sin2 β
(2.42)

p2
p1

=
2γM2 sin2 β − (γ − 1)

γ + 1
(2.43)

ρ2
ρ1

=
(γ + 1)M2 sin2(β)

(γ − 1)M2 sin2(β) + 2
(2.44)

With the stagnation temperature, pressure, and density behind the shock,

T0
T∞

= 1 +
γ − 1

2
M2 (2.45)

p0,2
p∞

=

[
(γ + 1)M2

4γM2 − 2(γ − 1)

]γ/(γ−1)[
1− γ + 2γM2

γ + 1

]
(2.46)

ρ0,2
ρ∞

=
p0,2
R
Mw

T0
(2.47)
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Figure 2.7: Example normalized Taylor-Maccoll solution field for a 7.09◦ cone, (φc),

producing a 12◦ shock angle, (φs), at Mach 6 and 30km altitude.

the solution is constructed for each variable in the post-shock flow field using the

Mach number solution, M(φ̂), and the Isentropic Flow Relations [3]:

T (φ̂) =
T0

1 + γ−1
2
M2(φ̂)

(2.48)

p(φ̂) =
p0,2(

1 + γ−1
2
M2(φ̂)

) γ
γ−1

(2.49)

ρ(φ̂) =
ρ0,2(

1 + γ−1
2
M2(φ̂)

) 1
γ−1

(2.50)

An example solution is provided for a 12◦ shock angle at Mach 6 and 30km altitude

in Fig. 2.7.
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2.4.2 Equilibrium Reacting Flow

In the preceding section, air was assumed to be a monolithic substance with

properties based on the 1976 Standard Atmosphere, Sutherland Law viscosity, and

molecular weight 28.966 g/mol. For air temperatures up to approximately 500K, air

may be described as calorically perfect with a heat capacity ratio, γ = cp/cv, fixed

at a constant value of γ = 1.4 [25]. For temperatures up to approximately 2,000K,

the heat capacity ratio can be accurately modeled as a function of temperature only,

described as thermally perfect.

The model used in the present work for thermally perfect air is based on kinetic

theory and given in Eqn. 2.51 [157].

γ(T ) = 1 +
γ0 − 1

1 + (γ0 − 1)

[(
Tref
T

)2
e
Tref
T(

e
Tref
T −1

)2

] (2.51)

where Tref = 3055K and γ0 = 1.4. To determine the fixed-γ(T ) value with the

present conical flow field, the Taylor-Maccoll equations are solved iteratively: an

initial guess is made for γ = 1.4, and the post-shock temperature is used to assign a

new fixed γ(T ) using Eqn. 2.51. This process is repeated until ∆γ(T ) < 0.01. This

method allows for first-order effects of chemically reacting flow, but assumes the

flow field reaches chemical equilibrium instantly after passing through the shock.

2.4.3 Leading-Edge Definition

The outer profile of the vehicle is called the “planform.” Once the flow field

has been found, the planform and leading edge may be designed in multiple ways. A
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Figure 2.8: Waverider construction curves for a conical shock: leading edge, plan-

form, and base-plane curves.

leading edge is traced along the shock, defined in three-dimensional space. The curve

is projected in the horizontal plane to define the vehicle planform, and projected

onto the base plane to define the vehicle’s upper surface. Alternately, a planform

may be defined initially with projections onto the design shock to define the leading

edge and a subsequent projection of the leading edge onto the base plane to define

the upper surface. Another alternative is that a “generating curve” may be defined

on the base plane that is projected onto the design shock to define the leading edge,

then onto the horizontal plane to define the planform. The relationship between

these curves is depicted in Fig. 2.8.

There are a few requirements for a valid generating curve that must be adhered

to. The wingtips must lie on the design shock. The base-plane generating curve
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Figure 2.9: Waverider construction schematic along a vertical plane.

must lie entirely below the horizontal plane, but may lie partly within the imaginary

cone. A generating curve with concave geometry on the upper surface must not be

so sharp that it creates a self-intersecting vehicle when the stream surfaces are

integrated.

2.4.4 Stream-Surface Tracing

With the flow field and the leading edge defined, discrete points are selected

along the leading edge for integration of streamlines. The upper surface is defined

as tangent to the free-stream flow. The lower surface is defined by numerically

integrating the streamlines from the leading edge to the base plane, as depicted in

Fig. 2.9. The tracing of streamlines for a 25-point leading edge is depicted in Fig.

2.10.
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Figure 2.10: Waverider streamline tracing for a Mach 6 vehicle designed on a 12◦

conical shock with 25 leading edge points.

The streamlines are integrated via the sixth-order Runge Kutta method de-

scribed in Section 2.4.1. The initial point for computing each ith streamline is each

leading edge point, ~xi|0 = (xLE,i, yLE,i, zLE,i), and the velocity is taken from the flow

field solution, vρ̂ and vφ̂. The integration time step is set to ∆t = 0.00025w/M/Nx,

where Nx is the number of leading edge points and w is the design wingspan. This

time step was empirically found to yield solutions where the streamline solution was

a minor contributor to the error in the aerodynamic coefficients.

The upper surface is discretized into triangular panels for a grid of Nx × Nx

points. The lower-surface panels are created by cubically interpolating the stream-

line integration points. The resulting paneled vehicle is depicted in Fig. 2.11.
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Figure 2.11: Waverider triangular surface panels (black), vertices (red), centroids

(blue), and surface normal vectors (green), for a 15× 15 grid and 196

surface panels. The design shock is shown in green.
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2.5 Morphing Waveriders

The preceding sections have focused on waverider construction and analysis for

both on-design and off-design flight regimes. As described in Section 1.3.1, waverid-

ers are designed for a specific Mach number and orientation [4]. A practical vehicle,

however, will likely need to operate at various speeds for ascent, descent, glide, or

atmospheric entry. For entry vehicles in particular, the range of speeds spans at

least Mach 25 at the entry interface (typically 120km) down to zero speed upon

touchdown. A primary subject of this work is to evaluate how waveriders perform

in their off-design configuration using the described reduced-order aerodynamics

models and high-fidelity simulations.

Consider that a waverider designed for high Mach numbers would produce

high pressure-drag at low-hypersonic speeds because of its larger flow-turning angle.

A slender waverider designed for low-hypersonic flight would not produce much lift

at high Mach numbers without pitching to a steeper angle of attack. At a positive

angle of attack, the upper surface becomes a lower-pressure expansion surface that

adds to drag. Additionally, a slender vehicle at a pitching angle gives up payload

volume compared to an on-design waverider with a free-stream tangent upper sur-

face. Conceptually, then, there should be inherent disadvantages for drag and the

lift-to-drag ratio for operating a waverider off design compared to on design. Instead

of a single design point at a single speed, suppose it is possible to retain an on-design

flight condition across a wide speed range. How might this be accomplished? What

advantages might this have?
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Figure 2.12: A waverider constructed from the flow field generated by a fixed cone

across Mach number will have a variable leading edge, planform, upper

and lower surfaces with changes in the flight Mach number. Vehicles

are qualitatively different as Mach number is varied.

A cone in supersonic flow produces a conical shock wave and the wave angle

is dependent upon the Mach number. A waverider constructed from this flow field

would necessarily have different geometric features at each speed. Since the shock

geometry changes, its leading edge changes, its upper surface changes, and its lower

surface changes. Even its aspect ratio changes. This is illustrated in Fig. 2.12.

Instead, suppose the shock geometry is fixed and the imaginary cone varies as

Mach number varies. With a fixed shock, the leading edge is fixed, the planform is

fixed, and the top surface is fixed. Only the lower stream surface varies with Mach

number, as illustrated in Fig. 2.13. As the Mach number increases, the generating

body must move closer to the shock, pushing the stream surface toward the shock.
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Figure 2.13: A waverider constructed from a fixed shock geometry across Mach num-

ber will have a fixed leading edge, planform, and upper surface. Only

the lower surface must vary with Mach number. Variations appear

as small deflections in the lower stream surface for hypersonic Mach

numbers and demonstrate Mach number independence for high Mach

number.

Since the leading edge is fixed, the stream surface can be thought of as a flexible plate

with a pinned boundary defined by the leading edge. In principle, if a vehicle’s lower

surface could be “morphed” to conform to the stream surface as a function of Mach

number, the vehicle would operate on design for a continuous range of Mach number.

For the case chosen in Fig. 2.13, the generating cone collapses to infinitesimally thin

at Mach 4.66. In this case, the post-shock streamlines are parallel to the free-stream

flow and the upper and lower stream surfaces are identical. A lower Mach number

will not be able to produce a shock at this small of an angle. Therefore, the shock

angle choice results in a lower limit for on-design Mach number.
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As the Mach number increases for a fixed shock shape, the vehicle volume

becomes larger. Practicality dictates that the lower limit for on-design Mach num-

ber will require some minimum volume. The classical “volumetric efficiency” of a

waverider design is a dimensionless comparison between reference area and internal

volume:

ηV = V 2/3/S (2.52)

where V is the internal volume and S is the planform area. While this morphing

method would theoretically enable a waverider to operate on-design across a wide

range of Mach number, there are a few key considerations that must be addressed:

1. What surface displacements are required to morph across a given range of

Mach number?

2. What strain is produced in the lower surface during morphing?

3. How does an on-design morphing waverider compare to a rigid waverider off-

design in terms of lift, drag, L/D, and payload volume?

4. What is the complexity of implementation required for morphing?

Questions 1-3 will be addressed in the results and discussions within the present

work, while question 4 will be deferred for future work. Inherently, deflections in

the stream-surface at low Mach number are significant whereas deflections in the

stream-surface at high Mach number become insignificant. Morphing a waverider

stream surface becomes increasingly feasible for large Mach numbers and small shock

angles and increasingly difficult for small Mach numbers and large shock angles. The
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strain induced in the stream surface, the effect of morphing on the aerodynamics of

a waverider, and the comparison to a rigid waverider are discussed in Section .

2.5.1 Aerodynamic Forces and Moments

The pressure solution provided in Eqn. 2.49 is used to interpolate the pres-

sure at each panel centroid. The on-design inviscid lift, drag, and pitch moment

coefficients on the bottom surface are computed using the pitch inclination of each

panel, αi, as:

CL,TM(α) =
∑
i

Cp,TM,i cos(αi) (2.53)

CD,TM(α) =
∑
i

Cp,TM,i sin(αi) (2.54)

CM,TM(α) =
∑
i

Cp,TM,irLE,i cos(αi) (2.55)

where rLE,i =
√
y2LE,i + z2LE,i is the moment arm to the ith panel centroid from the

nose tip of the vehicle.

2.5.2 Modifications for Realistic Leading-Edge Bluntness

A waverider constructed with an ideally sharp leading edge is impractical to

fabricate and will not survive the temperatures encountered at high Mach numbers.

Waveriders must also be sufficiently stable and controllable to be useful along in-

tended flight trajectories. Because of this, they must be modified from the geometry

produced with the original construction method. Within the scope of the present

work, we will incorporate the effects of a finite-thickness leading edge. Even a nomi-

nally sharp leading edge must be fabricated with some nonzero leading edge radius,

85



Figure 2.14: Waverider with 0.1% blunted leading edge.

as depicted in Fig. 2.14.

Classically, the leading edge is rounded uniformly. This operation, known as

a “fillet,” reduces the extent of the vehicle and creates a circular cross section that

is tangent to the vehicle upper and lower surfaces [2]. This method is depicted in

Fig. 2.15, and is referred to as “Sharp Edge Fillet (SEF).” As illustrated in 2.15,

the disadvantage of the SEF method is that the planform is not preserved. As the

degree of blunting is increased, the leading edge and lower stream-surface of the

vehicle conform less and less to the original design flow field.

An alternative method is proposed in the present work that will be referred to

as the Planform Vertical Offset (PVO) method. As depicted in Fig. 2.15, the leading

edge is created by vertically extruding the planform with a uniform displacement.

The resulting corners are filleted at the top and bottom of the extrusion so that the

radius of the leading edge corresponds to half of the increased vehicle thickness.
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Figure 2.15: Method comparison of leading edge blunting with original sharp-edged

vehicle silhouette. a) The sharp edge fillet (SEF) method, b) planform

vertical offset (PVO) method, c) sharp-edged waverider, d) SEF 0.1%

wingspan radius, e) SEF 0.5%, f) sharp-edged waverider, g) PVO 0.1%

wingspan radius, h) PVO 0.5%.
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Figure 2.16: Annotated waverider multi-view at angle of attack α and speed U∞.

2.6 Models for Hypersonic Aerodynamics

The purpose of reduced-order modeling of aerodynamics is to develop an accu-

rate model that can be used at minimum computational cost. The methods used for

the reduced-order aerodynamics model are summarized in the following subsection

and described in more detail in the subsequent subsections.

In order to compute the forces on the vehicle, the temperature and pressure

must be estimated on all surfaces: the lower stream surface, the upper surface, the

leading edge, and the base of the vehicle. The surface terminology is depicted in

Fig. 2.16.

2.6.1 Summary for the Reduced-Order Model for Waverider Aerody-

namics

The surface of the waverider is discretized in to panels, as described in Sec-

tion 2.4. Each panel has a unique centroid and normal vector. The model begins
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with Modified Newtonian Flow theory applied to the leading edge [4]. The leading

edge is assumed to have a circular cross-section where each panel is accounted for

individually for their inclination to the free-stream flow.

The vehicle surface parameters are interpolated from the known or computed

design flow field in order to determine the forces on the lower surface for on-design

orientation and Mach number. For varied angle-of-attack and Mach number, Modi-

fied Newtonian Flow theory calibrated for the design flow field is used. In the present

work, we will focus on the case study of a conical shock as the design flow field, al-

though the method is generalizable for substitution of any known or computed flow

field.

A new model is proposed here for base pressure along with experimental jus-

tification. The pressure on the upper surface is approximated as the free-stream

temperature, pressure, and Mach number when at zero angle of attack, or on-design.

When the angle of attack is positive, Prandtl-Meyer expansion theory is used for

the upper surface up to a maximum angle. Beyond this maximum angle, the base

pressure model is applied to the upper surface. When the angle of attack is negative,

two-dimensional Oblique Shock Theory is used for the upper surface.

Viscous effects are accounted for by using empirical relations for the friction

coefficient for flow past a flat plate as a function of Mach number and Reynolds

number. An empirical model is used to estimate the heat flux at the stagnation

point, a local-inclination model is used to estimate heating elsewhere on the leading

edge, and a relation between viscous friction and heating is used to estimate the

heating on the upper and lower surfaces.
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2.6.2 Modified Newtonian Flow

Isaac Newton showed using a momentum balance that the pressure exerted on

an inclined flat plate in high-speed flow has the form [3]

Cp,N = 2 sin2 α (2.56)

which is referred to as the Newtonian pressure coefficient. It is inaccurate for low-

speed flow, but it does yield useful results for high-speed flow. It was observed

that the qualitative variation of the pressure coefficient with inclination angle was

accurate when compared with analytical results and experiment, but its absolute

value was not [4]. Additionally, the Newtonian flow pressure coefficient listed in

Eqn. 2.56 does not include any variation with Mach number or fluid properties.

A more useful form for the pressure coefficient can be obtained using the

Rayleigh pitot tube formula to calibrate the maximum pressure coefficient [52,158]:

p0,2 = p∞

[
(γ + 1)M2

4γM2 − 2(γ − 1)

]γ/(γ−1)[
1− γ + 2γM2

γ + 1

]
(2.57)

Cp,max =
2

γM2

(
p0,2
p∞
− 1

)
(2.58)

Cp,MN = Cp,max sin2 α (2.59)

This Modified Newtonian Flow pressure coefficient is widely used and will be used as

the method for estimating the pressure forces along the leading edge. For the lower

stream-surface, however, this work proposes to calibrate the Newtonian pressure

coefficient with the Taylor-Maccoll solution pressure at each individual panel and

at zero angle of attack for the vehicle, Cp,TM,i. This calibration method is provided
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in Eqn. 2.60 [55].

Cp,i(α) =
(PTM,i − P∞)

qd sin2 αi

√
1 +M2

d√
1 +M2

f

sin2(α + αi) (2.60)

where Md and qd are the design Mach number and dynamic pressure, Mf and qf

the flight Mach number and dynamic pressure, and the effective offset angle is

αi = arcsin

[(
Cp,TM,i

Cp,max

)1/2]
(2.61)

where Cp,max is computed using flight conditions at Mf and qf , while Cp,TM,i is

computed using the design condition Md and qd at panel i. The pressure lift and

drag force coefficients for the lower surface are computed as

CL,TM(α) =
∑
i

Cp,i(α) cos(α) (2.62)

CD,TM(α) =
∑
i

Cp,i(α) sin(α) (2.63)

2.6.3 Tangent Wedge Method

In the Tangent Wedge Method, the temperature and pressure at each panel

centroid are computed by treating each panel as an independent wedge, assuming

an attached shock and using the Oblique Shock Relations, Eqns. 2.40-2.44 [3]. The

θ−β−M equation, 2.64, is iteratively solved for β with the panel inclination angle

as θ.

tan(θ) = 2 cot(β)
M2 sin2(β)− 1

M2(γ + cos(2β)) + 2
(2.64)

The shock angle, β is then used to compute the post-shock (i.e. panel surface)

temperature and pressure using the Oblique Shock Relations. A schematic of a

planar shock created by half-wedge is depicted in Fig. 2.17.
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Figure 2.17: Oblique shock schematic: flow initially at M1 turned by an angle α

through a shock at angle β, which decelerates to M2 [3]. The post-

shock properties are related to the free-stream properties using Eqns.

2.40-2.44.

Figure 2.18: Prandtl-Meyer expansion schematic: flow initially at M1 is isentropi-

cally turned by an angle α, which accelerates to M2 [3].

2.6.4 Prandtl-Meyer Expansion

Consider supersonic flow turned by an angle α, as depicted in Fig. 2.18. This

is a Prandtl-Meyer Expansion [3]. The flow variables are denoted M1 prior to the

flow turning and denoted M2 after the flow turning. The relationship between the

turning angle α and the flow variables is provided by

α = ν(M2, γ)− ν(M1, γ) (2.65)
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where ν(M,γ) is the Prandtl-Meyer function, given in Eqn. 2.66 [3]:

ν(M,γ) =

√
γ + 1

γ − 1

[
arctan

√
γ − 1

γ + 1
(M2 − 1)

]
− arctan(

√
M2 − 1) (2.66)

which is used to solve iteratively for M2. Since the expansion is isentropic, the

isentropic flow relations can be used to solve for post-turning flow variables once M2

is known, summarized in Eqn. 2.68:

p2 = p1

[
1 + γ−1

2
M2

1

1 + γ−1
2
M2

2

]γ/(γ−1)
(2.67)

T2 = T1

[
1 + γ−1

2
M2

1

1 + γ−1
2
M2

2

]γ/(γ−1)
(2.68)

2.6.5 Friction Coefficient

Viscous effects on the waverider are modeled as the friction coefficient on a

flat plate. The friction coefficient is computed for each surface panel as a function

of the local Reynolds number using a reference temperature. The reference tem-

perature method was first proposed by Rubesin and Johnson [159] and modified by

Eckert [160] to include a reference enthalpy, which is the form used in the present

work. The reference temperature is defined using the near-wall boundary layer edge

temperature and Mach number as well as wall temperature in Eqn. 2.69.

T ∗ = Te

(
1 + 0.032M2

e + 0.58

(
Tw
Te
− 1

))
(2.69)

The reference density ρ∗, viscosity µ∗, constant-pressure heat capacity c∗p, and ther-

mal conductivity k∗, are all defined at the reference temperature. The reference

Reynolds number is then found for panel centroid position from the local leading
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edge xLE and near-wall velocity ue:

Re∗x =
ρ∗uexLE
µ∗

(2.70)

For laminar flow, the local friction coefficient is given by

cf,lam =
0.664√
Re∗x

(2.71)

cf,tur =
0.0592

(Re∗x)
0.2

(2.72)

The transition to turbulence is depicted in Fig. 2.19, illustrating a laminar re-

gion, a finite-length transitional region, and a turbulent region [161]. The transition

location is determined by a critical Reynolds number as referenced from the local

upstream leading edge, Recr, as depicted in Fig. 2.20. The value of this critical

Reynolds number for the reduced-order model is assumed to be an instantaneous

transition from laminar to turbulent flow and is interpolated from experimental

results for supersonic flow over a flat plate at zero angle-of-attack and varied free-

stream Reynolds number [162]. This model was extended to a blunted flat plate

with varied sweep angle [163], which estimates the critical Reynolds number for

supersonic flow past a flat plate while accounting for variations in Mach number,

free-stream Reynolds number, leading edge sweep angle, and bluntness. This will

be referred to as the “Hopkins Method” for estimating the critical Reynolds num-

ber for transition to turbulence. For example, using the Hopkins Method [163]

for a nominally sharp flat plate at 30km altitude and Mach 6, the unit Reynolds

number is 1.2× 105m−1 and the critical Reynolds number is 1.5× 106. The critical

Reynolds number increases to 4× 106 for the same plate with a 3mm (1%) leading
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Figure 2.19: Schematic of flow past a flat plate depicting regions of laminar flow,

transitional fluctuating flow, and fully turbulent flow.

Figure 2.20: Local leading edge reference length coordinate for critical Reynolds

number in the Hopkins Method for the ith panel [163].
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edge radius. Adding a 60◦ leading-edge sweep, the critical Reynolds number reduces

to approximately 1× 106.

With this estimate for the local friction coefficient we may revisit the Stanton

number, 2.73, and use the Reynolds Analogy 2.25 to compute the local heat flux

as [149]:

qw =
1

2
cfPr

−2/3ρ∞v(haw − hw) (2.73)

An alternative to using the friction coefficient and the Reynolds Analogy for

is Churchill’s Method for estimating the local heating of a flat plate in supersonic

flow [164]. In this method, a reference temperature is computed according to Eqn.

2.74.

T ∗ = T∞ + 0.5(Tw,i − T∞) + 0.22(Taw − T∞) (2.74)

The heat flux is then computed using fluid properties at the reference temperature

as:

qw = (Tw,i − Taw)Pr−2/3ρ∗c∗pvxi (2.75)

where the length dimension, xi, is dependent upon the Reynolds number of the

panel referenced to the upstream leading edge and the reference temperature, Re∗,

according to Eqn. 2.76:
xi = 0.332(Re∗)−1/2 Re∗ ≤ Recr

xi = 0.0296(Re∗)−1/5 Re∗ > Recr ≤ 107

xi = 0.185(logRe∗)−2.584 Re∗ > 107


(2.76)

The Churchill Method is semi-empirical, based on a model fit to experimental data.

The three regimes in Eqn. 2.76 correspond to laminar, transitional, and fully turbu-
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lent heating regimes. While Churchill uses a fixed Recr = 5×105 for unswept, sharp,

flat plates at zero angle of attack, the present work will use the Hopkins Method of

estimating Recr that accounts for all of these effects.

2.6.6 Base Pressure and Temperature

There are two models frequently used for base pressure, pb, in supersonic flow.

The first is a zero pressure coefficient, Cp = 0 [4]. This corresponds to a pressure

equal to the free-stream pressure, pb = p∞. The second is zero pressure, pb = 0,

which corresponds to a pressure coefficient of Cp = p∞/q ∝ 1/M2 [3]. When com-

pared with experimental data, however, neither approach appears to represent the

trend with Mach number or an accurate base pressure for low and moderate Mach

numbers [165–167]. This thesis uses a phenomenological model for base pressure

based on experimental studies, provided in Eqn. 2.77. The comparison of the three

models with experimental data is provided in Fig. 2.21.

pb =
p∞
M

(2.77)

The comparison with experimental data is provided in Fig. 2.21, illustrating qual-

itative agreement with the proposed base-pressure model. While the quantitative

comparison between the proposed model and the experimental data depicts errors

on the order of 20− 30%, the proposed model is demonstrably more accurate than

the two legacy models for supersonic and low-hypersonic Mach numbers. It is possi-

ble that future adaptations of the proposed model may include modification factors

for scaling, offsetting, or skewing the general form of the proposed model based on
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Figure 2.21: Base pressure model comparison plot with empirical data for 10◦ cone-

cylinders with length-to-diameter ratio 5 and 6 [167], a rearward facing

axisymmetric step [166], and 9◦ blunted-nose cones [165].

geometry and Reynolds number. The base temperature is estimated by taking the

stagnation temperature and pressure behind the shock created by the vehicle and

isentropically expanding the stagnation flow to the base pressure, summarized in

Eqn. 2.78.

Tb = T0

(
p∞
p0,2M

) γ−1
γ

(2.78)

2.6.7 Model Summary and Convergence

The composite model described in the preceding sections is called the “Wa-

verider Reduced-order Analysis Investigative Tool for Hypersonics,” or “WRAITH”

for shorthand. A summary of the models used in each context is as follows for varied

angle-of-attack and Mach number. The Taylor-Maccoll solution is used to interpo-

late the pressure-based forces on the lower surface for on-design Mach number and
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orientation. The Van Driest-Lees heat flux models are used for the leading edge,

Eckert’s friction coefficient is used for the top and bottom surface, Hopkins’ transi-

tion to turbulence for the critical Reynolds number, and the proposed base pressure

model pb = p∞/M . For off-design angle-of-attack, Taylor-Maccoll-calibrated Mod-

ified Newtonian Flow is used for the lower surface. When the angle-of-attack is

positive, Prandtl-Meyer theory is used for the top surface up to the critical angle,

beyond which the proposed base pressure model is used. When angle-of-attack is

negative, Tangent Wedge theory is used for the top surface.

An important feature of any numerically solved model is that it is self-convergent,

meaning that it reaches a stationary value with increasingly refined step sizes in time

and space. The sample vehicle designed at Mach 6 and 30km from a 12◦ shock angle

is used to demonstrate the convergence of the construction method and reduced-

order aerodynamics models. The error in coefficients is given in Fig. 2.22 and a

depiction of various levels of resolution of the vehicle surface is provided in Fig.

2.23. The reference solution for computing the error magnitude in Fig. 2.22 is that

with 40,000 surface panels. As depicted in Fig. 2.22, the approximate convergence

slope is different for each coefficient.

The lift and pitch moment are almost exclusively due to pressure-based forces,

which are computed using ordinary differential equations (ODEs) and high-order

solution methods such that they converge approximately first-order. The drag and

the lift-to-drag ratio, however, include friction coefficient “sampling” at each surface

panel rather than ODE solution with a high-order method. Sampling methods

converge with a slope of 1/2 [168], which is observed in Fig. 2.22. Overall, the
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Figure 2.22: Convergence of reduced-order aerodynamic coefficients model with

number of surface panels for Mach 6 waverider at 30km.

reduced-order model of waverider aerodynamics should be approximately half-order

convergent. Examining Fig. 2.22, approximately 2,000 surface panels are required to

achieve 1% convergence. Following the half-order convergence assumption, 200,000

surface panels should be expected to achieve 0.1% convergence.

2.6.8 Entry Trajectory Comparison

A trajectory is computed using the Mars COSPAR reference atmosphere [15]

and the aerodynamic coefficients from [2] for the Mars Science Laboratory (MSL)

capsule. The capsule parameters are listed in Table 2.1 and the simplified model

trajectory is depicted in Fig. 2.24 along with flight path data from [169].

Note that there is no explicit control implemented in the capsule aerodynamics

model except for halving the lift coefficient below 25km in order to prevent too steep
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Figure 2.23: Waverider used for convergence study with 4, 16, 100, 576, 2,500, and

10,000 surface panels to illustrate surface geometry resolution.

Figure 2.24: Velocity entry profile with altitude for the Mars Science Laboratory

capsule: comparison between detailed flight trajectory data [2] (dotted)

and the planar lifting entry dynamics model (solid).
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m (kg) D (m) h (km) v (km/s) γ (◦) β (kg/m2) L/D

3380 4.5 150 5.6 -15 148 0.24

Table 2.1: Parameters for the Mars Science Laboratory capsule at its entry interface

[2].

of a climb. Below 1,000m/s, complex control and retro-thrust is implemented in the

MSL capsule, whereas the simplified model used in the present study continues

gliding to the surface because those detailed effects are outside the scope of the

present work. Upon examination of the flight path comparison, the model agrees

with the provided data qualitatively and quantitatively and will be satisfactory

for entry vehicle comparisons. Note that the touch-down speed of approximately

450m/s of the model capsule is exemplary of the “supersonic decelerator problem,”

where even a high-lift vehicle entering a low-density atmosphere cannot sufficiently

decelerate under aerodynamic forces alone [171]. For Mars entry, the touch-down

speed of high-lift or high-drag concept vehicles is still typically supersonic, requiring

additional mechanisms such as the Sky Crane [171], retro-thrust, and parachutes

[170] in order to touch down safely.

102



Chapter 3: Computational Approach

This chapter discusses the numerical methods and fluid dynamics models used

to solve the flow field. This includes the numerical models for solving the compress-

ible Navier-Stokes equations, models for equilibrium and non-equilibrium chemistry,

the geometry discretization, adaptive mesh refinement, and the time advancement

methods. Two turbulence models are used in the present work, each with distinct ad-

vantages and disadvantages. The chapter closes with two test cases to demonstrate

the accuracy and convergence of the tools used for a flat-plate friction coefficient in

hypersonic flow and a cylinder in viscous, reactive hypersonic flow.

3.1 Numerical Methods

The numerical simulation of a waverider flow field requires a model for the

fluid, governing equations for fluid dynamics, models for turbulence, and solution

methods. These are summarized here and discussed in more detail in the following

subsections. Two types of fluids are considered in the present work. The first is a

model for single-species air, the use of which significantly reduces the computational

cost and allows for a wider array of simulations. The second is a seven-species

reactive air model, which includes the effects of chemical non-equilibrium but is
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much more computationally expensive. Two turbulence models are used in the

present work. The more expensive turbulence model, LES-WALE, captures the

effects of large-scale turbulent flow structures in space and time. The lower-cost

turbulence model, k − ω SST, averages transient features of the flow in time and

space but allows for a wider survey of configurations.

3.1.1 Fluid Model

The fluid model for air is based on the ideal gas equation of state, given in

Eqn. 3.1, and two models for air chemistry: one for equilibrium chemistry and one

for non-equilibrium chemistry.

p = ρRT/Mw (3.1)

where R = 8.314 J
mol−K is the universal gas constant and Mw is the molecular mass.

The first treatment of high-temperature air includes a model of reacting flow with

equilibrium chemistry. Air is assumed to be a monolithic substance with molecular

weight 28.966g/mol. For air temperatures up to approximately 500K, air may be

described as calorically perfect with a heat capacity ratio, γ = cp/cv, fixed at a

constant value of γ = 1.4 [25].

For temperatures up to approximately 2,000K, the heat capacity ratio can be

modeled as a function of temperature only, a regime described as thermally perfect.

The model used for thermally perfect air is based on kinetic theory and is given in
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Eqn. 2.51 [157].

γ(T (~x)) = 1 +
γ0 − 1

1 + (γ0 − 1)

[(
Tref
T

)2
e
Tref
T(

e
Tref
T −1

)2

] (3.2)

where Tref = 3055K and γ0 = 1.4, and both temperature and γ are scalar fields in

space. In this model, air is assumed to be in chemical equilibrium, where variations

in γ with temperature account for effects of chemically reactive flow.

For a waverider, the stagnation region is small and confined near the leading

edge. The planform of the vehicle, where the vast majority of forces occur, is much

closer to the free-stream temperature than the stagnation temperature. This is

illustrated in Fig. 3.1 for the stagnation region and conical shocks across Mach

number. In these particular cases, the fluid model is approximately valid to Mach 8

in the stagnation region, but valid to Mach 20 behind a 20◦ conical shock, and valid

beyond entry Mach numbers behind a shallower 10◦ conical shock for a sharp-edged

vehicle. The more the leading edge is blunted and the faster the vehicle travels, the

more the stagnation region has transient effects that propagate downstream.

The second treatment for reactive air includes finite-rate chemical reactions

being explicitly accounted for using the Dunn-Kang reaction model and rates [172].

Air up to 9,000K is treated as a mixture of seven molecular species: N2, O2, NO,

N , O, NO+, and e−. The reactions considered are summarized as:

O2 +M ⇀↽ 2O +M (3.3)

N2 +M ⇀↽ 2N +M (3.4)

NO +M ⇀↽ N +O +M (3.5)

105



Figure 3.1: Temperature at the stagnation point (solid) and behind a 20◦ conical

shock (dashed) and a 10◦ conical shock (dotted) with Mach number.

O2 +N ⇀↽ NO +O (3.6)

N2 +O ⇀↽ NO +N (3.7)

N2 +O2 ⇀↽ 2NO (3.8)

N +O ⇀↽ NO+ + e− (3.9)

where M represents a collision partner and each reaction equation with each collision

partner has both a forward and backward reaction rate [4]. Eqns. 3.3-3.5 are

dissociation reactions, Eqns. 3.6-3.7 are known as bimolecular exchange reactions,

and Eqn. 3.9 is the single ionization reaction considered below 9, 000K. Eqns. 3.3-

3.9 represent 20 single-direction reactions when all collision partners are considered,

each with temperature-dependent reaction rates according to:

kf (T ) = CfT
ηf e−Kf/RT (3.10)
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where Cf , ηf , and Kf are parameters unique to each reaction and R = 8.314 J
mol−K

is the universal gas constant, and are summarized in Table 3.1 [172].

3.1.2 Governing Equations

In addition to the Ideal Gas Equation of State, Eqn. 3.1, the fluid dynamics is

modeled using the compressible, viscous Navier-Stokes equations [4]. These include

the conservation of mass, momentum, and energy, as well as species conservation

for reacting flow. The continuity equation and momentum equations for each of the

three Cartesian directions with directional velocity components V = (u, v, w) are:

∂ρ

∂t
+∇ · (ρV) = 0 (3.11)

Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

(3.12)

Dv

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

(3.13)

Dw

Dt
= −∂p

∂z
+
∂τxz
∂z

+
∂τyz
∂y

+
∂τzz
∂z

(3.14)

where

τxy = τyx = µ

(
∂v

∂x
− ∂u

∂y

)
(3.15)

τyz = τzy = µ

(
∂w

∂y
− ∂v

∂z

)
(3.16)

τzx = τxz = µ

(
∂u

∂z
− ∂w

∂x

)
(3.17)

τxx = λ(∇ ·V) + 2µ
∂u

∂x
(3.18)

τyy = λ(∇ ·V) + 2µ
∂v

∂y
(3.19)

τzz = λ(∇ ·V) + 2µ
∂w

∂z
(3.20)
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where µ is the viscosity based on Sutherland’s Law [152] and λ is the bulk viscos-

ity, which is simplified using the Stokes’ Hypothesis that λ = −2
3
µ. The material

derivative operator on a variable χ is given by

D

Dt
(χ) =

∂

∂t
χ+ V · ∇χ (3.21)

The energy equation is given by

ρ
D(e+ V 2/2)

Dt
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)

+
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z

+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z

+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z

+ ρq̇ −∇ · (pV) (3.22)

where e is the specific internal energy and k is the thermal conductivity based on

kinetic theory [11].

The system is solved using ANSYS Fluent 16 computational fluid dynam-

ics software [173]. The governing equations are discretized using a Finite Volume

Method (FVM) formulation with second-order upwind gradients [173]. The flux

between elements is computed using the Advection Upstream Splitting Method

(AUSM) [174], which is selected because it is capable of excellent resolution of

shock discontinuities and eliminates numerical oscillations near discontinuities. The

discretized equations are advanced in time with a second-order implicit predictor-
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corrector method. Steady-state results are achieved with advancement until impor-

tant aerodynamic properties vary by less than 0.1% per characteristic flow time,

defined as the length of the vehicle divided by free-stream velocity.

The method used is globally first-order convergent, meaning that uniform re-

finement of the grid spacing and time step by one order of magnitude results in

one order of magnitude reduction in error of the aerodynamic properties simulated.

The results can be improved by adaptively refining the grid rather than uniformly

refining it. Once a steady state is reached, the mesh is adaptively refined in the

regions of large first- and second-order gradients of flow variables. Since density

jumps appreciably across a shock and a shock is ideally a discontinuity, 10% of the

normalized magnitude of curvature of density is used as a refinement threshold.

Since Mach number varies significantly across a shock, in the boundary layer, and

in the wake region, 10% of the normalized magnitude of gradient of Mach number is

used as a refinement threshold. Both variables are used with each refinement step,

the flow field is allowed to march forward in time one characteristic flow duration

in order to relax, and a total of three levels of grid refinement are conducted. This

results in local resolution increase up to a factor of 8 finer than the initial grid.

For transient results, a steady result is first reached and used as an initial

condition. Time is then advanced for ten characteristic flow times, and then fluc-

tuations are sampled and averaged over three characteristic flow durations. An

initial unstructured grid of approximately 20 million elements is depicted in Fig.

3.2 along with the adapted grid of 98.6 million elements in Fig. 3.3. The initial

grid includes boundary layer refinement with a 15% layer-to-layer growth rate and a
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Figure 3.2: Hemispherical computational domain and initial mesh close-ups for the

Mach 6 waverider with 20 million elements. Note the boundary layer

refinement, the 0.1% leading edge radius, and the near-body resolution.

The grid spacing required at the vehicle surface is approximately 30µm

in the normal direction and 600µm laterally.

maximum aspect ratio of 20:1 per the ANSYS best practices guideline for LES [175]

and recommended by Pope [177].

Solving the system of Eqns. 3.11 - 3.22 is referred to as Direct Numerical

Simulation (DNS) when solved in this form without further modeling to reduce or

eliminate physics in the model [178]. Because of the high computational cost of

resolving turbulent flow structures at the high Reynolds numbers that are typically

encountered in Earth’s atmosphere, various simplified models are used to approx-
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Figure 3.3: Adapted mesh close-up for the Mach 6 waverider with 98.6 million ele-

ments. Note the shock, wake, and boundary layer refinement.

imate the effects of small-scale turbulence [178]. The present work will use the

Reynolds-Averaged Navier-Stokes k−ω Shear Stress Transport (SST) model as well

as the Large-Eddy Simulation (LES) Wall-Adapted Local Eddy Viscosity (WALE)

model for turbulent flows. Each of these is discussed in the following sections.

3.1.3 Reynolds-Averaged Navier-Stokes (RANS) k-ω Shear-Stress Trans-

port (SST)

In Reynolds averaging, the flow field variables are decomposed into the mean

and fluctuating components about the mean [?]. Mathematically, ui = ui+u
′
i. When

substituted into the Navier-Stokes equations, this yields the Reynolds-averaged mo-

mentum equations, given in tensor notation for components i, j, k:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = +

∂

∂xj
(−ρu′iu′j)−

∂p

∂xi

+
∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)]
(3.23)
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The Reynolds stress, −ρu′iu′j, must be modeled in order to close the system of

equations. The method selected for the present work

The compressible formulation for the k − ω turbulence model includes the

following equations transport equations for the turbulence kinetic energy, k, and

the specific dissipation rate, ω, was developed by Wilcox as [180]:

∂

∂t
(ρk) +

∂

∂xi
(ρuik) =

∂

∂xj

(
Γk

∂k

∂xj

)
+Gk − Yk + Sk (3.24)

∂

∂t
(ρω) +

∂

∂xi
(ρuiω) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω + Sω (3.25)

In each of the equations above, the left-hand sides represent the change in

variables in time and direction x̂i. Gk represents generation of turbulence kinetic

energy, k, and Gω represents increase of the specific dissipation rate, ω. The Γk

and Γω terms govern diffusivity of their respective variables, and Yk and Yω are

dissipation of each due to turbulence. The production terms are modeled as:

Gk = −ρu′iu′j
∂uj
∂xi

(3.26)

Gω =
αω

k
Gk (3.27)

where the Boussinesq Hypothesis, Gk = µtS
2 is used, where S is the modulus of the

mean rate-of-strain tensor, defined as:

S =
√

2SijSij (3.28)

where

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(3.29)

112



The effective diffusivities are given by

Γk = µ+
µt
σk

Γω = µ+
µt
σω

where σk and σω are the turbulent Prandtl numbers for k and ω. The turbulent

viscosity is computed as

µt = α∗
ρk

ω

where α∗ provides a correction at low Reynolds number by dampening the turbulent

viscosity and is defined as

α∗ = α∗∞

(
α∗0 +Ret/Rk

1 +Ret/Rk

)

The turbulent Reynolds number is Ret = ρk/(µω), and the model parameters Rk =

6, α∗0 = βi/3, and βi = 0.072 have been found to work well for wall-bounded

flow [173]. The production of ω is modeled as

Gω =
αω

k
Gk (3.30)

where the coefficient α is

α =
α∞
α∗

(
α0 +Ret/Rω

1 +Ret/Rω

)

where Rω = 2.95. The dissipation of k is modeled as

Yk = ρβ∗fβ∗kω (3.31)

where the constituent terms are defined as

fβ∗ =


1 χk ≤ 0

1+680χ2
k

1+400χ2
k

χ > 0
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χk =
1

ω3

∂k

∂xj

∂ω

∂xj
(3.32)

β∗ = β∗i [1 + ζ∗F (Mt)] (3.33)

β∗i = β∗∞

[
4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

]
(3.34)

where Ret = ρk/(µω), and ζ∗ = 1.5, Rβ = 8, and β∗∞ = 0.09 are recommended

model parameters for high-speed flows where external friction is important across a

wide range of Reynolds number [173]. The compressibility function is given by

F (Mt) =


0 Mt ≤Mt0

M2
t −M2

t0 Mt > Mt0

where M2
t = 2k/c2, Mt0 = 0.25, and the speed of sound is c =

√
γRT . The

dissipation of ω is given by

Y(ω) = ρβfβω
2 (3.35)

where

fβ =
1 + 70χ2

k

1 + 80χ2
k

(3.36)

χω =

∣∣∣∣∣ΩijΩjkSki
(β∗∞ω)3

∣∣∣∣∣ (3.37)

β∗ = β∗i [1 + ζ∗F (Mt)] (3.38)

Ωij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.39)

β = βi

[
1− β∗i

βi
ζ∗F (Mt)

]
(3.40)

The k − ω model was formulated for wall-bounded flows where boundary layers

and shear stress are important. The shear stress predicted by the k − ω turbulence
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model, however, is highly sensitive to the free-stream turbulence as a form of far-

field boundary condition for the model behavior in the near-wall region. The Shear

Stress Transport variation couples a free-stream formulation for k− ε, where ε is the

rate of dissipation of turbulence kinetic energy, k. The transport equations in the

free stream are given by Launder and Spalding as [181]:

∂

∂t
(ρk) +

∂

∂xi
(ρuik) =

∂

∂xj

(
αkµeff

∂k

∂xj

)
+Gk − ρε− YM (3.41)

∂

∂t
(ρε) +

∂

∂xi
(ρuiε) =

∂

∂xj

(
αεµeff

∂ε

∂xj

)
+ C1

ε

k
Gk − C2ρ

ε

k
−Rε (3.42)

where C1 = 1.44, C2 = 1.92, and Cµ = .09 are model constants, αk and αε are the

inverse Prandtl numbers for k and ε, and YM is the effect on the dissipation rate due

to fluctuating compressibility effects, found as YM = 2ρεM2
t . The effective viscosity

is given by

µeff = ρCµ
k2

ε
(3.43)

The location of transition can be specified in reference to a leading edge or

inlet when using the k − ω SST model within ANSYS Fluent by writing a User-

Defined Function (UDF) and compiling or interpreting the function [175]. Laminar

flow is solved with no turbulence model before this location, while elements beyond

this location are allowed to develop turbulence. The method selected for the present

work is a critical-length Reynolds number where the value is pre-assigned using the

Hopkins Transition estimates [163] based on the free-stream unit Reynolds number,

the leading edge bluntness, and the average leading-edge sweep angle.
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3.1.4 Large-Eddy Simulation (LES) with Wall-Adapted Local-Eddy

Viscosity (WALE)

The Large-Eddy Simulation (LES) turbulence model [173, 176, 182] has been

demonstrated to preserve subgrid-scale turbulence in compressible flows with shock

waves [183]. The fundamental basis for LES is the observation that mass, momen-

tum, and energy are mostly transported by large eddies, which are largely geometry-

and boundary-condition-dependent and should be explicitly solved for. Small ed-

dies, by contrast, may be approximated as isotropic and homogeneous throughout a

turbulent flow field, independent of geometry and boundary conditions. Therefore,

small eddies may be modeled as a uniform turbulence based on the system Reynolds

number with little loss of system information despite this simplification. For a Finite

Volume formulation [173], a filtered variable is defined as

φ(x, t) =

∫ ∞
−∞

∫ ∞
−∞

φ(r, t)G(x− r, t− τ)dτdr (3.44)

The filter kernel G has cutoff length scale ∆c and time scale τc, where smaller scales

are dropped from explicit treatment. A field variable φ can be split into its filter-

scale and sub-filter scale elements as

φ = φ+ φ′ (3.45)

This filter is applied to Eqns. 3.11 - 3.22 to yield the filtered compressible

Navier Stokes equations. A density-weighted filter is used for compressible flows,

known as a Favre filter:

φ̃ =
ρφ

ρ
(3.46)
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The sub-filter scale stresses are not explicitly known and require modeling:

τij −
1

3
τkkδij = −2µtSij (3.47)

where Sij is the rate-of-strain tensor at the filter scale, given by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.48)

The subgrid stress tensor is given by

τij = ρ ˜uiuj − ρũiũj (3.49)

which is split into its isotropic and deviatoric components

τij = τij −
1

3
τkkδij +

1

3
τkkδij (3.50)

The deviatoric part is computed using Smagorinski’s model:

τij −
1

3
τkkδij = −2µt

(
Sij −

1

3
Skkδij

)
(3.51)

where τkk = γM2
SGSp, where MSGS is the subgrid Mach number. The subgrid-scale

turbulent flux qj of a scalar field φ is modeled with an effective subgrid Prandtl

number as

qj = −µt
σt

∂φ

∂x
(3.52)

The eddy viscosity used in the present work is the Wall-Adapted Local Eddy

viscosity (WALE) model

µt = ρLs

(
SdijS

d
ij

)3/2
(
SijSij

)5/2(
SdijS

d
ij

)5/4 (3.53)
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where Ls, the subgrid mixing length, and Sdij are defined as

Ls = min
(
κd, CwV

2/3
)

(3.54)

Sdij =
1

2

(
gij

2 + gji
2
)
− 1

3
δijgkk

2 (3.55)

where gij = ∂ui
∂xj

, κ is the von Karman constant, 0.41, d is the distance to the wall,

and V is the volume of the grid element. The model constant Cw = 0.325 is used

to produce proper wall shear for compressible laminar and turbulent flow.

3.2 Numerical Model Test Cases

The methods described in the preceding sections are tested in the following

two cases: 1) the friction coefficient for a flat plate at Mach 6 and zero angle of

attack, and 2) the reactive flow past a cylinder at Mach 20.

3.2.1 Flat Plate in Supersonic Flow

Consider the simulation of a 1m-long adiabatic flat plate at zero angle of attack

in Mach 6 flow with a unit Reynolds number of 107m−1, for which the computational

mesh is illustrated in Fig. 3.4. The aspect ratio for plate surface elements is fixed at

20:1 according to the ANSYS best practices for resolving turbulent flow outlined in

[175] and recommended by Pope [177]. The grid is adaptively refined uniformly with

CFL fixed at 1 until the y+ value reaches unity. According to the flat plate turbulent

transition model of Reference [163], the critical Reynolds number is estimated at

Recr = 2 × 106, corresponding to a transition location of 20% down the length of

the plate. The k − ω transition is assigned to this location. The friction coefficient
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Figure 3.4: Computational domain and initial mesh of 19,500 elements for friction

coefficient evaluation with various turbulence models.

from Eckert [160] with this critical Reynolds number is compared to the k− ω SST

turbulence model with fully laminar, assigned transition, and fully turbulent flow in

Fig. 3.5. The models are solved in a domain of 1.2m×0.25m×0.25m, where a 0.1m

lead-in and lead-out surround an infinitesimally thin plate at zero angle of attack.

The convergence of the assigned-transition model with fixed-element aspect

ratio and CFL as described, and at this specific unit Reynolds number, is depicted

in Fig. 3.6. The convergence of the viscous drag force on the plate at the selected

unit Reynolds number corresponds to the intended Mach 6 waverider at its flight

condition of Mach 6 and 30km for a predicted required resolution of 3-5mm lateral

dimension and 0.2-0.3mm first layer height for a viscous force convergence on the

order of 1%.

3.2.2 Reactive Flow around a Cylinder at Mach 20

Consider the simulation of a 10cm-radius cylinder immersed in a Mach 20 air

stream at 75km altitude, corresponding to a likely flight condition for a lifting entry
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Figure 3.5: Comparison of the friction coefficient obtained for laminar flow, fully

turbulent k−ω SST, Transitional k−ω SST, and LES-WALE turbulence

models. The theoretical laminar and turbulent curves are illustrated

along with the transition location predicted using the Hopkins method.

Figure 3.6: Viscous drag force convergence.
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vehicle in Earth’s atmosphere. The unit Reynolds number at this altitude is 1.5

×104 m−1. Provided that transitional Reynolds numbers using the Hopkins Method

[163] for high-speed flow begin typically above 106 and increase with leading-edge

bluntness, this suggests strongly laminar flow around this cylinder. The ambient

temperature and pressure are 183.7K and 1.85Pa, respectively. For the 7-species

model for air, the free-stream composition is 22% O2 and 78% N2 by mass. Under

these conditions, the local speed of sound is 303m/s and Mach 20 corresponds to

6,063m/s. The initial computational grid is illustrated in Fig. 3.7, with 10,000

elements and boundaries assigned clock-wise from the bottom as symmetry, far-

field, outlet, and the cylinder wall. The wall temperature is assigned isothermal at

2,500K.

The 7-species air model is solved as laminar flow with a time-step limited

by the smaller of CFL = 0.5 or a change in any species mole fraction per cell by

greater than 10% of its current value per time step. The grid is initially 10,000

elements and is adaptively refined in gradients and curvature of Mach number and

species concentration until the maximum steady normalized mole fraction of NO+

is less than 1% with further refinement. This convergence criteria is achieved for a

final grid of 168,346 elements and a computing time of 1.1× 103 CPU-hrs, resulting

in a maximum mole fraction of NO+ = 1.50 × 10−7 and maximum temperature

of 10,546K. The adapted grid, temperature, pressure, density, and species mole

fractions are depicted in Fig. 3.9. The species mole fraction computed along the

stagnation line are illustrated in Fig. 3.10. Using the Normal Shock Relations [157]

and the thermally perfect γ = 1.286 for high temperature, Eqn. 2.51, the predicted
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Figure 3.7: Flow variables along the stagnation line at each grid point for final

adapted solution. The coordinate points away from the leading edge in

the upstream direction.

Figure 3.8: Species mole fraction along the stagnation line at each grid point for

final adapted solution. The coordinate points away from the leading

edge in the upstream direction.
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Figure 3.9: Numerical solution contours for 10cm-radius cylinder in Mach 20 flow

at 75km depicting a) original mesh, b) adapted mesh, c) pressure, d)

temperature, e) density, and f) velocity.
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Figure 3.10: Numerical solution contours for 10cm-radius cylinder in Mach 20 flow

at 75km depicting mole fractions for a) N2, b) O2, c) N , d) O, e) NO,

and f) NO+.
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post-shock flow variable ratios to their free-stream values are listed in Table 3.2.

The shock occurs between approximately 25-30mm standoff from the geomet-

rical stagnation point, with a finite thickness of approximately 5mm on the stagna-

tion line. The flow variables reach a steady state post-shock value at approximately

25mm standoff, with relatively stationary values until the thermal boundary layer

is approached ahead of the leading edge. This provides locally consistent conditions

for chemical reactions to occur and begin to taper off to a steady equilibrium value,

which is partly seen in Fig. 3.8 until the thermal boundary layer within approx-

imately 10mm standoff is encountered, pulling down the local temperature to the

prescribed wall condition and interrupting the march toward post-shock chemical

equilibrium.

The reaction products of air persist downstream of the hot region that led

to the reactions, despite lower local temperature. This is particularly important in

consideration of relatively-sharp-edged hypersonic vehicles such as waveriders: the

non-equilibrium chemistry in a small, hot region such as a leading edge is unlikely

to have a significant impact on the aerodynamics of a vehicle when compared to

thermally perfect air; however, the reaction products that propagate downstream

into cooler regions have low molecular mass compared to standard air and will have

a finite recombination time and distance. As these light molecules propagate along

the vehicle planform, they may produce a non-negligible impact on the net vehicle

forces and moments. There may be important implications for surface chemistry

that are not apparent when using the thermally perfect gas model.

For γ = 1.4, the stagnation temperature is predicted to be 14,876K, whereas

125



the stagnation temperature predicted for thermally perfect air with γ(T ) = 1.286 is

10,689K. In comparison to the 7-species non-equilibrium air numerical solution with

T0 =10,495K, the thermally perfect gas model provides a reasonably accurate esti-

mate for the stagnation temperature, which is further used in estimating adiabatic

wall temperatures and heat fluxes in reduced-order models.
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Reaction Cf ηf Kf

O2 +N → 2O +N 3.60E18 -1.00 1.188E5

O2 +NO → 2O +NO 3.60E18 -1.00 1.188E5

N2 +O → 2N +O 1.90E17 -0.50 2.260E5

N2 +NO → 2N +NO 1.90E17 -0.50 2.260E5

N2 +O2 → 2N +O2 1.90E17 -0.50 2.260E5

NO +O2 → N +O +O2 3.90E20 -1.50 1.510E5

NO +N2 → N +O +O2 3.90E20 -1.50 1.510E5

O +NO → N +O2 3.20E09 1.00 3.940E4

O +N2 → N +NO 7.00E13 0.00 7.600E4

N +N2 → 2N +N 4.09E22 -1.50 2.260E5

O2 +O → 2O +O 9.00E19 -1.00 1.190E5

O2 +O2 → 2O +O2 3.24E19 -1.00 1.190E5

O2 +N2 → 2O +N2 7.20E18 -1.00 1.190E5

N2 +N2 → 2N +N2 4.70E17 -0.50 2.260E5

NO +O → N + 2O 7.80E20 -1.50 1.510E5

NO +N → O + 2N 7.80E20 -1.50 1.510E5

NO +NO → N +O +NO 7.80E20 -1.50 1.510E5

O +N → NO+ + e− 1.40E06 1.50 6.380E4

O2 +N2 → NO+ + e− 1.38E20 -1.84 2.820E5

NO +N2 → NO+ + e− +N2 2.20E15 -0.35 2.160E5

Table 3.1: Reaction parameters for the Dunn-Kang model for 7-species reacting air.
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Method M2 T2/T∞ p2/p∞ ρ2/ρ∞

Thermally Perfect Gas .336 57.3 450 7.86

Post-Shock Numerical Solution .366 57.7 462 7.80

Table 3.2: Comparison between thermally perfect gas and numerical solution flow

variable ratios behind the normal shock on the stagnation line.
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Chapter 4: Numerical Analysis of Waveriders

4.1 Case-Study Vehicles

The flow fields about two case study vehicles are used for numerical analysis

in the present work: a waverider designed at Mach 6 and a waverider designed

at Mach 8. These will be referred to as the “Mach 6 waverider” and the “Mach 8

waverider,” respectively, referring to the Mach number at which they were designed.

Each waverider is designed with an identical base-plane generating curve and conical

shock. Each waverider is used on-design for comparison with analytical predictions

using thermally perfect air. The Mach 6 and Mach 8 waveriders are used to compute

the aerodynamic coefficients for a rigid waverider with varied Mach number. The

Mach 6 waverider is used to evaluate variation in angle of attack, yaw angle, and

both combined. The Mach 6 waverider is also used to survey the effect of Reynolds

number variation. The Mach 8 waverider is used to evaluate the effect of leading

edge radius and compare the SEF and PVO methods for blunting the leading edge.

Finally, the Mach 8 waverider is simulated in a fully reactive flow field with

7-species air at 75km and Mach 20 and at 60km and Mach 15. This environment

corresponds to an expected mid-flight-path condition for a lifting entry vehicle as

illustrated in Fig.1.5. Each of the case study vehicles is depicted in Figs. 4.1 -
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Figure 4.1: Mach 6 waverider with 3m wingspan and 3mm leading edge radius.

4.2. The Mach 6 and 8 waveriders use the same leading edge as the “optimum of

the optimums” configuration produced by the optimization of viscous waveriders by

Bowcutt and Anderson [72].

4.2 Results

Numerical simulations were used to investigate the near-body flow field for

waveriders designed at Mach 6 and Mach 8 first on-design and then with varied

angle of attack, varied Mach number, and varied orientation. The on-design con-

ditions yielded the expected design flow fields beneath the waveriders. The Mach

6 waverider was computed on-design with both k − ω-SST and LES-WALE turbu-

lence models. The Mach 8 waverider leading edge was blunted with various radii to

investigate the associated penalties in performance. The Mach number was varied

for each waverider between Mach 1 and 12 and showed decreasing lift and drag co-
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Figure 4.2: Mach 8 waverider with 3m wingspan and 3mm leading edge radius.

efficients for increasing Mach number. Each vehicle produced its highest lift-to-drag

ratio at its design Mach number. The base pressure was found to be proportional

to the proposed base pressure model from Section 2.6.6. The angle of attack was

varied for the Mach 6 waverider, which matched the qualitative aerodynamic co-

efficients of a flat plate. The waverider reached a maximum lift-to-drag ratio at a

small, positive angle of attack. The Mach 6 waverider was found to be pitch-stable

with angle of attack, but unstable in the yaw and roll axes when a nonzero yaw

angle was introduced.

A reactive flow field for the Mach 6 waverider was computed for a laminar,

continuum flight condition of Mach 20 and 75km. The low Reynolds number resulted

in thick boundary layers and a smooth, laminar flow field. The small leading-edge

radius with a 2,500K prescribed wall temperature resulted in a small bow-shock

standoff from the nosetip and nonequilibrium chemistry in the stagnation region.

The post-shock flow produced low mole fractions of reactive species due to the
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small spatial scale interrupting the progression toward chemical equilibrium and a

prescribed wall temperature much lower than the adiabatic temperature.

4.2.1 On-Design Flight Condition

Numerical solutions are computed using using the k − ω SST and the LES-

WALE turbulence models for the Mach 6 and Mach 8 waveriders at their design

Mach number and zero angle of attack, referred to as their respective “design point”

where a vehicle operates “on design.” The flow fields for these vehicles are shown

and discussed below.

First, consider the Mach 6 vehicle. The design shock and flow field beneath

the vehicle are shown in Fig. 4.3. The shock location correlates well to the de-

sign conical-shock flow field despite the presence of a viscous boundary layer and a

blunted leading edge. There is a small bow shock ahead of the leading edge, but

aft of the leading edge the flow matches the design flow-field conditions beneath the

vehicle. The flow passes through a shock near the leading edge on top of the vehicle,

but expands back to near free-stream conditions above the vehicle. A close-up view

of the leading-edge bow shock is provided in Fig. 4.5. There is a subsonic region

near the stagnation point, and the boundary layer begins to grow around the nosetip

and along the upper and lower surfaces. Figure 4.6 illustrates that the nosetip and

boundary layer reach over 1600K while the temperature in the post-shock flow field

rises to less than 300K from a free-stream temperature of 232K.

The location of transition to turbulence is important for the chosen flight
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Figure 4.3: Mach number contour on symmetry plane for Mach 6 waverider on-

design using k − ω SST turbulence and variable-γ air model.

Figure 4.4: Velocity contour on symmetry plane for Mach 6 waverider on-design

using k − ω SST turbulence and variable-γ air model.
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Figure 4.5: Velocity contour close-up of leading edge on symmetry plane.

Figure 4.6: Temperature contour on symmetry plane for Mach 6 waverider on-design

using k − ω SST turbulence and variable-γ air model.
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Figure 4.7: Pressure contour on symmetry plane for Mach 6 waverider on-design

using k − ω SST turbulence and variable-γ air model.

Figure 4.8: Density contour on symmetry plane for Mach 6 waverider on-design

using k − ω SST turbulence and variable-γ air model.

135



regime. Waveriders are streamlined vehicles with little pressure-induced drag and

a large planform of wetted area subject to viscous drag. The friction coefficient

depends upon the fraction of the flow along the surface of the vehicle that is laminar

versus turbulent. As demonstrated in Section 3.2.1, the variability in the location

of transition to turbulence can greatly affect the viscous drag on a flat plate in

transitional flow. For example, a fully laminar flat plate has 80% less viscous drag

than a fully turbulent flat plate. The friction coefficient also determines heating. The

turbulent flow on the top surface computed using the LES-WALE turbulence model

is shown in Fig. 4.9 by the striations in surface pressure, indicating instabilities that

may precede the transition to turbulence. The friction coefficient is shown for the

k−ω SST turbulence model in 4.10, where the transition to turbulence is indicated

by the jump in friction coefficient aft of the leading edge. The location of transition

to turbulence in Fig. 4.10 is assigned according to the Hopkins critical Reynolds

number method described in Chapter 2.

The computed base pressure with varied Mach number is shown in Fig. 4.11

along with the proposed base-pressure model, pb = p∞/M . For the two case study

vehicles considered, the trend observed agrees with increasing Mach number but

includes an approximately constant offset factor. For the Mach 6 vehicle, this factor

is 0.76-0.78 across the range of Mach 1-12. For the Mach 8 vehicle, this factor

is 0.62-0.64 across the range of Mach 1-12. While this factor is different for each

vehicle, it appears relatively consistent across the range of speeds considered. It is

expected that a streamlined vehicle would have less of a pressure drop in its wake

than a blunt vehicle. The pressure drop computed is lesser for the more-streamlined
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Figure 4.9: Pressure contour on the top surface of the on-design Mach 6 waverider

computed using the LES-WALE turbulence model and the variable-γ

air model. The flow immediately aft of the leading edge is laminar.

Instabilities in the flow appear further downstream as pressure striations

along the surface of the vehicle.
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Figure 4.10: Friction coefficient contour on the top surface of the on-design Mach

6 waverider computed using the k − ω SST turbulence model and the

variable-γ air model. The location of transition to turbulence is indi-

cated by the solid black line based on a prescribed critical Reynolds

number. The friction coefficient decreases as flow moves downstream in

the laminar region aft of the leading edge. The transition to turbulence

on the planform of the waverider is indicated by the jump in friction

coefficient, marked with a solid black line.
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Figure 4.11: Base pressure results for Mach 6 and Mach 8 waveriders with varied

Mach number and variable-γ air model.

Mach 6 vehicle and larger for the Mach 8 vehicle, which has a larger cross-sectional

area.

4.2.2 Off-Design Flight Condition

4.2.2.1 Varied Leading-Edge Radius

Various leading-edge radii are depicted in Fig. 4.12 using the Sharp-Edge

Fillet (SEF) and Planform Vertical Offset (PVO) methods described in Section

2.5.2. The leading-edge radii range from sharp 90mm. The sharp-edged vehicle is

given a 3m wingspan. The volume of the blunted vehicles is fixed across all cases by

scaling the geometry in order to match the reference volume for each leading-edge

radius considered. The resulting aerodynamic forces computed using the k−ω SST

turbulence model at a flight condition of Mach 8 and 30km altitude are shown in

Fig. 4.13.
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Figure 4.12: Mach 8 waverider with varied leading-edge radius (LER) using the

Planform Vertical Offset (PVO) method and Sharp Edge Fillet method

to blunt the leading edge. The vehicles are scaled in each case in order

to maintain constant volume across all cases. The sharp-edged vehicle

has a 3m wingspan.

Figure 4.13: Comparison of forces with various leading-edge radii using the SEF and

PVO methods. All cases use zero angle-of-attack and a flight condition

of Mach 8 at 30km altitude.
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The discussion begins with a comparison between methods and conclude with

observations of the effect of increased blunting of the leading edge. For small leading-

edge radii, the two methods produce similar geometry. For large leading-edge radii,

the SEF lift and drag are larger than the PVO lift and drag. For the relatively

large 90mm radius, the PVO method produces a 36% higher L/D ratio than the

SEF method. The SEF method produces 39% higher lift, but at the expense of 90%

higher drag. A higher lift coefficient can be achieved by increasing angle of attack.

For small radii, however, the two methods are similar.

In comparison to this case study vehicle with a sharp leading edge, the glide

ratio reduces by approximately 50% with just 30mm or 0.1% leading edge bluntness.

The glide ratio reduces by approximately 75% with 90mm or 0.3% leading edge

bluntness. The case study sharp-edged vehicle is fairly streamlined. Small increases

in bluntness have a large effect on its glide ratio. By contrast, the reduction in glide

ratio would not be as significant for a less-streamlined vehicle because the added

leading-edge drag would be less significant.

4.2.2.2 Effects of Varying the Mach Number

The variation of the aerodynamic coefficients with Mach number for the wa-

verider designed at Mach 6 is depicted in Fig. 4.14. The cases were computed using

the k − ω SST turbulence model and the variable-γ air model at 30km altitude.

The lift, drag, and moment coefficients decrease with Mach number and fall ap-

proximately as 1/M for hypersonic Mach numbers. The L/D ratio appears to reach
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Figure 4.14: Variation of the aerodynamic coefficients with Mach number for the

waverider designed at Mach 6. Aerodynamic coefficients are computed

from the flow field that was solved using the k − ω SST turbulence

model and the variable-γ air model.

a maximum for the design Mach number of 6 and is reduced for large deviations

from the design Mach number. For variations of two Mach numbers away from the

design point, however, this particular waverider retains approximately 93% of the

same L/D. The peak L/D for this case-study vehicle occurs at the design Mach

number of 6.

The variation of the aerodynamic coefficients with Mach number for the wa-

verider designed at Mach 8 is presented in Fig. 4.15. The cases were computed using

the k−ω SST turbulence model and the variable-γ air model at 30km altitude. The

trends in aerodynamic coefficients with Mach number are similar to the results for

the waverider designed at Mach 6. The lift, drag, and moment coefficients decrease

with increasing Mach number. The L/D ratio reaches a maximum for the design
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Figure 4.15: Variation of the aerodynamic coefficients with Mach number for the

waverider designed at Mach 8. Aerodynamic coefficients are computed

from the flow field that was solved using the k − ω SST turbulence

model and the variable-γ air model.

Mach number of 8 and is reduced for large deviations from the design Mach number.

The aerodynamic coefficients begin to asymptote for large Mach number, consistent

with hypersonic flow theory described in Section 2.6.

4.2.2.3 Effects of Varying the Vehicle Orientation

The effect of varying the orientation of the on-design vehicle was evaluated by

computing the flow field about a vehicle with varied pitch angle and yaw angle. A

fixed flight condition of Mach 6 and 30km was used in all cases. The computational

results for off-design orientation of the Mach 6 waverider suggest a pitch-stable vehi-

cle. The vehicle experiences minor adverse pitch created with yaw, and destabilizing

yaw- and roll-moments produced during yaw. Practical flight of a vehicle such as
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this would require active stabilizing control for both the yaw and pitch axes.

The computed Mach number contours are illustrated in Fig. 4.16 for five

selected angles-of-attack. The variation in aerodynamic coefficients is presented in

Fig. 4.17. The force coefficients with varied yaw angle are presented in Fig. 4.18,

and the yaw-induced moment coefficients are presented in Fig. 4.19.

The lift and drag coefficients increase similarly to those of a flat plate with

angle of attack [4]. The maximum lift-to-drag ratio occurs for approximately +3.5◦.

The lift and drag coefficients can be modulated across a wide range by controlling

angle of attack. The lift coefficient at +50◦ reaches nearly 30 times the on-design

value at zero angle of attack. The waverider produces zero lift at approximately

−2◦. Examining Fig. 4.18, the drag coefficient is minimally impacted for this low-

cross-section vehicle with changes in yaw angle. The lift coefficient is only reduced

for yaw deviations greater than approximately ±5◦ and remains insensitive for small

deviations about zero. The lateral force linearly increases as yaw angle is increased

across the ±10◦ range in yaw angle considered.

The moment coefficient may be trimmed by placing the center of mass at a

location with zero net moment. In order to balance the lift and weight forces at zero

angle of attack, the center of mass would be placed 2.62m rear of the leading edge for

a 3.63m-long vehicle. At its peak lift-to-drag ratio condition of +3.5◦, however, the

center of mass would have to lie at 4.32m behind the nosetip, or 0.69m behind the

vehicle’s base. The implication is that this particular vehicle and flight condition is

not pitch-stable at its peak lift-to-drag ratio without auxiliary control to counteract

the excess aerodynamic pitch-over moment.

144



Figure 4.16: Mach number contours are shown for varied angle-of-attack computed

using the k − ω SST turbulence model and the variable-γ air model.

The waverider is designed for Mach 6 with a 3m wingspan and a 3mm

leading-edge radius. The flight condition is fixed at Mach 6 and 30km

altitude. The pitch angles shown are a) −5◦, b) 0◦, c) 5◦, d) 10◦, and

e) 20◦.
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Figure 4.17: Aerodynamic coefficients are shown with varied angle-of-attack com-

puted using the k − ω SST turbulence model and the variable-γ air

model. The waverider is designed for Mach 6 with a 3m wingspan and

a 3mm leading-edge radius. The flight condition is fixed at Mach 6 and

30km altitude.
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Figure 4.18: Aerodynamic lift (CL), drag (CD), and lateral (CX) force coefficients

are shown with varied yaw angle. Forces are computed using the k−ω

SST turbulence model and the variable-γ air model. The waverider

is designed for Mach 6 with a 3m wingspan and a 3mm leading-edge

radius. The flight condition is fixed at Mach 6 and 30km altitude.
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Figure 4.19: Aerodynamic pitch (CMX), yaw (CMY ), and roll (CMZ) moment coef-

ficients with varied yaw angle. Moments are computed using the k−ω

SST turbulence model and the variable-γ air model. The waverider

is designed for Mach 6 with a 3m wingspan and a 3mm leading-edge

radius. The flight condition is fixed at Mach 6 and 30km altitude.
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Increasing the angle-of-attack results in an increasing pitch-down moment,

which is stabilizing along the pitch axis. At zero angle of attack, the lift coefficient

degrades by 7%, and there is a relatively large yaw-angle deviation of ±2◦ from zero.

The sensitivity in yaw moment is very low around zero yaw angle. The pitch moment

is only slightly affected with increasing yaw angle. The roll moment is more largely

affected with inverse sign: a positive yaw displacement causes a larger, negative

roll moment. Positive yaw displacement induces a positive yaw moment, resulting

in a destabilizing effect along the yaw axis. The lack of a stabilizing yaw and roll

effects due to yaw displacements leads to a requirement for active control in order to

maintain a yaw-stable and roll-stable vehicle. For a pitch-trimmed mass distribution

at the design point, the adverse pitch created with increasing yaw creates a small

pitch-up moment whose magnitude reverses beyond ±5◦ of yaw.

In summary, the preceding results have demonstrated that this case-study

Mach 6 waverider is pitch-stable and experiences minor adverse pitch created with

yaw. The vehicle is unstable due to adverse yaw- and roll-moments produced during

yaw.

4.3 Waverider in Chemically Reacting Flow at High Altitude

4.3.1 Mach 20 and 75km

The Mach 6 waverider with a 10mm leading edge radius is immersed in Mach

20 reactive flow at 75km and zero angle of attack. At this altitude, the Reynolds

number for the vehicle is 104.7 and the Knudsen number is 5.6×10−4 referenced to the
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vehicle length, which represents laminar and continuum flow conditions. All vehicle

walls are prescribed isothermal at 2,500K. The multi-species Navier-Stokes equations

provided in Section 3.1.2 using the 7-species air model described in Section 3.1.1 were

solved in ANSYS Fluent with no turbulence model. The domain was initialized with

22% O2 and 78% N2 by mass, with temperature and pressure 183.7K and 1.85Pa.

The initial Mach number everywhere was set to the free-stream value of 20.

The solution was marched forward in time with the CFL limited by the smaller

of 1 or any species concentration changing by more than 10% per time step in

any cell. Once stabilized on the base mesh, the solution was adaptively refined in

gradients of Mach number and temperature, second-order gradient of density, and

the gradient of the mole fraction of O. Gradients in Mach number and temperature

help to resolve the shock and boundary layer. Second-order gradients in density

help to resolve the shock. Gradients in the mole fraction of O help to resolve the

stiff post-shock chemical reactions in space.

The following results represent an adapted mesh of approximately 130 million

elements and slightly more than 200,000 CPU-hrs of computing time. The results

are presented in Figs. 4.20 - 4.24 in terms of contours of Mach number, velocity,

temperature, pressure, and density. A close-up of the temperature in the stagnation

region is provided in Fig. 4.26. A close-up of the chemical species near the nosetip

is provided in Fig. 4.27. The maximum temperature of the flow reached in the

stagnation region is 9,388K. The heat flux on the top and bottom of the vehicle

planform is presented in Fig. 4.25.

The free-stream unit Reynolds number at this speed and altitude is 104.2 m−1,
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Figure 4.20: Mach number contours for the waverider designed at Mach 6 at a flight

condition of Mach 20 and 75km.

Figure 4.21: Velocity contours for the waverider designed at Mach 6 at a flight con-

dition of Mach 20 and 75k.

Figure 4.22: Temperature contours for the waverider designed at Mach 6 at a flight

condition of Mach 20 and 75k.
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Figure 4.23: Pressure contours for the waverider designed at Mach 6 at a flight

condition of Mach 20 and 75k.

Figure 4.24: Density contours for the waverider designed at Mach 6 at a flight con-

dition of Mach 20 and 75k.
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which represents a laminar flow when compared to the critical Reynolds numbers

predicted by the Hopkins transition method, which is usually of order 106. A thick,

laminar boundary layer is observed in the Mach and velocity contours in Figs. 4.20

and 4.21. Examining Fig. 4.22, the vehicle is enveloped in a post-shock region of hot

gas on the order of 5,000K. There is a thin thermal boundary layer that reduces this

post-shock temperature to 2,500K prescribed at the vehicle surface. The gradient in

temperature in this thin thermal boundary layer drives the heat flux into the vehicle

as depicted in Fig. 4.25. The average heat flux is approximately 1W/cm2.

The base pressure average is approximately 8Pa, well above the free-stream

pressure of 1.85Pa and very different from the proposed base pressure model of

pb = p∞/M , which predicts 0.1Pa. At these high speeds, however, the contribution

to total drag by the base pressure is negligible. Large errors in base pressure can be

tolerated with minimal impact to composite force predictions.

The pressure imbalance visible above and below the vehicle in Fig. 4.23 is

indicative of the lift that the vehicle creates. The bow shock at the leading edge

emanates downstream in Fig. 4.24, which causes a large jump in density that then

expands in the post-shock flow field. A close-up view of the temperature flow field

near the 10mm nosetip is provided in Fig. 4.26. The peak temperature reached

in the stagnation region reached 9,388K. The post-shock temperature rise and the

thermal boundary layer at the vehicle surface is also visible, which reduces to the

prescribed isothermal wall temperature of 2,500K. The species mole fractions are

presented in Fig. 4.27, which illustrates the small degree to which reactions occur

for this small leading-edge geometry. In comparison to the two-dimensional cylinder
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Figure 4.25: Top (left) and bottom (right) planform heat flux into the vehicle for

the Mach 6 waverider at Mach 20 and 75km.

Figure 4.26: Temperature contours near the nosetip for the Mach 6 waverider at

Mach 20 and 75km.
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Figure 4.27: Reactive species mole fraction contours near the nosetip for the Mach

6 waverider at Mach 20 and 75km. Species provided are a) O, b) N ,

c) NO, and d) NO+.
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test case presented in Section 3.2.2 where near-equilibrium post-shock chemistry was

achieved, this leading edge is ten times smaller in physical size. This leading edge is

also not quite cylindrical as the 2-dimensional cylinder test case was, as illustrated

by the planforms in Fig. 4.25, which results in an even smaller relative shock

standoff distance [4]. The larger-diameter 2-dimensional cylinder test case yielded

a maximum temperature of 10,546K. The additional flow “escape” avenue of this

non-cylindrical nosetip geometry combined with the thin thermal boundary layer

and prescribed 2,500K wall reduces this by 11% to 9,388K.

The non-equilibrium chemistry under these geometry and temperature con-

ditions produces a maximum O mole fraction of 0.0054 in contrast to the larger-

cylinder maximum O mole fraction of 0.244. Other species are similarly reduced

to relatively trace amounts in the waverider flow field. The NO+ mole fraction

reaches a maximum of 5 × 10−11, down from 1.5 × 10−7 in the larger cylinder test

case. Equilibrium chemistry predicts nearly complete dissociation of O2 at these

conditions and approximately 20% dissociation of the N2 (see Fig. 1.5). The im-

plication of these waverider leading-edge results compared to the near-equilibrium

cylinder test case is that a small leading-edge radius can inhibit finite-rate chemistry

in the near-body flow field under conditions relevant to Earth entry vehicles. For

an adiabatic wall, inhibiting the flow chemistry would result in a hotter post-shock

and stagnation region temperature because thermal energy is “sunk” into chemical

reactions. For a wall colder than adiabatic, however, such as the present case, the

maximum temperature reached due to the presence of a shock is also inhibited by

the nearby cold wall. The proximity of the cold wall creates sharp thermal gradients
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that pull down the peak temperature in the stagnation region.

4.3.2 Mach 15 and 60km

The Mach 6 waverider with a 10mm leading edge radius is immersed in Mach

15 reactive flow at 60km and zero angle of attack. At this altitude, the Reynolds

number for the vehicle is 105.4 and the Knudsen number is 9.1×10−5 referenced to the

vehicle length, which represents laminar and continuum flow conditions. All vehicle

walls are prescribed isothermal at 2,500K. The multi-species Navier-Stokes equations

provided in Section 3.1.2 using the 7-species air model described in Section 3.1.1 were

solved in ANSYS Fluent with no turbulence model. The domain was initialized with

22% O2 and 78% N2 by mass, with temperature and pressure 251.2K and 16.5Pa.

The initial Mach number everywhere was set to the free-stream value of 15.

The solution was obtained in the same manner as described in Section 4.3.1.

A close-up of the chemical species near the nosetip is provided in Fig. 4.30. The

maximum temperature of the flow reached in the stagnation region is 8,639K. The

heat flux on the top and bottom of the vehicle planform is presented in Fig. 4.28.

The average heat flux at this altitude and speed is approximately 1W/cm2. The

base pressure average is 1.1Pa, which matches the value predicted using the proposed

base pressure model of pb = p∞/M .

The stagnation temperature achievable without chemical reactions in 11,540K.

The actual maximum temperature reached of 8,639K indicates a significant amount

of energy absorbed by chemical reactions between the constituent molecules for this

157



Figure 4.28: Top (left) and bottom (right) planform heat flux into the vehicle for

the Mach 6 waverider at Mach 15 and 60km.

Figure 4.29: Temperature contours near the nosetip for the Mach 6 waverider at

Mach 15 and 60km.
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Figure 4.30: Reactive species mole fraction contours for front of Mach 6 waverider

at Mach 15 and 60km. Species provided are a) O, b) N , c) NO, and

d) NO+.

flight condition of Mach 15 and 60km. A close-up view of the temperature flow field

near the 10mm nosetip is provided in Fig. 4.29. The post-shock temperature rise

and the thermal boundary layer at the vehicle surface is also visible, which reduces to

the prescribed isothermal wall temperature of 2,500K. The species mole fractions are

presented in Fig. 4.30, which illustrates the degree to which reactions occur for this

small leading-edge geometry. In comparison to the two-dimensional cylinder test

case presented in Section 3.2.2 where near-equilibrium post-shock chemistry was

achieved, this leading edge is ten times smaller in physical size but is approximately

ten times higher density. This increase in density allows the chemical reaction

relaxation length to shrink by roughly an order of magnitude and the chemical

reactions nearly reach their equilibrium values. The free-molecular oxygen mole

fraction, for example, reached 4.6% at this flight condition and reached 4.9% in the
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cylindrical flow case study from Section 3.2.2.

The dissociated molecules largely recombine by the end of the 3.63m vehicle

simulated. The NO+ mole fraction reaches a maximum of 8×10−9 near the leading

edge, but is reduced to below 10−17 by the end of the vehicle. Much of this may be

due to the absorption of thermal energy into the vehicle by the isothermal wall. The

temperatures reached in the boundary layer are inhibited by the nearby cold wall.

The proximity of the cold wall creates sharp thermal gradients that pull down the

temperature in the boundary layer and encourage the recombination of the molecules

that were dissociated in the hot stagnation region.

4.4 Summary

Numerical simulations were used to investigate the near-body flow field for

waveriders designed at Mach 6 and Mach 8 with blunted leading edges. The Mach 6

waverider was computed on-design with both k−ω-SST and LES-WALE turbulence

models. The k−ω-SST model was modified by the author for an assigned location for

transition to turbulence based on the Hopkins Method for critical Reynolds number.

The drag force matched the LES prediction within 5%. The Mach 8 waverider

leading edge was blunted with various radii while fixing vehicle mass, demonstrating

severe penalties in performance for a 3%-wingspan leading edge radius compared to

a sharp vehicle.

Both waveriders were simulated with varied Mach number, illustrating mono-

tonically decreasing lift and drag coefficients for hypersonic Mach numbers. Both
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vehicles produced the highest lift-to-drag ratio at their design Mach number. The

base pressure was observed to follow a proportionality to 1/M , where the constant

of proportionality was different for each vehicle but consistent across Mach number.

Angle of attack was varied for the Mach 6 waverider, which matched the qualita-

tive variation in aerodynamic coefficients of a Newtonian flat plate. The Mach 6

waverider was found to be pitch-stable with angle of attack, then yawed off-design

to illustrate yaw instability and roll instability due to yaw.

The Mach 6 waverider was then immersed in a Mach 20 flow at zero angle

of attack at 75km. The low Reynolds number resulted in thick boundary layers

and a smooth, laminar flow field. The small leading-edge radius with a 2,500K pre-

scribed wall temperature resulted in a small bow-shock standoff from the nosetip and

nonequilibrium chemistry in the stagnation region. The post-shock flow produced

low mole fractions of reactive species, despite the high stagnation temperature, due

to the small spatial scale.

The Mach 6 waverider was finally immersed in a Mach 15 flow at zero angle of

attack at 60km. The laminar conditions resulted in a thick boundary layer and the

high Mach number resulted in a small shock angle relative to the vehicle surface.

The small leading-edge radius dissociated the oxygen to near equilibrium chemistry

values. The ionization fraction reached two orders of magnitude higher than the

Mach 20 flight condition due to the ability of reactions to occur in space. The high-

temperature reaction products almost entirely recombined by the time they reached

the end of the vehicle.

A note on computational cost scaling: a non-adapted solution requires in-
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creased resolution in three spatial dimensions and one temporal dimension for in-

creased accuracy. A globally first-order method halves the solution error for a dou-

bling of the resolution. While gradients can be computed with higher order-order,

certain features such as shock waves can only be resolved with first-order methods.

Halving the grid size and time step results in a 24 factor increase in computing time

to reach the same instant in solution time. Similarly, a 1% error estimate requires

10,000 times the computing time as a 10% error solution for a uniformly refined grid.

The utility of adaptive refinement is selectively resolving flow field details so that

this factor of 10,000 can be reduced potentially by several orders of magnitude by

using a good adaptive resolution strategy. A final note on the value of a variable-γ

air model (where it is appropriate to use) is the difference in computational cost

between a 10-20,000 CPU-hr k − ω SST solution using thermally perfect air and

the > 200, 000 CPU-hr single case for reactive flow. This high cost for reactive

flow is due to the extremely fine resolution needed in the post-shock region for stiff

chemical reactions, the many species to simultaneously track, and the many solution

iterations required to reach long-term fluid steady state conditions with propagating

chemical reactions.
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Chapter 5: Reduced-Order Model Results

The reduced-order model for waverider aerodynamics is referred to as the “Wa-

verider Reduced-order Analysis and Investigative Tool for Hypersonics” (WRAITH),

and was formulated in Chapter 2. In this chapter, WRAITH is compared to the

results of numerical simulations presented in Chapter 4. First, the pressure and

viscous forces on each vehicle surface are compared for the Mach 6 waverider at its

design flight condition and 30km altitude. Next, the net forces and glide ratio for

both the Mach 6 and Mach 8 waveriders are compared to the CFD results at their

design point. Agreement is found within 8% for net lift, drag, and moments of the

waveriders on design. Comparisons are then made for off-design angle-of-attack for

the Mach 6 waverider and off-design Mach number for both the Mach 6 and Mach

8 waveriders. WRAITH matches the CFD results for variation in angle-of-attack

closely. WRAITH matches the lift and drag coefficients with variable Mach number

closely; however, larger errors are observed in the lift-to-drag ratio away from the

design Mach number. The Mach 6 waverider in a laminar, reactive flow field at

Mach 15 and 60km and Mach 20 at 75km is compared to WRAITH predictions.

WRAITH is found to predict forces and moments to within approximately 10%,

but under-predicts the lift-to-drag ratio by 22%.

163



With an understanding of the degree of accuracy of the reduced-order model in

comparison to CFD results, WRAITH is then used to illustrate the effect of altitude

variation and wall temperature variation on the case-study waverider aerodynamic

coefficients. The chapter closes with a comparison of the aerodynamic performance

of a morphing waverider versus a rigid waverider and the surface deflection and

strain required for morphing.

5.1 Comparison with CFD Results

5.1.1 Waverider Forces and Moments On the Design Condition

The lift and drag forces, lift-to-drag ratio, and moment produced by the Mach

6 waverider at its design point of Mach 6 and 30km altitude are presented in Table

5.1. The moment is listed in reference to the pitch axis centered at the nosetip.

The WRAITH model is listed along with assigned fully laminar and fully turbulent

friction factors for comparison. As shown in Table 5.1, a fully turbulent boundary

layer produces 21% more net drag force than a fully laminar boundary layer. This

difference in net drag illustrates the importance of accurately predicting the location

of transition to turbulence. A comparison is then made in Table 5.1 between the

WRAITH model and the numerical results for the k − ω SST and the LES-WALE

turbulence models. Their differences are summarized in the final two rows of the

table.

The lift forces on each of the major vehicle surfaces that were computed using

the WRAITH model and two CFD turbulence models are presented in Table 5.2.
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The drag forces on each of the major surfaces are presented in Table 5.3. The

composite lift, drag, and moment for the Mach 8 waverider are presented in Table

5.4 along with a comparison to k − ω SST results.

FL (N) FD (N) Mα (N −m) L/D

Fully Laminar 6008.6 1840.4 -14631.7 3.27

Fully Turbulent 5999.8 2220.9 -14536.6 2.70

WRAITH 6004.3 1986.3 -14584.3 3.02

k − ω SST 5978.0 1931.5 -14041.9 3.09

LES-WALE 5862.6 1849.5 -14106.0 3.17

∆ WRAITH-(k − ω) +0.4% +2.9% +3.9% -2.3%

∆ WRAITH-LES +2.4% +7.4% +3.4% -4.7%

Table 5.1: Comparison of total lift, drag, and pitch moment computed for the Mach

6 waverider at Mach 6, 30km, and zero angle of attack. The WRAITH

predictions with assigned fully laminar boundary layer and fully turbulent

boundary layer are provided to illustrate the bounds on the forces and

the effect of the location of transition to turbulence. The WRAITH

predictions agree within 4% with the k−ω SST net forces and moments,

and within 8% with the LES-WALE computed forces and moments.
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Leading Edge Top Bottom Base

WRAITH 0 -8049.9 14062.3 0

k − ω SST 47.2 -8344.2 14274.9 0.0

LES-WALE 51.4 -8140.4 13957.5 0.0

∆ WRAITH-k − ω N/A -3.5% -1.5% N/A

∆ WRAITH-LES N/A -1.1% +0.8% N/A

Table 5.2: Comparison of lift forces on each major surface of the Mach 6 waverider.

The WRAITH lift force predictions agree with both of the CFD models

within 4% for the top, bottom, and base surfaces. The WRAITH model

predicts zero net lift on the leading edge due to geometrical symmetry,

whereas the CFD models each predict a consistent small, positive net lift

due to the explicit resolution of asymmetry in the near-body flow field.

5.1.2 Waverider Forces and Moments Off of the Design Condition

The waveriders designed at Mach 6 and Mach 8 were simulated in flows off of

their design points in order to evaluate the accuracy of WRAITH in this context.

Off-design conditions considered for comparison between WRAITH and CFD mod-

els include the Mach 6 waverider flown at Mach 15 and 60km, Mach 20 and 75km,

at various angles-of-attack at Mach 6, and at zero angle-of-attack across Mach num-

ber. The section closes with results of the Mach 8 waverider comparison between

WRAITH and CFD across Mach number at zero angle of attack.
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Leading Edge Top Bottom Base

WRAITH 660.6 134.6 1243.6 -94.6

k − ω SST 690.4 118.0 1200.7 -77.6

LES-WALE 704.4 94.6 1123.2 -72.7

∆ WRAITH-k − ω -4.3% +14.1% +3.6% +21.9%

∆ WRAITH-LES -6.2% +42.2% +10.7% +30.2%

Table 5.3: Comparison of drag forces on each major surface of the Mach 6 wa-

verider. The WRAITH model agrees with the CFD models within 6%

for the leading edge drag. WRAITH over-predicts the drag on the top

surface, exclusively due to viscous effects, by as much as 42% com-

pared to the LES-WALE prediction. This indicates premature predic-

tion of transition to turbulence by WRAITH and the k−ω models which

use the Hopkins Method for assigning a critical Reynolds number [163].

WRAITH over-predicts drag on the bottom of the vehicle by as much as

11% compared to LES-WALE. This is less than the top surface because

the dominant pressure-drag forces are modeled accurately by WRAITH,

while the bottom-surface viscous drag is over-predicted by WRAITH.

The WRAITH base pressure model over-predicts the base drag by as

much as 30% compared to LES-WALE, while the two CFD models agree

more closely.
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FL (N) FD (N) Mα (N −m) L/D

WRAITH 17527.8 4855.6 -42134.0 3.61

k − ω SST 16960.2 4903.8 -40414.2 3.46

∆ +3.4% -1.0% -4.1% +4.3%

Table 5.4: Comparison of total lift, drag, and pitch moment computed for the Mach

8 waverider at Mach 8, 30km, and zero angle of attack. The WRAITH

predictions agree within 5% with the k−ω SST net forces, moments, and

the lift-to-drag ratio.

The net lift, drag, lift-to-drag ratio, and pitch moment produced by the Mach

6 waverider operated at Mach 15 and 60km are presented in Table 5.5. This table

summarizes a comparison between the WRAITH model and the CFD solution using

7-species air.

The net lift, drag, lift-to-drag ratio, and pitch moment produced by the Mach

6 waverider operated at Mach 20 and 75km are presented in Table 5.6. This table

summarizes a comparison between the WRAITH model and the CFD solution using

7-species air.

The primary difference between the Mach 15 and the Mach 20 flight conditions

is the degree to which chemical reactions occur in the flow field. As was shown in

Sections 4.3.2 and 4.3.1, the Mach 20 flow field produced minimal dissociation. The

maximum mole fraction of O was only 0.5%. The Mach 15 flow field, due to the

higher ambient density, produced a maximum mole fraction of O of 4.6%. WRAITH
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FL (N) FD (N) Mα (N −m) L/D

WRAITH 194.3 223.9 -443.2 0.87

Laminar CFD 230.8 237.5 -549.5 0.97

∆ -15.8% -5.7% -19.3% -10.3%

Table 5.5: Comparison of total lift, drag, and pitch moment computed for the

Mach 6 waverider at zero angle-of-attack flown at Mach 15 and 60km.

WRAITH matches the drag force within 6% compared to the laminar,

reactive CFD results. WRAITH under-predicts the lift, lift-to-drag ratio,

and moment by 10-20%.

FL (N) FD (N) Mα (N −m) L/D

WRAITH 28.4 78.5 -61.1 0.36

Laminar CFD 31.8 74.8 -56.0 0.43

∆ -10.7% +5.0% +9.1% -21.5%

Table 5.6: Comparison of total lift, drag, and pitch moment computed for the

Mach 6 waverider at zero angle-of-attack flown at Mach 20 and 75km.

WRAITH matches the forces and moment within approximately 10%

compared to the laminar, reactive CFD results. WRAITH under-predicts

the lift-to-drag ratio by 22%.
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matches drag within 6% in each case. WRAITH under-predicts lift by 11% in the

near-frozen-flow case and by 16% in the near-equilibrium-flow case. WRAITH can

account for reactive flow in the post-conical-shock flow field, but does not account

for chemical reactions due to the bow shock that stands off from a small, blunt

leading edge.

The Mach 6 waverider flow field was computed across −5◦ to +50◦ angle-of-

attack using the k−ω SST turbulence model and the WRAITH model was computed

at the same points. The aerodynamic coefficients are plotted in Fig. 5.1. The case

study waveriders are used to compute aerodynamic coefficients as the Mach number

varies between Mach 1 and 12 using the variable-γ model, presented in Figs. 5.2

and 5.3.

As illustrated in Fig. 5.1, the WRAITH model captures both the absolute

value as well as the qualitative trend of aerodynamic coefficients with varied angle-of-

attack for on-design Mach number. The zero-lift angle, the on-design configuration,

and the peak lift-to-drag ratio magnitude and angle are well-matched compared to

the CFD result. The deviations between the models increase slightly with increasing

angle of attack. Across the range of angle considered, agreement is maintained

within approximately 6%.

As illustrated in Figs. 5.2 and 5.3, the on-design aerodynamic coefficients

match between WRAITH and the CFD results. The lift and drag coefficients for

hypersonic Mach numbers match within 5% for the waverider designed at Mach 6

and within 10% for the waverider designed at Mach 8. The agreement between

WRAITH and the CFD decreases at low-supersonic Mach numbers or for large
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Figure 5.1: Aerodynamic coefficients with varied angle of attack for the waverider

designed at Mach 6 flown at Mach 6 and 30km. WRAITH and CFD

using the k−ω SST turbulence model and the variable-γ air model were

used to compute the lift and drag coefficients across angle of attack.

WRAITH matches the CFD results with angle-of-attack qualitatively,

and quantitatively within 6% across the range of angle considered.
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Figure 5.2: Aerodynamic coefficients with varied Mach number for the waverider

designed at Mach 6 at zero angle-of-attack and 30km. WRAITH and

CFD using the k−ω SST turbulence model and the variable-γ air model

were used to compute the lift and drag coefficients across Mach number.

WRAITH matches the CFD results for lift and drag coefficients within

5% for Mach 3 and greater. The discrepancy between predictions for

lift-to-drag ratio increase away from the design point.
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Figure 5.3: Aerodynamic coefficients with varied Mach number for the waverider

designed at Mach 8 at zero angle-of-attack and 30km. WRAITH and

CFD using the k−ω SST turbulence model and the variable-γ air model

were used to compute the lift and drag coefficients across Mach number.

WRAITH matches the CFD results for lift and drag coefficients qual-

itatively across the range of Mach number considered, with decreasing

accuracy away from the design point. Ten percent agreement is main-

tained between approximately Mach 4 and 10.
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deviations from the design point.

The lift-to-drag ratio matches within approximately 15% for hypersonic Mach

numbers and 30% for low-supersonic speeds. The concave-down shape of the L/D

trend with Mach number from CFD is reproduced by WRAITH, but the prediction

of the Mach number for peak lift-to-drag ratio is inaccurate by multiple Mach num-

bers. This discrepancy can be attributed to the shock detachment at low speeds

and significant shock shape skewing at higher speeds. These deviations from the

design-shock shape result in flow leakage around the leading edge and different ref-

erence pressure coefficients than the original design condition which is used in the

WRAITH model.

5.2 Effect of Altitude

The WRAITH model is parametrically evaluated for four case-study configu-

rations across changes in altitude from sea level to 120km, demonstrating the reduc-

tion in lift-to-drag ratio associated with increasing viscous effects with increasing

altitude.

The Reynolds number decreases with increasing altitude, resulting in more

significant viscous forces relative to pressure-based forces. As a waverider ascends

into lower-density air, viscous forces reduce the lift-to-drag ratio attainable near

sea level for a given vehicle. This is depicted in Fig. 5.4 using the 1976 Standard

Atmosphere for a 3m-wingspan Mach 6 waverider on-design, a 30m Mach 6 waverider

on-design, a 30m Mach 15 waverider on-design, and the same 30m Mach 15 waverider
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Figure 5.4: WRAITH computed lift-to-drag ratio for the Mach 6 waverider illus-

trated in Fig. 4.1 with a 3m wingspan and a 30m wingspan, both on

design; a Mach 15 waverider on design, and the same waverider pitched

for maximum lift-to-drag ratio. The maximum L/D is achieved at sea

level, which is reduced with increasing altitude as viscous effects become

more significant.

pitched for maximum lift-to-drag ratio at each altitude. As shown in Fig. 5.4,

waveriders that achieve L/D of 3-5 near sea level are reduced below unity at high

altitude. The ridges observed in the flight paths indicate the flight condition for

which transition to turbulence sets in. Flight below the ridge altitude is more

turbulent, whereas flight above the ridge altitude becomes laminar.
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5.3 Effect of Wall Temperature

The WRAITH model is parametrically evaluated for three case-study vehicles

across changes in prescribed isothermal wall temperature. Temperature affects the

friction coefficient, demonstrating the reduction in lift-to-drag ratio associated with

a cold wall.

According to boundary layer theory for a flat plate in high-speed flow, a hot

wall yields a smaller friction coefficient than a cold wall [4]. This effect is built into

WRAITH using the Eckert friction coefficient and reference temperature method.

The variation in normalized lift-to-drag for one case study waverider is depicted in

Fig. 5.5 at various altitudes and Mach number. The same Mach 6 vehicle used in the

CFD investigation is used and operated at the altitudes and Mach numbers listed,

with zero pitch and yaw angles. In each case, the wall is assigned an isothermal

temperature between zero and 3,500K.

As shown in Fig. 5.5, a hot wall can yield a lift-to-drag ratio up to 50%

higher than a cold wall for a vehicle whose friction drag represents a significant

contribution to the total drag. Across the more practical wall temperature range of

300K to 2,500K this difference can still be on the order of 15-25%.

5.4 Morphing versus Rigid Waveriders

Rigid waveriders were found to be relatively insensitive to changes in speed

for up to a 2-3 Mach numbers around their design point. They were also found

176



Figure 5.5: WRAITH computed lift-to-drag ratio for the Mach 6 waverider illus-

trated in Fig. 4.1 with varied wall temperature between 0 and 3,500K.

Lift-to-drag ratio is normalized for each vehicle by its maximum value,

each occurring for the maximum temperature. Lift-to-drag ratio de-

creases monotonically with decreasing wall temperature, although at

different rates and by different magnitudes.
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to have lift-to-drag ratios that can vary from zero to 50% higher than their design

configuration by changing the angle of attack. The critical question is now: what

advantage does a morphing waverider have? Can an optimally pitched, rigid vehicle

designed for an intermediate Mach number achieve a high lift-to-drag ratio across

the wide range of zero to entry speeds? Can a rigid waverider perform well enough

to render the concept of morphing unnecessary due to its additional complexity?

A thorough investigation with optimization is deferred for future work, how-

ever a comparison of the case study vehicles from Chapter 4 is merited. The CFD re-

sults for the on-design waverider across Mach number are compared to the WRAITH

model for a morphing waverider in Fig. 5.6.

The minimum drag condition for the case study vehicles was found to be at

zero angle of attack. The maximum lift-to-drag ratio for the waverider designed at

Mach 6 and flown at 30km occurs for approximately +3.5◦ angle of attack -a small,

positive angle. It was observed with both WRAITH and the CFD results that the

lift-to-drag curves tend to be concave-down across Mach number for rigid geometry.

The CFD results indicate that the peak lift-to-drag occurs at the design point and

diminishes for deviations away from the design point.

For small changes in Mach number about a design point, a rigid waverider is

preferred due to the insensitivity of the lift-to-drag ratio and the ability to modulate

aerodynamic coefficients with angle of attack. The lift-to-drag ratio was found to be

consistent within 10% for deviations of ±2− 3 Mach number away from the design

point in Chapter 4. The lift-to-drag ratio for a rigid vehicle was found to increase

by 50% for the optimal angle-of-attack.
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As shown in Fig. 5.6, both the CFD and the WRAITH models predict signif-

icant reductions in the lift-to-drag ratio for large deviations away from the design

Mach number for both case-study waveriders. The rigid vehicles produce a peak

lift-to-drag ratio at their design Mach number, which decreases away from their

respective design points. The morphing vehicle matches the rigid vehicles at their

design Mach numbers of 6 and 8, to within the model error characterized earlier in

this chapter. The Mach 6 waverider glide ratio falls quickly beyond its design point,

resulting in a 32% higher L/D for the morphing waverider at Mach 12. The Mach

8 configuration drops less steeply beyond its design point. The Mach 8 waverider is

less streamlined and its viscous forces comprise a lesser component of its total drag

force than for the Mach 6 vehicle. Since the CFD models used for parametric vari-

ation are increasingly invalid for higher Mach number at this operating condition,

we cannot directly compare the vehicle performances at entry speeds of Mach 30

with these CFD methods. WRAITH predictions are used to extrapolate an estimate

for rigid vehicle behavior at high Mach number, illustrated by the orange and blue

dashed curves in Fig. 5.6 between Mach 12 and 30.

The morphing advantage for lift-to-drag at high Mach number is a factor of

2-3 times as high for these case-study rigid vehicles. At low Mach number, the rigid

vehicles outperform the morphing vehicle. The morphing vehicle can overcome this

disadvantage by simply remaining rigid wherever it is advantageous to do so. In

the context of these case-study vehicles, this occurs approximately below Mach 8.

In summary, a morphing waverider will match the performance of a rigid waverider

at its design point, may perform much higher at higher Mach numbers, and may
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Figure 5.6: CFD-computed rigid case study vehicle lift-to-drag ratio and WRAITH-

computed lift-to-drag ratio for Mach 0 to 30 fixed at 30km altitude.

CFD-computed data points are indicated with dots whereas WRAITH-

computed results are dashed lines with resolution of 0.5 Mach number.

The rigid results are extrapolated beyond the CFD data set limit of

Mach 12 using the WRAITH model between Mach 12 and 30. The mor-

phing waverider matches each vehicle at their respective design points

of Mach 6 and Mach 8, but achieves higher lift-to-drag ratio across all

higher Mach numbers.
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remain rigid whenever it is advantageous to do so.

As a first-order approximation to maximize entry vehicle performance, it is

recommended that a rigid vehicle designed to operate across the wide range of entry

speeds select an intermediate Mach number design point, such as Mach 15. Caution

must be exercised, however, to avoid the steep drop in performance with lower

Mach numbers than the design point, as depicted in Fig. 5.6. Pitching to higher

angle-of-attack may help increase the glide ratio, particularly at low Mach number.

How variable aerodynamic properties affect entry dynamics is not clear at this point

because of competing nonlinear effects, but this is the subject of Chapter 6.

The final consideration for morphing waveriders is the degree of deflection and

the strain induced in the lower surface. The maximum orthogonal deflection and

the maximum in-plane strain occurs at the base of the vehicle. The deflection and

strain closer to the leading edge is inherently less than at the base plane. The case

study vehicle for Earth entry designed by the author is presented in Fig. 5.7.

At a 50km altitude, the normalized L/D across Mach number is depicted in

Fig. 5.8. The maximum L/D is 2.5 for this vehicle at this intermediate altitude.

The maximum deflection of the stream surface in reference to a Mach 40 position

and normalized by the wingspan is presented in Fig. 5.9 across Mach number. The

stream surface strain at the base plane across Mach number is presented in Fig.

5.10.

As Fig. 5.8 illustrates, the glide ratio is asymptotic with Mach number and

varies by approximately 15% across Mach 5 to 40 for a fixed altitude. The maximum

deflection in Fig. 5.9 illustrates the small morphing required for high Mach numbers
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Figure 5.7: Baseline LEO-return waverider at Mach 20 configuration designed using

WRAITH. The vehicle is scaled to the same reference area as the SSO

and three leading-edge radii will be considered in Chapter 6.

Figure 5.8: Normalized L/D for LEO-return waverider at 50km altitude when mor-

phed on-design across Mach 5 to 40. The maximum L/D occurs at

Mach 5 and asymptotically decreases to 85% of its maximum value at

high-hypersonic Mach numbers.
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Figure 5.9: Maximum vertical deflection of the lower surface of the morphing wa-

verider normalized by its wingspan. The waverider is morphed as a

function of Mach number at zero angle of attack across Mach 5 to 40.

Deflections are minimal far into the hypersonic regime and become large

below the hypersonic regime.

Figure 5.10: Stream surface lateral strain at the base plane for LEO return waverider

when morphed on-design across Mach 5 to 40. The stream surface

incurs minimal strain far into the hypersonic regime and reaches a

maximum for low-hypersonic Mach number.
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and the increasing flexibility needed at lower Mach numbers. The lower-surface

stress in the base plane illustrated in Fig. 5.10 suggests that a reference design

at Mach 14 would yield a strain requirement of ±0.18% across the range of Mach

5 to 40, which is well below the 2% linear-elastic-strain limit recommended for

recoverable deformation [184].

The range of practical morphing is governed by the maximum allowable bend-

ing stresses, lateral strain, minimum usable volume, and the aerodynamic payoff

for morphing at low speeds. Since peak stagnation heating, average heating, and

deceleration conditions for lifting vehicles tend to occur above Mach 10, morphing

for on-design operation below Mach 10 yields diminishing returns while increas-

ing in complexity. Strain may be minimized by designing a vehicle to undergo a

concave-to-convex transition in the mid-range of design Mach number.

In summary, there is potentially a significant advantage in lift-to-drag ratio

across a wide range of Mach number for a morphing vehicle. The advantage is

most pronounced across a wide range of Mach number and at high Mach number.

The deflection and strain induced in a surface by morphing are within the realm

of conventional engineering materials. The final step in evaluating the potential of

morphing waveriders as entry vehicles is to simulate entry flight paths and compare

metrics to reference vehicles. This is the subject of Chapter 6.
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Chapter 6: Morphing Waveriders for Atmospheric Entry

In this chapter, morphing waveriders are compared to the Space Shuttle Or-

biter (SSO) entering Earth’s atmosphere and the Mars Science Laboratory (MSL)

capsule entering Mars’ atmosphere. The Planar Lifting Entry model from Section

2.2 is used to compute the flight path and WRAITH is used to compute the wa-

verider aerodynamics. Three low-drag waveriders are used in Earth’s atmosphere

that demonstrate improvements in performance metrics over the SSO for return

from low-Earth orbit (LEO), primarily the average heating and peak deceleration.

One of the Earth-entry waveriders is then compared to the MSL capsule for en-

try into the Martian atmosphere in the context of an interplanetary mission from

Earth to Mars. The morphing waverider demonstrates approximately a 75% reduc-

tion in peak stagnation heat flux, a 90% reduction in peak deceleration, and a 95%

reduction in peak area-averaged heating compared to the MSL entry capsule.

The metrics for performance comparison are acceleration, dynamic pressure,

average dissipated power, and stagnation heat flux. The peak deceleration deter-

mines how robust and massive a vehicle airframe must be and how intense the entry

is for passengers or payload. The dynamic pressure determines how controllable or

maneuverable a vehicle is. It also indirectly determines heating and deceleration.
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The average dissipated power of a vehicle correlates to the average heating into the

vehicle. It also indirectly determines deceleration. The stagnation heat flux is a

metric that describes peak local heating and correlates to average heating at each

instant along the entry flight path.

The average dissipated power and the peak stagnation heat flux should be

minimized. The peak deceleration should be minimized; however, there is dimin-

ishing value in reducing the aerodynamic deceleration much below the acceleration

experienced at the planetary surface, which is 1g for Earth. The dynamic pressure

should be minimized to as low as 1kPa. A vehicle loses aerodynamic controllability

for dynamic pressure much below 1kPa.

The utility of a waverider is the ability to generate the same lift as a non-

waverider vehicle for less induced drag [4]. Since heating and deceleration are

directly related to drag, the application of waveriders for entry vehicles suggests

that they may incur lesser heating and deceleration for a similar descent path. A

waverider will result in a longer entry duration due to this reduced drag. The

following subsections illustrate example flight paths for morphing waverider entry

vehicles compared to a simplified model for the Space Shuttle Orbiter for Earth’s

atmosphere and the Mars Science Laboratory (MSL) in Mars’ atmosphere. In all

morphing waverider cases, the angle of attack is fixed at the value noted across the

entire flight path and the vehicle is assumed to ideally morph at all points along the

flight path as a function of instantaneous Mach number.

The model caveats for these entry simulations include 1) the effects of rarefac-

tion at high altitude are neglected. Continuum theory is used to approximate the
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aerodynamics in all regimes. 2) No control implementation effects on the aerody-

namic coefficients are accounted for. The angle-of-attack is fixed in each case across

the entire entry flight path. The ability of the vehicle to maintain the angle-of-

attack along the flight path is assumed to induce no additional drag. 3) Waverider

aerodynamic properties are frozen below Mach 4 at their Mach 4 value.

Caveat #1 is justified in this context because significant aerodynamic forces

only emerge once the vehicles descend into the continuum regime, rendering rarefied

effects minimal for these case studies. The relevant altitudes for vehicles of this scale

where continuum theory breaks down is approximately 100km for Earth and 85km

for Mars. Variations in vehicle dynamics for these case studies are minimal above

this range. The peak heating and deceleration conditions occur at lower altitudes

where continuum theory is valid.

Caveat #2 implies that aerodynamic performance may be degraded in future

higher-fidelity investigations if it is determined that maintaining the prescribed angle

of attack, for example, requires control surfaces that reduce lift or increase drag. The

present study includes a single baseline waverider depicted in Fig. 5.7 with case-

specific leading edge bluntness and angle of attack. The vehicles and cases were

designed by the author through iterative comparison but do not represent the result

of formal optimization. Optimization of the entry flight paths with higher degrees

of freedom, such as varying the angle of attack during descent, is outside the scope

of the present work.

Caveat #3 represents a conservative assumption for low-speed aerodynamic

coefficients. It is expected that similar or higher aerodynamic coefficients are achiev-
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able with a higher-order evaluation of vehicle aerodynamics at low-supersonic and

subsonic speeds. Additionally, the high heating and deceleration conditions occur

for hypersonic Mach numbers for which the selected aerodynamics models have been

demonstrated to be accurate in Chapter 5.

6.1 Entry into Earth’s Atmosphere

Four case-study vehicles are considered for comparison in the context of return-

ing from LEO. The common entry interface for 200-400km LEO return is 7.8km/s

at 120km altitude [2]. This is the prescribed initial condition for each case in the

present study. The first vehicle is a simplified model for the Space Shuttle Orbiter

(SSO), with S=250m2, m=100,000kg, and aerodynamic coefficients prescribed along

its flight path as reported in [2]. Three morphing waveriders are considered. Each

waverider has an identical base design using a 20◦ conical shock as depicted in 5.7.

All acceleration reported is the magnitude due to aerodynamic forces and all heat

fluxes are in reference to a cold wall.

The first waverider is given a 250mm leading-edge radius and flown at a con-

stant +25◦ angle of attack. This vehicle is designed to match the peak stagnation

heat flux of the SSO while reducing the other three metrics. The second waverider is

given a sharper 10mm leading-edge radius and flown at a constant +8◦ angle of at-

tack. This vehicle is designed to reach a maximum stagnation-point heat flux equal

to the radiation heat flux from a 2,500K wall radiating to 300K Earth. The wall

is assigned an emissivity of 0.85, equivalent to that of the SSO windward tiles [2].
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This approximation neglects thermal transients and assumes the wall will reach the

hot condition of 2,500K. For reference, the maximum transient surface tempera-

ture of the SSO is estimated at 2,000K [2]. The third waverider is given a 10mm

leading-edge radius and flown at a constant +30◦ angle of attack in order to min-

imize stagnation heating for a relatively sharp leading-edge radius. The planform

area and mass of all vehicles are identical to the SSO so that any entry condition dif-

ferences are due solely to the aerodynamic lift and drag coefficients. The waverider

aerodynamic coefficients are solved using the WRAITH model from Chapter 2 and

morphed as a function of Mach number. The aerodynamic coefficients for the 10mm

leading-edge radius at +8◦ angle-of-attack, for example, are depicted in Fig. 6.1.

Using the results of the entry dynamics model, the SSO nominally produces a

peak deceleration of 1g, a peak stagnation heat flux of 60W/cm2 for a hemispherical

leading edge of 600mm radius, a maximum average dissipated power of 4.7W/cm2,

and a peak dynamic pressure of 6kPa. These results agree with nominal results from

more sophisticated models as described in [2]. While it is desirable to minimize peak

deceleration, reducing this peak much below 1g has little value for human factors

and airframe robustness. The total load factor felt by astronauts and for which the

airframe must be designed is the vector sum of Earth gravity and this aerodynamic

acceleration, which cannot fall below 1g in combined magnitude and will always

include a design factor of safety. Peak dynamic pressure relative to average dynamic

pressure is important to minimize in order to maintain consistent controllability

without increasing required structural robustness because aerodynamic loading is

directly dependent upon dynamic pressure. Dynamic pressures much below 1kPa,
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Figure 6.1: Aerodynamic coefficients with altitude and Mach number for the 10mm

leading-edge radius morphing waverider fixed at +8◦ angle of attack.

The lift coefficient is consistent below 90km for hypersonic Mach num-

bers. The drag coefficient decreases steeply with altitude in the laminar

flow regime at high altitude. The small increase below 50km at hyper-

sonic Mach numbers indicates the onset of turbulence, which represents

a modest effect for this vehicle. The L/D diminishes at high altitude

due to strong viscous effects and asymptotes at high speed below 50km,

demonstrating Mach-number independence. The entry parameter main-

tains a consistent value throughout the continuum hypersonic regime.

This vehicle’s entry parameter is much higher in the low-supersonic or

laminar regimes.
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Figure 6.2: Space Shuttle comparison to various morphing waveriders for LEO re-

turn. The entry interface is 7.8km/s at 120km. All morphing waveriders

have identical base design (Fig. 5.7) with unique leading edge radius and

angle of attack.
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however, diminish aerodynamic controllability. It is always desirable to fly at higher

altitudes for a given speed in order to reduce stagnation heat flux and dissipated

power.

The morphing waverider with a 250mm leading-edge radius pitched at a con-

stant +25◦ was designed to match the maximum stagnation heat flux of the SSO

despite having a smaller leading-edge radius. Because of its higher lift coefficient

and lower drag coefficient, it glides along a flight path that is higher than the SSO,

seen in the velocity-altitude plot of Fig. 6.2. Since heating is proportional to ρv3,

flying at a lower speed for a given density (i.e. altitude) results in approximately the

same velocity-based heating despite the sharper leading edge. The maximum aver-

age dissipated power is reduced by approximately 60% compared to the SSO for the

same velocity-altitude reason. The peak deceleration is slightly reduced compared

to the SSO, and the peak dynamic pressure is reduced by approximately 60%.

The morphing waverider with a 10mm leading-edge radius pitched at a con-

stant +8◦ was designed to reach a maximum stagnation-point heat flux equal to

the radiation heat flux from a 2,500K wall. For an assigned emissivity of 0.85,

that of SiC at 2,500K [2], this peak value is 188W/cm2. This waverider produces

a much lower average drag coefficient than the SSO, but also produces much less

lift. Because the SSO produces a higher lift coefficient, this waverider glides along

a flight path that is lower than the SSO. Since heating is proportional to ρv3 and

its radius is smaller than the SSO’s, this waverider incurs its design peak heat flux

of 188W/cm2, higher than the SSO’s. The average dissipated power due to this

vehicle’s lower drag coefficient, however, is approximately 80% less than the SSO.
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Similarly, the peak deceleration is reduced by approximately 60% due to the lower

drag coefficient. The peak dynamic pressure is found to slightly increase over the

SSO, but maintains a consistent value below 60km.

The morphing waverider with a 10mm leading-edge radius pitched at a con-

stant +30◦ was designed to minimize the peak stagnation heat flux for a relatively

sharp leading edge. This waverider produces a lower average drag coefficient than

the SSO and also produces more lift. This results in a higher-altitude glide path

than the SSO, approximately double the stagnation heating due to its sharper lead-

ing edge, lesser maximum average dissipated power due to the lower drag coefficient,

slightly lesser peak deceleration, and approximately 60% lesser peak dynamic pres-

sure. The dynamic pressure is consistent below 60km.

While the peak heat flux for the SSO is approximately half that of the 10mm

leading-edge morphing waverider with +30◦ angle of attack, it is important to

note that the heat flux occurs over a much smaller area for the waverider, ∝

(10mm/600mm)2, therefore the total integrated leading-edge heat load for the wa-

verider is much less than for the SSO despite the higher peak value. The average

dissipated power, which correlates to average and local heat flux, is approximately

1/5th that of the SSO because of the reduced drag coefficient of the waverider.

6.2 Entry into Mars’ Atmosphere

The waverider used for Mars entry is identical to that used for Earth entry in

the present study with a 10mm leading edge radius. The vehicle is compared to the
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Mars Science Laboratory (MSL) capsule, using specifications previously provided in

Table 2.1. The entry interface for Mars is 150km altitude and 5.6km/s. Unlike Earth

entry from LEO, this Mars entry assumes an interplanetary approach path. The

circular orbit velocity at 150km for Mars is 3.48km/s compared to the entry interface

velocity of 5.6km/s for Earth-to-Mars transit. The aerodynamic braking on the first

pass through the atmosphere must reduce the vehicle velocity by at least 2km/s in

order to ensure that the vehicle descends to the surface and does not skip out of

the atmosphere. Further along the entry trajectory, the lift coefficient is important

to prevent the entry vehicle from descending too quickly into denser atmosphere

before decelerating. Descending too quickly will result in excessive heating and

deceleration.

The MSL capsule initial flight path angle is −15◦, whereas the waverider initial

entry flight path angle is −9◦. Shallower initial angles can result in skipping out of

the atmosphere and re-entering at a dangerously steep angle. Steeper entry angles

result in higher peak deceleration and heat fluxes. The MSL capsule relies on a

high drag coefficient for “aerocapture” in its initial entry phase. The small lift force

produced following aerocapture helps the vehicle glide to the Martian surface with

lesser peak deceleration and heating than a pure ballistic entry.

The morphing waverider entry vehicle is captured by aerodynamic forces at

+45◦ initial angle of attack for high drag in its initial aerocapture phase. At some

point, the lift generated causes the descending vehicle to rise to a zero flight path

angle, marked as point (1) in Fig. 6.4. The vehicle is then pitched downward for

zero lift in order to maintain altitude while dissipating kinetic energy until the lift
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Figure 6.3: Lift-to-drag ratio and drag coefficient across Mach number and altitude

for morphing waverider Mars entry vehicle as computed by WRAITH

for +30◦ angle of attack. Mach-number independence can be seen for

lift and drag at high Mach number in the continuum regime. Morphing

produces a high lift coefficient and low drag coefficient, resulting in a

consistent lift-to-drag ratio in the hypersonic continuum regime.

force can no longer support the vehicle’s weight, marked as point (2) in Fig. 6.4.

Once the vehicle has slowed to the point when its velocity can no longer support its

altitude (when centripetal acceleration and lift match Mars’ gravity), the angle of

attack is adjusted to +30◦ for the remainder of the entry process, marked as point

(3) in Fig. 6.4. The aerodynamic coefficients produced using WRAITH and the

COSPAR Mars atmosphere for the morphing waverider at +30◦ angle of attack are

presented in Fig. 6.3 across altitude and Mach number.

The trajectory results are compared in Figs. 6.4 and 6.5. Both vehicles follow

the same initial velocity-altitude profile until approximately 80km. The waverider

at this point has enough lift at +45◦ angle of attack to increase its flight path angle
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to zero, corresponding to approximately “level flight” referenced to the Martian

surface. Its altitude is maintained with centripetal acceleration and aerodynamic

lift until decelerating to approximately 3.3km/s. This high-altitude deceleration

allows for much of the initial kinetic energy to be dissipated at a very low average

rate and while incurring very low stagnation heating due to the low ambient density.

The deceleration process lasts approximately 70 minutes. When the vehicle can no

longer sustain its own weight through aerodynamic lift alone, it descends with a

+30◦ angle of attack, which is a compromise between glide ratio desirable for range

or cross-range and the high drag coefficient necessary to decelerate in Mars’ low-

density atmosphere.

Because the morphing waverider decelerates slowly while retaining high alti-

tude, it incurs approximately 90% lower peak deceleration than the MSL capsule

and reaches a low, consistent, controllable dynamic pressure below 50km. The peak

dynamic pressure is reduced by approximately 98% compared to the MSL capsule.

Decelerating to a slower speed before descending into denser atmosphere and gliding

for a longer duration to dissipate the vehicle’s initial kinetic energy leads to much

more benign heating at lower altitudes. The maximum average dissipated power

is reduced by approximately 95% and the stagnation heat flux is reduced by more

than 75% compared to the MSL capsule, despite the relatively sharp 10mm leading-

edge radius on the waverider. The total “leading-edge heating” for the waverider is

along its small leading-edge area, whereas the “leading-edge heating” for the MSL

capsule is across its full-diameter heat shield. An important point related to heat-

ing is that this non-optimized vehicle with a non-optimized flight path has already
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demonstrated the ability to incur a peak stagnation heat flux of 50W/cm2, which is

less than the SSO’s 60W/cm2 that was managed with reusable heat shield tiles. The

SSO’s low heat flux did not require an ablative heat shield like the MSL capsule.

This implies that a morphing waverider entry vehicle for Mars should be possible

without requiring an ablative TPS.

The range and time with altitude are depicted in Fig. 6.5, illustrating the

significance of the high-altitude energy dissipation maneuver. Without lateral ma-

neuvers, the morphing waverider travels approximately 20 times further than the

MSL capsule. Since the vehicle has a lift vector and excess energy during its high-

altitude dissipation maneuver, the vehicle may use some of this “energy budget” for

cross-range maneuvering or course correction.

The case study interplanetary mission into Mars’ atmosphere is distinctly chal-

lenging compared to LEO return because the process requires both a high-drag ae-

rocapture maneuver as well as a high-lift descent through a very sparse atmosphere.

Even with the significant advantages illustrated by the high-lift vehicle used in this

comparison, the morphing waverider reaches the surface with a residual supersonic

speed of 288m/s (Mach 1.2) at a flight path angle of −25.1◦. While this is less than

the 450m/s (Mach 1.9) of a purely-gliding MSL capsule, it illustrates the necessity

of auxiliary deceleration and touch-down mechanisms in the Martian atmosphere.

The inability of high-lift and high-L/D vehicles to decelerate to safe touch-

down speeds under aerodynamic forces alone is known in the Mars Entry, Descent,

and Landing (EDL) community as the supersonic decelerator problem [171]. This

case study vehicle simplifies the problem in comparison to the capsule, however, by
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Figure 6.4: Entry profiles for the MSL capsule and a morphing waverider for an

Earth-to-Mars mission. The entry interface is 5.6km/s at 150km. Both

vehicles have identical reference area (15.9m2) and mass (3380kg).
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Figure 6.5: Entry profiles for range and time for the MSL capsule and a morph-

ing waverider for an Earth-to-Mars mission. The high-altitude energy

dissipation maneuver is what allows the morphing waverider to incur

much less area-averaged heating, stagnation heating, and peak decelera-

tion than the MSL capsule. This maneuver is enabled by the morphing

waverider’s high lift coefficient.
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reaching the surface with 60% less kinetic energy to dissipate with non-aerodynamic

mechanisms.

6.3 Summary

Three low-drag morphing waveriders were simulated entering Earth’s atmo-

sphere from LEO that demonstrated improvements in performance metrics over the

SSO. These vehicles used a fixed angle-of-attack and a non-optimized flight path.

It was demonstrated that a morphing waverider can achieve some combination of a

60% reduction in peak deceleration, a 60% reduction in peak dynamic pressure, or

an 80% reduction in maximum area-averaged dissipated power. The vehicles con-

sidered did not produce less stagnation heat flux than the SSO due to their much

smaller leading-edge radii.

One of the Earth-entry waveriders with a 10mm leading-edge radius was com-

pared to the MSL capsule in the context of an interplanetary mission from Earth to

Mars. The high lift and low drag of the morphing waverider produced approximately

a 75% reduction in peak stagnation heat flux, a 90% reduction in peak deceleration,

and a 95% reduction in peak area-averaged heating compared to the MSL entry

capsule.
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Chapter 7: Conclusion

The conclusion chapter summarizes the efforts of this work and the resulting

insights gained. The caveats and limitations of the models used and case studies

presented are discussed in the following section. This dissertation’s unique contri-

butions are then highlighted, primarily demonstrating that the morphing waverider

entry vehicle concept has potential and merits further investigation. The chapter

closes with recommendations for future work.

7.1 Summary

The purpose of this work was to evaluate the potential of morphing waverid-

ers as high-lift entry vehicles. In order to accomplish this evaluation, the author

had to assemble, integrate, or develop specialized tools. These tools span analyt-

ical and numerical methods, planetary entry dynamics, hypersonic aerodynamics,

aerothermodynamics, computational fluid dynamics, and reactive flow.

The key questions were 1) Is there an advantage to morphing a waverider

across the wide range of entry speeds? It was demonstrated in Section 5.4 that a

morphing waverider can produce a consistent lift-to-drag ratio across a wide range

of speeds relevant for atmospheric entry while the performance of a rigid waverider
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degrades away from its design point. For the case study vehicles evaluated, the

morphing waverider could outperform the rigid waverider by up to 2-3 times at high

Mach number.

The second key question was 2) Can a morphing waverider out-perform a lifting

capsule on Mars or the Space Shuttle on Earth? It was demonstrated in Section

6.1 that a morphing waverider can enable a flight path with up to 60% less peak

deceleration and dynamic pressure and up to 80% less peak area-averaged heating

than the Space Shuttle returning from LEO. It was demonstrated in Section 6.2

that a high-lift morphing waverider can reduce the maximum area-averaged heating

by 95% compared to the Mars Science Laboratory entry capsule. It can reduce the

stagnation heating by more than 75%, the peak dynamic pressure by 98%, reduce

the peak deceleration by 90%.

In order to arrive at these answers, the author used the following strategy.

First, appropriate models and methods were selected and implemented for entry dy-

namics, hypersonic aerodynamics, construction of hypersonic waveriders, geometry

modification, and the numerical simulation of turbulent flow and laminar, reactive

flow. Second, the models were evaluated in comparison to one another in order to de-

termine the accuracy of the reduced-order models. With sufficient confidence gained

in the morphing-waverider aerodynamic property estimates, parametric evaluation

of the model was used to characterize the effects of varied angle of attack, Mach num-

ber, leading-edge bluntness, wall temperature, and altitude. It was demonstrated

that a morphing waverider enables a higher lift-to-drag ratio than a rigid waverider

across a wide range of Mach number. The deflection and strain required to morph
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a case study vehicle was reported, resulting in base-plane strain spanning ±0.15%

across Mach 5 to 40. Finally, entry simulations were conducted for the morphing

waveriders.

Reduced-order models for waverider aerodynamics have been previously devel-

oped, e.g. [72,85]. However, the accuracy of each specific analytical method used in

each flow context had not previously been characterized. It was found that analyt-

ical methods for waverider aerodynamics at their design Mach number and varied

angle-of-attack matched numerical simulations generally to within 5-10%. The ac-

curacy of the WRAITH model was heavily dependent upon the analytical model

chosen for each surface in each flight configuration. As the flight Mach number

is varied away from the design Mach number, the discrepancy between analytical

and CFD results grew to more than 20%. It is therefore recommended that these

methods be used for on-design Mach number and variations in angle of attack, but

not for rigid waveriders at Mach numbers far from their design points.

7.2 Unique Contributions

The unique contributions of this work to understanding hypersonic waverider

aerodynamics in entry-relevant flows are discussed in the following section. The two

primary contributions are 1) the author characterized the accuracy of analytical

methods for hypersonic aerodynamics in comparison to numerical methods in the

context of atmospheric entry. 2) The author demonstrated that morphing waveriders

can lead to more benign entry conditions than classical lifting capsules or the SSO
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and that the enabling mechanism is the low drag that waveriders incur.

The complete contributions of this work are itemized in the following list. The

author specifically:

• Developed a reduced-order model for off-design viscous waverider aerodynam-

ics, verified and validated against turbulent CFD, for varied angle-of-attack

and Mach number

• Developed a leading-edge blunting method that preserves the planform and

better preserves the approximation of an attached design shock

• Characterized the effect of off-design Mach number on the aerodynamic coef-

ficients using CFD

• Characterized the effect of off-design orientation on the aerodynamic coeffi-

cients and dynamic stability using CFD

• Added heating correlations and the effect of a finite-thickness leading edge to

waverider reduced-order aerodynamics model

• Demonstrated useful accuracy of a waverider reduced-order aerodynamics model

when correlated to viscous CFD

• Proposed a method for estimating the base pressure, justified with CFD and

existing empirical studies

• Proposed a method for estimating the base temperature using the proposed

base-pressure model
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• Proposed a waverider construction method that retains the attachment of a

design shock and the design flow field across a wide range of Mach numbers

when the lower surface is morphed to conform to the design flow field’s stream

surface emanating from the leading edge

• Proposed waverider construction guidelines that minimize morphing strain and

demonstrated that this strain can be minimized below the linear elastic limit

of 2% while retaining useful L/D across a wide range of Mach number

• Numerically demonstrated that a morphing waverider can achieve a higher

lift-to-drag ratio than rigid waveriders across a wide range of Mach number

• Demonstrated the importance of entry-vehicle stability by demonstrating the

inherent instability of a case-study waverider

• Numerically demonstrated that a morphing waverider can achieve more benign

entry conditions for Earth and Mars than existing capsules and lifting vehicles

by means of improved aerodynamics

7.3 Recommended Future Work

The recommended future work can be separated into two categories: near-

term specific recommendations to continue the present study, and more general,

long-term topics to investigate in order to aid the overall development of practical

morphing waveriders. This includes evaluating rigid waveriders, optimization of

morphing waveriders, materials and structural considerations, rarefied flow analysis,
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and ascent vehicles. Each topic is briefly discussed below.

In the near-term, rigid waveriders should be evaluated as entry vehicles. They

were omitted in the present work because the off-design Mach number estimates

from WRAITH produced errors greater than 10% in the lift-to-drag ratio a few

Mach numbers away from the design point (see Fig. 4.14) and 12-18% error in

the lift and drag for the high-altitude reactive flow (see Table 5.6). The WRAITH

model produced net lift and drag forces within a few percent of the CFD results for

on-design aerodynamics and variation in angle of attack, but accuracy degrades for

off-design Mach number.

The most straightforward extension of this work is to use the same tools for

the optimization of morphing waverider entry vehicles and their flight paths. The

case studies presented were the result of iterative design by the author, but may

be far from optimal. The recommended cost function components are weighted

aerodynamic performance, peak and average heating, peak deceleration, payload

volume, range of deflection and strain, controllability, and sensitivity.

While the present study found advantages for morphing over conventional

entry vehicles, the complexities associated with morphing have yet to be evaluated.

This merits an investigation into the material, structure, and control requirements

to morph a waverider in this context. The temperatures and heat fluxes described

in Chapter 6 and the deflection and strain described in Section 5.4 provide initial

guidelines.

The current study treated the morphing waveriders as monolithic, idealized

aeroshells without internal detail. It is recommended that a more detailed design of
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an entry vehicle be performed in order to characterize a practical inert mass frac-

tion, payload fraction, and morphing system mass fraction. A reduced-order model

may also be formulated for transient thermal simulations by using point-masses for

components, prescribed conductances between components, and the heating already

computed by WRAITH for each surface.

Another consideration is that of rarefied flow at high altitude. While the case

was made to neglect rarefied flow in the present analysis, the accurate flight path

prediction for a practical vehicle will necessitate a higher degree of accuracy. This

will require analysis of rarefied flow. Additionally, as higher-performance vehicles

are engineered for dynamics and maneuvers at higher altitudes, the rarefied flow

regime may become just as critical as the continuum flow regime.

The final topic is related to ascent vehicles. The present study considered

using waveriders as high-lift entry vehicles, but this is only half of the space-access

challenge. Is there an efficiency advantage for high-lift ascent vehicles? What if

they implement airbreathing propulsion, at least for part of their ascent? The hope

of the author is that this work represents the first of a series of investigations into

maximizing the use of the incredible features of hypersonic waveriders.
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Glossary

Ablation The transition of solid material to its gas phase with the absorption of
thermal energy.

Airbreathing engine An engine that uses the oxygen in ambient air as its
oxidizer. Examples include a jet engine, a ramjet, and a scramjet.

Analytical method A method for modeling physical phenomena using
mathematical theory and closed-form solutions. In this context, it is used to
describe methods in contrast to the numerical simulation of discretized
geometry and systems of differential equations.

Ballistic entry The entry into a planetary atmosphere by a vehicle that
generates zero aerodynamic lift forces.

Ballistic coefficient A metric that describes the rate of deceleration of a vehicle
β = m/(CDS).

Base The aft end of a waverider.

Calorically perfect gas A gas for which the ratio of specific heat capacity at
constant pressure is invariant with temperature.

Capsule An axisymmetric spacecraft with a large-radius, blunt forebody that
contains passengers or cargo intended to land on a planet. The forebody is
covered with an ablative heat shield to protect the spacecraft from the
intense thermal environment during atmospheric entry.

CFL number A measure of the time step taken for the discrete solution of
convective differential equations related to the transfer of information
between cells. The CFL of a simulation refers to the maximum value of
(Ui/i)j for all ith directions and jth cells in the computational domain.

CPU-hr A measure of computational resources used in units of the product of a
number of computing processors operating for a number of hours.

Computational Fluid Dynamics (CFD) The collection of methods used to
approximate solutions to the governing equations of fluid dynamics (the
Navier Stokes equations) using computers and discretized geometry.

Critical Reynolds number The value of the Reynolds number as a function of
the distance from a leading edge that initiates the transition from laminar
flow to turbulent flow.

Degree of Freedom (DOF) Each of a number of independently variable factors
affecting the range of states in which a system may exist. In particular, any
of the directions in which independent displacement or orientation may
occur.
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Design point The specific Mach number and orientation at which a waverider is
designed.

Design shock or flow field The user-selected flow field and shock wave from
which a waverider is designed.

Entry parameter A metric that describes the rate of descent of a vehicle
ξ = m/(CLS).

Entry vehicle A spacecraft orbiting a planet or transiting between planets that
passes through a planet’s atmosphere and lands personnel or cargo on the
planet’s surface.

Equilibrium chemistry Chemical reactions occur over a sufficiently rapid time
scale that the conversion between reactants and products is approximated as
instantaneous in time and space.

Explicit method The time integration of a discrete system of equations using
information at the present time to solve for the new state of the system at a
future time.

Fillet A geometry-modification method of rounding a sharp edge in two
dimensions with a uniform radius and tangent end conditions.

Finite-Volume Method (FVM) A method representing discretized governing
equations by applying a bounded surface around a system subdomain and
accounting for internal system properties and fluxes through the bounded
surface.

Implicit method The time integration of a discrete system of equations using
information at the present time and at a future time to solve for the state of
the system at the future time.

In-plane strain The ratio of the tangential deflection of a surface to its length in
the same direction.

Laminar flow A flow field with constant, smooth streamlines.

Leading edge The portion of a vehicle that is exposed to undisturbed
free-stream air during flight. For high-speed vehicles, the leading edge may
extend from wingtip to wingtip along the front limit of the planform.

Lifting entry The entry into a planetary atmosphere by a vehicle that generates
aerodynamic lift forces.

Load factor The ratio of net forces on an entry vehicle to its weight.
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Low-Earth Orbit (LEO) A region of the Earth’s exosphere approximately
200-500km above sea level where ambient molecular densities are low enough
for a satellite to sustain its orbit for days to years before aerodynamic drag
slows it sufficiently to de-orbit.

Morphing waverider A waverider with a shapeable bottom surface that
conforms to the stream surface of a design flow field as a function of Mach
number. The leading edge, top surface, and planform remain rigid.

Non-equilibrium chemistry Chemical reactions occur over a time scale that
requires resolution in space and time for a particular system.

Non-equilibrium kinetics A state of sufficiently sparse gas molecules such that
the velocity probability distribution function does not match the
Maxwell-Boltzmann equilibrium distribution function.

Numerical simulation The discretization of a system of governing differential
equations and geometry solved as a set of algebraic equations used to
approximate the solution to the original system. Numerical simulations are
used to resolve complex geometry and detailed interactions such as turbulent
fluid flow and chemical reactions in space and time.

Off-design The operational state of a waverider that does not correspond to its
original design Mach number or orientation.

On-design The operational state of a waverider at its original design Mach
number and orientation.

Osculating flow fields A collection of discrete, adjacent, independent flow fields.
Osculating flow fields are used to approximate a continuum flow field for
waverider design with greater degrees of freedom.

Planform The area and shape bounded by a top-down projection of a vehicle or
its wings.

Pyrolysis The irreversible thermal decomposition of materials at elevated
temperature.

Rarefied flow When the average distance between molecular collisions becomes
comparable to a characteristic length scale of a system or larger. For a 10m
reference length, rarefied flow is encountered by entry vehicles above
approximately 90-100km altitude for Earth and Mars.

Reduced-order model (ROM) A method or collection of methods that use
simpler approximations or incur lesser computational expense than more
detailed models or those with more complexity. A ROM is usually obtained
by a simplification of the physics, geometry, or assumptions of a system.
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Reference area Denoted by S, the reference area is the planform area of a
winged vehicle or the two-dimensional projection of the frontal area of a
capsule, πr2.

Refractory metal A class of metals with high service-temperatures and
resistance to oxidation and wear. Examples include W , Ta, Mo, Nb, and Re.

Species The distinct type of a fluid or molecule: oxygen and nitric-oxide are two
separate molecular species.

Stagnation point A point in a flow field where the local velocity of the fluid is
zero. Stagnation heating refers to the maximum heating at the nosetip or the
leading edge.

Stratosphere The portion of the Earth’s atmosphere spanning approximately
12-50km in altitude.

Streamline A curve that is tangent to the velocity vector field of a flow.

Stream surface A surface emanating from a continuous seed curve through
which flow does not penetrate.

Thermal Protection System (TPS) The heat mitigation material, structure,
or system. For capsules, the TPS is an ablative heat shield. For the Space
Shuttle, the TPS is UHTCs and ceramic heat shield tiles.

Thermally perfect gas A gas for which the ratio of specific heats is purely a
function of temperature.

Troposphere The portion of the Earth’s atmosphere spanning sea level to
approximately 12km in altitude.

Turbulent flow A flow field with streamlines that fluctuate chaotically in space
and time.

Ultra-high-temperature ceramics (UHTCs) A class of refractory ceramics
with service temperatures exceeding 2, 000◦C. Examples are TiC, TiN , TaC,
SiC, and WC.

Waverider A waverider is a vehicle that flies at supersonic speeds on top of the
shock that the vehicle itself creates. A waverider has an attached shock all
along its leading edge, from wingtip to wingtip. The shock is a known shape
for the Mach number at which the waverider is designed.

WRAITH The Waverider Reduced-order Analysis and Investigative Tool for
Hypersonics is a collection of analytical models that predict pressure and
viscous forces in hypersonic flow on a panelized vehicle surface mesh.
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