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Abstract

In the context buffer models fed by independent on-off fluid sources,
we explore conditions under which “determinism minimizes the sta-
tionary backlog.” These comparison results are couched in terms of the
convex ordering for distributions. We show that increased variability
in the on-duration rv results in greater variability of the correspond-
ing backlog. While it appears that in general increased variability in
the off-duration rv does not necessarily imply greater variability of
the backlog, it is however the case when the on-period duration rv
B is exponentially distributed. The discussion is organized around
a representation of the stationary backlog in terms of the stationary
waiting time rv for an auxiliary stable GI|GI|1 queue.

1 Introduction

Consider the following popular model for evaluating the performance of ATM
multiplexers: An independent on-off fluid source with peak rate r is offered
to an infinite capacity buffer which is drained at the constant rate c. The
statistics of such an on-off fluid source are fully determined by a pair of in-
dependent IR+-valued random variables (rvs) B and I describing the generic
on-period and off-period durations, respectively. If rp < c < r where p is

†Department of Electrical and Computer Engineering and Institute for Systems Re-
search, University of Maryland, College Park, MD 20742.
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the asymptotic fraction of time that the source is active, then there exists a
non-identically zero IR+-valued rv V , known as the stationary backlog, which
can be used to characterize the buffer ocuppancy level in steady state.

As for classical queueing systems, it is of some interest to understand
how (the distribution of) the backlog V (B, I) varies with (that of) B and
I (where we write V (B, I) to acknowledge the fact that the statistics of V
are determined by the distributions of the rvs B and I). In this paper we
are specifically concerned with the following external monotonicity properties
[11]: For k = 1, 2, let V (B(k), I(k)) denote the stationary backlog induced by
the on-off fluid source (B(k), I(k)). We seek conditions on the comparability of
the rvs B(1) and B(2), on one hand, and of the rvs I(1) and I(2), on the other
hand, which would ensure the comparability of the backlog rvs V (B(1), I(1))
and V (B(2), I(2)). In particular, we wish to determine when the comparisons
B(1) ≤b B(2) and I(1) ≤i I(2) for some stochastic orderings ≤b and ≤i imply
a similar comparison, say V (B(1), I(1)) ≤v V (B(2), I(2)), possibly for some
other stochastic ordering ≤v.

Work along these lines has been reported in the literature for a wide
range of queueing systems and in varying degree of completeness. The most
comprehensive set of results was perhaps obtained for the queues GI|GI|1
and GI|GI|c (with c finite) [11, 13]. These monotonicity results are given in
both transient and steady–state regimes for several performance measures,
including queue size, customer waiting time and workload [9, 11, 13]. They
are typically expressed in terms of one of the “standard” integral orders on
the set of probability distributions: For IR–valued random variables X and
Y , we say that X is smaller than Y in the strong stochastic (resp. convex,
increasing convex) ordering if

E [ϕ(X)] ≤ E [ϕ(Y )] (1)

for all mappings ϕ : IR → IR which are monotone increasing (resp. convex,
increasing and convex) provided the expectations in (1) exist. In that case
we write X ≤st Y (resp. X ≤cx Y , X ≤icx Y ). Additional material on these
orderings can be found in the monographs [9, 10, 11, 12].

Here we discuss a number of results under the comparability conditions
B1 ≤cx B2 and I1 ≤cx I2. The use of the convex ordering ≤cx (rather than
≤st or ≤icx) in these conditions can be traced to a representation of the
stationary backlog in terms of the stationary waiting time rv for an auxiliary
stable GI|GI|1 queue; this representation is developed in Section 4. The
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sought–after comparison results would constitute analogs for buffer models
fed by on-off fluid sources of the fact that “determinism minimizes waiting
time” in GI|GI|1 queues [3] (and references therein).

In Section 5 we present a first (and easy) comparison result to the ef-
fect that V (B(1), I(1)) ≤icx V (B(2), I(2)) whenever B(1) ≤cx B(2) with I(1) =
I(2) ≡ I. In other words, increased variability in the on-duration rv results
in greater variability of the corresponding backlog. This result (given in
Proposition 5.1) is a simple consequence of the above-mentionned respre-
sentation result and of standard external monotonicity results for GI|GI|1
queues (summarized in Section 3).

Next, in Section 6 we consider the case when

I(1) ≤cx I(2) with B(1) = B(2) ≡ B (2)

and show why the approach underlying Proposition 5.1 is inadequate. In
Sections 7 and 8 we try to remedy this difficulty by imposing additional
conditions to (2). While we are able to establish the desired result under
this augmented set of conditions, they are shown to be too strong in that
together with (2), they imply I(1) =st I(2).

Nevertheless, we are still able to make progress in the case when the on-
period duration rv B is exponentially distributed. To do so, in Section 9 we
take advantage of well-known results for the GI|M |1 queue and derive an ex-
plicit expression for the distribution function of the stationary backlog. This
expression has already appeared elsewhere [4, 5] for a model equivalent to
the one considered here, and is then used in Section 10 to establish the com-
parison V (B, I(1)) ≤st V (B, I(2)) under (2) for an exponentially distributed
on-period rv B. As of this writing it is still an open problem as to whether
a comparison result holds under (2) in its general form.

A word on the notation used in this paper: We find it convenient to
define all the rvs of interest on some common probability triple (Ω,F ,P).
Two IR–valued rvs X and Y are said to be equal in law if they have the same
distribution, a fact we denote by X =st Y . For any α > 0, we denote by
Eα any rv which is exponentially distributed rv with parameter α. For any
integrable IR+–valued rv X, the forward recurrence time X� is defined as the
rv with integrated tail distribution given by

P [X� > x] :=
1

E [X]

∫ ∞

x
P [X > t] dt, x ≥ 0. (3)
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We recall that X� has a finite first moment if E [X2] < ∞, with

E [X�] =
E [X2]

2E [X]
.

2 On-off sources

An on-off source of peak rate r is described by a succession of cycles, each
such cycle comprising an off-period followed by an on-period. During the
on-periods the source is active and produces fluid at constant rate r; the
source is silent during the off-periods: For each n = 0, 1, . . ., let Bn and In

denote the durations of the on-period and off-period in the (n + 1)st cycle,
respectively. Thus, if the sequence of epochs {Tn, n = 0, 1, . . .} denote the
beginning of successive cycles, with T0 := 0 we have Tn+1 :=

∑n
�=0 I� + B�

for each n = 0, 1, . . .. The activity of the source is then described by the
{0, 1}-valued process {ξ(t), t ≥ 0} given by

ξ(t) :=
∞∑

n=0

1 [Tn + In ≤ t < Tn+1] , t ≥ 0, (4)

with the source active (resp. silent) at time t if ξ(t) = 1 (resp. ξ(t) = 0).
An independent on-off source is one for which (i) the IR+-valued rvs

{In, n = 1, . . .} and {Bn, n = 1, . . .} are mutually independent rvs which are
independent of the pair of rvs I0 and B0 associated with the initial cycle; and
(ii) the rvs {In, n = 1, . . .} (resp. {Bn, n = 1, . . .}) are i.i.d. rvs with generic
off-period duration rv I (resp. on-period duration rv B). Throughout the
generic rvs B and I are assumed to be independent IR+-valued rvs such that
0 < E [B] ,E [I] < ∞, and we simply refer to the independent on-off process
just defined as the on-off source (B, I).

In general, the activity process (4) is not stationary unless the rvs I0 and
B0 are selected appropriately. We do so by using the following variation on
constructions given in [1, 8]: With

p :=
E [B]

E [B] + E [I]
, (5)

we introduce the {0, 1}-valued rv U given by

P [U = 1] = p = 1 − P [U = 0] . (6)
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A stationary version of (4), still denoted {ξ(t), t ≥ 0}, is now obtained by
selecting (I0, B0) so that

(I0, B0) =st (0, B�)U + (I�, B)(1 − U) (7)

with rvs U , B, B� and I� taken to be mutually independent and independent
of the rvs {Bn, In, n = 1, . . .}. Here, the rvs B� and I� are the forward
recurrence times associated with B and I, respectively, as defined by (3).

3 Variability ordering in GI|GI|1 queues

In this section we summarize some useful facts and notation concerning
GI|GI|1 queues. Consider a standard GI|GI|1 queue with generic service
time σ and interarrival time τ ; these rvs are assumed integrable. For each
n = 0, 1, . . ., let Wn denote the waiting time (in buffer) of the nth customer.
Under the stability condition

E [σ] < E [τ ] , (8)

there exists an IR+–valued rv W such that Wn =⇒n W irrespective of W0. We
refer to the rv W as the stationary waiting time rv. It can be characterized
as the supremum of a random walk with i.i.d. increments [2, Prop. 1.1, p.
181], namely

W =st

(
sup

n=0,1,...

n∑
�=1

(σ� − τ�+1)

)+

(9)

where {σ, σ�, � = 0, 1, . . .} and {τ, τ�+1, � = 0, 1, . . .} are mutually indepen-
dent sequences of i.i.d. rvs (where x+ = max(x, 0) for any scalar x). We also
recall [2, Thm. 2.1, p. 184] [6] that under the assumed condition E [τ ] < ∞,
it holds that

E [W ] < ∞ if and only if E
[
σ2
]

< ∞. (10)

In the sequel we write W (σ, τ) for the stationary waiting time rv (9) as-
sociated with the standard GI|GI|1 queue with generic service time σ and
interarrival time τ . We also introduce the stationary delay rv D(σ, τ) given
by

D(σ, τ) =st W (σ, τ) + σ (11)
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where the rvs W (σ, τ) and σ are taken to be independent. In what follows we
shall make use of the fact that the rv W (σ, τ) is a solution to the distributional
equation

W =st (W + σ − τ)+ (12)

with W , σ and τ mutually independent rvs.
For GI|GI|1 queues it is well known [3, 9, 11] that “determinism min-

imizes waiting times,” a fact which can be formalized by Theorem 5.2.1 of
[11, p. 80] (when combined with (10)).

Proposition 3.1 Consider two stable GI|GI|1 queues with integrable generic

service time σ(k) and interarrival time τ (k) (thus E
[
σ(k)

]
< E

[
τ (k)

]
) so that

E
[
|σ(k)|2

]
< ∞ (k = 1, 2). If

σ(1) ≤cx σ(2) and τ (1) ≤cx τ (2), (13)

then it holds that
W (σ(1), τ (1)) ≤icx W (σ(2), τ (2)). (14)

Under condition (13), E
[
σ(1)

]
= E

[
σ(2)

]
and E

[
τ (1)

]
= E

[
τ (2)

]
, and the

two GI|GI|1 queues have the same stability condition.

4 The stationary backlog

Consider the stationary version {ξ(t), t ≥ 0} of the on-off source (B, I)
with peak rate r as described in Section 2. The total amount A(t) of fluid
generated in [0, t) by this on-off source is given by

A(t) = r
∫ t

0
ξ(s)ds, t ≥ 0. (15)

If we offer this on-off source {A(t), t ≥ 0} to an infinite capacity buffer
drained at the constant rate c, then under the condition c < r, a backlog
results in the amount V (t) at time t ≥ 0. With a system initially empty,
standard arguments show that

V (t) = sup0≤s≤t (A(t) − A(s) − c(t − s)) . (16)
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Under the stability condition
rp < c (17)

with p given by (5), there exists a non-identically zero IR+-valued rv V such
that V (t) =⇒t V irrespective of the initial backlog V (0). It is known that

V =st supt≥0 (A(t) − ct) (18)

with {A(t), t ≥ 0} given by (15). We refer to the rv V as the stationary
backlog.

The stationary backlog (18) can be related to the stationary waiting time
of an auxiliary GI|GI|1 queue. To that end, consider the IR-valued rvs
{X�, � = 0, 1, . . .} defined by

X� := (r − c)B� − cI�, � = 0, 1, . . . (19)

and set

M :=

(
sup

n=1,2,...

n∑
�=1

X�

)+

(20)

where the rvs {In, Bn, n = 0, 1, . . .} are as specified in the construction of
the stationary version of {ξ(t), t ≥ 0} in Section 2. Under the enforced
assumptions, the rv X0 is independent of the i.i.d. rvs {X�, � = 1, 2, . . .}.
While X� =st (r − c)B − cI for all � = 1, 2, . . ., it follows from (7) that

X0 =st (r − c)B�U + ((r − c)B − cI�) (1 − U). (21)

Proposition 4.1 With the rv X0 taken independent of the rv M , we have

V =st (X0 + M)+ . (22)

Proof. Apply Proposition 4.1 in [1, p. 17] with mapping h : IR+ → IR
taken to be h = 0. This choice for h is simultaneously superadditive and
subadditive, and satisfies both conditions (H1)-(H2). Thus, both Claims 1
and 2 together yield

V =st

(
sup

n=0,1,...

n∑
�=0

X�

)+

. (23)
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It is plain that

V =st

(
X0 + max

(
0, sup

n=1,2,...

n∑
�=1

X�

))+

(24)

and the desired conclusion (22) immediately follows.

Upon comparing (9) and (20), we observe the equivalence

M =st W ((r − c)B, cI) (25)

where in the notation developed in Section 3, W ((r − c)B, cI) denotes the
stationary waiting time for the GI|GI|1 queue with generic service time
(r − c)B and interarrival service time cI. Note that (17) is equivalent to (8)
with the identification σ = (r − c)B and τ = cI.

Reporting (25) into the representation (22) and making use of (21), we
find

V =st ((r − c)B� + W ((r − c)B, cI))U

+ ((r − c)B − cI� + W ((r − c)B, cI))+ (1 − U). (26)

Sometimes we shall find it useful to write V (B, I), M(B, I) and X0(B, I)
for V , M and X0, respectively, to indicate the dependence of these quantities
on the rvs B and I.

5 A first comparison result

Whenever we discuss a comparison result, we shall assume the following
framework: Consider the buffer model with drain rate c which is fed by the
on-off fluid sources (B(k), I(k)) with peak rate r (k = 1, 2). We assume

pkr < c and E
[
|B(k)|2

]
< ∞, k = 1, 2 (27)

with pk given by (5) for the on-off source (B(k), I(k)). The following result
indicates in what sense “determinism in the on-period duration minimizes
the stationary backlog.”
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Proposition 5.1 If

I(1) = I(2) ≡ I and B(1) ≤cx B(2), (28)

then
V (B(1), I) ≤icx V (B(2), I). (29)

Proof. In view of (25), we can invoke Proposition 3.1 to conclude under
(28) that

M(B(1), I) ≤icx M(B(2), I). (30)

On the other hand, it is a simple matter to check that (28) implies B(1)� ≤st

B(2)�, hence
B(1)� ≤icx B(2)�. (31)

Under the enforced assumptions, we have p1 = p2 (whence U (1) =st U (2)),
and with the help of (21), we see from (28) and (31) that

X0(B
(1), I) ≤icx X0(B

(2), I). (32)

The fact that the convex increasing ordering is closed under convolution
yields

M(B(1), I) + X0(B
(1), I) ≤icx M(B(2), I) + X0(B

(2), I) (33)

and the desired conclusion (29) is now a simple consequence of (22) and of
the fact that convex increasing transformations preserve the convex increas-
ing ordering.

6 A difficulty

We now turn to the situation when B(1) = B(2) ≡ B. In view of Proposition
3.1, it is natural to seek a comparison result under the assumption

I(1) ≤cx I(2) (34)

with the hope that a result similar to (29) will materialize in the form

V (B, I(1)) ≤icx V (B, I(2)). (35)
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To explore the validity of (35), we proceed as in the proof of Proposition 5.1:
Under the enforced assumptions (34), Proposition 3.1 yields M(B, I(1)) ≤icx

M(B, I(2)) and the equality p1 = p2 still holds and again we have U (1) =st

U (2).1

With the help of (21), we see that the analog of (32) will indeed hold in
the form

X0(B, I(1)) ≤icx X0(B, I(2)) (36)

provided we can show that

−I(1)� ≤icx −I(2)�. (37)

Once this comparison established, the proof of (35) can then be completed
in a rather routine manner along the lines of the proof of Proposition 5.1.

However, now (34) implies I(1)� ≤st I(2)�, whence −I(2)� ≤st −I(1)� and
the comparison

−I(2)� ≤icx −I(1)� (38)

follows. The validity of both (37) and (38) yields −I(2)� =st −I(1)�, or equiv-
alently, I(1)� =st I(2)�, whence the equality I(1) =st I(2). In other words, the
proof of (35) under (34) with distinct I(1) and I(2) cannot pass through (36),
and is not as straightforward as was the proof of Proposition 5.1. We devote
the next two sections to trying to establish the comparison under additional
conditions.

7 A dead-end

In order to circumvent the difficulty discussed in the last section, it might
be tempting to argue as follows: With the distributional equation (12) in
mind, the form of (26) suggests the possibility that (35) will hold under (34)
provided the conditions

−I(1)� ≤icx −I(1) (39)

and
−I(2) ≤icx −I(2)� (40)

are added.

1In Sections 7 and 8 we denote any such {0, 1}-valued rv by U .
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Indeed, (12) and (39) together lead to

(
(r − c)B − cI(1)� + W ((r − c)B, cI(1))

)+

≤icx

(
(r − c)B − cI(1) + W ((r − c)B, cI(1))

)+

= W ((r − c)B, cI(1)), (41)

so that

V (B, I(1)) ≤icx (r − c)B�U + W ((r − c)B, cI(1)) (42)

upon making use of (26). Similarly, (12) and (40) combine to give

(
(r − c)B − cI(2)� + W ((r − c)B, cI(2))

)+

≥icx

(
(r − c)B − cI(2) + W ((r − c)B, cI(2))

)+

= W ((r − c)B, cI(2)), (43)

and the representation (26) now yields

V (B, I(2)) ≥icx (r − c)B�U + W ((r − c)B, cI(2)). (44)

Combining (42) and (44) readily implies (35) once we note by Proposition
3.1, that W ((r − c)B, cI(1)) ≤icx W ((r − c)B, cI(2)) holds under condition
(34).

Unfortunately, conditions (39) and (40) together with (34) again force
the equality I(1) =st I(2): From the discussion in Section 6 we already know
that (34) implies the comparison −I(2)� ≤icx −I(1)�. On the other hand (34)
is equivalent to −I(1) ≤cx −I(2), whence −I(1)� ≤icx −I(2)� as a result of
(39) and (40). Thus, −I(1)� =st −I(2)�, i.e., I(1)� =st I(2)� and the equality

I(1) =st I(2) follows since E
[
I(1)

]
= E

[
I(2)

]
under (34).

8 Yet another dead-end

The discussion in Sections 6 and 7 suggests that the comparison (35) under
(34) may not be valid unless additional assumptions are made on B, such
conditions possibly involving I(1) and I(2). We explore this point further in
the next two sections.
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As we again return to (12), we add to (34) the conditions

(r − c)B − cI(1)� ≤icx 0 (45)

and
0 ≤icx (r − c)B − cI(2)�. (46)

Then,

(
(r − c)B − cI(1)� + W ((r − c)B, cI(1))

)+

≤icx W ((r − c)B, cI(1)) (47)

while (
(r − c)B − cI(2) + W ((r − c)B, cI(2))

)+

≥icx W ((r − c)B, cI(2)). (48)

Making use of the representation (26) now yields

V (B, I(1)) ≤icx (r − c)B�U + W ((r − c)B, cI(1)) (49)

and

V (B, I(2)) ≥icx (r − c)B�U + W ((r − c)B, cI(2)). (50)

Combining (49) and (50) readily implies (35) since W ((r − c)B, cI(1)) ≤icx

W ((r − c)B, cI(2)) by virtue of Proposition 3.1 under condition (34).
But conditions (45) and (46) together imply

cE
[
I(2)�

]
≤ (r − c)E [B] ≤ cE

[
I(1)�

]
. (51)

On the other hand, (34) was shown to yield (38) in Section 6, whence

E
[
I(1)�

]
≤ E

[
I(2)�

]
. (52)

Thus, E
[
I(1)�

]
= E

[
I(2)�

]
while at the same time we have I(1)� ≤st I(2)�.

Consequently, I(1)� =st I(2)� and the equality I(1) =st I(2) again follows!
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9 Exponential on-periods

To make progress we consider the situation when the on-period durations are
exponentially distributed: The buffer model with drain rate c is now fed by
an on-off source (B, I) with peak rate r where B =st Eβ for some parameter
β, so that

(r − c)B =st Eµ with µ = (r − c)−1β. (53)

Note that B� =st B and that (22) yields

V =st

(
X̃0 + (r − c)B + M

)+
(54)

with rvs X̃0, B and M mutually independent, and X̃0 characterized by

X̃0 =st −cI�(1 − U). (55)

The key observation is that M is now the equilibrium waiting time in a
stable GI|M |1 queue with generic service time (r − c)B =st Eµ and interar-
rival time cI. Thus, M + (r − c)B can now be interpreted as the stationary
delay D((r − c)B, cI) in that GI|M |1 queue. It is well known that the sta-
tionary delay rv in a stable GI|M |1 queue is exponentially distributed [7]:
More precisely,

D((r − c)B, cI) =st Eξ(1−µ) (56)

where ξ the unique solution of the non-linear equation

ξ = E
[
e−µ(1−ξ)cI

]
, 0 < ξ < 1. (57)

Consequently, (54) can now be rewritten as

V =st

(
X̃0 + Eξ(1−µ)

)+
(58)

with independent rvs X̃0 and Eξ(1−µ). We are now in position to evaluate
the distribution function of the backlog when activity periods are exponen-
tially distributed. The following result was obtained in [4, 5] in a somewhat
different form for a model equivalent to the one considered here:

Proposition 9.1 Consider the buffer model with drain rate c when fed by
an on-off source (B, I) with peak rate r. Assume that B =st Eβ for some
parameter β > 0. Then, with µ given by (53), it holds that

P [V > t] =
pr

c
e−µ(1−ξ)t, t ≥ 0. (59)
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Proof. Fix t ≥ 0. We shall show below that

P [V > t] =

(
p +

(1 − p)

µcE [I]

)
e−µ(1−ξ)t. (60)

The expression (59) is now a straightforward consequence of this last relation
as we recall the expression (5) for p and the fact that β = E [B]−1 in (53).

Now turning to the derivation of (60), we use (55) with (58) to get

P [V > t] = pP
[
Eξ(1−µ) > t

]
+ (1 − p)P

[
Eξ(1−µ) − cI� > t

]
= pe−µ(1−ξ)t + (1 − p)P

[
Eξ(1−µ) > cI� + t

]
. (61)

By the independence of Eξ(1−µ) and I�, we see that

P
[
Eξ(1−µ) > cI� + t

]
= E

[
e−µ(1−ξ)(cI�+t)

]
= e−µ(1−ξ)tE

[
e−µ(1−ξ)cI�

]
(62)

with

E
[
e−µ(1−ξ)cI�

]
=

1 − E
[
e−µ(1−ξ)cI

]
µ(1 − ξ)cE [I]

=
1

µcE [I]
(63)

where the first equality is the standard formula that relates the Laplace–
Stieltjes transform of I� to that of I, and the second equality made use of
(57). Reporting (63) into (62) we readily get (60) via (61).

10 Comparing with exponential on-periods

The main comparison result is contained in the following:

Proposition 10.1 With B =st Eβ for some parameter β, if

B(1) = B(2) ≡ B and I(1) ≤cx I(2), (64)

then
V (B, I(1)) ≤st V (B, I(2)). (65)

14



Proof. Under the enforced assumptions, we have µ1 = µ2 ≡ µ and p1 =
p2 ≡ p. Thus, by Proposition 9.1 we get the desired conclusion (65) provided

P
[
V (B, I(1)) > t

]
≤ P

[
V (B, I(2)) > t

]
for all t ≥ 0, i.e.,

pr

c
e−µ(1−ξ1)t ≤ pr

c
e−µ(1−ξ2)t, t ≥ 0 (66)

where for each i = 1, 2, ξi is the unique solution of the non-linear equation

ξ = E
[
e−µ(1−ξ)cIi

]
, 0 < ξ < 1. (67)

The requirement (66) is obviously equivalent to

ξ1 ≤ ξ2. (68)

The validity of (68) is a simple consequence of the defining relations (67) for
ξ1 and ξ2, and of condition (64) through the inequality

E
[
e−µ(1−ξ)cI1

]
≤ E

[
e−µ(1−ξ)cI2

]
, 0 < ξ < 1. (69)
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