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This work investigates EEG signal processing and seizure prediction based on deep 

learning architectures. The research includes two major parts. In the first part we use 

wavelet decomposition to process the signals and extract signal features from the time 

frequency bands. The second part examines the machine learning model and deep 

learning architecture we have developed for seizure pattern analysis. In our design, the 

extracted feature maps are processed as image inputs into our convolutional neural 

network (CNN) model. We proposed a combined CNN-LSTM model to directly 

process the EEG signals with layers functioning as feature extractors. In cross 

validation testing, our CNN feature model can reach an accuracy of 96% and our CNN-

LSTM model could reach an accuracy of 98%. We also proposed a matching network 

architecture which employs two parallel multilayer channels to improve sensitivity. 
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Chapter 1: Introduction 

1.1 The Seizure Prediction Study 

The Electroencephalogram (EEG) signal monitors the complex electrical behavior of 

the brain. The electrical impulses between brain cells are extended to the surface of the 

scalp so that the signals are measured through electrodes placed on the scalp. The EEG 

signals are analyzed through the following waves: Delta waves (< 4Hz), Theta waves 

(4Hz – 8Hz), Alpha waves (8Hz – 12Hz) and Beta waves (12Hz – 30Hz). Each 

frequency band focuses on the electrical behaviors in different regions of the brain. For 

example, the Beta waves are predominant in the behaviors of the frontal portion of the 

brain while the Alpha waves mainly occur in the posterior region. The distinguishable 

feature of the multi-channel EEG signal makes it an ideal tool to explore different brain 

activities, especially abnormal symptoms in the brain [1]. 

Seizure is a central nervous system disorder that derives from aberrations in electrical 

brain activities. Recurrent and unpredictable seizures can damage the nervous system 

and even result in death. As one of the most effective ways to analyze scalp electrical 

signals, EEG signals with multiple channels monitoring different regions of the brain 

have significant uses in seizure studies [2]. The characteristics of EEG signals vary 

largely from patient to patient, hence, the seizure patterns from patient to patient usually 

differ as well. The variability of seizure patterns among patients increases the difficulty 

of seizure recognition. 

Brain activities are complicated and highly random, and the primary indicator of the 

brain’s electrical behaviors—EEG signals—are non-Gaussian and nonstationary. For 
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seizure analysis, instead of studying the EEG signals from either purely time or 

frequency domains, researchers have found that a time-frequency (TF) analysis could 

provide a method to extract features that outperforms conventional studies [3]. To learn 

the representations of EEG signals from a TF approach, automatic EEG signal 

classification has a significant advantage in the sheer scale of cases it could process. 

Further, studies have shown its high and increasing accuracies with respect to different 

classification algorithms. The learning process usually involves raw data processing, 

feature extraction, model learning, and final prediction.  This process is illustrated in 

Figure 1.1. 

 

Figure 1.1 EEG Signal Prediction Model Training 

1.2 Related Research 

Subha et al. explored EEG signal analysis methods, with an emphasis on time-

frequency based approaches. In the time domain, linear prediction (LP) and 

independent component analysis turn out to be effective tools for signal extraction by 

reducing input signal dimension [1]. For time frequency methods, wavelet transforms 

demonstrate significant performance, while both continuous and discrete transforms 

have useful applications respectively. Other methods including higher order statistics, 

state space reconstruction, correlation dimension, and entropy approaches have also 

been used. 
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Subasi et al. proposed a discrete wavelet transform (DWT) strategy followed by 

dimension reduction algorithms applied directly on the decomposed signals [4]. The 

results show high testing accuracy with the DWT process. They also conducted 

experiments comparing principle component analysis (PCA), independent component 

analysis (ICA), and linear discriminant analysis (LDA) methods. Their general normal 

EEG signal classification rate for simple classes reached as high as 98% in certain 

experiments. 

Instead of studying the signals directly on the decomposed bands based on DWT, Liu 

and his colleagues developed a multi-feature extraction strategy from the sub-bands 

from decomposition. This extraction strategy explores the EEG signal in different key 

perspectives including fluctuation, relative amplitudes, energy distribution, and 

variation. The results give high accuracy with 19 out of 21 testing cases above 90% [5]. 

For classifiers, Bashivan and his colleagues developed a recurrent convolutional neural 

networks method for seizure classification. They introduced a 2D mapping for the 3D 

coordinates of the electrodes placed on the patient scalp. Then they use the mapping as 

the input to convolutional neural network (CNN) models. With cubic interpolation, the 

mapping is turned into an image for classification. The ImageNet by Krizhevsky is a 

neural architecture employed with long-short term memory units (LSTM) at the final 

layer. The classifier performs at a high sensitivity of over 85% which is significantly 

higher than the results obtained by traditional classifiers [6] [18]. 

On the deep learning architecture side, the human learning process has inspired the idea 

of taking small training samples to learn a problem, a mechanism in which the matching 

network conducts few shot or one-shot learning. Oriol and colleagues proposed an 
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architecture by matching the features from embedding functions through an attention 

mechanism. The results are encouraging on alphabet image classification [19]. Their 

image classification performance could range from 60% to 98% for certain image 

groups, and with a large quantity of training samples. 

1.3 Our Contributions 

The study of EEG seizure detection faces difficulties on several fronts. The current 

works focus on patient-specific detection rather than on generic seizure detection. 

Although specific training and classification make the algorithms more efficient, the 

application of the detection algorithms is limited. Tests have shown that the classifier 

trained for one patient performs much less efficiently on another patient. Another 

difficulty lies in the debate over feature extraction strategies. There are multiple 

approaches to EEG signal feature extraction, from time frequency approach to use of 

higher order statistics. However, there is no clear evidence as to which feature 

extraction combination could represent the most relevant information to seizure 

patterns. Hence, study of the automatic feature learning, selection, and alignment 

strategy for seizure detection is in high demand. Another problem is that the seizure 

data sets are usually imbalanced in terms of the seizure-to-normal phase ratios, as most 

patient cases have only several minutes of seizure onset duration over the course of 

hours of monitoring. For cases in which the seizure samples are sparse, a well-designed, 

specific learning architecture has yet to be developed. 

In this work, our three main contributions are: 

a) We introduce a discrete wavelet transform-based feature extraction strategy. 

From the decomposed bands on interested frequency range, we design multiple 
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feature vectors for all channels of the EEG signal. This feature alignment 

combined with convolutional neural network models achieves high 

performance in comparative experiments. 

b) We designed a combined CNN-LSTM model for EEG feature extraction and 

seizure prediction. A convolutional neural network-based feature extractor is 

proposed to extract distinguishable features from convolutional operations. A 

1D sliding filter window is introduced to the convolution layers, and the 

preserved temporal information from the CNN layers is fed into the LSTM layer 

for epoch prediction. This approach aims at reducing the complexity and 

blindness of selecting and computing features from background knowledge and 

signal processing techniques. 

c) We propose a matching network learning architecture to implement 

reinforcement learning for seizure prediction based on a feature extractor and 

deep neural network channels. Within this architecture, the neural networks 

from each channel are used to conduct metric learning to compare epoch 

similarities. Through the metric learning process the performance is 

significantly improved. The networks are synthesized by the attention model to 

give final distribution. 

In the following chapters of this thesis, Chapter 2 introduces the EEG signal dataset 

that we use and illustrates our wavelet-based feature extraction strategy and feature 

selection mechanism. Chapter 3 proposes the construction of the CNN and LSTM 

models and their alignment with the feature maps. Chapter 4 introduces the design of 

our combined CNN-LSTM model and the matching network architecture in reinforcing 
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the performance of prediction. Chapter 5 gives the results of experiments and analyzes 

the comparative advantages of the models. Chapter 6 contains conclusions and ideas 

for future work. 
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Chapter 2: Discrete Wavelet Decomposition and Feature 

Extraction 

2.1 Introduction to the Dataset 

EEG measures the electrical activity of the brain. By taking the difference of potentials 

between electrodes, each channel has a signal that tracks the scalp electricity, triggering 

as continuous voltage variations. Hence, EEG captures the overall electrical activities 

of millions of neurons. During seizure onsets, a group of EEG channels usually perform 

rhythmic activities or certain patterns of variations. These activities are composed of 

different frequency components and are usually specific to individuals. 

We would like to give a brief introduction to the EEG signal monitoring of the seizure 

patients first. For example, Figure 2.1 is a segment of the monitoring record of a patient 

experiencing seizure onset. In this recording, the seizure starts at 17 seconds from the 

beginning and behaves a rhythmic waving and significant fluctuation in channels from 

FP1-F7 to P3-O1. This seizure onset lasts 44 seconds with a similar pattern. 

 
Figure 2.1 Seizure onset EEG Epoch of Patient 1 
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Seizures in different patients usually behave in different manners. Figure 2.2 shows the 

EEG signals of another patient with the seizure onset record. The onset is more drastic 

with spike-like behaviors. It begins with a rise in fluctuation magnitude in channels 

from FP1-F7 to P3-O1 and CZ-PZ to FT10-T8. The pre-ictal fluctuation stabilizes for 

a period, and then most channels begin to show significant spike magnitudes. 

 
Figure 2.2 Seizure onset EEG Epoch of Patient 2 

 
Figure 2.3 Pre-ictal EEG epoch of Patient 2 
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If we investigate the pre-ictal phase of this seizure onset, as shown in Figure 2.3, the 

signal frequency rise is distinguishable.  The more stationary normal phase behaves 

rhythmically compared to the seizure phase. 

The database we use here is the CHB-MIT scalp EEG database [20] [21].  A total of 24 

patient cases with seizure onsets were recorded. The data set contains 844 hours of 

continuously recorded EEG and 163 seizure onsets. The lengths of seizures usually 

range from 30 seconds to 1 minute. The sampling frequency is 256 Hz for all channels. 

The notations from FP1 to P8 represent each electrode placed on the scalp, and the 23 

channels analyzed show the voltage differences between different electrodes. The 

arrangement of the channels is illustrated in Appendix I. 

2.2 Discrete Wavelet Decomposition 

In traditional Fourier analysis, a periodic and wide-band signal that has high frequency 

sampling and a long observational period to maintain good resolution in the low 

frequencies is assumed. Taking the process one step further, the wavelet transform 

(WT) theory uses signal analysis based on varying scales in the time and frequency 

domain. It correlates the signal with a dictionary of waveforms that are concentrated in 

the time and frequency domains. Its ability to extract information for transient signals 

has outperformed Fourier transforms (FT) in many applications [7] [8]. 

The WT is described in the terms of its basic functions, called wavelet or mother 

wavelet. The variable for frequency ω in FT is replaced by scale factor a (which 

represents the expansion in frequency domain) and the variable for displacement in 

time is represented by translation factor b. The main characteristic of WT is that it uses 

a variable window to scan the frequency spectrum, increasing the temporal resolution 
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of the analysis. For a single analysis, the wavelets based on a mother wavelet 𝜓 are 

represented by: 

 𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
) (2.1) 

where a and b are the scale and translation parameters, respectively. 

The discrete wavelet transform (DWT) is obtained by discretizing the scale and 

translation parameters of WT. Its waveforms are expressed as: 

 𝜓𝑗,𝑘(𝑡) =
1

√𝑎0
𝑗

𝜓 (
𝑡 − 𝑏0𝑎0

𝑗

𝑎0
𝑗

) (2.2) 

where 𝜓𝑗,𝑘 shape the wavelet bases and j, k are integer parameters. The form we use in 

this work is based on powers of 2 scale parameter, which takes 𝑎0 = 2 and 𝑏0 = 𝑘, and 

the function turns into: 

 𝜓𝑗,𝑘(𝑡) = 2−
𝑗
2𝜓(2−𝑗𝑡 − 𝑘) (2.3) 

The DWT makes use of the information redundancy of wavelet transform to shape the 

time frequency bands. In practice, in many cases it is more efficient to conduct feature 

extraction at interested frequency ranges from DWT instead of dealing with wavelet 

transformed images.  

Figure 2.4 Continuous Wavelet Windows (left) and Discrete Wavelet Windows (right) 
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In WT each wavelet could be treated as a 2D observing window in the time frequency 

space. When it comes to DWT, the windows are assigned with certain sizes and 

positions as illustrated in Figure 2.4. The discrete windows fill the whole space. Hence, 

analysis in separated bands is possible. 

To generate the observing windows, there are wavelet function families that function 

as bases. Typical wavelets such as Molet wavelet, Haar wavelet, and Daubechies 

wavelets have been proven to work successfully in their specific application fields. In 

EEG practice, mother wavelets should be chosen according to the properties of the 

patient recordings and the application scenarios. 

 
Figure 2.5 Scale Spaces for Wavelet Bases of the Same Mother Function 

 

When the wavelet mother function is determined, the switching of its scale and time 

translation parameters can be viewed as scaling and moving the functions in the time 

frequency spaces. In the power 2 discrete wavelet transform we use here, if we define 

Vj as the scale space of the current function 𝜓𝑗,𝑘(𝑡), all the time translations of the 

current function are also in the same scale space. If we shrink the scale of the current 

function by factor 2 to 𝜓𝑗+1,𝑘(𝑡), the scale space would be Vj+1. From our definition, 
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we can reason that 𝑉𝑗+1 ⊂ 𝑉𝑗. We define the space 𝑊𝑗 = 𝑉𝑗 − 𝑉𝑗+1, so that there is a 

sequence of orthogonal spaces. 

The frequency spaces of the signals can be viewed as the subspaces in Figure 2.5. And 

if we define the whole frequency band (0, π) as V0, the space can be divided into low 

frequency band (0, π/2) as V1 and high frequency band (π/2, π) as W1.  

 
Figure 2.6 Frequency Domain Representation of DWT 

We can keep doing the decomposition to the level as required and this division could 

be denoted as: 

 𝑉0 = 𝑊0 ⊕ 𝑉1 = 𝑊0 ⊕ 𝑊1 ⊕ 𝑉2 = ⋯ = 𝑊0 ⊕ 𝑊1 ⊕ ⋯ ⊕ 𝑊𝑗−1 ⊕ 𝑉𝑗 (2.4) 

Here the high frequency space is Wj. The quality coefficient for the ratio of bandwidth 

to center frequency remains the same for any j. 

 

Figure 2.7 Multiresolution Filtering Approach for DWT 

And if we treat the decomposition process as a multiresolution filtering process, the 

low pass and high pass filters remain the same at each scale, since the normalized 

frequencies are constant. Hence, the discrete wavelet decomposition process could be 
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implemented by filter banks as shown in Figure 2.7. We employ the multiresolution 

filtering idea to conduct the decomposition in our approach to process EEG signals. 

2.3 Feature Extraction 

Major seizures happen from delta to beta waves, from 3 Hz to 29 Hz, in the frequency 

range of brain waves [9] [10]. From the spectral energy perspective, EEG signals also 

indicate a redistribution of energy on a set of channels along the process. The change 

in spectral energy on each channel typically contains a reappearance of frequency 

components within the 0 - 65 Hz band [11]. The EEG signals we use here are with a 

sampling rate of 256 Hz, and we apply a 6 scales decomposition to get the 

approximation coefficient a6 (0 – 4 Hz) and detail coefficients d6 (4 – 8 Hz), d5 (8 – 16 

Hz), d4 (16 – 32 Hz), d3 (32 – 64 Hz), d2 (64 – 128 Hz). Figure 2.8 shows the 

decomposition of two 3 seconds epochs on Patient 10 in our dataset using Daubechies-

4 wavelet. 

 

Figure 2.8 Decomposition of Non-Seizure (left) and Seizure (right) Epochs 

The features extracted include relative energy, coefficient of variation, fluctuation 

index, detrended fluctuation index, Shannon entropy, and approximate entropy. They 

are applied to each channel on selected frequency scales and are then aligned together 
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to form feature vectors. To introduce a unified notation, from Equation 2.4 to Equation 

2.8, l indicates the scale selected, Dl(i) is the detail coefficient of scale l at time index 

i, and N is the length of vector of each scale. 

The relative energy is an indicator of the energy distribution among selected scales. 

 
𝐸(𝑙) =

1

𝑁
∑ 𝐷𝑙(𝑖)2 ∙ 𝜏

𝑁

1

, 𝐸𝑟(𝑙) =
 𝐸(𝑙)

∑ 𝐸(𝑖)𝑆
1

 
(2.4) 

The coefficient of variation is a metric to measure how close the various standard 

deviations are to the mean value. 

 
𝑉(𝑙) = (

𝜎(𝑙)

𝑢(𝑙)
)

2

, 𝑢(𝑙) =  
1

𝑁
∙ ∑ 𝐷𝑙(𝑖)𝑁

1 , 𝜎(𝑙) =  √(
1

𝑁
) ∑ (𝐷𝑙(𝑖) − 𝑢(𝑙))

2𝑁
1    

(2.5) 

The fluctuation index shows the magnitude of the fluctuation of the signal by 

comparing adjacent epochs. 

 𝐹(𝑙) =  
1

𝑁
∑|𝐷𝑙(𝑖 + 1) − 𝐷𝑙(𝑖)|

𝑁

1

 (2.6) 

The detrended fluctuation index represents the statistical self-affinity of a signal. The 

time series s segmented into boxes (intervals) with the 𝑛𝑡ℎ box with the length of 𝑁(𝑛). 

And the detrended fluctuation is calculated as: 

         𝐷𝐹(𝑙) =  
1

𝑁(𝑛)
∑ |𝐷𝑙,𝑛

̅̅ ̅̅ ̅ − 𝐷𝑙,𝑛(𝑘)|
2𝑁(𝑛)

1    (2.7) 

Where 𝐷𝑙,𝑛
̅̅ ̅̅ ̅ = (∑ 𝐷𝑙(𝑖))/𝑁(𝑛)

𝑁(𝑛)
𝑁(𝑛−1)+1  and 𝐷𝑙,𝑛(𝑘) =  𝐷𝑙,𝑁(𝑛−1)+𝑘.   

Seizure is an abnormal activity of the brain. The Shannon entropy estimator defined 

below is a disorder indicator measuring how unorganized the signal epoch is. 

 𝐸𝑛𝑡 =  
∑ 𝐷𝑖∙𝑙𝑜𝑔∗(𝐷𝑖)

log(𝑁)
, 𝑆 = − log(𝐸𝑛𝑡) (2.8) 
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The EEG signals we use have 23 selected channels, and for each channel we choose 4 

scales of frequency bands so that each feature gives a (23, 4) matrix. For vectorization 

purposes, we align them as column vectors with a length of 92, and stack all 5 feature 

vectors with respect to the learning models input requirements. For some of our models, 

the feature vectors are aligned as matrices called feature maps. In our implementation, 

when feeding the feature vectors into the neural networks, the vectors are normalized 

by training batches. The methods by which we align the features vectors for our model 

structures are further illustrated in the next Chapter. 
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Chapter 3: Spatial and Temporal Network Structures for EEG 

Signal Classification 

3.1 Fully Connected Neural Networks 

Our work is based on neural network structures. Different kinds of neural networks 

applied to different application fields are inspired by the multilayer neural network 

structure. This type of neural network structure is called “fully connected structure” 

since it correlates neurons by their connection weights. The multilayer neural network, 

with its adaptability to different problem dimensionalities, relatively simple structure 

adjustment operation for fitting requirements, and efficient training costs, has 

outperformed other traditional classifiers such as linear regressions, kernel estimators, 

and support vector machines (SVM) [12]. Here we apply a one-hidden-layer neural 

network to experiment on feature selections at the early stage. The simple fully 

connected neural network also functions as a method validation for our subsequent 

models. Since there is no analytical method to determine the number of layers and the 

number of neurons on each layer, we conduct experiments and compare the results to 

the experiments from previous methods that have been conducted to design the network 

for our study [13] [14]. 

The hidden layer neural network and more sophisticated networks built for specific 

applications are derived from the basic model of neuron connections. Each neuron in 

the network works as an activation function of the linear combination of its inputs. As 

an example, the neuron j in the layer yields an output yj as: 

 y𝑗 = 𝑓 (∑ 𝑤𝑗𝑖 ∙ 𝑥𝑖) (3.1) 
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where wji is the weight parameter for the ith input to the jth neuron and xi is the input 

vector, while f is the non-linear activation function. 

The network generates output, and usually the output is compared with targeted results 

to indicate the cost of the classification. Minimizing the cost leads to the adjustment of 

the network parameters, and this optimization process functions as the training process 

for the network. The cost we use here is the cross-entropy cost: 

 E =  −
1

𝐶
∑[𝑦𝑛 log(𝑦𝑛̂) + (1 − 𝑦𝑛) log(1 − 𝑦𝑛̂)]

𝐶

𝑛=1

 (3.2) 

where C is the number of training data classes, yn is the output for the nth class and 𝑦𝑛̂ 

is the targeted output for the nth class. 

 

Figure 3.1 Multilayer Neural Network Classifier for DWT Based EEG Features 

As shown in Figure 3.1, the EEG epochs are fed into the feature extraction model. The 

feature extraction model here is the discrete wavelet decomposition model illustrated 

in Chapter 2. For each epoch, the features are extracted and then these column feature 

vectors are concatenated as an input vector. The feature vector is fed into the neural 

network with a hidden layer and the classification results are yielded through softmax 
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activation. The output is a length 2 vector representing the probability distribution over 

the seizure and non-seizure classes. For the network training, a cross-entropy cost is 

applied. In the feature design phase, we use this simple network to test each feature in 

terms of classification accuracy; the results helped us to determine the five features we 

would use throughout our experiments (See Chapter 2). This model has a relatively 

simple structure for making adjustment. Its relatively low training cost saved a great 

amount of experimentation time. But more importantly, its structure lays the foundation 

for us to develop more adaptive neural networks to deal with the extracted EEG features. 

3.2 Convolutional Neural Network for Spatial Signal Inputs 

Convolutional neural networks (CNN) emerge as powerful tools to conduct image 

related learnings. They have been employed to tackle a variety of real-world problems 

in identifying objects and powering vision in robots [16]. In our EEG seizure prediction 

study, we designed CNN models to learn the aligned feature matrices built from the 

feature vectors to develop seizure prediction machines. And starting from this feature 

extractor idea, we further applied CNN layers as feature extraction filters to process the 

EEG signal epochs for better prediction performance. 

The architecture of a CNN is based on a sequence of layers. Different from the basic 

multi-layer neural networks, it operates with 2-D convolution filters to handle images. 

The key components of CNNs are:  

• Convolution: Convolving previous outputs with 2-D filters. 

• Non-linear activation: Non-linear function to activate filter outputs. 

• Pooling: Down sampling images to smaller size. 
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• Fully connected layer: Element-wise weight parameter connection.  

A CNN usually operates with typical combinations of the components above. For 

example, a convolution layer with a non-linear activation followed by a pooling layer 

is the most significant building module of CNN. This building module would be 

repeated multiple times to form the CNN layers to the desired depth. At the end of the 

cycles of convolution, non-linear activation and pooling operations, fully connected 

layers with activations are added to yield the classification results. Other kinds of layers 

may be inserted as per the needs of the machine learning tasks, however, they are not 

necessary for a neural network to be called CNN. 

There are various arrangements of layers of CNNs for different tasks. LeNet, proposed 

by Yann LeCun and his colleagues, laid the foundational framework of CNNs in terms 

of image classification [17]. The GoogLeNet, incorporated with an inception module, 

significantly reduced the number of parameters in traditional frameworks while 

maintaining high performance [18]. The VGGNet is a very deep CNN that showed how 

the depth of a network could critically determine the performance of the framework 

[19]. There are other models that have been proposed recently, such as ResNet, 

DenseNet, etc., which show excellent performance in certain applications [20] [21]. 

We designed our CNN model with structure and parameters suitable for our EEG 

feature map size. The model structure is shown in Figure 3.2. Here the activations of 

the convolution and pooling layers are RELU layers.  
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Figure 3.2 Our Design of CNN Model for Seizure Prediction 

The filter sizes are chosen to work with both feature maps and raw signal inputs. 

Moreover, the numbers of filters are chosen in the training experiments as per the 

requirement of training performance. For input, our model can adapt to two signal input 

approaches.  

The first approach is designed for raw signal input. We process the 23-channel signal 

into epochs. If the epoch length is 3 seconds, with the sampling frequency of the CHB-

MIT dataset at 256 Hz, our input epoch size would be (23, 768). This input would be 

fed into our model (See Figure 3.2) and train the network through batches. 

 

Figure 3.3 CNN and CNN with Signal Feature Extractor for EEG Signals 

For the feature map approach (described in Chapter 2) using the EEG signal, we have 

23 channels, and for each channel we select four of the decomposed frequency bands. 

For each band we have five features, hence, the input feature map size is (23, 20). 
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Figure 3.3 illustrates how these two approaches form two paradigms for CNN model 

seizure prediction. 

In this chapter, we also propose our own CNN frameworks to tackle the seizure 

classification task. Different from image classifications, the EEG signals are multi-

channel nonstationary signals. We applied two approaches: The first was to decompose 

the signals into multi-channel images with signal processing algorithms. The second 

was to apply feature extraction techniques to preprocess the signals into images of 

epochs by rearranging the feature vectors. Because of its convolution and subsampling 

nature, CNN has a feature extraction ability through multiple layer operations. 

 

Figure 3.4 The Alignment of Decomposed Frequency Bands 

We conducted comparative experiments in Chapter 5 to further analyze the 

performance of both frameworks. 

3.3 Recurrent Neural Network for Temporal and Sequential Signal Inputs 

Recurrent neural network (RNN) is a class of artificial neural networks that deals well 

with sequential data. It has been successfully applied to computational neuroscience 
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and learning tasks based on time series [15]. Unlike traditional neural networks, RNNs 

perform the same operation on each element of the sequence and give out an output 

that is dependent on previous computations.  

 

Figure 3.5 Recurrent Neural Network Structure Unfold 

The recurrent neural network functions with an inner loop passing hidden states 

through time steps. For example, at time t, xt is the input vector, and st is the hidden 

state. The state is obtained from the input and previous state by the relation: 

 𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1) (3.3) 

Where f is the non-linear activation function. The output ot usually follows as an 

activation 𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡).  𝑈, 𝑉 and 𝑊 are the unit parameters to be trained. 

Unlike a traditional deep neural network, RNN shares the same parameters across units. 

This largely reduces the number of parameters to train for the same size task. The 

reason that RNNs function well with far fewer parameters lies in its structure, which 

enables the states to capture information from previous steps. This works significantly 

well when dealing with input series which have temporal correlations across successive 

steps, such as time series and natural language sentences. 

Although RNN units capture information from previous steps, the mechanism only 

works effectively within small ranges across temporal steps. When the temporal 
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duration of the inter-unit dependencies increases, the temporal contingencies would 

emerge among the input and output sequence span in the long term [16]. A long-short 

term memory (LSTM) neural network is proposed to solve this problem by introducing 

gates that control the information passing through [17]. 

 
Figure 3.6 Concatenate Long-Short Term Memory Units 

There are two classes of states passing through the LSTM units. At time t, the long-

term state Ct carries the information that passes through the units without a nonlinear 

operation, and the unit state ht outputs the operations within the current unit to the next 

unit. The forgetting window ft determines how much of the long-term state should pass 

through by judging the information from the previous unit state and current input, 

namely, 

 𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3.4) 

where 𝑊𝑓 and 𝑏𝑓 are the parameters to be trained of the unit.  

To determine the portion to pass through from the short-term unit state, we also have a 

gate and state given by 

 𝑖𝑡 =  𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3.5) 

and 

 𝐶𝑡̃ = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.6) 

The new long-term state is then updated 
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 𝐶𝑡 =  𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶𝑡̃ (3.7) 

The new output and unit state are from the previous unit state, input and new long-term 

state, with 

 𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3.8) 

and 

 ℎ𝑡 =  𝑜𝑡 ∙ tanh(𝐶𝑡) (3.9) 

3.4 LSTM EEG Classification Structure 

Based on the LSTM principles, we build the EEG classification network with LSTM 

units structured as the units in Figure 3.6. Here we take a fully connected neural 

network layer to function as the dense layer to take the output of the LSTM layer and 

form it into a length 2 vector. As illustrated in Figure 3.7, the input vectors could be 

the feature vectors from the feature extractors or simply vectorized sliced EEG epochs. 

For example, we can slice 1 epoch into 10 same length pieces along the time axis and 

vectorize each piece. In our experiments, we always use our LSTM model as a part of 

our combined model to improve its performance. 

 

Figure 3.7 LSTM Classification Network 
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Briefly, we want to further explain the dimensionalities of the input vectors as a 

preparation for the model proposed in the next Chapter. Taking the feature vector input 

as an example, in our 23 channels case, within each epoch each channel is decomposed 

into 4 scales. We select 3 lower detail frequency bands and the approximation band to 

compute the features. With each band there are 5 features associated. Hence, we have 

a (23, 4, 5) size feature extracted for one epoch. The details can be found in Figure 3.8. 

Each input feature vector has length 20, and there are 23 input vectors corresponding 

to 23 channels.  

 

Figure 3.8 Feature Vectors of Channels and Their Alignments 
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Chapter 4: Combined Convolutional Neural Network and 

LSTM for EEG Seizure Prediction 

4.1 Combined CNN-LSTM network 

In building CNN for the EEG seizure analysis, we process the features as images and 

train the network for classification. The model can reach high performance in terms of 

testing accuracy. However, the CNN model usually encounters an overfitting problem 

due to its sophisticated structure. By processing the signals as feature images, the 

temporal correlations of the EEG epochs are not utilized to distinguish between seizure 

and normal epochs. Moreover, the training of the CNN model could be very time 

consuming. For example, our CNN model usually takes more than 40 minutes for one 

of the ten folds for one patient case. The LSTM model is intended to deal with 

sequential data. Designing feature extraction layers that preserve the sequential 

information of the input data would make it possible for LSTM layer to make use of 

the temporal correlations of the input signals. 

Based on the analysis above, in order to improve our method, we designed a model 

combining CNN and LSTM layers to improve performance from several perspectives. 

The structure of this model is shown in Figure 4.1. 

 

Figure 4.1: CNN-LSTM Architecture 
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A further illustration of the details of the convolution layer and its connection to the 

LSTM units is displayed in Figure 4.2. We apply a 1D sliding filter window CNN (1D 

CNN) which filters the signal input only along the time axis. For each CNN filter, it 

processes the EEG channel signals as images (2D signal matrix) to yield a vector 

representing the image features in a temporal order. For example, when we are using a 

3-second long epoch, with 23 channels and a 256Hz sampling rate of original data, the 

size of one input matrix would be (23, 768). The sliding filters function as feature 

extractors to yield vectorized outputs for the LSTM units. 

 

Figure 4.2: Operation of Each 1D Sliding Window 

This model is proposed to improve the performance from three aspects. First, the 1D 

sliding filter window would save a significant amount of training time. Second, it 

preserves the temporal correlations of the input signal. Third, it has fewer parameters 

than merely implementing the CNN layer, which would make it less likely to have 

overfitting problems.  
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4.2 Matching Network Architecture for EEG Epoch Testing 

Deep learning has gained significant success in various tasks but is notorious for its 

requirement for large training datasets. Not only does it take a substantial amount of 

time to train the networks, but adjusting the structures could be very costly depending 

on the training results. Because of the complex patterns of seizures, some non-

parametric methods combined with advanced signal processing techniques could 

perform relatively well in terms of time efficiency. However, these methods have very 

limited adaptivity [22]. 

4.2.1 Matching Network Mechanism 

In the EEG recordings of seizure patients, the number of seizure onset samples is not 

large compared to the normal phase. In training across populations in which the 

samples are relatively affluent, straightforward deep learning networks could be 

applied directly to learn the signal representations and yield predictions. However, if 

we inspect a specific patient case, the dataset will typically have a very imbalanced 

class ratio between seizure and normal phases, thus making it considerably more 

difficult for the neural network to learn to recognize one class over the other. Hence, 

developing an architectural mechanism to curate the deep learning model to deal with 

the imbalanced dataset is a key demand. 

Human beings learn things in a way that they can recognize similar objects after only 

having seen several examples. Think about babies learning to recognize cups: the 

babies could recognize other cups by just seeing the outlines of several cups shown to 

them by educators. From the machine learning perspective, this procedure can be called 

“few sample learning”: an intelligent agent learns to recognize a class of objects by 
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having a very limited number of examples as training data. This few sample learning 

or named few-shot learning is rising as a major topic in the machine learning field.  

To achieve the efficacy of few sample learning, Vinyals and colleagues proposed a one-

shot learning model using deep learning feature extraction and vector comparison to 

perform the task [22]. With a similar approach to tackle this kind of problem, Koch and 

his colleague introduced a Siamese network for alphabet learnings [23]. Of their work, 

the most significant attribute of the models is the hierarchical design of using deep 

neural networks as embedding functions and metric learning operations on top of the 

embedding functions in the feature space. We refine the model architectures to a 

matching network architecture and further develop it to perform reinforcement learning 

on our seizure prediction problem. 

The basic idea is to use embedding functions to lift the input images into the feature 

space and conduct metric learning for feature similarity comparisons. As depicted in 

Figure 4.3, gθ and fθ are the embedding functions for the labeled data input and the 

testing data input, respectively. The embedding functions are machine learning 

functions, especially deep neural networks for image or matrix inputs. For one testing 

input, the extracted test image is compared by a metric comparison mechanism with 

the extracted labeled images from each class. The comparison mechanism is developed 

to weigh the similarities between the test image and the labeled images in their learned 

feature space. The comparing results are synthesized as probability distributions among 

classes to yield the output as predictions. 
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Figure 4.3 Matching Network Architecture 

An illustrative example of how the architecture works with a specific case is the 

Siamese alphabet learning. The goal is to learn to recognize a set of alphabets 

containing various characters in different languages. With each character, there are 

several handwritten images used as a training set. By proposing a model based on the 

architecture we described in Figure 4.3, Koch introduced the Siamese network, which 

achieved satisfying results with very few training examples in each case. 

4.2.2 Matching Network Architecture for Seizure Predictions 

In solving the EEG seizure prediction problem, we introduce a two-channel matching 

network architecture to yield improved performance. The basic idea is to train two 

parallel networks to incorporate them into our matching architecture and use the 

incorporated model to yield similarity comparisons between testing and training epochs. 

With this comparison mechanism, the seizure epoch prediction procedure could be 

performed as the metric comparison between the test epoch and a set of labeled epochs. 

Before illustrating the details of the functioning mechanism of our matching network 

architecture, we first need to define the dataset. The training dataset S is composed of 

data with the following label: 
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 𝑆 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}  (4.1) 

where 𝑥𝑖 and 𝑦𝑖 are respectively the ith epoch data and its corresponding label. From S, 

we can pair any two elements in 𝑆 to formulate our matching network dataset: 

 𝑆′ = {((𝑥𝑖, 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗))}    (4.2) 

where (𝑥𝑖, 𝑦𝑖) and , (𝑥𝑗 , 𝑦𝑗) are any pairs of epoch data and label from set 𝑆. In set 𝑆′ 

there are a certain number of these pairs. 

We sample the seizure epochs as well as the non-seizure epochs from our raw data and 

make pairs according to training requirements to form the dataset as described in 

Equation 4.2. The formation of this dataset could help us perform reinforcement 

learning on top of the two-channel architecture of our matching network model. 

Our basic idea is based on the methodology described in Figure 4.1. The design of the 

embedding functions 𝑓𝜃  and 𝑔𝜃  is from the models we applied on the epoch 

classification phase. We can use the combined CNN-LSTM network described in 

Section 4.1 on both channels to build our model. The CNN layers shape the feature 

map and the LSTM layer outputs the feature vector for similarity comparison.  

The training of the CNN-LSTM channels would take time. We also propose a signal 

feature extraction approach in our model. As illustrated in Figure 4.2, on each channel 

the seizure epoch is fed into the feature module. The module filters out certain 

frequency bands and computes features on the selected bands to generate feature 

vectors. The feature vectors are normalized and interpolated to align as feature maps. 

For each feature map, the vectors are sorted by frequency scales, and the features in 

each scale are fed into a particular LSTM cell. For example, if we selected 4 

decomposed frequency scales from our DWT, then feature vectors computed from all 
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scales would be concatenated. The operation details are the same as those described in 

Chapter 3 Section 3.4. 

 

Figure 4.4 Matching Network Model for EEG Seizure Similarities 

We have placed an attention mechanism on the LSTM layer to adjust the weights on 

each scale to optimize the training process. After the LSTM layer, the outputs are fed 

into a fully connected layer and then flattened into a vector by the layer. This vector is 

run through a metric comparison module with the other vector that is generated by the 

second channel, and the similarity between these two epochs is obtained.  

For the LSTM layer, we use the common notation for LSTM to illustrate our model 

[24]. In our expression, LSTM represents an LSTM layer. The  𝑥𝑖 is the 𝑖𝑡ℎ input vector 

of the 𝑖𝑡ℎ  scale, for the 𝑘𝑡ℎ  LSTM cell. Hence, the intermediate variables on one 

direction is computed as 

 ℎ𝑘, 𝑐𝑘 = 𝐿𝑆𝑇𝑀(ℎ𝑘−1, 𝑐𝑘−1, 𝑟𝑘)  (4.3) 

where 𝑟𝑘 is the synthesized input defined as: 
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 𝑟𝑘 = ∑ 𝑎(𝑥𝑖, ℎ𝑘−1) ∙ 𝑥𝑖

𝑖

 (4.4) 

and the attention parameter 𝑎(𝑥𝑖, ℎ𝑘−1) is defined by the equation: 

 𝑎(𝑥𝑖 , ℎ𝑘−1) =
𝑒𝑥𝑖

𝑇∙ℎ𝑘−1

∑ 𝑒𝑥𝑖
𝑇∙ℎ𝑘−1𝑖

.  (4.5) 

The attention mechanism assigns the weights on each input, which is the feature vector 

on each scale. This procedure adjusts the influence of each scale on the output, 

respectively. 

4.2.3 Implementation of the Matching Network Model 

Here we use our CNN-LSTM channels to explain how the implementation works. We 

can break down the implementation of our matching network architecture into two 

stages. In the first stage, we train the CNN-LSTM network on the training data, and we 

put two of the same trained networks in parallel, as described in Figure 4.2. Our metric 

learning method applied here compares the Euclidean distance between the output 

vector 1 and output vector 2. This stage functions as a feature extraction operation for 

both channels to compare vector similarities. 

Once we have obtained the vector similarity comparison mechanism, we come to the 

second stage to operate our model. The intention of this stage is to compare the distance 

between the selected testing epoch with all the labeled seizure epochs from the training 

dataset. In this operation, we use one channel for the testing epoch and one channel for 

the training seizure epochs. We first fix a testing epoch to feed it into channel 1 and 

from that channel it yields an output vector. Then, for the training dataset that has N 

seizure epochs, we loop over these N seizure epochs to feed them into channel 2 and 

compare the output vectors one at a time with the output vector from channel 1. By this 
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operation, we get the distances to the N labeled seizure epochs from our fixed testing 

epoch. And we implement this operation for all testing epochs. We use a N × M matrix 

to store the distance values, where the jth element of the ith column contains the distance 

to the jth labeled seizure epoch from our ith testing epoch. After this step we get the 

distance distributions of the testing epochs to the labeled seizure epochs, by operating 

the epochs at their extracted feature space. Figure 4.3 is an example from patient 6.  We 

plot the histogram for the distances from one normal testing epoch to all the labeled 

seizure epochs, where normal epoch is labeled 0 and seizure epoch is labeled 1. 

The general distributions of the histograms are as follows: In terms of the distance 

metric, the testing epoch with true label 0 has a dense distribution in the far side (mostly 

right 1/3 side) as in Figure 4.3. The epoch with true label 1 has a dense distribution at 

the near side (mostly left 1/3 side). Hence, from our experiments, we propose 4 control 

parameters for the statistical analysis on the distributions to further improve predicting 

performance. Division line parameter indicates the division position we assign on the 

histogram of the testing epoch on the distance metric axis. In the testing epoch case, it 

has a minimal distance and a maximal distance to the labeled epochs, and their 

difference is called full range.  
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Figure 4.5 Histogram of the Distance Distributions of Epoch 8, Patient 6 

The value of division line parameter is the division position minus minimal distance 

value divided by full range. The integration threshold parameter is associated with the 

division line parameter, which is the number of frequency counts in the histogram that 

are below the division position value divided by total number. The control line 

parameter is the division line parameter on the full range of all testing epochs. And its 

integration threshold parameter is defined the same as the one of the division line 

parameter. Once the parameters are set, we conduct our matching network experiments 

on the testing epochs to update the predicting results. For each predicted normal epoch, 

when both integration thresholds are exceeded, we predict the epoch as seizure. The 

detailed settings of the parameters are listed for experiments in Chapter 5. 
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Chapter 5:  Experimental Analysis and Comparative Evaluations 

5.1 Implemented Dataset Illustration 

The database we use here is the CHB-MIT scalp EEG database. Its description 

can be found in Chapter 2. In experimenting with this database, we processed 

the patient files by pairing the seizure and normal epochs according to a 

predefined ratio to form training and testing datasets. The database provides 

each patient with a sequence of files, and each file contains the data of a 1hr-

length monitoring. We select all the files with seizure onsets from the patient to 

form the dataset. The monitoring data is segmented into epochs of 3 seconds. 

We pick all the seizure epochs from this data, pairing normal epochs with the 

seizure epochs by a 9:1 ratio, which his accomplished by evenly sampling 

normal epochs along the time axis from the same original file. 

5.2 CNN and CNN Feature Model Comparison and Determination 

We build our CNN model with the parameters illustrated in Table 5.1, the parameters 

of which is also used as the classifier of the CNN feature model.  

Table 5.1 CNN Model Parameter Settings 

Layers Settings 

1 Zero Padding 2D (Strides = (1, 1))  

2 Convolutional 2D (64, Filter Size = (3, 3), Strides = (1, 1)) 

3 Batch Normalization (Axis = 3, Activation('RELU')) 

4 Max Pooling 2D (Filter Size = (2, 2)) 

5 Convolutional 2D (16, (2, 2), Strides = (1, 1)) 

6 Average Pooling 2D (Strides = (2, 2), Activation('RELU')) 

7 Flatten Layer (Single 1D vector output) 

8 Dense (Output Dimension = 2) 

9 Output Activation ('Softmax') 
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The structure of our CNN feature model is as designed in Chapter 3. We trained our 

CNN model and CNN feature model on 10 patient datasets. On each patient dataset we 

conducted a 10-fold cross validation training and testing. Each fold we apply a 50-

epoch (50 training iteration) training, with a batch size of 10. The overall results are 

shown in Figure 5.1.  

 

Figure 5.1 Testing Results for 10 Patients Average Accuracy 

By comparing the results from the patients, we found that the performance of the two 

models have a different behavior on specific folds. For example, in Figure 5.2 for 

patient 5 (the 11th bar represents the mean value), on the folds where both models reach 

higher accuracy than average, the CNN feature model has a better performance than on 

the other folds compared to itself. This could be because these folds have a higher ratio 

of normal epochs. Hence the high specificity model yields higher accuracies than on 

the folds which contain more seizure epochs. 

1 2 3 4 5 6 7 8 9 10

CNN 0.9599 0.8181 0.9463 0.7886 0.9314 0.9047 0.9038 0.9225 0.9046 0.9393

CNN feature 0.8847 0.8419 0.9026 0.8903 0.8844 0.8994 0.8921 0.8795 0.8956 0.8945
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Figure 5.2 Patient 5 Testing Results on Respective Models 

 

Figure 5.3 Patient 6 Testing Results on Respective Models 

The configurations of the PC we use for the training is in Appendix II. We apply batch 

training with batch size 10 to train the model, and for each fold we setup 50 epochs 

(training iterations). As an example, in the feature extraction process, for patient 6 the 

feature extraction machine takes 7 min 38 sec to extract the features from the dataset. 

We show the overall training time comparisons in the following table. 

Table 5.2 Training Time of 10-Fold Cross Validation on One Patient Dataset 
 

1 2 3 4 5 6 7 8 9 10 

CNN 44:04 44:54 46:05 45:52 46:48 45:47 45:18 44:02 44:02 44:09 

CNN feature 08:57 08:53 08:49 08:51 08:54 08:54 08:53 09:00 09:01 08:58 
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5.3 CNN-LSTM Model Structure Determination 

For the training process, we compare our constructions of convolutional and LSTM 

combined model designs. As in Table 5.3, the layer settings are listed for 4 constructs 

to conduct comparative experiments. We use our notations in the table to simplify 

expressions. Conv1D represents a 1-dimensional sliding filter convolutional neural 

network, with the first parameter for the number of filters, second parameter for kernel 

size (filter window width), and one stride parameter for step size. LSTM layer has two 

parameters, which are the number of units and the output vector dimension. The default 

setting of the output of the LSTM layer is to return the last output of the sequence. The 

intermediate activation layers are set as RELU and final output activation layers are set 

as Softmax. Dense layer is a fully connected layer shaping the vector into desired 

dimensions.  

Table 5.3 Model Layer Settings 

Layer Setting Parameters 

Construct 1 Construct 2 Construct 3 Construct 4 

Conv1D (32, 32, 
strides=2) 

Conv1D (32, 32, 
strides=2) 

Conv1D (32, 32, 
strides=2) 

Conv1D (16, 32, 
strides=2) 

Activation('RELU') Activation('RELU') BatchNormalization(
axis=2) 

Activation('relu') 
 

LSTM (32, 64) Conv1D (16, 32, 
strides=1) 

Activation('relu') Conv1D (8, 32, 
strides=2) 

Dense (2) Activation('relu') Conv1D (16, 32, 
strides=1) 

Activation('relu') 
 

Activation('softmax') LSTM (16, 64) Activation('relu') Conv1D (8, 16, 
strides=1) 

 Dense (2) LSTM (64) Activation('relu') 
 Activation('softmax') Dense (2) LSTM (64) 
  Activation('softmax') Dense (2) 
   Activation('softmax') 
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We apply an Adam optimizer with learning rate = 0.0001, beta_1 = 0.9, beta_2 = 0.999, 

decay rate = 0.01 during the training process [25]. For the loss function we use binary 

cross entropy. The training processes of the listed constructs are shown in Figure 5.1.  

We added a batch normalization layer in construct 3. The training accuracy curve has 

a clear tendency to adjust at each epoch, which gives a higher probability of breaking 

out from stagnation in training. Construct 1 tends to reach high training accuracy after 

100 epochs of training. The convergence process is slow for this construct. Comparing 

construct 2 and 3, their training processes are similar at the first 40 epochs. The batch 

normalization layer breaks through the early stagnation and reaches a higher accuracy. 

 
Figure 5.3 Training Process of Respective Model Constructions 
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5.4 CNN-LSTM and CNN Comparative Experiments on 10 Patient Cases 

The training setup for our CNN-LSTM model (construct 3) is the same as for our CNN 

model. We train the model using a 10-fold cross validation strategy on each patient, 

and then obtain the overall accuracy from the mean value of the 10 folds results. As 

illustrated in Table 5.4, the comparison between the CNN-LSTM model and CNN 

model are listed in terms of accuracies. We have observed a significant improvement 

in the results from the CNN to the CNN-LSTM model. On average, the CNN-LSTM 

model has a 2.3% higher testing accuracy than the CNN model. The training accuracy 

is also higher than the CNN model on average. Further, the training time of the CNN-

LSTM model is less than half of the CNN model since we use a 1D sliding filter 

window. For example, for patient 6, the CNN model takes 44 minutes to train each fold 

while our CNN-LSTM model takes 19 minutes. 

Table 5.4 Training and Testing Accuracies of CNN-LSTM and CNN Model 

Patient 
Number 

CNN CNN-LSTM 

Training 
Accuracy 

Testing 
Accuracy 

Training 
Accuracy 

Testing 
Accuracy 

1 96.98% 88.53% 99.09% 98.00% 

2 98.09% 90.90% 98.25% 83.43% 

3 99.11% 94.63% 99.13% 97.20% 

4 86.94% 78.86% 95.38% 80.12% 

5 97.22% 93.14% 96.08% 96.34% 

6 98.12% 90.47% 97.46% 89.21% 

7 98.69% 90.38% 98.78% 94.38% 

8 96.34% 92.25% 95.91% 92.94% 

9 98.83% 90.46% 99.01% 95.79% 

10 98.21% 93.93% 98.92% 96.97% 

 

We apply a matching network with division line parameter 0.5 and integration 

threshold at 0.7. The control line parameter is 0.45, and the control integration threshold 
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is 0.8 for the final prediction. From the perspective of detecting sensitivities and 

specificities, we found on average a higher sensitivity for the CNN-LSTM and CNN 

model on the patient cases tested. 

Table 5.5 Sensitivities for Patients Before and After Matching Network Operation 

Patient 1 2 3 4 5 6 7 8 9 10 

Before 88.06% 59.21% 87.55% 43.76% 62.46% 47.23% 61.60% 66.28% 83.50% 77.79% 

After 93.55% 66.67% 95.45% 47.06% 72.97% 48.23% 93.34% 89.15% 86.36% 99.31% 

 

The improvement in sensitivity achieved by our matching network for each patient case 

can be seen in Table 5.5. The sensitivity improvement varies among cases. On average 

the sensitivity improved by 16.92%. 

Table 5.6 Sensitivities and Specificities of CNN-LSTM and CNN Model 

Patient 
Number 

Number 
of Epochs 

CNN CNN-LSTM 

Sensitivity Specificity Sensitivity Specificity 

1 1598 63.01% 99.38% 93.55% 99.14% 

2 204 19.84% 96.83% 66.67% 95.24% 

3 1322 57.75% 99.07% 95.45% 98.31% 

4 1214 29.41% 89.70% 47.06% 88.71% 

5 1643 39.92% 99.36% 72.97% 98.69% 

6 567 13.24% 99.59% 48.23% 98.61% 

7 545 20.95% 98.91% 93.34% 98.16% 

8 2581 54.75% 97.16% 89.15% 96.89% 

9 906 11.55% 100.00% 86.36% 97.57% 

10 1450 50.19% 98.72% 99.31% 99.09% 

 

It is important to point out that for patient cases with smaller sizes, such as patient 2 

and 6, when they are tested for sensitivity and specificity they have relatively lower 

performance than other cases. This could be caused by the sparseness of the seizure 

epochs in the dataset. For example, in the patient 2 dataset, there are only 21 seizure 
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epochs. For analyzing sensitivity and specificity, the quantity of seizure epochs in 

tested folds is relatively limited. Hence, the results are not as good as might be found 

in larger datasets. A way to further test the case is to use smaller epoch length. For 

example, if the epoch length is 1 second, then the dataset would be 2 times larger, hence 

the testing results could be more stable in terms of testing folds. We also compare our 

model performance with reference methods as shown in Table 5.7. 

Table 5.7 Comparison with Other Approaches on CHB-MIT Benchmark Dataset 

Method Accuracy Specificity Sensitivity 

Lima et al. [26] 80.30% 86.85% 73.74% 

Magosso et al. 
[27] 65.92% 83.34% 48.50% 

Acharya et al. 
[28] 85.00% 88.29% 83.31% 

Ubeyli [30] 84.60% 88.58% 80.62% 

Our work 92.44% 97.04% 79.21% 
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Chapter 6:  Conclusions and Future Work 

We designed a combined CNN-LSTM model for EEG seizure prediction and explored 

its performance with respect to other methods. Our model performed significantly 

higher in terms of testing accuracy, sensitivity, specificity, and training time. Our CNN-

based feature map model could reach a high performance with great training time 

saving. We proposed a metric learning inspired matching network architecture to 

explore post-processing after the deep neural network training process and the statistics 

indicate promising improvements. Our future work will focus on advancing in the 

following areas: 

a) Develop a fitting method for matching network metric distance histograms to 

simulate typical statistical distributions. Currently we have developed a metric 

learning architecture to evaluate training results from intermediate layer output, 

however, we need a fitting method to be able to analytically compare the 

histograms. 

b) Design an automatic algorithm for matching network validation. The statistical 

results of the learned model showed clear difference between seizure and non-

seizure epochs in terms of metric distance distributions. We need to explore the 

distribution behaviors of the epochs compared to the labeled samples so that a 

self-adjusting algorithm could be developed to distinguish between classes. 

c) Improve the method to generate time-frequency image maps as inputs. We are 

dealing with EEG signals from the image approach. We have seen the clear 

improvement by processing multi-channel signals as images. We are dedicated 

to find better methods to learn the signal images so that the training could be 
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improved with more efficiency in terms of computing cost. That will give us a 

powerful tool to develop more comprehensive seizure detection systems.  
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Appendix I 

The channels are the electrical potential differences between two electrodes on the 

scalp. The channel names are (by order): 

FP1-F7, F7-T7, T7-P7, P7-01, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, 

P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, P7-T7, T7-FT9, FT9-FT10, 

FT10-T8, T8-P8 
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Appendix II 

PC configurations: 

Processor: Intel(R) Core i5-7600K CPU @ 3.80GHz 

Graphics Card: NVIDIA GeForce GTX 1050 

Installed memory: 16.0 GB 

System type: 64-bit Operating System, x64-based processor 
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