
ABSTRACT

Title of thesis: A STUDY ON DISTRIBUTED
RECEDING HORIZON CONTROL

Wann-Jiun Ma, Master of Science, 2011

Thesis directed by: Professor Nuno Martins
Department of Electrical and Computer Engineering

We consider a distributed control problem comprising of multiple sub-systems with

one-controller at each sub-system. We apply a recent result about suboptimal receding

horizon control that analytically relates a receding horizon control suboptimal solution
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is the first time the result is applied to a distributed receding horizon control framework

based on dual and primal decomposition.
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Chapter 1

Introduction

Receding horizon control also known as model predictive control [2] is a form of

control, in which at each time instant, basically we solve an open loop finite horizon

optimization problem; then as time horizon rolls, we apply the first control value in the

optimal solution to the system.1 After this first element of the optimal control sequence

is applied to the system, the corresponding controlled state can be measured if we assume

an observation case of perfect state. It might be corrupted with state noise. Then solve

the optimization again taking this new observed state as the initial state. Since the

implementation results from solving open loop optimization problems, we can expect that

the constraints on the states and controls can be easily added into the system, but it

becomes difficult if we adopt other approaches such as dynamical programming.

1.1 Stability

An important issue of receding horizon control is stability. During the 90’s, there

have been numerous research works on the stability problem [14]. Depending on the sys-

tem’s dynamic structure such as linear or nonlinear; continuous or discontinuous; with

constraints or without constraints; discrete-time or continuous-time, there are many dif-

ferent approaches to offer the sufficient conditions for the stability of the system. Basically,

there are three essential ingredients in the stability analysis of receding horizon control,

which are the final state constraints, the penalty of final state, and the local feedback

1As [14] points out, in time, the difference between model predictive control and receding horizon control

becomes irrelevant; in the sequel, we use receding horizon control as a generic term.
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control of the final state to ensure that it lies in a specific invariant set. Based on the

corresponding stability sufficient conditions, one needs to pre-compute the above three

ingredients to satisfy the conditions and stabilize the system. One of the most widely

adopted principles relies on using the value function of a finite time horizon optimal con-

trol problem as the Lyapunov function to establish the stability conditions.

1.2 Sub-optimality and Stability

Most of the discussions about the stability of receding horizon control during the

90’s are based on the fact that the optimization problem at each time instant can be

computed exactly, i.e. the optimal value is attained. The practical difficulty behind the

stability conditions is that solvers are able usually only to provide sub-optimal solution for

each optimization subproblem, otherwise there would be real-time concerns. Therefore,

the stability results for sub-optimal solution become important if we want to implement

it in a practical way. There are two approaches about this kind of research. First, in [19],

sufficient conditions are established to stabilize the system for the sub-optimal solutions.

If the conditions are satisfied, the feasibility implies stability. One of the main conditions is

that the cost of the receding horizon control should decrease along the horizon. The other

different approach [11] does not put additional constraints on the cost function, but gives

the explicit relation between the deviation of the optimal solution and the deterioration of

the stability of the closed-loop receding horizon control system. They also show that under

slightly stronger conditions, the stability can be achieved. In [11], a powerful notion, input-

to-state stability (ISS), is used to deal with the problem with bounded state disturbances.

The explicit relation between the deviation of the optimal control and the deterioration

of ISS property is also established.
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1.3 Real-time Receding Horizon Control

In order to compute the control sequence quickly, in [20], a tailored solver is used.

They consider the structure of the problem, use the sparsity of the structure, and consider

related sub-optimal optimization techniques to compute the control sequence quickly on-

line. In [21], a performance guarantee and the stability analysis of real-time receding

horizon control are presented.

1.4 Stochastic and Robust Receding Horizon Control

Standard receding horizon control does not include state disturbances into the anal-

ysis. We could argue that since in the standard receding horizon control, the first element

of the computed control sequence is applied, and then the resulting controlled state is used

as the initial state for the optimization subproblem at the next time instant. Since it is

already in a closed-loop control form, it can overcome the disturbances to some extent.

However, adding the disturbances into the system, and considering the performance of

the disturbed receding horizon control are still necessary. There are many works about

stochastic and robust receding horizon control over the past ten years. Among numerous

proposals, there are two categories. For the first category, people use input-to-state sta-

bility notion, and consider tightened state constraints to establish the stability sufficient

conditions for a disturbed receding horizon control system with the bounded disturbances

(see [13]). The basic idea of using tightened state constraints is simple. Because of trian-

gle inequality, if one uses carefully chosen tightened state constraints to solve a nominal

receding horizon control problem, the disturbed system might stabilize in ISS sense. The

other approach is relatively new, in which the disturbances are modeled as random vari-

ables, and stochastic programming is applied to solve the associated uncertain receding
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horizon control problem [17]. For this kind of approach, since we directly solve the prob-

lem with uncertainty using stochastic programming instead of solving a nominal problem,

the structure of the problem is destroyed that explains the reason why there do not exist

many stability or performance analyses for such an approach.

1.5 Decentralized and Distributed Receding Horizon Control

In accordance with a survey paper [18], here we clearly define decentralized and

distributed receding horizon control based on the kind of information exchanged among

agents and interaction between the agents. Decentralized receding horizon control is for a

system that all agents have some kind of interactions either coming from the coupled states

or inputs. And each agent has its own local regulator and computes its own controller.

One novel way to ensure the stability of this kind of system treats the agents interactions

as disturbances and again uses ISS notion analysis.

Distributed receding horizon control, on the other hand, allows agents to exchange

the information. Depending on different communication structure assumption and neces-

sary information needed to be transmitted, there are different approaches to follow. In

particular, there is a special type of distributed receding horizon control problem, in which

all agents are independent, but still have some kind of information exchange mechanism.

This type of problem is called coordinated control problem. Consensus control problem

in this group further assumes that all agents do not know the equilibrium information in

advance.

In [5], dual decomposition is adopted to solve a consensus receding horizon control

problem. And in [7] and [12], primal decomposition is used to solve a similar problem.

Dual and primal decompositions are specific distributed optimization techniques. In dual
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decomposition, the public variables are coupled among the agents, and each agent uses its

own dual prices to maintain the consistence constraints with other agents in the neigh-

borhood. The equilibrium information is our public variables, i.e. all agents converge

to a consensus point. Using consistence constraints of the public variables, one can be

sure that all agents converge to the consensus point, even though each agent solves the

optimal control problem independently. On the other hand, in primal decomposition, one

assigns the same amount of resources to each agent, each agent minimizes its own cost

function based on this fixed resource, then we minimize the cost function with respect to

this resource (public variable).

As mentioned in Section 1.2, classical sub-optimal receding horizon control analysis

(see [19]) shows that under necessary assumptions, instead of optimality, feasibility is

sufficient for stability. This result reduces the computational requirements to implement a

stabilizing receding horizon control. On the other hand, in [11], an explicit relationship is

established between the optimality loss of the control and the deterioration of the input-

to-state stability of a receding horizon control system. Unlike the classical sub-optimal

analysis, this explicit relationship quantifies the required computational requirements for

establishing a receding horizon control system that is stable within a given error range.

[12] applies this relationship to a consensus seeking problem and establishes a practical

implementation. They use the result from [11] to calculate a bound on the number of

iteration steps necessary for stabilizing the system within a given error range. The closest

work related to [12] is [7], in which a consensus problem is implemented using distributed

receding horizon control. Primal decomposition based on incremental subgradient method

is adopted there. Classical sub-optimal receding horizon control analysis is used to reduce

the computational requirements. However, in [12], they use a fundamentally different
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approach to study stability and suboptimality.

In this study, first, we try to extend the results in [12] to dual decomposition method.

The sensitivity analysis and first order approximation are used to quantify the deviation

of the primal variables. We also solve a formation control problem using dual and primal

decompositions to discuss the relation between the optimality loss of the control and the

deterioration of the system stability.

The contents following the introduction section are organized as follows. Chapter 2

describes the main problem formulation. Then, in Chapter 3, we recall the results in [11]

and discuss the necessary modifications. We establish the explicit relationship between the

optimality loss of the control and the deterioration of the system performance. A consensus

seeking problem based on dual decomposition and receding horizon control is discussed in

Chapter 4. Furthermore, the results in [12] for incremental primal decomposition based

approach and the idea of incremental robustness are also discussed in this chapter for

completeness. Chapter 5 solves a formation control problem based on dual and primal

decompositions with receding horizon control. The simulation is given in Chapter 6. The

conclusion and future work can be found in Chapter 7.
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Chapter 2

Problem Formulation

Consider an N -agents system where each agent has the following time invariant

discrete-time dynamics

xik+1 = φi(xik, u
i
k), (2.1)

for i = 1, ..., N , where the state xik ∈ <n, the control input uik ∈ <m, and the dynamics

φi : <n ×<m → <n, which is continuous. In this and Chapter 3, we only assume that the

dynamics is continuous. The dynamics can be linear or nonlinear. Each agent has its own

cost function:

J i :=
∑∞

k=0 h
i(xik − xis, uik − uis), (2.2)

where hi is convex and nonnegative, xis ∈ Θi is an equilibrium state, and Θi ⊆ <n is the

feasible set for xis. u
i
s ∈ Ωi is the control input associated with the steady state xis and

Ωi ⊆ <m is the feasible set for uis. The cost function penalizes the deviation from the

equilibrium state. The objective of this thesis is to minimize the sum of the individual

cost, while satisfying state and control constraints. We formulate the problem as follows:

minimize
∑∞

k=0 h(xk − xs, uk − us)

subject to xk+1 = φ(xk, uk),

xk ∈ X ,

uk ∈ U ,

xs ∈ Θ,

us ∈ Ω,

(2.3)
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where h =
∑N

i=1 h
i, φ = (φ1, ..., φN ), xk = (x1

k, ..., x
N
k ), uk = (u1

k, ..., u
N
k ), xs = (x1

s, ..., x
N
s ),

and us = (u1
s, ..., u

N
s ). The sets X and U are compact and are called the state and control

constraint sets, respectively. Note that X = X 1 × ... × XN and U = U1 × ... × UN ,

where × denotes the Cartesian product of sets and X i ⊆ <n, U i ⊆ <m for i = 1, ..., N .

Similarly, Θ = Θ1 × ... × ΘN and Ω = Ω1 × ... × ΩN . Where xs and us may be fixed

desired targets or decision variables of the associated optimization problem depending on

different applications. This is an infinite horizon optimal control problem with state and

control constraints. In the following sections, we adopt receding horizon control and dual

and primal decomposition scheme to solve this problem in a practical and distributed way.

There are two scenarios associated with this problem set-up. First, we formulate

a consensus seeking problem. In this scenario, after the algorithm converges, all xis’s

converge to the same value, which is set to be the desired target that each agent need to

track. In this set-up, the agents are coupled via cost functions. In the usual consensus or

rendezvous seeking problem, the agents do not know the consensus point in advance.

For the second scenario, we formulate a formation control problem in a similar

way. In formation control scenario, the desired target is fixed in advance, and each agent’s

desired target might be different. The consistency constraints about the states and controls

of agents are embedded in the state and control constraints in (2.3). Hence, the agents

might track different fixed targets and should follow some predetermined trajectories at

the same time. In this set-up, the agents are coupled via state and control constraints.
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Chapter 3

Suboptimal Receding Horizon Control Scheme

Receding horizon control also known as model predictive control, is one of the prac-

tical ways to tackle infinite horizon control problems such as the one in previous chapter.

However, many factors such as real-time constraints and online computational limitations

may render the resulting closed-loop system unstable. To solve this problem, classical

suboptimal receding horizon control [19] uses an explicit endpoint and cost constraint to

ensure the stability of the system even if each optimization subproblem is solved partially.

Recently, in [11] an analytical formula of the relationship between the optimality loss

and the performance degradation of a model predictive control hybrid system was estab-

lished. Based on this formula, given a tolerable degradation range in the performance,

the difference between the cost function values of optimal and suboptimal solutions for

each optimization subproblem can be obtained analytically. In the following discussion,

we modify this result to fit our framework.

Consider an N -agents system as in Chapter 2. the cost function h =
∑N

i=1 h
i,

the dynamics φ = (φ1, ..., φN ), the state xk = (x1
k, ..., x

N
k ), and the control input uk =

(u1
k, ..., u

N
k ). The sets X = X 1 × ...× XN and U = U1 × ...× UN . X i ⊆ <n and U i ⊆ <m

for i = 1, ..., N .

First, we introduce two basic definitions: A real value function α : <+ → <+ is a K

function if it is continuous, strictly increasing and α(0) = 0. A function β : <+×<+ → <+

is a KL function if for each fixed k ∈ <+, β(·, k) is a K function and for each fixed

t ∈ <+, β(t, ·) is decreasing and limk→∞ β(t, k)→ 0.
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We define an ε− asymptotically stable system, where ε is an index of performance

loss.

Definition 3 .1 : Let X be a subset of <N ·n. Given an ε ∈ <+, if there exists a

KL-function β such that for each x0 ∈ X , ||xk|| ≤ β(||x0||, k) + ε for all k = 1, 2, ..., where

xk is the state trajectories of the discrete-time system xk+1 = φ(xk, uk) with initial state

x0, then the system is ε− asymptotically stable (ε−AS ) in X .

Next, consider Theorem 4 in [11] but without disturbance, which is crucial to obtain

the analytical formula of the relationship about the performance loss and suboptimality.

Theorem 3 .1 : Let α1(t) := atp, α2(t) := btp, α3(t) := ctp, where a, b, c, p are positive

real numbers, and c ≤ b. Moreover, let d, e ∈ <+, and Xf ⊆ <N ·n be a positively invariant

set for the system xk+1 = φ(xk, uk). If there exists a function V (·) such that

α1(||xk||) ≤ V (xk) ≤ α2(||xk||) + d,

V (xk+1)− V (xk) ≤ −α3(||xk||) + e

(3.1)

for all xk ∈ Xf , and xk+1 = φ(xk, uk), then the system xk+1 = φ(xk, uk) is ε−AS in Xf

with β(t, k) = α−1
1 (2ρkα2(t)), ε = α−1

1 (2(d+ e
1−ρ)), ρ = 1− c

b .

Here we introduce standard notations used to describe receding horizon control

strategies. Given the initial condition xk, the decision variable for k-th optimization

subproblem is given by Uk := (u0,k, ..., uT−1,k), where T is the prediction horizon. Xk :=

(x1,k, ..., xT,k) is the corresponding predicted state trajectory. XD ⊆ X is the invariant

target set, where X is a subset of <N ·n. Each subproblem cost function is given by

J(xk, Uk) :=
T−1∑
j=0

h(xj,k, uj,k) + hT (xT,k), (3.2)

where hT is the endpoint penalty. J∗(xk) denotes the optimal cost with the initial state

xk. The optimal control sequence is given by (u∗0,k, ..., u
∗
T−1,k). Based on the receding

horizon control scheme, only the first element of the optimal control sequence is applied

10



to the system, i.e. uRHk := u∗0,k. The admissible control set is denoted as UT (xk) := {Uk ∈

UT |Xk ∈ X T , xT,k ∈ XD}, and given a positive constant δ, the suboptimal admissible

control set is Γδ(xk) := {Uk ∈ UT (xk)|J(xk, Uk) ≤ J∗(xk) + δ}, where X T is the Cartesian

product of X ’s (there are T of them), and UT is the Cartesian product of U ’s. γδ(xk) =

{u0,k ∈ <N×m|Uk ∈ Γδ(xk)} is the first element of it. Pick any element in γδ(xk), for

example γ̄δ(xk) to be the suboptimal admissible control input. We also use the notation

uRH δ
k for γ̄δ(xk). After applying this suboptimal admissible control input to the system,

the receding horizon closed-loop control system is θδ(xk) = φ(xk, γ̄δ(xk)). XU := {x ∈

X |σ(x) ∈ U} is the safe set with respect to the state and input constraints for σ (see

[11]). σ is the local feedback control corresponding to the invariant target set XD. σ(·) :

<N×n → <N×m, and σ(0) = 0. Each optimization subproblem is formulated as:

Problem 3 .1 : Given XD ⊆ X , the prediction horizon T , and the initial state xk ∈ X

minimize J(xk, Uk)

subject to Uk ∈ UT (xk)

(3.3)

We use Xf (T ) ⊆ X to denote the feasible set. If the initial condition xk ∈ Xf (T ),

the admissible control set UT (xk) is not empty.

The following theorem is the main result in this section. The proof is similar to

Theorem 9 in [11] with some modifications and is presented in Appendix A.

Theorem 3 .2 : Assume there exists a positively invariant set XD ⊆ XU with 0 ∈

int(XD) for the closed-loop system with the local feedback control uk = σ(xk). Assume

the following conditions are satisfied

h(x, u) ≥ α1(||x||), ∀x ∈ Xf (T ), u ∈ U ,

hT (x) ≤ α2(||x||), ∀x ∈ Xf (T ),

hT (φ(x, σ(x)))− hT (x) + h(x, σ(x)) ≤ 0, ∀x ∈ XD,

(3.4)
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where α1(t) := atp, α2(t) := btp, a, b, p are positive real numbers. Then given a δ ∈ <+,

(1) If Problem 3 .1 is feasible at time k for state xk ∈ X , then it is feasible at time k + 1

for any state xk+1 = θδ(xk), and XD ⊆ Xf (T ).

(2) The closed-loop system xk+1 = θδ(xk) is ε−AS in Xf (T ) with ε(δ) := ( 2b
a2
δ)1/p.

In order to apply Theorem 3 .2 , we need to compute those stage cost h(·, ·), final cost

hT (·), final state invariant set XD, and final state local feedback control σ(·), which satisfy

the hypotheses in Theorem 3 .2 . In [8], [9], [10], [11], there are examples and procedures

telling us how to formulate them. Here we use some simple examples to summarize the

procedure to compute those essential elements. First, consider quadratic cost functions

h(x, u) and hT (x), i.e. h(x, u) = x′Qx+u′Ru, and hT (x) = x′QTx, whereQ, R, andQT are

weighting matrices in the cost functions with appropriate dimensions. In this simple case,

the first two conditions are satisfied if we assume that Q, R, and QT are positive definite

matrices. It is because h(x, u) ≥ x′Qx ≥ λmin(Q)||x||22, and hT (x) ≤ λmax(QT )||x||22.

Hence, if define α1(||x||) = λmin(Q)||x||22 , and α2(||x||) = λmax(QT )||x||22, then the first

two conditions in (3.4) are satisfied. In choosing the weighting QT , and local feedback

control law σ(·) such that the third condition is satisfied, we can formulate the following

matrix inequality to compute σ and QT . As a simple example, assume now that the

dynamics and the local feedback control law are linear, i.e. xk+1 = Axk + Buk, and

σ(x) = Kx. After we substitute this dynamics and local feedback control into the third

sufficient condition in (3.4), we can obtain the matrix inequality QT − (A+BK)′QT (A+

BK)−Q−K ′RK > 0, i.e. QT − (A+BK)′QT (A+BK)−Q−K ′RK is positive definite,

to satisfy the corresponding sufficient condition. Finally, for computing the positively

invariant set XD, consider the following sequence of sets. Define a safe set X̃U , which

is the largest compact polyhedron set inside XU . For an arbitrary target set X , define

12



Q(X ) = {x ∈ <N×n|Ax + Ku ∈ X}. X0 := X̃U , and Xj := Q(Xj−1)
⋂
Xj−1. Then the

maximal positively invariant set contained in the set X̃U is given by
⋂∞
j=1Xj . It contains

the origin and is convex. For more details about the description and the proof, one can

refer to [8], [9], [10], [11].

Here come three remarks. First, for the system whose equilibrium is different from

the origin, for example the problem in Chapter 2, whose equilibrium state is given by

xs ∈ Θ, where Θ ⊆ <N ·n. And the steady state control us ∈ Ω, where Ω ⊆ <N ·m. We can

define x̃k = xk − xs and ũk = uk − us to translate the equilibrium (xs, us) to the origin.

Then one can apply the theorem to the problem.

Secondly, if xs is a decision variable like the case in [7], then it is sufficient to add

an assumption XD(k) ⊆ XD(k + 1), for k = 0, 1, 2, ..., where XD(k) is the invariant set

at k-th time instant to make sure that the theorem is applicable. The following corollary

concludes this statement, and the proof is given in Appendix B.

Corollary 3 .1 : If the cost function in (3.2) is replaced by

J(xk, Uk, xs) :=
∑T−1

j=0 h(xj,k − xs, uj,k − us) + hT (xT,k − xs), (3.5)

where xs ∈ Θ is also a decision variable in the optimization subproblem and us ∈ Ω is the

corresponding steady state control with respect to xs. Where Θ ⊆ <N ·n is the feasible set

for xs, and Ω ⊆ <N ·m is the feasible set for us. If XD(k) ⊆ XD(k+ 1), where XD(k) is the

invariant set at k-th time instant. At each time instant k, assume there exists a positively

invariant set XD(k) ⊆ XU , for k = 0, 1, 2, ..., with x∗s ∈ int(XD(k)) for the closed-loop

system with uk = σ(xk), where x∗s is the optimal solution for xs in the corresponding
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optimization subproblem. Assume the following conditions are satisfied

h(x− xs, u− us) ≥ α1(||x− xs||), ∀x ∈ Xf (T ), u ∈ U , xs ∈ Θ, us ∈ Ω

hT (x− xs) ≤ α2(||x− xs||), ∀x ∈ Xf (T ), xs ∈ Θ

hT (φ(x, σ(x))− xs)− hT (x− xs) + h(x− xs, σ(x)− us) ≤ 0, ∀x ∈ XD, xs ∈ Θ, us ∈ Ω

c ≤ ||x−xs||
2

||x−x∗s ||2
a, ∀x ∈ Xf (T ), xs ∈ Θ, x∗s ∈ Θ

(3.6)

where α1(t) := atp, α2(t) := btp, a, b, c, p are positive real numbers. Then given a δ ∈ <+,

(1) If Problem 3 .1 is feasible at time k for state xk ∈ X , then it is feasible at time k + 1

for any state xk+1 = θδ(xk), and XD(k) ⊆ Xf (T ).

(2) The closed-loop system xk+1 = θδ(xk) is ε−AS in Xf (T ) with ε(δ) := ( 2b
acδ)

1/p, and

with the origin replaced by x∗s.

The third remark is crucial that motivates the analysis in Chapter 4, where we use

the dual decomposition method to solve Problem 3 .1 in a distributed way. If the desired

target set is characterized by a single point, it becomes an equality constraint of the type

xT,k = xs. In this case, any suboptimal solution (i.e., any iterate of the dual decomposition

algorithm other than the optimal one) is unfeasible. For this reason we consider a desired

target set XD constraint instead of final state equality constraint in Theorem 3 .2 .

On the other hand, if we consider a primal decomposition based approach instead

of dual decomposition, the feasibility of the suboptimal solution is not an issue. Primal

decomposition method always generates feasible suboptimal solutions at each iteration.

Therefore the equality endpoint constraints can be used to ensure the stability. In Chap-

ter 4, a primal decomposition based approach is also adopted to implement a consensus

problem in a distributed way (also see [12]). In order to have the similar analysis for that

case, in the following discussion, we consider the relation of suboptimality and stability
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of a consensus problem using equality endpoint constraints. The proof for the following

corollary is given in Appendix C.

Corollary 3 .2 : If the cost function in (3.2) is replaced by

J(xk, Uk, xs) :=
∑T−1

j=0 h(xj,k − xs, uj,k − us), (3.7)

where xs ∈ Θ (us ∈ Ω) is also a decision variable in the optimization subproblem. Where

Θ ⊆ <N ·n is the feasible set for xs, and Ω ⊆ <N ·m is the feasible set for us. x∗s is the

corresponding optimal consensus point. The endpoint constraint is given by xT,k = xs.

Assume the following conditions are satisfied

h(x− xs, u− us) ≥ α1(||x− xs||), ∀x ∈ Xf (T ), u ∈ U , xs ∈ Θ, us ∈ Ω

h(x∗j,k − x∗s, u∗j,k − u∗s) ≤ α̃2(||x− x∗s||), ∀x ∈ Xf (T ), x∗s ∈ Θ, u∗s ∈ Ω

c ≤ ||x−xs||
2

||x−x∗s ||2
a, ∀x ∈ Xf (T ), xs ∈ Θ, x∗s ∈ Θ

(3.8)

where α1(t) := atp, α̃2(t) := btp, a, b, c, p are positive real numbers. Then given a δ ∈ <+,

(1) If Problem 3 .1 is feasible at time k for state xk ∈ X , then it is also feasible at time

k + 1 for any state xk+1 = θδ(xk).

(2) The closed-loop system xk+1 = θδ(xk) is ε−AS in Xf (T ) with ε(δ) := ( 2b
acδ)

1/p, and

with the origin replaced by x∗s.
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Chapter 4

A Consensus Seeking Strategy Based on Dual and Primal Decomposition

4.1 Dual Decomposition

In this section, we consider a consensus seeking problem ([12]) to illustrate the

idea of the study. We use the dual decomposition method to solve it in a distributed

way that follows the receding horizon control framework. The main drawback of the

dual decomposition method is the large number of iterations needed for the algorithm to

converge in a system with a large number of agents. We apply Theorem 3 .2 in Chapter 3

with the objective of estimating the required number of iterations necessary to guarantee

performance within a fixed error tolerance in the ε−AS sense.

We formulate the problem using linear dynamics and quadratic cost with endpoint

penalty. Because in this chapter we focus on each subproblem of the receding horizon

control and use dual and primal decomposition to solve it, in order to simplify the nota-

tions, we use (ui0, u
i
1, ..., u

i
T−1) to denote the optimization variables for each subproblem

of the receding horizon control for agent i, i = 1, 2, ..., N . N is the number of agents in

the system. Similarly, we use (xi0, x
i
1, ..., x

i
T ) to denote the corresponding predicted state

trajectories for agent i with the initial condition xi0. Moreover, we add a decision variable

r into each agent’s cost function to denote the consensus point of agents. The following

constrained minimization problem is given by:
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minimize
∑N

i=1

∑T−1
k=0 (xik − r)

′
Qi(xik − r) + (uik − ur)

′
Ri(uik − ur)+

(xiT − r)
′
QiT (xiT − r)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT ∈ X iD, i = 1, 2, ..., N,

r ∈ Θ,

(4.1)

where Ai ∈ <n×n, Bi ∈ <n×m, Qi, Ri, and QiT are symmetric positive definite matrices

of appropriate dimensions. And X i ⊆ <n, U i ⊆ <m for i = 1, ..., N , and Θ1 ⊆ <n is the

feasible set for r. As the remarks in Chapter 3 point out, the final state constraint is that all

agent’s final states lie in their own desired target sets given by X iD = {x ∈ X i|||xiT−r∗||S ≤

ξ, ξ > 0}, where ||·||S is an appropriate norm, and r∗ is the optimal consensus point among

agents, instead of having an endpoint constraint of the type xiT = r∗ for i = 1, ..., N . This

relaxation enables the algorithm iterates to become feasible before convergence as long as

they lie in the desired target set.

We apply the dual decomposition method by adding additional decision variables

ri’s and necessary consistency constraints:

1Note that here, the feasible set Θ for the consensus point r is a subset of <n. However, in Chapter 3,

we also use Θ to denote the feasible set for xs, and in that case, Θ is a subset of <N·n.
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minimize
∑N

i=1

∑T−1
k=0 (xik − ri)

′
Qi(xik − ri) + uik − uir)

′
Ri(uik − uir)+

(xiT − ri)
′
QiT (xiT − ri)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT ∈ X̄ iD

ri = rj , j ∈ Ni,

ri ∈ Θ, i = 1, 2, ..., N,

(4.2)

where Ni is the the set of indexes of neighbors of agent i, X̄ iD := {x ∈ X iD|||xiT − ri||S ≤

ξ − ζ, ζ > 0}. Note that the desired sets are smaller than the original one, which means

that if ||ri − r∗||S ≤ 4, where 4 is a positive constant, then from the triangle inequality,

||xiT − r∗||S ≤ ξ− ζ+4. If −ζ+4 ≤ 0, then the final state xiT lies in X iD and the solution

is feasible.

Given ri, each agent can compute the following optimization problem individually

f i(ri) := min
∑T−1

k=0 (xik − ri)
′
Qi(xik − ri) + uik − uir)

′
Ri(uik − uir)+

(xiT − ri)
′
QiT (xiT − ri)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT ∈ X̄ iD,

ri ∈ Θ.

(4.3)
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For simplicity, we rewrite (4.2) as:

minimize f i(ri)

subject to gi(ri) = 0,

ri ∈ Θ,

(4.4)

where gi(ri) is the corresponding consistency constraint in (4.2).

In the following discussion, we use sensitivity analysis, as in [1], to quantify the

variation of the primal variable.

The difference between the dual price at the (l+ 1)-th iteration µl+1 and any given

µ ≥ 0 is given by the following basic iterate ([4])

||µl+1 − µ||2 ≤ ||µl − µ||2 − 2α(q(µ)− q(µl)) + α2||gl||2, ∀l ≥ 0, (4.5)

where α is the step size used to update the dual variables, q(µ) is the dual function value

at µ and gl is the computed subgradient at the l-th iteration. Then it follows that:

||µl+1 − µ||2 ≤ ||µ0 − µ||2 −
∑l

j=0[2α(q(µ)− q(µj))− α2||gj ||2], ∀l ≥ 0. (4.6)

Now we use sensitivity analysis to quantify the variation of the primal variable as

the dual prices change. First, we remove the constraint ri ∈ Θ. If the resulting solution

satisfies the constraint, then it is a feasible solution. In particular, we formulate the

problem as:

minimize f i(ri) + µi′gi(ri), (4.7)

where µi’s are the dual prices.

The corresponding Lagrange function is given by

Li(ri, µi) := f i(ri) + µi′gi(ri). (4.8)
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Let ri(µi) denote the minimizer of Li(ri, µi) corresponding to µi. Because of the first

order condition,

∇rLi(ri, µi)|ri=ri(µi) = 0, (4.9)

and by differentiating (4.9) with respect to µi we have

∇ri(µi)∇2
rrL

i(ri(µi), µi) +∇2
rµL

i(ri(µi), µi) = 0. (4.10)

Moreover, if ∇2
rrL

i(ri(µi), µi) invertible we have

∇ri(µi) = −∇2
rµL

i(ri(µi), µi)(∇2
rrL

i(ri(µi), µi))−1. (4.11)

Now, we express the difference between the primal variable and the optimal primal

solution as

||ri − ri∗|| = ||ri − ri(n · |Ni|) + ri(n · |Ni|)− ri(n · |Ni| − 1) + ri(n · |Ni| − 1) · · · − ri∗||,

(4.12)

where the notation ri(j) means that for the primal variable, which is a function of the

corresponding dual prices i.e. ri = ri([µi]1, ..., [µ
i]n·|Ni|), the l-th arguments, for l =

j, j + 1, ..., n · |Ni| are replaced by the optimal dual solutions, where [µ]j denotes the j-th

element of µ. Then, the following inequality follows:

||ri − ri∗|| ≤ ||ri − ri(n · |Ni|)||+ ||ri(n · |Ni|)− ri(n · |Ni| − 1)||+ · · · ||ri(2)− ri∗||.

(4.13)

Using first order approximation to approximate each term on the right hand side of (4.13),

we get:

||ri(j + 1)− ri(j)||2 ' [([µi]j − [µi∗]j)
∂[ri]1
∂[µi]j

]2 + ...+ [([µi]j − [µi∗]j)
∂[ri]n
∂[µi]j

]2. (4.14)
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Now, we can relate the dual price variation to the primal variation via the following

formula:

||ri − ri∗|| ≤
∑n·|Ni|

j=1 ([µi]j − [µi∗]j)(
∑n

k=1( ∂[ri]k
∂[µi]j

)2)1/2

≤ ||µi − µi∗||||


(
∑n

k=1( ∂[ri]k
∂[µi]1

)2)1/2

...

(
∑n

k=1( ∂[ri]k
∂[µi]n·|Ni|

)2)1/2

 ||.
(4.15)

From (4.5) and (4.6), the difference between the dual price at (l+ 1)-th iteration and the

optimal dual solution is

||µil+1 − µi∗||22 ≤ ||µil − µi∗||22 + 2α(qi(µil)− qi∗) + α2||gil ||22, (4.16)

||µil+1 − µi∗||22 ≤ ||µi0 − µi∗||22 + 2
∑l

j=0 α(qi(µij)− qi∗) +
∑l

j=0 α
2||gij ||22. (4.17)

Combining (4.15) and (4.17), the variation of the primal variables can be found for

a specific iteration. Note that in (4.15) and (4.17), the upper bound of the variation of

the primal variables is related to the optimal dual function value qi∗ and optimal dual

price µi∗. For all agents, they do not know the exact values of qi∗ and µi∗. In order to

let each agent be able to compute this upper bound individually, we assume there exists

a center, which should transmit the quantized values of qi∗ and µi∗ to each agents in the

system.

Using the above analysis, one could measure the necessary number of iterations for

updating the dual prices to ensure that the primal variables lie in the desired target set.

Next, we quantify the optimality loss. There are different methods to compute the

optimal loss for suboptimal solutions. Here we directly compute the difference of the

suboptimal cost function and the optimal cost function value. For any given iterate of r,

each agent can compute the corresponding optimal control input uik and state xik using

(4.3). Substitute these control input and state into the cost function and which gives us a
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higher suboptimal cost function value comparing to the optimal cost function value. The

upper bound of the optimality loss is given by

∑T−1
k=0 (xik − r∗)′Qi(xik − r∗) +

∑T−1
k=0 (uik − u∗r)′Ri(uik − u∗r) + (xiT − r∗)′Qi(xiT − r∗)

−
∑T−1

k=0 (xi∗k − r∗)′Qi(xi∗k − r∗) +
∑T−1

k=0 (ui∗k − u∗r)′Ri(ui∗k − u∗r) + (xi∗T − r∗)′Qi(xi∗T − r∗)

≤
∑T−1

k=0 [λmax · (||ri − r∗||2 + 2||xik − ri||||ri − r∗||+ ||xik − ri||2)−4k]+∑T−1
k=0 [λ̃max · (||uir − u∗r ||2 + 2||uik − uir||||uir − u∗r ||+ ||uik − uir||2)− 4̃k]+

λ̄max · (||ri − r∗||2 + 2||xiT − ri||||ri − r∗||+ ||xiT − ri||2)− 4̄T ,

(4.18)

where

4k := λmin · (||xi∗k − r∗||2), 4̄T := λ̄min · (||xi∗T − r∗||2), 4̃k := λ̃min · (||ui∗k − u∗r ||2),

λmax := λmax(Qi), λmin := λmin(Qi), λ̃max := λmax(Ri), λ̃min := λmin(Ri),

λ̄max := λmax(QiT ), λ̄min := λmin(QiT ).

(4.19)

If we have information or bounds about these quantities in (4.19), then we can use

the deviation of the primal variable, i.e. ||ri − ri∗|| to infer the optimality loss for certain

iteration steps. We should note that since in (4.18) we substitute the optimal consensus

point r∗ into the cost function to compute the suboptimal cost function value, the upper

bound is conservative. The reason is that for any given feasible iterate of r, each agent

can compute the corresponding optimal control and state to minimize the cost. Therefore

the actual suboptimal cost is less than the one we compute in (4.18).

4.2 Incremental Primal Decomposition

In this section, a consensus seeking problem based on incremental primal decom-

position is discussed ([15]). Incremental primal decomposition is a variant of the primal

decomposition method, for which any intermediate iterate of the algorithm is feasible.

22



Because any suboptimal solution is feasible, we can adopt endpoint constraints to ensure

the stability of the receding horizon control system. The incremental primal decompo-

sition approach assumes that at each iteration of the public variable update, each agent

updates its iterate incrementally, through a sequence of N steps, where N is the total

number of agents in the system. Here we assume that the communication network has

a ring topology. When each agent updates the public variable, only its local objective

function is used. After all agents contribute to the update of the public variable, a cycle is

complete. The total number of iterations of the incremental primal method is the product

of the cycle number K and agent number N .

For a consensus seeking problem set-up, the agents do not know the consensus point

in advance. The consensus seeking among an N -agent system is formulated as follows:

minimize
∑N

i=1

∑T−1
k=0 (xik − r)

′
Qi(xik − r) + (uik − ur)

′
Ri(uik − ur)+

(xiT − r)
′
QiT (xiT − r)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT = r, ∀i = 1, 2, ...N,

r ∈ Θ.

(4.20)

where Ai ∈ <n×n, Bi ∈ <n×m, Qi, Ri, and QiT are symmetric positive definite matrices

of appropriate dimensions. And X i ⊆ <n, U i ⊆ <m for i = 1, ..., N , and Θ ⊆ <n. Note

that the consensus point r is a decision variable in each subproblem, and it is the target

that all agents would like to converge to. Now we use primal decomposition to solve the

problem in a distributed way.
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Given y ∈ Θ, the public resource, each agent can compute the following optimization

problem individually

f i(y) := min
∑T−1

k=0 (xik − y)
′
Qi(xik − y) + (uik − uy)

′
Ri(uik − uy)+

(xiT − y)
′
QiT (xiT − y)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT = y,

(4.21)

where uy is the corresponding steady state control input with the public resource y, i.e.

y = Aiy +Biuy.

After every agent solves the problem in (4.21), the public variable y is updated as:

yl+1 = PΘ[yl − α
∑N

i=1 g
i
l ],

(4.22)

where gil is a subgradient (in this setup, the gradient) of f i at yl. PΘ is the projection

operator on set Θ, and the set Θ is the set of feasible consensus points.

If yl is the iterate after l cycles, then yl+1 is found by the following incremental

algorithm:

ψil = PΘ[ψi−1
l − αgi−1,l], i = 1, 2, ..., N,

ψ0
l = yl,

ψNl = yl+1,

(4.23)

where gi−1,l is the subgradient, in our case gradient of f i at ψi−1
l .

In order to quantify the optimality loss, now assume that the gradients are bounded

by a constant C, i.e. ||g|| ≤ C. Based on Proposition 2.3 in [15], the optimality loss for
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suboptomal solutions is given by:

min0≥l≤K
∑N

i=1 f
i(yl) ≤ f∗ + αN2C2+ε

2 , (4.24)

where, K = b (dist(y0,Θ∗))2

αε c, and dist(y0,Θ
∗) is the Euclidean distance from the point y0

to the set of optimal solutions Θ∗. Therefore, one can use (4.24) to measure the necessary

cycle number for a given optimality loss, and use the analysis in Chapter 3 to achieve a

stable receding horizon control system within a tolerable error range.

Note that to solve (4.23), each agent can relay on its own objective function and the

associated subgradient or gradient. This means that agents do not need to exchange in-

formation to compute the subgradient (or gradient) as in the dual decomposition method.

Each agent only needs to pass the computed iterate to the next adjacent neighbor. In

order to measure the necessary number of cycles, the information about the Euclidean dis-

tance from the initial iterate to the optimal solution set should be known by the agents.

In a practical implementation, only one agent needs to compute the upper bound of the

optimality loss, and thus only this agent needs to know the information about the dis-

tance from the initial iterate to the optimal set. When the optimality loss is guaranteed

to be within the desired margin, the update cycles are terminated, and one more cycle

is needed to pass the most recent estimate of the public variable to each agent to ensure

that all agents use the same value when computing their control input. The total number

of subiterations of the incremental primal decomposition algorithm is N ·K.

4.3 Incremental Robustness

This section focuses on a receding horizon control - primal decomposition framework

in which performance can be guaranteed with the addition of agents to the system. This

is what we mean by “incremental robustness.” The incremental primal decomposition
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Figure 4.1: A system with the addition of agent

method is crucial, not only for the purpose of designing decentralized algorithms, but also

to ensure that there is no need for redesign when agents are added to the system even

in the presence of physical coupling (see Fig. 4.1). A system topology that allows for

this type of “plug-and-play” featuring the ring topology that has been illustrated in the

previous subsection.

Moreover, a similar approach to the previous discussions can be used to quantify

the performance degradation of the primal decomposition algorithm when new nodes are

added to the system. This approach enables us to find limitations on the number of nodes

the system can accommodate while the performance degrades gracefully within a tolerable

range.

Specifically, when there are additional agents entering into the system, in order to

keep the same stability guarantees, the original agents need to recompute the optimality

loss of the previous subproblem. They need to increase the number of cycles to achieve a

smaller loss, which is a function of the cost incurred by the new agents. The computation

analysis of the new number of cycles which is necessary to ensure the same stability

guarantees of the new system is as follows.

Assume there are M extra agents entering into the system at the (k + 1)-th sub-
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problem, the difference of the optimality loss D(M, r) is given by

D(M, r) = min
∑N+M

i=N+1

∑T−1
j=0 h

i(xij,k − r, uij,k − ur), (4.25)

where r is the suboptimal consensus point at k-th subproblem, and the minimization is

with respect to the control inputs. Then the new number of cycles necessary to keep the

same stability guarantee of the system is given by

Knew = b(dist(y0,Θ
∗))2

αεnew
c, (4.26)

where εnew = ε −D(M,x
(N)
s ). Note that since εnew has to be positive, this equation can

be used to quantify the limitation of the number of agents and their initial states that can

be accommodated while keeping the same stability guarantees. Moreover, if the designer

is willing to accept degradation of the stability guarantees, a similar analysis can be used

to compute the number of cycles of the incremental primal decomposition algorithm.
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Chapter 5

A Formation Control Strategy Based on Dual and Primal Decomposition

In this chapter, we consider a formation control problem. Assume a linear dynam-

ics and quadratic cost with endpoint penalty. The following constrainted minimization

problem is given by:

minimize
∑N

i=1

∑T−1
k=0 (xik − ri)

′
Qi(xik − ri) + (uik − uir)

′
Ri(uik − uir)+

(xiT − ri)
′
QiT (xiT − ri)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT ∈ X iD

xik = xjk + di, ∀j ∈ Ni, i = 1, 2, ..., N.

(5.1)

where Ai ∈ <n×n, Bi ∈ <n×m, Qi, Ri, and QiT are symmetric positive definite matrices

of appropriate dimensions. And X i ⊆ <n, U i ⊆ <m for i = 1, ..., N , and ri ∈ Θi ⊆ <n

for i = 1, 2, ..., N . di ∈ <n for i = 1, 2, ..., N . As an example, these state consistency

constraints, xik = xjk + di, ∀j ∈ Ni, i = 1, 2, ..., N , represent the formation of vehicles’

locations.

First, we use dual decomposition method to solve this problem in a distributed

way. For each consistency constraint, we assign a dual price to control its evolution.

Then simply use subgradient ascent method to update these dual prices. Agents need to

exchange their primal variables to compute the associated subgradients. Since before the
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algorithm converges, the primal variables are not feasible, it means that the consistency

constraints are not satisfied until the solution is optimal. However, if one would like to

apply the result of Theorem 3 .2 , the solution must be feasible. It does not need to be

optimal, though. Therefore, it is necessary to construct a feasible primal solution at each

iteration of the dual decomposition algorithm. One straightforward way to find a feasible

solution is using average estimate, i.e. for each k, xik = 1/N
∑N

j=1 x
j
k for i = 1, 2, ..., N

at each iteration for di = 0 case. If there are no state and control constraints, the

average estimate is a feasible solution. If there are state X i, and control constraints U i,

then it is possible that the average estimate is not feasible, i.e. there does not exist a

control sequence such that the average states can be attained for all agents. One way to

construct a feasible solution which satisfies all constraints is that for each neighborhood,

the members in the neighborhood exchange the primal solutions to test if there exist

feasible solutions, then propagate it to the next neighborhood. Repeat this procedure

until all agents get the feasible primal solutions. At each iteration, the dual function value

is the lower bound of the optimal value function. Furthermore, after each agent finds

the feasible solution, the value function of this feasible solution becomes the upper bound

of the optimal value function. Use these upper and lower bounds of the optimal value

function, one can compute the optimality loss at each iteration of the dual decomposition

algorithm. Finally, based on Theorem 3 .2 the associated performance loss of the receding

horizon control system can be computed.

Secondly, we can use primal decomposition to solve the same problem. In dual

decomposition, we use dual prices to adjust the necessary resources in order to minimize

the overall cost function. However, in primal decomposition, one assigns the same amount

of resources to each agent, each agent minimizes its own cost function based on this fixed
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resource, then we minimize the cost function with respect to this resource. The advantage

of using primal decomposition is that at each iteration, the primal solution is feasible.

Similarly, the optimality loss can be obtained as in the dual decomposition method, and

again we can use Theorem 3 .2 to relate the optimality loss to the stability of the receding

horizon control system.

The primal decomposition is given by the following formulation. In the first step,

each agent solves the following minimization problem individually based on a given public

resource y.

f i(y) := min
∑T−1

k=0 (xik − ri)
′
Qi(xik − ri) + (uik − uir)

′
Ri(uik − uir)+

(xiT − ri)
′
QiT (xiT − ri)

subject to xik+1 = Aixik +Biuik

xik ∈ X i,

uik ∈ U i,

xiT ∈ X iD

xik = y + di.

(5.2)

In the second step of the primal decomposition, we minimize
∑N

i=1 f
i(y) with respect to

y. This can be done by subgradient descent method, y := y − α
∑N

i=1 g
i, where α is a

constant step size, and gi is the associated subgradient of f i(y).
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Chapter 6

Simulation

In this chapter, we use simulation examples to illustrate the results of the study. It is

important to note that the results in the thesis should be viewed as analytical guarantees of

receding horizon control stability under suboptimality. The simulation is used to illustrate

some of the ideas used in the thesis, but no claims on tightness are made.

First, consider a case that there are three agents in the system (N = 3) with

prediction horizon T = 10. The state and control dimensions are n = 2, m = 2, respec-

tively. A1 = [0.3, 0.5; 0.2, 0.6] and B1 = [0.1, 0.3; 0.6, 0.2], A2 = A3 = [0.5, 0.2; 0.6, 0.1]

and B2 = B3 = [0.5, 0; 0, 0.5]. Qi and Ri, i = 1, 2, 3 are identity matrices with proper

dimensions. The reference r is set to be [5, 5]
′
. Each state element is constrained to lie

in a closed interval from -10 to 10, while each control element is constrained to lie in a

closed interval from -20 to 20. The initial states for each agent are given by x1
0 = [8, 8]′,

x2
0 = [10, 10]′, and x3

0 = [7, 7]′, respectively. The states represent the 2-D locations of

the agents. We allow agent 1 to be able to communicate with agent 2 and agent 3, but

agent 2 and agent 3 cannot exchange the information. Dual decomposition is used to

solve a leader-follower tracking problem. In a leader-follower tracking scenario, after the

algorithm converges, all xis’s converge to the same value, and which is set to be the desired

target that each agent need to track. In this scenario, only the leader knows this reference

target and all other followers do not know it exactly. After putting extra consistency con-

straints on each agent’s own reference target, all followers tend to track the same reference

target. In this leader-follower tracking scenario, the leader knows the desired target to
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track, and followers do not know this reference target exactly. It is different from the usual

consensus or rendezvous seeking problem, in which all agents do not know the consensus

point in advance. The step size to update dual variables is 0.5. We assume that agent 1

is the leader, and agent 2 and agent 3 are followers. Fig. 6.1 represents the result of the

first subproblem using 250 iterations to update dual prices, and the evolution of the dual

function value is in Fig. 6.2. In Fig. 6.3, Fig. 6.4, and Fig. 6.5, we present the suboptimal

solution results. In Fig. 6.3, the algorithm converges. In Fig. 6.4, the optimality loss is 20.

In Fig. 6.5, the optimality loss is 40. For the real realizations, the norms of the deviation

from the target are 0.5685, 0.8645, and 1.5400 in the cases that optimality loss is 0, 20,

and 40, respectively. When the optimality loss is zero, the total number of iterations is

250 for each subproblem. When the optimality loss is 20, the numbers of iterations are

105, 85, 70, 55, 37 for the first, second, third, forth, and fifth subproblem. When the

optimality loss is set to be 40, the numbers of iterations are 85, 59, 39, 23, and 11 for the

corresponding subproblems. One can compare the results of iterations, optimality loss,

and the norms of the deviations to find a appropriate trade off between the suboptimal

solutions and the stability of the receding horizon control system. In this leader-follower

tracking example, the stage cost h(·, ·), final cost hT (·), final state invariant set XD, and

final state local feedback control σ(·) are chosen arbitrarily. We have not computed the

necessary iterations to let the final state lie in the invariant sets. Since those elements are

chosen arbitrarily and not necessarily satisfy the sufficient conditions in Theorem 3 .2 , we

cannot apply the theorem directly. One could use the methods summarized in Chapter

3 to compute these elements, then apply the procedure mentioned in Chapter 3 to find

the necessary number of iterations to let the final states of all agents lie in the invariant

sets. And also apply Theorem 3 .2 to compute the upper bound of the norms of the de-
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viations from the target. We use this example to illustrate the idea of using less iteration

steps to achieve a stable receding horizon control system within certain error range in a

leader-follower tracking set-up.

For the second example, we consider the scalar and unconstrained case for simplicity.

In this example the system is comprised of three agents that negotiate to find a consensus

point. The dynamics of the agents are given by: A1 = 0.8, B1 = 0.75, A2 = 0.5, B2 =

0.35, and A3 = 0.7, B3 = 0.55. The initial states were randomly generated in Matlab.

The prediction horizon is T = 10. The step size for the incremental primal decomposition

is 0.01. The results of the first receding horizon subproblem can be seen in Fig. 6.6.

Here we demonstrate how the primal decomposition works within one receding horizon

subproblem. The total number of iterations is 50, and the optimal consensus point is 4.54.

In Fig. 6.7 and Fig. 6.8, we present the state evolutions of the receding horizon

control both for the converging case and suboptimal case. The set-up is the same as in

Fig. 6.6, except that the initial states are x1
0 = 10, x2

0 = −20, x3
0 = −5. In Fig. 6.7 we

use a large number of iterations (50) to simulate the case where convergence is achieved.

The consensus point is -3.94. On the other hand, for the suboptimal case in Fig. 6.8, we

artificially impose a suboptimality of 30 to demonstrate the idea of suboptimal receding

horizon control. When the agents are close, we relax the suboptimality imposition. Here

the consensus point is approaching zero.

In Fig. 6.9, we maintain the same suboptimality as before and add an extra agent to

the system at time k = 4, however we let the previous subproblem converge to compensate

for the extra cost incurred by the new agent. The simulation suggests that the system

with the added agent converges within the same error range as the system without the

addition.
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In the last example, consider a scalar three agent formation control problem. A1 =

0.8, B1 = 0.75, A2 = 1, B2 = 0.85, A3 = 0.8, and B3 = 0.75 with prediction horizon

T = 5. Qi = 1 and Ri = 1, for i = 1, 2, 3, respectively. The final cost QiT = 2, for

i = 1, 2, 3. The reference r is set to be 5. Each state element is constrained to lie in a

closed interval from -10 to 10. Agent 1 and agent 3’s control element is constrained in

the closed interval from -10 to 10. Agent 2’s control element is constrained in the closed

interval from -0.5 to 0.5. The initial states for each agent are given by x1
0 = 10, x2

0 = 8, and

x3
0 = 1, respectively. We add formation constraints such that the locations of all agents

should be the same at time 1, 2, and 3. The targets of all agents are also the same for

these three agents. For the first subproblem, the predicted state trajectory is in Fig. 6.11,

and the predicted control sequence is in Fig. 6.12. The evolution of the corresponding dual

function value with respect to the iterations is in Fig. 6.13. The state trajectory of the

receding horizon control system is in Fig. 6.14. Now we apply Theorem 3 .2 to compute

the associated upper bound of the norm of the deviation from the target. Given that the

optimality loss is 4, the upper bounds of the stability results are 14, 11.07, and 9 at time

1, 2, and 3 respectively. The stability results of actual realizations at time 1, 2, 3 are 4.48,

3.76, and 3.04, respectively.
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Figure 6.1: Optimal predicted state trajectory of the first subproblem. Horizontal axis:

horizontal location; vertical axis: vertical location; cross: initial location; star: the target;

green line: trajectory of agent 2; blue line: trajectory of agent 1; red line: trajectory of

agent 3.

Figure 6.2: Dual function value evolution of the first subproblem. Horizontal axis: itera-

tion.
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Figure 6.3: State trajectory (optimality loss: 0). Horizontal axis: horizontal location; ver-

tical axis: vertical location; cross: initial location; star: the target; green line: trajectory

of agent 2; blue line: trajectory of agent 1; red line: trajectory of agent 3.

Figure 6.4: State trajectory (optimality loss: 20). Horizontal axis: horizontal location;

vertical axis: vertical location; cross: initial location; star: the target; green line: trajec-

tory of agent 2; blue line: trajectory of agent 1; red line: trajectory of agent 3.
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Figure 6.5: State trajectory (optimality loss: 40). Horizontal axis: horizontal location;

vertical axis: vertical location; cross: initial location; star: the target; green line: trajec-

tory of agent 2; blue line: trajectory of agent 1; red line: trajectory of agent 3.

Figure 6.6: The results of the first receding horizon subproblem. On the top: y-axis: the

state trajectories of agents; x-axis: prediction horizon; solid line is the optimal consensus.

In the middle: y-axis: the cost function values of agents; x-axis: iterations; solid line is

the sum of the individual cost function values. On the bottom: The consensus evolution

versus iterations.
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Figure 6.7: State trajectories versus time for converging case.

Figure 6.8: State trajectories versus time for suboptimal case.

Figure 6.9: Stability versus time. Solid line: the system without addition; dot line: the

system with addition.
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Figure 6.10: The state trajectory of the receding horizon control at time 1. Horizontal

axis: time index; green dot line: trajectory of agent 2; blue dot line: trajectory of agent

1; red dot line: trajectory of agent 3.

Figure 6.11: The predicted state trajectory of the first subproblem. Horizontal axis: time

index; green dot line: trajectory of agent 2; blue dot line: trajectory of agent 1; red dot

line: trajectory of agent 3.
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Figure 6.12: The predicted control input of the first subproblem. Horizontal axis: time

index; green dot line: the control sequence of agent 2; blue dot line: the control sequence

of agent 1; red dot line: the control sequence of agent 3.

Figure 6.13: The evolution of the dual function value of the first subproblem. Horizontal

axis: iteration; blue dot line: the value function of the feasible solution; green line: dual

function value.
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Figure 6.14: The state trajectory of the receding horizon control. Horizontal axis: time

index; green dot line: trajectory of agent 2; blue dot line: trajectory of agent 1; red dot

line: trajectory of agent 3.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, an incremental primal decomposition approach is used to solve a

consensus problem, and the stability for suboptimal solutions is also discussed ([12]). In

addition to our previous work ([12]), its results are extended in this thesis to the scenario

with dual decomposition. We use sensitivity analysis and first order approximation to

quantify the primal variables as dual prices change. Finally, The formation control problem

based on dual and primal decompositions is also considered in the thesis.

7.2 Future Work

As [6] points out, approaches to decentralized and distributed receding horizon con-

trol design differ from each other in the assumptions such as the structure of interac-

tion between different systems, the structure of interaction between constraints, objective

functions, dynamics, the model of system (such as linear, non-linear, hybrid, constrained,

no constrained, discrete-time, continuous-time), and the model of information exchange

between the systems. Different scenarios usually require different assumptions and ap-

proaches to deal with. In particular, if we consider the existence of random noises or

deterministic disturbances, then the situation becomes more challenging and interesting.

Therefore, a unified approach for robust distributed and decentralized receding horizon

control to ensure desired properties would be necessary. It is thus an open problem and

future research direction in the study of receding horizon control.
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Secondly, we try to adopt the approximate saddle points analysis in [16] to quantify

the deviation of the primal variables in the dual decomposition. Basically, dual decom-

position method is an iterative algorithm to construct the saddle points of the associated

Lagrange function. In [16], the approximate saddle points are constructed based on subgra-

dient descent method for primal variable and subgradient ascent method for dual variable.

Then the average estimates are used to construct the approximate saddle points. The rea-

son for using subgradient descent method to update primal variable is because in some

cases, the optimal solution of the primal problem or the subgradient of the dual problem

cannot be found exactly. In our case, since now we use subgradient descent to update the

primal variable which is an iterative method, the variation of the primal variable can be

found directly.

Moreover, we have in mind of introducing the methodology of robust optimization [3]

to deal with the uncertainties in the system. In contrast to stochastic optimization assum-

ing uncertainties with a probabilistic description, a more recent optimization-theoretical

concept assuming uncertainty model is deterministic and set-based. Feasible solutions

could be constructed for any realization of the uncertainty in a given set by decision

makers. As a function of the type of uncertainty set and the structure of the nominal

problem, it would lead to different results of tractability [3]. Since in principle, solving

a receding horizon control problem is equivalent to solving an optimization problem, the

single-shot robust optimization can be extended to sequential decision-making by using

receding horizon control. However, if we only try to implement robust optimization in a

receding horizon control form, we will not get any adaptability. And the results might

lead to a solution far from optimal. How to design an adaptable robust optimization based

receding horizon control would therefore be desirable.
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Appendix A

Proof of Theorem 3.2

Proof : Consider k-th and (k + 1)-th suproblems, and define the corresponding

predicted control inputs as Uk := (u0,k, ..., uT−1,k) and Uk+1 := (u1,k, ..., uT−1,k, σ(xT,k)).

(1) If Problem 3 .1 is feasible at time k for the initial state xk ∈ X , then there exists

a control sequence Uk ∈ UT (xk) such that xT,k ∈ XD. Since we choose Uk+1 to be

(u1,k, ..., uT−1,k, σ(xT,k)), xT,k+1 ∈ XD also, and this means Uk+1 ∈ UT (xk+1). For any

initial condition xk ∈ XD, apply σ(xk) into the dynamics, then the updated state will still

lie in XD. And it shows that XD ⊆ Xf (T ).

(2) First, because of the first sufficient condition,

J∗(x) ≥ h(x, uRH(x)) ≥ α1(||x||), ∀x ∈ Xf (T ), (A.1)

where uRH(x) is the first control value in the optimal solution for the given initial condition

x ∈ Xf (T ).

Secondly,

J∗(xk+1)− J∗(xk) ≤ J(xk+1, Uk+1)− J(xk, Uk) + δ

= −h(xk, u0,k)− hT (xT,k) + hT (xT,k+1) + h(xT,k, σ(xT,k)) + δ,

(A.2)

and because of the first and third sufficient condition, which implies that

J∗(φ(xk, u
RH δ
k ))− J∗(xk) ≤ −h(xk, u0,k) + δ ≤ −α1(||xk||) + δ, ∀xk ∈ Xf (T ). (A.3)

Thirdly, directly apply Theorem 3.3.3 in [8],

J∗(x) ≤ hT (x) ≤ α2(||x||),∀x ∈ Xf (T ). (A.4)
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Finally, applying Theorem 3 .1 , we conclude that xk+1 = φ(xk, u
RH δ
k ) is ε−AS in

Xf (T ). Note that in this case, d = 0, e = δ, and a = c, therefore ε(δ) := ( 2b
a2
δ)1/p.

2
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Appendix B

Proof of Corollary 3.1

Proof : Consider k-th and (k + 1)-th suproblems, and define the corresponding

predicted control inputs as Uk := (u0,k, ..., uT−1,k), Uk+1 := (u1,k, ..., uT−1,k, σ(xT,k)).

(1) If Problem 3 .1 is feasible at time k for the initial state xk ∈ X , then there exists

a control sequence Uk ∈ UT (xk) such that xT,k ∈ XD(k). Since we choose Uk+1 to be

(u1,k, ..., uT−1,k, σ(xT,k)), xT,k+1 ∈ XD(k) ⊆ XD(k + 1) also, and this means Uk+1 ∈

UT (xk+1). For any initial condition xk ∈ XD(k), apply σ(xk) into the dynamics, then the

updated state will still lie in XD(k). And it shows that XD(k) ∈ Xf (T ).

(2) First, because of the first sufficient condition,

J∗(x, x∗s) ≥ h(x− x∗s, uRH(x)− u∗s) ≥ α1(||x− x∗s||), ∀x ∈ Xf (T ), x∗s ∈ Θ, (B.1)

where uRH(x) is the first control value in the optimal solution for the given initial condition

x ∈ Xf (T ).

Secondly, given that x̃∗s and x∗s are the optimal consensus points for (k+1) and k-th

subproblem respectively, we have

J∗(xk+1, x̃
∗
s)− J∗(xk, x∗s) ≤ J(xk+1, Uk+1, xs)− J(xk, Uk, xs) + δ

= −h(xk − xs, u0,k − us)− hT (xT,k − xs)

+ hT (xT,k+1 − xs) + h(xT,k − xs, σ(xT,k)− us) + δ

(B.2)

because of the first, third, and forth sufficient conditions, which implies that

J∗(φ(xk, u
RH δ
k )− x̃∗s)− J∗(xk − x∗s) ≤ −h(xk − xs, u0,k − us) + δ

≤ −α1(||xk − xs||) + δ ≤ −α3(||xk − x∗s||) + δ, ∀xk ∈ Xf (T ), x∗s ∈ Θ.

(B.3)
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Thirdly, directly apply Theorem 3.3.3 in [8]

J∗(x− x∗s) ≤ hT (x− x∗s) ≤ α2(||x− x∗s||), ∀x ∈ Xf (T ), x∗s ∈ Θ. (B.4)

Finally, applying Theorem 3 .1 , we conclude that xk+1 = φ(xk, u
RH δ
k ) is ε−AS in Xf (T )

with the origin replaced by x∗s. Note that in this case, d = 0 and e = δ, therefore

ε(δ) := ( 2b
acδ)

1/p 2
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Appendix C

Proof of Corollary 3.2

Proof : Consider k-th and (k + 1)-th suproblems, and define the corresponding pre-

dicted control inputs as Uk := (u0,k, ..., uT−1,k), Uk+1 := (u1,k, ..., uT−1,k, us), where us is

the corresponding steady state control with steady state xs. And xT,k = xs.

(1) If Problem 3 .1 is feasible at time k for the initial state xk ∈ X , then there ex-

ists a control sequence Uk ∈ UT (xk) such that xT,k = xs. Since we choose Uk+1 to be

(u1,k, ..., uT−1,k, us), xT,k+1 = xs also, and this means Uk+1 ∈ UT (xk+1).

(2) First, because of the first sufficient condition,

J∗(x, x∗s) ≥ h(x− x∗s, uRH(x)− u∗s) ≥ α1(||x− x∗s||), ∀x ∈ Xf (T ), x∗s ∈ Θ, (C.1)

where uRH(x) is the first control value in the optimal solution for the given initial condition

x ∈ Xf (T ).

Secondly, given that x̃∗s and x∗s are the optimal consensus points for (k+1) and k-th

subproblem respectively, we have

J∗(xk+1, x̃
∗
s)− J∗(xk, x∗s) ≤ J(xk+1, Uk+1, xs)− J(xk, Uk, xs) + δ

= −h(xk − xs, u0,k − us) + h(xT,k − xs, us − us) + δ

(C.2)

because of the first and third sufficient conditions, which implies that

J∗(φ(xk, u
RH δ
k )− x̃∗s)− J∗(xk − x∗s) ≤ −h(xk − xs, u0,k − us) + δ

≤ −α1(||xk − xs||) + δ ≤ −α3(||xk − x∗s||) + δ, ∀x ∈ Xf (T ), x∗s ∈ Θ.

(C.3)

Thirdly, because of the second sufficient condition,

J∗(x− x∗s) =
∑T−1

j=0 h(x∗j,k − x∗s, u∗j,k − u∗s) ≤ T α̃2(||x− x∗s||), ∀x ∈ Xf (T ), x∗s ∈ Θ.

J∗(x− x∗s) ≤ α2(||x− x∗s||), ∀x ∈ Xf (T ), x∗s ∈ Θ.

(C.4)
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where α2 = T α̃2.

Finally, applying Theorem 3 .1 , we conclude that xk+1 = φ(xk, u
RH δ
k ) is ε−AS in

Xf (T ) with the origin replaced by x∗s. Note that in this case, d = 0 and e = δ, therefore

ε(δ) := ( 2b
acδ)

1/p 2
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